湖南省邵阳市2016年中考数学真题试题(含解析)
湖南省邵阳市2016年中考数学模拟试卷(一)(含解析)
湖南省邵阳市2016年中考数学模拟试卷(一)一、选择题(共10小题,每小题3分,满分30分)1.计算6m3÷(﹣3m2)的结果是()A.﹣3m B.﹣2m C.2m D.3m2.下面四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个3.世界文化遗产长城总长约6 700 000m,用科学记数法可表示为()A.6.7×105m B.6.7×10﹣5m C.6.7×106m D.6.7×10﹣6m4.某商店在一周内卖出某种品牌衬衫的尺寸数据如下:38,42,38,41,36,41,39,40,41,40,43那么这组数据的中位数和众数分别为()A.40,40 B.41,40 C.40,41 D.41,415.如图,已知直线a、b被直线c所截,a∥b,∠1=50°,则∠2=()A.50° B.130°C.40° D.60°6.若分式有意义,则x应满足()A.x=0 B.x≠0 C.x=1 D.x≠17.如图,圆心角∠AOB=80°,则∠ACB的度数为()A.80° B.40° C.60° D.45°8.不等式组:的解集在数轴上可表示为()A.B. C.D.9.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.10.如图,在△ABC中,点D、E分别为AB、AC的中点,则下列结论:①BC=2DE;②△ADE ∽△ABC;③ =;④S△ADE=S△ABC;其中错误的是()A.①B.②C.③D.④二、填空题(共8小题,每小题3分,满分24分)11.多项式xa2﹣xb2因式分解的结果是______.12.如图,若△OAC≌△OBD,且∠O=65°,∠C=20°,则∠OBD=______.13.与的积为正整数的数是 ______(写出一个即可).14.从一副扑克牌里任意抽取一张,抽到“王”(“大王”或“小王”)的概率是______.15.若正多边形的内角和是540°,那么这个多边形一定是正______边形.16.方程(x﹣5)(2x﹣1)=3的根的判别式b2﹣4ac=______.17.如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是______米.18.将抛物线y=2x2向下平移1个单位,得到的抛物线是 ______.三、解答题(共3小题,满分24分)19.计算()﹣2+()0×|﹣1|20.已知x2﹣5x=3,求(x﹣1)(2x﹣1)﹣(x+1)2+1的值.21.如图,点F是CD 的中点,且AF⊥CD,BC=ED,∠BCD=∠EDC.(1)求证:BF=EF;(2)求证:AB=AE.四、应用题(共3个小题,每小题8分,共24分)22.某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A、B、C三个出口处,对离开园区的游客进行调查,其中在A出口调查所得的数据整理后绘成图(1)在A出口的被调查游客中,购买2瓶及2瓶以上饮料的游客人数占A出口的被调查游客人数的______%.表一(2)试问A出口的被调查游客在园区内人均购买了多少瓶饮料?(3)已知B、C两个出口的被调查游客在园区内人均购买饮料的数量如表一所示若C出口的被调查人数比B出口的被调查人数多2万,且B、C两个出口的被调查游客在园区内共购买了49万瓶饮料,试问B出口的被调查游客人数为多少万?23.如图,李明同学在东西方向的滨海路A处,测得海中灯塔P在北偏东60°方向上,他向东走400米至B处,测得灯塔P在北偏东30°方向上,求灯塔P到滨海路的距离.(结果保留根号)24.杨嫂在再就业中心的扶持下,创办了“爱家”报刊零售点,对经营的某种晚报,杨嫂提供了如下信息:①买进每份0.20元,卖出0.30元;②在一个月内(以30天计),其中有20天每天可以卖出200份,其余的10天每天就只能卖出120份;③一个月内,每天从报社买进的报纸份数必须相同,当天卖不掉的报纸以每份0.10元退回给报社.(1)填表:(2)设每天从报社买进晚报x份(120≤x≤200)时,月利润为y元,试写出y和x的函数关系式,并求月利润的最大值.五、综合题(共2个小题,25题8分,26题10分,共18分)25.如图(1),点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM.(1)证明:①CN=DM;②CN⊥DM;(2)设CN、DM的交点为H,连接BH,如图(2),求证:△BCH是等腰三角形.26.(10分)(2016•邵阳模拟)如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(1,0),与y轴交于点D(0,4),点C(﹣2,n)也在此抛物线上.(1)求此抛物线的解析式及点C的坐标;(2)设BC交y轴于点E,连接AE,AC请判断△ACE的形状,并说明理由;(3)连接AD交BC于点F,试问:以A,B,F为顶点的三角形与△ABC相似吗?请说明理由.2016年湖南省邵阳市中考数学模拟试卷(一)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.计算6m3÷(﹣3m2)的结果是()A.﹣3m B.﹣2m C.2m D.3m【考点】整式的除法.【分析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.【解答】解:6m3÷(﹣3m2),=[6÷(﹣3)](m3÷m2),=﹣2m.故选B.【点评】本题主要考查单项式除单项式,熟练掌握运算法则是解题的关键.2.下面四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个【考点】简单几何体的三视图.【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.【解答】解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体,故选:B.【点评】考查立体图形的左视图,考查学生的观察能力.3.世界文化遗产长城总长约6 700 000m,用科学记数法可表示为()A.6.7×105m B.6.7×10﹣5m C.6.7×106m D.6.7×10﹣6m【考点】科学记数法—表示较大的数.【分析】确定a×10n(1≤|a|<10,n为整数)中n的值是易错点,由于6 700 000有7位,所以可以确定n=7﹣1=6.【解答】解:6 700 000=6.7×106m.故选C.【点评】把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.4.某商店在一周内卖出某种品牌衬衫的尺寸数据如下:38,42,38,41,36,41,39,40,41,40,43那么这组数据的中位数和众数分别为()A.40,40 B.41,40 C.40,41 D.41,41【考点】中位数;众数.【分析】首先把所给数据重新从小到大排序,然后根据中位数和众数的定义即可求出结果.【解答】解:把已知数据重新从小到大排序后为36,38,38,39,40,40,41,41,41,42,43,∴中位数为40,众数为41.故选C.【点评】本题用到的知识点是:①一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数;②给定一组数据,出现次数最多的那个数,称为这组数据的众数.一组数据是不一定存在众数的;如果一组数据存在众数,则众数一定是数据集里的数.5.如图,已知直线a、b被直线c所截,a∥b,∠1=50°,则∠2=()A.50° B.130°C.40° D.60°【考点】平行线的性质.【分析】先利用平行线的性质可得∠3=∠1,又由对顶角相等推出∠2=∠3,故∠2的度数可求.【解答】解:如图,∵a∥b,∠1=50°,∴∠3=∠1=50°,∵∠2=∠3,∴∠2=∠1=50°.故选:A.【点评】本题主要考查平行线的性质,掌握两直线平行,同位角相等和对顶角相等是关键.6.若分式有意义,则x应满足()A.x=0 B.x≠0 C.x=1 D.x≠1【考点】分式有意义的条件.【分析】分式有意义的条件为:x﹣1≠0,即可求得x的范围.【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故选D.【点评】此题主要考查了分式的意义,要求掌握,对于任意一个分式,分母都不能为0,否则分式无意义.7.如图,圆心角∠AOB=80°,则∠ACB的度数为()A.80° B.40° C.60° D.45°【考点】圆周角定理.【分析】认真观察图形,利用同弧所对的圆周角等于圆心角的一半可直接得到答案.【解答】解:∵∠AOB=80°,∴∠ACB=∠AOB=×80°=40°.故选B.【点评】本题考查了圆周角定理;应用圆周角定理时,注意在同圆或等圆中这一条件,本题比较简单,属于基础题.8.不等式组:的解集在数轴上可表示为()A.B. C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解不等式组得:,再分别表示在数轴上即可得解.【解答】解:由x+1>﹣2得x>﹣3,又x≤1,则不等式组的解集为﹣3<x≤1.第一选项代表1≥x>﹣3;第二选项代表x≥1或x<﹣3;第三选项代表x≥1;第四选项代表x<﹣3.故选A.【点评】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.【考点】函数的图象.【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【解答】解:根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢.故选:C.【点评】考查根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.10.如图,在△ABC中,点D、E分别为AB、AC的中点,则下列结论:①BC=2DE;②△ADE ∽△ABC;③ =;④S△ADE=S△ABC;其中错误的是()A.①B.②C.③D.④【考点】相似三角形的判定与性质;三角形中位线定理.【分析】根据D,E分别是△ABC的边AB,AC的中点,得到DE是△ABC的中位线,再利用中位线的性质得到DE与BC的关系,判断三角形相似,根据相似三角形的性质对所给命题进行判断.【解答】解:∵D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE=BC,DE∥BC.∵DE=BC,∴BC=2DE.∴故选项①正确.∵DE∥BC,∴△ADE∽△ABC.∴故选项②正确.∵△ADE∽△ABC,∴,∴故选项③正确.∵DE:BC=1:2,又△ADE∽△ABC,∴S△ADE:S△ABC=1:4,∴S△ADE:S四边形BCED=1:3.∴故④错误.故选:D.【点评】本题考查的是相似三角形的判定与性质,根据题意得到DE是三角形的中位线,再用中位线的性质判定相似三角形,然后用相似三角形的性质判定三角形与四边形的面积关系.二、填空题(共8小题,每小题3分,满分24分)11.多项式xa2﹣xb2因式分解的结果是x(a+b)(a﹣b).【考点】提公因式法与公式法的综合运用.【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(a2﹣b2)=x(a+b)(a﹣b),故答案为:x(a+b)(a﹣b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.如图,若△OAC≌△OBD,且∠O=65°,∠C=20°,则∠OBD= 95°.【考点】全等三角形的性质.【分析】根据全等三角形的性质:∠D=∠C=20°,再根据三角形内角和定理进行计算.【解答】解:∵△OAC≌△OBC,∴∠D=∠C=20°,∵∠O=65°,∴∠OBD=180°﹣∠O﹣∠D=180°﹣65°﹣20°=95°.【点评】本题考查了全等三角形的性质,熟练掌握全等三角形的对应边相等,全等三角形的对应角相等;属于基础题.13.与的积为正整数的数是(答案不唯一)(写出一个即可).【考点】分母有理化.【分析】只要与相乘,积为正整数即可.从简单的二次根式中寻找.【解答】解:与的积为正整数的数是:(答案不唯一).【点评】本题考查了实数的有理化因式的确定方法.可以从积或约分两方面考虑.14.从一副扑克牌里任意抽取一张,抽到“王”(“大王”或“小王”)的概率是.【考点】概率公式.【分析】从一副牌中任取一张总共有54种情况,其中有两种情况是王.根据概率公式进行求解.【解答】解:抽到“王”(“大王”或“小王”)的概率是.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.若正多边形的内角和是540°,那么这个多边形一定是正 5 边形.【考点】多边形内角与外角.【分析】直接利用多边形内角和公式(n﹣2)•180°=540°求解即可.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=540°,解得n=5.故这个多边形一定是正五边形.【点评】主要考查了多边形的内角和公式.要掌握该公式:多边形的内角和等于(n﹣2)•180°.16.方程(x﹣5)(2x﹣1)=3的根的判别式b2﹣4ac= 105 .【考点】根的判别式.【分析】先把方程(x﹣5)(2x﹣1)=3化为一元二次方程的一般形式,再求出根的判别式即可.【解答】解:方程(x﹣5)(2x﹣1)=3化为一元二次方程的一般形式为:2x2﹣11x+2=0,故△=b2﹣4ac=(﹣11)2﹣4×2×2=105.故答案为:105.【点评】本题考查的是一元二次方程的根的判别式,解答此类题目时要先把方程化为一元二次方程的一般形式,再进行解答.17.如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是8 米.【考点】相似三角形的应用.【分析】Rt△ABP和Rt△CDP相似,即1.2:1.8=CD:12求得该古城墙的高度.【解答】解:由题意知:光线AP与光线PC,∠APB=∠CPD,所以Rt△ABP∽Rt△CDP,所以AB:BP=CD:PD即1.2:1.8=CD:12,解得CD=8米.故答案为:8.【点评】本题考查了相似三角形的应用,从△ABP和△PCD相似,即求得PD.18.将抛物线y=2x2向下平移1个单位,得到的抛物线是y=2x2﹣1 .【考点】二次函数图象与几何变换.【分析】由于抛物线向下平移1个单位,则x'=x,y'=y﹣1,代入原抛物线方程即可得平移后的方程.【解答】解:由题意得:,代入原抛物线方程得:y'+1=2x'2,即y=2x2﹣1.故答案为y=2x2﹣1.【点评】本题考查了二次函数图象的几何变换,重点是找出平移变换的关系.三、解答题(共3小题,满分24分)19.计算()﹣2+()0×|﹣1|【考点】实数的运算.【分析】本题涉及负指数幂、零指数幂和绝对值.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=4+1×=4.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.已知x2﹣5x=3,求(x﹣1)(2x﹣1)﹣(x+1)2+1的值.【考点】整式的混合运算—化简求值.【分析】将原式的第一项利用多项式乘以多项式的法则计算,第二项利用完全平方公式化简,去括号合并后得到最简结果,然后将x2﹣5x=3代入化简后的式子中计算,即可得到原式的值.【解答】解:(x﹣1)(2x﹣1)﹣(x+1)2+1=2x2﹣x﹣2x+1﹣(x2+2x+1)+1=2x2﹣x﹣2x+1﹣x2﹣2x﹣1+1=x2﹣5x+1,∵x2﹣5x=3,∴原式=3+1=4.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:多项式乘以多项式的法则,完全平方公式,去括号法则,以及合并同类项法则,熟练掌握法则及公式是解本题的关键.21.如图,点F是CD 的中点,且AF⊥CD,BC=ED,∠BCD=∠EDC.(1)求证:BF=EF;(2)求证:AB=AE.【考点】全等三角形的判定与性质.【分析】(1)根据中点定义可得CF=DF,然后证明△BCF≌△EDF,进而可得FB=FE;(2)根据△BCF≌△EDF可得FB=EF,∠BFC=∠EFD,再证明∠BFA=∠EFA,然后判定△ABF ≌△AEF可得AB=AE.【解答】证明:(1)∵点F是CD 的中点,∴CF=DF,在△BCF和△EDF中,∴△BCF≌△EDF(SAS),∴FB=FE;(2)∵△BCF≌△EDF,∴FB=EF,∠BFC=∠EFD,∵AF⊥CD,∴∠BFC+∠AFB=∠AFE+∠EFD,∴∠BFA=∠EFA,在△ABF和△AEF中,∴△ABF≌△AEF(SAS),∴AB=AE.【点评】此题主要考查了全等三角形的判定和性质,关键是掌握全等三角形的判定定理:SSS、ASA、SAS、AAS、HL,掌握全等三角形对应边相等,对应角相等.四、应用题(共3个小题,每小题8分,共24分)22.某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A、B、C三个出口处,对离开园区的游客进行调查,其中在A出口调查所得的数据整理后绘成图(1)在A出口的被调查游客中,购买2瓶及2瓶以上饮料的游客人数占A出口的被调查游客人数的60 %.表一(2)试问A出口的被调查游客在园区内人均购买了多少瓶饮料?(3)已知B、C两个出口的被调查游客在园区内人均购买饮料的数量如表一所示若C出口的被调查人数比B出口的被调查人数多2万,且B、C两个出口的被调查游客在园区内共购买了49万瓶饮料,试问B出口的被调查游客人数为多少万?【考点】条形统计图.【分析】(1)根据条形统计图即可求得总人数和购买2瓶及2瓶以上的人数,从而求得购买2瓶及2瓶以上所占的百分比;(2)根据加权平均数进行计算;(3)设B出口人数为x万人,则C出口人数为(x+2)万人.根据B、C两个出口的被调查游客在园区内共购买了49万瓶饮料,列方程求解即可.【解答】解:(1)由图可知,购买2瓶及2瓶以上饮料的游客人数为2.5+2+1.5=6(万人),而总人数为:1+3+2.5+2+1.5=10(万人),所以购买2瓶及2瓶以上饮料的游客人数占A出口的被调查游客人数的=60%,故答案为:60.(2)购买饮料总数位:3×1+2.5×2+2×3+1.5×4=3+5+6+6=20(万瓶).人均购买瓶数: =2(瓶).(3)设B出口人数为x万人,则C出口人数为(x+2)万人.则有3x+2(x+2)=49,解之得x=9.所以B出口游客人数为9万人.答:B出口的被调查游客人数为9万人.【点评】本题考查的是条形统计图的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.如图,李明同学在东西方向的滨海路A处,测得海中灯塔P在北偏东60°方向上,他向东走400米至B处,测得灯塔P在北偏东30°方向上,求灯塔P到滨海路的距离.(结果保留根号)【考点】解直角三角形的应用-方向角问题.【分析】过P作AB的垂线,设垂足为C.易知∠BAP=30°,∠PBC=60°.∠BPA=∠BAP=30°,得PB=AB=400;在Rt△PBC中,可用正弦函数求出PC的长.【解答】解:过点P作PC⊥AB,垂足为C.(1分)由题意,得∠PAB=30°,∠P BC=60°.∵∠PBC是△APB的一个外角,∴∠APB=∠PBC﹣∠PAB=30°.(3分)∴∠PAB=∠APB,(4分)故AB=PB=400.(6分)在Rt△PBC中,∠PCB=90°,∠PBC=60°,PB=400,∴PC=PB•sin60°=400×=米.(10分)【点评】本题主要考查了方向角含义,能够发现△PBA是等腰三角形,并正确的构建出直角三角形是解答此题的关键.24.杨嫂在再就业中心的扶持下,创办了“爱家”报刊零售点,对经营的某种晚报,杨嫂提供了如下信息:①买进每份0.20元,卖出0.30元;②在一个月内(以30天计),其中有20天每天可以卖出200份,其余的10天每天就只能卖出120份;③一个月内,每天从报社买进的报纸份数必须相同,当天卖不掉的报纸以每份0.10元退回给报社.(1)填表:(2)设每天从报社买进晚报x份(120≤x≤200)时,月利润为y元,试写出y和x的函数关系式,并求月利润的最大值.【考点】一次函数的应用.【分析】(1)当每天进报纸是100份时,根据有20天每天可以卖出200份,其余的10天每天就只能卖出120份可知道报纸都能卖出,从而求得利润;当进150份报纸时,有10天卖出120份,所以有剩下的报纸,再根据当天卖不掉的报纸以每份0.10元退回给报社可求出利润.(2)设每天从报社买进晚报x份(120≤x≤200)时,利润y=20天全卖掉情况的利润+10天卖掉120份的利润﹣10天中每天卖不掉的报纸赔的钱,根据此关系式可列出函数式.【解答】解:(1)一个月每天买进该晚报的份数为100时:30×(0.30﹣0.20)×100=300(元).一个月每天买进该晚报的份数为150时:20×(0.30﹣0.20)×150+10×(0.30﹣0.20)×120﹣10×(0.20﹣0.10)×(150﹣120)=390(元).故答案为:300,390.(2)设每天从报社买进晚报x份(120≤x≤200且为整数)时,y=20(0.30﹣0.20)x+10×(0.30﹣0.20)×120﹣10(x﹣120)(0.20﹣0.10)=x+240.当x取最大值时,y取到最大值.x的最大值为200,∴y=200+240=440.月利润的最大值为440.【点评】本题考查一次函数的应用,根据题意列出函数式,以及根据函数式的特点和自变量的取值范围求出最值.五、综合题(共2个小题,25题8分,26题10分,共18分)25.如图(1),点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM.(1)证明:①CN=DM;②CN⊥DM;(2)设CN、DM的交点为H,连接BH,如图(2),求证:△BCH是等腰三角形.【考点】正方形的性质;全等三角形的判定与性质;等腰三角形的判定.【分析】(1)利用正方形的性质可求证△ADM≌△DCN,所以CN=DM,∠ADM=∠DCN,∠ADM+∠CDM=∠DCN+∠CDM=90°,即可求证∠CHD=90°;(2)连接CM,易证M、B、C、H四点共圆,所以∠BMC=∠BHC,证明△AMD≌△BCM,即可求证∠BHC=∠BCH【解答】解:(1)由题意知:AD=CD,∵M、N分别是AB和AD的中点,∴AM=DN,在△ADM与△DCN中,,∴△ADM≌△DCN(SAS),∴DM=CN,∠ADM=∠DCN,∴∠DCN+∠CDM=∠ADM+∠CDM=90°,∴∠CHD=90°,∴CN⊥DM;(2)连接CM,由(1)可知:∠AMD=90°﹣∠ADM,∠BCH=90°﹣∠DCN,∴∠AMD=∠BCH,∴M、B、C、H四点共圆,∴∠BMC=∠BHC,在△BCM与△ADM中,,∴△BCM≌△ADM(SAS),∴∠BMC=∠AMD,∴∠BHC=∠AMD=∠BCH,∴△BCH是等腰三角形【点评】本题考查正方形的性质,涉及四点共圆,全等三角形的性质,圆周角定理等知识,综合程度高,考查学生灵活运用知识的能力.26.(10分)(2016•邵阳模拟)如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(1,0),与y轴交于点D(0,4),点C(﹣2,n)也在此抛物线上.(1)求此抛物线的解析式及点C的坐标;(2)设BC交y轴于点E,连接AE,AC请判断△ACE的形状,并说明理由;(3)连接AD交BC于点F,试问:以A,B,F为顶点的三角形与△ABC相似吗?请说明理由.【考点】二次函数综合题.【分析】(1)由A、B、D三点坐标,利用待定系数法可求得抛物线解析式,把C点坐标代入解析式可求得n的值,可求得C点坐标;(2)把C点坐标代入抛物线解析式可求得n,可得C点坐标,利用待定系数法可求得直线BC的解析式,则可求得E点坐标,利用勾股定理可求得AC、AE、CE的长,则可判断△ACE 的形状;(3)由A、D坐标可先求得直线AD解析式,联立直线BC、AD解析式可求得F点坐标,又可求得BF、BC和AB的长,由题意可知∠ABF=∠CAB,若以A,B,F为顶点的三角形与△ABC 相似只有∠BFA=∠CAB,则判定和是否相等即可.【解答】解:(1)∵抛物线经过A、B、D三点,∴代入抛物线解析式可得,解得,∴抛物线y=﹣x2﹣3x+4,∵点C(﹣2,n)也在此抛物线上,∴n=﹣4+6+4=6,∴C点坐标为(﹣2,6);(2)△ACE为等腰直角三角形,理由如下:设直线BC解析式为y=kx+s,把B、C两点坐标代入可得,解得,∴直线BC解析式为y=﹣2x+2,令x=0可得y=2,∴E点坐标为(0,2),∵A(﹣4,0),C(﹣2,6),∴AC===2,AE===2,CE===2,∴AE2+CE2=20+20=40=AC2,且AE=CE,∴△ACE为等腰直角三角形;(3)相似,理由如下:设直线AD解析式为y=px+q,把A、D坐标代入可得,解得,∴直线AD解析式为y=x+4,联立直线AD、BC解析式可得,解得,∴F点坐标为(﹣,),∴BF==,BC==3,且AB=1﹣(﹣4)=5,∴==, ==,∴=,且∠BFA=∠CAB,∴△ABF∽△CBA.【点评】本题为二次函数的综合应用,涉及待定系数法、勾股定理及其逆定理、相似三角形的判定和性质等知识点.在(1)中注意待定系数法的应用步骤是解题的关键,在(2)中求得E点坐标是解题的关键,在(3)中求得F点的坐标是解题的关键,注意勾股定理的应用.本题考查知识点较多,综合性较强,难度适中.。
最新湖南省邵阳市中考数学试卷(word解析版)
2016年湖南省邵阳市中考数学试卷(word解析版)一、选择题:本大题共10小题,每小题3分,共30分1.﹣的相反数是()A.B.﹣C.﹣D.﹣22.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.3.如图所示,直线AB、CD被直线EF所截,若AB∥CD,∠1=100°,则∠2的大小是()A.10° B.50° C.80° D.100°4.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是()A.95 B.90 C.85 D.805.一次函数y=﹣x+2的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.分式方程=的解是()A.x=﹣1 B.x=1 C.x=2 D.x=37.一元二次方程2x2﹣3x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根8.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC9.如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A.15° B.30° C.60° D.75°10.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1二、填空题:本大题共8小题,每小题3分,共24分11.将多项式m3﹣mn2因式分解的结果是.12.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:选手甲乙平均数(环)9.5 9.5方差0.035 0.015请你根据上表中的数据选一人参加比赛,最适合的人选是.13.将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是.14.已知反比例函数(k≠0)的图象如图所示,则k的值可能是(写一个即可).15.不等式组的解集是.16.2015年7月,第四十五届“世界超级计算机500强排行榜”榜单发布,我国国防科技大学研制的“天河二号”以每秒3386×1013次的浮点运算速度第五次蝉联冠军,若将3386×1013用科学记数法表示成a×10n的形式,则n的值是.17.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件(写一个即可),使四边形ABCD是平行四边形.18.如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O,A,B均为格点,则扇形OAB的面积大小是.三、解答题:本大题共3小题,每小题8分,共24分19.计算:(﹣2)2+2cos60°﹣()0.20.先化简,再求值:(m﹣n)2﹣m(m﹣2n),其中m=,n=.21.如图所示,点E,F是平行四边形ABCD对角线BD上的点,BF=DE,求证:AE=CF.四、解答题:本大题共3小题,每小题8分,共24分22.如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,).23.为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A,B两种品牌的足球的单价.(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.24.为了解市民对全市创卫工作的满意程度,某中学教学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2为进行回访,已知4为市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.五、综合题:本大题共2小题,其中25题8分,26题10分,共18分25.尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.求证:a2+b2=5c2该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF 中利用勾股定理计算,消去m,n即可得证(1)请你根据以上解题思路帮尤秀同学写出证明过程.(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.26.已知抛物线y=ax2﹣4a(a>0)与x轴相交于A,B两点(点A在点B的左侧),点P是抛物线上一点,且PB=AB,∠PBA=120°,如图所示.(1)求抛物线的解析式.(2)设点M(m,n)为抛物线上的一个动点,且在曲线PA上移动.①M在曲线PB之间(含端点)移动时,是否存在点M使△APM的面积为?若存在,求点M的坐标;若不存在,请说明理由.②当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M的坐标.2016年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.﹣的相反数是()A.B.﹣C.﹣D.﹣2【考点】实数的性质.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选A.2.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.3.如图所示,直线AB、CD被直线EF所截,若AB∥CD,∠1=100°,则∠2的大小是()A.10° B.50° C.80° D.100°【考点】平行线的性质.【分析】根据平行线的性质得到∠3=∠1=100°,根据平角的定义即可得到结论.【解答】解:∵AB∥CD,∠3=∠1=100°,∴∠2=180°﹣∠3=80°,故选C.4.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是()A.95 B.90 C.85 D.80【考点】众数;折线统计图.【分析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故选B.5.一次函数y=﹣x+2的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数的图象;一次函数图象与系数的关系.【分析】根据一次函数的系数确定函数图象经过的象限,由此即可得出结论.【解答】解:∵一次函数y=﹣x+2中k=﹣1<0,b=2>0,∴该函数图象经过第一、二、四象限.故选C.6.分式方程=的解是()A.x=﹣1 B.x=1 C.x=2 D.x=3【考点】分式方程的解.【分析】观察可得最简公分母是x(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:两边都乘以x(x+1)得:3(x+1)=4x,去括号,得:3x+3=4x,移项、合并,得:x=3,经检验x=3是原分式方程的解,故选:D.7.一元二次方程2x2﹣3x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】代入数据求出根的判别式△=b2﹣4ac的值,根据△的正负即可得出结论.【解答】解:∵△=b2﹣4ac=(﹣3)2﹣4×2×1=1>0,∴该方程有两个不相等的实数根.故选B.8.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC【考点】等腰三角形的性质.【分析】根据等腰三角形的两个底角相等,由AD=BD得到∠A=∠ABD,所以∠ABC>∠A,则对各C、D选项进行判断;根据大边对大角可对A、B进行判断.【解答】解:∵AD=BD,∴∠A=∠ABD,∴∠ABC>∠A,所以C选项和D选项错误;∴AC>BC,所以A选项正确;B选项错误.故选A.9.如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A.15° B.30° C.60° D.75°【考点】切线的性质;圆周角定理.【分析】首先连接OD,由CA,CD是⊙O的切线,∠ACD=30°,即可求得∠AOD 的度数,又由OB=OD,即可求得答案.【解答】解:连接OD,∵CA,CD是⊙O的切线,∴OA⊥AC,OD⊥CD,∴∠OAC=∠ODC=90°,∵∠ACD=30°,∴∠AOD=360°﹣∠C﹣∠OAC﹣∠ODC=150°,∵OB=OD,∴∠DBA=∠ODB=∠AOD=75°.故选D.10.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【考点】规律型:数字的变化类.【分析】由题意可得下边三角形的数字规律为:n+2n,继而求得答案.【解答】解:∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,2+22,…,n+2n,∴y=2n+n.故选B.二、填空题:本大题共8小题,每小题3分,共24分11.将多项式m3﹣mn2因式分解的结果是m(m+n)(m﹣n).【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式后,利用平方差公式分解即可.【解答】解:原式=m(m2﹣n2)=m(m+n)(m﹣n).故答案为:m(m+n)(m﹣n)12.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔10成绩及方差如下表:选手甲乙平均数(环)9.5 9.5方差0.035 0.015最适合的人选是乙.【考点】方差;算术平均数.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:因为S甲2=0.035>S乙2=0.015,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.13.将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是120°.【考点】旋转的性质;等边三角形的性质.【分析】根据旋转的性质和等边三角形的性质解答即可.【解答】解:∵三角形ABC是等边三角形,∴∠ACB=60°,∵等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,∴∠BCA'=180°,∠B'CA'=60°,∴∠ACB'=60°,∴∠α=60°+60°=120°,故答案为:120°.14.已知反比例函数y=(k≠0)的图象如图所示,则k的值可能是﹣1(写一个即可).【考点】反比例函数的性质.【分析】利用反比例函数的性质得到k<0,然后在此范围内取一个值即可.【解答】解:∵双曲线的两支分别位于第二、第四象限,∴k<0,∴k可取﹣1.故答案为﹣1.15.不等式组的解集是﹣2<x≤1.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解,精品文档由 ①得 , x≤1, 由 ②得 , x> ﹣ 2, 故不等式组的解集 为 :﹣2<x≤1. 故 答 案 为 : ﹣ 2< x≤1.16.2015 年 7 月, 第 四十五届“世界超级 计 算机 500 强排行榜”榜 单发布,我 国国防科技大学研 制 的 “天河二号”以每秒 3386×1013 次的浮点运算速度第五 次 蝉 联 冠 军 ,若 将 338 6×1013 用 科 学 记 数 法 表 示 成 a×10n 的 形 式 ,则 n 的 值 是 16 .【考点】科学记数法 —表示较大的数. 【分析】直接利用科学记数法的表示方法分析得出 n 的值. 【 解 答 】 解 : 3386×1013=3.386×1016, 则 n=16. 故 答 案 为 : 16.17.如图所示,四 边 形 ABCD 的对角线相交于点 O,若 AB∥ CD,请添加一 个 条 件 AD∥ BC ( 写 一 个 即 可 ), 使 四 边 形 ABCD 是 平 行 四 边 形 .【考点】平行四边形的判定. 【分析】根据平行四边形的定义或判定定理即可解答. 【 解 答 】 解 : 可 以 添 加 : AD∥ BC( 答 案 不 唯 一 ). 故答案是:AD∥ BC.18.如图所示,在 3×3 的方格纸中,每 个小 方格都是边长为 1 的 正方形,点O,A,B 均为格点,则扇形 OAB 的面积大小是.【考点】扇形面积的计算. 【 分 析 】 根 据 题 意 知 , 该 扇 形 的 圆 心 角 是 9 0°. 根 据 勾 股 定 理 可 以 求 得 OA=OB= ,由扇形面积 公式可得出结论.精品文档精品文档【解答】解:∵ 每个小方格都是边长为 1 的正方形,∴ OA=OB==,∴ S 扇 形 OAB===.故答案为: .三 、 解答 题: 本大 题共 3 小 题, 每小 题 8 分 , 共 24 分19. 计 算 :( ﹣ 2) 2+2 cos60°﹣ () 0.【考点】实数的运算;零指数幂;特殊角的三角函数值. 【分析】原式利用乘方的意义,特殊角的三角函数值,以及零指数幂法则计 算即可得到结果.【解答】解:原式=4+2× ﹣1=4+1﹣ 1 =4.20. 先 化 简 , 再 求 值 :( m﹣ n) 2﹣ m( m﹣ 2 n), 其 中 m= , n= . 【 考 点 】 整 式 的 混 合 运 算 —化 简 求 值 . 【分析】原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号 合并得到最简结果,把 m 与 n 的值代入计算即可求出值. 【 解 答 】 解 : 原 式 =m2﹣ 2mn+n2﹣ m2+2mn=n2, 当 n= 时,原式=2.21.如 图 所 示 ,点 E,F 是 平 行 四 边 形 ABCD 对 角 线 BD 上 的 点 ,BF=DE,求 证 : AE=CF.【考点】平行四边形的性质;全等三角形的判定与性质. 【分析】根据平行 四 边形的性质可得 AD∥ BC,AD=BC,根据平行线的性质 可 得 ∠ EDA=∠ FBC,再 加 上 条 件 ED=B F 可 利 用 SAS 判 定 △ AED≌ △ CFB ,进 而 可 得 AE=CF. 【解答】证明:∵ 四边形 ABCD 是平行四边形, ∴ AD∥ BC,AD=BC, ∴ ∠ EDA=∠ FBC, 在 △ AED 和 △ CFB 中 ,精品文档精品文档,∴ △ AED≌ △ CFB( SAS), ∴ AE=CF.四 、 解答 题: 本大 题共 3 小 题, 每小 题 8 分 , 共 24 分22.如 图 为 放 置 在 水 平 桌 面 上 的 台 灯 的 平 面 示 意 图 ,灯 臂 AO 长 为 40cm,与水 平 面 所 形 成 的 夹 角 ∠ OAM 为 75°. 由 光 源 O 射 出 的 边 缘 光 线 OC, OB 与 水平 面 所 形 成 的 夹 角 ∠ O CA, ∠ OBA 分 别 为 90°和 30°, 求 该 台 灯 照 亮 水 平 面 的宽 度 BC( 不 考 虑 其 他 因 素 , 结 果 精 确 到 0.1cm. 温 馨 提 示 : sin75°≈0.97,cos75°≈0.26,).【考点】解直角三角形的应用.【 分 析 】 根 据 sin75°= = , 求 出 OC 的 长 , 根 据 tan30°= , 再 求 出 BC的长,即可求解.【 解 答 】 解 : 在 直 角 三 角 形 ACO 中 , sin75 °= = ≈0.97,解得 OC≈38.8,在 直 角 三 角 形 BCO 中 , tan30°= =≈,解得 BC≈67.3. 答 : 该 台 灯 照 亮 水 平 面 的 宽 度 BC 大 约 是 67.3cm.23.为了响应“足球 进 校园”的目标,某校 计 划为学校足球队购 买 一批足球, 已 知 购 买 2 个 A 品 牌 的 足 球 和 3 个 B 品 牌 的 足 球 共 需 380 元 ;购 买 4 个 A 品 牌的足球和 2 个 B 品 牌的足球共需 360 元 . (1)求 A,B 两种品 牌的足球的单价. (2)求该校购买 20 个 A 品牌的足球和 2 个 B 品牌的足球的总 费用.【考点】二元一次方程组的应用. 精品文档精品文档【 分 析 】( 1 ) 设 一 个 A 品 牌 的 足 球 需 x 元 , 则 一 个 B 品 牌 的 足 球 需 y 元 , 根 据“购买 2 个 A 品牌的 足球和 3 个 B 品牌的 足球共需 380 元; 购 买 4 个 A 品 牌的足球和 2 个 B 品 牌的足球共需 360 元”列出方程组并解答 ; (2)把(1)中的 数 据代入求值即可. 【 解 答 】解 :( 1)设 一 个 A 品 牌 的 足 球 需 x 元 ,则 一 个 B 品 牌 的 足 球 需 y 元 ,依题意得:,解得.答:一个 A 品牌的足 球需 90 元,则一 个 B 品牌的足球需 100 元 ;( 2) 依 题 意 得 : 20×9 0+2×100=1900( 元 ). 答:该校购买 20 个 A 品牌的足球和 2 个 B 品牌的足球的总费 用 是 1900 元.24.为 了 解 市 民 对 全 市 创 卫 工 作 的 满 意 程 度 ,某 中 学 教 学 兴 趣 小 组 在 全 市 甲 、 乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满 意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题: (1)求此次调查中 接 受调查的人数. (2)求此次调查中 结 果为非常满意的人 数 . ( 3)兴 趣 小 组 准 备 从 调 查 结 果 为 不 满 意 的 4 位 市 民 中 随 机 选 择 2 为 进 行 回 访 , 已知 4 为市民中有 2 位来自甲区,另 2 位来自乙区,请用列表或用画树状图 的方法求出选择的市民均来自甲区的概率. 【考点】列表法与树状图法;扇形统计图;条形统计图. 【 分 析 】( 1)由 满 意 的 有 20 人 ,占 40 %, 即 可 求 得 此 次 调 查 中 接 受 调 查 的 人 数. ( 2) 由 ( 1), 即 可 求 得 此 次 调 查 中 结 果 为 非 常 满 意 的 人 数 . ( 3)首 先 根 据 题 意 画 出 树 状 图 ,然 后 由 树 状 图 求 得 所 有 等 可 能 的 结 果 与 选 择 的市民均来自甲区的情况,再利用概率公式即可求得答案. 【 解 答 】 解 :( 1) ∵ 满 意 的 有 20 人 , 占 40 %, ∴ 此 次 调 查 中 接 受 调 查 的 人 数 : 20÷40%=5 0( 人 );( 2) 此 次 调 查 中 结 果 为 非 常 满 意 的 人 数 为 : 50﹣ 4﹣ 8﹣ 20=18( 人 );( 3) 画 树 状 图 得 :精品文档精品文档∵ 共有 12 种等可能的 结果,选择的市民 均 来自甲区的有 2 种 情 况, ∴ 选择的市民均来自甲区的概率为: = .五 、 综合 题: 本大 题共 2 小 题, 其 中 25 题 8 分 , 26 题 10 分 ,共 18 分 25. 尤 秀 同 学 遇 到 了 这 样 一 个 问 题 : 如 图 1 所 示 , 已 知 AF, BE 是 △ ABC 的 中 线 , 且 AF⊥BE, 垂 足 为 P, 设 BC=a, AC=b, AB=c. 求 证 : a2+b2=5c2 该同学仔细分析后,得到如下解题思路:先 连 接 E F,利 用 E F 为 △ ABC 的 中 位 线 得 到 △ EP F∽ △ BPA,故,设 PF=m,PE=n,用 m,n 把 PA,PB 分 别 表 示 出 来 ,再 在 Rt△ APE,Rt△ BPF 中 利 用 勾 股 定 理 计 算 , 消 去 m, n 即 可 得 证 (1)请你根据以上 解 题思路帮尤秀同学 写 出证明过程. (2)利用题中的结 论 ,解答下列问题: 在 边 长 为 3 的 菱 形 ABCD 中 ,O 为 对 角 线 AC,BD 的 交 点 ,E,F 分 别 为 线 段 AO,DO 的中点,连接 BE,CF 并延长交 于点 M,BM,CM 分 别交 AD 于点 G,H,如图 2 所示,求 MG2+MH2 的值.【考点】相似三角形的判定;三角形中位线定理. 【 分 析 】( 1) 设 P F= m, P E=n, 连 结 EF, 如 图 1, 根 据 三 角 形 中 位 线 性 质 得 E F∥ AB,E F= c,则 可 判 断 △ E FP ∽ △ BPA ,利 用 相 似 比 得 到 P B=2n,PA=2m,接 着 根 据 勾 股 定 理 得 到 n2 +4m2 = b2 ,m2 +4n2 = a2 ,则 5( n2 +m2 )= ( a2 +b2 ),而 n2+m2=EF2= c2, 所 以 a2+b2=5c2; ( 2) 利 用 ( 1) 的 结 论 得 MB2+MC2=5BC2=5×32=45, 再 利 用 △ AEG∽ △ CEB 可计算出 AG=1,同理可得 DH=1,则 GH=1,然后利用 GH∥ BC,根据平 行 线 分 线 段 长 比 例 定 理 得 到 MB=3GM, MC=3MH, 然 后 等 量 代 换 后 可 得 MG2+MH2=5. 【 解 答 】 解 :( 1) 设 P F= m, P E=n, 连 结 E F, 如 图 1, ∵ AF, BE 是 △ ABC 的中 线 ,精品文档精品文档∴ EF 为 △ ABC 的 中 位 线 , AE= b, BF= a,∴ EF∥ AB, EF= c,∴ △ EFP ∽ △ BPA,∴,即 = = ,∴ P B=2n, PA=2m, 在 Rt△ AEP 中 , ∵ P E2+PA 2=AE2,∴ n2+4m2= b2①,在 Rt△ AEP 中 , ∵ PF2+PB2=BF2,∴ m2+4n2= a2②,①+②得 5( n2 +m2 ) = ( a2 +b2 ), 在 Rt△ EFP 中 , ∵ PE2+PF2=EF2, ∴ n2+m2=EF2= c2,∴ 5• c2 = ( a2 +b2 ),∴ a2+b2=5c2; (2)∵ 四边形 ABCD 为菱形, ∴ BD⊥AC, ∵ E,F 分别为线段 AO,DO 的中点, 由 ( 1) 的 结 论 得 MB2+MC2=5BC2=5×32=45, ∵ AG∥ BC, ∴ △ AEG∽ △ CEB,∴ = =,∴ AG=1, 同理可得 DH=1, ∴ GH=1, ∴ GH∥ BC,∴ = = =,∴ MB=3GM, MC=3MH, ∴ 9MG2+9MH2=45, ∴ MG2+MH2=5.精品文档精品文档26. 已 知 抛 物 线 y=ax2﹣ 4a( a> 0) 与 x 轴 相 交 于 A, B 两 点 ( 点 A 在 点 B 的 左 侧 ), 点 P 是 抛 物 线 上 一 点 , 且 P B=AB, ∠ P BA=120°, 如 图 所 示 . (1)求抛物线的解 析 式. ( 2) 设 点 M( m, n) 为 抛 物 线 上 的 一 个 动 点 , 且 在 曲 线 PA 上 移 动 . ①当点 M 在曲线 PB 之间(含端点)移 动 时,是否存在点 M 使 △ APM 的面积为?若存在,求点 M 的坐标;若不存在,请说明理由.②当 点 M 在 曲 线 BA 之 间 ( 含 端 点 ) 移 动 时 , 求 |m|+|n|的 最 大 值 及 取 得 最 大 值时点 M 的坐标.【考点】二次函数综合题. 【 分 析 】( 1) 先 求 出 A、 B 两 点 坐 标 , 然 后 过 点 P 作 PC⊥x 轴 于 点 C, 根 据 ∠ P BA=120°, P B=AB, 分 别 求 出 BC 和 P C 的 长 度 即 可 得 出 点 P 的 坐 标 , 最 后将点 P 的坐标代入二次函数解析式即; (2)①过点 M 作 ME⊥x 轴于点 E,交 AP 于点 D,分别用含 m 的式子表示点 D、M 的坐标,然 后代入 △ APM 的面积公式 DM•AC,根据题意列出方程求出 m 的值; ②根 据 题 意 可 知 : n< 0, 然 后 对 m 的 值 进 行 分 类 讨 论 , 当 ﹣ 2≤m≤0 时 , |m|= ﹣ m; 当 0< m≤2 时 , |m|=m, 列 出 函 数 关 系 式 即 可 求 得 |m|+|n|的 最 大 值 . 【 解 答 】 解 :( 1) 如 图 1, 令 y= 0 代 入 y=a x2﹣ 4a, ∴ 0=ax2﹣4a, ∵ a>0,精品文档精品文档∴ x2﹣4=0, ∴ x=±2, ∴ A( ﹣ 2, 0), B( 2, 0), ∴ AB=4, 过点 P 作 PC⊥x 轴于点 C, ∴ ∠ PBC=180°﹣ ∠ P BA=60°, ∵ PB=AB=4,∴ cos∠ PBC= ,∴ BC=2, 由勾股定理可求得:PC=2 , ∵ OC=OC+BC=4, ∴ P ( 4, 2 ), 把 P( 4, 2 ) 代 入 y=ax2﹣ 4a, ∴ 2 =16a﹣4a,∴ a= ,∴ 抛物线解析式为; y= x2﹣;(2)∵ 点 M 在抛物线 上,∴ n= m2﹣,∴ M 的 坐 标 为 ( m,m2﹣),①当点 M 在曲线 PB 之间(含端点)移动时, ∴ 2≤m≤4, 如图 2,过点 M 作 ME⊥x 轴于点 E,交 AP 于点 D, 设 直 线 AP 的 解 析 式 为 y=kx+b, 把 A( ﹣ 2, 0) 与 P( 4, 2 ) 代 入 y=kx+b,得:,解得∴ 直 线 AP 的 解 析 式 为 : y= x+ , 精品文档精品文档令 x=m 代 入 y= x+ ,∴ y= m+,∴ D 的 坐 标 为 ( m,m+),∴ DM=( m+) ﹣ ( m2﹣) =﹣ m2+ m+,∴ S△ APM= DM•AE+ DM•CE = DM(AE+CE)= DM•AC=﹣ m2+ m+4当 S△ APM=时,∴=﹣ m2+ m+4 ,∴ 解 得 m=3 或 m=﹣ 1,∵ 2≤m≤4,∴ m=3,此时,M 的坐标为(3,);②当点 M 在曲线 BA 之间(含端点)移动时, ∴ ﹣ 2≤m≤2, n< 0, 当 ﹣ 2≤m≤0 时 ,∴ |m|+|n|=﹣ m﹣ n=﹣ m2﹣ m+=﹣ ( m+ ) 2+,当 m=﹣ 时 ,∴ |m|+|n|可取得最大值 ,最大值为,此 时 , M 的 坐 标 为 ( ﹣ , ﹣ ),当 0< m≤2 时 ,∴ |m|+|n|=m﹣ n=﹣ m2+m+=﹣ ( m﹣ ) 2+,精品文档精品文档当 m= 时 ,∴ |m|+|n|可取得最大值 ,最大值为,此 时 , M 的 坐 标 为 ( , ﹣ ),综上所述,当点 M 在曲线 BA 之间(含端点)移动时,M 的坐标为()或(﹣ ,﹣ )时, |m|+|n|的最大值 为.,﹣精品文档。
2016中考数学模拟测试题含答案解析(精选2套)
2016年湖南省邵阳市邵阳县中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.﹣的相反数是()A.2006 B.﹣2006 C.D.﹣2.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.3.一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为()A.0.1008×106B.1.008×106 C.1.008×105 D.10.08×1044.计算(﹣2x2)3的结果是()A.﹣2x5B.﹣8x6C.﹣2x6D.﹣8x55.如图,下面几何体的俯视图不是圆的是()A.B.C. D.6.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC7.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=158.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分9.如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°10.如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()A.(2,﹣1)B.(1,﹣2)C.(,﹣1)D.(﹣1,)二、填空题(共8小题,每小题3分,满分24分)11.分解因式:x2y﹣y=.12.如图,直线a、b与直线c相交,且a∥b,∠α=55°,则∠β=.13.化简:﹣=.14.已知,则2016+x+y=.15.一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则女生当选组长的概率是.16.抛物线y=(x﹣1)2+2的对称轴是.17.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=.18.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,则凸轮的周长等于.三、解答题(共3小题,满分24分)19.计算:()﹣1+20160﹣|﹣4|20.解不等式组,并写出它的所有正整数解.21.如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=3cm,BC=5cm,∠B=60°,当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)22.国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)23.某社区计划对面积为1800m2的区域进行绿化,经投标,由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)当甲、乙两个工程队完成绿化任务时,甲队施工了10天,求乙队施工的天数.24.如图,是矗立在高速公路地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌CD的高度.(参考数据:=1.41,=1.73).25.如图,一组抛物线的顶点A1(x1,y1),A2(x2,y2),…A n(x n,y n)(n为正整数)依次是反比例函数y=图象上的点,第一条抛物线以A1(x1,y1)为顶点且过点O(0,0),B1(2,0),等腰△A1OB1为第一个三角形;第二条抛物线以A2(x2,y2)为顶点且经过点B1(2,0),B2(4,0),等腰△A2B1B2为第二个三角形;第三条抛物线以A3(x3,y3)为顶点且过点B2(4,0),B3(6,0),等腰△A3B2B3为第三个三角形;按此规律依此类推,…;第n条抛物线以A n(x n,y n)为顶点且经过点B n﹣1,B n,等腰△A n B n﹣1B n为第n个三角形.(1)求出A1的坐标;(2)求出第一条抛物线的解析式;(3)请直接写出A n的坐标.26.在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DE⊥AB,垂足为E,连接AD,将△DEB沿直线DE翻折得到△DEF,点B落在射线BA上的F处.(1)求证:△DEB∽△ACB;(2)当点F与点A重合时(如图①),求线段BD的长;(3)设BD=x,AF=y,求y关于x的函数解析式,并判断是否存在这样的点D,使AF=FD?若存在,请求出x的值;若不存在,请说明理由.2016年湖南省邵阳市邵阳县中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.﹣的相反数是()A.2006 B.﹣2006 C.D.﹣【考点】相反数.【分析】只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:﹣的相反数是.故选C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,B、不是轴对称图形,C、不是轴对称图形,D、是轴对称图形,故选:D.【点评】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为()A.0.1008×106B.1.008×106 C.1.008×105 D.10.08×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:100800=1.008×105.故故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.计算(﹣2x2)3的结果是()A.﹣2x5B.﹣8x6C.﹣2x6D.﹣8x5【考点】幂的乘方与积的乘方.【分析】根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;幂的乘方法则:底数不变,指数相乘进行计算即可.【解答】解:原式=(﹣2)3(x2)3=﹣8x6,故选:B.【点评】此题主要考查了幂的乘方,积的乘方,关键是熟练掌握计算法则,注意结果符号的判断.5.如图,下面几何体的俯视图不是圆的是()A.B.C. D.【考点】简单几何体的三视图.【分析】俯视图是从几何体的正面看所得到的视图,分别找出四个几何体的俯视图可得答案.【解答】解:A、正方体的俯视图是正方形,故此选项符合题意;B、球的俯视图是圆形,故此选项不符合题意;C、圆锥的俯视图是圆形,故此选项不符合题意;D、圆柱的俯视图是圆形,故此选项不符合题意;故选:A.【点评】此题主要考查了简单几何体的三视图,关键是掌握俯视图是从几何体的正面看所得到的视图.6.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【考点】全等三角形的判定.【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.8.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分【考点】众数;统计表;加权平均数;中位数.【分析】结合表格根据众数、平均数、中位数的概念求解.【解答】解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选D.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.9.如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°【考点】切线的性质.【分析】由PA与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C的度数求出∠AOB的度数,在四边形PABO中,根据四边形的内角和定理即可求出∠P的度数.【解答】解:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.【点评】本题主要考查了切线的性质,四边形的内角与外角,以及圆周角定理,熟练运用性质及定理是解本题的关键.10.如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()A.(2,﹣1)B.(1,﹣2)C.(,﹣1)D.(﹣1,)【考点】反比例函数与一次函数的交点问题.【分析】根据自变量的值,可得相应的函数值,根据待定系数法,可得反比例函数的解析式,根据解方程组,可得答案.【解答】解:当x=﹣2时,y=﹣×(﹣2)=1,即A(﹣2,1).将A点坐标代入y=,得k=﹣2×1=﹣2,反比例函数的解析式为y=,联立双曲线、直线,得,解得,,B(2,﹣1).故选:A.【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法求双曲线函数的解析式,又利用解方程组求图象的交点.二、填空题(共8小题,每小题3分,满分24分)11.分解因式:x2y﹣y=y(x+1)(x﹣1).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2﹣1符合平方差公式,利用平方差公式继续分解可得.【解答】解:x2y﹣y,=y(x2﹣1),=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.如图,直线a、b与直线c相交,且a∥b,∠α=55°,则∠β=125°.【考点】平行线的性质.【专题】计算题.【分析】根据两直线平行,同位角相等可得∠1=∠α,再根据邻补角的定义列式计算即可得解.【解答】解:∵a∥b,∴∠1=∠α=55°,∴∠β=180°﹣∠1=125°.故答案为:125°.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.13.化简:﹣=.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.14.已知,则2016+x+y=2018.【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】方程组两方程相减求出x+y的值,代入原式计算即可得到结果.【解答】解:,①﹣②得:x+y=2,则原式=2016+2=2018.故答案为:2018.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.15.一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则女生当选组长的概率是.【考点】概率公式.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用女生的人数除以这个学习兴趣小组的总人数,求出女生当选组长的概率是多少即可.【解答】解:女生当选组长的概率是:4÷10=.故答案为:.【点评】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.16.抛物线y=(x﹣1)2+2的对称轴是x=1.【考点】二次函数的性质.【分析】抛物线y=a(x﹣h)2+k是抛物线的顶点式,抛物线的顶点是(h,k),对称轴是x=h.【解答】解:y=(x﹣1)2+2,对称轴是x=1.故答案是:x=1.【点评】本题考查的是二次函数的性质,题目是以二次函数顶点式的形式给出,可以根据二次函数的性质直接写出对称轴.17.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=55°.【考点】旋转的性质.【分析】根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A的度数.【解答】解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案为:55°.【点评】此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键.18.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,则凸轮的周长等于π.【考点】弧长的计算;等边三角形的性质.【专题】计算题.【分析】由“凸轮”的外围是以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成,得到∠A=∠B=∠C=60°,AB=AC=BC=1,然后根据弧长公式计算出三段弧长,三段弧长之和即为凸轮的周长.【解答】解:∵△ABC为正三角形,∴∠A=∠B=∠C=60°,AB=AC=BC=1,∴====,根据题意可知凸轮的周长为三个弧长的和,即凸轮的周长=++=3×=π.故答案为:π【点评】此题考查了弧长的计算以及等边三角形的性质,熟练掌握弧长公式是解本题的关键.三、解答题(共3小题,满分24分)19.计算:()﹣1+20160﹣|﹣4|【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题;实数.【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=2+1﹣4=3﹣4=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.解不等式组,并写出它的所有正整数解.【考点】解一元一次不等式组;一元一次不等式组的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式4(x+1)≤7x+10,得:x≥﹣2,解不等式x﹣5<,得:x<3.5,故不等式组的解集为:﹣2≤x<3.5,所以其整数解有:﹣2、﹣1、0、1、2、3,【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=3cm,BC=5cm,∠B=60°,当AE=2cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)【考点】平行四边形的判定与性质;菱形的判定.【专题】动点型.【分析】(1)易证得△CFG≌△EDG,推出FG=EG,根据平行四边形的判定即可证得结论;(2)由∠B=60°,易得当△CED是等边三角形时,四边形CEDF是菱形,继而求得答案.【解答】(1)证明:四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△CFG≌△EDG(ASA),∴FG=EG,∴四边形CEDF是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴AD=BC=5cm,CD=AB=3cm,∠ADC=∠B=60°,∵当DE=CE时,四边形CEDF是菱形,∴当△CED是等边三角形时,四边形CEDF是菱形,∴DE=CD=3cm,∴AE=AD﹣DE=2cm,即当AE=2cm时,四边形CEDF是菱形.故答案为:2.【点评】此题考查了菱形的性质与判定、平行四边形的性质以及全等三角形的判定与性质.注意证得△CFG≌△EDG,△CED是等边三角形是关键.四、解答题(共3小题,满分24分)22.国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了50天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为72°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据4级的天数数除以4级所占的百分比,可得答案;(2)根据有理数的减法,可得5级的天数,根据5级的天数,可得答案;(3)根据圆周角乘以3级所占的百分比,可得答案;(4)根据样本数据估计总体,可得答案.【解答】解:(1)本次调查共抽取了24÷48%=50(天),故答案为:50;(2)5级抽取的天数50﹣3﹣7﹣10﹣24=6天,空气质量等级天数统计图;(3)360°×=72°,故答案为:72;(4)365××100%=219(天),答:2015年该城市有219天不适宜开展户外活动.【点评】本题考查了条形统计图,观察函数图象获得有效信息是解题关键.23.某社区计划对面积为1800m2的区域进行绿化,经投标,由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)当甲、乙两个工程队完成绿化任务时,甲队施工了10天,求乙队施工的天数.【考点】分式方程的应用.【分析】(1)设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列方程求解;(2)用总工作量减去甲队的工作量,然后除以乙队的工作效率即可求解【解答】解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=4,解得:x=50,经检验,x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲工程队每天能完成绿化的面积是100m2,乙工程队每天能完成绿化的面积是50m2;(2)=16(天).答:乙队施工了16天.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解决问题.24.如图,是矗立在高速公路地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌CD的高度.(参考数据:=1.41,=1.73).【考点】解直角三角形的应用.【分析】首先根据等腰直角三角形的性质可得DM=AM=4m,再根据勾股定理可得MC2+MB2=(2MC)2,代入数可得答案.【解答】解:由题意可得:∵AM=4米,∠MAD=45°,∴DM=4m,∵AM=4米,AB=8米,∴MB=12米,∵∠MBC=30°,∴BC=2MC,∴MC2+MB2=(2MC)2,MC2+122=(2MC)2,∴MC=4,则DC=4﹣4≈2.9(米).【点评】此题主要考查了勾股定理得应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.五、解答题(共2小题,满分18分)25.如图,一组抛物线的顶点A1(x1,y1),A2(x2,y2),…A n(x n,y n)(n为正整数)依次是反比例函数y=图象上的点,第一条抛物线以A1(x1,y1)为顶点且过点O(0,0),B1(2,0),等腰△A1OB1为第一个三角形;第二条抛物线以A2(x2,y2)为顶点且经过点B1(2,0),B2(4,0),等腰△A2B1B2为第二个三角形;第三条抛物线以A3(x3,y3)为顶点且过点B2(4,0),B3(6,0),等腰△A3B2B3为第三个三角形;按此规律依此类推,…;第n条抛物线以A n(x n,y n)为顶点且经过点B n﹣1,B n,等腰△A n B n﹣1B n为第n个三角形.(1)求出A1的坐标;(2)求出第一条抛物线的解析式;(3)请直接写出A n的坐标(2n﹣1,).【考点】二次函数综合题.【分析】(1)根据抛物线的对称性和反比例函数图象上点的坐标特征易求得到A1(1,9);(2)设第一个抛物线解析式为y=a(x﹣1)2+9,把O(0,0)代入该函数解析式即可求得a的值;(2)根据抛物线的对称性和反比例函数图象上点的坐标特征易求得到A2(3,3),A3(5,),根据规律即可得出A n的坐标.【解答】解:(1)∵第一条抛物线过点O(0,0),B1(2,0),∴该抛物线的对称轴是x=1.又∵顶点A1(x1,y1)在反比例函数y=图象上,∴y1=9,即A1(1,9);(2)设第一个抛物线为y=a(x﹣1)2+9(a≠0),把点O(0,0)代入,得到:0=a+9,解得a=﹣9.所以第一条抛物线的解析式是y=﹣9(x﹣1)2+9;(3)第一条抛物线的顶点坐标是A1(1,9),第二条抛物线的顶点坐标是A2(3,3),第三条抛物线的顶点坐标是A3(5,),由规律可知A n(2n﹣1,).故答案为:(2n﹣1,).【点评】本题综合考查了待定系数法求二次函数解析式,反比例函数图象上点的坐标特征.整个解题过程,利用抛物线的对称轴和反比例函数图象上的坐标特征来求相关点的坐标和相关线段的长度是解题的关键,此题综合性强,有一定的难度.26.在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DE⊥AB,垂足为E,连接AD,将△DEB沿直线DE翻折得到△DEF,点B落在射线BA上的F处.(1)求证:△DEB∽△ACB;(2)当点F与点A重合时(如图①),求线段BD的长;(3)设BD=x,AF=y,求y关于x的函数解析式,并判断是否存在这样的点D,使AF=FD?若存在,请求出x的值;若不存在,请说明理由.【考点】相似形综合题.【分析】(1)根据垂直的定义得到∠DEB=90°,证明∠ACB=∠DEB,根据相似三角形的判定定理证明即可;(2)根据勾股定理求出AB的长,根据相似三角形的性质得到比例式,代入计算即可;(3)分点F在线段AB上和点F在线段BA的延长线上两种情况,根据相似三角形的性质计算即可.【解答】(1)证明:∵DE⊥AB,∴∠DEB=90°,∴∠ACB=∠DEB,又∠B=∠B,∴△DEB∽△ACB;(2)∵∠ACB=90°,AC=6,BC=8,∴AB==10,由翻转变换的性质可知,BE=AE=AB=5,∵△DEB∽△ACB,∴=,即=,解得BD=.答:线段BD的长为;(3)当点F在线段AB上时,如图2,∵△DEB∽△ACB,∴=,即=,解得BE=x,∵BE=EF,∴AF=AB﹣2BE,∴y=﹣x+10;当点F在线段BA的延长线上时,如图3,AF=2BE﹣AB,∴y=x﹣10,当点F在线段AB上时,∵DE⊥AB,BE=EF,∴DF=DB要使AF=FD,只要AF=BD即可,即x=﹣x+10,解得x=,当点F在线段BA的延长线上时,AF=FD不成立,则当BD=时,AF=FD.【点评】本题考查的是相似三角形的判定和性质以及翻转变换的性质,掌握相似三角形的判定定理和性质定理以及翻转变换的性质是解题的关键,注意分情况讨论思想的应用.2015年湖北省武汉二所学校中考数学三模试卷一、选择题(共10小题,每小题3分,共30分)1.下列数中,最大的是()A.﹣2 B.0 C.﹣3 D.12.若式子在实数范围内有意义,则x的取值范围是()A.x>3 B.x≥3 C.x>﹣3 D.x≥﹣33.分解因式:y3﹣4y2+4y=()A.y(y2﹣4y+4)B.y(y﹣2)2C.y(y+2)2D.y(y+2)(y﹣2)4.在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:在这次活动中,该班同学捐款金额的众数和中位数分别是()A.30,35 B.50,35 C.50,50 D.15,505.下列运算正确的是()A.2a2•3a3=6a6B.2xa+xa=3x2a2C.(﹣2a)3=﹣6a3D.a5÷a4=a6.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点A′的对应点A的纵坐标是1.5,则点A的纵坐标是()A.3 B.3 C.﹣4 D.47.如图是由五个完全相同的小正方体组成的几何体,这个几何体的俯视图是()A.B.C.D.8.近年来,中国中东部大部分地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了尚不完整的统计图表.若该市人口约有800万人,请根据图表中提供的信息,请你估计其中持C组和D组“观点”的市民人数大约有()万人.A.200 B.240 C.440 D.4809.对于任意非零实数a、b,定义运算“⊕”,使下列式子成立:1⊕2=﹣,2⊕1=,(﹣2)⊕5=,5⊕(﹣2)=﹣,…,则(﹣3)⊕(﹣4)=()A.﹣B.C.﹣D.10.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为48二、填空题(共6小题,每小题3分,共18分)11.计算:﹣4﹣5=.12.小明同学在“百度”搜索引擎中输入“中国梦”,搜索到相关的结果个数约为8650000,将这个数用科学记数法表示为.13.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为.14.某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段AB、OB分别表示父、子俩送票、取票过程中,离体育馆的路程S(米)与所用时间t(分钟)之间的函数关系,骑自行车和步行的速度始终保持不变,则小明在比赛开始前分钟到达体育馆.15.如图,在平面直角坐标系xOy中,⊙P的圆心P为(﹣3,a),⊙P与y轴相切于点C.直线y=﹣x被⊙P截得的线段AB长为4,则过点P的双曲线的解析式为.16.如图,边长为6的正方形ABCD中,点E是BC上一点,点F是AB上一点.点F关于直线DE的对称点G恰好在BC延长线上,FG交DE于点H.点M为AD的中点,若MH=,则EG.三、解答题(共8小题,共72分)17.直线y=kx+1经过点A(1,3),求关于x的不等式kx+1≥3的解集.18.如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.(1)求证:△ADE≌△CFE;(2)若点D是GE的中点,求的值.19.把2张形状、大小相同但画面不同的风景图片全部从中间剪断,然后将四张形状相同的小图片混合在一起.现从这四张图片中随机的一次抽出2张.(1)请用列表或画树状图的方法表示出上述实验所有可能结果.(2)求这2张图片恰好组成一张完整风景图概率.20.在平面直角坐标系中,△ABC的顶点坐标是A(﹣3,2),B(1,2),C(1,4).线段DE 的端点坐标是D(3,﹣2),E(﹣1,﹣4).(1)试说明如何平移线段AC,使其段ED重合;(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请画出△DEF,并直接写出点B 的对应点F的坐标;(3)画出△ABC绕点(2,0)顺时针旋转90°得到的图形,并直接写出BC扫过的面积.。
2016年湖南省邵阳市中考数学试卷及答案解析
2016年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.﹣的相反数是()A.B.﹣C.﹣D.﹣2【考点】实数的性质.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选A.2.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.3.如图所示,直线AB、CD被直线EF所截,若AB∥CD,∠1=100°,则∠2的大小是()A.10°B.50°C.80°D.100°【考点】平行线的性质.【分析】根据平行线的性质得到∠3=∠1=100°,根据平角的定义即可得到结论.【解答】解:∵AB∥CD,∠3=∠1=100°,∴∠2=180°﹣∠3=80°,故选C.4.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是()A.95B.90C.85D.80【考点】众数;折线统计图.【分析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故选B.5.一次函数y=﹣x+2的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数的图象;一次函数图象与系数的关系.【分析】根据一次函数的系数确定函数图象经过的象限,由此即可得出结论.【解答】解:∵一次函数y=﹣x+2中k=﹣1<0,b=2>0,∴该函数图象经过第一、二、四象限.故选C.6.分式方程=的解是()A.x=﹣1B.x=1C.x=2D.x=3【考点】分式方程的解.【分析】观察可得最简公分母是x(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:两边都乘以x(x+1)得:3(x+1)=4x,去括号,得:3x+3=4x,移项、合并,得:x=3,经检验x=3是原分式方程的解,故选:D.7.一元二次方程2x2﹣3x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】代入数据求出根的判别式△=b2﹣4ac的值,根据△的正负即可得出结论.【解答】解:∵△=b2﹣4ac=(﹣3)2﹣4×2×1=1>0,∴该方程有两个不相等的实数根.故选B.8.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC【考点】等腰三角形的性质.【分析】根据等腰三角形的两个底角相等,由AD=BD得到∠A=∠ABD,所以∠ABC>∠A,则对各C、D选项进行判断;根据大边对大角可对A、B进行判断.【解答】解:∵AD=BD,∴∠A=∠ABD,∴∠ABC>∠A,所以C选项和D选项错误;∴AC>BC,所以A选项正确;B选项错误.故选A.9.如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A.15°B.30°C.60°D.75°【考点】切线的性质;圆周角定理.【分析】首先连接OD,由CA,CD是⊙O的切线,∠ACD=30°,即可求得∠AOD的度数,又由OB=OD,即可求得答案.【解答】解:连接OD,∵CA,CD是⊙O的切线,∴OA⊥AC,OD⊥CD,∴∠OAC=∠ODC=90°,∵∠ACD=30°,∴∠AOD=360°﹣∠C﹣∠OAC﹣∠ODC=150°,∵OB=OD,∴∠DBA=∠ODB=∠AOD=75°.故选D.10.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1B.y=2n+n C.y=2n+1+n D.y=2n+n+1【考点】规律型:数字的变化类.【分析】由题意可得下边三角形的数字规律为:n+2n,继而求得答案.【解答】解:∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,2+22,…,n+2n,∴y=2n+n.故选B.二、填空题:本大题共8小题,每小题3分,共24分11.将多项式m3﹣mn2因式分解的结果是m(m+n)(m﹣n).【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式后,利用平方差公式分解即可.【解答】解:原式=m(m2﹣n2)=m(m+n)(m﹣n).故答案为:m(m+n)(m﹣n)12.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:选手甲乙平均数(环)9.59.5方差0.0350.015请你根据上表中的数据选一人参加比赛,最适合的人选是乙.【考点】方差;算术平均数.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:因为S甲2=0.035>S乙2=0.015,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.13.将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是120°.【考点】旋转的性质;等边三角形的性质.【分析】根据旋转的性质和等边三角形的性质解答即可.【解答】解:∵三角形ABC是等边三角形,∴∠ACB=60°,∵等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,∴∠BCA'=180°,∠B'CA'=60°,∴∠ACB'=60°,∴∠α=60°+60°=120°,故答案为:120°.14.已知反比例函数y=(k≠0)的图象如图所示,则k的值可能是﹣1(写一个即可).【考点】反比例函数的性质.【分析】利用反比例函数的性质得到k<0,然后在此范围内取一个值即可.【解答】解:∵双曲线的两支分别位于第二、第四象限,∴k<0,∴k可取﹣1.故答案为﹣1.15.不等式组的解集是﹣2<x≤1.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x≤1,由②得,x>﹣2,故不等式组的解集为:﹣2<x≤1.故答案为:﹣2<x≤1.16.2015年7月,第四十五届“世界超级计算机500强排行榜”榜单发布,我国国防科技大学研制的“天河二号”以每秒3386×1013次的浮点运算速度第五次蝉联冠军,若将3386×1013用科学记数法表示成a×10n的形式,则n的值是16.【考点】科学记数法—表示较大的数.【分析】直接利用科学记数法的表示方法分析得出n的值.【解答】解:3386×1013=3.386×1016,则n=16.故答案为:16.17.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件AD∥BC(写一个即可),使四边形ABCD是平行四边形.【考点】平行四边形的判定.【分析】根据平行四边形的定义或判定定理即可解答.【解答】解:可以添加:AD∥BC(答案不唯一).故答案是:AD∥BC.18.如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O,A,B均为格点,则扇形OAB的面积大小是.【考点】扇形面积的计算.【分析】根据题意知,该扇形的圆心角是90°.根据勾股定理可以求得OA=OB=,由扇形面积公式可得出结论.【解答】解:∵每个小方格都是边长为1的正方形,∴OA=OB==,===.∴S扇形OA B故答案为:.三、解答题:本大题共3小题,每小题8分,共24分19.计算:(﹣2)2+2cos60°﹣()0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】原式利用乘方的意义,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【解答】解:原式=4+2×﹣1=4+1﹣1=4.20.先化简,再求值:(m﹣n)2﹣m(m﹣2n),其中m=,n=.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把m与n的值代入计算即可求出值.【解答】解:原式=m2﹣2mn+n2﹣m2+2mn=n2,当n=时,原式=2.21.如图所示,点E,F是平行四边形ABCD对角线BD上的点,BF=DE,求证:AE=CF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】根据平行四边形的性质可得AD∥BC,AD=BC,根据平行线的性质可得∠EDA=∠FBC,再加上条件ED=BF可利用SAS判定△AED≌△CFB,进而可得AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EDA=∠FBC,在△AED和△CFB中,,∴△AED≌△CFB(SAS),∴AE=CF.四、解答题:本大题共3小题,每小题8分,共24分22.如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,).【考点】解直角三角形的应用.【分析】根据sin75°==,求出OC的长,根据tan30°=,再求出BC的长,即可求解.【解答】解:在直角三角形ACO中,sin75°==≈0.97,解得OC≈38.8,在直角三角形BCO中,tan30°==≈,解得BC≈67.3.答:该台灯照亮水平面的宽度BC大约是67.3cm.23.为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A,B两种品牌的足球的单价.(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.【考点】二元一次方程组的应用.【分析】(1)设一个A品牌的足球需x元,则一个B品牌的足球需y 元,根据“购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元”列出方程组并解答;(2)把(1)中的数据代入求值即可.【解答】解:(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,依题意得:,解得.答:一个A品牌的足球需90元,则一个B品牌的足球需100元;(2)依题意得:20×90+2×100=1900(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用是1900元.24.为了解市民对全市创卫工作的满意程度,某中学教学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2为进行回访,已知4为市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由满意的有20人,占40%,即可求得此次调查中接受调查的人数.(2)由(1),即可求得此次调查中结果为非常满意的人数.(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选择的市民均来自甲区的情况,再利用概率公式即可求得答案.【解答】解:(1)∵满意的有20人,占40%,∴此次调查中接受调查的人数:20÷40%=50(人);(2)此次调查中结果为非常满意的人数为:50﹣4﹣8﹣20=18(人);(3)画树状图得:∵共有12种等可能的结果,选择的市民均来自甲区的有2种情况,∴选择的市民均来自甲区的概率为:=.五、综合题:本大题共2小题,其中25题8分,26题10分,共18分25.尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.求证:a2+b2=5c2该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证(1)请你根据以上解题思路帮尤秀同学写出证明过程.(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.【考点】相似三角形的判定;三角形中位线定理.【分析】(1)设PF=m,PE=n,连结EF,如图1,根据三角形中位线性质得EF∥AB,EF=c,则可判断△EFP∽△BPA,利用相似比得到PB=2n,PA=2m,接着根据勾股定理得到n2+4m2=b2,m2+4n2=a2,则5(n2+m2)=(a2+b2),而n2+m2=EF2=c2,所以a2+b2=5c2;(2)利用(1)的结论得MB2+MC2=5BC2=5×32=45,再利用△AEG∽△CEB可计算出AG=1,同理可得DH=1,则GH=1,然后利用GH∥BC,根据平行线分线段长比例定理得到MB=3GM,MC=3MH,然后等量代换后可得MG2+MH2=5.【解答】解:(1)设PF=m,PE=n,连结EF,如图1,∵AF,BE是△ABC的中线,∴EF为△ABC的中位线,AE=b,BF=a,∴EF∥AB,EF=c,∴△EFP∽△BPA,∴,即==,∴PB=2n,PA=2m,在Rt△AEP中,∵PE2+PA2=AE2,∴n2+4m2=b2①,在Rt△AEP中,∵PF2+PB2=BF2,∴m2+4n2=a2②,①+②得5(n2+m2)=(a2+b2),在Rt△EFP中,∵PE2+PF2=EF2,∴n2+m2=EF2=c2,∴5•c2=(a2+b2),∴a2+b2=5c2;(2)∵四边形ABCD为菱形,∴BD⊥AC,∵E,F分别为线段AO,DO的中点,由(1)的结论得MB2+MC2=5BC2=5×32=45,∵AG∥BC,∴△AEG∽△CEB,∴==,∴AG=1,同理可得DH=1,∴GH=1,∴GH∥BC,∴===,∴MB=3GM,MC=3MH,∴9MG2+9MH2=45,∴MG2+MH2=5.26.已知抛物线y=ax2﹣4a(a>0)与x轴相交于A,B两点(点A在点B的左侧),点P是抛物线上一点,且PB=AB,∠PBA=120°,如图所示.(1)求抛物线的解析式.(2)设点M(m,n)为抛物线上的一个动点,且在曲线PA上移动.①当点M在曲线PB之间(含端点)移动时,是否存在点M使△APM的面积为?若存在,求点M的坐标;若不存在,请说明理由.②当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M的坐标.【考点】二次函数综合题.【分析】(1)先求出A、B两点坐标,然后过点P作PC⊥x轴于点C,根据∠PBA=120°,PB=AB,分别求出BC和PC的长度即可得出点P的坐标,最后将点P的坐标代入二次函数解析式即;(2)①过点M作ME⊥x轴于点E,交AP于点D,分别用含m的式子表示点D、M的坐标,然后代入△APM的面积公式DM•AC,根据题意列出方程求出m的值;②根据题意可知:n<0,然后对m的值进行分类讨论,当﹣2≤m≤0时,|m|=﹣m;当0<m≤2时,|m|=m,列出函数关系式即可求得|m|+|n|的最大值.【解答】解:(1)如图1,令y=0代入y=ax2﹣4a,∴0=ax2﹣4a,∵a>0,∴x2﹣4=0,∴x=±2,∴A(﹣2,0),B(2,0),∴AB=4,过点P作PC⊥x轴于点C,∴∠PBC=180°﹣∠PBA=60°,∵PB=AB=4,∴cos∠PBC=,∴BC=2,由勾股定理可求得:PC=2,∵OC=OC+BC=4,∴P(4,2),把P(4,2)代入y=ax2﹣4a,∴2=16a﹣4a,∴a=,∴抛物线解析式为;y=x2﹣;(2)∵点M在抛物线上,∴n=m2﹣,∴M的坐标为(m,m2﹣),①当点M在曲线PB之间(含端点)移动时,∴2≤m≤4,如图2,过点M作ME⊥x轴于点E,交AP于点D,设直线AP的解析式为y=kx+b,把A(﹣2,0)与P(4,2)代入y=kx+b,得:,解得∴直线AP的解析式为:y=x+,令x=m代入y=x+,∴y=m+,∴D的坐标为(m,m+),∴DM=(m+)﹣(m2﹣)=﹣m2+m+,=DM•AE+DM•CE∴S△AP M=DM(AE+CE)=DM•AC=﹣m2+m+4当S=时,△AP M∴=﹣m2+m+4,∴解得m=3或m=﹣1,∵2≤m≤4,∴m=3,此时,M的坐标为(3,);②当点M在曲线BA之间(含端点)移动时,∴﹣2≤m≤2,n<0,当﹣2≤m≤0时,∴|m|+|n|=﹣m﹣n=﹣m2﹣m+=﹣(m+)2+,当m=﹣时,∴|m|+|n|可取得最大值,最大值为,此时,M的坐标为(﹣,﹣),当0<m≤2时,∴|m|+|n|=m﹣n=﹣m2+m+=﹣(m﹣)2+,当m=时,∴|m|+|n|可取得最大值,最大值为,此时,M的坐标为(,﹣),综上所述,当点M在曲线BA之间(含端点)移动时,M的坐标为(,﹣)或(﹣,﹣)时,|m|+|n|的最大值为.2016年6月30日。
湖南省邵阳市2016届九年级中考模拟考试(一)数学试题解析(解析版)
湖南省邵阳市2016届九年级中考模拟考试(一)数学试题一、选择题(共10小题,每小题3分,满分30分)1.计算6m3÷(﹣3m2)的结果是()A.﹣3m B.﹣2m C.2m D.3m【答案】B【解析】试题分析:根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.考点:整式的除法.2.下面四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个【答案】B【解析】试题分析:四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图方形,所以,左视图是四边形的几何体是圆柱和正方体考点:简单几何体的三视图.3.世界文化遗产长城总长约6 700 000m,用科学记数法可表示为()A.6.7×105m B.6.7×10﹣5m C.6.7×106m D.6.7×10﹣6m【答案】C【解析】试题分析:确定a×10n(1≤|a|<10,n为整数)中n的值是易错点,由于6 700 000有7位,所以可以确定n=7﹣1=6.6 700 000=6.7×106m .考点:科学记数法—表示较大的数.4.某商店在一周内卖出某种品牌衬衫的尺寸数据如下:38,42,38,41,36,41,39,40,41,40,43那么这组数据的中位数和众数分别为( )A .40,40B .41,40C .40,41D .41,41【答案】C【解析】试题分析:首先把所给数据重新从小到大排序,然后根据中位数和众数的定义即可求出结果.把已知数据重新从小到大排序后为36,38,38,39,40,40,41,41,41,42,43,∴中位数为40,众数为41考点:(1)、中位数;(2)、众数.5.如图,已知直线a 、b 被直线c 所截,a ∥b ,∠1=50°,则∠2=( )\A .50°B .130°C .40°D .60°【答案】A【解析】 试题分析:先利用平行线的性质可得∠3=∠1,又由对顶角相等推出∠2=∠3,故∠2的度数可求.如图,∵a ∥b ,∠1=50°,∴∠3=∠1=50°,∵∠2=∠3,∴∠2=∠1=50°考点:平行线的性质6.若分式13 x x 有意义,则x 应满足( ) A .x=0 B .x ≠0 C .x=1 D .x ≠1【答案】D【解析】试题分析:分式有意义的条件为:x ﹣1≠0,即可求得x 的范围.根据题意得:x ﹣1≠0,解得:x ≠1. 考点:分式有意义的条件7.如图,圆心角∠AOB=80°,则∠ACB 的度数为( )A .80°B .40°C .60°D .45°【答案】B【解析】试题分析:认真观察图形,利用同弧所对的圆周角等于圆心角的一半可直接得到答案.∵∠AOB=80°, ∴∠ACB=21∠AOB=21×80°=40° 考点:圆周角定理8.不等式组:⎩⎨⎧-+≤211 x x 的解集在数轴上可表示为( )【答案】A【解析】试题分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解不等式组得:⎩⎨⎧-≤31 x x ,再分别表示在数轴上即可得解.由x+1>﹣2得x >﹣3,又x ≤1, 则不等式组的解集为﹣3<x ≤1.第一选项代表1≥x >﹣3;第二选项代表x ≥1或x <﹣3;第三选项代表x ≥1;第四选项代表x <﹣3.考点:(1)、解一元一次不等式组;(2)、在数轴上表示不等式的解集.9.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h 与时间t 之间的关系的图象是( )【答案】C【解析】试题分析:首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢.考点:函数的图象10.如图,在△ABC中,点D、E分别为AB、AC的中点,则下列结论:①BC=2DE;②△ADE∽△ABC;③=;④S△ADE=S△ABC;其中错误的是()A.①B.②C.③D.④【答案】D【解析】试题分析:根据D,E分别是△ABC的边AB,AC的中点,得到DE是△ABC的中位线,再利用中位线的性质得到DE与BC的关系,判断三角形相似,根据相似三角形的性质对所给命题进行判断.考点:(1)、相似三角形的判定与性质;(2)、三角形中位线定理.二、填空题(共8小题,每小题3分,满分24分)11.多项式xa2﹣xb2因式分解的结果是.【答案】x(a+b)(a﹣b)【解析】试题分析:原式提取x,再利用平方差公式分解即可.原式=x(a2﹣b2)=x(a+b)(a﹣b)考点:提公因式法与公式法的综合运用.12.如图,若△OAC≌△OBD,且∠O=65°,∠C=20°,则∠OBD= .【答案】95°【解析】试题分析:根据全等三角形的性质:∠D=∠C=20°,再根据三角形内角和定理进行计算.∵△OAC≌△OBC,∴∠D=∠C=20°,∵∠O=65°,∴∠OBD=180°﹣∠O﹣∠D=180°﹣65°﹣20°=95°.考点:全等三角形的性质.13.与的积为正整数的数是(写出一个即可).【答案】2(答案不唯一)【解析】试题分析:只要与2相乘,积为正整数即可.从简单的二次根式中寻找.考点:分母有理化14.从一副扑克牌里任意抽取一张,抽到“王”(“大王”或“小王”)的概率是.1【答案】27【解析】试题分析:从一副牌中任取一张总共有54种情况,其中有两种情况是王.根据概率公式进行求解.考点:概率公式15.若正多边形的内角和是540°,那么这个多边形一定是正边形.【答案】正五边形【解析】试题分析:直接利用多边形内角和公式(n﹣2)•180°=540°求解即可.设这个多边形是n边形,则(n﹣2)•180°=540°,解得n=5.故这个多边形一定是正五边形.考点:多边形内角与外角.16.方程(x﹣5)(2x﹣1)=3的根的判别式b2﹣4ac= .【答案】105考点:根的判别式.17.如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米.【答案】8【解析】试题分析:Rt△ABP和Rt△CDP相似,即1.2:1.8=CD: 12求得该古城墙的高度.由题意知:光线AP与光线PC,∠APB=∠CPD,所以Rt△ABP∽Rt△CDP,所以AB:BP=CD:PD即1. 2:1.8=CD:12,解得CD=8米.考点:相似三角形的应用.18.将抛物线y=2x2向下平移1个单位,得到的抛物线是.【答案】y=2x2﹣1【解析】试题分析:由于抛物线向下平移1个单位,则x'=x,y'=y﹣1,代入原抛物线方程即可得平移后的方程.考点:二次函数图象与几何变换.三、解答题(共3小题,满分24分)19.计算()﹣2+()0×|﹣1|3【答案】44【解析】试题分析:本题涉及负指数幂、零指数幂和绝对值.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=4+1×43=443. 考点:实数的运算.20.已知x 2﹣5x=3,求(x ﹣1)(2x ﹣1)﹣(x+1)2+1的值.【答案】4【解析】试题分析:将原式的第一项利用多项式乘以多项式的法则计算,第二项利用完全平方公式化简,去括号合并后得到最简结果,然后将x 2﹣5x=3代入化简后的式子中计算,即可得到原式的值.试题解析:(x ﹣1)(2x ﹣1)﹣(x+1)2+1=2x 2﹣x ﹣2x+1﹣(x 2+2x+1)+1=2x 2﹣x ﹣2x+1﹣x 2﹣2x ﹣1+1=x 2﹣5x+1,∵x 2﹣5x=3,∴原式=3+1=4.考点:整式的混合运算—化简求值.21.如图,点F 是CD 的中点,且AF ⊥CD ,BC=ED ,∠BCD=∠EDC .(1)求证:BF=EF ;(2)求证:AB=AE .【答案】(1)、证明过程见解析;(2)、证明过程见解析【解析】试题分析:(1)、根据中点定义可得CF=DF ,然后证明△BCF ≌△EDF ,进而可得FB=FE ;(2)、根据△BCF ≌△EDF 可得FB=EF ,∠BFC=∠EFD ,再证明∠BFA=∠EFA ,然后判定△ABF ≌△AEF 可得AB=AE .试题解析:(1)、∵点F是CD 的中点,∴CF=DF,在△BCF和△EDF中,∴△BCF≌△EDF(SAS),∴FB=FE;(2)、∵△BCF≌△EDF,∴FB=EF,∠BFC=∠EFD,∵AF⊥CD,∴∠BFC+∠AFB=∠AFE+∠EFD,∴∠BFA=∠EFA,在△ABF和△AEF中,∴△ABF≌△AEF(SAS),∴AB=AE.考点:全等三角形的判定与性质.四、应用题(共3个小题,每小题8分,共24分)22.某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A、B、C三个出口处,对离开园区的游客进行调查,其中在A出口调查所得的数据整理后绘成图(1)在A出口的被调查游客中,购买2瓶及2瓶以上饮料的游客人数占A出口的被调查游客人数的60 %.表一(2)试问A出口的被调查游客在园区内人均购买了多少瓶饮料?(3)已知B、C两个出口的被调查游客在园区内人均购买饮料的数量如表一所示若C出口的被调查人数比B出口的被调查人数多2万,且B、C两个出口的被调查游客在园区内共购买了49万瓶饮料,试问B出口的被调查游客人数为多少万?【答案】(1)、60%;(2)、2;(3)、9万.【解析】试题分析:(1)、根据条形统计图即可求得总人数和购买2瓶及2瓶以上的人数,从而求得购买2瓶及2瓶以上所占的百分比;(2)、根据加权平均数进行计算;(3)、设B出口人数为x万人,则C出口人数为(x+2)万人.根据B、C两个出口的被调查游客在园区内共购买了49万瓶饮料,列方程求解即可.试题解析:(1)、由图可知,购买2瓶及2瓶以上饮料的游客人数为2.5+2+1.5=6(万人),而总人数为:1+3+2.5+2+1.5=10(万人),所以购买2瓶及2瓶以上饮料的游客人数占A 出口的被调查游客人数的6÷10=60%,(2)、购买饮料总数位:3×1+2.5×2+2×3+1.5×4=3+5+6+6=20(万瓶).人均购买瓶数:20÷10 =2(瓶).(3)、设B 出口人数为x 万人,则C 出口人数为(x+2)万人.则有3x+2(x+2)=49,解之得x=9. 所以B 出口游客人数为9万人.答:B 出口的被调查游客人数为9万人.考点:条形统计图.23.如图,李明同学在东西方向的滨海路A 处,测得海中灯塔P 在北偏东60°方向上,他向东走400米至B 处,测得灯塔P 在北偏东30°方向上,求灯塔P 到滨海路的距离.(结果保留根号)【答案】2003【解析】试题分析:过P 作AB 的垂线,设垂足为C .易知∠BAP=30°,∠PBC=60°.∠BPA=∠BAP=30°,得PB=AB=400; 在Rt △PBC 中,可用正弦函数求出PC 的长.试题解析:过点P 作PC ⊥AB ,垂足为C . 由题意,得∠PAB=30°,∠PBC=60°.∵∠PBC 是△APB 的一个外角,∴∠APB=∠PBC ﹣∠PAB=30°. ∴∠PAB=∠APB ,故AB=PB=400. 在Rt △PBC 中,∠PCB=90°,∠PBC=60°,PB=400,∴PC=PB •sin60°=400×23=2003米.考点:解直角三角形的应用-方向角问题.24.杨嫂在再就业中心的扶持下,创办了“爱家”报刊零售点,对经营的某种晚报,杨嫂提供了如下信息:①买进每份0.20元,卖出0.30元;②在一个月内(以30天计),其中有20天每天可以卖出200份,其余的10天每天就只能卖出120份;③一个月内,每天从报社买进的报纸份数必须相同,当天卖不掉的报纸以每份0.10元退回给报社.(1)填表:(2)设每天从报社买进晚报x份(120≤x≤200)时,月利润为y元,试写出y和x的函数关系式,并求月利润的最大值.【答案】(1)、300,390;(2)、440.考点:一次函数的应用.五、综合题(共2个小题,25题8分,26题10分,共18分)25.如图(1),点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM.(1)证明:①CN=DM;②CN⊥DM;(2)设CN、DM的交点为H,连接BH,如图(2),求证:△BCH是等腰三角形.【答案】(1)、证明过程见解析;(2)、证明过程见解析【解析】试题分析:(1)、利用正方形的性质可求证△ADM≌△DCN,所以CN=DM,∠ADM=∠DCN,∠ADM+∠CDM=∠DCN+∠CDM=90°,即可求证∠CHD=90°;(2)、连接CM,易证M、B、C、H四点共圆,所以∠BMC=∠BHC,证明△AMD≌△BCM,即可求证∠BHC=∠BCH试题解析:(1)、由题意知:AD=CD,∵M、N分别是AB和AD的中点,∴AM=DN,在△ADM与△DCN中,,∴△ADM≌△DCN(SAS),∴DM=CN,∠ADM=∠DCN,∴∠DCN+∠CDM=∠ADM+∠CDM=90°,∴∠CHD=90°,∴CN⊥DM;(2)、连接CM,由(1)可知:∠AMD=90°﹣∠ADM,∠BCH=90°﹣∠DCN,∴∠AMD=∠BCH,∴M、B、C、H四点共圆,∴∠BMC=∠BHC,在△BCM与△ADM中,,∴△BCM≌△ADM(SAS),∴∠BMC=∠AMD,∴∠BHC=∠AMD=∠BCH,∴△BCH是等腰三角形考点:(1)、正方形的性质;(2)、全等三角形的判定与性质;(3)、等腰三角形的判定.26.如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(1,0),与y轴交于点D(0,4),点C(﹣2,n)也在此抛物线上.(1)求此抛物线的解析式及点C的坐标;(2)设BC交y轴于点E,连接AE,AC请判断△ACE的形状,并说明理由;(3)连接AD交BC于点F,试问:以A,B,F为顶点的三角形与△ABC相似吗?请说明理由.【答案】(1)、y=﹣x2﹣3x+4;C(-2,6);(2)、等腰直角三角形;理由见解析;(3)、相似;理由见解析. 【解析】试题分析:(1)、由A、B、D三点坐标,利用待定系数法可求得抛物线解析式,把C点坐标代入解析式可求得n的值,可求得C点坐标;(2)、把C点坐标代入抛物线解析式可求得n,可得C点坐标,利用待定系数法可求得直线BC的解析式,则可求得E点坐标,利用勾股定理可求得AC、AE、CE的长,则可判断△ACE的形状;(3)、由A、D坐标可先求得直线AD解析式,联立直线BC、AD解析式可求得F点坐标,又可求得BF、BC和AB的长,由题意可知∠ABF=∠CAB,若以A,B,F为顶点的三角形与△ABC相似只有∠BFA=∠CAB,则判定和是否相等即可.试题解析:(1)、∵抛物线经过A、B、D三点,∴代入抛物线解析式可得,解得,∴抛物线y=﹣x2﹣3x+4,∵点C(﹣2,n)也在此抛物线上,∴n=﹣4+6+4=6,∴C点坐标为(﹣2,6);(2)、△ACE为等腰直角三角形,理由如下:设直线BC解析式为y=kx+s,把B、C两点坐标代入可得,解得,∴直线BC解析式为y=﹣2x+2,令x=0可得y=2,∴E点坐标为(0,2),∵A(﹣4,0),C(﹣2,6),∴AC===2,AE===2,CE===2,∴AE2+CE2=20+20=40=AC2,且AE=CE,∴△ACE为等腰直角三角形;(3)、相似,理由如下:设直线AD解析式为y=px+q,把A、D坐标代入可得,解得,∴直线AD解析式为y=x+4,联立直线AD、BC解析式可得,解得,∴F点坐标为(﹣,),∴BF==,BC==3,且AB=1﹣(﹣4)=5,∴==, ==,∴=,且∠BFA=∠CAB,∴△ABF∽△CBA.考点:二次函数综合题.。
湖南省邵阳市 2016年中考数学真题试卷附解析
2016年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.(2016·湖南邵阳)﹣的相反数是()A.B.﹣C.﹣D.﹣2【考点】实数的性质.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选A.2.(2016·湖南邵阳)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.3.(2016·湖南邵阳)如图所示,直线AB、CD被直线EF所截,若AB∥CD,∠1=100°,则∠2的大小是()A.10° B.50° C.80° D.100°【考点】平行线的性质.【分析】根据平行线的性质得到∠3=∠1=100°,根据平角的定义即可得到结论.【解答】解:∵AB∥CD,∠3=∠1=100°,∴∠2=180°﹣∠3=80°,故选C.4.(2016·湖南邵阳)在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是()A.95 B.90 C.85 D.80【考点】众数;折线统计图.【分析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故选B.5.(2016·湖南邵阳)一次函数y=﹣x+2的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数的图象;一次函数图象与系数的关系.【分析】根据一次函数的系数确定函数图象经过的象限,由此即可得出结论.【解答】解:∵一次函数y=﹣x+2中k=﹣1<0,b=2>0,∴该函数图象经过第一、二、四象限.故选C.6.(2016·湖南邵阳)分式方程=的解是()A.x=﹣1 B.x=1 C.x=2 D.x=3【考点】分式方程的解.【分析】观察可得最简公分母是x(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:两边都乘以x(x+1)得:3(x+1)=4x,去括号,得:3x+3=4x,移项、合并,得:x=3,经检验x=3是原分式方程的解,故选:D.7.(2016·湖南邵阳)一元二次方程2x2﹣3x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】代入数据求出根的判别式△=b2﹣4ac的值,根据△的正负即可得出结论.【解答】解:∵△=b2﹣4ac=(﹣3)2﹣4×2×1=1>0,∴该方程有两个不相等的实数根.故选B.8.(2016·湖南邵阳)如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC【考点】等腰三角形的性质.【分析】根据等腰三角形的两个底角相等,由AD=BD得到∠A=∠ABD,所以∠ABC>∠A,则对各C、D选项进行判断;根据大边对大角可对A、B进行判断.【解答】解:∵AD=BD,∴∠A=∠ABD,∴∠ABC>∠A,所以C选项和D选项错误;∴AC>BC,所以A选项正确;B选项错误.故选A.9.(2016·湖南邵阳)如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA 的大小是()A.15° B.30° C.60° D.75°【考点】切线的性质;圆周角定理.【分析】首先连接OD,由CA,CD是⊙O的切线,∠ACD=30°,即可求得∠AOD 的度数,又由OB=OD,即可求得答案.【解答】解:连接OD,∵CA,CD是⊙O的切线,∴OA⊥AC,OD⊥CD,∴∠OAC=∠ODC=90°,∵∠ACD=30°,∴∠AOD=360°﹣∠C﹣∠OAC﹣∠ODC=150°,∵OB=OD,∴∠DBA=∠ODB=∠AOD=75°.故选D.10.(2016·湖南邵阳)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【考点】规律型:数字的变化类.【分析】由题意可得下边三角形的数字规律为:n+2n,继而求得答案.【解答】解:∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,2+22,…,n+2n,∴y=2n+n.故选B.二、填空题:本大题共8小题,每小题3分,共24分11.(2016·湖南邵阳)将多项式m3﹣mn2因式分解的结果是m(m+n)(m﹣n).【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式后,利用平方差公式分解即可.【解答】解:原式=m(m2﹣n2)=m(m+n)(m﹣n).故答案为:m(m+n)(m﹣n)12.(2016·湖南邵阳)学校射击队计划从甲、乙两人中选拔一人参加运动会射算他们的平均成绩及方差如下表:最适合的人选是乙.【考点】方差;算术平均数.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:因为S甲2=0.035>S乙2=0.015,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.13.(2016·湖南邵阳)将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是120°.【考点】旋转的性质;等边三角形的性质.【分析】根据旋转的性质和等边三角形的性质解答即可.【解答】解:∵三角形ABC是等边三角形,∴∠ACB=60°,∵等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,∴∠BCA'=180°,∠B'CA'=60°,∴∠ACB'=60°,∴∠α=60°+60°=120°,故答案为:120°.14.(2016·湖南邵阳)已知反比例函数y=(k≠0)的图象如图所示,则k的值可能是﹣1(写一个即可).【考点】反比例函数的性质.【分析】利用反比例函数的性质得到k<0,然后在此范围内取一个值即可.【解答】解:∵双曲线的两支分别位于第二、第四象限,∴k<0,∴k可取﹣1.故答案为﹣1.15.(2016·湖南邵阳)不等式组的解集是﹣2<x≤1.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x≤1,由②得,x>﹣2,故不等式组的解集为:﹣2<x≤1.故答案为:﹣2<x≤1.16.(2016·湖南邵阳)2015年7月,第四十五届“世界超级计算机500强排行榜”榜单发布,我国国防科技大学研制的“天河二号”以每秒3386×1013次的浮点运算速度第五次蝉联冠军,若将3386×1013用科学记数法表示成a×10n的形式,则n的值是16.【考点】科学记数法—表示较大的数.【分析】直接利用科学记数法的表示方法分析得出n的值.【解答】解:3386×1013=3.386×1016,则n=16.故答案为:16.17.(2016·湖南邵阳)如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件AD∥BC(写一个即可),使四边形ABCD是平行四边形.【考点】平行四边形的判定.【分析】根据平行四边形的定义或判定定理即可解答.【解答】解:可以添加:AD∥BC(答案不唯一).故答案是:AD∥BC.18.(2016·湖南邵阳)如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O,A,B均为格点,则扇形OAB的面积大小是.【考点】扇形面积的计算.【分析】根据题意知,该扇形的圆心角是90°.根据勾股定理可以求得OA=OB=,由扇形面积公式可得出结论.【解答】解:∵每个小方格都是边长为1的正方形,∴OA=OB==,===.∴S扇形O AB故答案为:.三、解答题:本大题共3小题,每小题8分,共24分19.(2016·湖南邵阳)计算:(﹣2)2+2cos60°﹣()0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】原式利用乘方的意义,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【解答】解:原式=4+2×﹣1=4+1﹣1=4.20.(2016·湖南邵阳)先化简,再求值:(m﹣n)2﹣m(m﹣2n),其中m=,n=.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把m与n的值代入计算即可求出值.【解答】解:原式=m2﹣2mn+n2﹣m2+2mn=n2,当n=时,原式=2.21.(2016·湖南邵阳)如图所示,点E,F是平行四边形ABCD对角线BD上的点,BF=DE,求证:AE=CF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】根据平行四边形的性质可得AD∥BC,AD=BC,根据平行线的性质可得∠EDA=∠FBC,再加上条件ED=BF可利用SAS判定△AED≌△CFB,进而可得AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EDA=∠FBC,在△AED和△CFB中,,∴△AED≌△CFB(SAS),∴AE=CF.四、解答题:本大题共3小题,每小题8分,共24分22.(2016·湖南邵阳)如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,).【考点】解直角三角形的应用.【分析】根据sin75°==,求出OC的长,根据tan30°=,再求出BC的长,即可求解.【解答】解:在直角三角形ACO中,sin75°==≈0.97,解得OC≈38.8,在直角三角形BCO中,tan30°==≈,解得BC≈67.3.答:该台灯照亮水平面的宽度BC大约是67.3cm.23.(2016·湖南邵阳)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A,B两种品牌的足球的单价.(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.【考点】二元一次方程组的应用.【分析】(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,根据“购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元”列出方程组并解答;(2)把(1)中的数据代入求值即可.【解答】解:(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,依题意得:,解得.答:一个A品牌的足球需90元,则一个B品牌的足球需100元;(2)依题意得:20×90+2×100=1900(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用是1900元.24.(2016·湖南邵阳)为了解市民对全市创卫工作的满意程度,某中学教学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2为进行回访,已知4为市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由满意的有20人,占40%,即可求得此次调查中接受调查的人数.(2)由(1),即可求得此次调查中结果为非常满意的人数.(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选择的市民均来自甲区的情况,再利用概率公式即可求得答案.【解答】解:(1)∵满意的有20人,占40%,∴此次调查中接受调查的人数:20÷40%=50(人);(2)此次调查中结果为非常满意的人数为:50﹣4﹣8﹣20=18(人);(3)画树状图得:∵共有12种等可能的结果,选择的市民均来自甲区的有2种情况,∴选择的市民均来自甲区的概率为:=.五、综合题:本大题共2小题,其中25题8分,26题10分,共18分25.(2016·湖南邵阳)尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.求证:a2+b2=5c2该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF 中利用勾股定理计算,消去m,n即可得证(1)请你根据以上解题思路帮尤秀同学写出证明过程.(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.【考点】相似三角形的判定;三角形中位线定理.【分析】(1)设PF=m,PE=n,连结EF,如图1,根据三角形中位线性质得EF∥AB,EF=c,则可判断△EFP∽△BPA,利用相似比得到PB=2n,PA=2m,接着根据勾股定理得到n2+4m2=b2,m2+4n2=a2,则5(n2+m2)=(a2+b2),而n2+m2=EF2=c2,所以a2+b2=5c2;(2)利用(1)的结论得MB2+MC2=5BC2=5×32=45,再利用△AEG∽△CEB 可计算出AG=1,同理可得DH=1,则GH=1,然后利用GH∥BC,根据平行线分线段长比例定理得到MB=3GM,MC=3MH,然后等量代换后可得MG2+MH2=5.【解答】解:(1)设PF=m,PE=n,连结EF,如图1,∵AF,BE是△ABC的中线,∴EF为△ABC的中位线,AE=b,BF=a,∴EF∥AB,EF=c,∴△EFP∽△BPA,∴,即==,∴PB=2n,PA=2m,在Rt△AEP中,∵PE2+PA2=AE2,∴n2+4m2=b2①,在Rt△AEP中,∵PF2+PB2=BF2,∴m2+4n2=a2②,①+②得5(n2+m2)=(a2+b2),在Rt△EFP中,∵PE2+PF2=EF2,∴n2+m2=EF2=c2,∴5•c2=(a2+b2),∴a2+b2=5c2;(2)∵四边形ABCD为菱形,∴BD⊥AC,∵E,F分别为线段AO,DO的中点,由(1)的结论得MB2+MC2=5BC2=5×32=45,∵AG∥BC,∴△AEG∽△CEB,∴==,∴AG=1,同理可得DH=1,∴GH=1,∴GH∥BC,∴===,∴MB=3GM,MC=3MH,∴9MG2+9MH2=45,∴MG2+MH2=5.26.(2016·湖南邵阳)已知抛物线y=ax2﹣4a(a>0)与x轴相交于A,B两点(点A在点B的左侧),点P是抛物线上一点,且PB=AB,∠PBA=120°,如图所示.(1)求抛物线的解析式.(2)设点M(m,n)为抛物线上的一个动点,且在曲线PA上移动.①当点M在曲线PB之间(含端点)移动时,是否存在点M使△APM的面积为?若存在,求点M的坐标;若不存在,请说明理由.②当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M的坐标.【考点】二次函数综合题.【分析】(1)先求出A、B两点坐标,然后过点P作PC⊥x轴于点C,根据∠PBA=120°,PB=AB,分别求出BC和PC的长度即可得出点P的坐标,最后将点P的坐标代入二次函数解析式即;(2)①过点M作ME⊥x轴于点E,交AP于点D,分别用含m的式子表示点D、M的坐标,然后代入△APM的面积公式DM•AC,根据题意列出方程求出m的值;②根据题意可知:n<0,然后对m的值进行分类讨论,当﹣2≤m≤0时,|m|=﹣m;当0<m≤2时,|m|=m,列出函数关系式即可求得|m|+|n|的最大值.【解答】解:(1)如图1,令y=0代入y=ax2﹣4a,∴0=ax2﹣4a,∵a>0,∴x2﹣4=0,∴x=±2,∴A(﹣2,0),B(2,0),∴AB=4,过点P作PC⊥x轴于点C,∴∠PBC=180°﹣∠PBA=60°,∵PB=AB=4,∴cos∠PBC=,∴BC=2,由勾股定理可求得:PC=2,∵OC=OC+BC=4,∴P(4,2),把P(4,2)代入y=ax2﹣4a,∴2=16a﹣4a,∴a=,∴抛物线解析式为;y=x2﹣;(2)∵点M在抛物线上,∴n=m2﹣,∴M的坐标为(m,m2﹣),①当点M在曲线PB之间(含端点)移动时,∴2≤m≤4,如图2,过点M作ME⊥x轴于点E,交AP于点D,设直线AP的解析式为y=kx+b,把A(﹣2,0)与P(4,2)代入y=kx+b,得:,解得∴直线AP的解析式为:y=x+,令x=m代入y=x+,∴y=m+,∴D的坐标为(m,m+),∴DM=(m+)﹣(m2﹣)=﹣m2+m+,∴S△APM=DM•AE+DM•CE=DM(AE+CE)=DM•AC=﹣m2+m+4当S△APM=时,∴=﹣m2+m+4,∴解得m=3或m=﹣1,∵2≤m≤4,∴m=3,此时,M的坐标为(3,);②当点M在曲线BA之间(含端点)移动时,∴﹣2≤m≤2,n<0,当﹣2≤m≤0时,∴|m|+|n|=﹣m﹣n=﹣m2﹣m+=﹣(m+)2+,当m=﹣时,∴|m|+|n|可取得最大值,最大值为,此时,M的坐标为(﹣,﹣),当0<m≤2时,∴|m|+|n|=m﹣n=﹣m2+m+=﹣(m﹣)2+,当m=时,∴|m|+|n|可取得最大值,最大值为,此时,M的坐标为(,﹣),综上所述,当点M在曲线BA之间(含端点)移动时,M的坐标为(,﹣)或(﹣,﹣)时,|m|+|n|的最大值为.2016年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(2016·广西南宁)﹣2的相反数是()A.﹣2 B.0 C.2 D.4【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(2016·广西南宁)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.(2016·广西南宁)据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将332000用科学记数法表示为:3.32×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2016·广西南宁)已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.B.3 C.﹣D.﹣3【考点】一次函数图象上点的坐标特征.【分析】本题较为简单,把坐标代入解析式即可求出m的值.【解答】解:把点(1,m)代入y=3x,可得:m=3,故选B【点评】此题考查一次函数的问题,利用待定系数法直接代入求出未知系数m,比较简单.5.(2016·广西南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【考点】加权平均数.【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.6.(2016·广西南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.7.(2016·广西南宁)下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.故选C.【点评】本题考查了幂的乘方与积的乘方、合并同类项、同底数幂的乘法的知识,解答本题的关键在于掌握各知识点的运算法则.8.(2016·广西南宁)下列各曲线中表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.9.(2016·广西南宁)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.(2016·广西南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【考点】由实际问题抽象出一元一次方程.【分析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.11.(2016·广西南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【考点】正方形的性质.【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S,正方形ABCD∴S1=x2,∵=,∴=,∴S2=S,正方形ABCD∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.12.(2016·广西南宁)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0.故选C.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(2016·广西南宁)若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.14.(2016·广西南宁)如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=50°.【考点】平行线的性质.【分析】根据两直线平行,同位角相等可得∠1=∠A.【解答】解:∵AB∥CD,∴∠A=∠1,∵∠1=50°,∴∠A=50°,故答案为50°.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.15.(2016·广西南宁)分解因式:a2﹣9=(a+3)(a﹣3).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.16.(2016·广西南宁)如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC 的对角线AC的中点D.若矩形OABC的面积为8,则k的值为2.【考点】反比例函数系数k的几何意义.【分析】过D作DE⊥OA于E,设D(m,),于是得到OA=2m,OC=,根据矩形的面积列方程即可得到结论.【解答】解:过D作DE⊥OA于E,设D(m,),∴OE=m.DE=,∵点D是矩形OABC的对角线AC的中点,∴OA=2m,OC=,∵矩形OABC的面积为8,∴OA•OC=2m•=8,∴k=2,故答案为:2.【点评】本题考查了反比例函数系数k的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.18.(2016·广西南宁)观察下列等式:在上述数字宝塔中,从上往下数,2016在第44层.【考点】规律型:数字的变化类.【分析】先按图示规律计算出每一层的第一个数和最后一个数;发现第一个数分别是每一层层数的平方,那么只要知道2016介于哪两个数的平方即可,通过计算可知:442<2016<452,则2016在第44层.【解答】解:第一层:第一个数为12=1,最后一个数为22﹣1=3,第二层:第一个数为22=4,最后一个数为23﹣1=8,第三层:第一个数为32=9,最后一个数为24﹣1=15,∵442=1936,452=2025,又∵1936<2016<2025,∴在上述数字宝塔中,从上往下数,2016在第44层,故答案为:44【点评】本题考查了数学变化类的规律题,这类题的解题思路是:①从第一个数起,认真观察、仔细思考,能不能用平方或奇偶或加、减、乘、除等规律来表示;②利用方程来解决问题,先设一个未知数,找到符合条件的方程即可;本题以每一行的第一个数为突破口,找出其规律,得出结论.三、解答题(本大题共8小题,共66分)19.(2016·广西南宁)计算:|﹣2|+4cos30°﹣()﹣3+.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质、二次根式的性质化简,进而求出答案.【解答】解:原式=2+4×﹣8+2=4﹣6.【点评】此题主要考查了实数运算,正确利用负整数指数幂的性质化简是解题关键.20.(2016·广西南宁)解不等式组,并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x≤1,解②得x>﹣3,,不等式组的解集是:﹣3<x≤1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.(2016·广西南宁)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A (2,2),B(4,0),C(4,﹣4)(1)请画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在y轴右侧画出△A2B2C2,并求出∠A2C2B2的正弦值.【考点】作图-位似变换;作图-平移变换.【分析】(1)将A、B、C三点分别向左平移6个单位即可得到的△A1B1C1;(2)连接OA、OC,分别取OA、OB、OC的中点即可画出△A2B2C2,求出直线AC与OB 的交点,求出∠ACB的正弦值即可解决问题.【解答】解:(1)请画出△ABC向左平移6个单位长度后得到的△A1B1C1,如图1所示,(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在y轴右侧画出△A2B2C2,如图2所示,∵A(2,2),C(4,﹣4),B(4,0),∴直线AC解析式为y=﹣3x+8,与x轴交于点D(,0),∵∠CBD=90°,∴CD==,∴sin∠DCB===.∵∠A2C2B2=∠ACB,∴sin∠A2C2B2=sin∠DCB=.【点评】本题考查位似变换、平移变换等知识,锐角三角函数等知识,解题的关键是理解位似变换、平移变换的概念,记住锐角三角函数的定义,属于中考常考题型.22.(2016·广西南宁)在图“书香八桂,阅读圆梦”读数活动中,某中学设置了书法、国学、诵读、演讲、征文四个比赛项目(2016•南宁)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.【考点】切线的判定.【专题】计算题;与圆有关的位置关系.【分析】(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODA为直径,即可得证;(2)由OD与BC平行得到三角形OAD与三角形BAC相似,由相似得比例求出OA的长,进而确定出AB的长,连接EF,过O作OG垂直于BC,利用勾股定理求出BG的长,由BG+GC求出BC的长,再由三角形BEF与三角形BAC相似,由相似得比例求出BE的长即可.【解答】(1)证明:连接OD,∵BD为∠ABC平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,。
邵阳市2016年初中毕业学业考试试卷·数学
邵阳市2016年初中毕业学业考试试卷·数学总分数 120分时长:120分钟一、选择题(共10题 ,总计30分)1.(3分)的相反数是()A.B.C.D. -22.(3分)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.3.(3分)如图所示,直线AB、CD被直线EF所截,若AB∥CD,∠1=100°,则∠2的大小是()A. 10°B. 50°C. 80°D. 100°4.(3分)在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是()A. 95B. 90C. 85D. 805.(3分)一次函数y=-x+2的图象不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.(3分)分式方程的解是()A. x=-1B. x=1C. x=2D. x=37.(3分)一元二次方程2x2-3x+1=0的根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根8.(3分)如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A. AC>BCB. AC=BCC. ∠A>∠ABCD. ∠A=∠ABC9.(3分)如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A. 15°B. 30°C. 60°D. 75°10.(3分)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A. y=2n+1B. y=2n+nC. y=2n+1+nD. y=2n+n+1二、填空题(共8题 ,总计24分)11.(3分)将多项式m3-mn2因式分解的结果是____1____.12.(3分)学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:请你根据上表中的数据选一人参加比赛,最适合的人选是____1____.13.(3分)将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是____1____.14.(3分)已知反比例函数的图象如图所示,则k的值可能是____1____(写一个即可).15.(3分)不等式组的解集是____1____.16.(3分)2015年7月,第四十五届“世界超级计算机500强排行榜”榜单发布,我国国防科技大学研制的“天河二号”以每秒3386×1013次的浮点运算速度第五次蝉联冠军,若将3386×1013用科学记数法表示成a×10n的形式,则n的值是____1____.17.(3分)如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件____1____(写一个即可),使四边形ABCD是平行四边形.18.(3分)如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O,A,B均为格点,则扇形OAB的面积大小是____1____.三、解答题(共3题 ,总计24分)19.(8分)计算:.20.(8分)先化简,再求值:(m-n)2-m(m-2n),其中.21.(8分)如图所示,点E,F是平行四边形ABCD对角线BD上的点,BF=DE,求证:AE=CF.四、解答题(共3题 ,总计24分)22.(8分)如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,).23.(8分)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)(4分)求A,B两种品牌的足球的单价.(2)(4分)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.24.(8分)为了解市民对全市创卫工作的满意程度,某中学教学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)(2分)求此次调查中接受调查的人数.(2)(3分)求此次调查中结果为非常满意的人数.(3)(3分)兴趣小组准备从调查结果为不满意的4位市民中随机选择2为进行回访,已知4为市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.五、综合题(共2题 ,总计18分)25.(8分)尤秀同学遇到了这样一个问题:如图所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.求证:a2+b2=5c2.该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证.(1)(4分)请你根据以上解题思路帮尤秀同学写出证明过程.(2)(4分)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图所示,求MG2+MH2的值.26.(10分)已知抛物线y=ax2-4a(a>0)与x轴相交于A,B两点(点A在点B的左侧),点P是抛物线上一点,且PB=AB,∠PBA=120°,如图所示.(1)(4分)求抛物线的解析式.(2)(6分)设点M(m,n)为抛物线上的一个动点,且在曲线PA上移动.①当点M在曲线PB之间(含端点)移动时,是否存在点M使△APM的面积为?若存在,求点M的坐标;若不存在,请说明理由.②当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M 的坐标.邵阳市2016年初中毕业学业考试试卷·数学参考答案与试题解析一、选择题(共10题 ,总计30分)1.(3分)的相反数是()A.B.C.D. -2【解析】解:的相反数是.【答案】A2.(3分)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【解析】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【答案】D3.(3分)如图所示,直线AB、CD被直线EF所截,若AB∥CD,∠1=100°,则∠2的大小是()A. 10°B. 50°C. 80°D. 100°【解析】解:∵AB∥CD,∠3=∠1=100°,∴∠2=180°﹣∠3=80°,故选C.【答案】C4.(3分)在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是()A. 95B. 90C. 85D. 80【解析】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故选B.【答案】B5.(3分)一次函数y=-x+2的图象不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【解析】解:∵一次函数y=-x+2中k=﹣1<0,b=2>0,∴该函数图象经过第一、二、四象限.故选C.【答案】C6.(3分)分式方程的解是()A. x=-1B. x=1C. x=2D. x=3【解析】解:两边都乘以x(x+1)得:3(x+1)=4x,去括号,得:3x+3=4x,移项、合并,得:x=3,经检验x=3是原分式方程的解,故选:D.【答案】D7.(3分)一元二次方程2x2-3x+1=0的根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根【解析】解:∵△=b2-4ac=(-3)2-4×2×1=1>0,∴该方程有两个不相等的实数根.故选B.【答案】B8.(3分)如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A. AC>BCB. AC=BCC. ∠A>∠ABCD. ∠A=∠ABC【解析】解:∵AD=BD,∴∠A=∠ABD,∴∠ABC>∠A,所以C选项和D选项错误;∴AC>BC,所以A选项正确;B选项错误.故选A.【答案】A9.(3分)如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A. 15°B. 30°C. 60°D. 75°【解析】解:连接OD,∵CA,CD是⊙O的切线,∴OA⊥AC,OD⊥CD,∴∠OAC=∠ODC=90°,∵∠ACD=30°,∴∠AOD=360°-∠C-∠OAC-∠ODC=150°,∵OB=OD,∴∠DBA=∠ODB=∠AOD=75°.故选D.【答案】D10.(3分)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A. y=2n+1B. y=2n+nC. y=2n+1+nD. y=2n+n+1【解析】解:∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,2+22,…,n+2n,∴y=2n+n.故选B.【答案】B二、填空题(共8题 ,总计24分)11.(3分)将多项式m3-mn2因式分解的结果是____1____.【解析】解:原式=m(m2-n2)=m(m+n)(m-n).故答案为:m(m+n)(m-n)【答案】m(m+n)(m-n)12.(3分)学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:请你根据上表中的数据选一人参加比赛,最适合的人选是____1____.【解析】解:因为S甲2=0.035>S乙2=0.015,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.【答案】乙13.(3分)将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是____1____.【解析】解:∵三角形ABC是等边三角形,∴∠ACB=60°,∵等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,∴∠BCA'=180°,∠B'CA'=60°,∴∠ACB'=60°,∴∠α=60°+60°=120°,故答案为:120°.【答案】120°14.(3分)已知反比例函数的图象如图所示,则k的值可能是____1____(写一个即可).【解析】解:∵双曲线的两支分别位于第二、第四象限,∴k<0,∴k可取-1.故答案为-1.【答案】-115.(3分)不等式组的解集是____1____.【解析】解:,由①得,x≤1,由②得,x>-2,故不等式组的解集为:-2<x≤1.故答案为:-2<x≤1.【答案】-2<x≤116.(3分)2015年7月,第四十五届“世界超级计算机500强排行榜”榜单发布,我国国防科技大学研制的“天河二号”以每秒3386×1013次的浮点运算速度第五次蝉联冠军,若将3386×1013用科学记数法表示成a×10n的形式,则n的值是____1____.【解析】解:3386×1013=3.386×1016,则n=16.故答案为:16.【答案】1617.(3分)如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件____1____(写一个即可),使四边形ABCD是平行四边形.【解析】解:可以添加:AD∥BC(答案不唯一).故答案是:AD∥BC.【答案】AD∥BC18.(3分)如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O,A,B均为格点,则扇形OAB的面积大小是____1____.【解析】解:∵每个小方格都是边长为1的正方形,∴,∴.故答案为:.【答案】三、解答题(共3题 ,总计24分)19.(8分)计算:.【解析】略【答案】解:原式.20.(8分)先化简,再求值:(m-n)2-m(m-2n),其中.【解析】略【答案】解:原式=m2-2mn+n2-m2+2mn=n2,时,原式=2.21.(8分)如图所示,点E,F是平行四边形ABCD对角线BD上的点,BF=DE,求证:AE=CF.【解析】略【答案】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EDA=∠FBC,在△AED和△CFB中,,∴△AED≌△CFB(SAS),∴AE=CF.四、解答题(共3题 ,总计24分)22.(8分)如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,).【解析】略【答案】解:在直角三角形ACO中,,解得OC≈38.8,在直角三角形BCO中,,解得BC≈67.3.答:该台灯照亮水平面的宽度BC大约是67.3cm.23.(8分)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B 品牌的足球共需360元.(1)(4分)求A,B两种品牌的足球的单价.(2)(4分)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.【解析】(1)略(2)略【答案】(1)解:设一个A品牌的足球需x元,则一个B品牌的足球需y元,依题意得:解得.答:一个A品牌的足球需90元,则一个B品牌的足球需100元;(2)解:依题意得:20×90+2×100=1900(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用是1900元.24.(8分)为了解市民对全市创卫工作的满意程度,某中学教学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)(2分)求此次调查中接受调查的人数.(2)(3分)求此次调查中结果为非常满意的人数.(3)(3分)兴趣小组准备从调查结果为不满意的4位市民中随机选择2为进行回访,已知4为市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.【解析】(1)略(2)略(3)略【答案】(1)解:∵满意的有20人,占40%,∴此次调查中接受调查的人数:20÷40%=50(人);(2)解:此次调查中结果为非常满意的人数为:50-4-8-20=18(人);(3)解:画树状图得:∵共有12种等可能的结果,选择的市民均来自甲区的有2种情况,∴选择的市民均来自甲区的概率为:.五、综合题(共2题 ,总计18分)25.(8分)尤秀同学遇到了这样一个问题:如图所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.求证:a2+b2=5c2.该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证.(1)(4分)请你根据以上解题思路帮尤秀同学写出证明过程.(2)(4分)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图所示,求MG2+MH2的值.【解析】(1)略(2)略【答案】(1)解:设PF=m,PE=n,连结EF,如图,∵AF,BE是△ABC的中线,∴EF为△ABC的中位线,,∴EF∥AB,,∴△EFP∽△BPA,∴,∴PB=2n,PA=2m,在Rt△AEP中,∵PE2+PA2=AE2,∴①,在Rt△AEP中,∵PF2+PB2=BF2,∴②,①+②得5(n2+m2)=(a2+b2),在Rt△EFP中,∵PE2+PF2=EF2,∴n2+m2=EF2=,∴,∴a2+b2=5c2;(2)解:∵四边形ABCD为菱形,∴BD⊥AC,∵E,F分别为线段AO,DO的中点,由(1)的结论得MB2+MC2=5BC2=5×32=45,∵AG∥BC,∴△AEG∽△CEB,∴,∴AG=1,同理可得DH=1,∴GH=1,∴GH∥BC,∴,∴MB=3GM,MC=3MH,∴9MG2+9MH2=45,∴MG2+MH2=5.26.(10分)已知抛物线y=ax2-4a(a>0)与x轴相交于A,B两点(点A在点B的左侧),点P是抛物线上一点,且PB=AB,∠PBA=120°,如图所示.(1)(4分)求抛物线的解析式.(2)(6分)设点M(m,n)为抛物线上的一个动点,且在曲线PA上移动.①当点M在曲线PB之间(含端点)移动时,是否存在点M使△APM的面积为?若存在,求点M的坐标;若不存在,请说明理由.②当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M的坐标.【解析】(1)略(2)略【答案】(1)解:如图,令y=0代入y=ax2-4a,∴0=ax2-4a,∵a>0,∴x2-4=0,∴x=±2,∴A(-2,0),B(2,0),∴AB=4,过点P作PC⊥x轴于点C,∴∠PBC=180°﹣∠PBA=60°,∵PB=AB=4,∴cos∠PBC=,∴BC=2,由勾股定理可求得:,∵OC=OC+BC=4,∴,把代入y=ax2-4a,∴,∴,∴抛物线解析式为;;(2)解:∵点M在抛物线上,∴,∴M的坐标为,①当点M在曲线PB之间(含端点)移动时,∴2≤m≤4,如图2,过点M作ME⊥x轴于点E,交AP于点D,设直线AP的解析式为y=kx+b,把A(-2,0)与P(4,)代入y=kx+b,得:,解得∴直线AP的解析式为:,令x=m代入,∴,∴D的坐标为,∴DM=,∴S△APM=DM•AE+DM•CE=DM(AE+CE)=DM•AC=当S△APM=时,∴,∴解得m=3或m=-1,∵2≤m≤4,∴m=3,此时,M的坐标为(3,);②当点M在曲线BA之间(含端点)移动时,∴﹣2≤m≤2,n<0,当﹣2≤m≤0时,∴|m|+|n|=-m-n=,当时,∴|m|+|n|可取得最大值,最大值为,此时,M的坐标为,当0<m≤2时,∴|m|+|n|=m-n=,当m=时,∴|m|+|n|可取得最大值,最大值为,此时,M的坐标为,综上所述,当点M在曲线BA之间(含端点)移动时,M的坐标为时,|m|+|n|的最大值为.。
2016年邵阳市中考数学模拟试卷
中考数学模拟试卷一、选择题(本大题满分30分,每小题3分.)1.2011的倒数是( ).A .12011 B .2011 C .2011- D .12011-2.在实数2、0、1-、2-中,最小的实数是( ).A .2B .0C .1-D .2-3. 2 sin 60°的值等于 ( )A. 1B. 23C. 2D. 3 4.下列运算正确的是 ( )A .B . (m 2)3=m 5C . a 2•a 3=a 5D . (x+y )2=x 2+y 25. 下列的几何图形中,一定是轴对称图形的有 ( )A. 5个B. 4个C. 3个D. 2个6、下列事件为必然事件的是( )A 、打开电视机,它正在播广告B 、抛掷一枚硬币,一定正面朝上C 、投掷一枚普通的正方体骰子,掷得的点数小于7D 、某彩票的中奖机会是1%,买1张一定不会中奖7、下面如图是一个圆柱体,则它的正视图是( )A B C D8、某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x ,则下面所列方程正确的是 ( )A. B.C. D.9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = ( )A. 1∶2B. 1∶4C. 1∶3D. 2∶3 10.在反比例函数y= 图象的每一个象限内,y 都随x 的增大而增大,则k 的值可以是()圆弧 角 扇形 菱形 等腰梯形(第9题)A . ﹣1B . 0C 1D . 2二、填空题(本大题满分24分,每小题3分)11. 计算:│-3│= .12.小星同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数是61700000,这个数用科学记数法表示为13.分解因式:m 3﹣4m 2+4m=________.14.函数的自变量x 的取值范围是 .15.若分式2x 4x 2--的值为0,则x 的值为 . 16.当2x =-时,代数式21x x -的值是 . 17. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .18.一个扇形的圆心角为60°,它所对的弧长为2πcm ,则这个扇形的半径为________.三、解答题(本大题共6题,共46分,解答需写出必要的步骤和过程. )19.(每小题4分,共8分)(1)计算:01(21)22452tan -︒-+-(2)解二元一次方程组:35382x y y x =-⎧⎨=-⎩20.(本题6分)西部建设中,某工程队承包了一段72千米的铁轨的铺设任务,计划若干天完成,在铺设完一半后,增添工作设备,改进了工作方法,这样每天比原计划可多铺3千米,结果提前了2天完成任务。
【真题】湖南省邵阳市中考数学试卷含答案解析()
湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)用计算器依次按键,得到的结果最接近的是()A.1.5 B.1.6 C.1.7 D.1.82.(3分)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为()A.20°B.60°C.70°D.160°3.(3分)将多项式x﹣x3因式分解正确的是()A.x(x2﹣1)B.x(1﹣x2)C.x(x+1)(x﹣1)D.x(1+x)(1﹣x)4.(3分)下列图形中,是轴对称图形的是()A.B.C.D.5.(3分)据《经济日报》5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m6.(3分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD 的大小是()A.80°B.120°C.100° D.90°7.(3分)小明参加100m短跑训练,1~4月的训练成绩如下表所示:月份1234成绩(s)15.615.415.215体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠8.(3分)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x 轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是()A.2 B.1 C.4 D.29.(3分)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A.李飞或刘亮B.李飞C.刘亮D.无法确定10.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)点A在数轴上的位置如图所示,则点A表示的数的相反数是.12.(3分)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:.13.(3分)已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是.14.(3分)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是.15.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.16.(3分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.17.(3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A 沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是.18.(3分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是.三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。
2016年湖南省邵阳市中考数学试卷(版)
2016年湖南省邵阳市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分1.﹣的相反数是()A.B.﹣C.﹣D.﹣22.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.3.如图所示,直线AB、CD被直线EF所截,若AB∥CD,∠1=100°,则∠2的大小是()A.10° B.50° C.80° D.100°4.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是()A.95 B.90 C.85 D.805.一次函数y=﹣x+2的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.分式方程=的解是()A.x=﹣1 B.x=1 C.x=2 D.x=37.一元二次方程2x2﹣3x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根8.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC9.如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A.15° B.30° C.60° D.75°10.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1二、填空题:本大题共8小题,每小题3分,共24分11.将多项式m3﹣mn2因式分解的结果是.12.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔成绩及方差如下表:最适合的人选是.13.将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是.14.已知反比例函数y=(k≠0)的图象如图所示,则k的值可能是(写一个即可).15.不等式组的解集是.16.2015年7月,第四十五届“世界超级计算机500强排行榜”榜单发布,我国国防科技大学研制的“天河二号”以每秒3386×1013次的浮点运算速度第五次蝉联冠军,若将3386×1013用科学记数法表示成a×10n的形式,则n的值是.17.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件(写一个即可),使四边形ABCD是平行四边形.18.如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O,A,B均为格点,则扇形OAB的面积大小是.三、解答题:本大题共3小题,每小题8分,共24分19.计算:(﹣2)2+2cos60°﹣()0.20.先化简,再求值:(m﹣n)2﹣m(m﹣2n),其中m=,n=.21.如图所示,点E,F是平行四边形ABCD对角线BD上的点,BF=DE,求证:AE=CF.四、解答题:本大题共3小题,每小题8分,共24分22.如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,).23.为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A,B两种品牌的足球的单价.(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.24.为了解市民对全市创卫工作的满意程度,某中学教学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2为进行回访,已知4为市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.五、综合题:本大题共2小题,其中25题8分,26题10分,共18分25.尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.求证:a2+b2=5c2该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF 中利用勾股定理计算,消去m,n即可得证(1)请你根据以上解题思路帮尤秀同学写出证明过程.(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.26.已知抛物线y=ax2﹣4a(a>0)与x轴相交于A,B两点(点A在点B的左侧),点P是抛物线上一点,且PB=AB,∠PBA=120°,如图所示.(1)求抛物线的解析式.(2)设点M(m,n)为抛物线上的一个动点,且在曲线PA上移动.①当点M在曲线PB之间(含端点)移动时,是否存在点M使△APM的面积为?若存在,求点M的坐标;若不存在,请说明理由.②当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M的坐标.2016年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.﹣的相反数是()A.B.﹣C.﹣D.﹣2【考点】实数的性质.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选A.2.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.3.如图所示,直线AB、CD被直线EF所截,若AB∥CD,∠1=100°,则∠2的大小是()A.10° B.50° C.80° D.100°【考点】平行线的性质.【分析】根据平行线的性质得到∠3=∠1=100°,根据平角的定义即可得到结论.【解答】解:∵AB∥CD,∠3=∠1=100°,∴∠2=180°﹣∠3=80°,故选C.4.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是()A.95 B.90 C.85 D.80【考点】众数;折线统计图.【分析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故选B.5.一次函数y=﹣x+2的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数的图象;一次函数图象与系数的关系.【分析】根据一次函数的系数确定函数图象经过的象限,由此即可得出结论.【解答】解:∵一次函数y=﹣x+2中k=﹣1<0,b=2>0,∴该函数图象经过第一、二、四象限.故选C.6.分式方程=的解是()A.x=﹣1 B.x=1 C.x=2 D.x=3【考点】分式方程的解.【分析】观察可得最简公分母是x(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:两边都乘以x(x+1)得:3(x+1)=4x,去括号,得:3x+3=4x,移项、合并,得:x=3,经检验x=3是原分式方程的解,故选:D.7.一元二次方程2x2﹣3x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】代入数据求出根的判别式△=b2﹣4ac的值,根据△的正负即可得出结论.【解答】解:∵△=b2﹣4ac=(﹣3)2﹣4×2×1=1>0,∴该方程有两个不相等的实数根.故选B.8.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC【考点】等腰三角形的性质.【分析】根据等腰三角形的两个底角相等,由AD=BD得到∠A=∠ABD,所以∠ABC>∠A,则对各C、D选项进行判断;根据大边对大角可对A、B进行判断.【解答】解:∵AD=BD,∴∠A=∠ABD,∴∠ABC>∠A,所以C选项和D选项错误;∴AC>BC,所以A选项正确;B选项错误.故选A.9.如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A.15° B.30° C.60° D.75°【考点】切线的性质;圆周角定理.【分析】首先连接OD,由CA,CD是⊙O的切线,∠ACD=30°,即可求得∠AOD 的度数,又由OB=OD,即可求得答案.【解答】解:连接OD,∵CA,CD是⊙O的切线,∴OA⊥AC,OD⊥CD,∴∠OAC=∠ODC=90°,∵∠ACD=30°,∴∠AOD=360°﹣∠C﹣∠OAC﹣∠ODC=150°,∵OB=OD,∴∠DBA=∠ODB=∠AOD=75°.故选D.10.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【考点】规律型:数字的变化类.【分析】由题意可得下边三角形的数字规律为:n+2n,继而求得答案.【解答】解:∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,2+22,…,n+2n,∴y=2n+n.故选B.二、填空题:本大题共8小题,每小题3分,共24分11.将多项式m3﹣mn2因式分解的结果是m(m+n)(m﹣n).【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式后,利用平方差公式分解即可.【解答】解:原式=m(m2﹣n2)=m(m+n)(m﹣n).故答案为:m(m+n)(m﹣n)12.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔成绩及方差如下表:最适合的人选是乙.【考点】方差;算术平均数.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:因为S甲2=0.035>S乙2=0.015,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.13.将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是120°.【考点】旋转的性质;等边三角形的性质.【分析】根据旋转的性质和等边三角形的性质解答即可.【解答】解:∵三角形ABC是等边三角形,∴∠ACB=60°,∵等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,∴∠BCA'=180°,∠B'CA'=60°,∴∠ACB'=60°,∴∠α=60°+60°=120°,故答案为:120°.14.已知反比例函数y=(k≠0)的图象如图所示,则k的值可能是﹣1(写一个即可).【考点】反比例函数的性质.【分析】利用反比例函数的性质得到k<0,然后在此范围内取一个值即可.【解答】解:∵双曲线的两支分别位于第二、第四象限,∴k<0,∴k可取﹣1.故答案为﹣1.15.不等式组的解集是﹣2<x≤1.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x≤1,由②得,x>﹣2,故不等式组的解集为:﹣2<x≤1.故答案为:﹣2<x≤1.16.2015年7月,第四十五届“世界超级计算机500强排行榜”榜单发布,我国国防科技大学研制的“天河二号”以每秒3386×1013次的浮点运算速度第五次蝉联冠军,若将3386×1013用科学记数法表示成a×10n的形式,则n的值是16.【考点】科学记数法—表示较大的数.【分析】直接利用科学记数法的表示方法分析得出n的值.【解答】解:3386×1013=3.386×1016,则n=16.故答案为:16.17.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件AD∥BC(写一个即可),使四边形ABCD是平行四边形.【考点】平行四边形的判定.【分析】根据平行四边形的定义或判定定理即可解答.【解答】解:可以添加:AD∥BC(答案不唯一).故答案是:AD∥BC.18.如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O,A,B均为格点,则扇形OAB的面积大小是.【考点】扇形面积的计算.【分析】根据题意知,该扇形的圆心角是90°.根据勾股定理可以求得OA=OB=,由扇形面积公式可得出结论.【解答】解:∵每个小方格都是边长为1的正方形,∴OA=OB==,∴S 扇形O AB ===.故答案为:.三、解答题:本大题共3小题,每小题8分,共24分19.计算:(﹣2)2+2cos60°﹣()0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】原式利用乘方的意义,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【解答】解:原式=4+2×﹣1=4+1﹣1=4.20.先化简,再求值:(m ﹣n )2﹣m (m ﹣2n ),其中m=,n=.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把m 与n 的值代入计算即可求出值.【解答】解:原式=m 2﹣2mn+n 2﹣m 2+2mn=n 2,当n=时,原式=2.21.如图所示,点E ,F 是平行四边形ABCD 对角线BD 上的点,BF=DE ,求证:AE=CF .【考点】平行四边形的性质;全等三角形的判定与性质.【分析】根据平行四边形的性质可得AD ∥BC ,AD=BC ,根据平行线的性质可得∠EDA=∠FBC ,再加上条件ED=BF 可利用SAS 判定△AED ≌△CFB ,进而可得AE=CF .【解答】证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠EDA=∠FBC ,在△AED 和△CFB 中,,∴△AED ≌△CFB (SAS ),∴AE=CF .四、解答题:本大题共3小题,每小题8分,共24分22.如图为放置在水平桌面上的台灯的平面示意图,灯臂AO 长为40cm ,与水平面所形成的夹角∠OAM 为75°.由光源O 射出的边缘光线OC ,OB 与水平面所形成的夹角∠OCA ,∠OBA 分别为90°和30°,求该台灯照亮水平面的宽度BC (不考虑其他因素,结果精确到0.1cm .温馨提示:sin75°≈0.97,cos75°≈0.26,).【考点】解直角三角形的应用.【分析】根据sin75°==,求出OC 的长,根据tan30°=,再求出BC的长,即可求解.【解答】解:在直角三角形ACO 中,sin75°==≈0.97, 解得OC ≈38.8,在直角三角形BCO 中,tan30°==≈, 解得BC ≈67.3.答:该台灯照亮水平面的宽度BC 大约是67.3cm .23.为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A 品牌的足球和3个B 品牌的足球共需380元;购买4个A 品牌的足球和2个B 品牌的足球共需360元.(1)求A ,B 两种品牌的足球的单价.(2)求该校购买20个A 品牌的足球和2个B 品牌的足球的总费用.【考点】二元一次方程组的应用.【分析】(1)设一个A 品牌的足球需x 元,则一个B 品牌的足球需y 元,根据“购买2个A 品牌的足球和3个B 品牌的足球共需380元;购买4个A 品牌的足球和2个B 品牌的足球共需360元”列出方程组并解答;(2)把(1)中的数据代入求值即可.【解答】解:(1)设一个A 品牌的足球需x 元,则一个B 品牌的足球需y 元,依题意得:,解得.答:一个A品牌的足球需90元,则一个B品牌的足球需100元;(2)依题意得:20×90+2×100=1900(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用是1900元.24.为了解市民对全市创卫工作的满意程度,某中学教学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2为进行回访,已知4为市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由满意的有20人,占40%,即可求得此次调查中接受调查的人数.(2)由(1),即可求得此次调查中结果为非常满意的人数.(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选择的市民均来自甲区的情况,再利用概率公式即可求得答案.【解答】解:(1)∵满意的有20人,占40%,∴此次调查中接受调查的人数:20÷40%=50(人);(2)此次调查中结果为非常满意的人数为:50﹣4﹣8﹣20=18(人);(3)画树状图得:∵共有12种等可能的结果,选择的市民均来自甲区的有2种情况,∴选择的市民均来自甲区的概率为:=.五、综合题:本大题共2小题,其中25题8分,26题10分,共18分25.尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.求证:a2+b2=5c2该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF 中利用勾股定理计算,消去m,n即可得证(1)请你根据以上解题思路帮尤秀同学写出证明过程.(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.【考点】相似三角形的判定;三角形中位线定理.【分析】(1)设PF=m,PE=n,连结EF,如图1,根据三角形中位线性质得EF∥AB,EF=c,则可判断△EFP∽△BPA,利用相似比得到PB=2n,PA=2m,接着根据勾股定理得到n2+4m2=b2,m2+4n2=a2,则5(n2+m2)=(a2+b2),而n2+m2=EF2=c2,所以a2+b2=5c2;(2)利用(1)的结论得MB2+MC2=5BC2=5×32=45,再利用△AEG∽△CEB 可计算出AG=1,同理可得DH=1,则GH=1,然后利用GH∥BC,根据平行线分线段长比例定理得到MB=3GM,MC=3MH,然后等量代换后可得MG2+MH2=5.【解答】解:(1)设PF=m,PE=n,连结EF,如图1,∵AF,BE是△ABC的中线,∴EF为△ABC的中位线,AE=b,BF=a,∴EF∥AB,EF=c,∴△EFP∽△BPA,∴,即==,∴PB=2n,PA=2m,在Rt△AEP中,∵PE2+PA2=AE2,∴n2+4m2=b2①,在Rt△AEP中,∵PF2+PB2=BF2,∴m2+4n2=a2②,①+②得5(n2+m2)=(a2+b2),在Rt△EFP中,∵PE2+PF2=EF2,∴n2+m2=EF2=c2,∴5•c2=(a2+b2),∴a2+b2=5c2;(2)∵四边形ABCD为菱形,∴BD⊥AC,∵E,F分别为线段AO,DO的中点,由(1)的结论得MB2+MC2=5BC2=5×32=45,∵AG∥BC,∴△AEG∽△CEB,∴==,∴AG=1,同理可得DH=1,∴GH=1,∴GH∥BC,∴===,∴MB=3GM,MC=3MH,∴9MG2+9MH2=45,∴MG2+MH2=5.26.已知抛物线y=ax2﹣4a(a>0)与x轴相交于A,B两点(点A在点B 的左侧),点P是抛物线上一点,且PB=AB,∠PBA=120°,如图所示.(1)求抛物线的解析式.(2)设点M(m,n)为抛物线上的一个动点,且在曲线PA上移动.①当点M在曲线PB之间(含端点)移动时,是否存在点M使△APM的面积为?若存在,求点M的坐标;若不存在,请说明理由.②当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M的坐标.【考点】二次函数综合题.【分析】(1)先求出A、B两点坐标,然后过点P作PC⊥x轴于点C,根据∠PBA=120°,PB=AB,分别求出BC和PC的长度即可得出点P的坐标,最后将点P的坐标代入二次函数解析式即;(2)①过点M作ME⊥x轴于点E,交AP于点D,分别用含m的式子表示点D、M的坐标,然后代入△APM的面积公式DM•AC,根据题意列出方程求出m的值;②根据题意可知:n<0,然后对m的值进行分类讨论,当﹣2≤m≤0时,|m|=﹣m;当0<m≤2时,|m|=m,列出函数关系式即可求得|m|+|n|的最大值.【解答】解:(1)如图1,令y=0代入y=ax2﹣4a,∴0=ax2﹣4a,∵a>0,∴x2﹣4=0,∴x=±2,∴A(﹣2,0),B(2,0),∴AB=4,过点P作PC⊥x轴于点C,∴∠PBC=180°﹣∠PBA=60°,∵PB=AB=4,∴cos∠PBC=,∴BC=2,由勾股定理可求得:PC=2,∵OC=OC+BC=4,∴P(4,2),把P(4,2)代入y=ax2﹣4a,∴2=16a﹣4a,∴a=,∴抛物线解析式为;y=x2﹣;(2)∵点M在抛物线上,∴n=m2﹣,∴M的坐标为(m,m2﹣),①当点M在曲线PB之间(含端点)移动时,∴2≤m≤4,如图2,过点M作ME⊥x轴于点E,交AP于点D,设直线AP的解析式为y=kx+b,把A(﹣2,0)与P(4,2)代入y=kx+b,得:,解得∴直线AP的解析式为:y=x+,令x=m代入y=x+,∴y=m+,∴D的坐标为(m,m+),∴DM=(m+)﹣(m2﹣)=﹣m2+m+,∴S△APM=DM•AE+DM•CE=DM(AE+CE)=DM•AC=﹣m2+m+4当S△APM=时,∴=﹣m2+m+4,∴解得m=3或m=﹣1,∵2≤m≤4,∴m=3,此时,M的坐标为(3,);②当点M在曲线BA之间(含端点)移动时,∴﹣2≤m≤2,n<0,当﹣2≤m≤0时,∴|m|+|n|=﹣m﹣n=﹣m2﹣m+=﹣(m+)2+,当m=﹣时,∴|m|+|n|可取得最大值,最大值为,此时,M的坐标为(﹣,﹣),当0<m≤2时,∴|m|+|n|=m﹣n=﹣m2+m+=﹣(m﹣)2+,当m=时,∴|m|+|n|可取得最大值,最大值为,此时,M的坐标为(,﹣),综上所述,当点M在曲线BA之间(含端点)移动时,M的坐标为(,﹣)或(﹣,﹣)时,|m|+|n|的最大值为.2016年6月30日。
湖南邵阳市中考数学真题试卷(解析版)
湖南邵阳市中考数学真题试卷(解析版)一、选择题(本大题有8个小题,每小题3分,共24分,在每小题给出的四个选项中只有一项是符合题目要求的) 1.-(-2)=A .-2B .2C .±2D .4【解题思路】:运用相反数定义 【答案】:B【点评】:这里考察了相反数的定义,首先要明确是求哪个数的相反数,一个数前面有负号表示什么意思。
难度较小2.如果□×3ab =3a 2b ,则□内应填的代数式是A .abB .3abC .aD .3a【解题思路】:运用因数因数积之间的关系变形abba 332约分即可。
【答案】:C【点评】:本题考察了约分(同底数幂的性质);思路2:把四个选项分别代入运用同底数幂的乘法运算验证。
难度较小 3.下列图形不是轴对称...图形的是A B C D【解题思路】:轴对称图形是把图形沿某直线折叠,易于中心对称图形相混淆,只注重了对称。
【答案】:C【点评】:本题考察了轴对称图形和中心对称图形的区别。
难度较小4.图(一)是某农户2010年收入情况的扇形统计图,已知他2010年的总收入为5万元,则他的打工收入是 A .0.75万元 B .1.25万元 C .1.75万元 D .2万元粮食作物收入40% 经济作 物收入 35%打工收入 25%图(一)【解题思路】:该项收入所占的百分比总收入=⨯ 【答案】:B【点评】:该项收入所占的百分比总收入=⨯,难度较小5.已知点(1,1)在反比例函数y =k x(k 为常数,k ≠0)的图象上,则这个反比例函数的大致图象是AB C D【解题思路】:点(1,1)在反比例函数y =k x(k 为常数,k ≠0)的图象上,把点(1,1)代入y=k x可以求出k=1,所以双曲线在一、三象限。
【答案】:C 【点评】:本题考察了点在图像上,点的坐标与解析式之间的关系;以及反比例函数的性质。
难度较小6.地球上水的总储量为 1.39×1018m 3,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.0107×1018m 3,因此我们要节约用水.请将0.0107×16218181007.1101007.1100107.0⨯=⨯⨯=⨯-1018m 3用科学记数法表示是A .1.07×1016m3B .0.107×1017m3C .10.7×1015m 3D .1.07×1017m3【解题思路】:解题时注意是哪个数据,16218181007.1101007.1100107.0⨯=⨯⨯=⨯-【答案】:A .【点评】:用ma 10⨯表示的数称为科学计数法,这里100<<a .如果所给的数据小于1,10的指数是负数,如果所给的数据大于10,10的指数是正数;然后结合幂的性质计算即可。
湖南省邵阳市中考数学试卷
湖南省邵阳市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)25的算术平方根是()A.5 B.±5 C.﹣5 D.252.(3分)如图所示,已知AB∥CD,下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠43.(3分)3﹣π的绝对值是()A.3﹣πB.π﹣3 C.3 D.π4.(3分)下列立体图形中,主视图是圆的是()A.B.C. D.5.(3分)函数y=中,自变量x的取值范围在数轴上表示正确的是()A.B.C.D.6.(3分)如图所示,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为()A.120°B.100°C.80°D.60°7.(3分)如图所示,边长为a的正方形中阴影部分的面积为()A.a2﹣π()2B.a2﹣πa2C.a2﹣πa D.a2﹣2πa8.(3分)“救死扶伤”是我国的传统美德,某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图,根据统计图判断下列说法,其中错误的一项是()A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%9.(3分)如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A.1.1千米 B.2千米C.15千米D.37千米10.(3分)如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(﹣1,1),(﹣3,1),(﹣1,﹣1),30秒后,飞机P飞到P′(4,3)位置,则飞机Q,R的位置Q′,R′分别为()A.Q′(2,3),R′(4,1)B.Q′(2,3),R′(2,1)C.Q′(2,2),R′(4,1) D.Q′(3,3),R′(3,1)二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)将多项式mn2+2mn+m因式分解的结果是.12.(3分)2016年,我国又有1240万人告别贫困,为世界脱贫工作作出了卓越贡献,将1240万用科学记数法表示为a×10n的形式,则a的值为.13.(3分)若抛物线y=ax2+bx+c的开口向下,则a的值可能是.(写一个即可)14.(3分)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=,现已知△ABC的三边长分别为1,2,,则△ABC的面积为.15.(3分)如图所示的正六边形ABCDEF,连结FD,则∠FDC的大小为.16.(3分)如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为.17.(3分)掷一枚硬币两次,可能出现的结果有四种,我们可以利用如图所示的树状图来分析所有可能出现的结果,那么掷一枚硬币两次,至少有一次出现正面的概率是.18.(3分)如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°,n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是km.三、解答题(本大题共8小题,第19-25题每小题8分,第26题10分,共66分,解答应写出必要的文字说明、演算步骤或证明过程)19.(8分)计算:4sin60°﹣()﹣1﹣.20.(8分)如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.21.(8分)先化简,再在﹣3,﹣1,0,,2中选择一个合适的x值代入求值.•.22.(8分)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.23.(8分)某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.24.(8分)如图所示,直线DP和圆O相切于点C,交直径AE的延长线于点P,过点C作AE的垂线,交AE于点F,交圆O于点B,作平行四边形ABCD,连接BE,DO,CO.(1)求证:DA=DC;(2)求∠P及∠AEB的大小.25.(8分)如图1所示,在△ABC中,点O是AC上一点,过点O的直线与AB,BC的延长线分别相交于点M,N.【问题引入】(1)若点O是AC的中点,=,求的值;温馨提示:过点A作MN的平行线交BN的延长线于点G.【探索研究】(2)若点O是AC上任意一点(不与A,C重合),求证:••=1;【拓展应用】(3)如图2所示,点P是△ABC内任意一点,射线AP,BP,CP分别交BC,AC,AB于点D,E,F,若=,=,求的值.26.(10分)如图所示,顶点为(,﹣)的抛物线y=ax2+bx+c过点M(2,0).(1)求抛物线的解析式;(2)点A是抛物线与x轴的交点(不与点M重合),点B是抛物线与y轴的交点,点C是直线y=x+1上一点(处于x轴下方),点D是反比例函数y=(k>0)图象上一点,若以点A,B,C,D为顶点的四边形是菱形,求k的值.湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)(2017•邵阳)25的算术平方根是()A.5 B.±5 C.﹣5 D.25【分析】依据算术平方根的定义求解即可.【解答】解:∵52=25,∴25的算术平方根是5.故选:A.【点评】本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.2.(3分)(2017•邵阳)如图所示,已知AB∥CD,下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠4【分析】根据平行线的性质即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠4,故选C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.3.(3分)(2017•邵阳)3﹣π的绝对值是()A.3﹣πB.π﹣3 C.3 D.π【分析】直接利用绝对值的定义分析得出答案.【解答】解:∵3﹣π<0,∴|3﹣π|=π﹣3.故选B.【点评】此题主要考查了绝对值,正确把握定义是解题关键.4.(3分)(2017•邵阳)下列立体图形中,主视图是圆的是()A.B.C. D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:A、的主视图是圆,故A符合题意;B、的主视图是矩形,故B不符合题意;C、的主视图是三角形,故C不符合题意;D、的主视图是正方形,故D不符合题意;故选:A.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.5.(3分)(2017•邵阳)函数y=中,自变量x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据被开方数大于等于0列式计算即可得解,然后在数轴上表示即可.【解答】解:由题意得,x﹣5≥0,解得x≥5.在数轴上表示如下:故选B.【点评】本题考查了函数自变量的范围及在数轴上表示不等式的解集,解题的关键是从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)(2017•邵阳)如图所示,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为()A.120°B.100°C.80°D.60°【分析】根据两直线平行,同旁内角互补解答.【解答】解:∵铺设的是平行管道,∴另一侧的角度为180°﹣120°=60°(两直线平行,同旁内角互补).故选D.【点评】本题考查了两直线平行,同旁内角互补的性质,熟记性质是解题的关键.7.(3分)(2017•邵阳)如图所示,边长为a的正方形中阴影部分的面积为()A.a2﹣π()2B.a2﹣πa2C.a2﹣πa D.a2﹣2πa【分析】根据图形可知阴影部分的面积是正方形的面积减去直径为a的圆的面积,本题得以解决.【解答】解:由图可得,阴影部分的面积为:a2﹣,故选A.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.8.(3分)(2017•邵阳)“救死扶伤”是我国的传统美德,某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图,根据统计图判断下列说法,其中错误的一项是()A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%【分析】根据百分比和圆心角的计算方法计算即可.【解答】解:认为依情况而定的占27%,故A正确;认为该扶的在统计图中所对应的圆心角是65%×360°=234°,故B正确;认为不该扶的占1﹣27%﹣65%=8%,故C正确;认为该扶的占65%,故D错误;故选D.【点评】本题考查了扇形统计图,掌握百分比和圆心角的计算方法是解题的关键.9.(3分)(2017•邵阳)如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A.1.1千米 B.2千米C.15千米D.37千米【分析】小徐第一个到达的地方应是菜地,也应是第一次路程不再增加的开始,所对应的时间为15分,路程为1.1千米.【解答】解:由图象可以看出菜地离小徐家1.1千米,故选:A.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义是解题关键.10.(3分)(2017•邵阳)如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(﹣1,1),(﹣3,1),(﹣1,﹣1),30秒后,飞机P 飞到P′(4,3)位置,则飞机Q,R的位置Q′,R′分别为()A.Q′(2,3),R′(4,1)B.Q′(2,3),R′(2,1)C.Q′(2,2),R′(4,1) D.Q′(3,3),R′(3,1)【分析】由点P(﹣1,1)到P′(4,3)知,编队需向右平移5个单位、向上平移2个单位,据此可得.【解答】解:由点P(﹣1,1)到P′(4,3)知,编队需向右平移5个单位、向上平移2个单位,∴点Q(﹣3,1)的对应点Q′坐标为(2,3),点R(﹣1,﹣1)的对应点R′(4,1),故选:A.【点评】本题考查了坐标确定位置,熟练掌握在平面直角坐标系确定点的坐标是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2017•邵阳)将多项式mn2+2mn+m因式分解的结果是m(n+1)2.【分析】根据提公因式法、公式法,可得答案.【解答】解:原式=m(n2+2n+1)=m(n+1)2,故答案为:m(n+1)2.【点评】本题考查了因式分解,利用提公因式、完全平方公式是解题关键.12.(3分)(2017•邵阳)2016年,我国又有1240万人告别贫困,为世界脱贫工作作出了卓越贡献,将1240万用科学记数法表示为a×10n的形式,则a的值为1.24.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1240万有8位,所以可以确定n=8﹣1=7.【解答】解:1240万=1.24×107,故a=1.24.故答案为:1.24.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.13.(3分)(2017•邵阳)若抛物线y=ax2+bx+c的开口向下,则a的值可能是﹣1.(写一个即可)【分析】根据二次项系数小于0,二次函数图象开口向下解答.【解答】解:∵抛物线y=ax2+bx+c的开口向下,∴a<0,∴a的值可能是﹣1,故答案为:﹣1.【点评】本题考查了二次函数的性质,是基础题,需熟记.14.(3分)(2017•邵阳)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=,现已知△ABC的三边长分别为1,2,,则△ABC的面积为1.【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.15.(3分)(2017•邵阳)如图所示的正六边形ABCDEF,连结FD,则∠FDC的大小为90°.【分析】首先求得正六边形的内角的度数,根据等腰三角形的性质即可得到结论.【解答】解:∵在正六边形ABCDEF中,∠E=∠EDC=120°,∵EF=DE,∴∠EDF=∠EFD=30°,∴∠FDC=90°,故答案为:90°【点评】此题考查了正多边形和圆.等腰三角形的性质,此题难度不大,注意数形结合思想的应用.16.(3分)(2017•邵阳)如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为20°.【分析】直接根据角平分线的作法即可得出结论.【解答】解:∵由作法可知,OC是∠AOB的平分线,∴∠AOC=∠AOB=20°.故答案为:20°.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.17.(3分)(2017•邵阳)掷一枚硬币两次,可能出现的结果有四种,我们可以利用如图所示的树状图来分析所有可能出现的结果,那么掷一枚硬币两次,至少有一次出现正面的概率是.【分析】画树状图展示所有4种等可能的结果数,再找出掷一枚硬币两次,至少有一次出现正面的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有4种等可能的结果数,其中掷一枚硬币两次,至少有一次出现正面的结果数为3,所以掷一枚硬币两次,至少有一次出现正面的概率=.故答案为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.18.(3分)(2017•邵阳)如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°,n 秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是(20﹣20)km.【分析】分别在Rt△ALR,Rt△BLR中,求出AL、BL即可解决问题.【解答】解:在Rt△ARL中,∵LR=AR•cos30°=40×=20(km),AL=AR•sin30°=20(km),在Rt△BLR中,∵∠BRL=45°,∴RL=LB=20,∴AB=LB﹣AL=(20﹣20)km,故答案为(20﹣20)km.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的概念解决问题.三、解答题(本大题共8小题,第19-25题每小题8分,第26题10分,共66分,解答应写出必要的文字说明、演算步骤或证明过程)19.(8分)(2017•邵阳)计算:4sin60°﹣()﹣1﹣.【分析】依据特殊锐角三角函数值、负整数指数幂的性质、二次根式的性质进行解答即可.【解答】解:原式=4×﹣2﹣2=2﹣2﹣2=﹣2.【点评】本题主要考查的是实数的运算,熟练掌握特殊锐角三角函数值、负整数指数幂的性质、二次根式的性质是解题的关键.20.(8分)(2017•邵阳)如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.【分析】(1)根据平行四边形对角线互相平分可得OA=OC,OB=OD,根据等角对等边可得OB=OC,然后求出AC=BD,再根据对角线相等的平行四边形是矩形证明;(2)根据正方形的判定方法添加即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四边形ABCD是矩形;(2)解:AB=AD(或AC⊥BD答案不唯一).理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.或:∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形.【点评】本题考查了正方形的判断,平行四边形的性质,矩形的判定,熟练掌握特殊四边形的判定方法与性质是解题的关键.21.(8分)(2017•邵阳)先化简,再在﹣3,﹣1,0,,2中选择一个合适的x值代入求值.•.【分析】根据分式的乘法和加法可以化简题目中的式子,然后在﹣3,﹣1,0,,2中选择一个使得原分式有意义的x的值代入即可解答本题.【解答】解:•=====x,当x=﹣1时,原式=﹣1.【点评】本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的方法.22.(8分)(2017•邵阳)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.【分析】(1)根据平均数和中位数的定义求解可得;(2)用洗衣服的水量除以第3天的用水总量即可得;(3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.【解答】解:(1)这7天内小申家每天用水量的平均数为=800(升),将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,∴用水量的中位数为800升;(2)×100%=12.5%,答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.【点评】此题主要考查了统计图、平均数、中位数,关键是看懂统计表,从统计表中获取必要的信息,熟练掌握平均数,中位数与众数的计算方法.23.(8分)(2017•邵阳)某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.【分析】(1)根据题意结合每辆大客车的乘客座位数比小客车多17个以及师生共300人参加一次大型公益活动,分别得出等式求出答案;(2)根据(1)中所求,进而利用总人数为300+30,进而得出不等式求出答案.【解答】解:(1)设每辆小客车的乘客座位数是x个,大客车的乘客座位数是y 个,根据题意可得:,解得:,答:每辆小客车的乘客座位数是18个,大客车的乘客座位数是35个;(2)设租用a辆小客车才能将所有参加活动的师生装载完成,则18a+35(11﹣a)≥300+30,解得:a≤3,符合条件的a最大整数为3,答:租用小客车数量的最大值为3.【点评】此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,正确得出不等关系是解题关键.24.(8分)(2017•邵阳)如图所示,直线DP和圆O相切于点C,交直径AE的延长线于点P,过点C作AE的垂线,交AE于点F,交圆O于点B,作平行四边形ABCD,连接BE,DO,CO.(1)求证:DA=DC;(2)求∠P及∠AEB的大小.【分析】(1)欲证明DA=DC,只要证明Rt△DAO≌△Rt△DCO即可;(2)想办法证明∠P=30°即可解决问题;【解答】(1)证明:在平行四边形ABCD中,AD∥BC,∵CB⊥AE,∴AD⊥AE,∴∠DAO=90°,∵DP与⊙O相切于点C,∴DC⊥OC,∴∠DCO=90°,在Rt△DAO和Rt△DCO中,,∴Rt△DAO≌△Rt△DCO,∴DA=DC.(2)∵CB⊥AE,AE是直径,∴CF=FB=BC,∵四边形ABCD是平行四边形,∴AD=BC,∴CF=AD,∵CF∥DA,∴△PCF∽△PDA,∴==,∴PC=PD,DC=PD,∵DA=DC,∴DA=PD,在Rt△DAP中,∠P=30°,∵DP∥AB,∴∠FAB=∠P=30°,∵AE是⊙O的直径,∴∠ABE=90°,∴∠AEB=60°.【点评】本题考查切线的性质、平行四边形的性质、相似三角形的判定和性质、直角三角形中30度角的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考常考题型.25.(8分)(2017•邵阳)如图1所示,在△ABC中,点O是AC上一点,过点O 的直线与AB,BC的延长线分别相交于点M,N.【问题引入】(1)若点O是AC的中点,=,求的值;温馨提示:过点A作MN的平行线交BN的延长线于点G.【探索研究】(2)若点O是AC上任意一点(不与A,C重合),求证:••=1;【拓展应用】(3)如图2所示,点P是△ABC内任意一点,射线AP,BP,CP分别交BC,AC,AB于点D,E,F,若=,=,求的值.【分析】(1)作AG∥MN交BN延长线于点G,证△ABG∽△MBN得=,即=,同理由△ACG∽△OCN得=,结合AO=CO得NG=CN,从而由==可得答案;(2)由=、=知••=••=1;(3)由(2)知,在△ABD中有••=1、在△ACD中有••=1,从而••=••,据此知=••=•=.【解答】解:(1)过点A作AG∥MN交BN延长线于点G,∴∠G=∠BNM,又∠B=∠B,∴△ABG∽△MBN,∴=,∴﹣1=﹣1,∴=,即=,同理,在△ACG和△OCN中,=,∴=,∵O为AC中点,∴AO=CO,∴NG=CN,∴===;(2)由(1)知,=、=,∴••=••=1;(3)在△ABD中,点P是AD上的一点,过点P的直线与AC、BD的延长线相交于点C,由(2)得••=1,在△ACD中,点P是AD上一点,过点P是AD上一点,过点P的直线与AC、AD 的延长线分别相交于点E、B,由(2)得••=1,∴••=••,∴=••=•=×=.【点评】本题主要考查相似三角形的综合问题,熟练掌握相似三角形的判定与性质及比例式的基本性质是解题的关键.26.(10分)(2017•邵阳)如图所示,顶点为(,﹣)的抛物线y=ax2+bx+c 过点M(2,0).(1)求抛物线的解析式;(2)点A是抛物线与x轴的交点(不与点M重合),点B是抛物线与y轴的交点,点C是直线y=x+1上一点(处于x轴下方),点D是反比例函数y=(k>0)图象上一点,若以点A,B,C,D为顶点的四边形是菱形,求k的值.【分析】(1)设抛物线方程为顶点式y=a(x﹣)2﹣,将点M的坐标代入求a的值即可;(2)设直线y=x+1与y轴交于点G,易求G(0,1).则直角△AOG是等腰直角三角形∠AGO=45°.点C是直线y=x+1上一点(处于x轴下方),而k>0,所以反比例函数y=(k>0)图象位于点一、三象限.故点D只能在第一、三象限,因此符合条件的菱形只能有如下2种情况:①此菱形以AB为边且AC也为边,②此菱形以AB为对角线,利用点的坐标与图形的性质,勾股定理,菱形的性质和反比例函数图象上点的坐标特征求得k的值即可.【解答】解:(1)依题意可设抛物线方程为顶点式y=a(x﹣)2﹣(a≠0),将点M(2,0)代入可得:a(2﹣)2﹣=0,解得a=1.故抛物线的解析式为:y=(x﹣)2﹣;(2)由(1)知,抛物线的解析式为:y=(x﹣)2﹣.则对称轴为x=,∴点A与点M(2,0)关于直线x=对称,∴A(1,0).令x=0,则y=﹣2,∴B(0,﹣2).在直角△OAB中,OA=1,OB=2,则AB=.设直线y=x+1与y轴交于点G,易求G(0,1).∴直角△AOG是等腰直角三角形,∴∠AGO=45°.∵点C是直线y=x+1上一点(处于x轴下方),而k>0,所以反比例函数y=(k >0)图象位于点一、三象限.故点D只能在第一、三象限,因此符合条件的菱形只能有如下2种情况:①此菱形以AB为边且AC也为边,如图1所示,过点D作DN⊥y轴于点N,在直角△BDN中,∵∠DBN=∠AGO=45°,∴DN=BN==,∴D(﹣,﹣﹣2),∵点D在反比例函数y=(k>0)图象上,∴k=﹣×(﹣﹣2)=+;②此菱形以AB为对角线,如图2,作AB的垂直平分线CD交直线y=x+1于点C,交反比例函数y=(k>0)的图象于点D.再分别过点D、B作DE⊥x轴于点F,BE⊥y轴,DE与BE相较于点E.在直角△BDE中,同①可证∠AGO=∠DBO=∠BDE=45°,∴BE=DE.可设点D的坐标为(x,x﹣2).∵BE2+DE2=BD2,∴BD=BE=x.∵四边形ABCD是菱形,∴AD=BD=x.∴在直角△ADF中,AD2=AF2+DF2,即(x)=(x+1)2+(x﹣2)2,解得x=,∴点D的坐标是(,).∵点D在反比例函数y=(k>0)图象上,∴k=×=,综上所述,k的值是+或.【点评】本题考查了二次函数综合题,需要掌握待定系数法求二次函数解析式,勾股定理,菱形的性质,反比例函数图象上点的坐标特征等知识点.解答(2)题时要分类讨论,以防漏解.黑龙江省哈尔滨市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣7的倒数是()A.7 B.﹣7 C.D.﹣2.(3分)下列运算正确的是()A.a6÷a3=a2B.2a3+3a3=5a6C.(﹣a3)2=a6D.(a+b)2=a2+b23.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4.(3分)抛物线y=﹣(x+)2﹣3的顶点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)5.(3分)五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.6.(3分)方程=的解为()A.x=3 B.x=4 C.x=5 D.x=﹣57.(3分)如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B 的大小是()A.43°B.35°C.34°D.44°8.(3分)在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=10.(3分)周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)将57600000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)把多项式4ax2﹣9ay2分解因式的结果是.14.(3分)计算﹣6的结果是.15.(3分)已知反比例函数y=的图象经过点(1,2),则k的值为.16.(3分)不等式组的解集是.17.(3分)一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为.18.(3分)已知扇形的弧长为4π,半径为48,则此扇形的圆心角为度.19.(3分)四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=,则CE的长为.20.(3分)如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE ⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.三、解答题(本大题共60分)21.(7分)先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan∠EAB=,连接CD,请直接写出线段CD的长.23.(8分)随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.。
湖南省邵阳市中考数学试卷
湖南省邵阳市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)25的算术平方根是()A.5 B.±5 C.﹣5 D.252.(3分)如图所示,已知AB∥CD,下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠43.(3分)3﹣π的绝对值是()A.3﹣πB.π﹣3 C.3 D.π4.(3分)下列立体图形中,主视图是圆的是()A.B.C. D.5.(3分)函数y=中,自变量x的取值范围在数轴上表示正确的是()A.B.C.D.6.(3分)如图所示,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为()A.120°B.100°C.80°D.60°7.(3分)如图所示,边长为a的正方形中阴影部分的面积为()A.a2﹣π()2B.a2﹣πa2C.a2﹣πa D.a2﹣2πa8.(3分)“救死扶伤”是我国的传统美德,某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图,根据统计图判断下列说法,其中错误的一项是()A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%9.(3分)如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A.1.1千米 B.2千米C.15千米D.37千米10.(3分)如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(﹣1,1),(﹣3,1),(﹣1,﹣1),30秒后,飞机P飞到P′(4,3)位置,则飞机Q,R的位置Q′,R′分别为()A.Q′(2,3),R′(4,1)B.Q′(2,3),R′(2,1)C.Q′(2,2),R′(4,1) D.Q′(3,3),R′(3,1)二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)将多项式mn2+2mn+m因式分解的结果是.12.(3分)2016年,我国又有1240万人告别贫困,为世界脱贫工作作出了卓越贡献,将1240万用科学记数法表示为a×10n的形式,则a的值为.13.(3分)若抛物线y=ax2+bx+c的开口向下,则a的值可能是.(写一个即可)14.(3分)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=,现已知△ABC的三边长分别为1,2,,则△ABC的面积为.15.(3分)如图所示的正六边形ABCDEF,连结FD,则∠FDC的大小为.16.(3分)如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为.17.(3分)掷一枚硬币两次,可能出现的结果有四种,我们可以利用如图所示的树状图来分析所有可能出现的结果,那么掷一枚硬币两次,至少有一次出现正面的概率是.18.(3分)如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°,n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是km.三、解答题(本大题共8小题,第19-25题每小题8分,第26题10分,共66分,解答应写出必要的文字说明、演算步骤或证明过程)19.(8分)计算:4sin60°﹣()﹣1﹣.20.(8分)如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.21.(8分)先化简,再在﹣3,﹣1,0,,2中选择一个合适的x值代入求值.•.22.(8分)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.23.(8分)某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.24.(8分)如图所示,直线DP和圆O相切于点C,交直径AE的延长线于点P,过点C作AE的垂线,交AE于点F,交圆O于点B,作平行四边形ABCD,连接BE,DO,CO.(1)求证:DA=DC;(2)求∠P及∠AEB的大小.25.(8分)如图1所示,在△ABC中,点O是AC上一点,过点O的直线与AB,BC的延长线分别相交于点M,N.【问题引入】(1)若点O是AC的中点,=,求的值;温馨提示:过点A作MN的平行线交BN的延长线于点G.【探索研究】(2)若点O是AC上任意一点(不与A,C重合),求证:••=1;【拓展应用】(3)如图2所示,点P是△ABC内任意一点,射线AP,BP,CP分别交BC,AC,AB于点D,E,F,若=,=,求的值.26.(10分)如图所示,顶点为(,﹣)的抛物线y=ax2+bx+c过点M(2,0).(1)求抛物线的解析式;(2)点A是抛物线与x轴的交点(不与点M重合),点B是抛物线与y轴的交点,点C是直线y=x+1上一点(处于x轴下方),点D是反比例函数y=(k>0)图象上一点,若以点A,B,C,D为顶点的四边形是菱形,求k的值.2017年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)(2017•邵阳)25的算术平方根是()A.5 B.±5 C.﹣5 D.25【分析】依据算术平方根的定义求解即可.【解答】解:∵52=25,∴25的算术平方根是5.故选:A.【点评】本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.2.(3分)(2017•邵阳)如图所示,已知AB∥CD,下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠4【分析】根据平行线的性质即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠4,故选C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.3.(3分)(2017•邵阳)3﹣π的绝对值是()A.3﹣πB.π﹣3 C.3 D.π【分析】直接利用绝对值的定义分析得出答案.【解答】解:∵3﹣π<0,∴|3﹣π|=π﹣3.故选B.【点评】此题主要考查了绝对值,正确把握定义是解题关键.4.(3分)(2017•邵阳)下列立体图形中,主视图是圆的是()A.B.C. D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:A、的主视图是圆,故A符合题意;B、的主视图是矩形,故B不符合题意;C、的主视图是三角形,故C不符合题意;D、的主视图是正方形,故D不符合题意;故选:A.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.5.(3分)(2017•邵阳)函数y=中,自变量x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据被开方数大于等于0列式计算即可得解,然后在数轴上表示即可.【解答】解:由题意得,x﹣5≥0,解得x≥5.在数轴上表示如下:故选B.【点评】本题考查了函数自变量的范围及在数轴上表示不等式的解集,解题的关键是从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)(2017•邵阳)如图所示,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为()A.120°B.100°C.80°D.60°【分析】根据两直线平行,同旁内角互补解答.【解答】解:∵铺设的是平行管道,∴另一侧的角度为180°﹣120°=60°(两直线平行,同旁内角互补).故选D.【点评】本题考查了两直线平行,同旁内角互补的性质,熟记性质是解题的关键.7.(3分)(2017•邵阳)如图所示,边长为a的正方形中阴影部分的面积为()A.a2﹣π()2B.a2﹣πa2C.a2﹣πa D.a2﹣2πa【分析】根据图形可知阴影部分的面积是正方形的面积减去直径为a的圆的面积,本题得以解决.【解答】解:由图可得,阴影部分的面积为:a2﹣,故选A.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.8.(3分)(2017•邵阳)“救死扶伤”是我国的传统美德,某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图,根据统计图判断下列说法,其中错误的一项是()A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%【分析】根据百分比和圆心角的计算方法计算即可.【解答】解:认为依情况而定的占27%,故A正确;认为该扶的在统计图中所对应的圆心角是65%×360°=234°,故B正确;认为不该扶的占1﹣27%﹣65%=8%,故C正确;认为该扶的占65%,故D错误;故选D.【点评】本题考查了扇形统计图,掌握百分比和圆心角的计算方法是解题的关键.9.(3分)(2017•邵阳)如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A.1.1千米 B.2千米C.15千米D.37千米【分析】小徐第一个到达的地方应是菜地,也应是第一次路程不再增加的开始,所对应的时间为15分,路程为1.1千米.【解答】解:由图象可以看出菜地离小徐家1.1千米,故选:A.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义是解题关键.10.(3分)(2017•邵阳)如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(﹣1,1),(﹣3,1),(﹣1,﹣1),30秒后,飞机P 飞到P′(4,3)位置,则飞机Q,R的位置Q′,R′分别为()A.Q′(2,3),R′(4,1)B.Q′(2,3),R′(2,1)C.Q′(2,2),R′(4,1) D.Q′(3,3),R′(3,1)【分析】由点P(﹣1,1)到P′(4,3)知,编队需向右平移5个单位、向上平移2个单位,据此可得.【解答】解:由点P(﹣1,1)到P′(4,3)知,编队需向右平移5个单位、向上平移2个单位,∴点Q(﹣3,1)的对应点Q′坐标为(2,3),点R(﹣1,﹣1)的对应点R′(4,1),故选:A.【点评】本题考查了坐标确定位置,熟练掌握在平面直角坐标系确定点的坐标是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2017•邵阳)将多项式mn2+2mn+m因式分解的结果是m(n+1)2.【分析】根据提公因式法、公式法,可得答案.【解答】解:原式=m(n2+2n+1)=m(n+1)2,故答案为:m(n+1)2.【点评】本题考查了因式分解,利用提公因式、完全平方公式是解题关键.12.(3分)(2017•邵阳)2016年,我国又有1240万人告别贫困,为世界脱贫工作作出了卓越贡献,将1240万用科学记数法表示为a×10n的形式,则a的值为1.24.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1240万有8位,所以可以确定n=8﹣1=7.【解答】解:1240万=1.24×107,故a=1.24.故答案为:1.24.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.13.(3分)(2017•邵阳)若抛物线y=ax2+bx+c的开口向下,则a的值可能是﹣1.(写一个即可)【分析】根据二次项系数小于0,二次函数图象开口向下解答.【解答】解:∵抛物线y=ax2+bx+c的开口向下,∴a<0,∴a的值可能是﹣1,故答案为:﹣1.【点评】本题考查了二次函数的性质,是基础题,需熟记.14.(3分)(2017•邵阳)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=,现已知△ABC的三边长分别为1,2,,则△ABC的面积为1.【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.15.(3分)(2017•邵阳)如图所示的正六边形ABCDEF,连结FD,则∠FDC的大小为90°.【分析】首先求得正六边形的内角的度数,根据等腰三角形的性质即可得到结论.【解答】解:∵在正六边形ABCDEF中,∠E=∠EDC=120°,∵EF=DE,∴∠EDF=∠EFD=30°,∴∠FDC=90°,故答案为:90°【点评】此题考查了正多边形和圆.等腰三角形的性质,此题难度不大,注意数形结合思想的应用.16.(3分)(2017•邵阳)如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为20°.【分析】直接根据角平分线的作法即可得出结论.【解答】解:∵由作法可知,OC是∠AOB的平分线,∴∠AOC=∠AOB=20°.故答案为:20°.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.17.(3分)(2017•邵阳)掷一枚硬币两次,可能出现的结果有四种,我们可以利用如图所示的树状图来分析所有可能出现的结果,那么掷一枚硬币两次,至少有一次出现正面的概率是.【分析】画树状图展示所有4种等可能的结果数,再找出掷一枚硬币两次,至少有一次出现正面的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有4种等可能的结果数,其中掷一枚硬币两次,至少有一次出现正面的结果数为3,所以掷一枚硬币两次,至少有一次出现正面的概率=.故答案为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.18.(3分)(2017•邵阳)如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°,n 秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是(20﹣20)km.【分析】分别在Rt△ALR,Rt△BLR中,求出AL、BL即可解决问题.【解答】解:在Rt△ARL中,∵LR=AR•cos30°=40×=20(km),AL=AR•sin30°=20(km),在Rt△BLR中,∵∠BRL=45°,∴RL=LB=20,∴AB=LB﹣AL=(20﹣20)km,故答案为(20﹣20)km.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的概念解决问题.三、解答题(本大题共8小题,第19-25题每小题8分,第26题10分,共66分,解答应写出必要的文字说明、演算步骤或证明过程)19.(8分)(2017•邵阳)计算:4sin60°﹣()﹣1﹣.【分析】依据特殊锐角三角函数值、负整数指数幂的性质、二次根式的性质进行解答即可.【解答】解:原式=4×﹣2﹣2=2﹣2﹣2=﹣2.【点评】本题主要考查的是实数的运算,熟练掌握特殊锐角三角函数值、负整数指数幂的性质、二次根式的性质是解题的关键.20.(8分)(2017•邵阳)如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.【分析】(1)根据平行四边形对角线互相平分可得OA=OC,OB=OD,根据等角对等边可得OB=OC,然后求出AC=BD,再根据对角线相等的平行四边形是矩形证明;(2)根据正方形的判定方法添加即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四边形ABCD是矩形;(2)解:AB=AD(或AC⊥BD答案不唯一).理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.或:∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形.【点评】本题考查了正方形的判断,平行四边形的性质,矩形的判定,熟练掌握特殊四边形的判定方法与性质是解题的关键.21.(8分)(2017•邵阳)先化简,再在﹣3,﹣1,0,,2中选择一个合适的x值代入求值.•.【分析】根据分式的乘法和加法可以化简题目中的式子,然后在﹣3,﹣1,0,,2中选择一个使得原分式有意义的x的值代入即可解答本题.【解答】解:•=====x,当x=﹣1时,原式=﹣1.【点评】本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的方法.22.(8分)(2017•邵阳)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.【分析】(1)根据平均数和中位数的定义求解可得;(2)用洗衣服的水量除以第3天的用水总量即可得;(3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.【解答】解:(1)这7天内小申家每天用水量的平均数为=800(升),将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,∴用水量的中位数为800升;(2)×100%=12.5%,答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.【点评】此题主要考查了统计图、平均数、中位数,关键是看懂统计表,从统计表中获取必要的信息,熟练掌握平均数,中位数与众数的计算方法.23.(8分)(2017•邵阳)某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.【分析】(1)根据题意结合每辆大客车的乘客座位数比小客车多17个以及师生共300人参加一次大型公益活动,分别得出等式求出答案;(2)根据(1)中所求,进而利用总人数为300+30,进而得出不等式求出答案.【解答】解:(1)设每辆小客车的乘客座位数是x个,大客车的乘客座位数是y 个,根据题意可得:,解得:,答:每辆小客车的乘客座位数是18个,大客车的乘客座位数是35个;(2)设租用a辆小客车才能将所有参加活动的师生装载完成,则18a+35(11﹣a)≥300+30,解得:a≤3,符合条件的a最大整数为3,答:租用小客车数量的最大值为3.【点评】此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,正确得出不等关系是解题关键.24.(8分)(2017•邵阳)如图所示,直线DP和圆O相切于点C,交直径AE的延长线于点P,过点C作AE的垂线,交AE于点F,交圆O于点B,作平行四边形ABCD,连接BE,DO,CO.(1)求证:DA=DC;(2)求∠P及∠AEB的大小.【分析】(1)欲证明DA=DC,只要证明Rt△DAO≌△Rt△DCO即可;(2)想办法证明∠P=30°即可解决问题;【解答】(1)证明:在平行四边形ABCD中,AD∥BC,∵CB⊥AE,∴AD⊥AE,∴∠DAO=90°,∵DP与⊙O相切于点C,∴DC⊥OC,∴∠DCO=90°,在Rt△DAO和Rt△DCO中,,∴Rt△DAO≌△Rt△DCO,∴DA=DC.(2)∵CB⊥AE,AE是直径,∴CF=FB=BC,∵四边形ABCD是平行四边形,∴AD=BC,∴CF=AD,∵CF∥DA,∴△PCF∽△PDA,∴==,∴PC=PD,DC=PD,∵DA=DC,∴DA=PD,在Rt△DAP中,∠P=30°,∵DP∥AB,∴∠FAB=∠P=30°,∵AE是⊙O的直径,∴∠ABE=90°,∴∠AEB=60°.【点评】本题考查切线的性质、平行四边形的性质、相似三角形的判定和性质、直角三角形中30度角的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考常考题型.25.(8分)(2017•邵阳)如图1所示,在△ABC中,点O是AC上一点,过点O 的直线与AB,BC的延长线分别相交于点M,N.【问题引入】(1)若点O是AC的中点,=,求的值;温馨提示:过点A作MN的平行线交BN的延长线于点G.【探索研究】(2)若点O是AC上任意一点(不与A,C重合),求证:••=1;【拓展应用】(3)如图2所示,点P是△ABC内任意一点,射线AP,BP,CP分别交BC,AC,AB于点D,E,F,若=,=,求的值.【分析】(1)作AG∥MN交BN延长线于点G,证△ABG∽△MBN得=,即=,同理由△ACG∽△OCN得=,结合AO=CO得NG=CN,从而由==可得答案;(2)由=、=知••=••=1;(3)由(2)知,在△ABD中有••=1、在△ACD中有••=1,从而••=••,据此知=••=•=.【解答】解:(1)过点A作AG∥MN交BN延长线于点G,∴∠G=∠BNM,又∠B=∠B,∴△ABG∽△MBN,∴=,∴﹣1=﹣1,∴=,即=,同理,在△ACG和△OCN中,=,∴=,∵O为AC中点,∴AO=CO,∴NG=CN,∴===;(2)由(1)知,=、=,∴••=••=1;(3)在△ABD中,点P是AD上的一点,过点P的直线与AC、BD的延长线相交于点C,由(2)得••=1,在△ACD中,点P是AD上一点,过点P是AD上一点,过点P的直线与AC、AD 的延长线分别相交于点E、B,由(2)得••=1,∴••=••,∴=••=•=×=.【点评】本题主要考查相似三角形的综合问题,熟练掌握相似三角形的判定与性质及比例式的基本性质是解题的关键.26.(10分)(2017•邵阳)如图所示,顶点为(,﹣)的抛物线y=ax2+bx+c 过点M(2,0).(1)求抛物线的解析式;(2)点A是抛物线与x轴的交点(不与点M重合),点B是抛物线与y轴的交点,点C是直线y=x+1上一点(处于x轴下方),点D是反比例函数y=(k>0)图象上一点,若以点A,B,C,D为顶点的四边形是菱形,求k的值.【分析】(1)设抛物线方程为顶点式y=a(x﹣)2﹣,将点M的坐标代入求a的值即可;(2)设直线y=x+1与y轴交于点G,易求G(0,1).则直角△AOG是等腰直角三角形∠AGO=45°.点C是直线y=x+1上一点(处于x轴下方),而k>0,所以反比例函数y=(k>0)图象位于点一、三象限.故点D只能在第一、三象限,因此符合条件的菱形只能有如下2种情况:①此菱形以AB为边且AC也为边,②此菱形以AB为对角线,利用点的坐标与图形的性质,勾股定理,菱形的性质和反比例函数图象上点的坐标特征求得k的值即可.【解答】解:(1)依题意可设抛物线方程为顶点式y=a(x﹣)2﹣(a≠0),将点M(2,0)代入可得:a(2﹣)2﹣=0,解得a=1.故抛物线的解析式为:y=(x﹣)2﹣;(2)由(1)知,抛物线的解析式为:y=(x﹣)2﹣.则对称轴为x=,∴点A与点M(2,0)关于直线x=对称,∴A(1,0).令x=0,则y=﹣2,∴B(0,﹣2).在直角△OAB中,OA=1,OB=2,则AB=.设直线y=x+1与y轴交于点G,易求G(0,1).∴直角△AOG是等腰直角三角形,∴∠AGO=45°.∵点C是直线y=x+1上一点(处于x轴下方),而k>0,所以反比例函数y=(k >0)图象位于点一、三象限.故点D只能在第一、三象限,因此符合条件的菱形只能有如下2种情况:①此菱形以AB为边且AC也为边,如图1所示,过点D作DN⊥y轴于点N,在直角△BDN中,∵∠DBN=∠AGO=45°,∴DN=BN==,∴D(﹣,﹣﹣2),∵点D在反比例函数y=(k>0)图象上,∴k=﹣×(﹣﹣2)=+;②此菱形以AB为对角线,如图2,作AB的垂直平分线CD交直线y=x+1于点C,交反比例函数y=(k>0)的图象于点D.再分别过点D、B作DE⊥x轴于点F,BE⊥y轴,DE与BE相较于点E.在直角△BDE中,同①可证∠AGO=∠DBO=∠BDE=45°,∴BE=DE.可设点D的坐标为(x,x﹣2).∵BE2+DE2=BD2,∴BD=BE=x.∵四边形ABCD是菱形,∴AD=BD=x.∴在直角△ADF中,AD2=AF2+DF2,即(x)=(x+1)2+(x﹣2)2,解得x=,∴点D的坐标是(,).∵点D在反比例函数y=(k>0)图象上,∴k=×=,综上所述,k的值是+或.【点评】本题考查了二次函数综合题,需要掌握待定系数法求二次函数解析式,勾股定理,菱形的性质,反比例函数图象上点的坐标特征等知识点.解答(2)题时要分类讨论,以防漏解.黑龙江省绥化市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB ∥CD的是()A.∠2=35° B.∠2=45°C.∠2=55°D.∠2=125°2.(3分)某企业的年收入约为700000元,数据“700000”用科学记数法可表示为()A.0.7×106B.7×105C.7×104D.70×1043.(3分)下列运算正确的是()A.3a+2a=5a2B.3a+3b=3abC.2a2bc﹣a2bc=a2bc D.a5﹣a2=a34.(3分)正方形的正投影不可能是()A.线段B.矩形C.正方形D.梯形5.(3分)不等式组的解集是()A.x≤4 B.2<x≤4 C.2≤x≤4 D.x>26.(3分)如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:97.(3分)从一副洗匀的普通扑克牌中随机抽取一张,则抽出红桃的概率是()A.B.C.D.8.(3分)在同一平面直角坐标系中,直线y=4x+1与直线y=﹣x+b的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限9.(3分)某楼梯的侧面如图所示,已测得BC的长约为3.5米,∠BCA约为29°,则该楼梯的高度AB可表示为()A.3.5sin29°米B.3.5cos29°米C.3.5tan29°米D.米10.(3分)如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①=;②S△BCE=36;③S=12;④△AEF~△ACD,其中一定正确的是()△ABEA.①②③④B.①④C.②③④D.①②③二、填空题(每小题3分,共33分)11.(3分)﹣的绝对值是.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)一个多边形的内角和等于900°,则这个多边形是边形.14.(3分)因式分解:x2﹣9=.15.(3分)计算:(+)•=.16.(3分)一个扇形的半径为3cm,弧长为2πcm,则此扇形的面积为cm2(用含π的式子表示)17.(3分)在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,9,则这位选手五次射击环数的方差为.18.(3分)半径为2的圆内接正三角形,正四边形,正六边形的边心距之比为.19.(3分)已知反比例函数y=,当x>3时,y的取值范围是.20.(3分)在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=BC,则△ABC 的顶角的度数为.21.(3分)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为.三、解答题(本题共8小题,共57分)22.(5分)如图,A、B、C为某公园的三个景点,景点A和景点B之间有一条笔直的小路,现要在小路上建一个凉亭P,使景点B、景点C到凉亭P的距离之和等于景点B到景点A的距离,请用直尺和圆规在所给的图中作出点P.(不写作法和证明,只保留作图痕迹)23.(6分)某校为了解学生每天参加户外活动的情况,随机抽查了100名学生每天参加户外活动的时间情况,并将抽查结果绘制成如图所示的扇形统计图.请你根据图中提供的信息解答下列问题:(1)请直接写出图中a的值,并求出本次抽查中学生每天参加户外活动时间的中位数;(2)求本次抽查中学生每天参加户外活动的平均时间.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此文档为word 格式,可任意修改编辑2016年湖南省邵阳市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分1.﹣的相反数是( )A .B .﹣C .﹣D .﹣22.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .3.如图所示,直线AB 、CD 被直线EF 所截,若AB∥CD,∠1=100°,则∠2的大小是( )A .10° B.50° C.80° D.100°4.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是( )A .95B .90C .85D .805.一次函数y=﹣x+2的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限6.分式方程=的解是( )A .x=﹣1B .x=1C .x=2D .x=37.一元二次方程2x 2﹣3x+1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根8.如图所示,点D 是△ABC 的边AC 上一点(不含端点),AD=BD ,则下列结论正确的是( )A .AC >BCB .AC=BC C .∠A>∠ABC D.∠A=∠ABC9.如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A.15° B.30° C.60° D.75°10.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1二、填空题:本大题共8小题,每小题3分,共24分11.将多项式m3﹣mn2因式分解的结果是.12.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人下表:最适合的人选是.13.将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是.14.已知反比例函数y=(k≠0)的图象如图所示,则k的值可能是(写一个即可).15.不等式组的解集是.16.2015年7月,第四十五届“世界超级计算机500强排行榜”榜单发布,我国国防科技大学研制的“天河二号”以每秒3386×1013次的浮点运算速度第五次蝉联冠军,若将3386×1013用科学记数法表示成a×10n的形式,则n的值是.17.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件(写一个即可),使四边形ABCD是平行四边形.18.如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O,A,B均为格点,则扇形OAB的面积大小是.三、解答题:本大题共3小题,每小题8分,共24分19.计算:(﹣2)2+2cos60°﹣()0.20.先化简,再求值:(m﹣n)2﹣m(m﹣2n),其中m=,n=.21.如图所示,点E,F是平行四边形ABCD对角线BD上的点,BF=DE,求证:AE=CF.四、解答题:本大题共3小题,每小题8分,共24分22.如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA 分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,).23.为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A,B两种品牌的足球的单价.(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.24.为了解市民对全市创卫工作的满意程度,某中学教学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2为进行回访,已知4为市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.五、综合题:本大题共2小题,其中25题8分,26题10分,共18分25.尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.求证:a2+b2=5c2该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证(1)请你根据以上解题思路帮尤秀同学写出证明过程.(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.26.已知抛物线y=ax2﹣4a(a>0)与x轴相交于A,B两点(点A在点B的左侧),点P是抛物线上一点,且PB=AB,∠PBA=120°,如图所示.(1)求抛物线的解析式.(2)设点M(m,n)为抛物线上的一个动点,且在曲线PA上移动.①当点M在曲线PB之间(含端点)移动时,是否存在点M使△APM的面积为?若存在,求点M的坐标;若不存在,请说明理由.②当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M的坐标.2016年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.﹣的相反数是()A.B.﹣C.﹣D.﹣2【考点】实数的性质.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选A.2.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.3.如图所示,直线AB、CD被直线EF所截,若AB∥CD,∠1=100°,则∠2的大小是()A.10° B.50° C.80° D.100°【考点】平行线的性质.【分析】根据平行线的性质得到∠3=∠1=100°,根据平角的定义即可得到结论.【解答】解:∵AB∥CD,∠3=∠1=100°,∴∠2=180°﹣∠3=80°,故选C.4.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是()A.95 B.90 C.85 D.80【考点】众数;折线统计图.【分析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故选B.5.一次函数y=﹣x+2的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数的图象;一次函数图象与系数的关系.【分析】根据一次函数的系数确定函数图象经过的象限,由此即可得出结论.【解答】解:∵一次函数y=﹣x+2中k=﹣1<0,b=2>0,∴该函数图象经过第一、二、四象限.故选C.6.分式方程=的解是()A.x=﹣1 B.x=1 C.x=2 D.x=3【考点】分式方程的解.【分析】观察可得最简公分母是x(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:两边都乘以x(x+1)得:3(x+1)=4x,去括号,得:3x+3=4x,移项、合并,得:x=3,经检验x=3是原分式方程的解,故选:D.7.一元二次方程2x2﹣3x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】代入数据求出根的判别式△=b2﹣4ac的值,根据△的正负即可得出结论.【解答】解:∵△=b2﹣4ac=(﹣3)2﹣4×2×1=1>0,∴该方程有两个不相等的实数根.故选B.8.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC【考点】等腰三角形的性质.【分析】根据等腰三角形的两个底角相等,由AD=BD得到∠A=∠ABD,所以∠ABC>∠A,则对各C、D选项进行判断;根据大边对大角可对A、B进行判断.【解答】解:∵AD=BD,∴∠A=∠ABD,∴∠ABC>∠A,所以C选项和D选项错误;∴AC>BC,所以A选项正确;B选项错误.故选A.9.如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DB A的大小是()A.15° B.30° C.60° D.75°【考点】切线的性质;圆周角定理.【分析】首先连接OD,由CA,CD是⊙O的切线,∠ACD=30°,即可求得∠AOD的度数,又由OB=OD,即可求得答案.【解答】解:连接OD,∵CA,CD是⊙O的切线,∴OA⊥AC,OD⊥CD,∴∠OAC=∠ODC=90°,∵∠ACD=30°,∴∠AOD=360°﹣∠C﹣∠OAC﹣∠ODC=150°,∵OB=OD,∴∠DBA=∠ODB=∠AOD=75°.故选D.10.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【考点】规律型:数字的变化类.【分析】由题意可得下边三角形的数字规律为:n+2n,继而求得答案.【解答】解:∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,2+22,…,n+2n,∴y=2n+n.故选B.二、填空题:本大题共8小题,每小题3分,共24分11.将多项式m3﹣mn2因式分解的结果是m(m+n)(m﹣n).【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式后,利用平方差公式分解即可.【解答】解:原式=m(m2﹣n2)=m(m+n)(m﹣n).故答案为:m(m+n)(m﹣n)12.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人下表:最适合的人选是乙.【考点】方差;算术平均数.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:因为S甲2=0.035>S乙2=0.015,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.13.将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是120°.【考点】旋转的性质;等边三角形的性质.【分析】根据旋转的性质和等边三角形的性质解答即可.【解答】解:∵三角形ABC是等边三角形,∴∠ACB=60°,∵等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,∴∠BCA'=180°,∠B'CA'=60°,∴∠ACB'=60°,∴∠α=60°+60°=120°,故答案为:120°.14.已知反比例函数y=(k≠0)的图象如图所示,则k的值可能是﹣1 (写一个即可).【考点】反比例函数的性质.【分析】利用反比例函数的性质得到k<0,然后在此范围内取一个值即可.【解答】解:∵双曲线的两支分别位于第二、第四象限,∴k<0,∴k可取﹣1.故答案为﹣1.15.不等式组的解集是﹣2<x≤1.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x≤1,由②得,x>﹣2,故不等式组的解集为:﹣2<x≤1.故答案为:﹣2<x≤1.16.2015年7月,第四十五届“世界超级计算机500强排行榜”榜单发布,我国国防科技大学研制的“天河二号”以每秒3386×1013次的浮点运算速度第五次蝉联冠军,若将3386×1013用科学记数法表示成a×10n的形式,则n的值是16 .【考点】科学记数法—表示较大的数.【分析】直接利用科学记数法的表示方法分析得出n的值.【解答】解:3386×1013=3.386×1016,则n=16.故答案为:16.17.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件AD∥BC (写一个即可),使四边形ABCD是平行四边形.【考点】平行四边形的判定.【分析】根据平行四边形的定义或判定定理即可解答.【解答】解:可以添加:AD∥BC(答案不唯一).故答案是:AD∥BC.18.如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O,A,B均为格点,则扇形OAB的面积大小是.【考点】扇形面积的计算.【分析】根据题意知,该扇形的圆心角是90°.根据勾股定理可以求得OA=OB=,由扇形面积公式可得出结论.【解答】解:∵每个小方格都是边长为1的正方形,∴OA=OB==,∴S扇形O A B===.故答案为:.三、解答题:本大题共3小题,每小题8分,共24分19.计算:(﹣2)2+2cos60°﹣()0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】原式利用乘方的意义,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【解答】解:原式=4+2×﹣1=4+1﹣1=4.20.先化简,再求值:(m﹣n)2﹣m(m﹣2n),其中m=,n=.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把m与n的值代入计算即可求出值.【解答】解:原式=m2﹣2mn+n2﹣m2+2mn=n2,当n=时,原式=2.21.如图所示,点E,F是平行四边形ABCD对角线BD上的点,BF=DE,求证:AE=CF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】根据平行四边形的性质可得AD∥BC,AD=BC,根据平行线的性质可得∠EDA=∠FBC,再加上条件ED=BF可利用SAS判定△AED≌△CFB,进而可得AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EDA=∠FBC,在△AED和△CFB中,,∴△AED≌△CFB(SAS),∴AE=CF.四、解答题:本大题共3小题,每小题8分,共24分22.如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA 分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,).【考点】解直角三角形的应用.【分析】根据sin75°==,求出OC的长,根据tan30°=,再求出BC的长,即可求解.【解答】解:在直角三角形ACO中,sin75°==≈0.97,解得OC≈38.8,在直角三角形BCO中,tan30°==≈,解得BC≈67.3.答:该台灯照亮水平面的宽度BC大约是67.3cm.23.为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A,B两种品牌的足球的单价.(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.【考点】二元一次方程组的应用.【分析】(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,根据“购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元”列出方程组并解答;(2)把(1)中的数据代入求值即可.【解答】解:(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,依题意得:,解得.答:一个A品牌的足球需90元,则一个B品牌的足球需100元;(2)依题意得:20×90+2×100=1900(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用是1900元.24.为了解市民对全市创卫工作的满意程度,某中学教学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2为进行回访,已知4为市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由满意的有20人,占40%,即可求得此次调查中接受调查的人数.(2)由(1),即可求得此次调查中结果为非常满意的人数.(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选择的市民均来自甲区的情况,再利用概率公式即可求得答案.【解答】解:(1)∵满意的有20人,占40%,∴此次调查中接受调查的人数:20÷40%=50(人);(2)此次调查中结果为非常满意的人数为:50﹣4﹣8﹣20=18(人);(3)画树状图得:∵共有12种等可能的结果,选择的市民均来自甲区的有2种情况,∴选择的市民均来自甲区的概率为:=.五、综合题:本大题共2小题,其中25题8分,26题10分,共18分25.尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.求证:a2+b2=5c2该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证(1)请你根据以上解题思路帮尤秀同学写出证明过程.(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.【考点】相似三角形的判定;三角形中位线定理.【分析】(1)设PF=m,PE=n,连结EF,如图1,根据三角形中位线性质得EF∥AB,EF=c,则可判断△EFP∽△BPA,利用相似比得到PB=2n,PA=2m,接着根据勾股定理得到n2+4m2=b2,m2+4n2=a2,则5(n2+m2)=(a2+b2),而n2+m2=EF2=c2,所以a2+b2=5c2;(2)利用(1)的结论得MB2+MC2=5BC2=5×32=45,再利用△AEG∽△CEB可计算出AG=1,同理可得DH=1,则GH=1,然后利用GH∥BC,根据平行线分线段长比例定理得到MB=3GM,MC=3MH,然后等量代换后可得MG2+MH2=5.【解答】解:(1)设PF=m,PE=n,连结EF,如图1,∵AF,BE是△ABC的中线,∴EF为△ABC的中位线,AE=b,BF=a,∴EF∥AB,EF=c,∴△EFP∽△BPA,∴,即==,∴PB=2n,PA=2m,在Rt△AEP中,∵PE2+PA2=AE2,∴n2+4m2=b2①,在Rt△AEP中,∵PF2+PB2=BF2,∴m2+4n2=a2②,①+②得5(n2+m2)=(a2+b2),在Rt△EFP中,∵PE2+PF2=EF2,∴n2+m2=EF2=c2,∴5•c2=(a2+b2),∴a2+b2=5c2;(2)∵四边形ABCD为菱形,∴BD⊥AC,∵E,F分别为线段AO,DO的中点,由(1)的结论得MB2+MC2=5BC2=5×32=45,∵AG∥BC,∴△AEG∽△CEB,∴==,∴AG=1,同理可得DH=1,∴GH=1,∴GH∥BC,∴===,∴MB=3GM,MC=3MH,∴9MG2+9MH2=45,∴MG2+MH2=5.26.已知抛物线y=ax2﹣4a(a>0)与x轴相交于A,B两点(点A在点B的左侧),点P是抛物线上一点,且PB=AB,∠PBA=120°,如图所示.(1)求抛物线的解析式.(2)设点M(m,n)为抛物线上的一个动点,且在曲线PA上移动.①当点M在曲线PB之间(含端点)移动时,是否存在点M使△APM的面积为?若存在,求点M的坐标;若不存在,请说明理由.②当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M的坐标.【考点】二次函数综合题.【分析】(1)先求出A、B两点坐标,然后过点P作PC⊥x轴于点C,根据∠PBA=120°,PB=AB,分别求出BC和PC的长度即可得出点P的坐标,最后将点P的坐标代入二次函数解析式即;(2)①过点M作ME⊥x轴于点E,交AP于点D,分别用含m的式子表示点D、M的坐标,然后代入△APM的面积公式DM•AC,根据题意列出方程求出m的值;②根据题意可知:n<0,然后对m的值进行分类讨论,当﹣2≤m≤0时,|m|=﹣m;当0<m≤2时,|m|=m,列出函数关系式即可求得|m|+|n|的最大值.【解答】解:(1)如图1,令y=0代入y=ax2﹣4a,∴0=ax2﹣4a,∵a>0,∴x2﹣4=0,∴x=±2,∴A(﹣2,0),B(2,0),∴AB=4,过点P作PC⊥x轴于点C,∴∠PBC=180°﹣∠PBA=60°,∵PB=AB=4,∴cos∠PBC=,∴BC=2,由勾股定理可求得:PC=2,∵OC=OC+BC=4,∴P(4,2),把P(4,2)代入y=ax2﹣4a,∴2=16a﹣4a,∴a=,∴抛物线解析式为;y=x2﹣;(2)∵点M在抛物线上,∴n=m2﹣,∴M的坐标为(m,m2﹣),①当点M在曲线PB之间(含端点)移动时,∴2≤m≤4,如图2,过点M作ME⊥x轴于点E,交AP于点D,设直线AP的解析式为y=kx+b,把A(﹣2,0)与P(4,2)代入y=kx+b,得:,解得∴直线AP的解析式为:y=x+,令x=m代入y=x+,∴y=m+,∴D的坐标为(m,m+),∴DM=(m+)﹣(m2﹣)=﹣m2+m+,∴S△A P M=DM•AE+DM•CE=DM(AE+CE)=DM•AC=﹣m2+m+4当S△A P M=时,∴=﹣m2+m+4,∴解得m=3或m=﹣1,∵2≤m≤4,∴m=3,此时,M的坐标为(3,);②当点M在曲线BA之间(含端点)移动时,∴﹣2≤m≤2,n<0,当﹣2≤m≤0时,∴|m|+|n|=﹣m ﹣n=﹣m 2﹣m+=﹣(m+)2+,当m=﹣时,∴|m|+|n|可取得最大值,最大值为,此时,M 的坐标为(﹣,﹣),当0<m≤2时,∴|m|+|n|=m﹣n=﹣m 2+m+=﹣(m ﹣)2+,当m=时,∴|m|+|n|可取得最大值,最大值为,此时,M 的坐标为(,﹣),综上所述,当点M 在曲线BA 之间(含端点)移动时,M 的坐标为(,﹣)或(﹣,﹣)时,|m|+|n|的最大值为.。