nature01472

合集下载

核心岩藻糖基转移酶fut8基因敲除小鼠肠道菌群特征

核心岩藻糖基转移酶fut8基因敲除小鼠肠道菌群特征

核心岩藻糖基转移酶fut8基因敲除小鼠肠道菌群特征下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!概述小鼠肠道菌群对宿主健康具有重要影响,而核心岩藻糖基转移酶fut8基因在肠道内的功能尚未完全理解。

RSR AQP4 Ab Version2 Aquaporin4 (AQP4) Autoantibod

RSR AQP4 Ab Version2 Aquaporin4 (AQP4) Autoantibod

ElisaRSR TM AQP4 Ab Version 2 Aquaporin-4 (AQP4) AutoantibodyELISA Version 2 Kit –Instructions for useRSR LimitedParc Ty Glas, Llanishen, CardiffCF14 5DU United KingdomTel.: +44 29 2068 9299 Fax: +44 29 2075 7770 Email: Website: EC REP Advena Ltd. Tower Business Centre, 2nd Flr., Tower Street, Swatar, BKR 4013 Malta.INTENDED USEThe RSR AQP4 Autoantibody ELISA Version 2 kit is intended for use by professional persons only, for the quantitative determination of AQP4 autoantibodies (AQP4 Ab) in human serum. Neuromyelitis optica (NMO), also known as Devic’s syndrome, is an immune-mediated neurologic disease that involves the spinal cord and optic nerves. It can be considered to be a disorder distinct from multiple sclerosis (MS). A serum immunoglobulin G autoantibody (NMO-IgG) has been shown to be a specific marker for NMO and the water channel aquaporin 4 (AQP4) has been identified as the antigen for NMO IgG. Measurement of AQP4 Ab can be of considerable value in distinguishing NMO from MS when full clinical features may not be apparent and early intervention may prevent or delay disability. REFERENCESV. A. Lennon et al.A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis.Lancet 2004 364(9451): 2106 - 2112V. A. Lennon et al.IgG marker of optic-spinal multiple sclerosis bindsto the aquaporin-4 water channel.The Journal of Experimental Medicine 2005 202: 473 - 477B. G. Weinshenker et al.Neuromyelitis optica IgG predicts relapse after longitudinally extensive transverse myelitis.Annals of Neurology 2006 59: 566 - 569N. Isobe et al.Quantitative assays for anti-aquaporin-4 antibody with subclass analysis in neuromyelitis optica. Multiple Sclerosis Journal 2012 18: 1541 – 155S. Jarius et al.Testing for antibodies to human aquaporin-4 by ELISA: Sensitivity, specificity and direct comparison with immunohistochemistry.Journal of the Neurological Sciences 2012 320:32 - 37PATENTSThe following patents apply:European patent EP 1 700 120 B1, US patents US 7,101,679 B2, US 7,947,254 B2 and US 8,889,102 B2, Chinese patent ZL200480040851.3 and Japanese patent 4538464. ASSAY PRINCIPLEIn RSR’s AQP4 Ab ELISA Version 2 kit, AQP4 Ab in patient s’ sera, calibrators and controls are allowed to interact with AQP4 coated onto ELISA plate wells and liquid phase biotinylated AQP4 (AQP4-Biotin). After incubation at room temperature for 2 hours with shaking, the well contents are discarded. AQP4 Ab bound to the AQP4 coated on the well will also interact with AQP4-Biotin through the ability of AQP4 Ab in the samples to act divalently leaving AQP4-Biotin bound to the well via an AQP4 Ab bridge. The amount of AQP4-Biotin bound is then determined in a second incubation step involving addition of streptavidin peroxidase (SA-POD), which binds specifically to biotin. Excess, unbound streptavidin peroxidase is then washed away and addition of the peroxidase substrate, 3,3’,5,5’-tetramethlybenzidine (TMB), results in formation of a blue colour. This reaction is stopped by the addition of a stop solution, causing the well contents to turn yellow. The absorbance of the yellow reaction mixture at 450nm and 405nm is then read using an ELISA plate reader. A higher absorbance indicates the presence of AQP4 autoantibody in the test sample. Reading at 405nm allows quantitation of high absorbances. It is recommended that values below 10 u/mL should be measured at 450nm. If it is possible to read at only one wavelength 405nm may be used. The measuring interval is 3.0 –80 u/mL (arbitrary RSR units).STORAGE AND PREPARATION OF SERUM SAMPLESSera to be analysed should be assayed soon after separation or stored, preferably in aliquots, at or below –20o C. 100 μL is sufficient for one assay (duplicate 50 μL determinations). Repeated freeze thawing or increases in storage temperature should be avoided. Do not use lipaemic or haemolysed samples. Studies in which EDTA, citrate and heparin plasma samples were spiked with AQP4 Ab positive sera showed minor changes in signal compared with spiked serum from the same donor. In particular OD450values with spiked EDTA, citrate and heparin plasmas were 79% - 128% of spiked serum (15 samples with serum concentrations ranging from 2.6 u/mL – 30 u/mL) or 87% - 130% in terms of u/mL. When required, thaw test sera at room temperature and mix gently to ensure homogeneity. Centrifuge serum prior to assay (preferably for 5 min at 10-15,000 rpm in a microfuge) to remove particulate matter. Please do not omit this centrifugation step if sera are cloudy or contain particulates.SYMBOLSSymbol MeaningEC Declaration of Conformity IVD In Vitro Diagnostic DeviceREF Catalogue NumberLOT Lot NumberConsult InstructionsManufactured bySufficient forExpiry DateStoreNegative ControlPositive ControlMATERIALS REQUIRED AND NOT SUPPLIED Pipettes capable of dispensing 25 μL, 50 μL and 100 μL.Means of measuring various volumes to reconstitute or dilute reagents supplied.Pure water.ELISA Plate reader suitable for 96 well formats and capable of measuring at 450nm and 405nm.ELISA Plate shaker, capable of 500 shakes/min (not an orbital shaker).ELISA Plate cover.PREPARATION OF REAGENTS SUPPLIEDStore unopened kit and all kit components at 2-8o C.A AQP4 Coated Wells12 breakapart strips of 8 wells (96 in total) in a frame and sealed in foil bag. Allow foil bag to stand at room temperature (20-25o C) for 30 minutes before opening.Ensure wells are firmly fitted in the frame provided. After opening return any unused wells to the original foil bag and seal with adhesive tape. Then place foil bag in the self-seal plastic bag with desiccant provided and store at 2-8o C for up to4 months.B1-5 Calibrators1.5, 5, 20, 40, 80 u/mL (arbitrary RSR units)5 x 0.7 mLReady for useC1-2 Positive Controls I & II(see label for concentration range) 2 x 0.7 mLReady for useD Negative Control0.7 mLReady for useEAQP4–Biotin3 vialsLyophilisedImmediately before use, reconstitute withreconstitution buffer for AQP4-Biotin (F),1.5 mL per vial. When more than one vialis to be used, pool the contents of thevials and mix gently.FReconstitution Buffer for AQP4-Biotin10 mLReady for useGStreptavidin Peroxidase (SA-POD)0.8 mLConcentratedDilute 1 in 20 with diluent for diluting SA-POD (H). For example, 0.5 mL (G) + 9.5mL (H). Store for up to 16 weeks at 2-8o Cafter dilution.HDiluent for SA-POD15 mLReady for useIPeroxidase Substrate (TMB)15 mLReady for useJConcentrated Wash Solution120 mLConcentratedDilute 1 in 10 with pure water before use.Store at 2-8o C up to kit expiry date.KStop Solution14 mLReady for useASSAY PROCEDUREAllow all reagents to stand at room temperature (20-25o C) for at least 30 minutes prior to use. Do notreconstitute AQP4-Biotin until step 2 below. AnEppendorf type repeating pipette is recommended forsteps 2, 5, 8, and 9.1. Pipette 50 μL(in duplicate) of patientsera, calibrators (B1-5) and controls (C1-2 and D) into respective wells. Leave onewell empty for blank.2. Reconstitute AQP4-Biotin and pipette25μL into each well (except blank).3. Cover the frame and shake the wells for2 hours at room temperature on an ELISAplate shaker (500 shakes per min).4. Use an ELISA plate washer to aspirateand wash the wells three times withdiluted wash solution (J). If a platewasher is not available, discard the wellcontents by briskly inverting the frame ofwells over a suitable receptacle, washthree times manually and tap the invertedwells gently on a clean dry absorbentsurface to remove excess wash.RESULT ANALYSISA calibration curve can be established by plotting calibrator concentration on the x-axis (log scale) against the absorbance of the calibrators on the y-axis (linear scale). The AQP4 Ab concentrations in patient sera can then be read off the calibration curve [plotted at RSR as a spline log/lin curve (smoothing factor = 0)]. Other data reduction systems can be used. The negative control can be assigned a value of 0.15 u/mL to assist in computer processing of assay results. Samples with AQP4 Ab concentrations above 80 u/mL can be diluted (e.g.10 x and/or 100 x) in AQP4 Ab negative serum. Some sera will not dilute in a linear way. TYPICAL RESULTS (Example only; not forAbsorbance readings at 405nm can be converted to 450nm absorbances by multiplying by the appropriate factor (3.4 in the case of equipment used at RSR).This cut off has been validated at RSR. However each laboratory should establish its own normal and pathological reference ranges for AQP4 Ab levels. Also it is recommended that each laboratory include its own panel of control samples in the assay. CLINICAL EVALUATION(The information below is derived from 450nm data) Clinical SpecificitySera from 358 individual healthy blood donors were tested in the AQP4 Ab ELISA Version 2 kit. 356 (99%) sera were identified as being negative for AQP4 Ab.Clinical SensitivityOf 62 sera from patients with NMO or NMO spectrum disorder (NMOSD) 48 (77%) were positive for AQP4 Ab.Lower Detection LimitThe negative control was assayed 20 times and the mean and standard deviation calculated. The lower detection limit at 2 standard deviations was0.17 u/mL.Clinical AccuracyAnalysis of 205 sera from patients with autoimmune diseases other than neuromyelitis optica spectrum disorders (NMOSD) indicated no interference from autoantibodies to the TSH receptor (n=110), glutamic acid decarboxylase (n=26), 21-hydroxylase (n=12), the acetylcholine receptor (n=10), thyroid peroxidase (n=15), thyroglobulin (n=10), IA-2 (n=7) or from rheumatoid factor (n=15) in the RSR AQP4 Ab ELISA Version 2. InterferenceNo interference was observed when samples were spiked with the following materials; bilirubin at 20 mg/dL or intralipid up to 3000 mg/dL. Interference was seen from haemoglobin at 500 mg/dL. SAFETY CONSIDERATIONSStreptavidin Peroxidase (SA-POD)Signal word: WarningHazard statement(s)H317: May cause an allergic skin reaction Precautionary statement(s)P280: Wear protective gloves/protective clothing/ eye protection/face protectionP302 + P352: IF ON SKIN: Wash with plenty of soap and waterP333 + P313: If skin irritation or rash occurs: Get medical advice/attentionP362 + P364: Take off contaminated clothing and wash it before reusePeroxidase Substrate (TMB)Signal word: DangerHazard statement(s)H360: May damage fertility or the unborn child Precautionary statement(s)P280: Wear protective gloves/protective clothing/eye protection/face protectionP308 + P313: IF exposed or concerned: Get medical advice/attentionThis kit is intended for use by professional persons only. Follow the instructions carefully. Observe expiry dates stated on the labels and the specified stability for reconstituted reagents. Refer to Safety Data Sheet for more detailed safety information. Avoid all actions likely to lead to ingestion. Avoid contact with skin and clothing. Wear protective clothing. Material of human origin used in the preparation of the kit has been tested and found non-reactive for HIV1 and 2 and HCV antibodies and HBsAg but should, none-the-less, be handled as potentially infectious. Wash hands thoroughly if contamination has occurred and before leaving the laboratory. Sterilise all potentially contaminated waste, including test specimens before disposal. Material of animal origin used in the preparation of the kit has been obtained from animals certified as healthy but these materials should be handled as potentially infectious. Some components contain small quantities of sodium azide as preservative. With all kit components, avoid ingestion, inhalation, injection or contact with skin, eyes or clothing. Avoid formation of heavy metal azides in the drainage system by flushing any kit component away with copious amounts of water.ASSAY PLANAllow all reagents and samples to reach room temperature (20-25 o C) before usePipette: 50 μL Calibrators, controls and patient seraPipette: 25 μL AQP4-Biotin (reconstituted) into each well (except blank)Incubate: 2 Hours at room temperature on an ELISA plate shaker at 500 shakes/min Aspirate/Decant: PlateWash: Plate three times and tap dry on absorbent material1Pipette: 100 μL SA-POD (diluted 1:20) into each well (except blank)Incubate: 20 Minutes at room temperature on a ELISA plate shaker at 500 shakes/min Aspirate/Decant: PlateWash: Plate three times and tap dry on absorbent material1, 2Pipette: 100 μL TMB into each well (including blank)Incubate: 20 Minutes at room temperature in the dark without shakingPipette: 100 μL Stop solution into each well (including blank) and shake for 5 seconds Read absorbance at 450nm and 405nm within 10 minutes of adding stop solution31It is not necessary to tap the plates dry after washing when an automatic plate washer is used2Use pure water for the final wash when washing manually3If it is possible to read at only one wavelength, 405nm may be used。

碱基切除修复抑制剂甲氧胺联合β-榄香烯治疗恶性脑胶质瘤的实验研究

碱基切除修复抑制剂甲氧胺联合β-榄香烯治疗恶性脑胶质瘤的实验研究

序言β-榄香烯属国家二类非细胞毒性抗肿瘤新药,临床研究证实其对包括脑胶质瘤在内的多种肿瘤疗效确切,且无其他传统化疗药常有的骨髓抑制、肝肾功能损害等毒副作用。

但目前临床应用的榄香烯乳注射液因其存在静脉炎发生率很高、剂型性质不稳定等缺点,其进一步的应用受到了较大的限制。

碱基切除修复抑制剂甲氧胺(Methoxyamine),可通过裂解核酸内切酶破坏DNA碱基切除修复过程,从而抑制肿瘤细胞对损伤作用的修复反应。

据此,可认为抑制DNA 碱基切除修复可能是增强肿瘤细胞化疗敏感性的潜在靶点,目前多项实验报道也已证实了甲氧胺可增强烷化剂和放疗的抗肿瘤效果。

近年来,通过纳米技术构建的纳米脂质体在提高药物溶解度、增加药物稳定性、降低药物副作用、缓控释给药等方面较普通的脂质体有了显著的提高。

研究表明,纳米脂质体对正常细胞和组织无损伤作用,并可长时间吸附于靶细胞周围,因此使药物能充分向靶组织渗透,也可以通过静电吸附效应与细胞膜接触而融合而进入细胞内。

因此将药物包封于纳米脂质体被认为可以改变被包封药物的体内分布,提高药物治疗指数,降低药物毒性。

基于增强β-榄香烯的疗效,减少毒副作用的目的,本课题研究内容分两部分:(一)联合碱基切除修复抑制剂甲氧胺,探讨是否在体内外抗瘤活性上具有协同作用,以期减少榄香烯用量,降低毒副反应,为其在临床的应用提供实验和理论依据。

(二)、利用纳米脂质体技术构建新型的β-榄香烯-纳米脂质体药物传递系统,初步探讨其体外抗瘤活性。

II碱基切除修复抑制剂甲氧胺联合β-榄香烯治疗恶性脑胶质瘤的实验研究中文摘要胶质瘤是成人神经系统最常见的原发性肿瘤,手术全切除率很低,复发率高,当前多种治疗效果仍不理想。

榄香烯属国家二类非细胞毒性抗肿瘤新药,临床研究发现其对多种肿瘤疗效确切,而且还具有提高和改善机体免疫功能,与放化疗协同作用等独特效果。

但是肿瘤细胞具有强大的DNA损伤修复机制,会对化疗药物产生抗性。

因此抑制这种内在的DNA修复过程,如碱基切除修复抑制剂甲氧胺的联合应用有利于提高化疗药物的抗瘤效果。

β-榄香烯对非小细胞肺癌作用机制的研究进展

β-榄香烯对非小细胞肺癌作用机制的研究进展

β-榄香烯对非小细胞肺癌作用机制的研究进展
常雅舟;何灿;郑士亚;王修竹;白莹
【期刊名称】《东南大学学报:医学版》
【年(卷),期】2023(42)1
【摘要】β-榄香烯是从天然药用植物温莪术中提取的萜烯类有效活性成分,具有分子质量小、抗肿瘤强、毒性低等特点,临床上用于非小细胞肺癌(on-small-cell lung cancer, NSCLC)常规治疗的辅助用药。

β-榄香烯能通过抑制肿瘤细胞增殖,诱导肿瘤细胞凋亡,抑制肿瘤血管形成,阻滞细胞周期,逆转耐药,以及调节免疫能力等发挥抗肿瘤作用。

基于榄香烯已有研究基础,对其抑制NSCLC作用机制的研究进展进行综述,以期为临床上更好地将榄香烯用于NSCLC辅助支持治疗提供理论依据和思路。

【总页数】6页(P144-149)
【作者】常雅舟;何灿;郑士亚;王修竹;白莹
【作者单位】东南大学医学院;东南大学附属中大医院呼吸科;东南大学附属中大医院肿瘤科;南京中医药大学第一临床医学院
【正文语种】中文
【中图分类】R734.2
【相关文献】
1.榄香烯治疗原发性肝癌作用机制研究进展
2.β-榄香烯治疗晚期非小细胞肺癌的临床应用现状及研究进展
3.榄香烯抗肿瘤作用机制的研究进展
4.榄香烯放射治疗增
敏作用机制的研究进展5.抗血管生成疗法与免疫疗法联合治疗晚期非小细胞肺癌的作用机制及应用研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。

转基因作物被隐瞒最深的秘密

转基因作物被隐瞒最深的秘密

The Best Kept Secret of GM Crops/secretGMcrops.phpWitness Statement to ACRE1英国环境释放咨询委员会证人声明For ACRE open hearing on the criticisms of T25 GM maize risk assessment英国环境释放咨询委员会关于T25转基因玉米的风险评估讨论的公开听证会The hearing will take place from 10.00am to 2.00pm on Wednesday, 20 February, in Room 7A, B and C, Ashdown House, Department for Environment, Food and Rural Affairs, 123 Victoria Street, London SW1E 6DE.听证会将于2月20日(周三)10:00-14:00在伦敦SW1E 6DE维多利亚街123号英国环境食品和乡村事务部阿什当楼7A、B、C室举行。

Dr. Mae-Wan Ho何美芸博士Institute of Science in Society, PO Box 32097, London NW1 0XR, UK英国伦敦NW1 0XR 32097邮箱社会科学研究所I am speaking against the market approval of T25 because there is no evidence that it isa genetically stable, uniform line, the single most important criterion for approval. For unless it is genetically stable, you might as well forget about environmental or health risk assessment. And genetic instability is also a serious safety issue. The public hearing on T25 was suspended over a year ago when it was found not to have passed the required EC test for Distinctiveness, Uniformity and Stability (the DUS test), as I pointed out when giving evidence to the hearing [1].我公开反对T25(玉米)的市场批准的原因是,没有证据证明基因遗传的稳定性、目标方向的一致性以及市场批准的重要单一规范。

《藻蓝蛋白改善半乳糖致衰小鼠卵巢功能的转录组分析》范文

《藻蓝蛋白改善半乳糖致衰小鼠卵巢功能的转录组分析》范文

《藻蓝蛋白改善半乳糖致衰小鼠卵巢功能的转录组分析》篇一一、引言近年来,卵巢功能衰退问题在女性健康领域备受关注。

其中,半乳糖是引起卵巢功能减退的重要原因之一。

而藻蓝蛋白作为一种天然的生物活性成分,被广泛研究并认为具有多种生物活性。

本篇论文旨在通过转录组分析,探讨藻蓝蛋白在改善半乳糖致衰小鼠卵巢功能中的作用机制。

二、材料与方法1. 实验动物及分组本实验采用昆明小鼠,按照半乳糖含量将其分为四组:正常对照组、半乳糖处理组(即衰老组)、半乳糖+藻蓝蛋白低剂量处理组以及半乳糖+藻蓝蛋白高剂量处理组。

2. 实验材料与藻蓝蛋白干预将不同浓度的藻蓝蛋白进行干预,通过连续喂养一定周期后,进行后续实验操作。

3. 卵巢组织取材与转录组测序对各组小鼠的卵巢组织进行取材,提取总RNA,并使用转录组测序技术对RNA样本进行深度测序和分析。

三、结果1. 转录组数据概况经过对各组小鼠卵巢组织的转录组数据进行分析,发现半乳糖处理组中存在大量的基因表达异常。

而加入藻蓝蛋白干预后,基因表达情况得到明显改善。

2. 差异表达基因分析对转录组数据中的差异表达基因进行分析,发现在半乳糖致衰模型中,有数百个基因的表达出现异常。

而在藻蓝蛋白干预后,部分基因表达情况得以恢复。

其中,涉及卵巢功能相关的重要基因如FOXL2、BMP15等表达水平明显上升。

3. 信号通路分析通过分析差异表达基因涉及的信号通路,发现藻蓝蛋白主要通过调控与卵巢功能相关的信号通路如MAPK、PI3K-Akt等途径,发挥其改善卵巢功能的作用。

4. 基因功能注释与富集分析对差异表达基因进行功能注释和富集分析,发现藻蓝蛋白主要在细胞增殖、凋亡、免疫反应等方面发挥重要作用。

同时,还涉及了与卵巢功能相关的激素调节、能量代谢等过程。

四、讨论通过对转录组数据的分析,我们发现藻蓝蛋白在改善半乳糖致衰小鼠卵巢功能方面具有显著作用。

通过调控与卵巢功能相关的信号通路及基因表达,改善了半乳糖导致的卵巢功能减退。

《2024年拟南芥耐铯突变体atbe1-5的筛选及其机理的研究》范文

《2024年拟南芥耐铯突变体atbe1-5的筛选及其机理的研究》范文

《拟南芥耐铯突变体atbe1-5的筛选及其机理的研究》篇一一、引言随着工业发展和核技术的广泛应用,重金属铯的污染问题日益严重,对环境和生物体健康构成潜在威胁。

植物作为生态系统的基石,其耐重金属能力的研究对于环境保护和农业可持续发展具有重要意义。

拟南芥作为一种模式植物,其基因组小且易于操作,成为研究植物耐重金属机理的理想材料。

本文以拟南芥耐铯突变体atbe1-5为研究对象,通过筛选和分子生物学手段,探讨其耐铯机理,以期为提高植物耐重金属能力和环境保护提供理论依据。

二、材料与方法(一)材料本文选用拟南芥耐铯突变体atbe1-5为实验材料。

(二)方法1. 拟南芥突变体的筛选:采用化学诱变法获得耐铯突变体atbe1-5,通过铯处理实验筛选出具有较高耐铯能力的突变体。

2. 基因克隆与序列分析:利用PCR技术克隆突变体atbe1-5的耐铯相关基因,进行序列分析和功能预测。

3. 表达分析:通过实时荧光定量PCR(qRT-PCR)技术检测耐铯相关基因在突变体及野生型拟南芥中的表达情况。

4. 亚细胞定位:利用基因克隆和亚细胞定位技术,研究耐铯相关蛋白在细胞中的定位情况。

5. 转基因植物构建与功能验证:构建过表达和敲除耐铯相关基因的转基因拟南芥,验证其功能。

三、结果与分析(一)耐铯突变体atbe1-5的筛选与鉴定通过化学诱变和铯处理实验,成功筛选出耐铯能力较强的突变体atbe1-5。

与野生型拟南芥相比,该突变体在铯处理下表现出较高的生长活力和生物量。

(二)基因克隆与序列分析成功克隆了突变体atbe1-5的耐铯相关基因,并进行序列分析和功能预测。

结果表明,该基因编码一个未知功能的蛋白质,可能与铯的吸收、转运和耐受有关。

(三)表达分析qRT-PCR结果显示,耐铯相关基因在突变体atbe1-5中的表达量显著高于野生型拟南芥。

这表明该基因在提高拟南芥耐铯能力方面发挥重要作用。

(四)亚细胞定位通过亚细胞定位技术发现,耐铯相关蛋白主要定位于细胞膜和细胞质中,这表明该蛋白可能参与铯的吸收和转运过程。

《2024年乳腺癌新生物标志物的探索》范文

《2024年乳腺癌新生物标志物的探索》范文

《乳腺癌新生物标志物的探索》篇一一、引言乳腺癌是全球女性最常见的恶性肿瘤之一,其发病率逐年上升,对女性健康构成严重威胁。

随着医学技术的不断发展,新生物标志物的发现和利用对于乳腺癌的早期诊断、治疗及预后评估具有重要意义。

本文将就乳腺癌新生物标志物的探索进行详细介绍,以期为乳腺癌的研究和治疗提供新的思路和方法。

二、乳腺癌新生物标志物的种类1. 基因标志物:基因标志物是乳腺癌新生物标志物中最为重要的一类。

目前已经发现多种与乳腺癌发生、发展及转移相关的基因,如BRCA1、BRCA2、HER2等。

这些基因的突变和表达水平与乳腺癌的预后密切相关,可作为诊断和治疗的依据。

2. 蛋白质标志物:蛋白质标志物主要包括肿瘤相关蛋白、生长因子、细胞因子等。

这些蛋白质在乳腺癌的发生、发展过程中起着重要作用,其表达水平的改变可反映肿瘤的进展情况。

3. 代谢标志物:代谢标志物是指与肿瘤代谢相关的物质,如乳酸、糖酵解相关酶等。

这些物质在乳腺癌细胞代谢过程中产生,其水平的变化可反映肿瘤的代谢状态,有助于判断病情和预测治疗效果。

三、乳腺癌新生物标志物的探索1. 基因组学研究:通过高通量测序等技术,对乳腺癌患者的基因组进行检测,发现与乳腺癌相关的基因突变和表达异常。

这些基因突变和表达异常可作为潜在的生物标志物,为乳腺癌的诊断和治疗提供依据。

2. 蛋白质组学研究:利用蛋白质组学技术,对乳腺癌患者的蛋白质表达谱进行检测和分析,发现与乳腺癌发生、发展及转移相关的蛋白质。

这些蛋白质可作为潜在的生物标志物,有助于提高乳腺癌的诊断准确率和预后评估水平。

3. 代谢组学研究:通过分析乳腺癌患者的代谢产物,发现与乳腺癌代谢相关的物质。

这些物质可作为潜在的代谢标志物,反映肿瘤的代谢状态,为乳腺癌的治疗提供新的思路和方法。

四、新生物标志物的应用1. 早期诊断:新生物标志物的发现和应用有助于提高乳腺癌的早期诊断率。

通过检测血液、组织等样本中的新生物标志物,可以在乳腺癌早期发现肿瘤,为患者争取更多的治疗时机。

《2024年草原植硅体封存碳潜力及其对不同利用方式的响应》范文

《2024年草原植硅体封存碳潜力及其对不同利用方式的响应》范文

《草原植硅体封存碳潜力及其对不同利用方式的响应》篇一摘要本篇研究主要针对草原中植硅体封存碳的潜力及其对不同利用方式的响应进行了系统性的分析和探讨。

通过对不同草原生态系统中的植硅体碳封存能力的综合评估,结合不同利用方式下草原生态系统的变化,本文旨在为合理利用草原资源、增强草原碳汇功能提供理论依据。

一、引言随着全球气候变化和人类活动的影响,草原生态系统面临着巨大的压力。

植硅体作为草原生态系统中重要的碳封存载体,其封存碳的能力和潜力逐渐受到广泛关注。

本文旨在探讨草原植硅体封存碳的潜力,并分析不同利用方式对植硅体封存碳的影响,以期为草原生态系统的保护和合理利用提供科学依据。

二、植硅体及其封存碳的潜力1. 植硅体概述植硅体是植物体内的一种硅质成分,在草原生态系统中广泛存在。

植硅体具有较大的比表面积和特殊的孔隙结构,为碳的封存提供了良好的载体。

2. 植硅体封存碳的潜力研究显示,植硅体具有较高的碳封存潜力。

通过对比不同生态系统的碳封存能力,发现草原生态系统中植硅体的碳封存能力较强。

这主要得益于植硅体在植物生长过程中对碳的固定作用,以及其长期稳定的封存机制。

三、不同利用方式对植硅体封存碳的影响1. 传统放牧利用传统放牧是草原的主要利用方式之一。

研究显示,适度放牧可以促进植硅体的形成和碳的固定,但过度放牧会导致植被破坏,降低植硅体的碳封存能力。

因此,合理控制放牧强度对于保护草原生态系统和提高植硅体碳封存能力具有重要意义。

2. 人工草地建设与种植人工草地建设和种植是提高草原生产力和碳封存能力的重要手段。

通过种植高产、优质的牧草品种,可以增加植被覆盖度,提高土壤有机质含量,从而增强植硅体的碳封存能力。

此外,合理的施肥和管理措施也是提高人工草地碳封存能力的重要手段。

3. 土地开垦与城市化建设土地开垦和城市化建设是导致草原面积减少、生态系统破坏的重要因素。

这些活动会破坏植被覆盖,降低土壤有机质含量,进而影响植硅体的形成和碳的封存。

《2024年HeLa细胞长期传代过程中基因组突变动态变化》范文

《2024年HeLa细胞长期传代过程中基因组突变动态变化》范文

《HeLa细胞长期传代过程中基因组突变动态变化》篇一一、引言HeLa细胞,由美国细胞生物学家乔治·盖伊·海拉所分离并成功培养,是全球医学研究中应用最广泛的细胞系之一。

自其首次成功培养至今,已通过无数次的传代和分裂,为生物学、医学和遗传学等领域的研究提供了丰富的实验材料。

然而,随着传代次数的增加,HeLa细胞的基因组动态变化日益明显,对于这一过程的研究具有重要的理论和实践价值。

本文旨在探究HeLa细胞在长期传代过程中基因组突变的动态变化,以及其背后的科学机制和影响。

二、传代过程中的基因组突变在长期的传代过程中,HeLa细胞的基因组发生了显著的突变。

这些突变包括点突变、插入/删除突变、染色体变异等。

这些突变不仅在数量上有所增加,而且在类型上也呈现出多样性。

这些突变可能影响细胞的生长、增殖、分化等生物学特性,进而影响细胞的表型和功能。

三、基因组突变的动态变化在传代过程中,基因组突变的动态变化表现为突变频率和类型的改变。

随着传代次数的增加,点突变和染色体变异的发生频率逐渐增加。

此外,不同类型的突变在传代过程中的比例也有所变化。

这些动态变化可能与细胞适应环境压力、维持自身稳定性的机制有关。

四、影响基因组突变动态变化的因素影响HeLa细胞基因组突变动态变化的因素包括传代环境、遗传背景、随机事件等。

传代环境的变化可能影响细胞的生长和增殖速度,从而影响基因组的稳定性。

遗传背景的差异可能导致细胞对环境变化的敏感度不同,从而影响基因组的突变率。

此外,随机事件如DNA复制错误、基因组不稳定等也可能导致基因组的突变。

五、基因组突变对HeLa细胞的影响基因组的突变对HeLa细胞的影响是多方面的。

首先,这些突变可能影响细胞的生长和增殖速度,导致细胞的生长曲线发生变化。

其次,基因组的突变可能影响细胞的表型和功能,使细胞在形态、结构和功能上发生改变。

此外,这些突变还可能影响细胞的分化、凋亡等生物学过程。

这些改变可能导致HeLa细胞具有更强的适应性,更适用于各种生物学研究的需求。

安捷伦科技推出针对生物治疗药物开发的创新型色谱柱

安捷伦科技推出针对生物治疗药物开发的创新型色谱柱

安捷伦科技推出针对生物治疗药物开发的创新型色谱柱
吕田
【期刊名称】《中国食品》
【年(卷),期】2014(000)024
【总页数】1页(P128-128)
【作者】吕田
【作者单位】
【正文语种】中文
【相关文献】
1.安捷伦科技推出针对生物治疗药物开发的创新型色谱柱 [J], ;
2.安捷伦科技在亚洲推出Agilent TC和Agilent HC反相高效液相色谱柱——优质性价比,针对环保、食品安全及包括中药在内的药品应用研发 [J],
3.安捷伦科技在亚洲推出Agilent TC和Agilent HC反相高效液相色谱柱优质性价比,针对环保、食品安全及包括中药在内的药品应用研发 [J], 徐琳
4.安捷伦科技推出创新的液相色谱柱和生物色谱柱 [J], 彭海容
5.安捷伦科技在亚洲推出AgilentTC和AgilentHC反相高效液相色谱柱——优质性价比,针对环保、食品安全及包括中药在内的药品应用研发 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

《Nature》:空调有望成为抗癌利器

《Nature》:空调有望成为抗癌利器

《Nature》:空调有望成为抗癌利器
佚名
【期刊名称】《上海医药》
【年(卷),期】2022(43)15
【摘要】近日,一篇发表在国际期刊《Nature》上的研究显示,寒冷的温度会激活产生热量的棕色脂肪组织(brown adipose tissue,BAT),这种脂肪会消耗肿瘤生长所需的糖分,抢夺肿瘤生长所需营养,抑制肿瘤生长。

此外,研究还发现:成年人中存在大量的BAT;轻度低温耐受葡萄糖摄入增加,可使得BAT激活;在肿瘤患者中低温暴露也能激活BAT;患者暴露于轻度的低温即可显著的降低肿瘤葡萄糖摄入。

【总页数】1页(P77-77)
【正文语种】中文
【中图分类】R73
【相关文献】
1.媒体有望成为反腐败的利器之一
2.韩国槲寄生有望成为抗癌药
3.蜂毒有望成为抗癌新药
4.蜂毒有望成为抗癌新药
5.感冒病毒可能成为抗癌利器
因版权原因,仅展示原文概要,查看原文内容请购买。

碳排放信息披露与投资者回报

碳排放信息披露与投资者回报

碳排放信息披露与投资者回报沈红波;李逸君;王霁野【期刊名称】《社会科学》【年(卷),期】2022()11【摘要】随着气候变化导致的环境事件频发,碳排放问题逐渐转变为影响全球经济发展的重要因素之一。

目前,中国尚未在国家层面对企业碳排放信息披露作出强制规定,A股上市公司的碳排放信息整体处于自愿披露状态,而香港联交所上市公司自2016年起需满足“不遵守就解释”的强制性披露要求。

基于上述背景,文章选取2016—2019年A股上市公司为样本,运用PSM配对样本的方法,对企业是否自愿披露碳排放信息和投资者回报的关系进行研究。

实证结果表明:与不披露的企业相比,自愿披露碳排放信息的企业股票收益率更高,股票波动率更低,且上述效应在高碳排放行业的企业中更加显著;进一步对A+H上市公司的碳排放信息披露深度进行量化评分后发现,企业碳排放信息披露水平越高,股票收益率越高、波动率越低。

因此,碳信息披露对投资者回报有重要影响,这有利于促进企业管理者重视披露碳信息,也有助于中国证券市场ESG投资理念的转变。

【总页数】11页(P140-150)【作者】沈红波;李逸君;王霁野【作者单位】复旦大学经济学院【正文语种】中文【中图分类】F832.5;F062.2【相关文献】1.碳中和背景下企业机构投资者、碳信息披露与财务绩效关系的研究2.碳中和背景下企业机构投资者、碳信息披露与财务绩效关系的研究3.碳排放权会计核算和信息披露问题研究——基于《碳排放权交易有关会计处理暂行规定》4.碳排放权会计核算和信息披露问题研究——基于《碳排放权交易有关会计处理暂行规定》5.碳排放权会计核算和信息披露问题研究——基于《碳排放权交易有关会计处理暂行规定》因版权原因,仅展示原文概要,查看原文内容请购买。

《2024年内蒙古草原植物植硅体固碳潜力及其与气候关系的研究》范文

《2024年内蒙古草原植物植硅体固碳潜力及其与气候关系的研究》范文

《内蒙古草原植物植硅体固碳潜力及其与气候关系的研究》篇一一、引言在全球气候变化的大背景下,草原生态系统作为地球上重要的碳汇之一,其固碳能力与气候变化之间的关系成为科研人员关注的焦点。

内蒙古作为我国最大的草原区,其植物植硅体(Phytoliths)固碳潜力巨大。

植硅体是由植物在生长过程中所分泌的二氧化硅沉淀物,其具有良好的固碳效果。

本文旨在探讨内蒙古草原植物植硅体的固碳潜力及其与气候的关系,以期为草原生态系统的保护和可持续发展提供科学依据。

二、研究方法本研究以内蒙古地区草原植物为研究对象,结合地理学、生态学和地球化学的研究方法,综合分析植物植硅体的固碳能力及气候影响因素。

1. 采集样品选取内蒙古不同区域、不同类型草原的植物样本进行采集,并收集相应地点的气候数据。

2. 实验室分析在实验室中对样品进行化学分析,检测植物中植硅体的含量,同时利用碳同位素分析方法(如放射C同位素法)测定植硅体中的碳含量。

3. 数据分析运用统计软件对实验数据进行处理和分析,探讨植硅体固碳能力与气候因素的关系。

三、内蒙古草原植物植硅体固碳潜力分析通过实验室分析发现,内蒙古草原植物植硅体具有较高的固碳潜力。

其中,部分区域由于特殊的地理环境和气候条件,植物植硅体中的碳含量相对较高。

此外,不同类型的草原植物植硅体的固碳能力也存在差异。

这些差异主要与植物的生物量、生长周期以及生态环境等因素有关。

四、植硅体固碳能力与气候的关系气候因素对内蒙古草原植物植硅体的固碳能力具有重要影响。

本研究发现,降水、温度、光照等气候因素均对植物生长和植硅体形成产生作用,从而影响其固碳能力。

其中,降水是影响植硅体形成的关键因素之一,充足的降水有利于植物生长和硅元素吸收,从而提高植硅体的含量和固碳能力。

此外,适宜的温度和光照也有利于植物的生长和固碳能力的提高。

五、结论与建议通过对内蒙古草原植物植硅体固碳潜力的研究,发现该区域植物具有较高的固碳潜力,对缓解全球气候变化具有重要意义。

β-谷甾醇侧链的微生物降解

β-谷甾醇侧链的微生物降解

β-谷甾醇侧链的微生物降解
陈知本;熊那;朱巧庆
【期刊名称】《中国药科大学学报》
【年(卷),期】1991(22)4
【摘要】选用一株分枝杆菌(Mycobacterium sp.)限制性降解β-谷甾醇获得产物雄甾-4-烯-3,17-二酮(AD)和雄甾-1,4-二烯-3,17-二酮(ADD)。

研究了培养基成分对产物产率的影响,在最佳pH 7.0,添加磷酸盐的条件下,得到了最高产率为89%。

对β-谷甾醇的添加方式、添加量和补加时间的研究表明提高β-谷甾醇的有效反应浓度是提高转化效率的关键。

【总页数】4页(P221-224)
【关键词】β谷甾醇;微生物降解;侧链
【作者】陈知本;熊那;朱巧庆
【作者单位】中国药科大学生物中心;中国药科大学药物化学教研室
【正文语种】中文
【中图分类】TQ460.38
【相关文献】
1.雄甾烯二酮的微生物降解植物甾醇侧链生产研究 [J], 李红梅;
2.雄甾烯二酮的微生物降解植物甾醇侧链生产研究 [J], 李红梅
3.雄甾烯二酮的微生物降解植物甾醇侧链生产研究 [J], 李红梅
4.β-谷甾醇侧链的降解:Δ~4-雄甾烯-3,17-二酮的生成 [J], 王敬一;殷芝华;周维善
因版权原因,仅展示原文概要,查看原文内容请购买。

中药库拉索芦荟化学成分的液质定性分析

中药库拉索芦荟化学成分的液质定性分析

中药库拉索芦荟化学成分的液质定性分析张静;郝北泉;李寅庆;皮国沛;徐风;刘广学;尚明英;蔡少青【期刊名称】《广西植物》【年(卷),期】2024(44)2【摘要】为阐明中药库拉索芦荟(Aloe barbadensis)叶的汁液浓缩干燥物的化学成分,该研究采用HPLC-DAD-ESI-IT-TOF-MS n技术,结合对照品对比和文献检索,对其进行系统的定性分析。

以水(A)-乙腈(B)为流动相进行梯度洗脱,流速为1.0 mL·min^(-1),质谱使用ESI离子源,采用负离子模式分析液质数据。

结果表明:(1)首次阐明中药库拉索芦荟中蒽醌类(芦荟大黄素、大黄素甲醚、大黄素-8-O-β-D-吡喃葡萄糖苷)、蒽酮类(芦荟素A、芦荟糖苷A)、色酮类(芦荟新苷D、7-O-甲基芦荟新苷A、altechromone A、芦荟苦素、芦荟新苷G、芦荟新苷C)、α-吡喃酮类(芦荟宁A、芦荟宁B)四类成分的主要化合物的裂解途径。

蒽醌类化合物的裂解途径以失去CO_(2)和CO为主,蒽酮类化合物的裂解途径以己糖苷的裂解和失去CO 为主,色酮类化合物的裂解途径以己糖苷的裂解和酯基的水解为主,α-吡喃酮类的裂解途径主要包括己糖苷的裂解、CO_(2)和H_(2)O的丢失等。

(2)共检测到168种化学成分,参考相关文献、数据库和对照品数据共鉴定/指认了其中的78种化学成分,包括3种蒽醌类成分、29种蒽酮类成分、35种色酮类成分、7种α-吡喃酮类成分、4种其他类成分;78种化学成分中有23种为新发现的库拉索芦荟叶的化学成分,其中aloinoside D、isoeleutherin、ethylidene-aloenin等14种成分具有抗菌、抗炎或清除自由基等药理活性。

该研究结果进一步丰富了中药库拉索芦荟的化学成分信息,为芦荟的药效物质基础研究及质量控制奠定了基础。

【总页数】14页(P313-326)【作者】张静;郝北泉;李寅庆;皮国沛;徐风;刘广学;尚明英;蔡少青【作者单位】北京大学药学院生药学研究室;河北御芝林药业有限公司【正文语种】中文【中图分类】Q946【相关文献】1.LCMS-IT-TOF法快速鉴定库拉索芦荟中的化学成分2.快速制备液相色谱分离库拉索芦荟中10-羟基芦荟大黄素苷3.液质联用技术在中药化学成分定性分析中的研究进展4.液质联用技术在中药化学成分定性分析中的研究进展因版权原因,仅展示原文概要,查看原文内容请购买。

三肽和四肽构象空间的可视化方法

三肽和四肽构象空间的可视化方法

三肽和四肽构象空间的可视化方法陈双平;郑浩然;刘海燕;王煦法【期刊名称】《生物物理学报》【年(卷),期】2004(020)002【摘要】研究蛋白质寡肽构象在构象空间中的分布情况,对提取寡肽模式并构建短肽库具有重要意义.通过构建一个保距映射,将以主链原子均方根距离(root mean square distance,RMSD)为距离测度的三肽构象空间变换为一维直线上的欧氏距离空间,从而直观地展现三肽构象的聚集情况,表明三肽主链构象可以用单一变量编码.应用该特性对四肽的构象空间加以分析,将四肽构象映射到三维空间中,从而以可视的方式描述四肽构象空间的聚集情况.对短肽构象空间的初步分析表明,短肽的聚集性和二级结构有着密切的联系.在四肽构象空间中存在有自然边界的离散区域(与螺旋等结构相关),也有一些区域(与折叠等结构有关)难以进一步划分.这种方法也为以可视方式分析高维空间中肽段的聚集性给出了一种可能的方案.【总页数】5页(P132-136)【作者】陈双平;郑浩然;刘海燕;王煦法【作者单位】中国科学技术大学信息学院计算机科学系,合肥,230027;中国科学技术大学信息学院计算机科学系,合肥,230027;中国科学技术大学生命科学学院分子生物学与细胞生物学系,合肥,230027;中国科学技术大学信息学院计算机科学系,合肥,230027【正文语种】中文【中图分类】Q518.2【相关文献】1.可视化分析四肽构象空间中的模式 [J], 陈双平;郑浩然;黄国锐;王煦法2.丙氨酸甘氨酸混合三、四肽构象稳定性的快速预测 [J], 王长生;鹿秋梅3.抗菌肽A与抗菌肽B空间构象的喇曼光谱分析 [J], 张双全;余多慰;柯维中4.抗菌肽A与抗菌肽B空间构象的喇曼光谱分析 [J], 张双全;余多慰;柯惟中5.特殊氢方法预测丙氨酸-α-四肽构象稳定性 [J], 王长生;王潇伟;王嘉;杨忠志因版权原因,仅展示原文概要,查看原文内容请购买。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Therefore,anammox in these waters could account for 10–15%of the marine N 2production.The anammox process may be more important than this,with particularly favourable conditions occurring in upwelling areas where anoxic nitrate-rich water reaches the sediment.A good example would be upwelling areas off the Peruvian and Chilean coasts,where sedimentary sulphide is oxidized by sulphide-oxidiz-ing bacteria with nitrate,producing ammonium 23.This ammonium is released to the water column,probably enhancing the significance of anammox,and N 2production,in these areas.Thus,the ana-mmox process,with its distinct regulatory characteristics,should be included in studies of nitrogen cycling in the marine environment.AMethodsSampling was performed at Station A (8834.1500N,83814.6900W)and Station B (8837.9900N,83820.6200W)of Golfo Dulce in November 2001.Profiles of salinity,temperature and oxygen were measured at 10-m intervals with a DataSonde 4(Hydrolab).All water samples were retrieved with a 5-l Niskin bottle (KC Denmark).For nutrient profiles,water was sampled from the Niskin bottle with a plastic syringe and filtered through a cellulose acetate filter (pore size 0.22m m)into polypropylene vials that were stored on ice until return to the laboratory where they were frozen for later analysis.For the 15N-labelling experiments,water was sampled at 120,140,160and 180m depth at Station A,and at 100,120,160and 180m depth at Station B.Water was transferred from the Niskin bottle via Tygon tubing into the bottom of a 250-ml glass bottle and allowed to flow over for half a volume change.The bottle was closed with a Viton stopper taking care to exclude bubbles,and stored on ice until return to the laboratory.Experiments were started no later than 6h after sampling.For each of the four depths from each station experiments were started by the addition of 15N labelled and unlabelled nitrate and ammonium to the 250-ml bottles to the following final concentrations from concentrated stock solutions:10m M 15NO 32,10m M15NO 32þ10m M 14NH 4þand 10m M 15NH 4þ.After addition the amended water was bubbled with helium for 15min to facilitate the detection of N 2production,and then transferred to 12-ml glass vials with a 5-mm butyl rubber septum (Exetainers,Labco)through a glass tube leading from the bottle into the bottom of the Exetainer and allowed to overflow.The Exetainers were incubated at in situ temperature in a water bath kept anoxic with an alkaline sodium ascorbate solution.The oxygen concentration in the Exetainers was measured with a microelectrode designed for measuring low oxygen concentrations (Unisense)and was below the detection limit of 0.2m M throughout the experiment.At each time point Exetainers were sampled in triplicate by removing 5ml of water while replacing it with helium and adding 0.1ml of 50%(w/v)ZnCl to stopbiological activity in the Exetainer.The removed water was filtered for nutrient analysis and stored as described above.The concentration of NO 32þNO 22was determined using the vanadium chloride reduction method 24(NO x analyser model 42c,Thermo Environmental Instruments Inc.).Nitrite was analysed spectrophotometrically 25and NH 4þwas determined using the flow injection method with conductivity detection 26.The isotopic composition of the nitrate and ammonium pool was estimated from their concentrations before and afteramendment.Concentrations of 14N 15N and 15N 15N were determined by isotope ratio mass spectrometry and calculated as excess above their natural abundance 2.Received 28October 2002;accepted 3March 2003;doi:10.1038/nature01526.1.Falkowski,P .G.,Barber,R.T.&Smetacek,V.Biogeochemical controls and feedbacks on ocean primary production.Science 281,200–206(1998).2.Thamdrup,B.&Dalsgaard,T.Production of N 2through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments.Appl.Environ.Microbiol.68,1312–1318(2002).3.Gruber,N.&Sarmiento,J.L.Global patterns of marine nitrogen fixation and denitrification.Glob.Biogeochem.Cycles 11,235–266(1997).4.Codispoti,L.A.et al.The oceanic fixed nitrogen and nitrous oxide budgets:Moving targets as we enter the anthropocene?Sci.Mar.65(suppl.2),85–105(2001).5.Thamdrup,B.,Canfield,D.E.,Ferdelman,T.G.,Glud,R.N.&Gundersen,J.K.A biogeochemical survey of the anoxic basin Golfo Dulce,Costa Rica.Rev.Biol.Trop.44,19–33(1996).6.Vargas,J.A.Pacific coastal ecosystems of Costa Rica with emphasis on the Golfo Dulce and adjacent areas:A synoptic view based on the R.V.Victor Hensen expedition 1993/94and previous studies.Preface.Rev.Biol.Trop.44,U1–U4(1996).7.Lipschultz,F.et al.Bacterial transformations of inorganic nitrogen in the oxygen-deficient waters of the Eastern Tropical South-Pacific ocean.Deep-Sea Res.37,1513–1541(1990).8.Bange,H.W.et al.A revised nitrogen budget for the Arabian Sea.Glob.Biogeochem.Cycles 14,1283–1297(2000).9.Deutsch,C.,Gruber,N.,Key,R.M.,Sarmiento,J.L.&Ganachaud,A.Denitrification and N 2fixation in the Pacific Ocean.Glob.Biogeochem.Cycles 15,483–506(2001).10.Richards,F.A.in Advances in Water Pollution Research (ed.Pearson,E.A.)215–232(Pergamon,London,1965).11.Richards,F.A.in Chemical Oceanography (eds Riley,J.P .&Skirrow,G.)611–645(Academic,London,1965).12.van de Graaf,A.et al.Anaerobic oxidation of ammonium is a biologically mediated process.Appl.Environ.Microbiol.61,1246–1251(1995).13.Dalsgaard,T.&Thamdrup,B.Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments.Appl.Environ.Microbiol.68,3802–3808(2002).14.Knowles,R.Denitrification.Microbiol.Rev.46,43–70(1982).15.Luther,G.W.I.,Sundby,B.,Lewis,P .J.&Silverburg,N.Interactions of manganese with thenitrogen cycle:alternative pathways to dinitrogen.Geochim.Cosmochim.Acta.61,4043–4052(1997).16.Hulth,S.,Aller,R.C.&Gilbert,F.Coupled anoxic nitrification/manganese reduction in marinesediments.Geochim.Cosmochim.Acta.63,49–66(1999).17.Murray,J.W.,Lee,B.,Bullister,J.&Luther,G.W.in Environmental Degradation of the Black Sea:Challenges and Remedies (eds Besiktepe,S.T.,U¨nlu ¨ata,U ¨.&Bologa,A.S.)75–91(Kluwer Academic,Dordrecht,1999).18.Nielsen,L.P .Denitrification in sediment determined from nitrogen isotope pairing.FEMS Microbiol.Ecol.86,357–362(1992).19.Van Mooy,B.A.S.,Keil,R.G.&Devol,A.H.Impact of suboxia on sinking particulate organic carbon:Enhanced carbon flux and preferential degradation of amino acids via denitrification.Geochim.Cosmochim.Acta.66,457–465(2002).20.Codispoti,L.A.&Christensen,J.P .Nitrification,denitrification and nitrous oxide cycling in theEastern tropical South Pacific Ocean.Mar.Chem.16,277–300(1985).21.Cline,J.D.&Richards,F.A.Oxygen deficient conditions and nitrate reduction in the Eastern tropicalnorthern Pacific Ocean.Limnol.Oceanogr.17,885–900(1972).22.Naqvi,S.W.A.Some aspects of the oxygen-deficient conditions and denitrification in the ArabianSea.J.Mar.Res.45,1049–1072(1987).23.Otte,S.et al.Nitrogen,carbon,and sulfur metabolism in natural Thioploca samples.Appl.Environ.Microbiol.65,3148–3157(1999).24.Braman,R.S.&Hendrix,S.A.Nanogram nitrite and nitrate determination in environmental andbiological materials by vanadium (III)reduction with chemiluminescence detection.Anal.Chem.61,2715–2718(1989).25.Grasshoff,K.,Ehrhardt,M.&Kremling,K.Methods of Seawater Analysis (Verlag Chemie,Weinheim,1983).26.Hall,P .O.J.&Aller,R.C.Rapid,small-volume,flow injection analysis for CO 2and NH 4þin marineand freshwaters.Limnol.Oceanogr.37,1113–1119(1992).Acknowledgements We thank J.A.Vargas for assistance in arranging field work,and E.Ruiz and D.Morera for assistance during sampling.We also thank L.Salling,P .Søholt,uridsen,E.Frandsen,T.Quottrup,M.V.Skjærbæk and A.Haxen for analytical work.D.E.C.,J.P.and B.T.were supported by the Danish National Research Foundation and the Danish National Science Research Council.Competing interests statement The authors declare that they have no competing financial interests.Correspondence and requests for materials should be addressed to T.D.(e-mail:tda@dmu.dk)...............................................................Anaerobic ammonium oxidation by anammox bacteria in the Black SeaMarcel M.M.Kuypers *,A.Olav Sliekers †,Gaute Lavik *,Markus Schmid †,Bo Barker Jørgensen *,J.Gijs Kuenen †,Jaap S.Sinninghe Damste´‡,Marc Strous §&Mike S.M.Jetten §*Max Planck Institute for Marine Microbiology (MPI),Department of Biogeochemistry,Celsiusstrasse 1,28359Bremen,Germany†Department of Microbiology,Delft University of Technology,Julianalaan 67,2628BC Delft,The Netherlands‡Royal Netherlands Institute for Sea Research (NIOZ),Department of Marine Biogeochemistry and Toxicology,PO Box 59,1790AB Den Burg,The Netherlands §Department of Microbiology,University of Nijmegen,Toernooiveld 1,6526ED Nijmegen,The Netherlands.............................................................................................................................................................................The availability of fixed inorganic nitrogen (nitrate,nitrite and ammonium)limits primary productivity in many oceanic regions 1.The conversion of nitrate to N 2by heterotrophic bacteria (denitrification)is believed to be the only important sink for fixed inorganic nitrogen in the ocean 2.Here we provide evidence for bacteria that anaerobically oxidize ammonium with nitrite to N 2in the world’s largest anoxic basin,the Black Sea.Phylogenetic analysis of 16S ribosomal RNA gene sequences shows that these bacteria are related to members of the order Planctomycetales performing the anammox (anaerobic ammonium oxidation)process in ammonium-removing bio-reactors 3.Nutrient profiles,fluorescently labelled RNA probes,15N tracer experiments and the distribution of specific ‘ladder-ane’membrane lipids 4indicate that ammonium diffusingupwards from the anoxic deep water is consumed by anammox bacteria below the oxic zone.This is the first time that anammox bacteria have been identified and directly linked to the removal of fixed inorganic nitrogen in the environment.The widespread occurrence of ammonium consumption in suboxic marine set-tings 5–7indicates that anammox might be important in the oceanic nitrogen cycle.The Black Sea is the world’s largest anoxic basin and is a model for both modern and ancient anoxic environments.It is characterized by a high ammonium concentration in the deep waters (up to 100m M),whereas only trace amounts of fixed inorganic nitrogen are present in the ‘suboxic’zone 6,8where the reduction of nitrate,manganese oxide or iron oxide occurs 9.This apparent ammonium sink in the suboxic zone strongly suggests 7,10,11that ammonium is oxidized anaerobically to N 2.Indeed,bacteria able to oxidize ammonia anaerobically have recently been discovered in laboratory bioreactors and wastewater treatment systems 3,12.These so-called ‘anammox’bacteria belonging to the order Planctomycetales directly oxidize ammonia to N 2with nitrite as the electron acceptor (Fig 1a,b):NH þ4þNO 22!N 2þ2H 2Oð1ÞDuring an R/V Meteor cruise in December 2001we investigatedthe role of anammox in the Black Sea water column by using microbiological and biogeochemical techniques.In accord with with earlier studies 6,8,11we observed a nitrate maximum at the bottom of the oxic zone in the western basin (site 7605;42830.710N,30814.690E;Fig.2a).This maximum is caused by the mineraliza-tion of phytoplankton-derived organic nitrogen coupled to aerobic nitrification (Fig 1a).Ammonium concentrations are high in deep waters but decrease to background values above 97m water depth (Fig.2a).Aerobic nitrification cannot account for the consumption of ammonium because O 2is absent below 80m (Fig.2b).However,nitrate penetrates 15m deeper in the water column,indicating that nitrate could be the oxidizer of ammonium 11.Alternatively,anammox bacteria could be using nitrite instead of nitrate to oxidize ammonium.Nitrite is an intermediate of denitrification and a nitrite peak is present at the base of the nitrate peak (Fig.2a).Anammox in the suboxic zone could be coupled to nitrate reduction to nitrite (Fig 1a)by denitrifiers 13,similarly to the process in anammox bioreactors 14.To check for anammox activity in the suboxic zone we anaero-bically incubated water samples from various depths after the addition of [14N]nitrite and [15N]ammonium.Because the anammox process combines 1mol of [15N]ammonium and 1mol of [14N]nitrite to form 1mol of single-labelled dinitrogen gas (14N 15N)(equation (1)),the depth distribution of d 14N 15N (Fig.2c)expresses the potential anammox activity.The d 14N 15N record shows a clear peak in the zone of nitrite and ammonium disap-pearance,whereas no significant anammox activity is observed outside the suboxic zone.Specific biomarkers,so-called ladderane lipids,were used to trace anammox bacteria in particulate organic matter collected from various depths across the suboxic dderane lipids 4are the main building blocks of a unique bacterial membrane that sur-rounds the anammoxosome,a special compartment of the anammox cell,in which the anaerobic oxidation of ammonium to N 2takes place (Fig.1b).Three different ladderane lipids were detected in the saponified total lipid extracts with a depth distribution (Fig.2d and e)similar to that of the potential anammox activity (Fig.2c),indicating that anammox bacteria could indeed be responsible for the anaerobic oxidation of ammonium.A clone library was generated from DNA extracted from Black Sea water at the depth of maximum ladderane abundance (90m),after amplifica-tion of the 16S ribosomal RNA gene with primers specific for Planctomycetes 15.Phylogenetic analysis of the 16S rRNA sequences confirms that the Planctomycetes,tentatively named Candidatus ‘Scalindua sorokinii’,from the suboxic zone of the Black Sea are related to bacteria known to be capable of the anammox process (87.9%sequence similarity to Kuenenia ,87.6%to Brocadia ;Fig.3).In fact,the sequence obtained from the Black Sea is nearly identical (98.1%)to a sequence recently obtained from a bioreactor shown to have anammox activity (M.Schmid,K.Walsh,R.Webb,W.I.Rijpstra,K.T.van de Pas Schoonen,T.C.J.Hill,B.F.Moffett,J.A.Fuerst,J.S.S.D.,J.A.Harris,P .J.Shaw,M.S.M.J.and M.Strauss,unpub-lished observations).On the basis of the sequence obtained from the Black Sea,we designed an oligonucleotide probe,labelled with Cy3fluorochrome,for fluorescence in situ hybridization (FISH).This probe gave a bright and specific signal with cells that have the unusual doughnut shape characteristic for anammox bacteria in dderane biomarkers and cells hybridizing with the new FISH probe (Fig.1c)were also found in the suboxic zone at the shelf break (Station 7617,43838.040N,30802.540E),indicating that anammox bacteria are not restricted to the strongly stratified central basin but are also present in the more dynamic peripheral current 8.The combined results clearly indicate that anammox bacteria are abundant and active in the Black Sea.Could these anammox bacteria be responsible for the observed ammonium sink in the suboxic zone of the Black Sea?If we assume that the concentration profile of ammonium represents a steady state,an anaerobic ammonium oxidation rate of ,0.007m M day 21was calculated for the suboxic zone of the central basin by using a reaction diffusion model.This rate is comparable to aerobic ammonium oxidation rates (0.005–0.05m M day 21)determined for the nitrate maximum of the western central basin of the Black Sea 16.An anammox rate of 2–20fmol ammonium per cell per day was found in laboratory bioreactors 3.Assuming a similar range of cell-specific activity for the Black Sea,300–3,000anammox cells ml 21would be needed to account for the observed ammonium oxidation rates in the suboxic zone.CountsofFigure 1Morphology and physiology of anammox bacteria and their role in the marine nitrogen cycle.a ,Simplified marine nitrogen cycle including the anammox ‘sink’.Org.N,organic nitrogen.b ,Morphology of the anammox cell and proposed model for the anammox process.HH,hydrazine (N 2H 4)hydrolase;HZO,hydrazine oxidizing enzyme;NR,nitrite reducing enzyme.c ,Fluorescence in situ hybridization of filter material from station 7617(142m water depth).Green cells are total Eubacteria stained with EUB338probe;red cells (encircled)are anammox bacteria stained with a new specific probe (AmxBS820).cells stained with the newly designed FISH probe (Amxbs820)gave an anammox cell density of ,1,900^800cells ml 21(0.75%of all cells counted by 4,6-diamidino-2-phenylindole (DAPI))at the nitrite peak.Although we acknowledge the uncertainty involved in the extra-polation of laboratory-derived anammox activities to the natural environment,the rates of net ammonium and nitrate consumption calculated as a function of depth indicate that nitrate reduction by denitrifiers coupled to anammox accounts for a substantial loss offixed inorganic nitrogen.In fact,the downward flux of nitrate (,7m mol m 22h 21)is sufficient to oxidize all the ammonium (,5m mol m 22h 21)diffusing up into the suboxic zone.If we assume that the area (3£105km 2)below the shelf break (,200m)8represents the total surface area of the suboxic zone,0.3Tg of fixed inorganic nitrogen per year might be lost through nitrate reduction coupled to anammox.For comparison,the annual primary production of phytoplankton in the whole basin is ,80Tg carbon (ref.8),which is equivalent to 14Tg of fixed organic N if we assume an atomic C/N ratio of 6.6for phytoplankton 17.Because more than 95%of this phytoplanktonic organic nitrogen is recycled in the upper 80m (ref.18),anammox might consume more than 40%of the fixed nitrogen that sinks down into the anoxic Black Sea water.Moreover,these results demonstrate that anammox bacteria are abundant and are important in the nitrogen cycle of the Black Sea.In fact,the widespread occurrence of ammonium consumption in suboxic marine waters as well as in sediments 7suggests that anammox bacteria could have an important but as yet neglected role in the oceanic loss of fixed nitrogen.AMethodsNutrient analysesWater samples for nutrient analyses were obtained by a pumpcast conductivity–temperature–depth (CTD)system equipped with an oxygen sensor.Before analyses,ZnCl 2was added to the samples from the anoxic part of the water column to precipitate sulphide.Nitrate,nitrite and ammonium concentrations (detection limits 0.1,0.01and 0.5m M,respectively)were determined on board with an autoanalyser,immediately after sampling.15N incubations and analysisBlack Sea water collected from specific water depths was flushed for 1h with argon and,after the addition of 500m M 15NH 4Cl and 100m M Na 14NO 22,incubated for 4days at in situ temperatures (,88C).Subsequently,the samples were stored at 48C until analysis.14N 15N:14N 14N ratios were determined by gas chromatography–isotope ratio mass spectrometry and expressed as d 14N 15N values (d 14N 15N ¼[(14N 15N:14N 14N)sample ]:[(14N 15N:14N 14N)standard ]21;air was used as thestandard).Figure 2Chemical zoning and distribution of anammox indicators across the Black Sea chemocline.a ,Fixed inorganic nitrogen species;b ,water density and oxygenconcentrations;c ,interface peak of potential anammox activity expressed as anaerobic 15NH 4þoxidation by 14NO 22to 14N 15N;d ,peak of three ladderane membrane lipids specific for anammox bacteria;e ,molecular structures of the three ladderane membrane lipids specific for anammox bacteria presented in d .The suboxic zone is indicated by greyshading.Density (j T ,the density of seawater in kg m 2321,000),nitrate (NO 32),nitrite(NO 22),ammonium (NH 4þ)and oxygen profiles from Station 7605(42830.710N,30814.690E).Ladderane lipid data from Stations 7605and 7620(42855.560N,30803.650E)were used to create a composite plot for the ladderane glycerol monoether and for the fatty acid methyl esters (FAMEs)1and2.Figure 3Phylogenetic tree of 16S rRNA gene sequences showing the orderPlanctomycetales and the position of the anammox-affiliated organisms from the Black Sea (indicated by a rectangle).The black triangles indicate phylogenetic groups.The bar represents 10%estimated sequence divergence.Deep-sea sediment clone is from ref.26;English BC clone EN5and Candidatus ‘Scalindua brodae’are from M.Schmid,K.Walsh,R.Webb,W.I.Rijpstra,K.T.van de Pas Schoonen,T.C.J.Hill,B.F.Moffett,J.A.Fuerst,J.S.S.D.,J.A.Harris,P.J.Shaw,M.S.M.J.and M.Strauss (unpublished observations).Lipid analysisParticulate organic matter for lipid analyses was collected from specific water depths by in situfiltration of large volumes(,1,000l)of water through292-mm diameter precombusted(at4508C)glassfibrefilters(GFF;nominal pore size0.7m m)with in situ pumps.Becausefiltration through0.7-m m pore-sizefilters could lead to an undersampling of anammox cells,the calculated ladderane lipid concentrations are minimum values.The GFF were extracted for24h in a Soxhlet apparatus to obtain the total lipid extracts. Aliquots of the total extracts were saponified after addition of an internal standard and separated into fatty acid and neutral lipid fractions.The fatty acid fractions were methylated and the neutral fractions were silylated and analysed by gas chromatography–mass spectrometry for the identification and quantification of ladderane lipids.Repeated concentration measurements were within^10%.Molecular cloning and phylogenyDNA extraction,isolation and cloning were performed as described previously19. Phylogenetic analysis was performed with the ARB software package15.The phylogenetic tree is based on a maximum-likelihood analysis of different data sets.FISH and microscopyFilter material was stained with an oligonucleotide probe specific for Planctomycetes (Pla46,S-P-Planc-0046-a-A-18)20,a newly designed Anammox probe(AmxBS820,S-*-BS-820-a-A-22(50-TAATTCCCTCTACTTAGTGCCC-30)),a eubacterial probe(EUB338, S-D-Bact-0338-a-A-18)21and DAPI to determine the abundance of anammox and total bacteria.FISH and DAPI staining were performed as described22and the average number of anammox bacteria was determined by analysing20different slides.Flux calculationsNitrate and ammoniumfluxes and ammonium oxidation rates were calculated from the concentration profiles and a vertical diffusion coefficient(K z)with the program Profile23. Published estimates of the vertical diffusion coefficient for the suboxic zone vary over an order of magnitude(0.02–0.7cm2s21)8,24,25.However,most calculations of chemicalfluxes24,25have used a K z value close to the lower end of the range.Accordingly,a K z of 0.04cm2s21was used here.The model predicted zones of net ammonium and nitrate consumption at106–93and88–94m,respectively.Received8November2002;accepted3February2003;doi:10.1038/nature01472.1.Falkowski,P.G.Evolution of the nitrogen cycle and its influence on the biological sequestration ofCO2in the ocean.Nature387,272–275(1997).2.Codispoti,L.A.&Christensen,J.P.Nitrification,denitrification and nitrous oxide cycling in theeastern tropical South Pacific Ocean.Mar.Chem16,277–300(1985).3.Strous,M.et al.Missing litotroph identified as new planctomycete.Nature400,446–449(1999).4.Sinninghe Damste´,J.S.et al.Linearly concatenated cyclobutane(ladderane)lipids from a densebacterial membrane.Nature419,708–712(2002).5.Bender,M.et anic carbon oxidation and benthic nitrogen and silica dynamics in San ClementeBasin,a continental borderland site.Geochim.Cosmochim.Acta53,685–697(1989).6.Codispoti,L.A.,Friederich,G.E.,Murray,J.W.&Sakamoto,C.M.Chemical variability in the BlackSea:implications of continuous vertical profiles that penetrated the oxic/anoxic interface.Deep-Sea Res.38,S691–S710(1991).7.Thamdrup,B.&Dalsgaard,T.Production of N2through anaerobic ammonium oxidation coupled tonitrate reduction in marine sediments.Appl.Environ.Microbiol.68,1312–1318(2002).8.Sorokin,Y.I.The Black Sea—Ecology and Oceanography(ed.Martens,K.)1–875(Backhuys,Leiden,2002).9.Froelich,P.N.et al.Early oxidation of organic matter in pelagic sediments of the eastern equatorialAtlantic:Suboxic diagenesis.Geochim.Cosmochim.Acta43,1075–1090(1979).10.Richards,F.A.in Chemical Oceanography(eds Ripley,J.P.&Skirrow,G.)611–645(Academic,London,1965).11.Murray,J.W.,Codispoti,L.A.&Frederich,G.E.in Aquatic Chemistry(eds Huang,C.P.,O’Melia,C.R.&Morgan,J.J.)157–176(American Chemical Society,Washington DC,1995).12.Kuenen,J.G.&Jetten,M.S.M.Extraordinary anaerobic ammonium-oxidizing bacteria.ASM News67,456–463(2001).13.Dalsgaard,T.&Thamdrup,B.Factors controlling anaerobic ammonium oxidation with nitrite inmarine sediments.Appl.Environ.Microbiol.68,3802–3808(2002).14.Mulder,A.,van de Graaf,A.A.,Robertson,L.A.&Kuenen,J.G.Anaerobic ammonium oxidationdiscovered in a denitrifyingfluidized bed reactor.FEMS Microbiol.Ecol.16,177–184(1995).15.Schmid,M.et al.Molecular evidence for genus level diversity of bacteria capable of catalyzinganaerobic ammonium oxidation.Syst.Appl.Microbiol.23,93–106(2000).16.Ward,B.B.&Kilpatrick,K.A.in Black Sea Oceanography(eds Izdar,E.&Murray,J.W.)111–124(Kluwer Academic,Dordrecht,1991).17.Redfield,A.C.,Ketchum,B.H.&Richards,F.A.in The Sea(ed.Hill,M.N.)26–77(Interscience,NewYork,1963).18.Karl,D.M.&Knauer,G.A.Microbial production and particleflux in the upper350m of the BlackSea.Deep-Sea Res.38,S921–S942(1991).19.Schmid,M.,Schmitz-Esser,S.,Jetten,M.&Wagner,M.16S–23S rDNA intergenic spacer and23SrDNA of anaerobic ammonium-oxidizing bacteria:implications for phylogeny and in situ detection.Environ.Microbiol.3,450–459(2001).20.Neef,A.,Amann,R.,Schlesner,H.&Schleifer,K.H.Monitoring a widespread bacterial group:in situ detection of planctomycetes with16S rRNA-targeted probes.Microbiology144,3257–3266 (1998).21.Amann,R.I.et bination of16S rRNA-targeted oligonucleotide probes withflow cytometry foranalyzing mixed microbial populations.Appl.Environ.Microbiol.6,1919–1925(1990).22.Pernthaler,J.,Glo¨ckner,F.O.,Scho¨nhuber,W.&Amann,R.in Methods in Microbiology(ed.Paul,J.H.)207–226(Academic,London,2001).23.Berg,P.,Risgaard-Petersen,N.&Rysgaard,S.Interpretation of measured concentration profiles insediment pore water.Limnol.Oceanogr.43,1500–1510(1998).24.Oguz,T.,Murray,J.W.&Callahan,A.E.Modeling redox cycling across the suboxic-anoxic interfacezone in the Black Sea.Deep-Sea Res.I48,761–787(2001).25.Lewis,B.&Landing,W.M.The biogeochemistry of manganese and iron in the Black Sea.Deep-SeaRes.38(suppl.2),S773–S803(1991).26.Li,L.,Kato,C.&Horikoshi,K.Bacterial diversity in deep-sea sediments from different depths.Biodivers.Conserv.8,659–677(1999).Acknowledgements We thank L.Neretin for discussions;the Romanian and Turkish authorities for access to their national waters;the crew of the R/V Meteor for collaboration;S.Kru¨ger, F.Pollehne and T.Leipe(IOW,Warnemu¨nde)for operating the pumpcast and providing the CTD data;J.Eygensteyn,A.Pol,H.op den Camp,K.van de Pas Schoonen and G.Klockgether for analytical assistance.C.Hanfland and the AWI(Bremerhaven)provided the in situ pumps.The investigations were supported by the MPG,the University of Nijmegen,the TU Delft and the DFG.M.M.M.K.wasfinancially supported by the EC Human Potential Programme Research Training Networks Activity(CT-net);A.O.S.was supported by a grant of the ALW;M.Schmid was supported by an EU grant.Competing interests statement The authors declare that they have no competingfinancial interests.Correspondence and requests for materials should be addressed to M.M.M.K.(e-mail:mkuypers@mpi-bremen.de). .............................................................. Catastrophic ape decline in western equatorial AfricaPeter D.Walsh*,Kate A.Abernethy†‡,Magdalena Bermejo§,Rene Beyers k,Pauwel De Wachter{,Marc Ella Akou{,Bas Huijbregts{, Daniel Idiata Mambounga#,Andre Kamdem Toham{,Annelisa M.Kilbourn k,Sally hm q,Stefanie Latour k,Fiona Maisels k**,Christian Mbina k,Yves Mihindou k,Sosthe`ne Ndong Obiang#,Ernestine Ntsame Effa#,Malcolm P.Starkey k††,Paul Telfer†‡‡,Marc Thibault{,Caroline E.G.Tutin†‡,Lee J.T.White k &David S.Wilkie k*Department of Ecology and Evolutionary Biology,Guyot Hall,Princeton, New Jersey08540,USA†Centre International de Recherches Me´dicales,BP769,Franceville,Gabon‡Department of Biological and Molecular Sciences,University of Stirling,Stirling FK94LA,UK§Departamento Biologı´a Animal(Vertebrados),Facultad de Biologı´a, Universidad de Barcelona,Avda.Diagonal645,08028Barcelona,Spaink Wildlife Conservation Society,Bronx,New York,New York10460-1099,USA {WWF Central Africa Regional Program Office,BP9144,Libreville,Gabon#Ministe`re de l’Economie Forestie`re,des Eaux,de la Peˆche charge´del’Environnement et de la Protection de la Nature,Direction de la Faune et de la Chasse,BP1128,Libreville,Gabonq Institut de Recherche en Ecologie Tropicale,BP13354,Libreville,Gabon**Institute of Cell,Animal and Population Biology,Edinburgh University, Edinburgh EH93JT,UK††Department of Geography,University of Cambridge,Downing Place, Cambridge CB23EN,UK‡‡New York University,Department of Anthropology,25Waverly Place,New York, New York10003,USA ............................................................................................................................................................................. Because rapidly expanding human populations have devastated gorilla(Gorilla gorilla)and common chimpanzee(Pan troglo-dytes)habitats in East and West Africa,the relatively intact forests of western equatorial Africa have been viewed as the last stronghold of African apes1.Gabon and the Republic of Congo alone are thought to hold roughly80%of the world’s gorillas2and most of the common chimpanzees1.Here we present survey results conservatively indicating that ape populations in Gabon declined by more than half between1983and2000.The primary cause of the decline in ape numbers during this period was commercial hunting,facilitated by the rapid expansion of。

相关文档
最新文档