2016年山东省青岛市市北区中考数学一模试卷(解析版)
山东省青岛市2016年中考数学试题含答案(Word版)
山东省青岛市2016年中考数学试题含答案(Word版)青岛市2016年初中学生学业考试数学试题考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题。
第Ⅰ卷1-8题为选择题,共24分;第Ⅱ卷9-14题为填空题,15题为作图题,16-24题为解答题,共96分。
要求所有题目均在答题卡上作答,在本卷上作答无效。
第(Ⅰ)卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的。
每小题选对得分;不选、选错或选出的标号超过一个的不得分。
1.2的相反数是()。
A。
-2B。
2C。
-1/2D。
2^22.某种计算机完成一次基本运算的时间约为0.xxxxxxxx1s,把0.xxxxxxxx1s用科学计数法可以表示为()。
A。
0.1×10^-8B。
0.1×10^-9C。
1×10^-8D。
1×10^-93.下列四个图形中,既是轴对称图形又是中心对称图形的是()。
4.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC 的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()。
5.XXX参加射击比赛,成绩统计如下表:关于他的射击成绩,下列说法正确的是()。
A。
极差是2环B。
中位数是8环C。
众数是9环D。
平均数是9环6.如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=()。
7.如图,菱形ABCD的对角线AC、BC相交于点O,E、F分别是AB、BC边上的中点,连接EF,若EF=3,BD=4,则菱形ABCD的周长为()。
8.如图,正比例函数y= k/x的图像与反比例函数y=2/x的图象相交于A、B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()。
A。
x2B。
x<-2或x<2C。
山东省青岛市2016年中考数学试题
A .B .C .D .青岛市二〇—六年初中学业水平考试数学试题(考试时间:120分钟;满分:120分)亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第丨卷和第丨丨卷两部分,共有24道题.第丨卷1 一8题为选择题,共24分;第II 卷9一 14题为填空题,15题为作图题,16—24题为解答题,共96分.要求所有题目均在答 题卡上作答,在本卷上作答无效.第I 卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选 对得分;不选、选错或选出的标号超过一个的不得分. 1 . -5的绝对值是( )A . -51B .-5C .5D . 52 .我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg 的煤所产生的能量. 把130 000 000kg 用科学记数法可表示为( ).A . 13x 107kgB . 0.13x 108kgC . 1.3 x 107kgD . 1.3 x 108kg3 .下列四个图形中,既是轴对称图形又是中心对称图形的是().C4.计算a .a 5-(2a 3)2的结果为( )A . a 6 - 2a 5B . -a 6C . a 6 - 4a 54 .如图,线段AB 经过平移得到线段A 1B 1,其中点A ,B 的对应点分别为点A 1,B 1,这四个点都在格点上.若线段AB 上有一 个点P ( a ,b ),则点户在A 1B 1上的对应点P 的坐标为( ).A ( a - 2,b + 3 )B .( a - 2,b - 3 )C . (a + 2,b + 3 )D .(a + 2,b -3 )5 . A ,B 两地相距180km ,新修的高速公路开通后,在A ,B, ^ ^ HS x两地间行驶的长途客车平均车速提高了 50%,而从A 地到B 地的时间缩短了 1h .若设原 来的平均车速为xkm /h ,则根据题意可列方程为().6 .如图,一扇形纸扇完全打开后,外侧两竹条和AC 的夹角为120°,长为25cm ,贴 纸部分的宽BD为15cm ,若纸扇两面贴纸,则贴纸的面积为().A . 175n cm 2B . 350n cm 2C. 3800 n cm 2 D . 150n cm 27 .输入一组数据,按下列程序进行计算,输出结果如下表:分析表格中的数据,估计方程(x + 8)2 -826 = 0的一个正数解x 的大致范围为( )A . 20.5 <x < 20.6B . 20.6 <x < 20.7C . 20.7 <x < 20.8D . 20.8 <x < 20.9CD第II 卷二、填空题(本题满分18分,共有6道小题,每小题3分)9 .计算2832 = 10 “万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量。
2016青岛中考数学试题及答案
2016青岛中考数学试题及答案【篇一:2016年山东省青岛市中考数学试卷(解析版)】ass=txt>一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为a、b、c、d的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.﹣的绝对值是()a.﹣ b.﹣ c. d.52.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()3.下列四个图形中,既是轴对称图形又是中心对称图形的是()a. b. c. d.4.计算a?a5﹣(2a3)2的结果为()a.a6﹣2a5 b.﹣a6 c.a6﹣4a5 d.﹣3a65.如图,线段ab经过平移得到线段a1b1,其中点a,b的对应点分别为点a1,b1,这四个点都在格点上.若线段ab上有一个点p( a,b),则点户在a1b1上的对应点p的坐标为()a.c.(a﹣2,b+3) b.(a﹣2,b﹣3)(a+2,b+3)d.(a+2,b﹣3)6.a,b两地相距180km,新修的高速公路开通后,在a,b两地间行驶的长途客车平均车速提高了50%,而从a地到b地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()a.c.﹣﹣=1 b.=1 d.﹣=1 ﹣=1的宽bd为15cm,若纸扇两面贴纸,则贴纸的面积为()a.20.5<x<20.6 b.20.6<x<20.7 c.20.7<x<20.8 d.20.8<x<20.9二、填空题(本题满分18分,共有6道小题,每小题3分)9.计算: =.10.“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有名.12.已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为.13.如图,在正方形abcd中,对角线ac与bd相交于点o,e为bc上一点,ce=5,f为de的中点.若△cef的周长为18,则of的长为.14.如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为cm3.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹. 15.已知:线段a及∠acb.求作:⊙o,使⊙o在∠acb的内部,co=a,且⊙o与∠acb的两边分别相切.四、解答题(本题满分74分,共有9道小题)16.(1)化简:﹣(2)解不等式组,并写出它的整数解.17.小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.19.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?20.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上b,c两点到地面的距离均为m,到墙边似的距离分别为m, m.(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?21.已知:如图,在?abcd中,e,f分别是边ad,bc上的点,且ae=cf,直线ef分别交ba的延长线、dc的延长线于点g,h,交bd 于点0.(1)求证:△abe≌△cdf;(2)连接dg,若dg=bg,则四边形bedf是什幺特殊四边形?请说明理由.22.某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本q(元)与月产销量y(个)满足如(2)求每个玩具的固定成本q(元)与月产销量y(个)之间的函数关系式;(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?23.问题提出:如何将边长为n问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.探究一:【篇二:2016山东省青岛市中考数学试卷】ass=txt>一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为a、b、c、d的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(2016?青岛)﹣的绝对值是()a.﹣ b.﹣ c. d.52.(3分)(2016?青岛)我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()3.(3分)(2016?青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是() 7878a. b.5c.32 d. 4.(3分)(2016?青岛)计算a?a﹣(2a)的结果为()656656a.a﹣2a b.﹣a c.a﹣4a d.﹣3a5.(3分)(2016?青岛)如图,线段ab经过平移得到线段a1b1,其中点a,b的对应点分别为点a1,b1,这四个点都在格点上.若线段ab上有一个点p( a,b),则点p在a1b1上的对应点p的坐标为()a.(a﹣2,b+3) b.(a﹣2,b﹣3) c.(a+2,b+3)d.(a+2,b﹣3)6.(3分)(2016?青岛)a,b两地相距180km,新修的高速公路开通后,在a,b两地间行驶的长途客车平均车速提高了50%,而从a地到b地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()a.c.﹣﹣=1 b.=1 d.﹣﹣=1 =122a.20.5<x<20.6 b.20.6<x<20.7 c.20.7<x<20.8 d.20.8<x <20.9二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(2016?青岛)计算:=10.(3分)(2016?青岛)“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有名.12.(3分)(2016?青岛)已知二次函数y=3x+c与正比例函数y=4x的图象只有一个交点,则c的值为.213.(3分)(2016?青岛)如图,在正方形abcd中,对角线ac与bd相交于点o,e为bc上一点,ce=5,f为de的中点.若△cef 的周长为18,则of的长为.3三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(2016?青岛)已知:线段a及∠acb.求作:⊙o,使⊙o在∠acb的内部,co=a,且⊙o与∠acb的两边分别相切.四、解答题(本题满分74分,共有9道小题)16.(8分)(2016?青岛)(1)化简:﹣(2)解不等式组,并写出它的整数解.17.(6分)(2016?青岛)小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.19.(6分)(2016?青岛)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?20.(8分)(2016?青岛)如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax+bx(a≠0)表示.已知抛物线上b,c两点到地面的距离均为m,到墙边似的距离分别为m,m.(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案? 221.(8分)(2016?青岛)已知:如图,在?abcd中,e,f分别是边ad,bc上的点,且ae=cf,直线ef分别交ba的延长线、dc 的延长线于点g,h,交bd于点0.(1)求证:△abe≌△cdf;(2)连接dg,若dg=bg,则四边形bedf是什幺特殊四边形?请说明理由.22.(10分)(2016?青岛)某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本q (元)与(2)求每个玩具的固定成本q(元)与月产销量y(个)之间的函数关系式;(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?23.(10分)问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.探究一:【篇三:2016年山东省青岛市中考数学试卷】ass=txt>一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为a、b、c、d的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(2016?青岛)﹣的绝对值是()a.﹣b.﹣c.d.52.(3分)(2016?青岛)我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()3.(3分)(2016?青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是() 7878a.b.c.53d.2 4.(3分)(2016?青岛)计算a?a﹣(2a)的结果为() 656656a.a﹣2ab.﹣ac.a﹣4ad.﹣3a5.(3分)(2016?青岛)如图,线段ab经过平移得到线段a1b1,其中点a,b的对应点分别为点a1,b1,这四个点都在格点上.若线段ab上有一个点p( a,b),则点p在a1b1上的对应点p的坐标为()a.(a﹣2,b+3)b.(a﹣2,b﹣3)c.(a+2,b+3)d.(a+2,b﹣3)6.(3分)(2016?青岛)a,b两地相距180km,新修的高速公路开通后,在a,b两地间行驶的长途客车平均车速提高了50%,而从a地到b地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()a.c.﹣﹣=1b.=1d.﹣﹣=1 =122a.20.5<x<20.6b.20.6<x<20.7c.20.7<x<20.8d.20.8<x <20.9二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(2016?青岛)计算:=10.(3分)(2016?青岛)“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有名.12.(3分)(2016?青岛)已知二次函数y=3x+c与正比例函数y=4x的图象只有一个交点,则c的值为.213.(3分)(2016?青岛)如图,在正方形abcd中,对角线ac 与bd相交于点o,e为bc上一点,ce=5,f为de的中点.若△cef 的周长为18,则of的长为.14.(3分)(2016?青岛)如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为cm.3三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(2016?青岛)已知:线段a及∠acb.求作:⊙o,使⊙o在∠acb的内部,co=a,且⊙o与∠acb的两边分别相切.四、解答题(本题满分74分,共有9道小题)16.(8分)(2016?青岛)(1)化简:﹣(2)解不等式组,并写出它的整数解.17.(6分)(2016?青岛)小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.19.(6分)(2016?青岛)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?20.(8分)(2016?青岛)如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax+bx(a≠0)表示.已知抛物线上b,c两点到地面的距离均为m,到墙边似的距离分别为m,m.(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案? 221.(8分)(2016?青岛)已知:如图,在?abcd中,e,f分别是边ad,bc上的点,且ae=cf,直线ef分别交ba的延长线、dc的延长线于点g,h,交bd于点0.(1)求证:△abe≌△cdf;(2)连接dg,若dg=bg,则四边形bedf是什幺特殊四边形?请说明理由.22.(10分)(2016?青岛)某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本q (元)与(2)求每个玩具的固定成本q(元)与月产销量y(个)之间的函数关系式;(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?23.(10分)问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.探究一:。
2016山东青岛中考数学考试试题
青岛市二○一六年初中学业水平考试数 学 试 题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分;第Ⅱ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分.要求所有题目均在答题卡上作答,在本卷上作答无效.第Ⅰ卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分. 1.5-的绝对值是( ).A .15-B .5-C .5D .52.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg 的煤所产 生的能量.把130 000 000kg 用科学记数法可表示为( ). A .71310⨯kg B .0.81310⨯kgC .71.310⨯kgD .81.310⨯kg3.下列四个图形中,既是轴对称图形又是中心对称图形的是( ).A .B .C .D .4.计算5322a a a -⋅)(的结果为( ).A .652a a -B .6a -C .654a a -D .63a -5.如图,线段AB 经过平移得到线段A ′B ′,其中点A ,B 的对应点分别为点A ′,B ′,这四个点都在格点上.若线段AB 上有一个点P (a ,b ),则点P 在A ′B ′上的对应点P ′的坐标为( ). A .(a -2,b +3) B .(a -2,b -3) C .(a +2,b +3)D .(a +2,b -3)6.A ,B 两地相距180km ,新修的高速公路开通后,在A ,B 两地间行驶的长途客车平均车速提高了50%,而从A 地到B 地的时间缩短了1 h .若设原来的平均车速为x km/h ,则根据题意可列方程为( ).A .1801801150%x x -=+()B .1801801150%x x -=+()C .1801801150%x x-=-() D .1801801150%x x-=-() 7.如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25cm ,贴纸部分的宽BD 为15cm ,若纸扇两面贴纸,则贴纸的面积为( ). A .175πcm 2B .350πcm 2C .8003πcm 2D .150πcm 28.输入一组数据,按下列程序进行计算,输出结果如下表:分析表格中的数据,估计方程288260x +-=()的一个正数解x 的大致范围为( ). A .20.5<x <20.6 B .20.6<x <20.7C .20.7<x <20.8D .20.8<x <20.9(第5题)5 4 321-1-2-2 -1 1 2 3 4 5O xyA 'B 'P 'A BP x20.520.620.720.820.9输出 -13.75 -8.04 -2.313.449.21输入x输出+8平方-826ADBEC(第7题)静心第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分) 9.计算:3282-= .10.“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的 约有 名.11.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,若∠BCD =28°,则∠ABD = °.12.已知二次函数23y x c =+与正比例函数4y x =的图象只有一个交点,则c 的值为 . 13.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,CE=5,F 为DE 的中点.若△CEF 的周长为18,则OF 的长为 .14.如图,以边长为20cm 的正三角形纸板的各顶点为端点,在各边上分别截取4cm 长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虚线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为 cm 3.(第10题)橙色 40% 红色 黄色22% 白色18%(第11题)BOCDAAB CDO F(第13题)E(第14题)三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹. 15.已知:线段a 及∠ACB .求作:⊙O ,使⊙O 在∠ACB 的内部,CO =a ,且⊙O 与∠ACB 的两边分别相切.四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分,每题4分)(1)化简:21411x xx x +---; (2)解不等式组 1258x x +⎧⎪⎨⎪-⎩ ,并写出它的整数解.17.(本小题满分6分)小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.18.(本小题满分6分)如图,AB 是长为10m ,倾斜角为37°的自动扶梯,平台BD 与大楼CE 垂直,且与扶梯AB 的长度相等,在B 处测得大楼顶部C 的仰角为65°,求大楼CE 的高度(结果保留整数).(参考数据:sin37°≈35,tan37°≈34,sin65°≈910,tan65°≈157)≤1 ① < 9x ②aACB1 214023(第17题)A 盘B 盘AEB C D37°65° (第18题)19.(本小题满分6分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环 方差 甲 a 7 7 1.2 乙7b8c(1)写出表格中a ,b ,c 的值;(2)分别运用上表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?20.(本小题满分8分)如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax 2+bx (a ≠0)表示.已知抛物线上B ,C 两点到地面的距离均为34m ,到墙边OA 的距离分别为12m ,32m .(1)求该抛物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m ,则最多可以连续绘制几个这样的抛物线型图案?甲队员射击训练成绩54 32 1次数 0 5 6 7 8 9 成绩/环 乙队员射击训练成绩 012345678910 10 987 65 43 成绩/环 y/m (第20题)x/mO地面3 4 1 23 2ABC21.(本小题满分8分)已知:如图,在□ABCD 中,E ,F 分别是边AD ,BC 上的点,且AE CF ,直线EF 分别交BA 的延长线、DC 的延长线于点G ,H ,交BD 于点O .(1)求证:△ABE ≌△CDF ;(2)连接DG ,若DG =BG ,则四边形BEDF 是什么特殊四边形?请说明理由.22.(本小题满分10分)某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q (元)与月产销量y (个)满足如下关系:月产销量y (个) … 160 200 240 300 … 每个玩具的固定成本Q (元)…60484032…(1)写出月产销量y (个)与销售单价x (元)之间的函数关系式;(2)求每个玩具的固定成本Q (元)与月产销量y (个)之间的函数关系式; (3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?A B DC GE O FH(第21题)23.(本小题满分10分)问题提出:如何将边长为n (n ≥5,且n 为整数)的正方形分割为一些1×5或2×3的矩形(a ×b 的矩形指边长分别为a ,b 的矩形)?问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题. 探究一:如图①,当n =5时,可将正方形分割为五个1×5的矩形. 如图②,当n =6时,可将正方形分割为六个2×3的矩形.如图③,当n =7时,可将正方形分割为五个1×5的矩形和四个2×3的矩形. 如图④,当n =8时,可将正方形分割为八个1×5的矩形和四个2×3的矩形. 如图⑤,当n =9时,可将正方形分割为九个1×5的矩形和六个2×3的矩形.探究二:当n =10,11,12,13,14时,分别将正方形按下列方式分割:所以,当n =10,11,12,13,14时,均可将正方形分割为一个5×5的正方形、一个 (n -5)×(n -5)的正方形和两个5×(n -5)的矩形.显然,5×5的正方形和5×(n -5)的矩形均可分割为1×5的矩形,而(n -5)×(n -5)的正方形是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.探究三:当n =15,16,17,18,19时,分别将正方形按下列方式分割:n =10=5+55×5 5×55×5 5×5 5×5 5×65×6 6×6 n =11 =5+65×5 5×75×7 7×7 n =12 =5+75×5 5×85×8 8×8 n =13 =5+85×5 5×95×9 9×9n =14 =5+9图①图②图③图④图⑤10×1010×510×55×5n =15 =5×2+5 10×1010×610×66×6n =16=5×2+6n =18 n =17=5×2+710×1010×710×77×7n =19请按照上面的方法,分别画出边长为18,19的正方形分割示意图.所以,当n =15,16,17,18,19时,均可将正方形分割为一个10×10的正方形、一个(n -10)×(n -10)的正方形和两个10×(n -10)的矩形.显然,10×10的正方形和10×(n -10)的矩形均可分割为1×5的矩形,而(n -10)×(n -10)的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.问题解决:如何将边长为n (n ≥5,且n 为整数)的正方形分割为一些1×5或2×3的矩形?请按照上面的方法画出分割示意图,并加以说明.实际应用:如何将边长为61的正方形分割为一些1×5或2×3的矩形?(只需按照探究三的方法画出分割示意图即可)24.(本小题满分12分)已知:如图,在矩形ABCD 中,AB =6cm ,BC =8cm ,对角线AC ,BD 交于点O .点P 从点A 出发,沿AD 方向匀速运动,速度为1cm/s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1cm/s ;当一个点停止运动时,另一个点也停止运动.连接PO 并延长,交BC 于点E ,过点Q 作QF ∥AC ,交BD 于点F .设运动时间为t (s )(0<t <6),解答下列问题:(1)当t 为何值时,△AOP 是等腰三角形?(2)设五边形OECQF 的面积为S (cm 2),试确定S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使S 五边形OECQF ∶S △ACD =9∶16?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使OD 平分∠COP ?若存在,求出t 的值;若不存在,请说明理由.AB CDOEPQ F(第24题)。
山东省青岛市2016年中考模拟数学试题含答案
青岛市二〇一六年中考数学模拟试题( 考试时间:120分钟,满分:120分 )本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分;第Ⅱ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分。
要求所有题目均在答题卡上做答,在本卷上作答无效。
第Ⅰ卷一、选择题(本题满分24分,共有8小题,每小题3分)1.下列四个数中,最小的数是( )A .∣2-∣B .0C .∣1∣D .3- 2.下面的几何体中,主视图不是..矩形的是( ) A . B . C . D .3.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学计数法表示为A .110.510⨯千克.B .95010⨯千克.C .9510⨯千克.D . 10510⨯千克.4.若两⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是( ) A. 点A 在圆外 B. 点A 在圆上C. 点A 在圆内D. 不能确定5. 某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )工资(元) 2000 2200 2400 2600 人数(人)1342A .2400元、2400元B .2400元、2300元C .2200元、2200元D .2200元、2300元 6. 在如图所示的单位正方形网格中,△ABC 经过平移后 得到△A 1B 1C 1,已知在AC 上一点P (2.4,2)平移后的 对应点为P 1,点P 1绕点O 逆时针旋转180°,得到对应点 P 2,则P 2点的坐标为( )A .(1.4,﹣1)B .(1.5,2)C .(2.4,1)D .(1.6,1)7. 如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2<B .x 3<C .3x 2> D .x 3>8.如图,在矩形OABC 中,AB=2BC ,点A 在y 轴的 正半轴上,点C 在x 轴的正半轴上,连接OB ,反比例 函数y=(k ≠0,x >0)的图象经过OB 的中点D ,与 BC 边交于点E ,点E 的横坐标是4,则k 的值是( ) A .1B .2C .3D .4第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分) 9.计算:(-1)2-|4×(2013-π)0+(31)-1= . 10.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%,②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是 . 11.2013年4月20日8时,四川省芦山县发生7.0级地震,青岛市派出抢险救灾工程队赶芦山支援,工程队承担了2400米道路抢修任务,为了让救灾人员和物资尽快运抵灾区,实际施工速度比原计划每小时多修40米,结果提前2小时完成,求原计划每小时抢修道路多少米?设原计划每小时抢修道路x 米,则根据题意列出的方程是 .12. 如图 ,⊙O 是正方形 ABCD 的外接圆,点 P 在⊙O 上, 则∠APB = .13.如图,把Rt △ABC 绕点A 逆时针旋转40°,得到Rt △AB ′C ′, 点C ′恰好落在边AB 上,连接BB ′,则∠BB ′C ′= 度. 第7题图14.如图,△ABC 是斜边AB 的长为3的等腰直角三角形,在△ABC 内作第1个内接正方形A 1B 1D 1E 1(D 1、E 1在AB 上,A 1、B 1分别在AC 、BC 上),再在△A 1B 1C 内接同样的方法作第2个内接正方形A 2B 2D 2E 2,…如此下去,操作n 次,则第n 个小正方形A n B n D n E n 的边长是 .三、作图题(本题满分4分)要求:用圆规、直尺作图,不写作法,但要保留作图痕迹. 15.如图花坛△ABC 为一等边三角形,现要将其扩建为一圆形 花坛覆盖在△ABC 上,且使A 、B 、C 依然在花坛的边缘上。
2016年山东省青岛市中考数学试卷-答案
【解析】A .不是轴对称图形.是中心对称图形,故此选项错误;B .是轴对称图形,又是中心对称图形,故此选项正确;C .是轴对称图形,不是中心对称图形,故此选项错误;D .不是轴对称图形,不是中心对称图形,故此选项错误,故选:B .【提示】根据轴对称图形与中心对称图形的概念求解.【考点】中心对称图形,轴对称图形4.【答案】D【解析】原式66643a a a -=-=【提示】首先利用同底数幂的乘法运算法则以及结合积的乘方运算法则分别化简求出答案.【考点】整式的运算5.【答案】A【解析】由题意可得线段AB 向左平移2个单位,向上平移了3个单位,则()2,3P a b -+,故选A .【提示】根据点A 、B 平移后横纵坐标的变化可得线段AB 向左平移2个单位,向上平移了3个单位,然后再确定a 、b 的值,进而可得答案.【考点】图形的平移6.【答案】A【解析】原来的平均车速为x km/h ,则根据题意可列方程为:()1801801150%x x-=+,故选A . 【提示】直接利用在A ,B 两地间行驶的长途客车平均车速提高了50%,而从A 地到B 地的时间缩短了1h ,是O 的直径,∴,BCD ∠=62=︒,故答案为【提示】根据直径所对的圆周角是直角得到90=︒,求出【解析】=5CE ,.F 为DF =90BCD ∠︒,CF ∴213EF ==2213512-=,四边形为BD 的中点,,PQ OP=无盖柱形盒子的容积1 2⨯【考点】剪纸问题,等边三角形的性质的运用,勾股定理,三角函数三、解答题15.【答案】①作ACB∠的平分线CD,②在CD上截取CO a=,③作OM CA⊥于E,以O为圆心,OE长为半径作圆;如图所示,O即为所求.(2)112589xx x+⎧≤⎪⎨⎪-<⎩①②∴共有6种情况,积大于2的有3种,()31262P∴==积大于,∴这个游戏对双方是公平的.【解析】作BF AE⊥于点F,则BF DE=.BFsinAB BAF∠CDB中,tan∠tan BD CBD ∠CD BF +=19.【答案】(1)a =7,b =7.5,c =4.2(2)选择乙参加比赛.【解析】(1)甲的平均成绩5162+74+82+9171+2+4+2+1a ⨯+⨯⨯⨯⨯==, 乙射击的成绩从小到大从新排列为:3,4,6,7,7,8,8,8,9,10,∴乙射击成绩的中位数787.5b +==, (2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.【提示】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;(2)令0y =,即2+20x x -=,10x ∴=,22x =,1025∴÷=, ∴最多可以连续绘制5个这样的拋物线型图案.【考点】二次函数图象及其性质21.【答案】(1)证明:四边形ABCD 是平行四边形,AB CD ∴=,BAE DCF ∠=∠,在ABE △和CDF △中,,,,AB CD BAE DCF AE CF =⎧⎪∠=∠⎨⎪=⎩()SAS ABE CDF ∴≅△△.(2)四边形BEDF 是菱形.理由如下:如图所示,∵四边形ABCD 是平行四边形,,,,,AD BC AD BC AE CF DE BF ∴==∴=∥∴四边形BEDF 是平行四边形,,,,OB OD DG BG EF BD ∴==∴⊥∴四边形BEDF 是菱形.【提示】(1)由平行四边形的性质得出AB CD =,BAE DCF ∠=∠,由SAS 证明ABE CDF ≅△△即可; (2)由平行四边形的性质得出过点AB BC ∥,AD BC =证出DE BF =,得出四边形BEDF 是平行四边形,得出OB OD =,再由等腰三角形的三线合一性质得出EF BD ⊥,即可得出四边形BEDF 是菱形.【考点】平行四边形的性质,全等三角形的判定与性质(4)固定成本至少是24元,销售单价最低为230元.(3)当30Q =时,320y =,由可知2860y x =-+,270y ∴=,即销售单价为270元.3012709∴= (4)9600400,24400y Q Q ≤≥≥若,即,固定成本至少是24元,4002860x ≥-+,解得230x ≥,即销售单价最低为230元.【提示】(1)解设出方程组,把x ,y 代入解方程组即可.(2)观察函数表可知两个变量的乘积为定值,所以固定成本Q (元)与月产销量y (个)之间存在反比例函数关系,由此即可解决问题.(3)求出销售价即可解决问题.(4)9600400,24400y Q Q ≤≥≥若,即,固定成本至少是24元,4002860x ≥-+,解得230x ≥,即销售单价最低为230元.【考点】二次函数的应用,待定系数法求一次函数解析式23.【答案】边长为18,19的正方形分割示意图,如图所示,问题解决:若510n ≤<时,如探究一.若10n ≥,设5n a b =+,其中ab 为正整数,5n a b =+,则图形如图所示,均可将正方形分割为一个55a a ⨯的正方形、一个b b ⨯的正方形和两个5a b ⨯的矩形.显然,55a a ⨯的正方形和5a b ⨯的矩形均可分割为15⨯的矩形,而b b ⨯的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些15⨯或23⨯的矩形即可. 问题解决:边长为61的正方形分割为一些15⨯或23⨯的矩形,如图所示,【解析】边长为18,19的正方形分割示意图,如图所示,问题解决:若510n ≤<时,如探究一.若10n ≥,设5n a b =+,其中ab 为正整数,5n a b =+,则图形如图所示,均可将正方形分割为一个55a a ⨯的正方形、一个b b ⨯的正方形和两个5a b ⨯的矩形.显然,55a a ⨯的正方形和5a b ⨯的矩形均可分割为15⨯的矩形,而b b ⨯的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些15⨯或23⨯的矩形即可.问题解决:边长为61的正方形分割为一些15⨯或23⨯的矩形,如图所示,【提示】先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题,由此把要解决问题转化为已经解决的问题,即可解决问题.【考点】四边形综合题24.【答案】(1)在矩形ABCD 中,6cm AB =,8cm BC =,10AC ∴=,①当AP PO t ==时,如图1,2PMA APM AP AM AC AD ∠=∴∴=△(2)S 与t 的函数关系式为21312S t t =-++ ACD S =)在矩形过P 作PM AO ⊥,15,22,,AM AO PMA ADC APM ADC AP AM AP AC AD ∴==∠=∠=∴~∴=∴△△在APO △与CEO △中,,,,PAO ECO AO OC AOP COE ∠=∠⎧⎪=⎨⎪∠=∠⎩AOP COE ∴△≌△,CE AP t ∴==,CEH ABC △∽△,=3=,524=,5EH CE AB ACt EH AD CD DN AC ∴∴=, QM DN ∥,CQM CDN ∴△∽△,QM CQ DN CD ∴=,即62465QM t -=,2445t QM -∴=,242444555t t DG -∴=-=, FQ AC ∥,DFQ DOC ∴△∽△,FQ DG OC DN∴=, 56t FQ ∴=, OEC OECQF OCQF S S S ∴=+△五形四形边边13152445525265t t t -⎛⎫=⨯⨯++ ⎪⎝⎭2131232t t =-++, ∴S 与t 的函数关系式为()213120632S t t t =-++<<.(3)存在.6824ACD S =⨯⨯=△,()212249:16ACD OECQF S S t t ∴=++=△五形:-:边, 解得 4.5t =,0t =(不合题意,舍去),99:162ACD OECQF t S S ∴==△五形,:边时 (4)如图3,过D 作DM AC M DN AC N ⊥⊥于,于,()222222,24,57,5•3,85,5185,581882585,55,POD COD DM DN OM ON OP DM PD OP t PM t PD PM DM t t ∠=∠∴==∴===∴=-∴=-=+⎛⎫⎛⎫∴-=-+ ⎪ ⎪⎝⎭⎝⎭解得:16t ≈(不合题意,舍去), 2.87t ≈, 2.87t ∴=时OD 平分COP ∠.【考点】矩形的性质,等腰三角形的判顶,二次函数的综合应用。
2016年山东省青岛市中考数学试卷
数学试卷 第1页(共8页) 数学试卷 第2页(共8页)绝密★启用前山东省青岛市2016年初中学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.( )A.B.CD .52.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg 的煤所产生的能量.把130000000kg 用科学记数法可表示为( )A .71310kg ⨯B .80.1310kg ⨯C .71.310kg ⨯D .81.310kg ⨯ 3.下列四个图形中,既是轴对称图形又是中心对称图形的是()ABC D4.计算5322a a a -()的结果为( )A .652a a -B .6a -C .654a a -D .63a -5.如图,线段AB 经过平移得到线段A B '',其中点A ,B 的对应点分别为点A ',B ',这四个点都在格点上.若线段AB 上有一个点(,)P a b ,则点P 在A B ''上的对应点P '的坐标为( )A .(2,3)a b -+B .(2,3)a b --C .(2,3)a b ++D .(2,3)a b +-6.A ,B 两地相距180km ,新修的高速公路开通后,在A ,B 两地间行驶的长途客车平均车速提高了50%,而从A 地到B 地的时间缩短了1h .若设原来的平均车速为km/h x ,则根据题意可列方程为( )A .1801801(150)x x -=+%B .1801801(150)x x -=+%C .1801801(150)x x -=-%D .1801801(150)x x-=-%7.如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120,AB 长为25cm ,贴纸部分的宽BD 为15cm ,若纸扇两面贴纸,则贴纸的面积为( ) A .2175πcmB .2350πcmC .2πcm 8003D .2150πcm 8.分析表格中的数据,估计方程288260x +-=()的一个正数解x 的大致范围为( )A .20.520.6x <<B .20.620.7x <<C .20.720.8x <<D .20.820.9x <<第Ⅱ卷(非选择题 共96分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 9.= .10.“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有 名.11.如图,AB 是O 的直径,C ,D 是O 上的两点,若28BCD =∠,则ABD =∠ .毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共8页) 数学试卷 第4页(共8页)12.已知二次函数23y x c =+与正比例函数4y x =的图象只有一个交点,则c 的值为 .13.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,5CE =,F 为DE 的中点.若CEF △的周长为18,则OF 的长为 .14.如图,以边长为20cm 的正三角形纸板的各顶点为端点,在各边上分别截取4cm 长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虚线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为 3cm .三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分4分) 已知:线段a 及ACB ∠.求作:O ,使O 在ACB ∠的内部,CO a =,且O 与ACB ∠的两边分别相切.16.(本小题满分8分)(1)化简:21411x xx x +---;(2)解不等式组11,2589,x x x +⎧⎪⎨⎪-⎩①②≤<并写出它的整数解.17.(本小题满分6分)小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形,转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.18.(本小题满分6分)如图,AB 是长为10m ,倾斜角为37的自动扶梯,平台BD 与大楼CE 垂直,且与扶梯AB 的长度相等,在B 处测得大楼顶部C 的仰角为65,求大楼CE 的高度(结果保留整数).(参考数据:sin3735≈,tan3734≈,sin 65910≈,tan 65157≈)19.(本小题满分6分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:(1)写出表格中a ,b ,c 的值;(2)分别运用上表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?数学试卷 第5页(共8页) 数学试卷 第6页(共8页)20.(本小题满分8分)如图,需在一面墙上绘制几个相同的抛物线型图案,按照图中的直角坐标系,最左边的抛物线可以用2(0)y ax bx a =+≠表示.已知抛物线上B ,C 两点到地面的距离均为3m 4,到墙边OA 的距离分别为12m ,32m . (1)求该抛物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m ,则最多可以连续绘制几个这样的抛物线型图案?21.(本小题满分8分)已知:如图,在□ABCD 中,E ,F 分别是边AD ,BC 上的点,且AE CF =,直线EF 分别交BA 的延长线、DC 的延长线于点G ,H ,交BD 于点O . (1)求证:ABE CDF △≌△;(2)连接DG ,若DG BG =,则四边形BEDF 是什么特殊四边形?请说明理由.22.(本小题满分10分)某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q (元)与月产销量y (个)(1)写出月产销量y (个)与销售单价x (元)之间的函数关系式;(2)求每个玩具的固定成本Q (元)与月产销量y (个)之间的函数关系式;(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?23.(本小题满分10分)问题提出:如何将边长为n (5n ≥,且n 为整数)的正方形分割为一些15⨯或23⨯的矩形(a b ⨯的矩形指边长分别为a ,b 的矩形)?问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.探究一:如图1,当=5n 时,可将正方形分割为五个15⨯的矩形. 如图2,当=6n 时,可将正方形分割为六个23⨯的矩形.如图3,当=7n 时,可将正方形分割为五个15⨯的矩形和四个23⨯的矩形. 如图4,当=8n 时,可将正方形分割为八个15⨯的矩形和四个23⨯的矩形.如图5,当=9n 时,可将正方形分割为九个15⨯的矩形和六个23⨯的矩形.数学试卷 第7页(共8页) 数学试卷 第8页(共8页)探究二:当=10n ,11,12,13,14时,分别将正方形按下列方式分割:所以,当=10n ,11,12,13,14时,均可将正方形分割为一个55⨯的正方形,一个())5(5n n -⨯-的正方形和两个55()n ⨯-的矩形.显然,55⨯的正方形和55()n ⨯-的矩形均可分割为15⨯的矩形,而())55(n n -⨯-的正方形是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些15⨯或23⨯的矩形. 探究三:当=15n ,16,17,18,19时,分别将正方形按下列方式分割:请按照上面的方法,分别画出边长为18,19的正方形分割示意图.所以,当=15n ,16,17,18,19时,均可将正方形分割为一个1010⨯的正方形、一个)()1010(n n -⨯-的正方形和两个01()10n ⨯-的矩形.显然,1010⨯的正方形和01()10n ⨯-的矩形均可分割为15⨯的矩形,而())1010(n n -⨯-的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些15⨯或23⨯的矩形. 问题解决:如何将边长为n (5n ≥,且n 为整数)的正方形分割为一些15⨯或23⨯的矩形?请按照上面的方法画出分割示意图,并加以说明.实际应用:如何将边长为61的正方形分割为一些15⨯或23⨯的矩形?(只需按照探究三的方法画出分割示意图即可)24.(本小题满分12分)已知:如图,在矩形ABCD 中,6cm AB =,8cm BC =,对角线AC ,BD 交于点O .点P 从点A 出发,沿AD 方向匀速运动,速度为1cm/s ;同时,点Q 从点D 出发,沿DC方向匀速运动,速度为1cm/s ;当一个点停止运动时,另一个点也停止运动.连接PO 并延长,交BC 于点E ,过点Q 作QF AC ∥,交BD 于点F ,设运动时间为06()()t s t <<,解答下列问题:(1)当t 为何值时,AOP △是等腰三角形?(2)设五边形OECQF 的面积为2()cm S ,试确定S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻,使916ACD OECQF S S =△五边形::?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使OD 平分COP ∠?若存在,求出t 的值;若不存在,请说明理由.。
2016年山东青岛高级中等学校招生考试数学试卷
青岛市二○一六年初中学业水平考试数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共24分)一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.-( )B.-C.D.5A.-52.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000 kg的煤所产生的能量.把130 000 000 kg用科学记数法可表示为( )A.13×107kgB.0.13×108kgC.1.3×107kgD.1.3×108kg3.下列四个图形中,既是轴对称图形又是中心对称图形的是( )4.计算a·a5-(2a3)2的结果为( )A.a6-2a5B.-a6C.a6-4a5D.-3a65.如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A'B'上的对应点P'的坐标为( )A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)6.A,B两地相距180 km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1 h.若设原来的平均车速为x km/h,则根据题意可列方程为( )A.180x -180(1+50%)x=1 B.180(1+50%)x-180x=1C.180x -180(1-50%)x=1 D.180(1-50%)x-180x=17.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25 cm,贴纸部分的宽BD为15 cm,若纸扇两面贴纸,则贴纸的面积为( )A.175π cm2B.350π cm2C.8003π cm2 D.150π cm28.输入一组数据,按下列程序进行计算,输出结果如下表:输出-13.75 -8.04 -2.31 3.44 9.21分析表格中的数据,估计方程(x+8)2-826=0的一个正数解x的大致范围为( ) A.20.5<x<20.6 B.20.6<x<20.7C.20.7<x<20.8D.20.8<x<20.9第Ⅱ卷(非选择题,共96分)二、填空题(本题满分18分,共有6道小题,每小题3分)9.计算:32-8= .210.“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12 000名参与者,则估计其中选择红色运动衫的约有名.11.如图,AB是☉O的直径,C,D是☉O上的两点,若∠BCD=28°,则∠ABD= °.12.已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为.13.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.14.如图,以边长为20 cm的正三角形纸板的各顶点为端点,在各边上分别截取4 cm长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虚线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为cm3.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.已知:线段a及∠ACB.求作:☉O,使☉O在∠ACB的内部,CO=a,且☉O与∠ACB的两边分别相切.四、解答题(本题满分74分,共有9道小题)16.(本小题满分8分,每题4分)(1)化简:x+1x-1-4x x2-1;(2)解不等式组x+12≤1,①5x-8<9x,②并写出它的整数解.17.(本小题满分6分)小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.18.(本小题满分6分)如图,AB是长为10 m,倾斜角为37°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).参考数据:sin 37°≈35,tan 37°≈34,sin 65°≈910,tan 65°≈15719.(本小题满分6分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a,b,c的值;(2)分别运用上表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?20.(本小题满分8分)如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为34 m,到墙边OA的距离分别为12m,32m.(1)求该抛物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10 m,则最多可以连续绘制几个这样的抛物线型图案?21.(本小题满分8分)已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.22.(本小题满分10分)某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:(1)写出月产销量y(个)与销售单价x(元)之间的函数关系式;(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?23.(本小题满分10分)问题提出:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5或2×3的矩形(a×b的矩形指边长分别为a,b的矩形)?问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题. 探究一:如图①,当n=5时,可将正方形分割为五个1×5的矩形.如图②,当n=6时,可将正方形分割为六个2×3的矩形.如图③,当n=7时,可将正方形分割为五个1×5的矩形和四个2×3的矩形.如图④,当n=8时,可将正方形分割为八个1×5的矩形和四个2×3的矩形.如图⑤,当n=9时,可将正方形分割为九个1×5的矩形和六个2×3的矩形.探究二:当n=10,11,12,13,14时,分别将正方形按下列方式分割:所以,当n=10,11,12,13,14时,均可将正方形分割为一个5×5的正方形、一个(n-5)×(n-5)的正方形和两个5×(n-5)的矩形.显然,5×5的正方形和5×(n-5)的矩形均可分割为1×5的矩形,而(n-5)×(n-5)的正方形是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.探究三:当n=15,16,17,18,19时,分别将正方形按下列方式分割:请按照上面的方法,分别画出边长为18,19的正方形分割示意图.所以,当n=15,16,17,18,19时,均可将正方形分割为一个10×10的正方形、一个(n-10)×(n-10)的正方形和两个10×(n-10)的矩形.显然,10×10的正方形和10×(n-10)的矩形均可分割为1×5的矩形,而(n-10)×(n-10)的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.问题解决:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5或2×3的矩形?请按照上面的方法画出分割示意图,并加以说明.实际应用:如何将边长为61的正方形分割为一些1×5或2×3的矩形?(只需按照探究三的方法画出分割示意图即可)24.(本小题满分12分)已知:如图,在矩形ABCD中,AB=6 cm,BC=8 cm,对角线AC,BD交于点O.点P 从点A出发,沿AD方向匀速运动,速度为1 cm/s;同时,点Q从点D出发,沿DC 方向匀速运动,速度为1 cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形OECQF∶S△ACD=9∶16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.答案全解全析:一、选择题1.C 根据一个负数的绝对值是它的相反数知,|- ,故选C.2.D 130 000 000 kg=1.3×100 000 000 kg=1.3×108 kg,故选D.3.B 选项A 中的图形是中心对称图形,不是轴对称图形;选项B 中的图形是中心对称图形,也是轴对称图形;选项C 中的图形是轴对称图形,不是中心对称图形;选项D 中的图形既不是中心对称图形,也不是轴对称图形.所以选B.4.D a ·a 5-(2a 3)2=a 6-4a 6=-3a 6,故选D.5.A 线段AB 向左平移2个长度单位,再向上平移3个长度单位得到线段A'B',由此可知线段AB 上的点P(a,b)的对应点P'的坐标为(a-2,b+3),故选A.评析 在平面直角坐标系中,点的平移与其坐标变化的关系是:“上加下减,右加左减”,即点向上(或下)平移a 个单位长度,则纵坐标加a(或减a);点向右(或左)平移b 个单位长度,则横坐标加b(或减b).6.A 原来的平均车速为x km/h,则新修的高速公路开通后的车速为(1+50%)x km/h,原来的行驶时间为180xh,现在的行驶时间为180(1+50%)x h,则有180x-180(1+50%)x =1,故选A.7.B ∵AB=25 cm,BD=15 cm,∴AD=25-15=10 cm,∵S 扇形BAC =120π×252360=625π3(cm 2),S 扇形DAE =120π×102360=100π3(cm 2),∴贴纸的面积为2×625π3-100π3=350π(cm 2),故选B.8.C 根据程序及输出结果可知当x=20.7时,(x+8)2-826=-2.31<0,当x=20.8时,(x+8)2-826=3.44>0,∴(x+8)2-826=0的一个正数解x 的大致范围为20.7<x<20.8,故选C. 二、填空题 9.答案 2解析 原式=4 2-2 2 2= 22=2,故答案为2.10.答案 2 400解析 ∵选择红色运动衫的参与者占总体的百分比为100%-40%-22%-18%=20%,∴估计其中选择红色运动衫的约有12 000×20%=2 400名. 11.答案 62解析 ∵AB 是☉O 的直径,∴∠ACB=90°.∵∠BCD=28°, ∴∠ACD=90°-28°=62°,∴∠ABD=∠ACD=62°. 12.答案43解析 ∵二次函数y=3x 2+c 与正比例函数y=4x 的图象只有一个交点,∴一元二次方程3x 2+c=4x,即3x 2-4x+c=0有两个相等的实数根,则有(-4)2-4×3c=0,解得c=43. 13.答案72解析 ∵四边形ABCD 是正方形,∴BO=DO,BC=CD,∠BCD=90°.在Rt △DCE 中,∵F 为DE 的中点,∴CF=12DE=EF=DF.∵△CEF 的周长为18,∴CE+CF+EF=18,又∵CE=5,∴CF+EF=18-5=13,∴DE=DF+EF=13,∴DC= 132-52=12,∴BC=12,∴BE=12-5=7.在△BDE 中,∵BO=DO,F 为DE 的中点,∴OF 为△BDE 的中位线,∴OF=12BE=72. 14.答案 144解析 如图,在Rt △ABC 中,AC=4,∠BAC=12×60°=30°,∴BC=AC ·tan 30°=4× 33=4 33,易得CD=20-2×4=12,四边形BCDE 是矩形,∴BE=12,又△BEF 为等边三角形, ∴S △BEF = 34×122=36 3, ∴盒子的容积为36 3×4 33=144 cm 3.三、作图题15.解析如图所示.(3分)☉O即为所求.(4分)四、解答题16.解析(1)原式=(x+1)2x2-1-4xx2-1=(x-1)2(x+1)(x-1)=x-1x+1.(4分)(2)由①,得x≤1,由②,得x>-2,∴-2<x≤1,∴不等式组的整数解为x=-1,0,1.(8分) 17.解析这个游戏对双方公平.理由:∴P(小明胜)=36=12,P(小亮胜)=36=12.∴P(小明胜)=P(小亮胜),∴游戏对双方公平.(6分)18.解析过B作BF⊥AE于F,在Rt△ABF中,sin 37°=BFAB,∴BF 10≈35,∴BF≈6.∵∠BFE=∠BDE=∠DEF=90°, ∴四边形BFED是矩形.∴BF=DE=6.在Rt△BCD中,tan 65°=CDBD,∴CD 10≈157,∴CD≈1507.∴CE=CD+DE=1507+6≈27.答:楼高CE约为27米.(6分)19.解析(1)a=7,b=7.5,c=4.2.(3分)(2)根据题表中数据可知,甲和乙的平均成绩相等,乙的中位数大于甲的中位数,乙的众数大于甲的众数,说明乙的成绩好于甲的成绩,虽然乙的方差大于甲的方差,但乙的成绩呈上升趋势,故应选乙队员.(合理即可,答案不唯一)(6分)20.解析(1)由题意可知,B12,34,C32,34,代入y=ax2+bx得:14a+12b=34,94a+32b=34,解得a=-1,b=2.∴y=-x2+2x=-(x-1)2+1.答:该抛物线的函数关系式是y=-x2+2x,图案最高点到地面的距离是1 m.(5分) (2)当y=0时,-x2+2x=0,∴x1=0,x2=2,∴10÷2=5(个).答:最多可以连续绘制5个抛物线型图案.(8分)21.解析(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAD=∠DCB.又∵AE=CF,∴△ABE≌△CDF.(4分)(2)菱形.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD-AE=BC-CF,即ED=BF,∴四边形BEDF是平行四边形,∴OB=OD.又∵DG=BG,∴OG⊥BD.∴▱BEDF是菱形.(8分)22.解析(1)y=300+2(280-x)=-2x+860.答:函数关系式为y=-2x+860.(2分)(2)根据题意猜想函数关系式为Q=k(k≠0),y把y=200,Q=48代入函数关系式,得k200=48,∴k=9 600,∴Q=9600y.经验证:(160,60),(240,40),(300,32)均在函数图象上,∴函数关系式为Q=9600y.(5分)(3)∵Q=9600y,y=-2x+860,∴Q=9600-2x+860.当Q=30时,9600-2x+860=30,解得x=270,经检验,x=270是原方程的根.∴Q x =30270=19.答:每个玩具的固定成本占销售单价的19.(7分)(4)当y=400时,Q=9600400=24.∵k=9 600>0,∴Q随y的增大而减小.∴当y≤400时,Q≥24.又∵y≤400,即-2x+860≤400,∴x≥230.答:每个玩具的固定成本至少为24元,销售单价最低为230元.(10分)23.解析探究三:(2分)问题解决:当正方形的边长为n(n≥5,且n为整数)时,按下图方式,均可将正方形分割为一个5m×5m的正方形、一个(n-5m)×(n-5m)的正方形和两个5m×(n-5m)的矩形.显然,5m×5m的正方形和5m×(n-5m)的矩形均可分割为1×5的矩形,而(n-5m)×(n-5m)的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.(8分)实际应用:(10分) 评析本题属于实验操作题,解题的关键是认真阅读所给材料,从中发现规律,并能利用所学知识对其进行解释和说明,然后应用规律解决实际问题.24.解析(1)在Rt△ABC中,根据勾股定理,得AC=2+82=10.AC=5.∴OA=12当△AOP是等腰三角形时,①若AP=AO,则t=5;②若AO=PO,则P与D重合,∴t=8;③若AP=PO,如图,过P 作PG ⊥AO 于G,则AG=12AO=52.∵∠AGP=∠ADC=90°,∠PAG=∠CAD,∴△APG ∽△ACD, ∴AP AC =AGAD ,即t10=528,∴t=258. ∵0<t<6, ∴t=258或5.即当t=258s 或5 s 时,△AOP 是等腰三角形.(3分)(2)如图,过O 作OH ⊥BC 于H,过O 作OI ⊥DC 于I.∵OB=OC,OH ⊥BC,∴BH=CH, 又∵OB=OD,∴OH 是△BDC 的中位线, ∴OH=12DC=3,同理,OI=4.易证△POA ≌△EOC,∴AP=CE=t, ∴BE=8-t.易证△DFQ ∽△DOC,∴S△DFQ S△DOC= DQ DC2, 即S△DFQ12×6×4= t 6 2,∴S △DFQ =13t 2.∴S=S △BDC -S △BOE -S △DFQ =12×6×8-12(8-t)×3-13t 2 =-13t 2+32t+12.答:S 与t 的函数关系式是S=-13t 2+32t+12.(6分)(3)存在.若S五边形OECQF∶S△ACD=9∶16,则-13t2+32t+12=916×12×6×8.即2t2-9t+9=0,解得t1=3,t2=32.∴当t=32s或3 s时,S五边形OECQF∶S△ACD=9∶16.(9分)(4)存在.若OD平分∠COP,如图,过D作DJ⊥OC于J,作DK⊥OP于K,过P作PL⊥BC于L,则DJ=DK.∵S△ACD=12DC·AD=12AC·DJ,∴DJ=6×810=24 5,即DK=DJ=245.易证△PDK∽△EPL,∴DKPL =DP PE,即2456=8-tPE,∴PE=10-54t,在Rt△PLE中,PE2=PL2+LE2,∴10-54t2=62+(8-2t)2,即39t2-112t=0,∴t1=0(舍去),t2=11239.∴当t=11239s时,OD平分∠COP.(12分)评析 1.对于动点问题,往往存在多种可能的情形,故需要分类求解;2.对于不规则图形的面积问题,往往转化为规则图形面积的和或差求解;3.存在性问题的求解思路:先对结论作出肯定的假设,然后由这个假设出发,结合已有条件或挖掘隐含条件,利用方程思想、数形结合思想和分类讨论思想等进行正确地计算、推理,再对得出的结果进行分析,检验其是否与题设、公理、定理等矛盾.若无矛盾,说明结论正确,由此得出符合条件的数学对象存在;否则,说明符合条件的数学对象不存在.。
2016年山东省青岛市中考数学试卷及答案
2016年山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.﹣的绝对值是()A.﹣B.﹣C.D.52.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg3.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a65.如图,线段AB经过平移得到线段A1B1,其中点A,B的对应点分别为点A1,B1,这四个点都在格点上.若线段AB上有一个点P(a,b),则点户在A1B1上的对应点P的坐标为()A.(a﹣2,b+3) B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)6.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=17.如图,一扇形纸扇完全打开后,外侧两竹条和AC的夹角为120°,长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2 D.150πcm28.输入一组数据,按下列程序进行计算,输出结果如表:x 20.5 20.6 20.7 20.8 20.9输出﹣13.75 ﹣8.04 ﹣2.31 3.44 9.21分析表格中的数据,估计方程(x+8)2﹣826=0的一个正数解x的大致范围为()A.20.5<x<20.6 B.20.6<x<20.7 C.20.7<x<20.8 D.20.8<x<20.9二、填空题(本题满分18分,共有6道小题,每小题3分)9.计算:=.10.“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有2400名.11.如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD=°.12.已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为.13.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.14.如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为cm3.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.四、解答题(本题满分74分,共有9道小题)16.(1)化简:﹣(2)解不等式组,并写出它的整数解.17.小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.18.如图,AB是长为10m,倾斜角为37°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).(参考数据:sin37°≈,tan37°≈,sin65°≈,tan65°≈)19.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲 a 7 7 1.2乙7 b 8 c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?20.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为m,到墙边似的距离分别为m,m.(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?21.已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点0.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什幺特殊四边形?请说明理由.22.某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:月产销量y(个)…160 200 240 300 …每个玩具的固定成本Q(元)…60 48 40 32 …(1)写出月产销量y(个)与销售单价x (元)之间的函数关系式;(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?23.问题提出:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1x5或2×3的矩形(axb 的矩形指边长分别为a,b的矩形)?问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.探究一:如图①,当n=5时,可将正方形分割为五个1×5的矩形.如图②,当n=6时,可将正方形分割为六个2×3的矩形.如图③,当n=7时,可将正方形分割为五个1×5的矩形和四个2×3的矩形如图④,当n=8时,可将正方形分割为八个1×5的矩形和四个2×3的矩形如图⑤,当n=9时,可将正方形分割为九个1×5的矩形和六个2×3的矩形探究二:当n=10,11,12,13,14时,分别将正方形按下列方式分割:所以,当n=10,11,12,13,14时,均可将正方形分割为一个5×5的正方形、一个(n﹣5 )×(n﹣5 )的正方形和两个5×(n﹣5)的矩形.显然,5×5的正方形和5×(n﹣5)的矩形均可分割为1×5的矩形,而(n﹣5)×(n﹣5)的正方形是边长分别为5,6,7,8,9 的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.探究三:当n=15,16,17,18,19时,分别将正方形按下列方式分割:请按照上面的方法,分别画出边长为18,19的正方形分割示意图.所以,当n=15,16,17,18,19时,均可将正方形分割为一个10×10的正方形、一个(n ﹣10 )×(n﹣10)的正方形和两个10×(n﹣10)的矩形.显然,10×10的正方形和10×(n ﹣10)的矩形均可分割为1x5的矩形,而(n﹣10)×(n﹣10)的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.问题解决:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5或2×3的矩形?请按照上面的方法画出分割示意图,并加以说明.实际应用:如何将边长为61的正方形分割为一些1×5或2×3的矩形?(只需按照探究三的方法画出分割示意图即可)24.已知:如图,在矩形ABCD中,Ab=6cm,BC=8cm,对角线AC,BD交于点0.点P 从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S:S△ACD=9:16?若存五边形OECQF在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.2016年山东省青岛市中考数学试卷参考答案与试题解析一、选择题1.【考点】实数的性质.【分析】直接利用绝对值的定义分析得出答案.【解答】解:|﹣|=.故选:C.2.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:130 000 000kg=1.3×108kg.故选:D.3.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形.是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,不是中心对称图形,故此选项错误.故选:B.4.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】首先利用同底数幂的乘法运算法则以及结合积的乘方运算法则分别化简求出答案.【解答】解:原式=a6﹣4a6=﹣3a6.故选:D.5.【考点】坐标与图形变化-平移.【分析】根据点A、B平移后横纵坐标的变化可得线段AB向左平移2个单位,向上平移了3个单位,然后再确定a、b的值,进而可得答案.【解答】解:由题意可得线段AB向左平移2个单位,向上平移了3个单位,则P(a﹣2,b+3)故选A.6.【考点】由实际问题抽象出分式方程.【分析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.【解答】解:设原来的平均车速为xkm/h,则根据题意可列方程为:﹣=1.故选:A.7.【考点】扇形面积的计算.【分析】贴纸部分的面积等于扇形ABC减去小扇形的面积,已知圆心角的度数为120°,扇形的半径为25cm和10cm,可根据扇形的面积公式求出贴纸部分的面积.【解答】解:∵AB=25,BD=15,∴AD=10,∴S=﹣贴纸=175πcm2,故选A.8.【考点】估算一元二次方程的近似解.【分析】根据表格中的数据,可以知道(x+8)2﹣826的值,从而可以判断当(x+8)2﹣826=0时,x的所在的范围,本题得以解决.【解答】解:由表格可知,当x=20.7时,(x+8)2﹣826=﹣2.31,当x=20.8时,(x+8)2﹣826=3.44,故(x+8)2﹣826=0时,20.7<x<20.8,故选C.二、填空题(本题满分18分,共有6道小题,每小题3分)9.【考点】二次根式的混合运算.【分析】首先化简二次根式,进而求出答案.【解答】解:原式===2.故答案为:2.10.【考点】扇形统计图;用样本估计总体.【分析】根据样本中选择红色运动衫的人数占总数的百分比,据此可估计总体中选择红色运动衫的人数占总数的百分比近似相等,列式计算即可.【解答】解:若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有12000×20%=2400(名),故答案为:2400.11.【考点】圆周角定理.【分析】根据直径所对的圆周角是直角得到∠ACB=90°,求出∠BCD,根据圆周角定理解答即可.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BCD=28°,∴∠ACD=62°,由圆周角定理得,∠ABD=∠ACD=62°,故答案为:62.12.【考点】根的判别式.【分析】将一次函数解析式代入到二次函数解析式中,得出关于x的一元二次方程,由两函数图象只有一个交点可得知该方程有两个相同的实数根,结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.【解答】解:将正比例函数y=4x代入到二次函数y=3x2+c中,得:4x=3x2+c,即3x2﹣4x+c=0.∵两函数图象只有一个交点,∴方程3x2﹣4x+c=0有两个相等的实数根,∴△=(﹣4)2﹣4×3c=0,解得:c=.故答案为:.13.【考点】正方形的性质;直角三角形斜边上的中线;勾股定理;三角形中位线定理.【分析】先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论.【解答】解:∵CE=5,△CEF的周长为18,∴CF+EF=18﹣5=13.∵F为DE的中点,∴DF=EF.∵∠BCD=90°,∴CF=DE,∴EF=CF=DE=6.5,∴DE=2EF=13,∴CD===12.∵四边形ABCD是正方形,∴BC=CD=12,O为BD的中点,∴OF是△BDE的中位线,∴OF=(BC﹣CE)=(12﹣5)=.故答案为:.14.【考点】剪纸问题.【分析】由题意得出△ABC为等边三角形,△OPQ为等边三角形,得出∠A=∠B=∠C=60°,AB=BC=AC.∠POQ=60°,连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,得出OD=AD=2cm,AD=OD=2cm,同理:BE=AD=2cm,求出PQ、QM,无盖柱形盒子的容积=底面积×高,即可得出结果.【解答】解:如图,由题意得:△ABC为等边三角形,△OPQ为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC,∠POQ=60°,∴∠ADO=∠AKO=90°.连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,∴OD=AD=2cm,∴AD=OD=2cm,同理:BE=AD=2cm,∴PQ=DE=20﹣2×2=20﹣4(cm),∴QM=OP•sin60°=(20﹣4)×=10﹣6,(cm),∴无盖柱形盒子的容积=×(20﹣4)(10﹣6)×4=448﹣480(cm3);故答案为:448﹣480.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.【考点】作图—复杂作图.【分析】首先作出∠ACB的平分线CD,再截取CO=a得出圆心O,作OE⊥CA,由角平分线的性质和切线的判定作出圆即可.【解答】解:①作∠ACB的平分线CD,②在CD上截取CO=a,③作OE⊥CA于E,以O我圆心,OE长为半径作圆;如图所示:⊙O即为所求.四、解答题(本题满分74分,共有9道小题)16.【考点】分式的加减法;解一元一次不等式组;一元一次不等式组的整数解.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,确定出整数解即可.【解答】解:(1)原式=﹣==;(2),由①得:x≤1,由②得:x≤,则不等式组的解集为x≤1,则不等式组的整数解为{x∈Z|x≤1}.17.【考点】游戏公平性.【分析】首先依据题先用列表法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可.【解答】解:这个游戏对双方是公平的.列表得:∴一共有6种情况,积大于2的有3种,∴P(积大于2)==,∴这个游戏对双方是公平的.18.【考点】解直角三角形的应用-仰角俯角问题.【分析】作BF⊥AE于点F.则BF=DE,在直角△ABF中利用三角函数求得BF的长,在直角△CDB中利用三角函数求得CD的长,则CE即可求得.【解答】解:作BF⊥AE于点F.则BF=DE.在直角△ABF中,sin∠BAF=,则BF=AB•sin∠BAF=10×=6(m).在直角△CDB中,tan∠CBD=,则CD=BD•tan65°=10×≈27(m).则CE=DE+CD=BF+CD=6+27=33(m).答:大楼CE的高度是33m.19.【考点】方差;条形统计图;折线统计图;中位数;众数.【分析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;(2)结合平均数和中位数、众数、方差三方面的特点进行分析.【解答】解:(1)甲的平均成绩a==7(环),∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b==7.5(环),其方差c=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.20.【考点】二次函数的应用.【分析】(1)根据题意求得B(,),C(,),解方程组求得拋物线的函数关系式为y=﹣x2+2x;根据抛物线的顶点坐标公式得到结果;(2)令y=0,即﹣x2+2x=0,解方程得到x1=0,x2=2,即可得到结论.【解答】解:(1)根据题意得:B(,),C(,),把B,C代入y=ax2+bx得,解得:,∴拋物线的函数关系式为y=﹣x2+2x;∴图案最高点到地面的距离==1;(2)令y=0,即﹣x2+2x=0,∴x1=0,x2=2,∴10÷2=5,∴最多可以连续绘制5个这样的拋物线型图案.21.【考点】平行四边形的性质;全等三角形的判定与性质.(1)由平行四边形的性质得出AB=CD,∠BAE=∠DCF,由SAS证明△ABE≌△CDF 【分析】即可;(2)由平行四边形的性质得出AD∥BC,AD=BC,证出DE=BF,得出四边形BEDF是平行四边形,得出OB=OD,再由等腰三角形的三线合一性质得出EF⊥BD,即可得出四边形BEDF是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:四边形BEDF是菱形;理由如下:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OB=OD,∵DG=BG,∴EF⊥BD,∴四边形BEDF是菱形.22.【考点】二次函数的应用;待定系数法求一次函数解析式.【分析】(1)设y=kx+b,把,代入解方程组即可.(2)观察函数表可知两个变量的乘积为定值,所以固定成本Q(元)与月产销量y(个)之间存在反比例函数关系,不妨设Q=,由此即可解决问题.(3)求出销售价即可解决问题.(4)根据条件分别列出不等式即可解决问题.【解答】解;(1)由于销售单价每降低1元,每月可多售出2个,所以月产销量y(个)与销售单价x (元)之间存在一次函数关系,不妨设y=kx+b,则,满足函数关系式,得解得,产销量y(个)与销售单价x (元)之间的函数关系式为y=﹣2x+860.(2)观察函数表可知两个变量的乘积为定值,所以固定成本Q(元)与月产销量y(个)之间存在反比例函数关系,不妨设Q=,将Q=60,y=160代入得到m=9600,此时Q=.(3)当Q=30时,y=320,由(1)可知y=﹣2x+860,所以y=270,即销售单价为270元,由于=,∴成本占销售价的.(4)若y≤400,则Q≥,即Q≥24,固定成本至少是24元,400≥﹣2x+860,解得x≥230,即销售单价最底为230元.23.【考点】四边形综合题.【分析】先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题,由此把要解决问题转化为已经解决的问题,即可解决问题.【解答】解:探究三:边长为18,19的正方形分割示意图,如图所示,问题解决:若5≤n<10时,如探究一.若n≥10,设n=5a+b,其中a、b为正整数,5≤b<10,则图形如图所示,均可将正方形分割为一个5a×5a的正方形、一个b×b的正方形和两个5a×b的矩形.显然,5a×5a的正方形和5a×b的矩形均可分割为1x5的矩形,而b×b的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形即可.问题解决:边长为61的正方形分割为一些1×5或2×3的矩形,如图所示,.24.【考点】四边形综合题.【分析】(1)根据矩形的性质和勾股定理得到AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,根据相似三角形的性质得到AP=t=,②当AP=AO=t=5,于是得到结论;(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,根据全等三角形的性质得到CE=AP=t,根据相似三角形的性质得到EH=,根据相似三角形的性质得到QM=,FQ=,根据图形的面积即可得到结论,(3)根据题意列方程得到t=,t=0,(不合题意,舍去),于是得到结论;(4)由角平分线的性质得到DM=DN=,根据勾股定理得到ON=OM==,由三角形的面积公式得到OP=5﹣t,根据勾股定理列方程即可得到结论.【解答】解:(1)∵在矩形ABCD中,Ab=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,∴AM=AO=,∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ADC,∴,∴AP=t=,②当AP=AO=t=5,∴当t为或5时,△AOP是等腰三角形;(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,在△APO与△CEO中,,∴△AOP≌△COE,∴CE=AP=t,∵△CEH∽△ABC,∴,∴EH=,∵DN==,∵QM∥DN,∴△CQM∽△CDN,∴,即,∴QM=,∴DG=﹣=,∵FQ∥AC,∴△DFQ∽△DOC,∴,∴FQ=,∴S五边形OECQF =S△OEC+S四边形OCQF=×5×+(+5)•=﹣t2+t+12,∴S与t的函数关系式为S=﹣t2+t+12;(3)存在,∵S△ACD=×6×8=24,∴S:S△ACD=(﹣t2+t+12):24=9:16,五边形OECQF解得t=,t=0,(不合题意,舍去),∴t=时,S五边形S:S△ACD=9:16;五边形OECQF(4)如图3,过D作DM⊥AC于M,DN⊥AC于N,∵∠POD=∠COD,∴DM=DN=,∴ON=OM==,∵OP•DM=3PD,∴OP=5﹣t,∴PM=﹣t,∵PD2=PM2+DM2,∴(8﹣t)2=(﹣t)2+()2,解得:t≈15(不合题意,舍去),t≈2.88,∴当t=2.88时,OD平分∠COP.。
2016年山东省青岛市市北区中考数学一模试卷(解析版)
2016年山东省青岛市市北区中考数学一模试卷(解析版)DA.0个B.1个C.2个D.3个4.据研究,一种H7N9病毒直径为30纳米(1纳米=10﹣9米).下列用科学记数法表示这个病毒直径的大小,正确的是()A.30×10﹣9米B.3.0×10﹣8米C.3.0×10﹣10米D.0.3×10﹣7米5.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若,则∠C等于()A.15°B.30°C.45°D.60°6.当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有()个.①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.A.1 B.2 C.3 D.47.如图,在△ABC为等边三角形,P为BC上一点,△APQ为等边三角形,PQ与AC相交于点M,则下列结论中正确的是()①AB∥CQ;②∠ACQ=60°;③AP2=AM•AC;④若BP=PC,则PQ⊥AC.A.只有①②B.只有①③C.只有①②③D.①②③④8.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A. B.C.D.二、填空题:(本题满分18分,共有6道小题,每小题3分)9.计算:=______.10.在一个不透明的口袋中装有5个白球和n个黄球,它们出颜色外完全相同,若从中随机摸出一球,摸到白球的概率为,则n的值是______.11.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为______.12.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为______.13.如图,线段AB与⊙O相切于点C,连接OA、OB,OB交⊙O于点D,已知OA=OB=3cm,AB=3cm,则图中阴影部分的面积为______.14.将n+1个腰长为1的等腰直角三角形,按如图所示放在同一直线上.设阴影部分△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,B n+1D n C n的面积为S n,则S2=______;S n=______.(用含n 的式子表示)三、解答题(本大题共10小题,满分78分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a.求做:Rt△ABC,使∠A=90°,AB=AC=a.结论:______.16.(1)化简:(2)解不等式组:.17.某餐厅为了吸引顾客,举行吃套餐优惠活动,套餐每套20元,每消费一套即可直接获得10元餐劵,或者参与游戏赢得餐劵.游戏规则如下:设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),顾客每消费一套套餐,就可以获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵,下次就餐时可以代替现金消费.(1)求顾客任意转动一次转盘的平均收益是多少;(2)如果你是餐厅经理,你希望顾客参与游戏还是直接获得10元餐劵?请说明理由.18.某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛,在最近的10次选拔赛中,这两个人的跳远成绩(单位:cm)如图所示,请根据图中信息,解答下列问题:(1)通过计算,补充完成下面的统计分析表.运动员平均数众数中位数方差甲601.8 600 600 50.56乙599.3 ______ ______ 284.21 (2)请依据对上述统计信息的数据分析,说明这两名运动员的成绩各有什么特点?19.某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)20.某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:进价(元/千售价(元/千克)克)苹果 5 8丑桔9 13(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?21.如图,在△ABC中,AD是BC边上的中线,过点A作AF∥BC,且AF=BC,连接BF、BF,线段BF与AD相交于点E.(1)求证:E是AD的中点;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.22.某公园有一个抛物线形状的观景拱桥ACB,其横截面如图所示,量得该拱桥占地面最宽处AB=20米,最高处点C距地面5米(即OC=5米)(1)分别以AB、OC所在直线为x轴、y轴,建立如图所示的平面直角坐标系,求该抛物线的解析式;(2)夜晚,公园沿着抛物线ACB用彩灯勾勒拱桥的形状;现公园管理处打算在观景拱桥ABC 的横截面前放置一个长为10米的矩形广告牌EFMN,为安全起见,要求广告牌高拱桥的桥面至少0.35米,求矩形广告牌的最大高度,并说明理由.23.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.理由:连接AH,EH.∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.∵DH⊥AE∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED∴△ADH∽______.∴=,即DH2=AD×DE.又∵DE=DC∴DH2=______.即正方形DFGH与矩形ABCD等积.(2)类比思考平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的______(填写图形各称),再转化为等积的正方形.如图②,△ABC的顶点在正方形网格的格点上,请用尺规或借助作出与△ABC等积的正方形的一条边.(不要求写具体作法,但要保留作图痕迹)(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为n﹣1边形,…,直至转化为等积三角形,从而可以化方.如图③,四边形ABCD的顶点在正方形网格的格点上,请用尺规或借助网格作出与四边形ABCD等积的三角形(不要求写具体作法,但要保留作图痕迹).24.已知:如图,在平行四边形ABCD中,AB=10cm,BC=12cm,对角线AC=10cm,点P 从点C出发沿着边CB向点B匀速运动,速度为每秒1个单位:同时,点Q从点B开始沿着边AB向点A匀速运动,到达A点后立刻以原来的速度沿AB返回,点Q的速度为每秒1个单位,过P点与AB平行的直线交线段AD于点E,交AC于点F,连接PQ,设运动时间为t(s).(1)当0<t<10时,设四边形AQPE的面积为y(cm2),求y与t之间的函数关系式;(2)当0<t<10时,是否存在某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半?若存在,求出t的值;若不存在,请说明理由;(3)当0<t<10时,是否存在某一时刻t,使PQ⊥PE?若存在,求出t的值;不存在,请说明理由;(4)当0<t<12时,是否存在某一时刻t,使线段PQ的垂直平分线恰好经过点B?存在,请直接给出相应的t值;若不存在,请说明理由.2016年山东省青岛市市北区中考数学一模试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.的绝对值是()A.﹣6 B.6 C.﹣D.【考点】绝对值.【分析】根据计算绝对值的方法可以得到的绝对值,本题得以解决.【解答】解:∵,∴的绝对值是,故选D.2.如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形统计图,(两图都不完整),则下列结论中正确的是()A.步行人数为30人 B.骑车人数占总人数的10%C.该班总人数为50人 D.乘车人数是骑车人数的40%【考点】频数(率)分布直方图;扇形统计图.【分析】根据乘车的人数和所占的百分比求出总人数,用总人数乘以步行所占的百分比求出步行的人数,用骑车的人数除以总人数求出骑车人数占总人数的百分比,用乘车的人数除以骑车人数,求出乘车人数是骑车人数的倍数.【解答】解:A、步行的人数有:×30%=15人,故本选项错误;B、骑车人数占总人数10÷=20%,故本选项错误;C、该班总人数为=50人,故本选项正确;D、乘车人数是骑车人数的=2.5倍,故本选项错误;故选:C.3.下列四个图形能围成棱柱的有几个()A.0个B.1个C.2个D.3个【考点】展开图折叠成几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:第一个图形缺少一个面,不能围成棱柱;第三个图形折叠后底面重合,不能折成棱柱;第二个图形,第四个图形都能围成四棱柱;故选:C.4.据研究,一种H7N9病毒直径为30纳米(1纳米=10﹣9米).下列用科学记数法表示这个病毒直径的大小,正确的是()A.30×10﹣9米B.3.0×10﹣8米C.3.0×10﹣10米D.0.3×10﹣7米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:由题意可得:30×10﹣9=3.0×10﹣8.故选:B.5.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若,则∠C等于()A.15°B.30°C.45°D.60°【考点】切线的性质;含30度角的直角三角形.【分析】连接OB,构造直角△ABO,结合已知条件推知直角△ABO的直角边OB等于斜边OA 的一半,则∠A=30°.【解答】解:如图,连接OB.∵AB与⊙O相切于点B,∴∠ABO=90°.∵OB=OC,,∴∠C=∠OBC,OB=OA,∴∠A=30°,∴∠AOB=60°,则∠C+∠OBC=60°,∴∠C=30°.故选B.6.当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有()个.①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.A.1 B.2 C.3 D.4【考点】二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.【分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k<0时,在每一个象限内,y随自变量x增大而增大,二次函数根据对称轴及开口方向判断增减性.【解答】解:①为一次函数,且a>0时,函数值y总是随自变量x增大而增大;②为一次函数,且a<0时,函数值y总是随自变量x增大而减小;③为反比例函数,当x>0或者x<0时,函数值y随自变量x增大而增大,当﹣2<x<2时,就不能确定增减性了;④为二次函数,对称轴为x=﹣3,开口向上,故当﹣2<x<2时,函数值y随自变量x增大而增大,符合题意的是①④,故选B.7.如图,在△ABC为等边三角形,P为BC上一点,△APQ为等边三角形,PQ与AC相交于点M,则下列结论中正确的是()①AB∥CQ;②∠ACQ=60°;③AP2=AM•AC;④若BP=PC,则PQ⊥AC.A.只有①②B.只有①③C.只有①②③D.①②③④【考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.【分析】根据等边三角形性质得出AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,求出∠BAP=∠CAQ,根据SAS证△ABP≌△ACQ,推出∠ACQ=∠B=60°=∠BAC,根据平行线的判定推出即可,再根据等腰三角形性质求出∠BAP=30°,求出∠PMA=90°,即可得出答案.【解答】证明:如图,∵△ABC和△APQ是等边三角形,∴AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,∴∠BAP=∠CAQ=60°﹣∠PAC,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),∴∠ACQ=∠B=60°=∠BAC,故②正确,∴AB∥CQ,故①正确,∵∠APQ=∠ACQ=60°,∠PAC=∠PAC,∴△APM∽△ACP,∴,∴AP2=AC•AM,故③正确,∵BP=PC,∴∠BAP=30°,∴∠PAC=30°,∵∠APC=60°,∴∠AMP=90°,∴PQ⊥AC,故④正确.故选D.8.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A. B.C.D.【考点】二次函数图象与系数的关系;反比例函数的图象.【分析】首先观察抛物线y=ax2+bx+c图象,由抛物线的对称轴的位置由其开口方向,即可判定﹣b的正负,由抛物线与x轴的交点个数,即可判定﹣4ac+b2的正负,则可得到一次函数y=﹣bx ﹣4ac+b2的图象过第几象限,由当x=1时,y=a+b+c<0,即可得反比例函数y=过第几象限,继而求得答案.【解答】解:∵抛物线y=ax2+bx+c开口向上,∴a>0,∵抛物线y=ax2+bx+c的对称轴在y轴右侧,∴x=﹣>0,∴b<0,∴﹣b>0,∵抛物线y=ax2+bx+c的图象与x轴有两个交点,∴△=b2﹣4ac>0,∴一次函数y=﹣bx﹣4ac+b2的图象过第一、二、三象限;∵由函数图象可知,当x=1时,抛物线y=a+b+c <0,∴反比例函数y=的图象在第二、四象限.故选D.二、填空题:(本题满分18分,共有6道小题,每小题3分)9.计算:=﹣.【考点】二次根式的混合运算.【分析】先把各二次根式化为最简二次根式,然后把分子合并后进行二次根式的除法运算.【解答】解:原式===﹣.故答案为﹣.10.在一个不透明的口袋中装有5个白球和n个黄球,它们出颜色外完全相同,若从中随机摸出一球,摸到白球的概率为,则n的值是10.【考点】概率公式.【分析】根据摸到白球的概率为,列出方程求解即可.【解答】解:∵在一个不透明的布袋中装有5个白球和n个黄球,∴共有(5+n)个球,根据古典型概率公式知:P(白球)=,解得n=10.故答案为:10.11.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为.【考点】由实际问题抽象出分式方程.【分析】设原来的平均速度为x千米/时,列车大提速后平均速度为x+70千米/时,根据走过相同的距离时间缩短了3小时,列方程即可.【解答】解:设原来的平均速度为x千米/时,可得:,故答案为:12.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(﹣2a,﹣2b).【考点】位似变换.【分析】先找一对应点是如何变化,那么所求点也符合这个变化规律.【解答】解:小鱼最大鱼翅的顶端坐标为(5,3),大鱼对应点坐标为(﹣10,﹣6);小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(﹣2a,﹣2b).13.如图,线段AB与⊙O相切于点C,连接OA、OB,OB交⊙O于点D,已知OA=OB=3cm,AB=3cm,则图中阴影部分的面积为.【考点】扇形面积的计算;切线的性质.【分析】由AB为圆的切线,得到OC⊥AB,再由OA=OB,利用三线合一得到C为AB中点,且OC为角平分线,在直角三角形AOC中,利用30度所对的直角边等于斜边的一半求出OC 的长,利用勾股定理求出AC的长,进而确定出AB的长,求出∠AOB度数,阴影部分面积=三角形AOB面积﹣扇形AOB面积,求出即可.【解答】解:连接OC,∵AB与圆O相切,∴OC⊥AB,∵OA=OB,∴AC=BC=AB=,∴sin∠AOC==,∴∠AOC=60°,∴∠AOB=120°∴OC=OA=,∴S 阴影=S△AOB﹣S扇形=×3×﹣,故图中阴影部分的面积为,故答案为:.14.将n+1个腰长为1的等腰直角三角形,按如图所示放在同一直线上.设阴影部分△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,B n+1D n C n的面积为S n,则S2=;S n=.(用含n的式子表示)【考点】相似三角形的判定与性质;等腰直角三角形.【分析】连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1,依题意可知△B1C1B2是等腰直角三角形,知道△B1B2D1与△C1AD1相似,求出相似比,根据三角形面积公式可得出S1,同理:B2B3:AC2=1:2,所以B2D2:D2C2=1:2,进而S2的值可求出,同样的道理,即可求出S3,S4…S n 的值.【解答】解:∵n+1个边长为1的等腰三角形有一条边在同一直线上,∴S△AB1C1=×1×1=,连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1∵∠B1C1B2=90°∴A1B1∥B2C1∴△B1C1B2是等腰直角三角形,且边长=1,∴△B1B2D1∽△C1AD1,∴B1D1:D1C1=1:1,∴S1=×=,同理:B2B3:AC2=1:2,∴B2D2:D2C2=1:2,∴S2=×=,同理:B3B4:AC3=1:3,∴B3D3:D3C3=1:3,∴S3=×=,∴S4=×=,…∴S n=故答案为:;.三、解答题(本大题共10小题,满分78分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a.求做:Rt△ABC,使∠A=90°,AB=AC=a.结论:△ABC为等腰直角三角形.【考点】作图—复杂作图.【分析】先在一直线上截取AB=a,再过A作AB的垂线,接着在此垂线上截取AC=a,则△ABC满足条件.【解答】解:如图,△ABC为所作,△ABC为等腰直角三角形.故答案为△ABC为等腰直角三角形.16.(1)化简:(2)解不等式组:.【考点】分式的加减法;解一元一次不等式组.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)原式=+===;(2),由①得:x>,由②得:x≤3,则不等式组的解集为<x≤3.17.某餐厅为了吸引顾客,举行吃套餐优惠活动,套餐每套20元,每消费一套即可直接获得10元餐劵,或者参与游戏赢得餐劵.游戏规则如下:设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),顾客每消费一套套餐,就可以获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵,下次就餐时可以代替现金消费.(1)求顾客任意转动一次转盘的平均收益是多少;(2)如果你是餐厅经理,你希望顾客参与游戏还是直接获得10元餐劵?请说明理由.【考点】概率公式.【分析】(1)根据转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵得:顾客任意转动一次转盘的平均收益是×(20+15×2+10×3+5×6),再计算即可;(2)根据(1)的结果与10比较即可.【解答】解:(1)顾客任意转动一次转盘的平均收益是×(20+15×2+10×3+5×6)=(元),答:顾客任意转动一次转盘的平均收益是元;(2)∵<10,∴如果是餐厅经理,希望顾客参与游戏,这样能减少支出.18.某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛,在最近的10次选拔赛中,这两个人的跳远成绩(单位:cm)如图所示,请根据图中信息,解答下列问题:(1)通过计算,补充完成下面的统计分析表.运动员平均数众数中位数方差甲601.8 600 600 50.56乙599.3 618596.5284.21 (2)请依据对上述统计信息的数据分析,说明这两名运动员的成绩各有什么特点?【考点】折线统计图;中位数;众数;方差.【分析】(1)根据中位数、众数的概念求值即可;(2)答案不惟一,如:甲的成绩比较稳定,波动小;乙成绩不稳定,波动较大.【解答】解:(1)根据折线统计图知乙10次成绩从小到大依次排列为:574,580,585,590,595,598,613,618,618,624,则其众数为:618,中位数为:=596.5;(2)甲的平均水平和跳远在600及以上要优于乙且甲的方差小说明甲成绩比医德成绩稳定,乙跳远的最好成绩大于甲的最好成绩.故答案为:(1)618,596.5.19.某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)【考点】解直角三角形的应用.【分析】通过构造直角三角形来解答,过A作AD⊥MN于D,就有了∠ABN、∠ACN的度数,又已知AE的长,可在直角三角形ABE、ACE 中分别求出BE、CE的长,BC就能求出.【解答】解:如图,过A作AD⊥MN于点D,在Rt△ACD中,tan∠ACD==,CD=5.6(m),在Rt△ABD中,tan∠ABD==,BD=7(m),则BC=7﹣5.6=1.4(m).答:该车大灯照亮地面的宽度BC是1.4m.20.某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:进价(元/千售价(元/千克)克)苹果 5 8丑桔9 13(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?【考点】一元一次不等式的应用;一元一次方程的应用.【分析】(1)设购进苹果x千克,则购进丑桔千克,根据进货钱数=单价×数量,列出关于x的一元一次方程,解方程即可得出结论;(2)设购进苹果x千克时售完这批水果将获利y元,由丑桔的进货量不超过苹果进货量的3倍可列出关于x的一元一次不等式,解不等式可找出x的取值范围,再根据总利润=每千克利润×千克数可找出y关于x的函数关系式,根据函数的性质即可解决最值问题.【解答】解:(1)设购进苹果x千克,则购进丑桔千克,依题意得:5x+9=1000,解得:x=65,则140﹣65=75(千克),答:水果店购进苹果65千克,丑桔75千克.(2)设购进苹果x千克时售完这批水果将获利y元,由题意得:140﹣x≤3x,解得:x≥35.获得利润y=(8﹣5)x+(13﹣9)=﹣x+560.故当x=35时,y有最大值,最大值为525元.140﹣35=105(千克).答:购进苹果35千克,丑桔105千克时水果店在销售完这批水果时获利最多.21.如图,在△ABC中,AD是BC边上的中线,过点A作AF∥BC,且AF=BC,连接BF、BF,线段BF与AD相交于点E.(1)求证:E是AD的中点;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【考点】相似三角形的判定与性质;直角三角形斜边上的中线;平行四边形的判定与性质;菱形的判定.【分析】(1)先连接DF,判定四边形ABDF是平行四边形,再根据平行四边形的性质,得出DE=AE即可;(2)先判定四边形ADCF是平行四边形,再根据直角三角形的性质,得出AD=CD,最后判断四边形ADCF是菱形.【解答】(1)连接DF,∵AD是BC边上的中线,∴DB=BC,∵AF=BC,∴DB=AF,又∵AF∥BC,∴四边形ABDF是平行四边形,∴DE=AE即E是AD的中点;(2)四边形ADCF是菱形.∵AD是BC边上的中线,∴DC=BC,∵AF=BC,∴DC=AF,又∵AF∥BC,∴四边形ADCF是平行四边形,又∵AB⊥AC,AD是BC边上的中线,∴AD=BC=CD,∴四边形ADCF是菱形.22.某公园有一个抛物线形状的观景拱桥ACB,其横截面如图所示,量得该拱桥占地面最宽处AB=20米,最高处点C距地面5米(即OC=5米)(1)分别以AB、OC所在直线为x轴、y轴,建立如图所示的平面直角坐标系,求该抛物线的解析式;(2)夜晚,公园沿着抛物线ACB用彩灯勾勒拱桥的形状;现公园管理处打算在观景拱桥ABC 的横截面前放置一个长为10米的矩形广告牌EFMN,为安全起见,要求广告牌高拱桥的桥面至少0.35米,求矩形广告牌的最大高度,并说明理由.【考点】二次函数的应用.【分析】(1)根据题意可设抛物线解析式为y=ax2+c,将点C(0,5),点B(10,0)代入求得a、c的值即可求解;(2)令x=5求得y的值,将y的值减去0.35可得广告牌最大高度.【解答】解:(1)根据题意,设抛物线解析式为y=ax2+c,将点C(0,5),点B(10,0)代入,得:,解得:.故抛物线解析式为:y=﹣x2+5;(2)当x=5时,y=﹣×25+5=3.75(m),3.75﹣0.35=3.4(m).答:矩形广告牌的最大高度为3.4m.23.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.理由:连接AH,EH.∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.∵DH⊥AE∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED∴△ADH∽△HDE.∴=,即DH2=AD×DE.又∵DE=DC∴DH2=AD•DC.即正方形DFGH与矩形ABCD等积.(2)类比思考平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的▱ABDE(填写图形各称),再转化为等积的正方形.如图②,△ABC的顶点在正方形网格的格点上,请用尺规或借助作出与△ABC等积的正方形的一条边.(不要求写具体作法,但要保留作图痕迹)(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为n﹣1边形,…,直至转化为等积三角形,从而可以化方.如图③,四边形ABCD的顶点在正方形网格的格点上,请用尺规或借助网格作出与四边形ABCD等积的三角形(不要求写具体作法,但要保留作图痕迹).【考点】四边形综合题.【分析】(1)通过直角△ADH和直角△HDE中,∠AHD=∠HED证明△ADH∽△HDE,得DH2=AD×DE,再根据等量代换得出正方形DFGH与矩形ABCD等积;(3)作法:①作BC的中垂线,取BD中点,作▱ABDE;②过B作BF⊥AE,垂足为F,作矩形BDHF;③在直线AE在取BF=FM,以HM 为直径,以点F为圆心作半圆,与直线BF交于点G;④则线段FG就是所求的正方形的一边;(4)作法:①连接BD,②过A作l∥BD,③延长CD交l于E,④连接BE,则S△BEC=S四边形ABCD.【解答】解:(1)答案为:△HDE,AD•DC;(3)如图2,答案为:▱ABDE;(4)如图3,则△BEC的面积=四边形ABCD 的面积;24.已知:如图,在平行四边形ABCD中,AB=10cm,BC=12cm,对角线AC=10cm,点P 从点C出发沿着边CB向点B匀速运动,速度为每秒1个单位:同时,点Q从点B开始沿着边AB向点A匀速运动,到达A点后立刻以原来的速度沿AB返回,点Q的速度为每秒1个单位,过P点与AB平行的直线交线段AD于点E,交AC于点F,连接PQ,设运动时间为t(s).(1)当0<t<10时,设四边形AQPE的面积为y(cm2),求y与t之间的函数关系式;(2)当0<t<10时,是否存在某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半?若存在,求出t的值;若不存在,请说明理由;(3)当0<t<10时,是否存在某一时刻t,使PQ⊥PE?若存在,求出t的值;不存在,请说明理由;(4)当0<t<12时,是否存在某一时刻t,使线段PQ的垂直平分线恰好经过点B?存在,请直接给出相应的t值;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)利用相似三角形的判断和性质,表示出BQ=t,QH=t,PF=t,相似三角形的面积比等于相似比的平方,S△CPF=t2,从而y用三角形的面积的差表示出,即可;(2)假设存在,建立方程,求出方程的解,全不符合题意,得到不存在;(3)假设存在,建立方程,求出方程的解符合题意,即存在时间t,使PQ⊥PE;(4)假设存在,由线段PQ的垂直平分线恰好经过点B,得到BQ=BP,建立方程,求出t,即可.【解答】解:如图1,作AG⊥BC于G,作QH ⊥BC于H,∴QH∥AG,∴=,∵AG⊥BC,AB=AC=10,BC=12,∴BG=BC=×12=6,AG=8,∵BQ=t,∴=,∴QH=t,∵PE∥AB,∴=,∴=,∴PF=t,∵BC=12,AG=8,∴S△ABC=×BC×AG=48,(1)∵PE∥AB,∴=()2==,∴S△CPF=×S△ABC=×48=t2,∵BP=BC﹣PC=12﹣t,QH=t,∴S△BPQ=BP×QH=×(12﹣t)×t,∴y=S四边形AQPE=S△ABC﹣S△BPQ﹣S△CPF=48﹣×(12﹣t)×t﹣t2=﹣t2﹣t+48,(0<t<10)(2)解:假设存在某一时刻t,使四边形AQPE 的面积为平行四边形ABCD面积的一半,由(1)由S四边形AQPE=﹣t2﹣t+48,∴=﹣t2﹣t+48=48,∴t=0(舍)或t=﹣60(舍),∴假设不成立,∴不存在这样某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半;(3)解:假设存在某一时刻t,使PQ⊥PE,∵PE∥AB,∴∠BQP=90°,∴∠BQP=∠AGB,∠B=∠B,∴△BQP∽△BGA,∴,∵BG=6,BQ=t,BP=12﹣t,AB=10,∴=,∴t=,∴存在t=,使PQ⊥PE;(4)假设存在某一时刻t,使线段PQ的垂直平分线恰好经过点B,∴BQ=BP,当0<t<10时,∵BP=12﹣t,BQ=t,∴12﹣t=t,∴t=6,∴存在t=6,使线段PQ的垂直平分线恰好经过点B,当10≤t<12时,∵BQ=20﹣t,BP=12﹣t,∴20﹣t=12﹣t,明显等式不成立,∴不存在某一时刻t,使线段PQ的垂直平分线恰好经过点B,即:存在t=6,使线段PQ的垂直平分线恰好经过点B.。
2016山东省青岛市中考数学试卷(含答案解析)
2016年山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)﹣的绝对值是()A.﹣B.﹣C.D.52.(3分)我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3 ×108kg3.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6 C.a6﹣4a5D.﹣3a65.(3分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为()A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)6.(3分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=17.(3分)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm28.(3分)输入一组数据,按下列程序进行计算,输出结果如表:x20.520.620.720.820.9输出﹣13.75﹣8.04﹣2.31 3.449.21分析表格中的数据,估计方程(x+8)2﹣826=0的一个正数解x的大致范围为()A.20.5<x<20.6 B.20.6<x<20.7 C.20.7<x<20.8 D.20.8<x<20.9二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)计算:=.10.(3分)“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有名.11.(3分)如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD=°.12.(3分)已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c 的值为.13.(3分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.14.(3分)如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为cm3.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.四、解答题(本题满分74分,共有9道小题)16.(8分)(1)化简:﹣(2)解不等式组,并写出它的整数解.17.(6分)小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.18.(6分)如图,AB是长为10m,倾斜角为37°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).(参考数据:sin37°≈,tan37°≈,sin65°≈,tan65°≈)19.(6分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/中位数/环众数/环方差环甲a77 1.2乙7b8c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?20.(8分)如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C 两点到地面的距离均为m,到墙边OA的距离分别为m,m.(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?21.(8分)已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.22.(10分)某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:月产销量y(个)…160200240300…每个玩具的固定成本Q(元)…60484032…(1)写出月产销量y(个)与销售单价x (元)之间的函数关系式;(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?23.(10分)问题提出:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1x5或2×3的矩形(axb 的矩形指边长分别为a,b的矩形)?问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.探究一:如图①,当n=5时,可将正方形分割为五个1×5的矩形.如图②,当n=6时,可将正方形分割为六个2×3的矩形.如图③,当n=7时,可将正方形分割为五个1×5的矩形和四个2×3的矩形如图④,当n=8时,可将正方形分割为八个1×5的矩形和四个2×3的矩形如图⑤,当n=9时,可将正方形分割为九个1×5的矩形和六个2×3的矩形探究二:当n=10,11,12,13,14时,分别将正方形按下列方式分割:所以,当n=10,11,12,13,14时,均可将正方形分割为一个5×5的正方形、一个(n﹣5 )×(n﹣5 )的正方形和两个5×(n﹣5)的矩形.显然,5×5的正方形和5×(n﹣5)的矩形均可分割为1×5的矩形,而(n﹣5)×(n﹣5)的正方形是边长分别为5,6,7,8,9 的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.探究三:当n=15,16,17,18,19时,分别将正方形按下列方式分割:请按照上面的方法,分别画出边长为18,19的正方形分割示意图.所以,当n=15,16,17,18,19时,均可将正方形分割为一个10×10的正方形、一个(n﹣10 )×(n﹣10)的正方形和两个10×(n﹣10)的矩形.显然,10×10的正方形和10×(n﹣10)的矩形均可分割为1x5的矩形,而(n﹣10)×(n﹣10)的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.问题解决:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5或2×3的矩形?请按照上面的方法画出分割示意图,并加以说明.实际应用:如何将边长为61的正方形分割为一些1×5或2×3的矩形?(只需按照探究三的方法画出分割示意图即可)24.(12分)已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD 交于点0.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q 从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF :S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t 的值;若不存在,请说明理由.2016年山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)﹣的绝对值是()A.﹣B.﹣C.D.5【分析】直接利用绝对值的定义分析得出答案.【解答】解:|﹣|=.故选:C.【点评】此题主要考查了实数的性质,正确把握绝对值的性质是解题关键.2.(3分)我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:130 000 000kg=1.3×108kg.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形.是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,不是中心对称图形,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6 C.a6﹣4a5D.﹣3a6【分析】首先利用同底数幂的乘法运算法则以及结合积的乘方运算法则分别化简求出答案.【解答】解:原式=a6﹣4a6=﹣3a6.故选:D.【点评】此题主要考查了同底数幂的乘法运算法则以及积的乘方运算,正确掌握运算法则是解题关键.5.(3分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为()A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)【分析】根据点A、B平移后横纵坐标的变化可得线段AB向左平移2个单位,向上平移了3个单位,然后再确定a、b的值,进而可得答案.【解答】解:由题意可得线段AB向左平移2个单位,向上平移了3个单位,则P(a﹣2,b+3)故选A.【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.6.(3分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【分析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A 地到B地的时间缩短了1h,利用时间差值得出等式即可.【解答】解:设原来的平均车速为xkm/h,则根据题意可列方程为:﹣=1.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题关键.7.(3分)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm2【分析】贴纸部分的面积等于扇形ABC减去小扇形的面积,已知圆心角的度数为120°,扇形的半径为25cm和10cm,可根据扇形的面积公式求出贴纸部分的面积.【解答】解:∵AB=25,BD=15,∴AD=10,∴S=2×(﹣)贴纸=2×175π=350πcm2,故选B.【点评】本题主要考查扇形面积的计算的应用,解答本题的关键是熟练掌握扇形面积计算公式,此题难度一般.8.(3分)输入一组数据,按下列程序进行计算,输出结果如表:x20.520.620.720.820.9输出﹣13.75﹣8.04﹣2.31 3.449.21分析表格中的数据,估计方程(x+8)2﹣826=0的一个正数解x的大致范围为()A.20.5<x<20.6 B.20.6<x<20.7 C.20.7<x<20.8 D.20.8<x<20.9【分析】根据表格中的数据,可以知道(x+8)2﹣826的值,从而可以判断当(x+8)2﹣826=0时,x的所在的范围,本题得以解决.【解答】解:由表格可知,当x=20.7时,(x+8)2﹣826=﹣2.31,当x=20.8时,(x+8)2﹣826=3.44,故(x+8)2﹣826=0时,20.7<x<20.8,故选C.【点评】本题考查估算一元二次方程的近似解,解题的关键是明确题意,找出所求问题需要的条件.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)计算:=2.【分析】首先化简二次根式,进而求出答案.【解答】解:原式===2.故答案为:2.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.10.(3分)“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有2400名.【分析】根据样本中选择红色运动衫的人数占总数的百分比,据此可估计总体中选择红色运动衫的人数占总数的百分比近似相等,列式计算即可.【解答】解:若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有12000×20%=2400(名),故答案为:2400.【点评】本题主要考查扇形统计图及用样本估计总体,熟知样本中某一项目的百分比与总体中同一项目的百分比近似相等是解题的关键.11.(3分)如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD=62°.【分析】根据直径所对的圆周角是直角得到∠ACB=90°,求出∠BCD,根据圆周角定理解答即可.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BCD=28°,∴∠ACD=62°,由圆周角定理得,∠ABD=∠ACD=62°,故答案为:62.【点评】本题考查的是圆周角定理的应用,掌握直径所对的圆周角是直角、同弧或等弧所对的圆周角相等是解题的关键.12.(3分)已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c 的值为.【分析】将一次函数解析式代入到二次函数解析式中,得出关于x的一元二次方程,由两函数图象只有一个交点可得知该方程有两个相同的实数根,结合根的判别式即可得出关于c的一元一次方程,解方程即可得出结论.【解答】解:将正比例函数y=4x代入到二次函数y=3x2+c中,得:4x=3x2+c,即3x2﹣4x+c=0.∵两函数图象只有一个交点,∴方程3x2﹣4x+c=0有两个相等的实数根,∴△=(﹣4)2﹣4×3c=0,解得:c=.故答案为:.【点评】本题考查了根的判别式,解题的关键是根据函数图象的交点个数得出方程根的个数.本题属于基础题,难度不大,解决该题型题目时,根据函数交点的个数结合根的判别式得出不等式(或方程)是关键.13.(3分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.【分析】先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论.【解答】解:∵CE=5,△CEF的周长为18,∴CF+EF=18﹣5=13.∵F为DE的中点,∴DF=EF.∵∠BCD=90°,∴CF=DE,∴EF=CF=DE=6.5,∴DE=2EF=13,∴CD===12.∵四边形ABCD是正方形,∴BC=CD=12,O为BD的中点,∴OF是△BDE的中位线,∴OF=(BC﹣CE)=(12﹣5)=.故答案为:.【点评】本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中.14.(3分)如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为144cm3.【分析】由题意得出△ABC为等边三角形,△OPQ为等边三角形,得出∠A=∠B=∠C=60°,AB=BC=AC.∠POQ=60°,连结AO,作QM⊥OP于M,在Rt△AOD 中,∠OAD=∠OAK=30°,得出OD的长,求出OP,无盖柱形盒子的容积=底面积×高,即可得出结果.【解答】解:如图由题意得:△ABC为等边三角形,△OPQ为等边三角形,AD=AK=BE=BF=CG=CH=4cm,∴∠A=∠B=∠C=60°,AB=BC=AC,∠POQ=60°,∴∠ADO=∠AKO=90°.连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,∴OD=AD=cm,∵PQ=OP=DE=20﹣2×4=12(cm),∴QM=OP•sin60°=12×=6(cm),∴无盖柱形盒子的容积=×12×6×=144(cm3);故答案为:144.【点评】本题考查了等边三角形的性质的运用,勾股定理、三角函数等知识;熟练掌握等边三角形的性质,求出等边△OPQ的边长和高是解决问题的关键.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.【分析】首先作出∠ACB的平分线CD,再截取CO=a得出圆心O,作OE⊥CA,由角平分线的性质和切线的判定作出圆即可.【解答】解:①作∠ACB的平分线CD,②在CD上截取CO=a,③作OE⊥CA于E,以O为圆心,OE长为半径作圆;如图所示:⊙O即为所求.【点评】本题考查了作图﹣复杂作图、角平分线的性质、切线的判定;熟练掌握角平分线的作图,找出圆心O是解决问题的关键.四、解答题(本题满分74分,共有9道小题)16.(8分)(1)化简:﹣(2)解不等式组,并写出它的整数解.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,确定出整数解即可.【解答】解:(1)原式=﹣==;(2),由①得:x≤1,由②得:x>﹣2,则不等式组的解集为﹣2<x≤1,则不等式组的整数解为﹣1,0,1.【点评】此题考查了分式的加减法,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.17.(6分)小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.【分析】首先依据题先用列表法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可.【解答】解:这个游戏对双方是公平的.列表得:∴一共有6种情况,积大于2的有3种,∴P(积大于2)==,∴这个游戏对双方是公平的.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.18.(6分)如图,AB是长为10m,倾斜角为37°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).(参考数据:sin37°≈,tan37°≈,sin65°≈,tan65°≈)【分析】作BF⊥AE于点F.则BF=DE,在直角△ABF中利用三角函数求得BF的长,在直角△CDB中利用三角函数求得CD的长,则CE即可求得.【解答】解:作BF⊥AE于点F.则BF=DE.在直角△ABF中,sin∠BAF=,则BF=AB•sin∠BAF=10×=6(m).在直角△CDB中,tan∠CBD=,则CD=BD•tan65°=10×≈21(m).则CE=DE+CD=BF+CD=6+21=27(m).答:大楼CE的高度是27m.【点评】本题考查了解直角三角形的应用,解答本题关键是构造直角三角形,利用三角函数的知识表示出相关线段的长度.19.(6分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/中位数/环众数/环方差环甲a77 1.2乙7b8c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?【分析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;(2)结合平均数和中位数、众数、方差三方面的特点进行分析.【解答】解:(1)甲的平均成绩a==7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b==7.5(环),其方差c=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.【点评】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.20.(8分)如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C 两点到地面的距离均为m,到墙边OA的距离分别为m,m.(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?【分析】(1)根据题意求得B(,),C(,),解方程组求得拋物线的函数关系式为y=﹣x2+2x;根据抛物线的顶点坐标公式得到结果;(2)令y=0,即﹣x2+2x=0,解方程得到x1=0,x2=2,即可得到结论.【解答】解:(1)根据题意得:B(,),C(,),把B,C代入y=ax2+bx得,解得:,∴拋物线的函数关系式为y=﹣x2+2x;∴图案最高点到地面的距离==1;(2)令y=0,即﹣x2+2x=0,∴x1=0,x2=2,∴10÷2=5,∴最多可以连续绘制5个这样的拋物线型图案.【点评】本题考查了二次函数的应用,待定系数法求二次函数的解析式,正确的求出二次函数的解析式是解题的关键.21.(8分)已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.【分析】(1)由平行四边形的性质得出AB=CD,∠BAE=∠DCF,由SAS证明△ABE ≌△CDF即可;(2)由平行四边形的性质得出AD∥BC,AD=BC,证出DE=BF,得出四边形BEDF 是平行四边形,得出OB=OD,再由等腰三角形的三线合一性质得出EF⊥BD,即可得出四边形BEDF是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:四边形BEDF是菱形;理由如下:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OB=OD,∵DG=BG,∴EF⊥BD,∴四边形BEDF是菱形.【点评】此题考查了平行四边形的性质、全等三角形的判定与性质、菱形的判定.熟练掌握平行四边形的性质,证出四边形BEDF是平行四边形是解决问题(2)的关键.22.(10分)某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:月产销量y(个)…160200240300…每个玩具的固定成本Q(元)…60484032…(1)写出月产销量y(个)与销售单价x (元)之间的函数关系式;(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?【分析】(1)设y=kx+b,把(280,300),(279,302)代入解方程组即可.(2)观察函数表可知两个变量的乘积为定值,所以固定成本Q(元)与月产销量y(个)之间存在反比例函数关系,不妨设Q=,由此即可解决问题.(3)求出销售价即可解决问题.(4)根据条件分别列出不等式即可解决问题.【解答】解;(1)由于销售单价每降低1元,每月可多售出2个,所以月产销量y(个)与销售单价x (元)之间存在一次函数关系,不妨设y=kx+b,则(280,300),(279,302)满足函数关系式,得解得,产销量y(个)与销售单价x (元)之间的函数关系式为y=﹣2x+860.(2)观察函数表可知两个变量的乘积为定值,所以固定成本Q(元)与月产销量y(个)之间存在反比例函数关系,不妨设Q=,将Q=60,y=160代入得到m=9600,此时Q=.(3)当Q=30时,y=320,由(1)可知y=﹣2x+860,所以x=270,即销售单价为270元,由于=,∴成本占销售价的.(4)若y≤400,则Q≥,即Q≥24,固定成本至少是24元,400≥﹣2x+860,解得x≥230,即销售单价最低为230元.【点评】本题考查一次函数的应用、不等式,成本,销售价、销售量之间的关系,解题的关键是理解题意,灵活应用待定系数法解决问题,属于中考常考题型.23.(10分)问题提出:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1x5或2×3的矩形(axb 的矩形指边长分别为a,b的矩形)?问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.探究一:如图①,当n=5时,可将正方形分割为五个1×5的矩形.如图②,当n=6时,可将正方形分割为六个2×3的矩形.如图③,当n=7时,可将正方形分割为五个1×5的矩形和四个2×3的矩形如图④,当n=8时,可将正方形分割为八个1×5的矩形和四个2×3的矩形如图⑤,当n=9时,可将正方形分割为九个1×5的矩形和六个2×3的矩形探究二:当n=10,11,12,13,14时,分别将正方形按下列方式分割:。
2016年青岛中考数学试题及答案
2016年青岛中考数学试题及真题及答案2016年青岛市中考数学试题及真题及答案
一、选择题(每小题3分,共30分)
1. 已知集合
A={4,6},B={1,2,4,6},则A∩B=( A.1,2 B.4,6
C.4 D.1,2,4,5,6 )
答案:B.4,6
2. 下列说法正确的是( A.直线m∥x轴,则m=-1 B.若平面
m∥平面n,则m=-1 C.直线m与平面n垂直,则m∥n D.若直线
m∥x轴,则m⊥y轴 )
答案:A.直线m∥x轴,则m=-1
3. 已知抛物线y=2x2-6x+7的焦点坐标是( A.(3,4) B.(1,6) C.(3,6) D.(1,4) )
答案:C.(3,6)
4. 下列函数的图像大致为顺序连续的是( A.y=2x2+2 B.y
=-x2 C.y=-2x D.y=x4-4x2+2 )
答案:C.y=-2x
5. 大华站每天早上7点开动,从大华到九楼城历时40分钟,到
达时间为8:20。
中途停顿5分钟,则早上7点从九楼城出发可以在多少时间到达大华站?( A.7:42 B.7:45 C.7:40 D.7:38 )
答案:B.7:45
二、填空题(每小题3分,共15分)
6. 设角A的顶点为O,起点为A,终点为B,过A点作直线⊙,则角A的边长长度为OB=___________
答案:OB=2
7. 等差数列{an}中,若a3=2,a5=7,则a7=___________
答案:a7=12
8. 若角A的顶点是A,起点是B,终点是C,则角A的面积为___________
答案:1/2×AB×BC。
2016年山东省青岛市中考数学试卷(解析版)
2016年山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.﹣的绝对值是()A.﹣B.﹣C.D.52.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg3.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a65.如图,线段AB经过平移得到线段A1B1,其中点A,B的对应点分别为点A1,B1,这四个点都在格点上.若线段AB上有一个点P(a,b),则点户在A1B1上的对应点P的坐标为()A.(a﹣2,b+3) B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)6.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=17.如图,一扇形纸扇完全打开后,外侧两竹条和AC的夹角为120°,长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2 D.150πcm2分析表格中的数据,估计方程()﹣的一个正数解的大致范围为()A.20.5<x<20.6 B.20.6<x<20.7 C.20.7<x<20.8 D.20.8<x<20.9二、填空题(本题满分18分,共有6道小题,每小题3分)9.计算:=.10.“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有名.11.如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD=°.12.已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为.13.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF 的周长为18,则OF的长为.14.如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为cm3.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.四、解答题(本题满分74分,共有9道小题)16.(1)化简:﹣(2)解不等式组,并写出它的整数解.17.小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.18.如图,AB是长为10m,倾斜角为37°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B 处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).(参考数据:sin37°≈,tan37°≈,sin65°≈,tan65°≈)19.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?20.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为m,到墙边似的距离分别为m,m.(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?21.已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC 的延长线于点G,H,交BD于点0.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什幺特殊四边形?请说明理由.22.某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩Q y(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?23.问题提出:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1x5或2×3的矩形(axb 的矩形指边长分别为a,b的矩形)?问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.探究一:如图①,当n=5时,可将正方形分割为五个1×5的矩形.如图②,当n=6时,可将正方形分割为六个2×3的矩形.如图③,当n=7时,可将正方形分割为五个1×5的矩形和四个2×3的矩形如图④,当n=8时,可将正方形分割为八个1×5的矩形和四个2×3的矩形如图⑤,当n=9时,可将正方形分割为九个1×5的矩形和六个2×3的矩形探究二:当n=10,11,12,13,14时,分别将正方形按下列方式分割:所以,当n=10,11,12,13,14时,均可将正方形分割为一个5×5的正方形、一个(n﹣5 )×(n﹣5 )的正方形和两个5×(n﹣5)的矩形.显然,5×5的正方形和5×(n﹣5)的矩形均可分割为1×5的矩形,而(n﹣5)×(n ﹣5)的正方形是边长分别为5,6,7,8,9 的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.探究三:当n=15,16,17,18,19时,分别将正方形按下列方式分割:请按照上面的方法,分别画出边长为18,19的正方形分割示意图.所以,当n=15,16,17,18,19时,均可将正方形分割为一个10×10的正方形、一个(n﹣10 )×(n﹣10)的正方形和两个10×(n﹣10)的矩形.显然,10×10的正方形和10×(n﹣10)的矩形均可分割为1x5的矩形,而(n ﹣10)×(n﹣10)的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.问题解决:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5或2×3的矩形?请按照上面的方法画出分割示意图,并加以说明.实际应用:如何将边长为61的正方形分割为一些1×5或2×3的矩形?(只需按照探究三的方法画出分割示意图即可)24.已知:如图,在矩形ABCD中,Ab=6cm,BC=8cm,对角线AC,BD交于点0.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;:S△ACD=9:16?若存在,求出t的值;若不(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.2016年山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.﹣的绝对值是()A.﹣B.﹣C.D.5【考点】实数的性质.【分析】直接利用绝对值的定义分析得出答案.【解答】解:|﹣|=.故选:C.2.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:130 000 000kg=1.3×108kg.故选:D.3.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形.是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,不是中心对称图形,故此选项错误.故选:B.4.计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a6【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】首先利用同底数幂的乘法运算法则以及结合积的乘方运算法则分别化简求出答案.【解答】解:原式=a6﹣4a6=﹣3a6.故选:D.5.如图,线段AB经过平移得到线段A1B1,其中点A,B的对应点分别为点A1,B1,这四个点都在格点上.若线段AB上有一个点P(a,b),则点户在A1B1上的对应点P的坐标为()A.(a﹣2,b+3) B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)【考点】坐标与图形变化-平移.【分析】根据点A、B平移后横纵坐标的变化可得线段AB向左平移2个单位,向上平移了3个单位,然后再确定a、b的值,进而可得答案.【解答】解:由题意可得线段AB向左平移2个单位,向上平移了3个单位,则P(a﹣2,b+3)故选A.6.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【考点】由实际问题抽象出分式方程.【分析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.【解答】解:设原来的平均车速为xkm/h,则根据题意可列方程为:﹣=1.故选:A.7.如图,一扇形纸扇完全打开后,外侧两竹条和AC的夹角为120°,长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2 D.150πcm2【考点】扇形面积的计算.【分析】贴纸部分的面积等于扇形ABC减去小扇形的面积,已知圆心角的度数为120°,扇形的半径为25cm和10cm,可根据扇形的面积公式求出贴纸部分的面积.【解答】解:∵AB=25,BD=15,∴AD=10,=﹣∴S贴纸=175πcm2,故选A.分析表格中的数据,估计方程()﹣的一个正数解的大致范围为()A.20.5<x<20.6 B.20.6<x<20.7 C.20.7<x<20.8 D.20.8<x<20.9【考点】估算一元二次方程的近似解.【分析】根据表格中的数据,可以知道(x+8)2﹣826的值,从而可以判断当(x+8)2﹣826=0时,x的所在的范围,本题得以解决.【解答】解:由表格可知,当x=20.7时,(x+8)2﹣826=﹣2.31,当x=20.8时,(x+8)2﹣826=3.44,故(x+8)2﹣826=0时,20.7<x<20.8,故选C.二、填空题(本题满分18分,共有6道小题,每小题3分)9.计算:=2.【考点】二次根式的混合运算.【分析】首先化简二次根式,进而求出答案.【解答】解:原式===2.故答案为:2.10.“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有2400名.【考点】扇形统计图;用样本估计总体.【分析】根据样本中选择红色运动衫的人数占总数的百分比,据此可估计总体中选择红色运动衫的人数占总数的百分比近似相等,列式计算即可.【解答】解:若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有12000×20%=2400(名),故答案为:2400.11.如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD=62°.【考点】圆周角定理.【分析】根据直径所对的圆周角是直角得到∠ACB=90°,求出∠BCD,根据圆周角定理解答即可.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BCD=28°,∴∠ACD=62°,由圆周角定理得,∠ABD=∠ACD=62°,故答案为:62.12.已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为.【考点】根的判别式.【分析】将一次函数解析式代入到二次函数解析式中,得出关于x的一元二次方程,由两函数图象只有一个交点可得知该方程有两个相同的实数根,结合根的判别式即可得出关于c的一元一次方程,解方程即可得出结论.【解答】解:将正比例函数y=4x代入到二次函数y=3x2+c中,得:4x=3x2+c,即3x2﹣4x+c=0.∵两函数图象只有一个交点,∴方程3x2﹣4x+c=0有两个相等的实数根,∴△=(﹣4)2﹣4×3c=0,解得:c=.故答案为:.13.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.【考点】正方形的性质;直角三角形斜边上的中线;勾股定理;三角形中位线定理.【分析】先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论.【解答】解:∵CE=5,△CEF的周长为18,∴CF+EF=18﹣5=13.∵F为DE的中点,∴DF=EF.∵∠BCD=90°,∴CF=DE,∴EF=CF=DE=6.5,∴DE=2EF=13,∴CD===12.∵四边形ABCD是正方形,∴BC=CD=12,O为BD的中点,∴OF是△BDE的中位线,∴OF=(BC﹣CE)=(12﹣5)=.故答案为:.14.如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为448﹣480cm3.【考点】剪纸问题.【分析】由题意得出△ABC为等边三角形,△OPQ为等边三角形,得出∠A=∠B=∠C=60°,AB=BC=AC.∠POQ=60°,连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,得出OD=AD=2cm,AD=OD=2cm,同理:BE=AD=2cm,求出PQ、QM,无盖柱形盒子的容积=底面积×高,即可得出结果.【解答】解:如图,由题意得:△ABC为等边三角形,△OPQ为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC,∠POQ=60°,∴∠ADO=∠AKO=90°.连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,∴OD=AD=2cm,∴AD=OD=2cm,同理:BE=AD=2cm,∴PQ=DE=20﹣2×2=20﹣4(cm),∴QM=OP•sin60°=(20﹣4)×=10﹣6,(cm),∴无盖柱形盒子的容积=×(20﹣4)(10﹣6)×4=448﹣480(cm3);故答案为:448﹣480.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.【考点】作图—复杂作图.【分析】首先作出∠ACB的平分线CD,再截取CO=a得出圆心O,作OE⊥CA,由角平分线的性质和切线的判定作出圆即可.【解答】解:①作∠ACB的平分线CD,②在CD上截取CO=a,③作OE⊥CA于E,以O我圆心,OE长为半径作圆;如图所示:⊙O即为所求.四、解答题(本题满分74分,共有9道小题)16.(1)化简:﹣(2)解不等式组,并写出它的整数解.【考点】分式的加减法;解一元一次不等式组;一元一次不等式组的整数解.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,确定出整数解即可.【解答】解:(1)原式=﹣==;(2),由①得:x≤1,由②得:x≤,则不等式组的解集为x≤1,则不等式组的整数解为{x∈Z|x≤1}.17.小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.【考点】游戏公平性.【分析】首先依据题先用列表法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可.【解答】解:这个游戏对双方是公平的.列表得:∴一共有6种情况,积大于2的有3种,∴P(积大于2)==,∴这个游戏对双方是公平的.18.如图,AB是长为10m,倾斜角为37°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B 处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).(参考数据:sin37°≈,tan37°≈,sin65°≈,tan65°≈)【考点】解直角三角形的应用-仰角俯角问题.【分析】作BF⊥AE于点F.则BF=DE,在直角△ABF中利用三角函数求得BF的长,在直角△CDB中利用三角函数求得CD的长,则CE即可求得.【解答】解:作BF⊥AE于点F.则BF=DE.在直角△ABF中,sin∠BAF=,则BF=AB•sin∠BAF=10×=6(m).在直角△CDB中,tan∠CBD=,则CD=BD•tan65°=10×≈27(m).则CE=DE+CD=BF+CD=6+27=33(m).答:大楼CE的高度是33m.19.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?【考点】方差;条形统计图;折线统计图;中位数;众数.【分析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;(2)结合平均数和中位数、众数、方差三方面的特点进行分析.【解答】解:(1)甲的平均成绩a==7(环),∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b==7.5(环),其方差c=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.20.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为m,到墙边似的距离分别为m,m.(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?【考点】二次函数的应用.【分析】(1)根据题意求得B(,),C(,),解方程组求得拋物线的函数关系式为y=﹣x2+2x;根据抛物线的顶点坐标公式得到结果;(2)令y=0,即﹣x2+2x=0,解方程得到x1=0,x2=2,即可得到结论.【解答】解:(1)根据题意得:B(,),C(,),把B,C代入y=ax2+bx得,解得:,∴拋物线的函数关系式为y=﹣x2+2x;∴图案最高点到地面的距离==1;(2)令y=0,即﹣x2+2x=0,∴x1=0,x2=2,∴10÷2=5,∴最多可以连续绘制5个这样的拋物线型图案.21.已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC 的延长线于点G,H,交BD于点0.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什幺特殊四边形?请说明理由.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)由平行四边形的性质得出AB=CD,∠BAE=∠DCF,由SAS证明△ABE≌△CDF即可;(2)由平行四边形的性质得出AD∥BC,AD=BC,证出DE=BF,得出四边形BEDF是平行四边形,得出OB=OD,再由等腰三角形的三线合一性质得出EF⊥BD,即可得出四边形BEDF是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:四边形BEDF是菱形;理由如下:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OB=OD,∵DG=BG,∴EF⊥BD,∴四边形BEDF是菱形.22.某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?【考点】二次函数的应用;待定系数法求一次函数解析式.【分析】(1)设y=kx+b,把,代入解方程组即可.(2)观察函数表可知两个变量的乘积为定值,所以固定成本Q(元)与月产销量y(个)之间存在反比例函数关系,不妨设Q=,由此即可解决问题.(3)求出销售价即可解决问题.(4)根据条件分别列出不等式即可解决问题.【解答】解;(1)由于销售单价每降低1元,每月可多售出2个,所以月产销量y(个)与销售单价x (元)之间存在一次函数关系,不妨设y=kx+b,则,满足函数关系式,得解得,产销量y(个)与销售单价x (元)之间的函数关系式为y=﹣2x+860.(2)观察函数表可知两个变量的乘积为定值,所以固定成本Q(元)与月产销量y(个)之间存在反比例函数关系,不妨设Q=,将Q=60,y=160代入得到m=9600,此时Q=.(3)当Q=30时,y=320,由(1)可知y=﹣2x+860,所以y=270,即销售单价为270元,由于=,∴成本占销售价的.(4)若y≤400,则Q≥,即Q≥24,固定成本至少是24元,400≥﹣2x+860,解得x≥230,即销售单价最底为230元.23.问题提出:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1x5或2×3的矩形(axb 的矩形指边长分别为a,b的矩形)?问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.探究一:如图①,当n=5时,可将正方形分割为五个1×5的矩形.如图②,当n=6时,可将正方形分割为六个2×3的矩形.如图③,当n=7时,可将正方形分割为五个1×5的矩形和四个2×3的矩形如图④,当n=8时,可将正方形分割为八个1×5的矩形和四个2×3的矩形如图⑤,当n=9时,可将正方形分割为九个1×5的矩形和六个2×3的矩形探究二:当n=10,11,12,13,14时,分别将正方形按下列方式分割:所以,当n=10,11,12,13,14时,均可将正方形分割为一个5×5的正方形、一个(n﹣5 )×(n﹣5 )的正方形和两个5×(n﹣5)的矩形.显然,5×5的正方形和5×(n﹣5)的矩形均可分割为1×5的矩形,而(n﹣5)×(n ﹣5)的正方形是边长分别为5,6,7,8,9 的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.探究三:当n=15,16,17,18,19时,分别将正方形按下列方式分割:请按照上面的方法,分别画出边长为18,19的正方形分割示意图.所以,当n=15,16,17,18,19时,均可将正方形分割为一个10×10的正方形、一个(n﹣10 )×(n﹣10)的正方形和两个10×(n﹣10)的矩形.显然,10×10的正方形和10×(n﹣10)的矩形均可分割为1x5的矩形,而(n ﹣10)×(n﹣10)的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.问题解决:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5或2×3的矩形?请按照上面的方法画出分割示意图,并加以说明.实际应用:如何将边长为61的正方形分割为一些1×5或2×3的矩形?(只需按照探究三的方法画出分割示意图即可)【考点】四边形综合题.【分析】先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题,由此把要解决问题转化为已经解决的问题,即可解决问题.【解答】解:探究三:边长为18,19的正方形分割示意图,如图所示,问题解决:若5≤n<10时,如探究一.若n≥10,设n=5a+b,其中a、b为正整数,5≤b<10,则图形如图所示,均可将正方形分割为一个5a×5a的正方形、一个b×b的正方形和两个5a×b的矩形.显然,5a×5a的正方形和5a×b 的矩形均可分割为1x5的矩形,而b×b的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形即可.问题解决:边长为61的正方形分割为一些1×5或2×3的矩形,如图所示,.24.已知:如图,在矩形ABCD中,Ab=6cm,BC=8cm,对角线AC,BD交于点0.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;:S△ACD=9:16?若存在,求出t的值;若不(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)根据矩形的性质和勾股定理得到AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,根据相似三角形的性质得到AP=t=,②当AP=AO=t=5,于是得到结论;(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,根据全等三角形的性质得到CE=AP=t,根据相似三角形的性质得到EH=,根据相似三角形的性质得到QM=,FQ=,根据图形的面积即可得到结论,(3)根据题意列方程得到t=,t=0,(不合题意,舍去),于是得到结论;(4)由角平分线的性质得到DM=DN=,根据勾股定理得到ON=OM==,由三角形的面积公式得到OP=5﹣t,根据勾股定理列方程即可得到结论.【解答】解:(1)∵在矩形ABCD中,Ab=6cm,BC=8cm,∴AC=10,①当AP=PO=t ,如图1, 过P 作PM ⊥AO , ∴AM=AO=,∵∠PMA=∠ADC=90°,∠PAM=∠CAD , ∴△APM ∽△ADC ,∴, ∴AP=t=,②当AP=AO=t=5,∴当t 为或5时,△AOP 是等腰三角形;(2)作EH ⊥AC 于H ,QM ⊥AC 于M ,DN ⊥AC 于N ,交QF 于G , 在△APO 与△CEO 中,,∴△AOP ≌△COE , ∴CE=AP=t ,∵△CEH ∽△ABC ,∴,∴EH=,∵DN==,∵QM ∥DN ,∴△CQM ∽△CDN ,∴,即,∴QM=,∴DG=﹣=,∵FQ ∥AC ,∴△DFQ ∽△DOC ,∴,∴FQ=,∴S 五边形OECQF =S △OEC +S 四边形OCQF =×5×+(+5)•=﹣t 2+t+12,∴S与t的函数关系式为S=﹣t2+t+12;(3)存在,∵S△ACD=×6×8=24,∴S:S△ACD=(﹣t2+t+12):24=9:16,五边形OECQF解得t=,t=0,(不合题意,舍去),∴t=时,S五边形S:S△ACD=9:16;五边形OECQF(4)如图3,过D作DM⊥AC于M,DN⊥AC于N,∵∠POD=∠COD,∴DM=DN=,∴ON=OM==,∵OP•DM=3PD,∴OP=5﹣t,∴PM=﹣t,∵PD2=PM2+DM2,∴(8﹣t)2=(﹣t)2+()2,解得:t≈15(不合题意,舍去),t≈2.88,∴当t=2.88时,OD平分∠COP.2016年6月23日。
2016年山东省青岛市中考数学试卷
2016年山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.﹣的绝对值是()A.﹣B.﹣C.D.5【考点】实数的性质.【分析】直接利用绝对值的定义分析得出答案.【解答】解:|﹣.故选:C.2.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000000的煤所产生的能量.把130 000 000用科学记数法可表示为()A.13×107B.0.13×108C.1.3×107D.1.3×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:130 000 0001.3×108.故选:D.3.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形.是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,不是中心对称图形,故此选项错误.故选:B .4.计算a•a 5﹣(2a 3)2的结果为( )A .a 6﹣2a 5B .﹣a 6C .a 6﹣4a 5D .﹣3a 6【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】首先利用同底数幂的乘法运算法则以及结合积的乘方运算法则分别化简求出答案.【解答】解:原式6﹣4a 6=﹣3a 6.故选:D .5.如图,线段经过平移得到线段A 1B 1,其中点A ,B 的对应点分别为点A 1,B 1,这四个点都在格点上.若线段上有一个点P ( a ,b ),则点户在A 1B 1上的对应点P 的坐标为( )A .(a ﹣2,3)B .(a ﹣2,b ﹣3)C .(2,3)D .(2,b ﹣3)【考点】坐标与图形变化-平移. 【分析】根据点A 、B 平移后横纵坐标的变化可得线段向左平移2个单位,向上平移了3个单位,然后再确定a 、b 的值,进而可得答案.【解答】解:由题意可得线段向左平移2个单位,向上平移了3个单位,则P (a ﹣2,3)故选A .6.A ,B 两地相距180,新修的高速公路开通后,在A ,B 两地间行驶的长途客车平均车速提高了50%,而从A 地到B 地的时间缩短了1h .若设原来的平均车速为,则根据题意可列方程为( )A .﹣=1B .﹣=1C .﹣=1D .﹣=1【考点】由实际问题抽象出分式方程.【分析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.【解答】解:设原来的平均车速为,则根据题意可列方程为:﹣=1.故选:A.7.如图,一扇形纸扇完全打开后,外侧两竹条和的夹角为120°,长为25,贴纸部分的宽为15,若纸扇两面贴纸,则贴纸的面积为()A.175π2B.350π2C.π2D.150π2【考点】扇形面积的计算.【分析】贴纸部分的面积等于扇形减去小扇形的面积,已知圆心角的度数为120°,扇形的半径为25和10,可根据扇形的面积公式求出贴纸部分的面积.【解答】解:∵25,15,∴10,∴S贴纸=﹣=175π2,故选A.8.输入一组数据,按下列程序进行计算,输出结果如表:x 20.5 20.6 20.7 20.8 20.9输出﹣13.75 ﹣8.04 ﹣2.31 3.44 9.21分析表格中的数据,估计方程(8)2﹣826=0的一个正数解x的大致范围为()A.20.5<x<20.6 B.20.6<x<20.7 C.20.7<x<20.8 D.20.8<x<20.9【考点】估算一元二次方程的近似解.【分析】根据表格中的数据,可以知道(8)2﹣826的值,从而可以判断当(8)2﹣826=0时,x的所在的范围,本题得以解决.【解答】解:由表格可知,当20.7时,(8)2﹣826=﹣2.31,当20.8时,(8)2﹣826=3.44,故(8)2﹣826=0时,20.7<x<20.8,故选C.二、填空题(本题满分18分,共有6道小题,每小题3分)9.计算:= 2 .【考点】二次根式的混合运算.【分析】首先化简二次根式,进而求出答案.【解答】解:原式2.故答案为:2.10.“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有2400 名.【考点】扇形统计图;用样本估计总体.【分析】根据样本中选择红色运动衫的人数占总数的百分比,据此可估计总体中选择红色运动衫的人数占总数的百分比近似相等,列式计算即可.【解答】解:若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有12000×2 02400(名),故答案为:2400.11.如图,是⊙O的直径,C,D是⊙O上的两点,若∠28°,则∠62 °.【考点】圆周角定理.【分析】根据直径所对的圆周角是直角得到∠90°,求出∠,根据圆周角定理解答即可.【解答】解:∵是⊙O的直径,∴∠90°,∵∠28°,∴∠62°,由圆周角定理得,∠∠62°,故答案为:62.12.已知二次函数3x2与正比例函数4x的图象只有一个交点,则c的值为.【考点】根的判别式.【分析】将一次函数解析式代入到二次函数解析式中,得出关于x的一元二次方程,由两函数图象只有一个交点可得知该方程有两个相同的实数根,结合根的判别式即可得出关于c的一元一次方程,解方程即可得出结论.【解答】解:将正比例函数4x代入到二次函数3x2中,得:43x2,即3x2﹣40.∵两函数图象只有一个交点,∴方程3x2﹣40有两个相等的实数根,∴△=(﹣4)2﹣4×30,解得:.故答案为:.13.如图,在正方形中,对角线与相交于点O,E为上一点,5,F为的中点.若△的周长为18,则的长为.【考点】正方形的性质;直角三角形斜边上的中线;勾股定理;三角形中位线定理.【分析】先根据直角三角形的性质求出的长,再由勾股定理得出的长,进而可得出的长,由三角形中位线定理即可得出结论.【解答】解:∵5,△的周长为18,∴18﹣5=13.∵F为的中点,∴.∵∠90°,∴,∴ 6.5,∴213,∴12.∵四边形是正方形,∴12,O为的中点,∴是△的中位线,∴(﹣)=(12﹣5)=.故答案为:.14.如图,以边长为20的正三角形纸板的各顶点为端点,在各边上分别截取4长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为448﹣480 3.【考点】剪纸问题.【分析】由题意得出△为等边三角形,△为等边三角形,得出∠∠∠60°,.∠60°,连结,作⊥于M,在△中,∠∠30°,得出2,2,同理:2,求出、,无盖柱形盒子的容积=底面积×高,即可得出结果.【解答】解:如图,由题意得:△为等边三角形,△为等边三角形,∴∠∠∠60°,,∠60°,∴∠∠90°.连结,作⊥于M,在△中,∠∠30°,∴2,∴2,同理:2,∴20﹣2×2=20﹣4(),∴•60°=(20﹣4)×=10﹣6,(),∴无盖柱形盒子的容积=×(20﹣4)(10﹣6)×4=448﹣480(3);故答案为:448﹣480.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.已知:线段a及∠.求作:⊙O,使⊙O在∠的内部,,且⊙O与∠的两边分别相切.【考点】作图—复杂作图.【分析】首先作出∠的平分线,再截取得出圆心O,作⊥,由角平分线的性质和切线的判定作出圆即可.【解答】解:①作∠的平分线,②在上截取,③作⊥于E,以O我圆心,长为半径作圆;如图所示:⊙O即为所求.四、解答题(本题满分74分,共有9道小题)16.(1)化简:﹣(2)解不等式组,并写出它的整数解.【考点】分式的加减法;解一元一次不等式组;一元一次不等式组的整数解.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,确定出整数解即可.【解答】解:(1)原式=﹣;(2),由①得:x≤1,由②得:x≤,则不等式组的解集为x≤1,则不等式组的整数解为{x∈≤1}.17.小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.【考点】游戏公平性.【分析】首先依据题先用列表法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可.【解答】解:这个游戏对双方是公平的.列表得:∴一共有6种情况,积大于2的有3种,∴P(积大于2),∴这个游戏对双方是公平的.18.如图,是长为10m,倾斜角为37°的自动扶梯,平台与大楼垂直,且与扶梯的长度相等,在B处测得大楼顶部C的仰角为65°,求大楼的高度(结果保留整数).(参考数据:37°≈,37°≈,65°≈,65°≈)【考点】解直角三角形的应用-仰角俯角问题.【分析】作⊥于点F.则,在直角△中利用三角函数求得的长,在直角△中利用三角函数求得的长,则即可求得.【解答】解:作⊥于点F.则.在直角△中,∠,则•∠10×=6(m).在直角△中,∠,则•65°=10×≈27(m).则6+27=33(m).答:大楼的高度是33m.19.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲 a 7 7 1.2乙7 b 8 c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?【考点】方差;条形统计图;折线统计图;中位数;众数.【分析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;(2)结合平均数和中位数、众数、方差三方面的特点进行分析.【解答】解:(1)甲的平均成绩7(环),∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数7.5(环),其方差×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.20.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用2(a≠0)表示.已知抛物线上B,C两点到地面的距离均为m,到墙边似的距离分别为m,m.(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?【考点】二次函数的应用.【分析】(1)根据题意求得B(,),C(,),解方程组求得拋物线的函数关系式为﹣x2+2x;根据抛物线的顶点坐标公式得到结果;(2)令0,即﹣x2+20,解方程得到x1=0,x2=2,即可得到结论.【解答】解:(1)根据题意得:B(,),C(,),把B,C代入2得,解得:,∴拋物线的函数关系式为﹣x2+2x;∴图案最高点到地面的距离1;(2)令0,即﹣x2+20,∴x1=0,x2=2,∴10÷2=5,∴最多可以连续绘制5个这样的拋物线型图案.21.已知:如图,在▱中,E,F分别是边,上的点,且,直线分别交的延长线、的延长线于点G,H,交于点0.(1)求证:△≌△;(2)连接,若,则四边形是什幺特殊四边形?请说明理由.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)由平行四边形的性质得出,∠∠,由证明△≌△即可;(2)由平行四边形的性质得出∥,,证出,得出四边形是平行四边形,得出,再由等腰三角形的三线合一性质得出⊥,即可得出四边形是菱形.【解答】(1)证明:∵四边形是平行四边形,∴,∠∠,在△和△中,,∴△≌△();(2)解:四边形是菱形;理由如下:如图所示:∵四边形是平行四边形,∴∥,,∵,∴,∴四边形是平行四边形,∴,∵,∴⊥,∴四边形是菱形.22.某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:月产销量y(个)…160 200 240 300 …每个玩具的固定成本Q(元)…60 48 40 32 …(1)写出月产销量y(个)与销售单价x (元)之间的函数关系式;(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?【考点】二次函数的应用;待定系数法求一次函数解析式.【分析】(1)设,把,代入解方程组即可.(2)观察函数表可知两个变量的乘积为定值,所以固定成本Q(元)与月产销量y(个)之间存在反比例函数关系,不妨设,由此即可解决问题.(3)求出销售价即可解决问题.(4)根据条件分别列出不等式即可解决问题.【解答】解;(1)由于销售单价每降低1元,每月可多售出2个,所以月产销量y(个)与销售单价x (元)之间存在一次函数关系,不妨设,则,满足函数关系式,得解得,产销量y(个)与销售单价x (元)之间的函数关系式为﹣2860.(2)观察函数表可知两个变量的乘积为定值,所以固定成本Q(元)与月产销量y(个)之间存在反比例函数关系,不妨设,将60,160代入得到9600,此时.(3)当30时,320,由(1)可知﹣2860,所以270,即销售单价为270元,由于=,∴成本占销售价的.(4)若y≤400,则Q≥,即Q≥24,固定成本至少是24元,400≥﹣2860,解得x≥230,即销售单价最底为230元.23.问题提出:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1x5或2×3的矩形(的矩形指边长分别为a,b的矩形)?问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.探究一:如图①,当5时,可将正方形分割为五个1×5的矩形.如图②,当6时,可将正方形分割为六个2×3的矩形.如图③,当7时,可将正方形分割为五个1×5的矩形和四个2×3的矩形如图④,当8时,可将正方形分割为八个1×5的矩形和四个2×3的矩形如图⑤,当9时,可将正方形分割为九个1×5的矩形和六个2×3的矩形探究二:当10,11,12,13,14时,分别将正方形按下列方式分割:所以,当10,11,12,13,14时,均可将正方形分割为一个5×5的正方形、一个(n﹣5 )×( n﹣5 )的正方形和两个5×(n﹣5)的矩形.显然,5×5的正方形和5×(n﹣5)的矩形均可分割为1×5的矩形,而(n﹣5)×(n﹣5)的正方形是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.探究三:当15,16,17,18,19时,分别将正方形按下列方式分割:请按照上面的方法,分别画出边长为18,19的正方形分割示意图.所以,当15,16,17,18,19时,均可将正方形分割为一个10×10的正方形、一个(n﹣10 )×(n﹣10)的正方形和两个10×(n﹣10)的矩形.显然,10×10的正方形和10×(n﹣10)的矩形均可分割为1x5的矩形,而(n﹣10)×(n﹣10)的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.问题解决:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5或2×3的矩形?请按照上面的方法画出分割示意图,并加以说明.实际应用:如何将边长为61的正方形分割为一些1×5或2×3的矩形?(只需按照探究三的方法画出分割示意图即可)【考点】四边形综合题.【分析】先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题,由此把要解决问题转化为已经解决的问题,即可解决问题.【解答】解:探究三:边长为18,19的正方形分割示意图,如图所示,问题解决:若5≤n<10时,如探究一.若n≥10,设5,其中a、b为正整数,5≤b<10,则图形如图所示,均可将正方形分割为一个5a×5a的正方形、一个b×b的正方形和两个5a×b的矩形.显然,5a×5a的正方形和5a×b的矩形均可分割为1x5的矩形,而b×b的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形即可.问题解决:边长为61的正方形分割为一些1×5或2×3的矩形,如图所示,.24.已知:如图,在矩形中,6,8,对角线,交于点0.点P从点A出发,沿方向匀速运动,速度为1;同时,点Q从点D出发,沿方向匀速运动,速度为1;当一个点停止运动时,另一个点也停止运动.连接并延长,交于点E,过点Q作∥,交于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△是等腰三角形?(2)设五边形的面积为S(2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形:S△9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使平分∠?若存在,求出t的值;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)根据矩形的性质和勾股定理得到10,①当,如图1,过P作⊥,根据相似三角形的性质得到,②当5,于是得到结论;(2)作⊥于H,⊥于M,⊥于N,交于G,根据全等三角形的性质得到,根据相似三角形的性质得到,根据相似三角形的性质得到,,根据图形的面积即可得到结论,(3)根据题意列方程得到,0,(不合题意,舍去),于是得到结论;(4)由角平分线的性质得到,根据勾股定理得到,由三角形的面积公式得到5﹣t,根据勾股定理列方程即可得到结论.【解答】解:(1)∵在矩形中,6,8,∴10,①当,如图1,过P作⊥,∴,∵∠∠90°,∠∠,∴△∽△,∴,∴,②当5,∴当t为或5时,△是等腰三角形;(2)作⊥于H,⊥于M,⊥于N,交于G,在△与△中,,∴△≌△,∴,∵△∽△,∴,∴,∵,∵∥,∴△∽△,∴,即,∴,∴﹣=,∵∥,∴△∽△,∴,∴,∴S五边形△四边形×5×+(+5)•=﹣t212,∴S与t的函数关系式为﹣t212;(3)存在,∵S△×6×8=24,∴S五边形:S△(﹣t212):24=9:16,解得,0,(不合题意,舍去),∴时,S五边形S五边形:S△9:16;(4)如图3,过D作⊥于M,⊥于N,∵∠∠,∴,∴,∵•3,∴5﹣t,∴﹣t,∵222,∴(8﹣t)2=(﹣t)2+()2,解得:t≈15(不合题意,舍去),t≈2.88,∴当2.88时,平分∠.。
青岛市中考数学一模考试试卷
青岛市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016七下·绵阳期中) 9的平方根是()A . 3B . ﹣3C . ±3D . 812. (2分) (2019九上·兰州期末) 如图所示几何体,它的俯视图是()A .B .C .D .3. (2分)(2017·浙江模拟) 一粒芝麻约有0.000002千克,0.000002用科学记数学法表示为()千克.A . 2×10﹣4B . 0.2×10﹣5C . 2×10﹣7D . 2×10﹣64. (2分) (2018九上·铜梁月考) 如图图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .5. (2分) (2020七上·商河期末) 下列计算正确是()A . 3a+a=3a2B . 4x2y﹣2yx2=2x2yC . 4y﹣3y=1D . 3a+2b=5ab6. (2分)(2017·长安模拟) 如图,已知直线a∥b,则∠1+∠2﹣∠3=()A . 180°B . 150°C . 135°D . 90°7. (2分)(2018·柘城模拟) 在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50,则这8人体育成绩的中位数和众数分别是()A . 47,46B . 48,47C . 48.5,49D . 49,498. (2分) (2017七下·临沭期末) 不等式组的解集在数轴上表示为()A .B .C .D .9. (2分)(2017·黑龙江模拟) 如图,某河堤迎水坡AB的坡比i=1:,堤高BC=5m,则坡面AB的长是()A . 5 mB . 10mC . 15 mD . 20 m10. (2分) (2016八上·河源期末) 如图,点A的坐标为(2,2),若点P在坐标轴上,且△APO为等腰三角形,则满足条件的点P个数是()A . 4个B . 6个C . 7个D . 8个11. (2分) (2019八下·苍南期末) 如图在矩形ABCD中,AB=2 ,BC=10,E、F分别在边BC,AD上,BE=DF 将△ABE,△CDF分别沿着AE,CF翻折后得到△AGE、△CHF,若AG分别平分∠EAD,则GH的长为()A . 3B . 4C . 5D . 712. (2分)(2017·芜湖模拟) 如图所示,直线l和反比例函数y= (k>0)的图象的一支交于A,B两点,P是线段AB上的点(不与A,B重合),过点A,B,P分别向x轴作垂线,垂足分别是C,D,E,连接OA,OB,OP,设△AOC面积是S1 ,△BOD面积是S2 ,△POE面积是S3 ,则()A . S1<S2<S3B . S1>S2>S3C . S1=S2>S3D . S1=S2<S3二、填空题 (共6题;共8分)13. (1分)(2019·黄冈模拟) 分解因式: ________.14. (2分) (2017七下·武清期中) 如图,∠1=m°,∠2+∠4+∠6+∠8=n°,则∠3+∠5+∠7的大小是________.15. (1分) (2018九上·黔西期中) 已知=,则 ________.16. (2分) (2018八上·重庆期末) 丫头和爸爸从家出发到大剧院观看“巴交有声”巴蜀中学新年演奏会,爸爸先出发,2分钟后丫头沿同一路线出发去追爸爸,当丫头追上爸爸时发现背包落在途中了,爸爸立即返回找背包,丫头继续前往大剧院,当丫头到达大剧院时,爸爸刚好找到背包并立即前往大剧院爸爸找背包的时间不计,丫头在大剧院等了一会,没有等到爸爸,就沿同一路线返回接爸爸,最终与爸爸会合,丫头和爸爸的速度始终不变,如图是丫头和爸爸两人之间的距离米与丫头出发的时间分钟的函数图象,则丫头在大剧院等了爸爸________分钟.17. (1分)(2019·海州模拟) 如图,已知P为等边△ABC形内一点,且PA=3cm,PB=4 cm,PC=5 cm,则图中△PBC的面积为________cm2.18. (1分) (2017八下·邵阳期末) 如图,在矩形 ABCD中,AB =8,点E是AD上一点,AE=4,BE的垂直平分线交BC的延长线于点F,连接EF交CD于点G,若G是CD的中点,则BC的长是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年山东省青岛市市北区中考数学一模试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.的绝对值是()A.﹣6 B.6 C.﹣D.2.如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形统计图,(两图都不完整),则下列结论中正确的是()A.步行人数为30人B.骑车人数占总人数的10%C.该班总人数为50人D.乘车人数是骑车人数的40%3.下列四个图形能围成棱柱的有几个()A.0个B.1个C.2个D.3个4.据研究,一种H7N9病毒直径为30纳米(1纳米=10﹣9米).下列用科学记数法表示这个病毒直径的大小,正确的是()A.30×10﹣9米B.3.0×10﹣8米C.3.0×10﹣10米D.0.3×10﹣7米5.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若,则∠C等于()A.15°B.30°C.45°D.60°6.当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有()个.①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.A.1 B.2 C.3 D.47.如图,在△ABC为等边三角形,P为BC上一点,△APQ为等边三角形,PQ与AC相交于点M,则下列结论中正确的是()①AB∥CQ;②∠ACQ=60°;③AP2=AM•AC;④若BP=PC,则PQ⊥AC.A.只有①②B.只有①③C.只有①②③ D.①②③④8.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.二、填空题:(本题满分18分,共有6道小题,每小题3分)9.计算:=______.10.在一个不透明的口袋中装有5个白球和n个黄球,它们出颜色外完全相同,若从中随机摸出一球,摸到白球的概率为,则n的值是______.11.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为______.12.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为______.13.如图,线段AB与⊙O相切于点C,连接OA、OB,OB交⊙O于点D,已知OA=OB=3cm,AB=3cm,则图中阴影部分的面积为______.14.将n+1个腰长为1的等腰直角三角形,按如图所示放在同一直线上.设阴影部分△B2D1C1D n C n的面积为S n,则S2=______;S n=______.(用的面积为S1,△B3D2C2的面积为S2,…,B n+1含n的式子表示)三、解答题(本大题共10小题,满分78分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a.求做:Rt△ABC,使∠A=90°,AB=AC=a.结论:______.16.(1)化简:(2)解不等式组:.17.某餐厅为了吸引顾客,举行吃套餐优惠活动,套餐每套20元,每消费一套即可直接获得10元餐劵,或者参与游戏赢得餐劵.游戏规则如下:设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),顾客每消费一套套餐,就可以获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵,下次就餐时可以代替现金消费.(1)求顾客任意转动一次转盘的平均收益是多少;(2)如果你是餐厅经理,你希望顾客参与游戏还是直接获得10元餐劵?请说明理由.18.某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛,在最近的10次选拔赛中,这两个人的跳远成绩(单位:cm)如图所示,请根据图中信息,解答下列问题:(1)通过计算,补充完成下面的统计分析表.运动员平均数众数中位数方差甲601.8 600 600 50.56乙599.3 ______ ______ 284.21(2)请依据对上述统计信息的数据分析,说明这两名运动员的成绩各有什么特点?19.某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)20.某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:进价(元/千克)售价(元/千克)苹果 5 8丑桔9 13(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?21.如图,在△ABC中,AD是BC边上的中线,过点A作AF∥BC,且AF=BC,连接BF、BF,线段BF与AD相交于点E.(1)求证:E是AD的中点;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.22.某公园有一个抛物线形状的观景拱桥ACB,其横截面如图所示,量得该拱桥占地面最宽处AB=20米,最高处点C距地面5米(即OC=5米)(1)分别以AB、OC所在直线为x轴、y轴,建立如图所示的平面直角坐标系,求该抛物线的解析式;(2)夜晚,公园沿着抛物线ACB用彩灯勾勒拱桥的形状;现公园管理处打算在观景拱桥ABC的横截面前放置一个长为10米的矩形广告牌EFMN,为安全起见,要求广告牌高拱桥的桥面至少0.35米,求矩形广告牌的最大高度,并说明理由.23.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.理由:连接AH,EH.∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.∵DH⊥AE∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED∴△ADH∽______.∴=,即DH2=AD×DE.又∵DE=DC∴DH2=______.即正方形DFGH与矩形ABCD等积.(2)类比思考平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的______(填写图形各称),再转化为等积的正方形.如图②,△ABC的顶点在正方形网格的格点上,请用尺规或借助作出与△ABC等积的正方形的一条边.(不要求写具体作法,但要保留作图痕迹)(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为n﹣1边形,…,直至转化为等积三角形,从而可以化方.如图③,四边形ABCD的顶点在正方形网格的格点上,请用尺规或借助网格作出与四边形ABCD等积的三角形(不要求写具体作法,但要保留作图痕迹).24.已知:如图,在平行四边形ABCD中,AB=10cm,BC=12cm,对角线AC=10cm,点P 从点C出发沿着边CB向点B匀速运动,速度为每秒1个单位:同时,点Q从点B开始沿着边AB向点A匀速运动,到达A点后立刻以原来的速度沿AB返回,点Q的速度为每秒1个单位,过P点与AB平行的直线交线段AD于点E,交AC于点F,连接PQ,设运动时间为t(s).(1)当0<t<10时,设四边形AQPE的面积为y(cm2),求y与t之间的函数关系式;(2)当0<t<10时,是否存在某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半?若存在,求出t的值;若不存在,请说明理由;(3)当0<t<10时,是否存在某一时刻t,使PQ⊥PE?若存在,求出t的值;不存在,请说明理由;(4)当0<t<12时,是否存在某一时刻t,使线段PQ的垂直平分线恰好经过点B?存在,请直接给出相应的t值;若不存在,请说明理由.2016年山东省青岛市市北区中考数学一模试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.的绝对值是()A.﹣6 B.6 C.﹣D.【考点】绝对值.【分析】根据计算绝对值的方法可以得到的绝对值,本题得以解决.【解答】解:∵,∴的绝对值是,故选D.2.如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形统计图,(两图都不完整),则下列结论中正确的是()A.步行人数为30人B.骑车人数占总人数的10%C.该班总人数为50人D.乘车人数是骑车人数的40%【考点】频数(率)分布直方图;扇形统计图.【分析】根据乘车的人数和所占的百分比求出总人数,用总人数乘以步行所占的百分比求出步行的人数,用骑车的人数除以总人数求出骑车人数占总人数的百分比,用乘车的人数除以骑车人数,求出乘车人数是骑车人数的倍数.【解答】解:A、步行的人数有:×30%=15人,故本选项错误;B、骑车人数占总人数10÷=20%,故本选项错误;C、该班总人数为=50人,故本选项正确;D、乘车人数是骑车人数的=2.5倍,故本选项错误;故选:C.3.下列四个图形能围成棱柱的有几个()A.0个B.1个C.2个D.3个【考点】展开图折叠成几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:第一个图形缺少一个面,不能围成棱柱;第三个图形折叠后底面重合,不能折成棱柱;第二个图形,第四个图形都能围成四棱柱;故选:C.4.据研究,一种H7N9病毒直径为30纳米(1纳米=10﹣9米).下列用科学记数法表示这个病毒直径的大小,正确的是()A.30×10﹣9米B.3.0×10﹣8米C.3.0×10﹣10米D.0.3×10﹣7米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:由题意可得:30×10﹣9=3.0×10﹣8.故选:B.5.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若,则∠C等于()A.15°B.30°C.45°D.60°【考点】切线的性质;含30度角的直角三角形.【分析】连接OB,构造直角△ABO,结合已知条件推知直角△ABO的直角边OB等于斜边OA的一半,则∠A=30°.【解答】解:如图,连接OB.∵AB与⊙O相切于点B,∴∠ABO=90°.∵OB=OC,,∴∠C=∠OBC,OB=OA,∴∠A=30°,∴∠AOB=60°,则∠C+∠OBC=60°,∴∠C=30°.故选B.6.当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有()个.①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.A.1 B.2 C.3 D.4【考点】二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.【分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k<0时,在每一个象限内,y随自变量x增大而增大,二次函数根据对称轴及开口方向判断增减性.【解答】解:①为一次函数,且a>0时,函数值y总是随自变量x增大而增大;②为一次函数,且a<0时,函数值y总是随自变量x增大而减小;③为反比例函数,当x>0或者x<0时,函数值y随自变量x增大而增大,当﹣2<x<2时,就不能确定增减性了;④为二次函数,对称轴为x=﹣3,开口向上,故当﹣2<x<2时,函数值y随自变量x增大而增大,符合题意的是①④,故选B.7.如图,在△ABC为等边三角形,P为BC上一点,△APQ为等边三角形,PQ与AC相交于点M,则下列结论中正确的是()①AB∥CQ;②∠ACQ=60°;③AP2=AM•AC;④若BP=PC,则PQ⊥AC.A.只有①②B.只有①③C.只有①②③ D.①②③④【考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.【分析】根据等边三角形性质得出AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,求出∠BAP=∠CAQ,根据SAS证△ABP≌△ACQ,推出∠ACQ=∠B=60°=∠BAC,根据平行线的判定推出即可,再根据等腰三角形性质求出∠BAP=30°,求出∠PMA=90°,即可得出答案.【解答】证明:如图,∵△ABC和△APQ是等边三角形,∴AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,∴∠BAP=∠CAQ=60°﹣∠PAC,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),∴∠ACQ=∠B=60°=∠BAC,故②正确,∴AB∥CQ,故①正确,∵∠APQ=∠ACQ=60°,∠PAC=∠PAC,∴△APM∽△ACP,∴,∴AP2=AC•AM,故③正确,∵BP=PC,∴∠BAP=30°,∴∠PAC=30°,∵∠APC=60°,∴∠AMP=90°,∴PQ⊥AC,故④正确.故选D.8.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.【考点】二次函数图象与系数的关系;反比例函数的图象.【分析】首先观察抛物线y=ax2+bx+c图象,由抛物线的对称轴的位置由其开口方向,即可判定﹣b的正负,由抛物线与x轴的交点个数,即可判定﹣4ac+b2的正负,则可得到一次函数y=﹣bx﹣4ac+b2的图象过第几象限,由当x=1时,y=a+b+c<0,即可得反比例函数y=过第几象限,继而求得答案.【解答】解:∵抛物线y=ax2+bx+c开口向上,∴a>0,∵抛物线y=ax2+bx+c的对称轴在y轴右侧,∴x=﹣>0,∴b<0,∴﹣b>0,∵抛物线y=ax2+bx+c的图象与x轴有两个交点,∴△=b2﹣4ac>0,∴一次函数y=﹣bx﹣4ac+b2的图象过第一、二、三象限;∵由函数图象可知,当x=1时,抛物线y=a+b+c<0,∴反比例函数y=的图象在第二、四象限.故选D.二、填空题:(本题满分18分,共有6道小题,每小题3分)9.计算:=﹣.【考点】二次根式的混合运算.【分析】先把各二次根式化为最简二次根式,然后把分子合并后进行二次根式的除法运算.【解答】解:原式===﹣.故答案为﹣.10.在一个不透明的口袋中装有5个白球和n个黄球,它们出颜色外完全相同,若从中随机摸出一球,摸到白球的概率为,则n的值是10.【考点】概率公式.【分析】根据摸到白球的概率为,列出方程求解即可.【解答】解:∵在一个不透明的布袋中装有5个白球和n个黄球,∴共有(5+n)个球,根据古典型概率公式知:P(白球)=,解得n=10.故答案为:10.11.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为.【考点】由实际问题抽象出分式方程.【分析】设原来的平均速度为x千米/时,列车大提速后平均速度为x+70千米/时,根据走过相同的距离时间缩短了3小时,列方程即可.【解答】解:设原来的平均速度为x千米/时,可得:,故答案为:12.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(﹣2a,﹣2b).【考点】位似变换.【分析】先找一对应点是如何变化,那么所求点也符合这个变化规律.【解答】解:小鱼最大鱼翅的顶端坐标为(5,3),大鱼对应点坐标为(﹣10,﹣6);小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(﹣2a,﹣2b).13.如图,线段AB 与⊙O 相切于点C ,连接OA 、OB ,OB 交⊙O 于点D ,已知OA=OB=3cm ,AB=3cm ,则图中阴影部分的面积为.【考点】扇形面积的计算;切线的性质.【分析】由AB 为圆的切线,得到OC ⊥AB ,再由OA=OB ,利用三线合一得到C 为AB 中点,且OC 为角平分线,在直角三角形AOC 中,利用30度所对的直角边等于斜边的一半求出OC 的长,利用勾股定理求出AC 的长,进而确定出AB 的长,求出∠AOB 度数,阴影部分面积=三角形AOB 面积﹣扇形AOB 面积,求出即可. 【解答】解:连接OC , ∵AB 与圆O 相切, ∴OC ⊥AB , ∵OA=OB , ∴AC=BC=AB=, ∴sin ∠AOC==,∴∠AOC=60°, ∴∠AOB=120° ∴OC=OA=,∴S 阴影=S △AOB ﹣S 扇形=×3×﹣,故图中阴影部分的面积为,故答案为:.14.将n +1个腰长为1的等腰直角三角形,按如图所示放在同一直线上.设阴影部分△B 2D 1C 1的面积为S 1,△B 3D 2C 2的面积为S 2,…,B n +1D n C n 的面积为S n ,则S 2=;S n =.(用含n 的式子表示)【考点】相似三角形的判定与性质;等腰直角三角形.【分析】连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1,依题意可知△B1C1B2是等腰直角三角形,知道△B1B2D1与△C1AD1相似,求出相似比,根据三角形面积公式可得出S1,同理:B2B3:AC2=1:2,所以B2D2:D2C2=1:2,进而S2的值可求出,同样的道理,即可求出S3,S4…S n的值.【解答】解:∵n+1个边长为1的等腰三角形有一条边在同一直线上,=×1×1=,∴S△AB1C1连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1∵∠B1C1B2=90°∴A1B1∥B2C1∴△B1C1B2是等腰直角三角形,且边长=1,∴△B1B2D1∽△C1AD1,∴B1D1:D1C1=1:1,∴S1=×=,同理:B2B3:AC2=1:2,∴B2D2:D2C2=1:2,∴S2=×=,同理:B3B4:AC3=1:3,∴B3D3:D3C3=1:3,∴S3=×=,∴S4=×=,…∴S n=故答案为:;.三、解答题(本大题共10小题,满分78分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a.求做:Rt△ABC,使∠A=90°,AB=AC=a.结论:△ABC为等腰直角三角形.【考点】作图—复杂作图.【分析】先在一直线上截取AB=a,再过A作AB的垂线,接着在此垂线上截取AC=a,则△ABC满足条件.【解答】解:如图,△ABC为所作,△ABC为等腰直角三角形.故答案为△ABC为等腰直角三角形.16.(1)化简:(2)解不等式组:.【考点】分式的加减法;解一元一次不等式组.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)原式=+===;(2),由①得:x>,由②得:x≤3,则不等式组的解集为<x≤3.17.某餐厅为了吸引顾客,举行吃套餐优惠活动,套餐每套20元,每消费一套即可直接获得10元餐劵,或者参与游戏赢得餐劵.游戏规则如下:设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),顾客每消费一套套餐,就可以获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵,下次就餐时可以代替现金消费.(1)求顾客任意转动一次转盘的平均收益是多少;(2)如果你是餐厅经理,你希望顾客参与游戏还是直接获得10元餐劵?请说明理由.【考点】概率公式.【分析】(1)根据转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵得:顾客任意转动一次转盘的平均收益是×(20+15×2+10×3+5×6),再计算即可;(2)根据(1)的结果与10比较即可.【解答】解:(1)顾客任意转动一次转盘的平均收益是×(20+15×2+10×3+5×6)=(元),答:顾客任意转动一次转盘的平均收益是元;(2)∵<10,∴如果是餐厅经理,希望顾客参与游戏,这样能减少支出.18.某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛,在最近的10次选拔赛中,这两个人的跳远成绩(单位:cm)如图所示,请根据图中信息,解答下列问题:(1)通过计算,补充完成下面的统计分析表.运动员平均数众数中位数方差甲601.8 600 600 50.56乙599.3 618596.5284.21(2)请依据对上述统计信息的数据分析,说明这两名运动员的成绩各有什么特点?【考点】折线统计图;中位数;众数;方差.【分析】(1)根据中位数、众数的概念求值即可;(2)答案不惟一,如:甲的成绩比较稳定,波动小;乙成绩不稳定,波动较大.【解答】解:(1)根据折线统计图知乙10次成绩从小到大依次排列为:574,580,585,590,595,598,613,618,618,624,则其众数为:618,中位数为:=596.5;(2)甲的平均水平和跳远在600及以上要优于乙且甲的方差小说明甲成绩比医德成绩稳定,乙跳远的最好成绩大于甲的最好成绩.故答案为:(1)618,596.5.19.某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)【考点】解直角三角形的应用.【分析】通过构造直角三角形来解答,过A作AD⊥MN于D,就有了∠ABN、∠ACN的度数,又已知AE的长,可在直角三角形ABE、ACE中分别求出BE、CE的长,BC就能求出.【解答】解:如图,过A作AD⊥MN于点D,在Rt△ACD中,tan∠ACD==,CD=5.6(m),在Rt△ABD中,tan∠ABD==,BD=7(m),则BC=7﹣5.6=1.4(m).答:该车大灯照亮地面的宽度BC是1.4m.20.某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:进价(元/千克)售价(元/千克)苹果 5 8丑桔9 13(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?【考点】一元一次不等式的应用;一元一次方程的应用.【分析】(1)设购进苹果x千克,则购进丑桔千克,根据进货钱数=单价×数量,列出关于x的一元一次方程,解方程即可得出结论;(2)设购进苹果x千克时售完这批水果将获利y元,由丑桔的进货量不超过苹果进货量的3倍可列出关于x的一元一次不等式,解不等式可找出x的取值范围,再根据总利润=每千克利润×千克数可找出y关于x的函数关系式,根据函数的性质即可解决最值问题.【解答】解:(1)设购进苹果x千克,则购进丑桔千克,依题意得:5x+9=1000,解得:x=65,则140﹣65=75(千克),答:水果店购进苹果65千克,丑桔75千克.(2)设购进苹果x千克时售完这批水果将获利y元,由题意得:140﹣x≤3x,解得:x≥35.获得利润y=(8﹣5)x+(13﹣9)=﹣x+560.故当x=35时,y有最大值,最大值为525元.140﹣35=105(千克).答:购进苹果35千克,丑桔105千克时水果店在销售完这批水果时获利最多.21.如图,在△ABC中,AD是BC边上的中线,过点A作AF∥BC,且AF=BC,连接BF、BF,线段BF与AD相交于点E.(1)求证:E是AD的中点;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【考点】相似三角形的判定与性质;直角三角形斜边上的中线;平行四边形的判定与性质;菱形的判定.【分析】(1)先连接DF,判定四边形ABDF是平行四边形,再根据平行四边形的性质,得出DE=AE即可;(2)先判定四边形ADCF是平行四边形,再根据直角三角形的性质,得出AD=CD,最后判断四边形ADCF是菱形.【解答】(1)连接DF,∵AD是BC边上的中线,∴DB=BC,∵AF=BC,∴DB=AF,又∵AF∥BC,∴四边形ABDF是平行四边形,∴DE=AE即E是AD的中点;(2)四边形ADCF是菱形.∵AD是BC边上的中线,∴DC=BC,∵AF=BC,∴DC=AF,又∵AF∥BC,∴四边形ADCF是平行四边形,又∵AB⊥AC,AD是BC边上的中线,∴AD=BC=CD,∴四边形ADCF是菱形.22.某公园有一个抛物线形状的观景拱桥ACB,其横截面如图所示,量得该拱桥占地面最宽处AB=20米,最高处点C距地面5米(即OC=5米)(1)分别以AB、OC所在直线为x轴、y轴,建立如图所示的平面直角坐标系,求该抛物线的解析式;(2)夜晚,公园沿着抛物线ACB用彩灯勾勒拱桥的形状;现公园管理处打算在观景拱桥ABC的横截面前放置一个长为10米的矩形广告牌EFMN,为安全起见,要求广告牌高拱桥的桥面至少0.35米,求矩形广告牌的最大高度,并说明理由.【考点】二次函数的应用.【分析】(1)根据题意可设抛物线解析式为y=ax2+c,将点C(0,5),点B(10,0)代入求得a、c的值即可求解;(2)令x=5求得y的值,将y的值减去0.35可得广告牌最大高度.【解答】解:(1)根据题意,设抛物线解析式为y=ax2+c,将点C(0,5),点B(10,0)代入,得:,解得:.故抛物线解析式为:y=﹣x2+5;(2)当x=5时,y=﹣×25+5=3.75(m),3.75﹣0.35=3.4(m).答:矩形广告牌的最大高度为3.4m.23.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.理由:连接AH,EH.∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.∵DH⊥AE∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED∴△ADH∽△HDE.∴=,即DH2=AD×DE.又∵DE=DC∴DH2=AD•DC.即正方形DFGH与矩形ABCD等积.(2)类比思考平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的▱ABDE(填写图形各称),再转化为等积的正方形.如图②,△ABC的顶点在正方形网格的格点上,请用尺规或借助作出与△ABC等积的正方形的一条边.(不要求写具体作法,但要保留作图痕迹)(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为n﹣1边形,…,直至转化为等积三角形,从而可以化方.如图③,四边形ABCD的顶点在正方形网格的格点上,请用尺规或借助网格作出与四边形ABCD等积的三角形(不要求写具体作法,但要保留作图痕迹).【考点】四边形综合题.【分析】(1)通过直角△ADH和直角△HDE中,∠AHD=∠HED证明△ADH∽△HDE,得DH2=AD×DE,再根据等量代换得出正方形DFGH与矩形ABCD等积;(3)作法:①作BC的中垂线,取BD中点,作▱ABDE;②过B作BF⊥AE,垂足为F,作矩形BDHF;③在直线AE在取BF=FM,以HM为直径,以点F为圆心作半圆,与直线BF交于点G;④则线段FG就是所求的正方形的一边;=S (4)作法:①连接BD,②过A作l∥BD,③延长CD交l于E,④连接BE,则S△BEC .四边形ABCD【解答】解:(1)答案为:△HDE,AD•DC;(3)如图2,答案为:▱ABDE;(4)如图3,则△BEC的面积=四边形ABCD的面积;24.已知:如图,在平行四边形ABCD中,AB=10cm,BC=12cm,对角线AC=10cm,点P 从点C出发沿着边CB向点B匀速运动,速度为每秒1个单位:同时,点Q从点B开始沿着边AB向点A匀速运动,到达A点后立刻以原来的速度沿AB返回,点Q的速度为每秒1个单位,过P点与AB平行的直线交线段AD于点E,交AC于点F,连接PQ,设运动时间为t(s).(1)当0<t<10时,设四边形AQPE的面积为y(cm2),求y与t之间的函数关系式;(2)当0<t<10时,是否存在某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半?若存在,求出t的值;若不存在,请说明理由;(3)当0<t<10时,是否存在某一时刻t,使PQ⊥PE?若存在,求出t的值;不存在,请说明理由;(4)当0<t<12时,是否存在某一时刻t,使线段PQ的垂直平分线恰好经过点B?存在,请直接给出相应的t值;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)利用相似三角形的判断和性质,表示出BQ=t,QH=t,PF=t,相似三角形=t2,从而y用三角形的面积的差表示出,即可;的面积比等于相似比的平方,S△CPF(2)假设存在,建立方程,求出方程的解,全不符合题意,得到不存在;(3)假设存在,建立方程,求出方程的解符合题意,即存在时间t,使PQ⊥PE;(4)假设存在,由线段PQ的垂直平分线恰好经过点B,得到BQ=BP,建立方程,求出t,即可.【解答】解:如图1,作AG⊥BC于G,作QH⊥BC于H,∴QH∥AG,∴=,∵AG⊥BC,AB=AC=10,BC=12,∴BG=BC=×12=6,AG=8,∵BQ=t ,∴=,∴QH=t ,∵PE ∥AB ,∴=, ∴=,∴PF=t ,∵BC=12,AG=8,∴S △ABC =×BC ×AG=48,(1)∵PE ∥AB ,∴=()2==,∴S △CPF =×S △ABC =×48=t 2, ∵BP=BC ﹣PC=12﹣t ,QH=t ,∴S △BPQ=BP ×QH=×(12﹣t )×t ,∴y=S 四边形AQPE =S △ABC ﹣S △BPQ ﹣S △CPF =48﹣×(12﹣t )×t ﹣t 2=﹣t 2﹣t +48,(0<t <10)(2)解:假设存在某一时刻t ,使四边形AQPE 的面积为平行四边形ABCD 面积的一半, 由(1)由S 四边形AQPE =﹣t 2﹣t +48,∴=﹣t 2﹣t +48=48, ∴t=0(舍)或t=﹣60(舍),∴假设不成立,∴不存在这样某一时刻t ,使四边形AQPE 的面积为平行四边形ABCD 面积的一半; (3)解:假设存在某一时刻t ,使PQ ⊥PE ,∵PE ∥AB ,∴∠BQP=90°,∴∠BQP=∠AGB ,∠B=∠B ,∴△BQP ∽△BGA ,。