PCI-Express总线简介
pci-e总线基本传输机制
pci-e总线基本传输机制1.引言1.1 概述概述部分的内容可以写成以下内容:PCI-E(Peripheral Component Interconnect Express)总线是一种计算机扩展插槽标准,旨在提供高速、高性能的数据传输能力。
它广泛应用于各种计算机设备,如显卡、网络卡、存储卡等,使它们能够与主板进行有效的通信和数据传输。
PCI-E总线采用了一套全新的传输机制,以取代之前的PCI (Peripheral Component Interconnect)总线。
与传统的PCI总线相比,PCI-E总线在带宽、速度和可扩展性等方面有了巨大的提升。
它能够提供更高的数据传输速度和更大的带宽,满足现代计算机对于高性能、高速度数据传输的需求。
PCI-E总线的传输机制是基于高速串行通信的。
传统的PCI总线采用的是并行传输,每次传输数据的位数较多,而PCI-E总线则采用了串行传输的方式,减少了数据线的数量,提高了信号传输的速度和质量。
同时,PCI-E总线还采用了差分传输技术,通过正负两个信号线来传输数据,有效地减少了信号的干扰和噪声,提高了信号的稳定性和可靠性。
除此之外,PCI-E总线还采用了分层的架构设计。
它将总线分为物理层、数据链路层和传输层,每一层都有相应的协议和规范,用于确保数据的正确传输和处理。
这种分层的设计使得PCI-E总线具有较高的灵活性和可扩展性,能够适应不同设备和不同需求的应用。
综上所述,PCI-E总线作为一种高速、高性能的数据传输接口,已经成为现代计算机系统中不可或缺的一部分。
它的概念和特点将在接下来的文章中进一步介绍和探讨。
1.2文章结构文章结构是指整篇文章的组织结构和内容安排。
一个清晰、合理的文章结构能够使读者更好地理解文章主题,并能够有条理地获取所需信息。
本文的结构如下:1. 引言1.1 概述:介绍PCI-E总线的重要性和应用背景,引出本文的主题。
1.2 文章结构:概述本文的组织结构并列举各部分的内容大纲。
pcie基本原理
pcie基本原理PCI Express(Peripheral Component Interconnect Express)是一种高速串行总线标准,用于连接计算机内部的各种设备和组件,例如显卡、网卡、声卡等。
PCIe基于串行传输方式和点对点连接的思想,相比传统的并行总线具有更高的带宽和更低的延迟。
1. PCIe物理层PCIe物理层包括差分信号传输、时钟恢复、电源管理等方面。
差分信号传输是PCIe最关键的特性之一,它使用两条反向传输线代表一个数据位,实现了抗干扰性能更好和更远距离的数据传输。
时钟恢复是指接收端通过解码发送端发送过来的时钟信息来恢复本地时钟,从而实现同步通信。
电源管理则是为了节省能源,在设备空闲或未使用时自动进入低功耗模式。
2. PCIe数据链路层PCIe数据链路层负责将上层逻辑层的请求转换成可被物理层发送的数据包,并在接收端将数据包还原成原始请求。
数据链路层分为两个子层:逻辑子层(Logical Sublayer)和传输子层(Transport Sublayer)。
逻辑子层主要负责错误检测和纠正,传输子层则负责流量控制和错误恢复。
3. PCIe传输层PCIe传输层是PCIe中最重要的层次之一,它定义了数据包如何在发送端和接收端之间传输。
PCIe采用基于令牌的流控制方式,发送端将数据包打成一个个TLP(Transaction Layer Packet),并通过令牌的方式将TLP交给接收端。
如果接收端准备好接收数据,则返回一个令牌给发送端,发送端才会将数据包发送出去。
这种流控制方式可以有效地避免数据包丢失和冲突。
4. PCIe事务层PCIe事务层是PCIe协议中最高层次的逻辑,它定义了如何进行读写操作、配置设备、中断处理等操作。
PCIe事务分为两种类型:读取(Read)和写入(Write)。
读取操作由请求者发起,写入操作由请求者或响应者发起。
配置空间是一种特殊的地址空间,用于存储设备的配置信息。
PCI-Express总线基础知识
PCIe总线的基础知识与PCI总线不同,PCIe总线使用端到端的连接方式,在一条PCIe链路的两端只能各连接一个设备,这两个设备互为是数据发送端和数据接收端。
PCIe总线除了总线链路外,还具有多个层次,发送端发送数据时将通过这些层次,而接收端接收数据时也使用这些层次。
PCIe 总线使用的层次结构与网络协议栈较为类似。
4.1.1 端到端的数据传递PCIe链路使用“端到端的数据传送方式”,发送端和接收端中都含有TX(发送逻辑)和RX(接收逻辑),其结构如图4‑1所示。
由上图所示,在PCIe总线的物理链路的一个数据通路(Lane)中,由两组差分信号,共4根信号线组成。
其中发送端的TX部件与接收端的RX部件使用一组差分信号连接,该链路也被称为发送端的发送链路,也是接收端的接收链路;而发送端的RX部件与接收端的TX部件使用另一组差分信号连接,该链路也被称为发送端的接收链路,也是接收端的发送链路。
一个PCIe链路可以由多个Lane组成。
高速差分信号电气规范要求其发送端串接一个电容,以进行AC耦合。
该电容也被称为AC 耦合电容。
PCIe链路使用差分信号进行数据传送,一个差分信号由D+和D-两根信号组成,信号接收端通过比较这两个信号的差值,判断发送端发送的是逻辑“1”还是逻辑“0”。
与单端信号相比,差分信号抗干扰的能力更强,因为差分信号在布线时要求“等长”、“等宽”、“贴近”,而且在同层。
因此外部干扰噪声将被“同值”而且“同时”加载到D+和D-两根信号上,其差值在理想情况下为0,对信号的逻辑值产生的影响较小。
因此差分信号可以使用更高的总线频率。
此外使用差分信号能有效抑制电磁干扰EMI(Electro Magnetic Interference)。
由于差分信号D+与D-距离很近而且信号幅值相等、极性相反。
这两根线与地线间耦合电磁场的幅值相等,将相互抵消,因此差分信号对外界的电磁干扰较小。
当然差分信号的缺点也是显而易见的,一是差分信号使用两根信号传送一位数据;二是差分信号的布线相对严格一些。
pciexpress简介及详细资料
pciexpress简介及详细资料基本概念PCI Express的接口根据汇流排位宽不同而有所差异,包括X1、X4、X8以及X16(X2模式将用于内部接口而非插槽模式)。
较短的PCI Express卡可以插入较长的PCI Express插槽中使用。
PCI Express 接口能够支持热拔插,这也是个不小的飞跃。
PCI Express卡支持的三种电压分别为+3.3V、3.3Vaux以及+12V。
用于取代AGP接口的PCI Express接口位宽为X16,将能够提供5GB/s的频宽,即便有编码上的损耗但仍能够提供4GB/s左右的实际频宽,远远超过AGP 8X的2.1GB/s的频宽。
PCI Express规格从1条通道连线到32条通道连线,有非常强的伸缩性,以满足不同系统设备对资料传输频宽不同的需求。
例如,PCI Express X1规格支持双向资料传输,每向资料传输频宽250MB/s,PCI Express X1已经可以满足主流声效晶片、网卡晶片和存储设备对资料传输频宽的需求,但是远远无法满足图形晶片对资料传输频宽的需求。
因此,必须采用PCI Express X16,即16条点对点资料传输通道连线来取代传统的AGP汇流排。
PCI Express X16也支持双向资料传输,每向资料传输频宽高达4GB/s,双向资料传输频宽有8GB/s之多,相比之下,目前广泛采用的AGP 8X资料传输只提供2.1GB/s的资料传输频宽。
尽管PCI Express技术规格允许实现X1(250MB/秒),X2,X4,X8,X12,X16和X32通道规格,但是依目前形式来看,PCI Express X1和PCI Express X16将成为PCI Express主流规格,同时晶片组厂商将在南桥晶片当中增加对PCI Express X1的支持,在北桥晶片当中增加对PCI Express X16的支持。
除去提供极高资料传输频宽之外,PCI Express因为采用串列封包方式传递资料,所以PCI Express接口每个针脚可以获得比传统I/O标准更多的频宽,这样就可以降低PCI Express设备生产成本和体积。
系统总线的分类
系统总线的分类系统总线是计算机内部各个硬件组件之间进行数据传输和通信的重要手段。
根据不同的标准和功能,系统总线可以分为以下几类:一、ISA总线ISA总线(Industry Standard Architecture)是一种较早的系统总线标准,它最早出现在IBM PC/AT机型上。
ISA总线采用了16位的数据路径,传输速率相对较低,仅为4.77 MHz。
ISA总线主要用于连接低速外设,如串口卡、并口卡等,随着计算机技术的发展,ISA总线已经逐渐被更为先进的总线所替代。
二、PCI总线PCI总线(Peripheral Component Interconnect)是一种较为常见的系统总线标准,它是由英特尔公司于1993年推出的。
PCI总线采用32位或64位的数据路径,传输速率较高,最高可达133 MHz。
PCI总线主要用于连接高速外设,如显卡、声卡、网卡等。
由于PCI总线具有良好的兼容性和扩展性,因此在现代计算机中被广泛应用。
三、AGP总线AGP总线(Accelerated Graphics Port)是一种专门用于图形显示的系统总线标准,它是由英特尔公司于1996年推出的。
AGP总线采用32位的数据路径,传输速率较高,最高可达266 MHz。
AGP总线的主要特点是为图形处理器提供了独立的高速通道,使得图形显示的性能得到了显著提升。
四、PCI-X总线PCI-X总线(Peripheral Component Interconnect eXtended)是一种对PCI总线进行扩展的系统总线标准,它是由PCI-SIG组织于1998年推出的。
PCI-X总线采用64位或32位的数据路径,传输速率较高,最高可达1333 MHz。
PCI-X总线主要用于连接高速外设和扩展卡,如RAID卡、高性能网卡等。
由于PCI-X总线具有较大的带宽和较高的传输速率,因此在服务器等高性能计算机中得到广泛应用。
五、PCI Express总线PCI Express总线(Peripheral Component Interconnect Express)是一种较新的系统总线标准,它是由PCI-SIG组织于2004年推出的。
PCI总线与PCI Express
PCI总线的发展
最早提出的PCI 总线属于32位总
线,工作在33MHz 频率之下,传输带宽
达到了133MB/s,基本上满足了当时处理
器的发展需要。随着对更高性能的要求,
1993年又提出了64位的PCI 总线,后来 又把PCI 总线的频率提升到66MHz .目前 广泛采用的是32位、33MHz 的PCI 总线。
在通讯领域的应用
Thanks!
PCI总线与PCI Express
微型计算机系统中使用 的各种芯片、各种板卡 内元器件之间、各板卡 之间的连接,都是通过 总部件之间传送信息的公共 通信干线,它是由导线组成 的传输线束。
一般所说的总线包括系统总线和局部总线。 系统总线是指连 接计算机系统内 部(板、卡)和 传输信息的一组 信号线。ISA、 EISA总线等属于 系统总线。
(2)ISA总线
ISA(Industrial Standard Architecture)总线标准是IEEE委 员会和Intel等公司,于1984年为16位微型计算机推出的系统总线标准, 它是对PC总线的拓展,以适应8/16位数据总线要求。ISA总线有98条引脚。
PCI-Express详解
基础篇随着Intel800MHzFSB芯片组i875P的推出,Intel同时也向世人显示一个全新的总线技术即将推出,那就是由Intel首先提出并开发的3GIO总线。
后来这一技术提交PCI-SIG(PCI特殊兴趣组织),由PCI-SIG改名为"PCIExpress",以标准的形式正式推出,目前的最新版本为v1.0。
本连载就要带大家深入了解这一即将改变整个计算机系统结构、成为下一代总线标准的总线技术。
首先本文要向大家介绍的是一些基础知识。
一、P C I标准的发展历史要了解PCIExpress总线技术的提出原因,我们先来简要回顾一下PCI总线的发展历史目前应用的计算机内部总线技术为PCI,即"PeripheralComponentInterconnect",中文名为"外围组件互连",它是由Intel于1991年提出的(与本文要介绍的PCI-Express总线技术属同一个公司开发的)。
后来,PCI-SIG小组接替了Intel的PCI规范的发展,在1993年5月发布了PCI2.0。
那时,PCI的竞争对手是VESA本地总线(VL-bus或VLB),它是由视频电子标准协会提出的32bit总线,在标准的ISA插槽之后提供附加的第三和第四接口,额定频率33MHz,并且能够提供超过ISA。
但是当时作为486处理器/内存总线的直接扩展,VESA 是运行在与处理器相同的频率上,因此名为"本地总线",这种直接的扩展意味着如果连接的设备过多,则很可能会干扰处理器自身的工作,特别是当信号通过一个插槽时。
于是VESA标准中建议在33MHz频率上只使用2个插槽,或者在总线使用电子缓冲时使用3个。
在更高的频率上不能连接2个以上的设备,而在50M H z时它们则必须都内建于主板内。
由于VESA与处理器同步工作,因而随着处理器频率的提高,VESA总线类型的外围设备工作频率也得随着提高,但是外围设备要求的速度越高,其造价也就更高,对外围设备的生产成本控制造成了极大的不利。
pci express 标准
pci express 标准PCI Express(Peripheral Component Interconnect Express)是一种高速串行接口标准,用于连接计算机内部的各种外部设备。
它是由英特尔、惠普和戴尔等公司共同制定的,旨在取代传统的PCI和PCI-X总线标准。
PCI Express标准的出现,使得计算机系统的扩展性能得到了极大的提升,同时也为各种外部设备的连接提供了更高的带宽和更快的数据传输速度。
PCI Express标准的设计理念是基于串行通信技术,它采用了一种称为“数据包交换”的通信方式,这种方式使得数据在传输过程中可以更加高效地利用带宽资源。
与传统的并行总线相比,PCI Express可以提供更高的数据传输速度和更低的延迟,这使得它在处理大规模数据传输和实时数据处理方面具有明显的优势。
在PCI Express标准中,数据传输是通过一种称为“通道”的方式进行的。
每个通道都包含了一对差分信号线,分别用于发送和接收数据。
这种差分信号线的设计使得PCI Express可以在更高的频率下工作,从而实现更高的数据传输速度。
此外,PCI Express还采用了一种称为“虚拟通道”的技术,可以将物理通道分割成多个逻辑通道,从而实现对不同类型数据流的灵活管理。
PCI Express标准的另一个重要特点是其可扩展性。
PCI Express接口可以根据实际需求进行灵活配置,支持不同数量和不同速度的通道,从而可以满足不同外部设备的连接需求。
此外,PCI Express还支持多种不同的连接方式,包括x1、x4、x8、x16和x32等,这使得它可以适用于各种不同规模和不同性能要求的设备。
除了在计算机系统中的扩展性能方面具有优势外,PCI Express标准在安全性方面也有所突破。
PCI Express接口支持数据包级别的加密和身份验证功能,可以有效防止数据在传输过程中被窃取或篡改,保障数据的安全性和完整性。
pci e总线标准
pci e总线标准PCI Express(Peripheral Component Interconnect Express)是一种计算机总线标准,用于连接外部设备到计算机。
它是一种高速串行通信接口,用于连接内部硬件设备,如图形卡、网络适配器和存储设备。
PCIe总线标准已经成为现代计算机系统中最常见的总线标准之一,其高速、可靠和灵活的特性使其成为了许多计算机硬件设备的首选接口。
PCIe总线标准最初由英特尔公司于2004年引入,并在随后的几年内不断发展和演进。
它取代了旧的PCI和AGP总线标准,为计算机系统提供了更高的带宽和更低的延迟。
PCIe总线标准采用了不同的版本,包括PCIe 1.0、PCIe 2.0、PCIe 3.0和PCIe 4.0,每个版本都提供了不同的数据传输速率和带宽。
PCIe总线标准的设计采用了一种点对点连接的架构,这意味着每个设备都直接连接到主板上的PCIe插槽,而不需要共享带宽或资源。
这种架构使得PCIe总线标准能够支持高性能的设备,并且在多设备同时工作时不会出现性能瓶颈。
PCIe总线标准还支持热插拔功能,这意味着用户可以在计算机运行的情况下插入或拔出PCIe设备,而不会影响系统的稳定性或性能。
这为用户提供了更大的灵活性和便利性,使他们能够随时升级或更换硬件设备。
除了传统的PCIe插槽,PCIe总线标准还引入了M.2接口,这是一种更小、更紧凑的接口,用于连接固态硬盘和无线网卡等设备。
M.2接口可以通过PCIe总线标准提供更高的带宽和更快的数据传输速率,使得这些设备能够更好地发挥性能。
总的来说,PCIe总线标准是一种高速、可靠和灵活的计算机总线标准,它已经成为了现代计算机系统中最常见的接口之一。
它的设计和特性使得它能够支持高性能的设备,并且为用户提供了更大的灵活性和便利性。
随着技术的不断发展,PCIe 总线标准将继续演进和改进,为计算机硬件设备的发展提供更好的支持和基础。
计算机中的PCI名词解释
计算机中的PCI名词解释作为现代计算机的重要组成部分,PCI(Peripheral Component Interconnect,外设互连)是一种标准的计算机总线接口,用于连接计算机主板和其他外设设备。
PCI总线技术既可以用于连接多个外设,也可以扩展计算机主板的功能和性能。
本文将对PCI相关名词进行解释,帮助读者更好地理解计算机体系结构中的PCI技术。
1. PCI总线PCI总线是一种基于并行通信的计算机总线标准,用于连接计算机主板与其他外设设备。
它提供了高带宽、低延迟的数据传输,并支持热插拔功能。
PCI总线采用了多规范并行传输的方式,可以同时进行多个数据传输,提高了数据传输效率。
PCI总线通常包括主板上的插槽(slot)和外设设备之间的连线。
通过插槽,用户可以将各种外设设备(如显卡、声卡、网卡等)与主板连接。
2. PCI-E(PCI Express)PCI-E是PCI的进化版本,全称为PCI Express。
与传统的并行传输方式不同,PCI-E采用了串行传输技术,大大提升了数据传输速度和稳定性。
PCI-E通过使用多个独立的通道(称为lane)来进行数据传输,每个通道支持全双工传输,可以实现高速数据在计算机内部的传输。
PCI-E可用于连接显卡、磁盘控制器、网络接口卡等高速外设设备。
PCI-E分为不同规格,常见的有PCI-E x1、PCI-E x4、PCI-E x8和PCI-E x16等,其中x16规格带宽最大。
3. PCI插槽PCI插槽是计算机主板上的物理插槽,用于插入PCI和PCI-E扩展卡。
每个PCI插槽都有一个特定的插槽编号,用于区分不同的插槽。
计算机主板通常会提供多个PCI插槽,以支持用户扩展不同的外设设备。
PCI插槽一般位于主板上的PCI总线控制器芯片旁边,用户可以通过拆卸主板上的扩展槽保护盖,将PCI扩展卡插入插槽中,并通过螺丝固定卡片。
4. PCI桥PCI桥是计算机系统中用于连接不同PCI总线的设备。
PCI-Express详解
基础篇随着Intel 800MHz FSB芯片组i875P的推出,Intel同时也向世人显示一个全新的总线技术即将推出,那就是由Intel首先提出并开发的3GIO总线。
后来这一技术提交PCI-SIG(PCI 特殊兴趣组织),由PCI-SIG改名为"PCI Express",以标准的形式正式推出,目前的最新版本为v1.0。
本连载就要带大家深入了解这一即将改变整个计算机系统结构、成为下一代总线标准的总线技术。
首先本文要向大家介绍的是一些基础知识。
一、PCI标准的发展历史要了解PCI Express总线技术的提出原因,我们先来简要回顾一下PCI总线的发展历史目前应用的计算机内部总线技术为PCI,即"Peripheral Component Interconnect",中文名为"外围组件互连",它是由Intel于1991年提出的(与本文要介绍的PCI-Express总线技术属同一个公司开发的)。
后来,PCI-SIG小组接替了Intel的PCI规范的发展,在1993年5月发布了PCI 2.0。
那时,PCI的竞争对手是VESA本地总线(VL-bus或VLB),它是由视频电子标准协会提出的32bit总线,在标准的ISA插槽之后提供附加的第三和第四接口,额定频率33MHz,并且能够提供超过ISA。
但是当时作为486处理器/内存总线的直接扩展,VESA 是运行在与处理器相同的频率上,因此名为"本地总线",这种直接的扩展意味着如果连接的设备过多,则很可能会干扰处理器自身的工作,特别是当信号通过一个插槽时。
于是VESA标准中建议在33MHz频率上只使用2个插槽,或者在总线使用电子缓冲时使用3个。
在更高的频率上不能连接2个以上的设备,而在50MHz时它们则必须都内建于主板内。
由于VESA与处理器同步工作,因而随着处理器频率的提高,VESA总线类型的外围设备工作频率也得随着提高,但是外围设备要求的速度越高,其造价也就更高,对外围设备的生产成本控制造成了极大的不利。
PCI-Express总线介绍 接口设计和实现
PCI-Express总线介绍接口设计和实现PCI Express总线是新一代的I/O局部总线标准,是取代PCI总线的革命性总线架构。
PCI总线曾经是PC体系结构发展史上的一个里程碑,但是随着技术的不断发展,新涌现出的一些外部设备对传输速度和带宽有更高的要求,PCI设计之初并没有考虑这些因素,因此并不能完全满足这些外部设备的需求。
PCI Express总线正是在这种背景下应运而生的。
一个PCI Express连接可以被配置成x1、x2、x4、x8、x12、x16和x32的数据带宽。
Xilinx 公司的Virtex5系列FPGA芯片内嵌PCI-Express-Endpoint BLOCk硬核,为实现单片可配置PCI-Express总线解决方案提供了可能。
本文在研究PCI-Express接口协议和PCI-Express Endpoint Block硬核的基础上,使用Virtex5LXT系列的XC5VLX50T FPGA芯片设计PCI- Express接口硬件电路,现YPCI-Express x4总线数据的传输。
1 PCI-Express总线概述PCI-Express是一种高性能、通用的I/O互连技术,可以广泛应用于计算和通讯的平台。
与传统的PCI/PCI-X总线相比,PCI Express用高速串行接口替代了PCI-X的并行接口;用点到点的基于Switch的交换式通讯替代了PCI-X的基于总线的通讯;用基于包的传输协议(PACketbasedprotocol)替代TPCI-X的基于总线的传输协议。
此外,它还引入了一些新的特性:更强的电源管理、服务质量控制(QoS),支持热拔插,以及完善的错误处理和恢复。
1.1 PCI-Express设备/拓扑结构PCI-Express的典型拓扑结构如图1所示。
PCI-Express协议中共定义了三种设备:RootComplex、Endpoint和Switeh。
Root Complex在系统中的位置类似于PCI-X中的主桥,它是I/O层次的根,它将CPU和MM连接至I/O部件。
PCIe总线的定义、组成和分层结构
PCIe总线的定义、组成和分层结构1、PCI-E总线定义PCI-E(PCI-Express)是一种通用的总线规格,它由(Intel)所提倡和推广,其最终的设计目的是为了取代现有(电脑)系统内部的总线传输(接口),这不只包括显示接口,还囊括了(CPU)、PCI、HDD、Netw(or)k等多种应用接口。
PCIe总线与PCI最大的区别在(工作原理)上,PCIe是采用点到点的串行方式进行传输的,被称为“串行PCI”,由于采用了串行方式传输使得其工作频率可以达到2.(5G)hz,大大增加了传输速率,同时采用全双工的(通信)方式,使得其传输速度提高了一倍,每一个PCIe总线设备与外部通信时有四根数据总线,分别有两个RX和TX,两根用于发送,两根由于接收。
当前的Intel平台CPU每颗最大支持40个通道(Lane),但是对于现在比较主流的(GPU)服务器需要插入多张高兴能显卡,每颗CPU 提供x40个通道就显得不够用了。
另外,传统存储(控制器)之间需要做各种数据交换和同步,一般也是用PCI-E,这又增加了对通道数量的消耗。
对于一般的高端服务器,普遍都是双路、四路配置,双路下提供x80通道,理论上可连接10个x8的PCI-E设备,去掉一些用于管理、内部嵌入式PCI-E设备的通道占用之后,连接8个设备不在话下,可以覆盖几乎所有应用场景。
2、PCI-E的组成和分层结构与大多数总线一样,PCIe总线也包括(电气)属性和协议组成两部分。
PCIe 规范对于设备的设计采用分层的结构,有事务层、数据链路层和物理层组成,各层有都分为发送和接收两功能块。
在发送端,应用程序(设备核A)在事务层形成事务层包(TLP——Transac(ti)on Layer Package),储存在发送缓冲器里,等待推向下层。
在数据链路层,在TLP 包上再串接一些附加(信息),这些信息是对方接收TLP 包时进行错误检查要用到的,形成数据链路层包(DLLP——Data Link Layer Package);在物理层,对DLLP 包进行编码,占用链路中的可用通道,从发送器发送出去。
局部总线(PCI、PCI Express)
6
1.1PCI总线
PCI总线系统结构
PCI总线结构中HOST-PCI桥与PCI总线相连,这个桥提供了数据缓冲功能, 是一个低延迟的访问通道,使处理器能够访问PCI设备,PCI设备也能够访 问主存。桥电路中包含有PCI总线控制器,有多个设备申请使用总线时,能 够进行裁决和分配总线的使用权。实际上,HOST-PCI桥是一个高速的I/O 协处理器。
3
1.1PCI总线
PCI总线的特点
传输效率高
PCI总线采用33.3MHz/66.6MHz的时钟频率。在33.3MHz时钟频率时,数据总 线宽度32位,最大数据传输率达到133MB/s。如果数据总线宽度升级到64位, 则数据传输率可达到266MB/s。
多总线共存
PCI总线是通过桥芯片进行不同标准信号之间的转换。通过HOST-PCI桥芯片, 实现PCI与CPU总线相连接;通过PCI-ISA/EISA桥芯片,实现PCI与ISA或者 EISA相连接。这样,使得多种总线可以共存于一个系统中,慢速和高速设备就 可以分别挂在不同的总线上。
另外的桥接器用于形成多级总线结构,有PCI-ISA,PCI-USB,PCI-PCI等, 使得系统中不同类型的设备共存,合理地分配资源。
7
图11.1PCI总线系统结构
SCSI 控制器
高速I/O
高速缓存 CACHE
什么是PCI-E
500MB/s
250MB/s
PCI Express x2
1GB/s
500MB/s
PCI Express x4
2GB/s
1GB/s
PCI Express x8
4GB/s
2GB/s
PCI Express x16
8GB/s
4GB/s
PCI Express x32
16GB/s
8GB/s
目前主板上最常见的就是PCIE X16和X1接口,部分主板提供了X4接口,X8听起来很耳熟,这是因为大名鼎鼎的SLI就是使用了两条PCIE X8接口来实现,不过外观上依然是PCIE X16的物理插槽。
PCI-e总线
什么是PCI-E?
PCI Express,简称PCIe或称PCI-Ex,是PCI电脑总线的一种,它沿用了现有的PCI编程概念及通讯标准。
PCIE技术特点
1、与PCI总线共享并行架构相比,PCI Express总线是一种点对点串行连接的设备连接方式。点对点意味着每一个PCI Express设备都拥有自己独立的数据连接,各个设备之间并发的数据传输互不影响,而对于过去PCI那种共享总线方式,PCI总线上只能有一个设备进行通信,一旦PCI总线上挂接的设备增多,每个设备的实际传输速率就会下降,性能得不到保证。现在,PCI Express以点对点的方式处理通信,每个设备在要求传输数据的时候各自建立自己的传输通道,对于其他设备这个通道是封闭的,这样的操作保证了通道的专有性,避免其他设备的干扰。
2、在传输速率方面,PCI Express总线利用串行的连接特点将能轻松将数据传输速度提到一个很高的频率,达到远超出PCI总线的传输速率。PCI Express的接口根据总线位宽不同而有所差异,包括x1、x4、x8以及x16(x2模式将用于内部接口而非插槽模式),其中X1的传输速度为250MB/s,而X16就是等于16倍于X1的速度,即是4GB/s。与此同时,PCI Express总线支持双向传输模式,还可以运行全双工模式,它的双单工连接能提供更高的传输速率和质量,它们之间的差异跟半双工和全双工类似。因此连接的每个装置都可以使用最大带宽,PCI Express接口设备将有着比PCI设备优越的多的资源可用。
pci-e 标准
pci-e 标准PCI-Express(Peripheral Component Interconnect Express)标准PCI Express(Peripheral Component Interconnect Express)是一种高速串行接口标准,用于计算机内部的外部设备连接。
它是一种用于连接扩展卡的总线,通常被用于图形卡、网络卡、声卡等设备的连接。
本文将介绍PCI-E标准的背景、工作原理和应用领域。
一、背景在早期计算机系统中,使用的是PCI(Peripheral Component Interconnect)标准。
然而,随着计算机性能的提升和需求的增加,PCI标准逐渐无法满足高性能设备的需求。
因此,PCI-SIG(PCI Special Interest Group)组织开发了PCI Express标准,以提供更高的数据传输速率和更好的可扩展性。
二、工作原理PCI Express采用串行数据传输方式,相比于并行传输方式,具有更高的速度和可靠性。
它使用一对差分信号线进行通信,其中一个线对应发送数据,另一个线对应接收数据。
通过使用差分信号,可以减少传输过程中的干扰和信号损失。
PCI Express的数据传输速率通常以“x”倍数来表示,比如PCI-E x1、PCI-E x4等。
每个PCI Express通道能够提供一定宽度的数据传输,通常为一个数据轴(lane),数据轴可以传输一个或多个数据字节。
数据轴的数量越多,数据传输速度越快。
PCI-E还引入了数据包和虚拟通道的概念。
数据包是数据传输的基本单位,包括有用数据和控制信息。
虚拟通道可以将传输数据进行分组,以提高并发性和可扩展性。
三、应用领域PCI Express标准已经成为现代计算机系统中设备连接的主要标准之一。
以下是PCI Express在不同应用领域的应用情况:1. 图形卡:PCI Express x16接口被广泛用于连接高性能显卡,以满足对图形处理性能的需求。
PCI Express
PCI Express维基百科,自由的百科全书PCI Express ,简称PCI-E ,是电脑总线PCI 的一种,它沿用了现有的PCI 编程概念及通讯标准,但建基于更快的串行通信系统。
英特尔是该接口的主要支援者。
PCIe 仅应用于内部互连。
由于PCIe 是基于现有的PCI 系统,只需修改物理层而无须修改软件就可将现有PCI 系统转换为PCIe 。
PCIe 拥有更快的速率,以取代几乎全部现有的内部总线(包括AGP 和PCI )。
英特尔希望将来能用一个PCIe 控制器和所有外部设备交流,取代现有的南桥/北桥方案。
除了这些,PCIe 设备能够支援热拔插以及热交换特性,支援的三种电压分别为+3.3V 、3.3Vaux 以及+12V 。
考虑到现在显卡功耗的日益增加,PCIe 而后在规范中改善了直接从插槽中取电的功率限制,16x 的最大提供功率达到了75W[1],比AGP 8X 接口有了很大的提升。
基本可以满足当时(2004年)中高阶显卡的需求。
这一点可以从AGP 、PCIe 两个不同版本的6600GT 显卡上就能明显地看到,后者并不需要外接电源。
PCIe 只是南桥的扩展总线,它与操作系统无关,所以也保证了它与原有PCI 的兼容性,也就是说在很长一段时间内在主板上PCIe 接口将和PCI 接口共存,这也给用户的升级带来了方便。
由此可见,PCIe 最大的意义在于它的通用性,不仅可以让它用于南桥和其他设备的连接,也可以延伸到芯片组间的连接,甚至也可以用于连接图形芯片,这样,整个I/O 系统重新统一起来,将更进一步简化计算机系统,增加计算机的可移植性和模块化。
历史在2001年的春季英特尔开发者论坛(IDF )上Intel 公布了取代PCI 总线的第三代I/O 技术,被称为“3GIO ”。
该总线的规范由Intel 支持的AWG (Arapahoe Work Group )负责制定。
2002年4月17日,AWG 正式宣布3GIO 1.0规范草稿制定完毕,移交PCI 特殊兴趣组织(PCI-SIG )进行审核,2002年7月23日经过审核后正式公布,改名为“PCI Express ”,并根据开发蓝图2006年正式推出Spec2.0(2.0规范)。
PCI-Express总线及设备介绍
精选课件ppt
17
❖ 2. 双通道,高带宽,传输速度快
▪ 在数据传输模式上,PCI Express总线采用独 特的双通道传输模式,类似于全双工模式,大 大提高了数据舆速度。在传输速度上,1.0版 本的PCI Express将从每个信道单方向 2.5Gbps的传输速率起步,而它在物理层上提 供的1~32速可选信道带宽特性更使其可以轻 松实现近乎"无限"的扩展传输能力。
❖ 今天的平台,必须在不断增加的数据传输率中,同步传输/处理多 个数据。在数据处理量疯狂增长的时候,对所有数据公平地对待是 不可能,也是不现实的,而这点也显得尤其重要。例如,系统会优 先处理流数据,因为断断续续的延迟数据就和没有数据没什么两样。 在这个时候,这些流媒体数据会通过一定的标记,以便I/O系统能够 让它们优先通过平台。
精选课件ppt
6
PCI VS PCI Express II
❖
PCI和PCI_E 既有共同点也有差别,最重要
的地方被保留了,比如Load-Store 架构。由于
PCI Express 采用串行的机制,好象在计算机中
一直都是串行性能较优,比如串行接口的硬盘
VS并行接口的硬盘。PCI Express 较之PCI 也更
精选课件ppt
4
2. PCI Express 技术分析
精选课件ppt
5
PCI VS PCI Express I
❖ PCI 采用并行的信号机制 ❖ 传输速率从33MT/S 到 266MT/S ❖ 总线带宽有32bit/64bit 两种 ❖ 支持边带(Side band)信号控制 ❖ Load-Store 架构 ❖ 内存,I/O,配置 ❖ PCI 电源管理 ❖ 奇偶和ECC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pcie总线简述
pcie总线是第三代i/o互连总线,pcie应用用在桌面电脑、通信平台、服务器、工作站、移动通信、嵌入式器件中。
是低价而大量的传输的解决方案。
pcie兼容pci总线,由于pcie的低潜伏期通信使得它拥有很高的带宽和总数较少的管脚数量。
pcie的主要特征:
●可以传送多种数据信息格式。
●串行发送接收双通道,高带宽,速度快。
可灵活扩展。
●支持热插拔和热交换。
●低电源消耗,并有电源管理功能。
●支持QoS链路配置和公正策略。
●具有包和层协议架构。
●每个物理链接含有多种虚拟通道。
●兼容pci。
●多种保证数据完整性的机制。
●错误处理机制和调试简便性。
pcie的基本结构包括根组件(Root Complex)、交换器(Switch)和各种终端设备。
pcie总线一个拓扑结构例子如下:
Root Complex(根组件):
root Complex为下层io设备连接到cpu提供路径。
endpoint(终端设备):
就是接收请求(request)或者发送应答(completer)的总线终端设备。
Swith(路由器):
为上游器件和下游器件通信选择路径,如下图。
一个基本的数据链路(Link)如下图:
一个基本的pcie数据链路至少两对差分驱动信号如图:一对是接收,一对是发送。
如图是一条lane,每个数据链路(link)至少包含一个lane,为了线性增加link的带宽,link支持*N条lanes(N=1、2、4、8、12、16、32)。
例如单条lane支持的单向带宽是 2.5gb/s,那么一个数据链路单方向支持的最高带宽就
80gb/s。
pcie总线规范包括以下各子层协议:
pcie总线包括Transaction Layer(处理层)、Data Link Layer (数据链路层)、Physical Layer(物理层)。
pcie总线使用包来完成器件之间的通信。
这些数据包信息在Transaction Layer 和Data Link Layer中形成,即除了数据信息外,在不同的层中加入不同的开销,以方便管理,如下图。
处理层(Transaction Layer)是总线的顶层,主要主用是接收软件层的数据封包和解包(即形成tlps包和解tlps包,tlps:Transaction Layer Packets)。
Transaction Layer的主要服务是:1.配置和初始化功能:存贮处理器或管理器件的链路配置信息;存贮由物理层器件带宽和频率确定的链路容量。
2.tlps发生和处理服务:根据器件内核请求生成读、写请求tlps传输到链路层;为器件内核翻译接收到的tlps请求包;将接收到的某些请求的响应包翻译成有效负荷和状态信息并发送给器件内核,如对存储器的读操作;侦查非法包并条用相应机制处理非法包;维护数据包完整性。
Data Link Layer(数据链路层)作为中间层的主要作用是链路的管理和保证数据的完整性,即LCRC校验以确保包的可靠正确传输。
物理层包括各种电路接口,输入输出驱动,并/串、串/并转换、plls等,完成数据的发送。
物理层决定pcie总线的物理特性如,点对点串行链接、差分信号驱动、支持热插拔、可配置带宽、8b/10编解码。
pcie链接可以配置X1、X2、X4、X8、X16、X32信道带宽。
从下图看出相应的带宽大小。