2015-2016学年江西省七年级(下)期末数学试卷

合集下载

2015-2016学年度第一学期期末测试(数学)

2015-2016学年度第一学期期末测试(数学)

2015~2016学年度第一学期期末测试七 年 级 数 学本卷分值 100分,考试时间120分钟.一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.34-的相反数是A .43-B .43C .34-D .342.单项式225x y-的系数和次数分别是A .-2,2B .2-,3C .25-,2D .25-,33.在下面的四幅图案中,通过平移图案(1)得到的是图案4.下列各组中的两项,不是..同类项的是 A .22x y 与23x y - B .3x 与3xC .232ab c -与32c b aD .1与-18 5.若关于x 的方程710x a +-=解是1x =-,则a 的值等于A .8B .-8C .6D .-6 6.从三个不同方向看一个几何体,得到的三视图 如图所示,则这个几何体是A .圆锥B .圆柱C .棱锥D .球7.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中不正确...的是 A .ab<0 B .a -b >0 C .a +b >0 D .ab <0b 0a(1) A B C D(第6题)(第7题)8. 如图,直线a ,b 被直线c 所截,则下列说法中错误..的是 A .∠1与∠2是邻补角 B .∠1与∠3是对顶角C .∠3与∠4是内错角D .∠2与∠4是同位角 9. 如图,点D 在直线AE 上,量得∠CDE=∠A=∠C ,有以下三个结论:①AB ∥CD ;②AD ∥BC ;③∠B=∠CDA .则正确的结论是A .①②③B .①②C .①D .②③ 10.王力骑自行车从A 地到B 地,陈平骑自行车从B 地到A 地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36 km ,到中午12时,两人又相距36 km .求A 、B 两地间的路程.可设A 、B 两地间的路程为x km ,则下列所列方程中:①363624x x -+=;②36363622x -+=;③36362x -=⨯; ④3636x -=;其中正确的个数为A .1个B .2个C .3个D .4个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.用科学记数法表示9600000为 ▲ .12.点A 、B 在同一条数轴上,其中点A 表示的数为-1,若点B 与点A 之间距离为3,则点B 表示的数为 ▲ . 13.已知2a b -的值是2015,则124a b -+的值等于 ▲ .14.若23(2)0x y -++=,则16xy = ▲ .15.飞机的无风航速为a 千米/小时,风速为20千米/小时.则飞机逆风飞行4小时的行程是 ▲ 千米.16.某服装店以每件180元的价格卖出两件衣服,其中一件 盈利25%,另一件亏损25%,若盈利记为正,亏损记为负,则该店卖这两件衣服总的盈亏金额是 ▲ 元.17.如图,把小河里的水引到田地A 处就作AB ⊥l ,垂足 为B ,沿AB 挖水沟,这条水沟最短的理由是 ▲ . 18. 如图,将三角板与两组对边分别平行的直尺贴在一起, 使三角板的顶点C (AC ⊥BC )落在直尺的一边上,若∠1=24°,则∠2等于 ▲ 度. 19.如图,平面内有公共端点的6条射线OA 、OB 、OC 、 OD 、OE 、OF ,从射线OA 开始按逆时针方向依次在 射线上写上数字1、2、3、4、5、6、7…,则数字 “2016”应在射线 ▲ 上.20.已知线段AB =12㎝,若M 是AB 的三等分点,N 是AM 的中点,则线段BN 的长度为 ▲ ㎝.三、解答题(本大题共8小题,共60分.请在答题卡指定区域.......内作答,解答时应写出文ac1 234 A B C DE(第8题) (第9题)(第17题)(第18题)(第19题)字说明、证明过程或演算步骤) 21.(每小题4分,共16分)计算:(1) (20)(3)(5)(7)-++---+;(2) 111()(12)462+-⨯-;(3) 322(2)(3)(4)2(3)(2)⎡⎤-+-⨯-+--÷-⎣⎦;(4) 471127326631440-+⨯-⨯÷.22.(每小题3分,共6分)(1)如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4㎝,求线段CD的长度.(2)如图,货船A 在灯塔O 的北偏东53°35′的方向上,客船B 在灯塔O 的南偏东28°12′的方向上.求∠AOB 的度数.23.(每小题4分,共8分)先化简,再求值:(1)求22113333a abc c a c +--+的值,其中1,2,36abc =-==-;(2)求2211312()()2323x x y x y --+-+的值,其中22,3x y =-=.24.(每小题4分,共8分)解方程: (1)72(33)20x x +-=; (2)121224x x+--=+.25.(本小题6分)如图,AD ∥BC ,∠1=60°,∠B =∠C ,DF 为∠ADC 的平分线. (1)求∠ADC 的度数;(2)试说明DF ∥AB . 解:(1)根据题意完成填空(括号内填写理由): ∵AD ∥BC (已知)∴∠B =∠1( ) 又∵∠B =∠C (已知) ∴ =∠1=60°C D (第22题(2)) A O B 西 东 北南 (第22题(1))又∵AD ∥BC (已知)∴∠ADC +∠C =180°( ) ∴∠ADC = .(2)请你完成第2题的解答过程:26.(本小题4分)列方程解应用题:某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名? 27.(本小题6分)如图:已知AB ∥CD ,∠ABE 与∠CDE 两个角的角平分线相交于点F . (1)如图1,若∠E =78°,则∠BFD = °;(2)如图2,若∠ABM =14∠ABF ,∠CDM =14∠CDF ,则∠M 和∠E 之间的数量关系为 ;(3)如图2,∠ABM =1n ∠MBF ,∠CDM =1n∠MDF ,设∠M =m °,直接用含有n ,m 的代数式表示出∠E = °.28.(本小题6分)如图,在∠AOB 的内部作射线OC ,使∠AOC 与∠AOB 互补.将射线OA ,OC 同时绕点O 分别以每秒12°,每秒8°的速度按逆时针方向旋转,旋转后的射线OA ,OC 分别记为OM ,ON ,设旋转时间为t 秒.已知t <30,∠AOB =114°. (1)求∠AOC 的度数;(2)在旋转的过程中,当射线OM ,ON 重合时,求 t 的值; (3)在旋转的过程中,当∠COM 与∠BON 互余时,求 t 的值.BE DFACBE DFA CM 图1图2CMNB(第27题)。

2015~2016学年度第一学期七年级期末考试数学附答案

2015~2016学年度第一学期七年级期末考试数学附答案

2015~2016学年度第一学期七年级期末考试数学第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的A 、B 、C 、D 四个选项中,只有一项是符合题目要求的)1.在-25, 0,25,2.5这四个数中,绝对值最大的数是 A. -25 B.0 C. 25D.2.5 2.下面运算正确的是 A.369a b ab += B.33330a b ba -= C.43862a a a -= D.22111236y y -= 3.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把书3120000用科学记数法表示为A.3.12×105B.3.12×106C.31.2×105D.0.312×1074.如果一个角的余角是50°,则这个角的补角的度数是A.130°B.140°C.40°D.150°5.如图是每个面都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“祝”字相对的面是A.新B.年C.快D.乐6.下图是由八个相同的小正方体组合而成的几何体,其左视图是7.已知多项式2222A x y z =+-,222=432B x y z -++,且0A B C ++=,则C 为A.2225x y z --B.22235x y z --C.22233x y z --D.22235x y z -+8.如图,点O 在直线AB 上,射线OC 、OD 在直线AB 的同侧,∠AOD =50°,∠BOC =40°,OM 、ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为A.135°B.140°C.152°D.145° 9.如图,直线l 1∥l 2,则∠α为 A.150° B.140° C.130° D.120° 10.若8,5a b ==,且a b +>0,则a b -的值为 A.3或13 B.13或-13 C.3或-3 D. -3或-1311.已知A 、B 、C 三点在同一直线上,M 、N 分别为线段AB 、BC 中点,且AB =60,BC =40,则MN 的长为A.10B.50C.20或50D.10或12.下面每个表格中的四个数都是按相同规律填写的: 根据此规律确定x 的值为A.135B.170C.209D.252第Ⅱ卷(非选择题共72分)乐快年新你祝D C B A NMD C B A l 2············第4个第3个第2个第1个35834∙∙∙···x 20b a 541054206329421二、填空题(本大题共4小题,每小题4分,共16分,请将最后答案填在题中横线上)13.312m a b 与212n a b -是同类项,则m n -=________; 14.规定符号*运算为a *b =21ab a b -++,那么-3*4=_____________;15.若代数式2245x x --的值为6,则2122x x --的值为_________; 16.为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图所示:按照上面的规律,摆第(n )图,需用火柴棒的根数为_____________________.三、解答题(本大题共6个小题,共56分,解答时应写出必要的文字说明或演算步骤.)17.(本小题满分10分)计算与化简:(1)2241325(2)4-+----⨯-()() (2)224(6)3(2)x xy x xy +---18.(本小题满分8分)先化简,再求值:2211312()()2323a a b a b ----,其中22,3a b =-=.19.(本小题满分9分)一辆货车从货场A出发,向东走了2千米到达批发部B,继续向东走了1.5千米到达商场C,又向西走了4.5千米到达超市D,最后回到货场.(1)用一个单位长度表示1千米,以东为正方向,货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置;(2)超市D距货场A多远?(3)货车一共行驶了多少千米?20.(本小题满分8分)某中学初一(四)班3位教师决定带领本班a名学生在五一期间取北京旅游,A旅行社的收费标准为:教师全价,学生半价;而B旅行社的收费标准为:不分教师、学生,一律八折优惠.(1)分别用代数式表示参加这两家旅行社所需的费用;(2)如果这3位教师要带领该班30名学生参加旅游,你认为选择哪一家旅行社较为合算,为什么?21.(本小题满分10分)如图,已知AB∥CE,∠A=∠E,试说明∠CGD=∠FHB.22.(本小题满分11分)HGFEDCBA将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°,∠E=∠B=45°).(1)1若∠DCE=45°,则∠ACB的度数为_________:2 若∠ACB=140°,则∠DCE的度数为______;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE所有可能的值(不必说明理由);若不存在,请说明理由.。

江西省2022年七年级下学期期末考试数学试卷[1]

江西省2022年七年级下学期期末考试数学试卷[1]

江西省七年级下学期期末考试数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)下列计算正确的是()A.x3•x2=x5B.x5÷x=x3C.(x2)3=x5D.(3x)2=6x22.(3分)下列事件中,是必然事件的是()A.某射击运动员射一次,正中靶心B.下雨后,天空出现彩虹C.测量抚州市某天的气温是﹣100℃D.口袋中装有1个黑球和2个白球,从中摸出2个球,其中必有白球3.(3分)下列手机屏幕解锁图案中不是轴对称图形的是()A.B.C.D .4.(3分)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE5.(3分)如图,为估计池塘岸边A、B两点的距离,小林在池塘的一侧选取一点O,测得OA=10米,OB=7米,则A、B间的距离不可能是()A.4米B.9米C.15米D.18米6.(3分)如图,已知AB、CD相交于O,OE⊥CD于O,∠AOC=30°,则∠BOE=()A.30°B.60°C.120°D.130°7.(3分)下表反映的是某地区电的使用量x(千瓦时)与应交电费y(元)之间的关系:用电量x(千瓦时) 1 2 3 4 …应交电费y(元)0.55 1.1 1.65 2.2 …下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.用电量每增加1千瓦时,电费增加0.55元C.若用电量为8千瓦时,则应交电费4.4元D.若所交电费为2.75元,则用电量为6千瓦时8.(3分)一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案202X届中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可9.(3分)5月12日,抚州市某中学进行了全校师生防灾减灾大演练,警报拉响后同学们匀速跑步到操场,在操场指定位置清点人数后,再沿原路匀速步行回教室,同学们离开教学楼的距离y与时间x的关系的大致图象是()A.B.C.D.10.(3分)将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个圆形小洞后展开铺平得到的图形是()A.B.C.D .二、填空题(本题共8小题,每小题3分,共24分)11.(3分)2﹣2+202X0=.12.(3分)目前一部雾霾纪录片《穹顶之下》引发了人们对环境污染的深刻反响,片中主持人柴静在某城市用PM2.5采样仪测得当地空气中PM2.5指数为0.00000035kg/m3,将数据0.00000035kg/m3用科学记数法表示为kg/m3.13.(3分)一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在白色方格地面上的概率是.14.(3分)若a x=3,则(a2)x=.15.(3分)如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.(3分)若等腰三角形中有一个内角等于50°,则这个等腰三角形的顶角的度数为度.17.(3分)小明画了一个边长为2cm的正方形,如果将正方形的边长增加xcm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为.18.(3分)如图,直线l是四边形ABCD的对称轴,若AD∥BC,则下列结论:(1)AB∥CD;(2)AB=AD;(3)BO=CO,(4)BD平分∠ABC.其中正确的有(填序号).三、解答题(每小题7分,共14分)19.(7分)先化简,再求值:(x+2y)2﹣(3x+y)(3x﹣y)﹣5y2,其中x=﹣,y=1.20.(7分)图①、图②均为7×6的正方形网格,点A,B,C在格点上.在图①、②中确定格点D,并画出以A,B,C,D为顶点的四边形,使其为轴对称图形.(各画一个即可)四、(每小题8分,共24分)21.(8分)甲乙两人玩“石头、剪子、布”游戏,他们在不透明的袋子中放入形状、大小均相同的10张卡片,其中写有“石头”“剪子”“布”的卡片数分别为2、3、5,两人各随机摸出一张卡片(先摸者不放回)来比胜负,并约定:“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”,同种卡片不分胜负.(1)若甲先摸,他摸出“石头”的概率是多少?(2)若甲先摸出了“石头”,则乙获胜的概率是多少?22.(8分)如图,已知∠1+∠2=180°,∠DAE=∠BCF.(1)试判断直线AE与CF有怎样的位置关系?并说明理由;(2)若∠BCF=70°,求∠ADF的度数.23.(8分)为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t(h)0 1 2 3 …油箱剩余油量Q(L)100 94 88 82 …(1)根据上表的数据,请你写出Q与t的关系式;(2)汽车行驶5h后,油箱中的剩余油量是多少?(3)该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远?五、(本题共2小题,每小题9分,共18分)24.(9分)小红星期天从家里出发汽车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到学校的路程是米,小红在商店停留了分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?(3)本次去舅舅家的行程中,小红一共行驶了多少米?一共用了多少分钟?25.(9分)如图,△ABC和△ECD都是等边三角形,B、C、D三点在一条直线上,AD与BE相交于点O,AD与CE相交于点F,AC与BE相交于点G.(1)△BCE与△ACD全等吗?请说明理由.(2)求∠BOD度数.六、(本题共1小题,共10分)26.(10分)如图所示,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,延长AE交BC 的延长线于点F.(1)判断FC与AD的数量关系,并说明理由;(2)若AB=BC+AD,则BE⊥AF吗?为什么?(3)在(2)的条件下,若EC⊥BF,EC=3,求点E到AB的距离.七年级下学期期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.(3分)下列计算正确的是()A.x3•x2=x5B.x5÷x=x3C.(x2)3=x5D.(3x)2=6x2考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、正确;B、x5÷x=x4,故错误;C、(x2)3=x6,故错误;D、(3x)2=9x2,故错误;故选:A.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题2.(3分)下列事件中,是必然事件的是()A.某射击运动员射一次,正中靶心B.下雨后,天空出现彩虹C.测量抚州市某天的气温是﹣100℃D.口袋中装有1个黑球和2个白球,从中摸出2个球,其中必有白球考点:随机事件.分析:A:某射击运动员射一次,正中靶心,这是一个随机事件,据此判断即可.B:下雨后,天空出现彩虹,这是一个随机事件,据此判断即可.C:测量抚州市某天的气温是﹣100℃,这是一个不可能事件,据此判断即可.D:口袋中装有1个黑球和2个白球,从中摸出2个球,其中必有白球,这是一个必然事件,据此判断即可.解答:解:∴某射击运动员射一次,正中靶心,这是一个随机事件,∴选项A不正确;∵下雨后,天空出现彩虹,这是一个随机事件,∴选项B不正确;∵测量抚州市某天的气温是﹣100℃,这是一个不可能事件,∴选项C不正确;∵口袋中装有1个黑球和2个白球,从中摸出2个球,其中必有白球,这是一个必然事件,∴选项D正确.故选:D.点评:此题主要考查了随机事件的含义,要熟练掌握,解答此题的关键是要明确:事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.3.(3分)下列手机屏幕解锁图案中不是轴对称图形的是()A.B.C.D .考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.(3分)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE考点:平行线的判定.分析:在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.解答:解:A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.5.(3分)如图,为估计池塘岸边A、B两点的距离,小林在池塘的一侧选取一点O,测得OA=10米,OB=7米,则A、B间的距离不可能是()A.4米B.9米C.15米D.18米考点:三角形三边关系.专题:应用题.分析:根据三角形的三边关系定理得到3<AB<17,根据AB的范围判断即可.解答:解:连接AB,根据三角形的三边关系定理得:10﹣7<AB<10+7,即:3<AB<17,∴AB的值在3和17之间.故选D.点评:本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.题型较好.6.(3分)如图,已知AB、CD相交于O,OE⊥CD于O,∠AOC=30°,则∠BOE=()A.30°B.60°C.120°D.130°考点:垂线;对顶角、邻补角.分析:根据垂直的定义和对顶角相等即可求出∠BOE的度数.解答:解:∵OE⊥CD,∴∠EOD=90°,∵∠AOC=30°,∴∠BOD=∠AOC=30°,∴∠BOE=∠EOD+∠BOD=90°+30°=120°.故选C.点评:本题考查了对顶角相等的性质,垂直的定义,根据图形找出角的关系代入数据进行计算即可,比较简单.7.(3分)下表反映的是某地区电的使用量x(千瓦时)与应交电费y(元)之间的关系:用电量x(千瓦时) 1 2 3 4 …应交电费y(元)0.55 1.1 1.65 2.2 …下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.用电量每增加1千瓦时,电费增加0.55元C.若用电量为8千瓦时,则应交电费4.4元D.若所交电费为2.75元,则用电量为6千瓦时考点:函数关系式;常量与变量;函数值.分析:根据表格可得y=0.55x,B,C,D代入求值,即可判断解答.解答:解:A、x与y都是变量,且x是自变量,y是因变量,正确;B、用电量每增加1千瓦时,电费增加0.55元,正确;C、若用电量为8千瓦时,则应交电费为0.55×8=4.4元,正确;D.、若所交电费为2.75元,则用电量为2.75÷0.55=5千瓦时,故错误;故选:D.点评:本题考查了函数关系式,解决本题的关键是根据表格得出函数关系式.8.(3分)一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案202X届中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可考点:全等三角形的应用.专题:应用题.分析:②④虽没有原三角形完整的边,又没有角,但延长可得出原三角形的形状;带①、④可以用“角边角”确定三角形;带③、④也可以用“角边角”确定三角形.解答:解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选D.点评:本题考查了全等三角形判定的应用;确定一个三角形的大小、形状,可以用全等三角形的几种判定方法.做题时要根据实际问题找条件.9.(3分)5月12日,抚州市某中学进行了全校师生防灾减灾大演练,警报拉响后同学们匀速跑步到操场,在操场指定位置清点人数后,再沿原路匀速步行回教室,同学们离开教学楼的距离y与时间x的关系的大致图象是()A.B.C.D.考点:函数的图象.分析:根据在每段中,离教学楼的距离随时间的变化情况即可进行判断.解答:解:图象应分三个阶段,第一阶段:匀速跑步到操场,在这个阶段,离教学楼的距离随时间的增大而增大;第二阶段:在操场停留了一段时间,这一阶段离教学楼的距离不随时间的变化而改变.故D错误;第三阶段:沿原路匀速步行回教学楼,这一阶段,离教学楼的距离随时间的增大而减小,故A错误;并且这段的速度小于于第一阶段的速度,则C正确.故选:C.点评:本题考查了函数的图象,理解每阶段中,离教学楼的距离与时间的关系,根据图象的斜率判断运动的速度是解决本题的关键.10.(3分)将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个圆形小洞后展开铺平得到的图形是()A.B.C.D .考点:剪纸问题.专题:操作型.分析:严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.解答:解:由折叠可知,得到的四个圆形小洞一定不在一条直线上,故D不正确;四个圆形小洞不靠近原正方形的四个角,所以A不正确;选项C的位置也不符合原题意的要求,故只有B是按要求得到的.故选B.点评:本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)2﹣2+202X0=.考点:负整数指数幂;零指数幂.分析:首先根据负整数指数幂、零指数幂的运算方法,分别求出2﹣2、202X0的值各是多少;然后把它们求和,求出算式2﹣2+202X0的值是多少即可.解答:解:2﹣2+202X0==.故答案为:.点评:(1)此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p =(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.12.(3分)目前一部雾霾纪录片《穹顶之下》引发了人们对环境污染的深刻反响,片中主持人柴静在某城市用PM2.5采样仪测得当地空气中PM2.5指数为0.00000035kg/m3,将数据0.00000035kg/m3用科学记数法表示为3.5×10﹣7kg/m3.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00000035=3.5×10﹣7.故答案为:3.5×10﹣7.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.(3分)一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在白色方格地面上的概率是.考点:几何概率.分析:根据几何概率的计算方法,用白色方格的面积除以总面积即可.解答:解:小鸟落在白色方格地面上的概率==.故答案为.点评:本题考查了几何概率:概率=某事件占的面积与总面积之比.14.(3分)若a x=3,则(a2)x =9.考点:幂的乘方与积的乘方.分析:根据(a2)x=(a x)2即可求解.解答:解:(a2)x=(a x)2=32=9.故答案是:9.点评:本题考查了幂的乘方法则,理解法则是关键.15.(3分)如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.考点:平行线的性质;余角和补角.专题:探究型.分析:由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.解答:解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.16.(3分)若等腰三角形中有一个内角等于50°,则这个等腰三角形的顶角的度数为50或80度.考点:等腰三角形的性质;三角形内角和定理.分析:已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.解答:解:(1)若等腰三角形一个底角为50°,顶角为180°﹣50°﹣50°=80°;(2)等腰三角形的顶角为50°.因此这个等腰三角形的顶角的度数为50°或80°.故答案为:50或80.点评:本题考查等腰三角形的性质及三角形的内角和定理.在解答此类题目的关键是要注意分类讨论,不要漏解.17.(3分)小明画了一个边长为2cm的正方形,如果将正方形的边长增加xcm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为y=x2+4.考点:函数关系式.分析:增加的面积=新正方形的面积﹣边长为2cm的正方形的面积.解答:解:由题意得:y=(x+2)2﹣22=x2+4x.故答案为:y=x2+4x.点评:解决本题的关键是找到相应的等量关系,易错点是得到新正方形的边长.18.(3分)如图,直线l是四边形ABCD的对称轴,若AD∥BC,则下列结论:(1)AB∥CD;(2)AB=AD;(3)BO=CO,(4)BD平分∠ABC.其中正确的有(1)(2)(4)(填序号).考点:轴对称的性质.分析:根据轴对称的性质可得∠1=∠2,∠3=∠4,根据两直线平行,内错角相等可得∠2=∠3,从而得到∠1=∠3=∠4,然后根据内错角相等,两直线平行可得AB∥CD,等角对等边可得AB=BC,再根据等腰三角形三线合一的性质可得BD平分∠ABC,AO=CO.解答:解:如图,∵直线l是四边形ABCD的对称轴,∴∠1=∠2,∠3=∠4,∵AD∥BC,∴∠2=∠3,∴∠1=∠3=∠4,∴AB∥CD,AB=BC,故(1)(2)正确;由轴对称的性质,AC⊥BD,∴BD平分∠ABC,AO=CO(等腰三角形三线合一),故(4)正确.但不能得出BO=CO,故(3)错误;综上所述,正确的是(1)(2)(3)(4).故答案为:(1)(2)(4).点评:本题考查了轴对称的性质,平行线的性质以及等腰三角形三线合一的性质,熟记各性质是解题的关键,用阿拉伯数字加弧线表示角更形象直观.三、解答题(每小题7分,共14分)19.(7分)先化简,再求值:(x+2y)2﹣(3x+y)(3x﹣y)﹣5y2,其中x=﹣,y=1.考点:整式的混合运算—化简求值.专题:计算题.分析:原式利用完全平方公式及平方差公式化简,去括号合并得到最简结果,把x与y的值代入计算即可求出值.解答:解:原式=x2+4xy+4y2﹣9x2+y2﹣5y2=4xy﹣8x2,当x=﹣,y=1时,原式=﹣4.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.(7分)图①、图②均为7×6的正方形网格,点A,B,C在格点上.在图①、②中确定格点D,并画出以A,B,C,D为顶点的四边形,使其为轴对称图形.(各画一个即可)考点:作图-轴对称变换.专题:网格型;开放型.分析:先思考什么四边形是轴对称图形,再画,比如可画一个等腰梯形,或画一个关于直线BC的点A 的对称点为D的四边形.解答:解:(1)有以下答案供参考(每个图画对得(2分),共4分)点评:本题主要考查了轴对称图形的性质.四、(每小题8分,共24分)21.(8分)甲乙两人玩“石头、剪子、布”游戏,他们在不透明的袋子中放入形状、大小均相同的10张卡片,其中写有“石头”“剪子”“布”的卡片数分别为2、3、5,两人各随机摸出一张卡片(先摸者不放回)来比胜负,并约定:“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”,同种卡片不分胜负.(1)若甲先摸,他摸出“石头”的概率是多少?(2)若甲先摸出了“石头”,则乙获胜的概率是多少?考点:列表法与树状图法.专题:计算题.分析:(1)直接根据概率公式求解;(2)先画树状图展示所有9种可能的结果数,找出摸出“5”所占结果数,然后根据概率公式求解.解答:解:(1)若甲先摸,他摸出“石头”的概率是;(2)画树状图为:共有9种可能的结果数,其中摸出“5”占一种,所以若甲先摸出了“石头”,则乙获胜的概率是.点评:本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22.(8分)如图,已知∠1+∠2=180°,∠DAE=∠BCF.(1)试判断直线AE与CF有怎样的位置关系?并说明理由;(2)若∠BCF=70°,求∠ADF的度数.考点:平行线的判定与性质.分析:(1)求出∠1=∠BDC,根据平行线的判定推出即可;(2)根据平行线的性质得出∠BCF=∠CBE,求出∠DAE=∠CBE,根据平行线的判定推出AD∥BC,根据平行线的性质得出即可.解答:解:(1)AE∥CF,理由是:∵∠1+∠2=180°,∠BDC+∠2=180°,∴∠1=∠BDC,∴AE∥CF;(2)∵AE∥CF,∴∠BCF=∠CBE,又∵∠DAE=∠BCF,∴∠DAE=∠CBE,∴AD∥BC,∴∠ADF=∠BCF=70°.点评:本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然,题目比较好,难度适中.23.(8分)为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t(h)0 1 2 3 …油箱剩余油量Q(L)100 94 88 82 …(1)根据上表的数据,请你写出Q与t的关系式;(2)汽车行驶5h后,油箱中的剩余油量是多少?(3)该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远?考点:函数关系式;函数值.分析:(1)由表格可知,开始油箱中的油为50L,每行驶1小时,油量减少8L,据此可得t与Q的关系式;(2)求汽车行驶5h后,油箱中的剩余油量即是求当t=5时,Q的值;(3)贮满50L汽油的汽车,理论上最多能行驶几小时即是求当Q=0时,t的值.解答:解:(1)Q=50﹣8t;(2)当t=5时,Q=50﹣8×5=10,答:汽车行驶5h后,油箱中的剩余油量是10L;(3)当Q=0时,0=50﹣8t8t=50,解得:t=,100×=625km.答:该车最多能行驶625km;点评:本题考查了一次函数的应用,关键是求函数关系式.注意贮满100L汽油的汽车,最多行驶的时间就是油箱中剩余油量为0时的t的值.五、(本题共2小题,每小题9分,共18分)24.(9分)小红星期天从家里出发汽车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到学校的路程是1500米,小红在商店停留了14分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?(3)本次去舅舅家的行程中,小红一共行驶了多少米?一共用了多少分钟?考点:函数的图象.分析:(1)根据图象,路程的最大值即为小红家到舅舅家的路程;读图,对应题意找到其在商店停留的时间段,进而可得其在书店停留的时间;(2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度;(3)分开始行驶的路程,折回商店行驶的路程以及从商店到舅舅家行驶的路程三段相加即可求得小红一共行驶路程;读图即可求得本次去舅舅家的行程中,小红一共用的时间.解答:解:(1)根据图象舅舅家纵坐标为1500,小红家的纵坐标为0,故小红家到舅舅家的路程是1500米;据题意,小红在商店停留的时间为从8分到12分,故小红在商店停留了4分钟.故答案为:1500,4;(2)根据图象,12≤x≤14时,直线最陡,故小红在12﹣14分钟最快,速度为=450米/分.(3)读图可得:小红共行驶了1200+600+900=2700米,共用了14分钟.点评:本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.25.(9分)如图,△ABC和△ECD都是等边三角形,B、C、D三点在一条直线上,AD与BE相交于点O,AD与CE相交于点F,AC与BE相交于点G.(1)△BCE与△ACD全等吗?请说明理由.(2)求∠BOD度数.考点:全等三角形的判定与性质;等边三角形的性质.分析:(1)通过观察图形,根据等边三角形的性质就可以证明△BCE≌△ACD;(2)由(1)△BCE≌△ACD可以得出∠ADC=∠BEC,而有∠AOB=∠EBC+∠ADB,就有∠AOB=∠EBC+∠BEC=∠DCE=60°,从而可以求出∠BOD的值.解答:解:(1)△BCE≌△ACD.理由:∵△ABC和△ECD都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=∠BAC=60°,∴∠BCA+∠ACE=∠ECD+∠ACE,∵∠BCE=∠ACD.在△BCE和△ACD 中,,∴△BCE≌△ACD(SAS);(2)∵△BCE≌△ACD,∴∠ADC=∠BEC.∵∠AOB=∠EBC+∠ADC,∴∠AOB=∠EBC+∠BEC=∠DCE=60°.∵∠AOB+∠BOD=180°,∴∠BOD=120°.点评:本题考查了等边三角形的性质的运用,三角形的外角与内角的关系的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是解答的关键.六、(本题共1小题,共10分)26.(10分)如图所示,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,延长AE交BC 的延长线于点F.(1)判断FC与AD的数量关系,并说明理由;(2)若AB=BC+AD,则BE⊥AF吗?为什么?(3)在(2)的条件下,若EC⊥BF,EC=3,求点E到AB的距离.考点:全等三角形的判定与性质.分析:(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答;(2)由(1)知△ADE≌△FCE,得到AE=EF,AD=CF,由于AB=BC+AD,等量代换得到AB=BC+CF,即AB=BF,证得△ABE≌△FBE,即可得到结论;(3)在(2)的条件下有△ABE≌△FBE,得到∠ABE=∠FBE,根据角平分线的性质即可得到结果.解答:证明:(1)∵AD∥BC,∴∠ADC=∠ECF,∵E是CD的中点,∴DE=EC,∵在△ADE与△FCE 中,,∴△ADE≌△FCE(ASA),∴FC=AD;(2)由(1)知△ADE≌△FCE,∴AE=EF,AD=CF,∵AB=BC+AD,∴AB=BC+CF,即AB=BF,在△ABE与△FBE 中,,∴△ABE≌△FBE,∴∠AEB=∠FBE=90°,∴BE⊥AE;(3)在(2)的条件下有△ABE≌△FBE,∴∠ABE=∠FBE,∴E到BF的距离等于E到AB的距离,∵CE⊥BF,CE=3,∴点E到AB的距离为3.点评:本题考查了全等三角形的判定和性质,角平分线的性质,平行线的性质,熟练掌握全等三角形的判定定理是解题的关键.。

文澜中学2015-2016学年度七年级第二学期期末考试数学试卷

文澜中学2015-2016学年度七年级第二学期期末考试数学试卷

文澜中学2015-2016年学年第二学期期末考试七年级数学试卷命题人:杨丽嫦 审题人:朱小丹一、选择题:(每小题3分,共30分) 1. 下列图形既是中心对称图形又是轴对称图形的是( )。

A. 正三角形 B. 平行四边形 C. 矩形 D. 等腰梯形2. 能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是( )。

A .120°,60°B .95.1°,104.9°C .30°,60°D .90°,90° 3. 在反比例函数(0)k y k x =<的图像上有两点1(1,)y -,21(,)4y -,则12y y -的值是( )。

A.负数 B.非正数 C.正数 D.不能确定4. 二次函数y= a (x+m)2-m (a ≠0) 无论m 为什么实数,图象的顶点必在 ( )。

A.直线y= - x 上 B. 直线y=x 上 C.y 轴上 D.x 轴上5. 已知四边形的两条对角线垂直,那么,顺次连接该四边形各边中点得到的四边形是( )。

A.梯形 B. 矩形 C.正方形 D.菱形6. 向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的关系为y=ax 2+bx+c(a ≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )。

A .第8秒B .第10秒C .第12秒D .第15秒 7. 如图,在□ABCD 中,对角线AC 、BD 相交于点O ,E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列哪个条件时,四边形DEBF 不一定是....平行四边形( )。

A .AE=CF B .∠ADE=∠CBF C .DE=BF D .∠AED=∠CFB(第7题图)8. 如图,梯形ABCD 中,∠ABC 和∠DCB 的平分线相交于梯形中位线EF 上的一点P ,若EF =3,则梯形ABCD 的周长为( )。

15—16学年下学期七年级期末考试数学试题(附答案)

15—16学年下学期七年级期末考试数学试题(附答案)

2015-2016学年第二学期期末联考试卷七年级数学一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A.3列5行B.5列3行C.4列3行D.3列4行2.如果a>b,那么下列不等式中一定成立的是()A.a2>b2B.1﹣a>1﹣b C.1+a>1﹣b D.1+a>b﹣13.在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率5.若是方程kx﹣2y=2的一个解,则k等于()A.B.C.6 D.﹣6.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.如图,在平面直角坐标系中,A(﹣3,2)、B(﹣1,0)、C(﹣1,3),将△ABC向右平移4个单位,再向下平移3个单位,得到△A1B1C1,点A、B、C的对应点分别A1、B1、C1,则点A1的坐标为()A.(3,﹣3)B.(1,﹣1)C.(3,0)D.(2,﹣1)8.在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.B.C.D.9.若关于x的不等式组无解,则a的取值范围是()A.a≤3 B.a≥3 C.a<3 D.a>310.已知方程组和有相同的解,则a,b的值为()A.B.C.D.11.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,则宽的长度xcm应满足的不等式组为()A.B.C.D.12.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元、0.6元B.0. 4元、0.5元C.0.3元、0.4元D.0.6元、0.7元第6题图第7题图第12题图二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中横线上.13.的整数部分是.14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为.15.已知2x﹣3y﹣1=0,请用含x的代数式表示y:.16.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为°.17.若不等式组的解集是﹣1<x <1,则b a 212 的立方根为 . 18.如图,正方形ABCD 的顶点B 、C 都在直角坐标系的x 轴上,若点D 的坐标是(3,4),则点A 的坐标是 .第14题图 第16题图 第18题图三、解答题:本大题共6小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤.19.(5分)解方程组:20.(6分)解不等式组请结合题意填空,完成本题的解答. (1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .21.(7分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.22.(8分)已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.证明:AD∥BE.证明:∵AB∥CD(已知)∴∠4=①(②)∵∠3=∠4(已知)∴∠3=③(④)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等量代换)即∠BAF=∠DAC∴∠3= ⑤(等量代换)∴AD∥BE(⑥)23.(9分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、哲学四类.在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,表)和图是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)表中m=,n=;(2)在图中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“哲学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.24.(11分)在南宁市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和1台电子白板共需要2万元,购买2台电脑和1台电子白板共需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过32万元,但不低于30万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2015-2016学年第二学期期末联考七年级数学评分细则一、选择题(本题共12小题,每小题3分,共36分)1-5 CDBBC 6-10 DBBAD 11-12 AA二、填空题(本题共6小题,每小题3分,共18分)13. 4 14. 0.4 15. y=16. 35 17. 2 18. (﹣1,4)三、解答题(本大题共6小题,共46分)注:解答题解法多样,非本细则所述的其他正确解法请阅卷老师酌情给分19. 解:,①+②×2得:7x=7,即x=1,------- 3分把x=1代入①得:y=1,------- 4分则方程组的解为------- 5分20. 解:(1)x<2,------- 1分(2)x≥﹣1,------- 3分(3)------- 5分(4)-1≤x<2.------- 6分21. 解:(1)设魔方的棱长为x cm,可得:x3=216,------- 2分解得:x=6.------- 3分(2)设该长方体纸盒的长为y cm,6y2=600,------- 5分y2=100,即y=10.------- 6分答:魔方的棱长6 cm,长方体纸盒的长为10 cm.------- 7分22. 解:①∠BAE ,------- 1分②(两直线平行,同位角相等),------- 3分③∠BAE ------- 4分④(等量代换),------- 5分⑤∠DAC ,------- 6分⑥(内错角相等,两直线平行).------- 8分23. 解:(1)m= 500 ,------- 2分n= 0.05 ;------- 3分(2)自然科学:2000×0.20=400 册如图,------- 5分(3)10000×0.05=500(册),即估算“哲学”类图书应采购500册较合适;------- 7分(4)鼓励学生多借阅哲学类的书.------- 9分24. 解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,------- 3分解得,即每台电脑0.5万元,每台电子白板1.5万元;------- 5分(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,------- 7分解得:13≤a≤15,∵a只能取整数,∴a=13,14,15,------- 9分∴有三种购买方案,方案1:需购进电脑13台,则购进电子白板17台,13×0.5+1.5×17=32(万元),方案2:需购进电脑14台,则购进电子白板16台,14×0.5+1.5×16=31(万元),方案3:需购进电脑15台,则购进电子白板15台,15×0.5+1.5×15=30(万元),∵30<31<32,∴购买电脑15台,电子白板15台最省钱.------- 11分。

七年级下册数学期末试卷人教版含答案免费

七年级下册数学期末试卷人教版含答案免费

2018~2019学年四川甘孜初一下学期期末数学试卷(人教版)-学生用卷一、选择题(本大题共10小题,每小题3分,共30分)1、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第1题3分2017~2018学年湖北武汉黄陂区初一下学期期中第1题3分2017~2018学年湖北武汉青山区初一下学期期末第2题3分点A(−2,1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限2、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第2题3分不等式组{x+3>02x−4⩽0的解集在数轴上表示为().A.B.C.D.3、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第3题3分下列运动属于平移的是().A. 荡秋千B. 地球绕着太阳转C. 急刹车时,汽车在地面上的滑动D. 风筝在空中随风飘动4、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第4题3分已知x=2,y=−3是二元一次方程5x+my+2=0的解,则m的值为().A. 83B. −83C. 4D. −45、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第5题3分2018~2019学年5月河北廊坊三河市三河市第八中学初一下学期月考第2题3分2017~2018学年江西宜春丰城市初一下学期期末第2题3分2017~2018学年湖北武汉江汉区初一下学期期中第3题3分2016~2017学年湖北武汉江岸区初一下学期期中第5题3分如图,下列条件中不能判定AB//CD的是().A. ∠3=∠4B. ∠1=∠5C. ∠1+∠4=180°D. ∠3=∠56、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第6题3分要反映甘孜州一周内每天的最高气温的变化情况,宜采用().A. 条形统计图B. 扇形统计图C. 折线统计图D. 频数分布直方图7、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第7题3分如果a>b,那么下列结论一定正确的是().A. 3−a<3−bB. a−3<b−3C. ac2>bc2D. a2>b28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第8题3分2017~2018学年12月陕西西安碑林区西安市第六中学初二上学期月考第6题3分2019~2020学年山东临沂兰山区临沂第三十六中学初一下学期期中第10题3分2017~2018学年福建泉州德化县初一下学期期末第9题4分2016~2017学年3月陕西西安高新区西安高新第一中学初一下学期月考(创新班)第8题3分一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为().A. {x=y−50 x+y=180B. {x=y+50 x+y=180C. {x=y+50 x+y=90D. {x=y−50 x+y=909、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第9题3分2016~2017学年北京丰台区初一下学期期末第4题3分2017~2018学年江苏连云港赣榆区初一下学期期末第5题3分2018~2019学年广西玉林博白县初一下学期期末第3题3分2017~2018学年福建莆田城厢区初一下学期期末第8题4分如果{x=1y=−2是关于x和y的二元一次方程ax+y=1的解,那么a的值是().A. 3B. 1C. −1D. −310、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第10题3分2017~2018学年河北保定定兴县初一下学期期末第9题3分2016~2017学年北京丰台区初一下学期期末第8题3分如果(x−1)2=2,那么代数式x2−2x+7的值是().A. 8B. 9C. 10D. 11二、填空题(本大题共8小题,每小题3分,共24分)11、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第11题3分2019~2020学年四川内江市中区内江市第六初级中学校初一下学期期中第13题4分2018~2019学年内蒙古呼和浩特玉泉区内蒙古师范大学附属第二中学初一下学期期中第15题3分2019~2020学年四川自贡贡井区自贡市田家炳中学初二上学期开学考试第10题3分2020~2021学年广东广州荔湾区广州市真光中学初一下学期期中(真光教育集团)第11题3分将方程2x−3y=5变形为用x的代数式表示y的形式是.12、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第12题3分2019~2020学年6月湖北武汉江夏区武汉市外国语学校美加分校初一下学期月考第11题3分2018~2019学年广西南宁宾阳县开智中学初一下学期期末第15题3分用不等式表示“a与5的差不是正数”:.13、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第13题3分2019~2020学年广东惠州惠城区惠州市惠台学校初一下学期期末第14题4分2019~2020学年黑龙江哈尔滨道里区哈尔滨第一一三中学初一上学期期中第14题3分2017~2018学年浙江宁波海曙区宁波市东恩中学初一上学期期中第14题3分2014~2015学年北京初一下学期期中东城朝阳海淀第16题已知a、b为两个连续的整数,且a<√11<b,则a+b=.14、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第14题3分2020~2021学年河南郑州金水区郑州十一中学分校初一上学期期中第12题3分2020~2021学年10月江苏苏州相城区南京师范大学苏州实验学校初一上学期月考第14题2016~2017学年11月天津宁河区初一上学期月考第13题3分2016~2017学年北京大兴区北京亦庄实验中学初一上学期期中第12题3分若|m−3|+(n−2)2=0,则m+2n的值为.15、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第15题3分2015年湖南株洲芦淞区初三中考一模第12题3分2019年广东揭阳榕城区初三中考一模(空港经济区)第12题2017~2018学年辽宁营口西市区营口市实验中学初一下学期期中第13题3分2017~2018学年4月浙江杭州江干区杭州市采荷中学初一下学期月考第12题4分如图,已知a//b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第16题3分2012年江苏苏州中考真题第15题某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有人.17、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第17题3分2016~2017学年湖北武汉新洲区初一下学期期末第14题3分方程3x+y=20在正整数范围内的解有组.18、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第18题3分2017~2018学年重庆沙坪坝区重庆市名校联合中学校初一上学期期末第13题4分2017~2018学年重庆初一上学期期末第13题4分福布斯2017年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以330亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为美元.三、计算题(本大题共4小题,每小题5分,共20分)19、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第19题5分2019~2020学年北京海淀区海淀实验中学初一下学期期末第23题4分2017~2018学年北京昌平区初一下学期期末第20题5分2018~2019学年北京延庆区初一下学期期末第21题5分2019~2020学年河北石家庄裕华区石家庄市第四十中学初一下学期期末第26题6分解方程组:{x +y =13x +y =5.20、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第20题5分解不等式组:{x −2>02(x +1)⩾3x −1,并把解集在数轴上表示出来.21、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第21题5分2016~2017学年北京丰台区初一下学期期末第21题4分因式分解:−3a 3b −27ab 3+18a 2b 2.22、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第22题5分2017~2018学年北京昌平区初一下学期期末第21题5分2019~2020学年辽宁大连金普新区初一下学期期中第22题6分已知关于x ,y 的二元一次方程组{2ax +by =3ax −by =1的解为{x =1y =1求a +2b 的值.四、解答题(本大题共4小题,共26分)23、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第23题6分2019~2020学年云南大理巍山县初一下学期期末第17题5分2016~2017学年福建莆田秀屿区莆田第二十五中学初一下学期期末第22题10分如图所示,直线a、b被c、d所截,且c⊥a,c⊥b,∠1=70°,求∠3的大小.24、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第24题6分2016年河南南阳淅川县初三中考一模第18题9分2017~2018学年江苏南京建邺区南京师范大学附属中学新城初级中学初二下学期期中第20题6分某校为了开设武术、舞蹈、剪纸三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1) 将条形统计图补充完整.(2) 本次抽样调查的样本容量是;(3) 已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.25、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第25题7分2019~2020学年广东深圳福田区深圳外国语学校初二上学期单元测试《实数》第17题2014~2015学年广东广州越秀区广州市育才实验学校初一下学期期中第23题2019~2020学年广东广州海珠区广州市海珠区六中珠江中学初一下学期期中模拟第19题8分我们知道a +b =0时,a 3+b 3=0也成立,若将a 看成a 3的立方根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1) 试举一个例子来判断上述猜测结论是否成立.(2) 若√1−2x 3与√3x −53互为相反数,求1−√x 的值.26、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第26题7分2016~2017学年10月重庆石柱土家族自治县石柱中学校初一上学期月考2014~2015学年重庆渝中区重庆市巴蜀中学校初一上学期期末第28题2017~2018学年重庆初一上学期期末第25题4分2018~2019学年辽宁大连高新技术产业园区初一上学期期中第25题10分某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%.方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1) 问投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=投资收益实际投资额×100%) (2) 对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差7.2万元.问甲乙两人各投资了多少万元?五、填空题(本大题共4小题,每小题4分,共16分)27、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第27题4分2015~2016学年江苏苏州初二下学期期中模拟第11题3分2018~2019学年辽宁沈阳浑南区育才实验学校初二下学期期中第11题3分2019年陕西宝鸡金台区初三中考一模第11题3分2018年山东滨州初三中考二模第13题5分分解因式:2m3−8m=.28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第28题4分2019~2020学年四川绵阳涪城区绵阳南山中学双语学校初一下学期期末模拟第14题3分2016~2017学年湖北武汉新洲区初一下学期期末第12题3分在平面直角坐标系中,若A点坐标为(−1,3),AB//y轴,线段AB=5,则B点坐标为.29、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第29题4分关于x的一元一次方程2(x−m)=4+x的解是非负数,则m的取值范围是.30、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第30题4分已知如图,在频率分布直方图中,各小长方形的高之比AE:BF:CG:DH=2:4:3:1,则第3组的频率为.六、解答题(本大题共4小题,共34分)31、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第31题8分2019~2020学年江苏苏州工业园区金鸡湖学校初三下学期开学考试第20题6分2020年江苏苏州高新区苏州市高新区第一初级中学校初三中考二模第23题6分某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1) 该小区新建1个地上停车位和1个地下停车位各需多少万元?(2) 该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有哪几种建造停车位的方案?32、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第32题8分2018~2019学年西藏昌都地区左贡县左贡县中学初一下学期期末第26题4分丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题.33、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第33题8分河南许昌长葛市长葛市天隆学校初一下学期期末(1)第18题7分2020~2021学年3月江西南昌红谷滩区南昌市第五中学初一下学期月考第15题5分2017~2018学年山西吕梁柳林县初一下学期期末第19题6分2015~2016学年河南郑州中原区郑州外国语学校初二上学期期末第19题8分如图,已知AB//CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.34、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第34题10分如图1,平面直角坐标系中,直线AB与x轴负半轴交于点A(a,0),与y轴正半轴交于点B(0,b),且√a+6+|b−4|=0.(1) 求△AOB的面积.(2) 如图2,若P为直线AB上一动点,连接OP,且2S△AOP⩽S△BOP⩽3S△AOP,求P点横坐标x P的取值范围.1 、【答案】 B;2 、【答案】 D;3 、【答案】 C;4 、【答案】 C;5 、【答案】 D;6 、【答案】 C;7 、【答案】 A;8 、【答案】 C;9 、【答案】 A;10 、【答案】 A;;11 、【答案】y=2x−5312 、【答案】a−5⩽0;13 、【答案】7;14 、【答案】7;15 、【答案】50°;16 、【答案】216;17 、【答案】6;18 、【答案】3.3×1010;19 、【答案】{x=2y=−1.;20 、【答案】2<x⩽3.;21 、【答案】−3ab(a−3b)2;22 、【答案】a+2b=2.;23 、【答案】70°.;24 、【答案】 (1) 画图见解析.;(2) 100;(3) 360人.;25 、【答案】 (1) 证明见解析.;(2) −1.;26 、【答案】 (1) 投资者选择方案二所获得的投资收益率更高.;(2) 甲投资了60万元,乙投资了48万元.;27 、【答案】2m(m+2)(m−2);28 、【答案】(−1,8)或(−1,−2);29 、【答案】m⩾−2;30 、【答案】0.3;31 、【答案】 (1) 新建一个地上停车位需要0.1万元,新建一个地下停车位需要0.5万元.;(2) 共有3种建造方案.①建30个地上停车位,20个地下停车位;②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.;32 、【答案】丁丁至少要答对22道题.;33 、【答案】32.5°.;34 、【答案】 (1) 12.;(2) P点横坐标x P的取值范围是−4.5⩽x P⩽−4或−12⩽x P⩽−9.;。

2016-2017学年江西省南昌市七年级(下)期中数学试卷

2016-2017学年江西省南昌市七年级(下)期中数学试卷

2016-2017学年江西省南昌市七年级(下)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是正确的,请将正确答案前的字母填入题后的括号内,每小题选对得3分,选错、不选或多选均得零分1.(3分)在平面直角坐标系中,点P(﹣,0)在()A.x轴的正半轴上B.x轴的负半轴上C.y轴的正半轴上D.y轴的负半轴上2.(3分)的立方根是()A.8 B.﹣8 C.2 D.﹣23.(3分)在我们常见的英文字母中,存在着同位角、内错角、同旁内角的现象.在下列几个字母中,不含同旁内角现象的字母是()A.E B.F C.N D.H4.(3分)若点P位于x轴上方,位于y轴的左边,且距x轴的距离为2个单位长度,距y轴的距离为3个单位长度,则点P的坐标是()A.(2,﹣3)B.(2,3) C.(3,﹣2)D.(﹣3,2)5.(3分)如图,BD⊥BC,∠1=40°,若使AB∥CD,则∠2的度数是()A.30°B.40°C.50°D.60°6.(3分)若m,n满足(m﹣1)2+=0,则的平方根是()A.±4 B.±2 C.4 D.27.(3分)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长8.(3分)如图,AB∥CD∥EF,则等于180°的式子是()A.∠1+∠2+∠3 B.∠1+∠2﹣∠3 C.∠1﹣∠2+∠3 D.∠2+∠3﹣∠1二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)若a+2是一个数的算术平方根,则a的取值范围是.10.(3分)在平面直角坐标系中,有点A(2,﹣1)、点B(2,3),点O为坐标原点,则△AOB的面积是.11.(3分)如图,在一次军棋比赛中,若团长所在的位置坐标为(1,﹣4),工兵所在的位置坐标为(0,﹣1),则司令所在的位置坐标是.12.(3分)若是整数,则满足条件的最小正整数n为.13.(3分)如图,∠1=∠2,∠A=75°,则∠ADC=°.14.(3分)直线EO⊥CD于点O,直线AB平分∠EOD,则∠BOD的度数是.三、解答题(本大题共4小题,每小题6分,共24分)15.(6分)已知实数x、y满足关系式+|y2﹣9|=0.(1)求x、y的值;(2)判断是无理数还是无理数?并说明理由.16.(6分)一个正数x的两个不同的平方根分别是2a﹣1和﹣a+2.(1)求a和x的值;(2)化简:2|a+|+|x﹣2|﹣|3a+x|17.(6分)在平面直角坐标系中,有点(﹣2,a+3),B(b,b﹣3).(1)当点A在第二象限的角平分线上时,求a的值;(2)当点B到x轴的距离是它到y轴的距离2倍时,求点B所在的象限位置.18.(6分)如图,在正方形网格中的每个小正方形边长都为1个单位长度,我们把每个小正方形的顶点称为格点,请分别仅用一把无刻度的直尺画图:(1)过点A画一条AB的垂线;(2)过点C画一条AB的平行线.四、解答题(本大题共4小题,每小题8分,共24分)19.(8分)如图,已知DE∥BC,BE平分∠ABC,∠C=65°,∠ABC=50°.(1)求∠BED的度数;(2)判断BE与AC的位置关系,并说明理由.20.(8分)如图,若用A(2,1)表示放置2个胡萝卜,1棵小白菜;点B(4,2)表示放置4个胡萝卜,2棵小白菜:(1)请你写出C、E所表示的意义.(2)若一只兔子从A顺着方格线向上或向右移动到达B,试问有几条路径可供选择,其中走哪条路径吃到的胡萝卜最多?走哪条路径吃到的小白菜最多?请你通过计算的方式说明.21.(8分)在△ABC中,AD平分∠BAC交BC于点D.(1)在图1中,将△ABD沿BC的方向平移,使点D移至点C的位置,得到△A′B′D′,且A′B′交AC于点E,猜想∠B′EC与∠A′之间的关系,并说明理由;(2)在图2中,将△ABD沿AC的方向平移,使A′B′经过点D,得到△A′B′D′,求证:A′D′平分∠B′A′C.22.(10分)已知射线AB∥射线CD,P为一动点,AE平分∠PAB,CE平分∠PCD,且AE与CE相交于点E.(1)在图1中,当点P运动到线段AC上时,∠APC=180°.①直接写出∠AEC的度数;②求证:∠AEC=∠EAB+∠ECD;(2)当点P运动到图2的位置时,猜想∠AEC与∠APC之间的关系,并加以说明;(3)当点P运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由;若不成立,请写出∠AEC与∠APC之间的关系,并加以证明.2016-2017学年江西省南昌市七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是正确的,请将正确答案前的字母填入题后的括号内,每小题选对得3分,选错、不选或多选均得零分1.(3分)(2017春•南昌期中)在平面直角坐标系中,点P(﹣,0)在()A.x轴的正半轴上B.x轴的负半轴上C.y轴的正半轴上D.y轴的负半轴上【分析】根据坐标轴上点的坐标特征解答.【解答】解:点P(﹣,0)在x轴负半轴上.故选B.【点评】本题考查了点的坐标,熟记坐标轴上点的坐标特征是解题的关键.2.(3分)(2017春•南昌期中)的立方根是()A.8 B.﹣8 C.2 D.﹣2【分析】根据立方根的定义进行计算即可.【解答】解:=﹣8的立方根是﹣2,故选D.【点评】本题考查了立方根,掌握立方根的定义是解题的关键.3.(3分)(2017春•南昌期中)在我们常见的英文字母中,存在着同位角、内错角、同旁内角的现象.在下列几个字母中,不含同旁内角现象的字母是()A.E B.F C.N D.H【分析】根据同旁内角的定义进行选择即可.【解答】解:不含同旁内角现象的字母是N,故选C.【点评】本题考查了同位角、内错角、同旁内角,掌握同位角、内错角、同旁内角是解题的关键.4.(3分)(2017春•南昌期中)若点P位于x轴上方,位于y轴的左边,且距x 轴的距离为2个单位长度,距y轴的距离为3个单位长度,则点P的坐标是()A.(2,﹣3)B.(2,3) C.(3,﹣2)D.(﹣3,2)【分析】根据x轴的上方,y轴的左边,可得第二象限,根据到x的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,可得答案.【解答】解:由点P位于x轴上方,位于y轴的左边,得点位于第二象限,由距x轴的距离为2个单位长度,距y轴的距离为3个单位长度,得点的坐标为(﹣3,2),故选:D.【点评】本题考查了点的坐标,利用到x的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值是解题关键.5.(3分)(2017春•南昌期中)如图,BD⊥BC,∠1=40°,若使AB∥CD,则∠2的度数是()A.30°B.40°C.50°D.60°【分析】先根据平行线的判定当∠1=∠BCD=40°时,AB∥CD,然后根据互余计算此时∠2的度数.【解答】解:当∠1=∠BCD=40°时,AB∥CD,∴∠BCD=∠1=40°,∵BD⊥BC,∴∠CBD=90°,∴此时∠2=90°﹣40°=50°.故选C.【点评】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.两条直线都和第三条直线平行,那么这两条直线平行.6.(3分)(2017春•南昌期中)若m,n满足(m﹣1)2+=0,则的平方根是()A.±4 B.±2 C.4 D.2【分析】根据非负数的性质列式求出m、n,根据平方根的概念计算即可.【解答】解:由题意得,m﹣1=0,n﹣15=0,解得,m=1,n=15,则=4,4的平方根的±2,故选:B.【点评】本题考查的是非负数的性质、平方根的概念,掌握非负数之和等于0时,各项都等于0是解题的关键.7.(3分)(2014•邵阳)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长【分析】分别利用平移的性质得出各图形中所用铁丝的长度,进而得出答案.【解答】解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选:D.【点评】此题主要考查了生活中的平移现象,得出各图形中铁丝的长是解题关键.8.(3分)(2017春•南昌期中)如图,AB∥CD∥EF,则等于180°的式子是()A.∠1+∠2+∠3 B.∠1+∠2﹣∠3 C.∠1﹣∠2+∠3 D.∠2+∠3﹣∠1【分析】根据两直线平行、同旁内角互补、内错角相等解答即可.【解答】解:∵AB∥CD,∴∠1+∠BDC=180°,∵CD∥EF,∴∠3=∠BDC+∠2,∴∠BDC=∠3﹣∠2,∴∠1﹣∠2+∠3=180°,故选:C.【点评】本题考查的是平行线的性质,掌握平行线的性质定理是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)(2017春•南昌期中)若a+2是一个数的算术平方根,则a的取值范围是a≥﹣2.【分析】根据非负数a的算术平方根有双重非负性列不等式可得结论.【解答】解:由题意得:a+2≥0,∴a≥﹣2,故答案是:a≥﹣2.【点评】本题考查的是算术平方根,熟知算术平方根双重非负性是解答此题的关键.10.(3分)(2017春•南昌期中)在平面直角坐标系中,有点A(2,﹣1)、点B (2,3),点O为坐标原点,则△AOB的面积是4.【分析】求出AB的长,根据三角形面积公式即可求出△ABO的面积.【解答】解:如图所示:∵A(2,﹣1),B(2,3),∴AB=4,∴△ABO的面积=×4×2=4;故答案为:4.【点评】此题主要考查了坐标与图形性质、三角形面积求法,根据已知点的坐标求出AB的长是解决问题的关键.11.(3分)(2017春•南昌期中)如图,在一次军棋比赛中,若团长所在的位置坐标为(1,﹣4),工兵所在的位置坐标为(0,﹣1),则司令所在的位置坐标是(3,﹣1).【分析】根据工兵所在的位置坐标得出原点的位置,进而得出答案.【解答】解:根据题意可建立如图所示的平面直角坐标系:则司令所在的位置坐标是(3,﹣1),故答案为:(3,﹣1).【点评】此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.12.(3分)(2017春•南昌期中)若是整数,则满足条件的最小正整数n为7.【分析】把28分解因质因数,再根据二次根式的定义判断出n的最小值.【解答】解:∵28=4×7,4是平方数,∴若是整数,则n的最小值为7.故答案为:7.【点评】本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.13.(3分)(2012春•常州期末)如图,∠1=∠2,∠A=75°,则∠ADC=105°.【分析】由已知一对内错角相等,利用内错角相等两直线平行得到AB与DC平行,再利用两直线平行同旁内角互补,由∠A的度数即可求出∠ADC的度数.【解答】解:∵∠1=∠2,∴AB∥CD,∴∠A+∠ADC=180°,∵∠A=75°,∴∠ADC=105°.故答案为:105【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.14.(3分)(2017春•南昌期中)直线EO⊥CD于点O,直线AB平分∠EOD,则∠BOD的度数是45°或135°.【分析】首先根据直线EO⊥CD,可得∠EOD=90°;然后根据AB平分∠EOD,求出∠AOD的大小,进而求出∠BOD的大小即可.【解答】解:如图1,∵直线EO⊥CD,∴∠EOD=90°,∵AB平分∠EOD,∴∠AOD=90°÷2=45°,∴∠BOD=180°﹣45°=135°.如图2,∵直线EO⊥CD,∴∠EOD=90°,∵AB平分∠EOD,∴∠BOD=90°÷2=45°,综上所述:∠BOD的度数是45°或135°.故答案为:45°或135°.【点评】此题主要考查了垂线的性质和应用以及角平分线的性质,正确分类讨论是解题关键.三、解答题(本大题共4小题,每小题6分,共24分)15.(6分)(2017春•南昌期中)已知实数x、y满足关系式+|y2﹣9|=0.(1)求x、y的值;(2)判断是无理数还是无理数?并说明理由.【分析】(1)根据非负数的和等于零,可得方程组,根据解方程组,可得答案;(2)根据开平方,无理数是无限不循环小数,可得答案.【解答】解:(1)由题意,得解得或;(2)当x=2,y=3时,==3是有理数.当x=2,y=﹣3时,==是无理数.【点评】本题考查了非负数的性质,利用非负数的性质得出方程组是解题关键.16.(6分)(2017春•南昌期中)一个正数x的两个不同的平方根分别是2a﹣1和﹣a+2.(1)求a和x的值;(2)化简:2|a+|+|x﹣2|﹣|3a+x|【分析】(1)根据一个正数的两个平方根互为相反数可得关于a的方程,解出即可得到a的值,代入求得x的值.(2)根据(1)中求得的a的值去绝对值即可.【解答】解:(1)由题意,得(2a﹣1)+(﹣a+2)=0,解得a=﹣1.∴x=(2a﹣1)2=(﹣3)2=9;(2)原式=2|﹣1+|+|9﹣2|﹣3×(﹣1)+9|=2﹣2+9﹣2﹣6=1.【点评】本题考查平方根的知识,难度不大,关键是掌握一个正数的两个平方根互为相反数.17.(6分)(2017春•南昌期中)在平面直角坐标系中,有点(﹣2,a+3),B(b,b﹣3).(1)当点A在第二象限的角平分线上时,求a的值;(2)当点B到x轴的距离是它到y轴的距离2倍时,求点B所在的象限位置.【分析】(1)根据第二象限角平分线上的点的横坐标与纵坐标互为相反数列方程求解即可;(2)根据题意列出绝对值方程,求出b的值,再求出点B的坐标,然后根据各象限内点的坐标特征解答.【解答】解:(1)由题意,得a+3=2,解得a=﹣1;(2)由题意,得|b﹣3|=2|b|,解得b=﹣3或b=1,当b=﹣3时,点B(﹣3,﹣6)在第三象限,当b=1时,点B(1,﹣2)在第四象限.【点评】本题考查了点的坐标,主要利用了第二象限角平分线上点的坐标特征以及点到坐标轴的距离的表示.18.(6分)(2017春•南昌期中)如图,在正方形网格中的每个小正方形边长都为1个单位长度,我们把每个小正方形的顶点称为格点,请分别仅用一把无刻度的直尺画图:(1)过点A画一条AB的垂线;(2)过点C画一条AB的平行线.【分析】(1)根据垂线的定义作出图形即可;(2)根据平行线的定义作出平行线即可.【解答】解:(1)如图所示,直线AD即为所求;(2)如图所示,直线CE即为所求.【点评】本题考查了作图﹣应用与设计作图,垂线的定义,平行线的定义,正确的作出图形是解题的关键.四、解答题(本大题共4小题,每小题8分,共24分)19.(8分)(2017春•南昌期中)如图,已知DE∥BC,BE平分∠ABC,∠C=65°,∠ABC=50°.(1)求∠BED的度数;(2)判断BE与AC的位置关系,并说明理由.【分析】(1)根据BE平分∠ABC,且∠ABC=50°,可得∠EBC=∠ABC=25°.再根据DE∥BC,即可得出∠BED=∠EBC=25°.(2)根据DE∥BC,且∠C=65°,即可得到∠AED=∠C=65°,再根据∠BED=25°,可得∠AEB=∠AED+∠BED=65°+25°=90°,据此可得BE⊥AC.【解答】解:(1)∵BE平分∠ABC,且∠ABC=50°,∴∠EBC=∠ABC=25°.∵DE∥BC,∴∠BED=∠EBC=25°.(2)BE⊥AC,其理由是:∵DE∥BC,且∠C=65°,∴∠AED=∠C=65°.∵∠BED=25°,∴∠AEB=∠AED+∠BED=65°+25°=90°,∴BE⊥AC.【点评】本题主要考查了平行线的性质,角平分线的定义以及垂线的定义的运用,解题时注意:两直线平行,内错角相等.20.(8分)(2017春•南昌期中)如图,若用A(2,1)表示放置2个胡萝卜,1棵小白菜;点B(4,2)表示放置4个胡萝卜,2棵小白菜:(1)请你写出C、E所表示的意义.(2)若一只兔子从A顺着方格线向上或向右移动到达B,试问有几条路径可供选择,其中走哪条路径吃到的胡萝卜最多?走哪条路径吃到的小白菜最多?请你通过计算的方式说明.【分析】(1)从题干可知,数对中的两个数,前一个表示放置胡萝卜的数量,后一个数表示放置白菜的数量,据此即可写出C、E所表示的意义;(2)观察图形即可得出路径的条数;先求出走每条路径所吃到的胡萝卜与白菜的数量,再比较即可.【解答】解:(1)点D表示放置2个胡萝卜,2棵小白菜,点E表示放置3个胡萝卜,1棵小白菜,(2)从A到达B,共有3条路径可供选择,其中路径①A吃到11个胡萝卜,7棵小白菜,路径A吃到12个胡萝卜,6棵小白菜,路径③A吃到13个胡萝卜,5棵小白菜,∴走路径③A吃到胡萝卜最多,走路径①A吃到小白菜最多.【点评】本题考查了坐标与图形变换﹣平移,由已知条件正确确定数对所表示的实际意义是解决本题的关键.21.(8分)(2017春•南昌期中)在△ABC中,AD平分∠BAC交BC于点D.(1)在图1中,将△ABD沿BC的方向平移,使点D移至点C的位置,得到△A′B′D′,且A′B′交AC于点E,猜想∠B′EC与∠A′之间的关系,并说明理由;(2)在图2中,将△ABD沿AC的方向平移,使A′B′经过点D,得到△A′B′D′,求证:A′D′平分∠B′A′C.【分析】(1)根据平移的性质得到A′B′∥AB,∠A′=∠BAD,从而得到∠B′EC=∠BAC,然后根据AD平分∠BAC得到∠BAC=2∠BAD,从而得到∠B′EC=2∠A′;(2)根据平移的性质得到A′B′∥AB,∠B′A′D′=∠BAD,进一步得到∠B′A′C=∠BAC,然后根据AD平分∠BAC得到∠BAC=2∠BAD,从而得到∠B′A′C═2∠B′A′D′.【解答】证:(1)∠B′EC=2∠A′,其理由是:∵△A′B′D′是由△ABD平移而来,∴A′B′∥AB,∠A′=∠BAD.∴∠B′EC=∠BAC.∵AD平分∠BAC,∴∠BAC=2∠BAD.∴∠B′EC=2∠A′.(2)∵△A′B′D′是由△ABD平移而来,∴A′B′∥AB,∠B′A′D′=∠BAD.∴∠B′A′C=∠BAC.∵AD平分∠BAC,∴∠BAC=2∠BAD.∴∠B′A′C═2∠B′A′D′.∴A′D′平分∠B′A′C.【点评】考查了平移的性质,解题的关键是了解平移前后对应点的连线平行且相等,难度不大.22.(10分)(2017春•南昌期中)已知射线AB∥射线CD,P为一动点,AE平分∠PAB,CE平分∠PCD,且AE与CE相交于点E.(1)在图1中,当点P运动到线段AC上时,∠APC=180°.①直接写出∠AEC的度数;②求证:∠AEC=∠EAB+∠ECD;(2)当点P运动到图2的位置时,猜想∠AEC与∠APC之间的关系,并加以说明;(3)当点P运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由;若不成立,请写出∠AEC与∠APC之间的关系,并加以证明.【分析】(1)①由平行线的性质可得出∠PAB+∠PCD=180°,进而可得出∠AEC的度数;②在图1中,过E作EF∥AB,根据平行线的性质可得出∠AEF=∠EAB、∠CEF=∠ECD,进而即可证出∠AEC=∠AEF+∠CEF=∠EAB+∠ECD;(2)猜想:∠AEC=∠APC,由角平分线的定义可得出∠EAB=∠PAB、∠ECD=∠PCD,由(1)可知∠AEC=∠EAB+∠ECD、∠APC=∠PAB+∠PCD,进而即可得出∠AEC=(∠PAB+∠PCD)=∠APC;(3)在图3中,(2)中的结论不成立,而是满足∠AEC=180°﹣∠APC,过P作PQ∥AB,由平行线的性质可得出∠PAB+∠APQ=180°、∠CPQ+∠PCD=180°,进而可得出∠PAB+∠PCD=360°﹣∠APC,再由角平分线的定义可得出∠EAB=∠PAB、∠ECD=∠PCD,结合(1)的结论即可证出∠AEC=180°﹣∠APC.【解答】解:(1)①∵AB∥CD,∴∠PAB+∠PCD=180°,∴∠AEC=90°;②证明:在图1中,过E作EF∥AB,则∠AEF=∠EAB.∵AB∥CD,∴EF∥CD,∴∠CEF=∠ECD.∴∠AEC=∠AEF+∠CEF=∠EAB+∠ECD.(2)猜想:∠AEC=∠APC,理由如下:∵AE、CE分别平分∠PAB和∠PCD,∴∠EAB=∠PAB,∠ECD=∠PCD.由(1)知∠AEC=∠EAB+∠ECD,∠APC=∠PAB+∠PCD,∴∠AEC=∠PAB+∠PCD=(∠PAB+∠PCD)=∠APC.(3)在图3中,(2)中的结论不成立,而是满足∠AEC=180°﹣∠APC,其证明过程是:过P作PQ∥AB,则∠PAB+∠APQ=180°.∵AB∥CD,∴PQ∥CD,∴∠CPQ+∠PCD=180°.∴∠PAB+∠APQ+∠CPQ+∠PCD=360°,即∠PAB+∠PCD=360°﹣∠APC.∵AE、CE分别平分∠PAB和∠PCD,∴∠EAB=∠PAB,∠ECD=∠PCD.由(1)知∠AEC=∠EAB+∠ECD,∴∠AEC=∠PAB+∠PCD=(∠PAB+∠PCD)=(360°﹣∠APC)=180°﹣∠APC.【点评】本题考查了平行线的判定与性质以及角平分线的定义,解题的关键是:(1)①根据平行线的性质找出∠PAB+∠PCD=180°;②根据“两直线平行,内错角相等”找出∠AEF=∠EAB、∠CEF=∠ECD;(2)根据角平分线的定义结合(1)结论找出∠AEC=∠APC;(3)根据角平分线的定义结合(1)结论找出∠AEC=180°﹣∠APC.。

2015-2016学年江西省上饶市余干县七年级(上)期中数学试卷

2015-2016学年江西省上饶市余干县七年级(上)期中数学试卷

2015-2016学年江西省上饶市余干县七年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)“甲比乙大﹣8岁”表示的意义是()A.甲比乙小8岁B.甲比乙大8岁C.乙比甲大﹣8岁D.乙比甲小8岁2.(3分)小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判断墨迹盖住部分的整数共有()A.8个 B.9个 C.10个D.11个3.(3分)a为有理数,则﹣|a|表示()A.正数B.负数C.正数或0 D.负数或04.(3分)下列说法正确的是()A.单项式y的次数是0,系数也是0B.单项式的系数是﹣5,次数是3C.﹣5是一次单项式D.单项式2πx2y的系数是2π,次数是35.(3分)下列各对算式结果相等的是()A.23和32B.﹣42和(﹣4)2C.﹣(﹣2)3和﹣|﹣2|3D.(﹣1)2012和﹣(﹣1)20136.(3分)下列说法中正确的是()A.7+是多项式B.3x4﹣5x2y3﹣6y3﹣2是四次四项式C.不是单项式D.是整式7.(3分)下列运算中正确的是()A.4+5ab=9ab B.6xy﹣xy=6C.=0 D.3x2+4x3=7x58.(3分)近似数2.7×103是精确到()A.十分位B.个位C.百位D.千位9.(3分)a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.﹣a<﹣b<a<b C.﹣b<a<﹣a<b D.﹣b<b<﹣a<a 10.(3分)如果2x3n y m+4与﹣3x9y2n是同类项,那么m、n的值分别为()A.m=﹣2,n=3 B.m=2,n=3 C.m=﹣3,n=2 D.m=3,n=2二、填空题(共8小题,每小题3分,满分24分)11.(3分)用含字母的式子表示“a与b的平方的差的一半”是.12.(3分)在数轴上,与表示﹣1的点距离为3的点所表示的数是.13.(3分)﹣1.8的倒数是.14.(3分)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿km,用科学记数法表示1个天文单位是km.15.(3分)已知|x﹣1|+(y+2)2=0,则(x+y)2013=.16.(3分)如图是今年10月份的月历,用正方形圈出9个数,设最中间一个是x,则用x表示这9个数的和是.17.(3分)一个多项式A减去多项式2x2+5x﹣3,马虎同学将减号抄成了加号,计算结果是﹣x2+3x﹣7,那么这个多项式A减去多项式2x2+5x﹣3,正确的计算结果应该是.18.(3分)给出下列算式:32﹣12=8=8×1,52﹣32=16=8×2,72﹣52=24=8×3,92﹣72=32=8×4,…观察上面一系列等式,你能发现什么规律?设n(n≥1)表示自然数,用关于n的等式表示这个规律为:.三、解答题(共7小题,满分66分)19.(8分)计算:(1)﹣26﹣(﹣15)(2)(﹣0.25)2012×(﹣4)2013.20.(12分)计算:(1)(2).21.(6分)若|a|=4,b是绝对值最小的数,c是最大的负整数,求a+b﹣c的值.22.(8分)求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.23.(10分)某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数)星期一二三四五增减﹣50﹣72+35+42+10(1)本周三生产了摩托车辆;(2)本周总生产量与计划生产量相比,是增加还是减少?(3)产量最多的一天比产量最少的一天多生产了多少辆?24.(10分)观察下面三行数1,﹣2,4,﹣8,16,﹣32 …①0,﹣6,6,﹣18,30,﹣66 …②2,﹣4,8,﹣16,32,﹣64 …③(1)第③行的数按什么规律排列?(2)第①、②行的数与第③行的数分别有什么关系?(3)取每行数的第8个数,计算它们的和.25.(12分)因国际市场油价上涨,我市将出租车的收费标准重新调整为:不超过2千米的部分,收起步价5元,燃油费1元;2千米到5千米的部分,每千米收1.5元;超过5千米的部分,每千米收2.5元.若某人乘坐了x(x>5)千米的路程,请写出他应该支付的费用,当他乘坐了8千米时,应付费多少元?2015-2016学年江西省上饶市余干县七年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)“甲比乙大﹣8岁”表示的意义是()A.甲比乙小8岁B.甲比乙大8岁C.乙比甲大﹣8岁D.乙比甲小8岁【分析】根据大于小是一对具有相反意义的量即可作出判断.【解答】解:“甲比乙大﹣8岁”表示的意义是:甲比乙小8岁.故选:A.【点评】本题考查了正数与负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示2.(3分)小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判断墨迹盖住部分的整数共有()A.8个 B.9个 C.10个D.11个【分析】结合数轴,知墨迹盖住的范围有两部分,即大于﹣3而小于3,大于4而小于9,写出其中的整数即可.【解答】解:结合数轴,得墨迹盖住的整数共有﹣2,﹣1,0,1,2,5,6,7,8,共9个.故选:B.【点评】考查了数轴,理解整数的概念,能够首先结合数轴得到被覆盖的范围,进一步根据整数这一条件求解.3.(3分)a为有理数,则﹣|a|表示()A.正数B.负数C.正数或0 D.负数或0【分析】由于a的符号不能确定,故应分a>0,a=0,a<0三种情况进行讨论.【解答】解:当a>0时,|a|=a,﹣|a|为负数;当a=0时,|a|=0,﹣|a|=0;当a<0时,|a|=﹣a,﹣|a|=a为负数.故选:D.【点评】本题考查的是非负数的性质,在解答此题时要注意分类讨论.4.(3分)下列说法正确的是()A.单项式y的次数是0,系数也是0B.单项式的系数是﹣5,次数是3C.﹣5是一次单项式D.单项式2πx2y的系数是2π,次数是3【分析】根据单项式系数和次数的概念解答即可,单项式中的数字因数是单项式的系数,单项式中所有字母的指数和叫单项式的次数.【解答】解:A、单项式y的次数是1,系数也是1;故A错误.B、单项式=,所以其系数是﹣,次数是3;故B错误.C、﹣5的系数是﹣5,次数是0,所以﹣5是0次单项式;故C错误.D、单项式2πx2y的系数是2π,次数是3;故D正确.故选:D.【点评】本题考查单项式系数和次数的概念,将单项式中的数字因数与字母准确分离是解题的关键,注意π是数字,而不是字母.5.(3分)下列各对算式结果相等的是()A.23和32B.﹣42和(﹣4)2C.﹣(﹣2)3和﹣|﹣2|3D.(﹣1)2012和﹣(﹣1)2013【分析】根据有理数的乘方对各选项进行计算,然后利用排除法求解.【解答】解:A、23=8,32=9,8≠9,故本选项错误;B、﹣42=﹣16,(﹣4)2=16,﹣16≠16,故本选项错误;C、﹣(﹣2)3=﹣(﹣8)=8,﹣|﹣2|3=﹣8,8≠﹣8故本选项错误;D、(﹣1)2012=1,﹣(﹣1)2013=﹣(﹣1)=1,1=1,故本选项正确.故选:D.【点评】本题主要考查了有理数的乘方,绝对值的性质,相反数的定义,要注意准确区分﹣42和(﹣4)2.6.(3分)下列说法中正确的是()A.7+是多项式B.3x4﹣5x2y3﹣6y3﹣2是四次四项式C.不是单项式D.是整式【分析】注意单项式的系数为其数字因数,次数是所有字母的次数的和;多项式的次数是多项式中最高次项的次数,项数为所含单项式的个数.【解答】解:A、7+是分式,故选项错误;B、3x4﹣5x2y3﹣6y3﹣2是五次四项式,故选项错误;C、是多项式,不是单项式,故选项正确;D、是分式,不是整式,故选项错误.故选:C.【点评】本题考查了整式、单项式、多项式的系数和次数的定义.7.(3分)下列运算中正确的是()A.4+5ab=9ab B.6xy﹣xy=6C.=0 D.3x2+4x3=7x5【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,结合选项进行判断即可.【解答】解:A、4与5ab不是同类项,不能直接合并,故本选项错误;B、6xy﹣xy=5xy,原式计算错误,故本选项错误;C、计算正确,故本选项正确;D、3x2与4x3不是同类项,不能直接合并,故本选项错误;故选:C.【点评】本题考查了合并同类项的法则,属于基础题,解答本题的关键是掌握合并同类项的法则.8.(3分)近似数2.7×103是精确到()A.十分位B.个位C.百位D.千位【分析】由于2.7×103=2700,而7在百位上,则近似数2.7×103精确到百位.【解答】解:∵2.7×103=2700,∴近似数2.7×103精确到百位.故选:C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起,到这个数完为止,所有这些数字叫这个数的有效数字.9.(3分)a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.﹣a<﹣b<a<b C.﹣b<a<﹣a<b D.﹣b<b<﹣a<a 【分析】利用有理数大小的比较方法可得﹣a<b,﹣b<a,b>0>a进而求解.【解答】解:观察数轴可知:b>0>a,且b的绝对值大于a的绝对值.在b和﹣a两个正数中,﹣a<b;在a和﹣b两个负数中,绝对值大的反而小,则﹣b<a.因此,﹣b<a<﹣a<b.故选:C.【点评】有理数大小的比较方法:正数大于0;负数小于0;正数大于一切负数;两个负数,绝对值大的反而小.10.(3分)如果2x3n y m+4与﹣3x9y2n是同类项,那么m、n的值分别为()A.m=﹣2,n=3 B.m=2,n=3 C.m=﹣3,n=2 D.m=3,n=2【分析】要使两个单项式同类项必须使其所含的字母相同且字母的指数也相同,观察可看出其所含的字母相同,则只要使其相同字母的指数相同.可得3n=9,m+4=2n,解方程即可求得.【解答】解:∵2x3n y m+4与﹣3x9y2n是同类项,∴3n=9,m+4=2n,∴n=3,m=2,故选:B.【点评】要使两个单项式成为同类项,只要使其满足同类项定义中的两个“相同”即可.二、填空题(共8小题,每小题3分,满分24分)11.(3分)用含字母的式子表示“a与b的平方的差的一半”是(a﹣b2).【分析】被减数为:a,减数为:b平方,然后求其一半即可.【解答】解:a与b的平方的差为a﹣b2,a与b的平方的差的一半为(a﹣b2),故答案为:(a﹣b2).【点评】考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“平方”、“一半”、“差”等,从而明确其中的运算关系,正确地列出代数式.12.(3分)在数轴上,与表示﹣1的点距离为3的点所表示的数是2或﹣4.【分析】此类题注意两种情况:要求的点可以在已知点的左侧或右侧.【解答】解:若点在﹣1的左面,则点为﹣4;若点在﹣1的右面,则点为2.故答案为:2或﹣4.【点评】注意:要求的点在已知点的左侧时,用减法;要求的点在已知点的右侧时,用加法.13.(3分)﹣1.8的倒数是.【分析】首先将﹣1.8化为分数形式,再利用倒数的性质可求出.【解答】解:∵﹣1.8=﹣,∴﹣的倒数为:﹣,故答案为:﹣.【点评】此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.14.(3分)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿km,用科学记数法表示1个天文单位是1.4960×108km.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1.4960亿有9位,所以可以确定n=9﹣1=8.【解答】解:1.4960亿=1.4960×108.故答案为:1.4960×108.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15.(3分)已知|x﹣1|+(y+2)2=0,则(x+y)2013=﹣1.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则(x+y)2013=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.(3分)如图是今年10月份的月历,用正方形圈出9个数,设最中间一个是x,则用x表示这9个数的和是9x.【分析】设最中间一个是x,另外8个可表示为:x﹣7,x+7,x﹣1,x+1,x﹣8,x+6,x﹣6,x+8,进一步求得答案即可.【解答】解:这9个数的和可表示为:x﹣7+x+7+x﹣1+x+1+x﹣8+x+6+x﹣6+x+8+x=9x.故答案为9x.【点评】此题考查列代数式,注意月历中日期和日期的关系,设出一个日期后将其他日期表示出来然后求解.17.(3分)一个多项式A减去多项式2x2+5x﹣3,马虎同学将减号抄成了加号,计算结果是﹣x2+3x﹣7,那么这个多项式A减去多项式2x2+5x﹣3,正确的计算结果应该是﹣5x2﹣7x﹣1.【分析】由题意和减去一个加数等于另一个加数求出多项式A,用A减去2x2+5x ﹣3,去括号合并即可得到结果.【解答】解:由题意列得:(﹣x2+3x﹣7)﹣(2x2+5x﹣3)=﹣x2+3x﹣7﹣2x2﹣5x+3=﹣3x2﹣2x﹣4,则这个多项式减去2x2+5x﹣3列得:(﹣3x2﹣2x﹣4)﹣(2x2+5x﹣3)=﹣3x2﹣2x ﹣4﹣2x2﹣5x+3=﹣5x2﹣7x﹣1.故答案为:﹣5x2﹣7x﹣1【点评】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.18.(3分)给出下列算式:32﹣12=8=8×1,52﹣32=16=8×2,72﹣52=24=8×3,92﹣72=32=8×4,…观察上面一系列等式,你能发现什么规律?设n(n≥1)表示自然数,用关于n 的等式表示这个规律为:(2n+1)2﹣(2n﹣1)2=8n.【分析】由题意得,两个连续奇数的平方差等于8n倍,奇数用2n+1表示,即可写出规律.【解答】解:两个连续奇数可表示为2n+1,2n﹣1,则(2n+1)2﹣(2n﹣1)2=8n,故答案为(2n+1)2﹣(2n﹣1)2=8n.【点评】本题考查了数字的变化规律,奇数的表示方法为2n+1.三、解答题(共7小题,满分66分)19.(8分)计算:(1)﹣26﹣(﹣15)(2)(﹣0.25)2012×(﹣4)2013.【分析】(1)利用有理数的加减运算法则直接去括号求出即可;(2)根据积的乘方的逆运算,即a m•b m=(ab)m,进行计算即可.【解答】解:(1)﹣26﹣(﹣15)=﹣26+15=﹣11;(2)(﹣0.25)2012×(﹣4)2013=(﹣0.25)2012×(﹣4)2012×(﹣4)=[(﹣0.25)×(﹣4)]2012×(﹣4)=﹣4.【点评】此题考查了有理数的加减法和积的乘方、同底数幂的乘法的性质,熟练掌握性质是解题的关键.20.(12分)计算:(1)(2).【分析】(1)先去掉括号,再按加法的运算法则分别进行计算即可;(2)先算小括号里面的,再算中括号,最后进行相加即可.【解答】解:(1)=﹣4+5﹣4﹣3=﹣4﹣3+5﹣4=﹣8+5﹣4=﹣6;(2)=﹣1﹣×[2﹣9]=﹣1﹣×(﹣7)=﹣1+=.【点评】此题考查了有理数的混合运算,掌握混合运算的顺序和法则是解题的关键,注意结果的符号,是一道基础题.21.(6分)若|a|=4,b是绝对值最小的数,c是最大的负整数,求a+b﹣c的值.【分析】根据绝对值的性质求出a、b,然后求出c的值,最后代入代数式进行计算即可得解.【解答】解:由|a|=4,得a=4或a=﹣4,∵b是绝对值最小的数,∴b=0,又∵c是最大的负整数,∴c=﹣1,∴a+b﹣c=4+0﹣(﹣1)=4+1=5,或a+b﹣c=﹣4+0﹣(﹣1)=﹣4+1=﹣3,即a+b﹣c的值为﹣3或5.【点评】本题考查了代数式求值,绝对值的性质,是基础题,准确确定出a、b、c的值是解题的关键.22.(8分)求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.【分析】先根据整式的加减运算法则把原式化简,再把x=2,y=代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:x﹣2(x﹣y2)+(﹣x+y2),=x﹣2x+y2﹣x+y2,=﹣3x+y2,当x=﹣2,时,原式=﹣3×(﹣2)+()2=6+=6.【点评】先把原式化简再求值以简化计算,注意去括号时符号的变化.23.(10分)某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数)星期一二三四五增减﹣50﹣72+35+42+10(1)本周三生产了摩托车335辆;(2)本周总生产量与计划生产量相比,是增加还是减少?(3)产量最多的一天比产量最少的一天多生产了多少辆?【分析】(1)由表格以及计划每日生产的辆数即可得到周三的产量;(2)根据表格求出所有数据之和,即可做出判断;(3)求出每天的产量,即可得到产量最多的一天比产量最少的一天多生产的辆数.【解答】解:(1)根据题意得:300+35=335(辆),则本周三生产了摩托车335辆;故答案为:335;(2)根据题意得:﹣50﹣72+35+42+10=﹣35(辆),则本周总生产量与计划生产量相比减少了35辆;(3)根据题意得:42﹣(﹣72)=42+72=114(辆),则产量最多的一天比产量最少的一天多生产114辆.【点评】此题考查了有理数的加减混合运算,以及正数与负数,弄清题意是解本题的关键.24.(10分)观察下面三行数1,﹣2,4,﹣8,16,﹣32 …①0,﹣6,6,﹣18,30,﹣66 …②2,﹣4,8,﹣16,32,﹣64 …③(1)第③行的数按什么规律排列?(2)第①、②行的数与第③行的数分别有什么关系?(3)取每行数的第8个数,计算它们的和.【分析】(1)第③行的数可以写成21,﹣22,23,﹣24,25,﹣26…,其通项为:(﹣1)n+1×2n;(2)观察三行数发现:第①行的数等于第③行的数的一半;第②行的数等于第③行的数分别减去2;(3)根据(2)得出的规律得:第①行数的第8个数为﹣27,第②行数的第8个数为﹣28﹣2,第③行数的第8个数为﹣28,相加计算即可得到结果.【解答】解:(1)21,﹣22,23,﹣24,25,﹣26…(或(﹣1)n+1×2n);(2)第①行的数等于第③行的数的一半;第②行的数等于第③行的数分别减去2;(3)﹣27+(﹣28﹣2)+(﹣28)=﹣128﹣258﹣256=﹣642.【点评】此题考查了规律型:数字的变化类,其中分别找出三行数的规律是解本题的关键.25.(12分)因国际市场油价上涨,我市将出租车的收费标准重新调整为:不超过2千米的部分,收起步价5元,燃油费1元;2千米到5千米的部分,每千米收1.5元;超过5千米的部分,每千米收2.5元.若某人乘坐了x(x>5)千米的路程,请写出他应该支付的费用,当他乘坐了8千米时,应付费多少元?【分析】某人乘坐了x(x>5)千米的路程的收费为W元,则W=不超过2km的费用+2km至5km的费用+超过5前面的费用就可以求出x与W的解析式,再将x=8代入解析式就可以求出结论.【解答】解:设他应该支付的费用为W元,由题意得:W=5+1+1.5×(5﹣2)+2.5×(x﹣5),=6+4.5+2.5x﹣12.5,=2.5x﹣2.当x=8时,W=2.5x﹣2=2.5×8﹣2=18答:当他乘坐了8千米时,应付费18元.【点评】本题考查了列一次函数解实际问题的运用及根据自变量的值求函数值的运用,解答时表示出应付费用w的解析式是关键.。

2016-2017年江西省七年级(下)第一次大联考数学试卷(解析版)

2016-2017年江西省七年级(下)第一次大联考数学试卷(解析版)

2016-2017学年江西省七年级(下)第一次大联考数学试卷一、选择题(每小题3分,共6题,共18分)1.(3分)如图所示,∠1和∠2是对顶角的是()A.B.C.D.2.(3分)如图,点C到直线AB的距离是指()A.线段AC的长度B.线段CD的长度C.线段BC的长度D.线段BD的长度3.(3分)如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°4.(3分)如图,四边形ABCD中,点E在AB延长线上,则下列条件中不能判断AB∥CD 的是()A.∠3=∠4B.∠1=∠2C.∠5=∠C D.∠1+∠3+∠A=180°5.(3分)下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③内错角相等,则它们的角平分线互相垂直;④同旁内角互补,则它们的角平分线互相垂直,其中正确的个数为()A.4B.3C.2D.16.(3分)下列语句写成数学式子正确的是()A.9是81的算术平方根:B.5是(﹣5)2的算术平方根:C.±6是36的平方根:D.﹣2是4的负的平方根:二、填空题(每小题3分,共6题,共18分)7.(3分)的平方根是.8.(3分)命题“同位角相等,两直线平行”中,条件是,结论是9.(3分)如图直线AB分别交直线EF,CD于点M,N,只需添一个条件,就可得到EF∥CD.10.(3分)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是.11.(3分)如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.12.(3分)已知一个正数的平方根是3x﹣2和5x+6,则这个数是.三、(每小题6分,共5题,共30分)13.(6分)已知2a﹣1的平方根是±,3a﹣2b﹣1的平方根是±3.求:5a﹣3b的平方根.14.(6分)如图,直线AB、CD相交于点OF⊥CD,∠AOF与∠BOD的度数之比为3:2,求∠AOC的度数.15.(6分)如图,已知在△ABC中,AD平分∠EAC且AD∥BC,那么∠B=∠C吗?请说明理由.16.(6分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.17.(6分)如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°.求∠BCA的度数.四、(每小题8分,共4题,共32分)18.(8分)根据下列证明过程填空:已知:如图,AD⊥BC于点D,EF⊥BC于点F,交AB于点G,交CA的延长线于点E,∠1=∠2.求证:AD平分∠BAC,填写证明中的空白.证明:∵AD⊥BC,EF⊥BC(已知),∴EF∥AD(),∴=(两直线平行,内错角相等),=∠CAD().∵(已知),∴,即AD平分∠BAC().19.(8分)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.20.(8分)探索与应用.先填写下表,通过观察后再回答问题:(1)表格中x=;y=;(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:①已知≈3.16,则≈;②已知=1.8,若=180,则a=.21.(8分)如图,已知∠1=∠BDC,∠2+∠3=180°.(1)请你判断AD与EC的位置关系,并说明理由;(2)若DA平分∠BDC,CE⊥AE于E,∠1=70°,试求∠F AB的度数.五、(本大题共10分)22.(10分)阅读理解∵<<,即2<<3.∴的整数部分为2,小数部分为﹣2∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2解决问题:已知:a是﹣3的整数部分,b是﹣3的小数部分,求:(1)a,b的值;(2)(﹣a)3+(b+4)2的平方根.六、(本大题共12分)23.(12分)如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=70°.(1)求∠EDC的度数;(2)若∠ABC=n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.2016-2017学年江西省七年级(下)第一次大联考数学试卷参考答案与试题解析一、选择题(每小题3分,共6题,共18分)1.(3分)如图所示,∠1和∠2是对顶角的是()A.B.C.D.【解答】解:A:∠1和∠2不是对顶角,B:∠1和∠2不是对顶角,C:∠1和∠2是对顶角,D:∠1和∠2不是对顶角.故选:C.2.(3分)如图,点C到直线AB的距离是指()A.线段AC的长度B.线段CD的长度C.线段BC的长度D.线段BD的长度【解答】解:根据题意,点C到直线AB的距离即点C到AB的垂线段的长度,已知CD⊥AB,则点C到直线AB的距离就是线段CD的长度.故选:B.3.(3分)如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°【解答】解:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选:B.4.(3分)如图,四边形ABCD中,点E在AB延长线上,则下列条件中不能判断AB∥CD 的是()A.∠3=∠4B.∠1=∠2C.∠5=∠C D.∠1+∠3+∠A=180°【解答】解:A、∵∠3=∠4,∴AD∥BC,故本选项正确;B、∵∠1=∠2,∴AB∥CD,故本选项错误;C、∵∠5=∠C,∴AB∥CD,故本选项错误;D、∵∠1+∠3+∠A=180°,∴AB∥CD,故本选项错误.故选:A.5.(3分)下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③内错角相等,则它们的角平分线互相垂直;④同旁内角互补,则它们的角平分线互相垂直,其中正确的个数为()A.4B.3C.2D.1【解答】解:①、两条直线相交,同角的补角一定相等,这两条直线不一定垂直,错误;②、两条直线相交,一角与其邻补角互补且相等,则这两条直线垂直;正确.③、内错角相等,则它们的角平分线互相平行,错误.④、同旁内角互补,则它们的角平分线互相垂直,正确;故选:C.6.(3分)下列语句写成数学式子正确的是()A.9是81的算术平方根:B.5是(﹣5)2的算术平方根:C.±6是36的平方根:D.﹣2是4的负的平方根:【解答】解:A、9是81的算术平方根,即=9,错误;B、5是(﹣5)2的算术平方根,即=5,正确;C、±6是36的平方根,即±=±6,错误;D、﹣2是4的负平方根,即﹣=﹣2,错误,故选:B.二、填空题(每小题3分,共6题,共18分)7.(3分)的平方根是±2.【解答】解:的平方根是±2.故答案为:±28.(3分)命题“同位角相等,两直线平行”中,条件是同位角相等,结论是两直线平行【解答】解:命题中,已知的事项是“同位角相等”,由已知事项推出的事项是“两直线平行”,所以“同位角相等”是命题的题设部分,“两直线平行”是命题的结论部分.故空中填:同位角相等;两直线平行.9.(3分)如图直线AB分别交直线EF,CD于点M,N,只需添一个条件∠AME=∠ANC,就可得到EF∥CD.【解答】解:∵∠AME=∠ANC,∴EF∥CD(同位角相等,两直线平行).10.(3分)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是25°.【解答】解:∵直尺的对边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣∠3=45°﹣20°=25°.故答案为:25°.11.(3分)如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为10.【解答】解:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故答案为:10.12.(3分)已知一个正数的平方根是3x﹣2和5x+6,则这个数是.【解答】解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.三、(每小题6分,共5题,共30分)13.(6分)已知2a﹣1的平方根是±,3a﹣2b﹣1的平方根是±3.求:5a﹣3b的平方根.【解答】解:∵2a﹣1的平方根是±,3a﹣2b﹣1的平方根是±3.∴2a﹣1=3,3a﹣2b﹣1=9,∴a=2,b=﹣2,∴5a﹣3b=10+6=16,∴16的平方根是±4,∴5a﹣3b的平方根是±4.14.(6分)如图,直线AB、CD相交于点OF⊥CD,∠AOF与∠BOD的度数之比为3:2,求∠AOC的度数.【解答】解:∵OF⊥CD,∴∠COF=90°,∴∠AOC+∠AOF=90°,∵∠AOF与∠BOD的度数之比为3:2,∴∠AOF与∠AOC的度数之比为3:2,设∠AOF=3x,∠AOC=2x,则3x+2x=90°,解得x=18°,∴∠AOC=2x=36°.15.(6分)如图,已知在△ABC中,AD平分∠EAC且AD∥BC,那么∠B=∠C吗?请说明理由.【解答】解:∠B=∠C.理由如下:∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C.∵AD平分∠EAC,∴∠EAD=∠DAC.∴∠B=∠C.16.(6分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.【解答】证明:∵AE平分∠BAD,∴∠1=∠2,∵AB∥CD,∠CFE=∠E,∴∠1=∠CFE=∠E,∴∠2=∠E,∴AD∥BC.17.(6分)如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°.求∠BCA的度数.【解答】解:∵CD⊥AB,FE⊥AB,∴CD∥EF,∴∠2=∠FCD,∵∠1=∠2,∴∠1=∠FCD,∴DG∥BC,∴∠BCA=∠3=80°.四、(每小题8分,共4题,共32分)18.(8分)根据下列证明过程填空:已知:如图,AD⊥BC于点D,EF⊥BC于点F,交AB于点G,交CA的延长线于点E,∠1=∠2.求证:AD平分∠BAC,填写证明中的空白.证明:∵AD⊥BC,EF⊥BC(已知),∴EF∥AD(平面内,垂直于同一条直线的两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),∠E=∠CAD(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠BAD=∠CAD,即AD平分∠BAC(角平分线定义).【解答】证明:∵AD⊥BC,EF⊥BC,∴∠ADC=∠EFC=90°,∴AD∥EF,(平面内,垂直于同一条直线的两直线平行)∴∠AGE=∠DAB,∠E=∠DAC,∵AE=AG,∴∠E=∠AGE,∴∠DAB=∠DAC,即AD平分∠BAC.故答案为:平面内,垂直于同一条直线的两直线平行,∠1,∠BAD,∠2,两直线平行,同位角相等,∠1=∠2,∠BAD=∠CAD,角平分线定义.19.(8分)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.【解答】(1)证明:∵∠ABC=180°﹣∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)解:∵AD∥BC,∠1=36°,∴∠3=∠1=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠2=∠3=36°.20.(8分)探索与应用.先填写下表,通过观察后再回答问题:(1)表格中x=0.1;y=10;(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:①已知≈3.16,则≈31.6;②已知=1.8,若=180,则a=32400.【解答】解:(1)x=0.1,y=10;(2)①31.6,②a=32400,故答案为:0.1,10,31.6,32400.21.(8分)如图,已知∠1=∠BDC,∠2+∠3=180°.(1)请你判断AD与EC的位置关系,并说明理由;(2)若DA平分∠BDC,CE⊥AE于E,∠1=70°,试求∠F AB的度数.【解答】(1)解:AD∥EC,理由是:∵∠1=∠BDC,∴AB∥CD,∴∠2=∠ADC,又∵∠2+∠3=180°,∴∠ADC+∠3=180°,∴AD∥EC.(2)解:∵DA平分∠BDC,∴∠ADC=,∴∠2=∠ADC=35°,∵CE⊥AE,AD∥EC,∴∠F AD=∠AEC=90°,∴∠F AB=∠F AD﹣∠2=90°﹣35°=55°.五、(本大题共10分)22.(10分)阅读理解∵<<,即2<<3.∴的整数部分为2,小数部分为﹣2∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2解决问题:已知:a是﹣3的整数部分,b是﹣3的小数部分,求:(1)a,b的值;(2)(﹣a)3+(b+4)2的平方根.【解答】解:(1)∵<<,∴4<<5,∴1<﹣3<2,∴a=1,b=﹣4,(2)(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17=16,故(﹣a)3+(b+4)2的平方根是:±4.六、(本大题共12分)23.(12分)如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=70°.(1)求∠EDC的度数;(2)若∠ABC=n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.【解答】解:(1)∵DE平分∠ADC,∠ADC=70°,∴∠EDC=∠ADC=×70°=35°;(2)过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=n°+35°;(3)∠BED的度数改变.过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°﹣∠ABE=180°﹣n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°﹣n°+35°=215°﹣n°.。

七年级数学下学期期中模拟试卷(一)(含解析) 苏科版-苏科版初中七年级全册数学试题

七年级数学下学期期中模拟试卷(一)(含解析) 苏科版-苏科版初中七年级全册数学试题

2015-2016学年某某省某某市丰县宋楼中学七年级(下)期中数学模拟试卷(一)一、精心选一选:(每题3分,共30分)1.计算2x3•3x2的结果是()A.5x5B.6x6C.5x6D.6x52.下列运算正确的是()A.(2a3﹣2a2)÷(2a2)=a B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣13.如图,已知AB∥CD,∠B=120°,∠D=150°,则∠O等于()A.50° B.60° C.80° D.90°4.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,3 B.2,2,4 C.1,2,4 D.3,4,55.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.6.如图所示,直线a∥b,∠B=16°,∠C=50°,则∠A的度数为()A.24° B.26° C.34° D.36°7.已知关于x的二次三项式4x2﹣mx+25是完全平方式,则常数m的值为()A.10 B.±10 C.﹣20 D.±208.下列不是二元一次方程的是()①3m﹣2n=5 ②③④2x+z=3 ⑤3m+2n ⑥p+7=2.A.1个B.2个C.3个D.4个9.甲、乙二人按3:2的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成.若第一年甲分得的利润比乙分得的利润的2倍少3千元,求甲、乙二人各分得利润多少千元.若设甲分得x千元,乙分得y千元,由题意得()A.B.C.D.10.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.40° B.35° C.30° D.20°二、耐心填一填:(每空3分,共33分)11.把方程2x﹣y﹣3=0化成含y的式子表示x的形式:x=______.12.一种细菌的半径是0.000039m,用科学记数法表示这个数是______m.13.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2=______度.14.已知x2+y2=10,xy=2,则(x﹣y)2=______.15.已知x m=4,x2n=6,则x m+2n=______.16.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D、E、F,则线段______是△ABC中AC边上的高.17.一个多边形的内角和是它外角和的2倍,则它的边数是______.18.方程2x n﹣3﹣y3m+n﹣2+3=0是二元一次方程,则m=______n=______.19.已知是方程组的解,则a﹣b=______.20.若(4x2+2x)(x+a)的运算结果中不含x2的项,则a的值为______.三、细心算一算:(本题共8题,共57分)21.计算题:(1)(﹣2015)0+22×|﹣1|×(﹣)﹣2(2)(x+y﹣2z)(x﹣y+2z)22.先化简,后求值:[(x﹣y)2+2y(y﹣x)﹣(x+y)(x﹣y)]÷(2y),其中x﹣y=2.23.分解因式:(1)2x2﹣8y2;(2)2x3y﹣4x2y2+2xy3.24.解下列方程组:(1)(2).25.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是______.26.如图,已知AE平分∠BAC,过AE延长线一点F作FD⊥BC于D,若∠F=6°,∠C=30°,求∠B的度数.27.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,求每块长方形的长和宽分别是多少?28.阅读下文,寻找规律:已知x≠1时,(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4…(1)(1﹣x)(______)=1﹣x8(2)观察上式,并猜想:①(1﹣x)(1+x+x2+…+x n)=______.②(x﹣1)(x10+x9+…+x+1)=______.(3)根据你的猜想,计算:①(1﹣2)(1+2+22+23+24+25)=______.②1+2+22+23+24+…+22007=______.2015-2016学年某某省某某市丰县宋楼中学七年级(下)期中数学模拟试卷(一)参考答案与试题解析一、精心选一选:(每题3分,共30分)1.计算2x3•3x2的结果是()A.5x5B.6x6C.5x6D.6x5【考点】单项式乘单项式.【分析】原式利用单项式乘以单项式法则计算即可得到结果.【解答】解:2x3•3x2=6x5.故选D.2.下列运算正确的是()A.(2a3﹣2a2)÷(2a2)=a B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣1【考点】整式的除法;合并同类项;完全平方公式;平方差公式.【分析】分别利用整式的除法运算法则以及合并同类项法则和完全平方公式、平方差公式计算得出即可.【解答】解:A、(2a3﹣2a2)÷(2a2)=a﹣1,故此选项错误;B、a2+a2=2a2,故此选项错误;C、(a+b)2=a2+b2+2ab,正确;D、(2a+1)(2a﹣1)=4a2﹣1,故此选项错误;故选:C.3.如图,已知AB∥CD,∠B=120°,∠D=150°,则∠O等于()A.50° B.60° C.80° D.90°【考点】平行线的性质.【分析】根据邻补角的定义求出∠B+∠O+∠D=360°,再根据已知角的度数即可求出答案.【解答】解:作OE∥AB,由AB∥CD,则OE∥CD,∴∠B+∠1=180°,∠D+∠2=180°;∴∠B+∠BOD+∠D=360°.又∵∠B=120°,∠D=150°,∴∠BOD=360°﹣∠B﹣∠D=90°.故选:D.4.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,3 B.2,2,4 C.1,2,4 D.3,4,5【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+2=3,不能组成三角形,故A选项错误;B、2+2=4,不能组成三角形,故B选项错误;C、1+2<4,不能组成三角形,故C选项错误;D、3+4>5,能组成三角形,故D选项正确;故选:D.5.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据两角互余和题目所给的关系,列出方程组.【解答】解:设∠ABD和∠DBC的度数分别为x°、y°,由题意得,.故选B.6.如图所示,直线a∥b,∠B=16°,∠C=50°,则∠A的度数为()A.24° B.26° C.34° D.36°【考点】平行线的性质.【分析】先根据平行线的性质得∠1=∠C=50°,然后根据三角形外角性质计算∠A的度数.【解答】解:∵直线a∥b,∴∠1=∠C=50°,∵∠1=∠A+∠B,∴∠A=50°﹣16°=34°.故选C.7.已知关于x的二次三项式4x2﹣mx+25是完全平方式,则常数m的值为()A.10 B.±10 C.﹣20 D.±20【考点】完全平方式.【分析】符和a2+2ab+b2形式的式子叫完全平方式,要明确,常数项是一次项系数一半的平方,进而求出即可.【解答】解:∵关于x的二次三项式4x2﹣mx+25是完全平方式,∴﹣m=±20,即m=±20.故选:D.8.下列不是二元一次方程的是()①3m﹣2n=5 ②③④2x+z=3 ⑤3m+2n ⑥p+7=2.A.1个B.2个C.3个D.4个【考点】二元一次方程的定义.【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:①3m﹣2n=5是二元一次方程;②是二元一次方程;③是分式方程;④2x+z=3是二元一次方程;⑤3m+2n是多项式;⑥p+7=2是一元一次方程;故选:C.9.甲、乙二人按3:2的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成.若第一年甲分得的利润比乙分得的利润的2倍少3千元,求甲、乙二人各分得利润多少千元.若设甲分得x千元,乙分得y千元,由题意得()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设甲分得x千元,乙分得y千元,根据甲、乙二人的比例为3:2,甲分得的利润比乙分得的利润的2倍少3千元,列方程组即可.【解答】解:设甲分得x千元,乙分得y千元,由题意得,,故选C.10.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.40° B.35° C.30° D.20°【考点】对顶角、邻补角;角平分线的定义.【分析】根据角平分线的定义求出∠AOC,再根据对顶角相等解答即可.【解答】解:∵OA平分∠EOC,∠EOC=70°,∴∠AOC=∠EOC=×70°=35°,∴∠BOD=∠AOC=35°.故选B.二、耐心填一填:(每空3分,共33分)11.把方程2x﹣y﹣3=0化成含y的式子表示x的形式:x=.【考点】解二元一次方程.【分析】把方程2x﹣y﹣3=0写成用含y的式子表示x的形式,需要把含有x的项移到等号一边,其他的项移到另一边,然后合并同类项,系数化1就可用含y的式子表示x的形式:x=【解答】解:移项得2x=y+3系数化为1得:x=12.一种细菌的半径是0.000039m,用科学记数法表示这个数是×10﹣5m.【考点】科学记数法—表示较小的数.【分析】小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】×10﹣5m.×10﹣5m.13.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2= 54 度.【考点】平行线的性质;角平分线的定义.【分析】两直线平行,同旁内角互补,可求出∠FEB,再根据角平分线的性质,可得到∠BEG,然后用两直线平行,内错角相等求出∠2.【解答】解:∵AB∥CD,∴∠BEF=180°﹣∠1=180°﹣72°=108°,∠2=∠BEG,又∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,故∠2=∠BEG=54°.故答案为:54.14.已知x2+y2=10,xy=2,则(x﹣y)2= 6 .【考点】完全平方公式.【分析】利用(x﹣y)2=x2+y2﹣2xy求解即可.【解答】解:∵x2+y2=10,xy=2,∴(x﹣y)2=x2+y2﹣2xy=10﹣4=6.故答案为:6.15.已知x m=4,x2n=6,则x m+2n= 24 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据同底数幂的乘法,底数不变指数相加,即可解答.【解答】解:x m+2n=x m•x2n=4×6=24,故答案为:24.16.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D、E、F,则线段BE 是△ABC中AC边上的高.【考点】三角形的角平分线、中线和高.【分析】根据过三角形的一个顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:∵BE⊥AC,∴△ABC中AC边上的高是BE.故答案为:BE17.一个多边形的内角和是它外角和的2倍,则它的边数是 6 .【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°以及外角和定理列出方程,然后求解即可.【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°=2×360°,解得n=6.答:这个多边形的边数是6.故答案为:6.18.方程2x n﹣3﹣y3m+n﹣2+3=0是二元一次方程,则m= ﹣n= 4 .【考点】二元一次方程的定义.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑求常数m、n的值.【解答】解:根据二元一次方程的定义,得,解得,故答案为:﹣,4.19.已知是方程组的解,则a﹣b= ﹣1 .【考点】二元一次方程组的解.【分析】根据方程组解的定义,把解代入方程组得到关于a、b的方程,然后求解得到a、b 的值,再代入代数式进行计算即可得解.【解答】解:根据题意得,,解得,所以a﹣b=2﹣3=﹣1.故答案为:﹣1.20.若(4x2+2x)(x+a)的运算结果中不含x2的项,则a的值为﹣.【考点】多项式乘多项式.【分析】原式利用多项式乘以多项式法则计算,根据结果不含x2的项,求出a的值即可.【解答】解:原式=4x3+(4a+2)x2+2ax,由结果中不含x2的项,得到4a+2=0,解得:a=﹣.故答案为:﹣.三、细心算一算:(本题共8题,共57分)21.计算题:(1)(﹣2015)0+22×|﹣1|×(﹣)﹣2(2)(x+y﹣2z)(x﹣y+2z)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据零次幂、乘方定义、绝对值性质、负整数指数幂计算,再计算乘法可得;(2)将原式变形运用平方差公式计算,再根据完全平方公式计算即可.【解答】解:(1)原式=1+4×1×9=1+36=37;(2)原式=[x+(y﹣2z)][x﹣(y﹣2z)]=x2﹣(y﹣2z)2=x2﹣y2+4yz﹣4z2;22.先化简,后求值:[(x﹣y)2+2y(y﹣x)﹣(x+y)(x﹣y)]÷(2y),其中x﹣y=2.【考点】整式的混合运算—化简求值.【分析】原式中括号中利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并后利用多项式乘以单项式法则计算得到最简结果,把x﹣y=2代入计算即可求出值.【解答】解:∵x﹣y=2,∴原式=(x2﹣2xy+y2+2y2﹣2xy﹣x2+y2)÷2y=(﹣4xy+4y2)÷2y=﹣2x+2y=﹣2(x﹣y)=﹣4.23.分解因式:(1)2x2﹣8y2;(2)2x3y﹣4x2y2+2xy3.【考点】提公因式法与公式法的综合运用.【分析】(1)原式提取2,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=2(x2﹣4y2)=2(x+2y)(x﹣2y);(2)原式=2xy(x2﹣2xy+y2)=2xy(x﹣y)2.24.解下列方程组:(1)(2).【考点】解二元一次方程组.【分析】(1)利用①×3﹣②可解出y,再把y的值代入①可求出x,从而得到方程组的解;(2)利用①×3+②×2得9x+10x=48+66,可求出x,再把x的值代入①可求出y,从而得到方程组的解.【解答】解:(1),①×3﹣②得5y=﹣5,解得y=﹣1,把y=﹣1代入①得x+1=3,解得x=2,所以方程组的解为;(2),①×3+②×2得9x+10x=48+66,解得x=6,把x=6代入①得18+4y=16,解得y=﹣,所以方程组的解为.25.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是平行且相等.【考点】作图-平移变换.【分析】(1)利用平移规律得出平移后对应点位置进而求出即可;(2)利用平移的性质得出两条线段之间的关系.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)连接AA′,CC′,则这两条线段之间的关系是:平行且相等.故答案为:平行且相等.26.如图,已知AE平分∠BAC,过AE延长线一点F作FD⊥BC于D,若∠F=6°,∠C=30°,求∠B的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】由FD⊥BC以及∠F=6°利用三角形内角和定理即可求出∠DEF的度数,再利用三角形的外角性质即可求出∠CAE的度数,结合角平分线的性质以及三角形内角和定理即可得出∠B的度数.【解答】解:∵FD⊥BC,∠F=6°,∴∠DEF=90°﹣6°=84°,∴∠CAE=∠DEF﹣∠C=84°﹣30°=54°,∵AE平分∠BAC,∴∠BAC=2∠CAD=108°,∴∠B=180°﹣∠BAC﹣∠C=180°﹣108°﹣30°=52°.27.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,求每块长方形的长和宽分别是多少?【考点】二元一次方程组的应用.【分析】本题可以通过看图找出两个等量关系:长方形的长+宽=50cm,长方形的长×2=长+宽×4,据此可以设未知数列方程组求解.【解答】解:设每块长方形的长是xcm,宽是ycm,根据题意得解得答:长是40cm,宽是10cm.28.阅读下文,寻找规律:已知x≠1时,(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4…(1)(1﹣x)(1+x+x2+x3+x4+x5+x6+x7)=1﹣x8(2)观察上式,并猜想:①(1﹣x)(1+x+x2+…+x n)= 1﹣x n+1.②(x﹣1)(x10+x9+…+x+1)= x11﹣1 .(3)根据你的猜想,计算:①(1﹣2)(1+2+22+23+24+25)= ﹣63 .②1+2+22+23+24+…+22007= 22008﹣1 .【考点】平方差公式.【分析】(1)仿照已知等式得到一般性规律,写出即可;(2)利用得出的规律化简两式即可;(3)利用得出的规律化简两式即可.【解答】解:(1)(1﹣x)(1+x+x2+x3+x4+x5+x6+x7)=1﹣x8;(2)观察上式,并猜想:①(1﹣x)(1+x+x2+…+x n)=1﹣x n+1;②(x﹣1)(x10+x9+…+x+1)=x11﹣1;(3)根据你的猜想,计算:①(1﹣2)(1+2+22+23+24+25)=1﹣26=﹣63;②1+2+22+23+24+…+22007=﹣(1﹣2)(1+2+22+23+24+…+22007)=22008﹣1.故答案为:(1)1+x+x2+x3+x4+x5+x6+x7;(2)①1﹣x n+1;②x11﹣1;(3)①﹣63;②22008﹣1.。

2015-2016学年八年级下学期期末考试数学试题带答案(精品)

2015-2016学年八年级下学期期末考试数学试题带答案(精品)

CBA2015—2016学年第二学期初二期末试卷数 学学校 姓名 准考证号考 生 须 知1.本试卷共6页,共三道大题,26道小题.满分100分,考试时间100分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和考号.3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.在平面直角坐标系xOy 中,点P (-3,5)关于y 轴对称的点的坐标是( ) A .(-3,-5)B .(3,-5)C .(3,5)D .(5,-3)2.下列图形中,既是中心对称图形又是轴对称图形的是( )3.一个多边形的内角和为540°,则这个多边形的边数是( ) A .4B .5C .6D .74.菱形ABCD 的边长为4,有一个内角为120°,则较长的对角线的长为( ) A .43B .4C .23D .25.如图,利用平面直角坐标系画出的正方形网格中, 若A (0,2),B (1,1),则点C 的坐标为( ) A .(1,-2) C .(2,1)B .(1,-1) D .(2,-1)6.如图,D ,E 为△ABC 的边AB ,AC 上的点,DE ∥BC , 若:1:3AD DB =,AE =2,则AC 的长是( ) A .10 B.8 C .6 D .47.关于x 的一元二次方程2210mx x -+=有两个实数根,则m 的取值范围是( )A .1m ≤ C .1m <且0m ≠B .1m <D .1m ≤且0m ≠8.如图,将边长为3cm 的等边△ABC 沿着边BC 向右平移2cm ,得到△DEF ,则四边形ABFD 的周长为( ) A .15cmB .14cmC .13cmD .12cmA .B .C .D .EDA B CDAB CP第13题图第14题图第8题图第9题图9.园林队在某公园进行绿化,中间休息了一段时间.绿化面积S(单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米10.如右图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则下列图象能大致反映y与x的函数关系的是()二、填空题(本题共18分,每小题3分)11.如图,点D,E分别为△ABC的边AB,BC的中点,若DE=3cm,则AC=cm.12.已知一次函数2()y m x m=++,若y随x的增大而增大,则m的取值范围是.13.如图,在△ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件,使△ACD ∽△ABC(只填一个即可).14.如图,在□ABCD中,BC=5,AB=3,BE平分∠ABC交AD于点E,交对角线AC于点F,则AEFCBFSS△△= .DAB CFE DB CAEDAB CSt/平方米/小时16060421ODAFE CB第15题图15.如图,矩形ABCD 中,AB =8,AD =10,点E 为DC 边上的一点,将△ADE 沿直线AE 折叠,点D 刚好落在 BC 边上的点F 处,则CE 的长是 .16.如图,在平面直角坐标系xOy 中,一次函数y =x +1与x 、y 轴分别交于点A 、B ,在直线 AB 上截取BB 1=AB ,过点B 1分别 作x 、y 轴的垂线,垂足分别为点A 1、C 1, 得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别 作x 、y 轴的垂线,垂足分别为点A 2 、C 2, 得到矩形OA 2B 2C 2;在直线AB 上截取B 2B 3= B 1B 2,过点B 3分别 作x 、y 轴的垂线,垂足分别为点A 3、C 3, 得到矩形OA 3B 3C 3;……;则点B 1的坐标是 ;第3个矩形OA 3B 3C 3的面积是 ; 第n 个矩形OA n B n C n 的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分)解答应写出文字说明,演算步骤或证明过程. 17.用适当的方法解方程:2610x x --=.18.如图,在□ABCD 中,E ,F 是对角线BD上的两点且BE =DF ,联结AE ,CF . 求证:AE =CF .19.一次函数1y kx b =+的图象与正比例函数2y mx =交于点A (-1,2),与y 轴交于点B (0,3). (1)求这两个函数的表达式;(2)求这两个函数图象与x 轴所围成的三角形的面积.yxy =x+1C 3C 2A 3A 2C 1B 3B 2B 1A B A 1OFE CADBEFCD A B20.如图,在矩形ABCD 中,E 为AD 边上的一点,过C 点作CF ⊥CE 交AB 的延长线于点F .(1)求证:△CDE ∽△CBF ;(2)若B 为AF 的中点,CB =3,DE =1,求CD 的长.21.已知关于x 的一元二次方程2(32)60mx m x -++=(0)m ≠. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.22.如图,Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB上的中线,分别过点A ,C 作AE ∥DC ,CE ∥AB , 两线交于点E .(1)求证:四边形AECD 是菱形;(2)若602B BC ∠=︒=,,求四边形AECD 的面积.23.列方程解应用题:某地区2013年的快递业务量为2亿件,受益于经济的快速增长及电子商务发展等多重因素,快递业务迅猛发展,2015年的快递业务量达到3.92亿件.求该地区这两年快递业务量的年平均增长率.24.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照 “提高电价”收费.设每个家庭月用电量为x 度时,应交电费为y 元.具体收费情况如折线图所示,请根据图象回答下列问题: (1)“基础电价”是_________元/度;(2)求出当x >240时,y 与x 的函数表达式; (3)小石家六月份缴纳电费132元,求小石家这个月用电量为多少度?y x (元)(度)400120240216B AOEDAFB CEDBAC图1 图225.已知正方形ABCD 中,点M 是边CB (或CB 的延长线)上任意一点,AN 平分∠MAD ,交射线DC 于点N .(1)如图1,若点M 在线段CB 上 ①依题意补全图1;②用等式表示线段AM ,BM ,DN 之间的数量关系,并证明;(2)如图2,若点M 在线段CB 的延长线上,请直接写出线段AM ,BM ,DN 之间的数量关系.ADBCM26.在平面直角坐标系xOy 中,过象限内一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等, 则这个点叫做“和谐点”.如右图,过点H (-3,6)分 别作x 轴,y 轴的垂线,与坐标轴围成的矩形OAHB 的周长与面积相等,则点H (3,6)是“和谐点”.(1)H 1(1,2), H 2(4,-4), H 3(-2,5)这三个点中的“和谐点”为 ; (2)点C (-1,4)与点P (m ,n )都在直线y x b =-+上,且点P 是“和谐点”.若m >0,求点P 的坐标.——————————————草 稿 纸——————————————ADB C MADBCM y x1A BHO2015—2016学年第二学期期末试卷 初二数学 试卷答案及评分参考阅卷须知:为便于阅卷,解答题中的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.若考生的解法与给出的解法不同,正确者可参照评分参考给分.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、 选择题(本题共30分,每小题3分) 题号 123456 7 8 9 10 答案C A B AD BDCBB二、填空题(本题共18分,每小题3分)11.6 12.2m >- 13.ACD B ∠=∠(或ADC ACB ∠=∠或AD ACAC AB=) 14.925 15.3 16.(1,2);12(1)n n +;或2n n +(每空1分) 三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分) 17.18.证明一:联结AF ,CE ,联结AC 交BD 于点O.∵四边形ABCD 是平行四边形 ∴OA =OC ,OB =OD ⋯⋯⋯⋯⋯2分 又∵BE =DF∴OE =OF ⋯⋯⋯⋯⋯3分 ∴四边形AECF 是平行四边形 ⋯⋯4分 ∴AE =CF ⋯⋯⋯⋯⋯5分证明二:∵四边形ABCD 是平行四边形∴AB =CD ,AB ∥CD ⋯⋯⋯⋯⋯1分 ∴∠1=∠2 ⋯⋯⋯⋯⋯2分OFE CADB解法一: 26919x x -+=+ ⋯⋯⋯⋯⋯1分2310x -=() ⋯⋯⋯⋯⋯3分310x -=± ⋯⋯⋯⋯⋯4分12310,310x x ∴==+-⋯⋯5分解法二:2140⨯⨯=---=Q △(6)41() ⋯⋯1分6402x ±∴=⋯⋯⋯⋯⋯3分 62102x ±∴= ⋯⋯⋯⋯⋯4分12310,310x x ∴==+- ⋯⋯5分在△ABE 和△CDF 中12 AB CD BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS ) ⋯⋯⋯⋯⋯4分∴AE CF = ⋯⋯⋯⋯⋯5分 19.解:(1)∵2y mx =过点A (-1,2)∴-m =2 ∴m =-2 ⋯⋯⋯⋯⋯1分 ∵点A (-1,2)和点B (0,3)在直线1y kx b =+上2133k b k b b -+==⎧⎧∴∴⎨⎨==⎩⎩⋯⋯⋯⋯⋯3分 ∴这两个函数的表达式为:13y x =+和2-2y x=⋯⋯⋯⋯⋯3分(2)过点A 作AD ⊥x 轴于点D ,则AD =2∵13y x =+交x 轴于点C (-3,0) ⋯⋯4分∴1=2AOC S OC AD⨯⨯△ 1=322⨯⨯ =3 ⋯⋯5分即这两个函数图象与x 轴所围成的三角形的面积是3.20.(1)证明:∵四边形ABCD 是矩形∴∠D=∠1=∠2+∠3=90° ⋯⋯⋯⋯⋯1分 ∵CF ⊥CE ∴∠4+∠3=90°∴∠2=∠4∴△CDE ∽△CBF ⋯⋯⋯⋯⋯2分(2) 解:∵四边形ABCD 是矩形∴CD =AB ∵B 为AF 的中点∴BF =AB ∴设CD=BF= x ⋯⋯⋯3分 ∵△CDE ∽△CBF21.(1)证明:∵0m ≠ ∴2(32)60mx m x -++=是关于x 的一元二次方程∵2[(32)]46m m =-+-⨯△ ⋯⋯⋯⋯⋯1分2912424m m m =++- 29-124m m =+23-20m =()≥ ⋯⋯⋯⋯⋯2分21FECADByx–11–1–2–3–41234D CBA O4321EDAFBC∴CD DE CB BF = ⋯⋯4分 ∴13x x =∵x >0 ∴3x =⋯⋯⋯5分即:3CD =∴此方程总有两个实数根. ⋯⋯⋯⋯⋯3分(2) 解:∵(3)(2)0x mx --=∴1223,x x m ==⋯⋯⋯⋯⋯4分∵方程的两个实数根都是整数,且m 是正整数∴m =1或 m =2 ⋯⋯⋯⋯⋯5分22.(1)证明:∵AE ∥DC ,CE ∥AB∴四边形AECD 是平行四边形 ⋯⋯⋯⋯⋯1分 ∵Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB 上的中线 ∴CD =AD∴四边形AECD 是菱形 ⋯⋯⋯⋯⋯2分(2) 解:联结DE .∵90ACB ∠=︒,60B ∠=︒∴30BAC ∠=︒ ∴423A ABC ==, ⋯⋯⋯⋯⋯3分∵四边形AECD 是菱形 ∴EC =AD =DB 又∵EC ∥DB ∴四边形ECBD 是平行四边形∴ED = CB =2 ⋯⋯⋯⋯⋯4分∴2322322AECD AC ED S ⨯⨯===菱形 ⋯⋯⋯⋯⋯5分23. 解:设该地区这两年快递业务量的年平均增长率为x . 根据题意,得 ⋯⋯1分 22(1) 3.92x += ⋯⋯⋯⋯⋯3分解得120.4, 2.4x x ==-(不合题意,舍去) ⋯⋯⋯⋯⋯4分 ∴0.440x ==%答:该地区这两年快递业务量的年平均增长率为40%. ⋯⋯⋯⋯⋯5分24.(1)0.5 ⋯⋯⋯⋯⋯ 1分 (2)解:当x >240时,设y =kx+b ,由图象可得:2401200.640021624k b k k b b +==⎧⎧∴⎨⎨+==-⎩⎩ ⋯⋯⋯⋯⋯2分 ∴0.624(240)y x x =-> ⋯⋯⋯⋯⋯3分(3)解:∵132120y =>∴令0.624=132x -, ⋯⋯⋯⋯⋯4分 得:=260x ⋯⋯⋯⋯⋯5分∴小石家这个月用电量为260度.EDBAC25.(1)①补全图形,如右图所示. ⋯⋯⋯⋯⋯1分 ②数量关系:AM BM DN =+ ⋯⋯⋯⋯⋯2分 证明:在CD 的延长线上截取DE =BM ,联结AE .∵四边形ABCD 是正方形∴190B ∠=∠=︒,AD AB =,AB CD ∥ ∴6BAN ∠=∠ 在△ADE 和△ABM 中1 AD AB B DE BM =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ABM (SAS ) ∴AE AM =,32∠=∠ ⋯⋯⋯⋯⋯⋯3分又∵54∠=∠ ∴EAN BAN ∠=∠ 又∵6BAN ∠=∠ ∴6EAN ∠=∠∴AE NE = ⋯⋯⋯⋯⋯4分 又∵AE AM =,NE DE DN BM DN +=+=∴AM BM DN =+ ⋯⋯⋯⋯⋯5分 (证法二:在CB 的延长线上截取BF =DN ,联结AF ) (2)数量关系:AM DN BM =- ⋯⋯⋯⋯⋯6分26.(1)H 2 ⋯⋯⋯⋯⋯1分 (2)解:∵点C (-1,4)在直线y x b =-+上∴14b += ∴3b =∴3y x =-+ ⋯⋯⋯⋯⋯2分 ∴3y x =-+与x 轴,y 轴的交点为N (3, 0),M (0,3) ∵点P (m ,n )在直线3y x =-+上 ∴点P (m ,-m +3)过点P 分别作x 轴,y 轴的垂线,垂足为D ,E ∵m >0∴点P 可能在第一象限或第四象限(解法一) ① 若点P 在第一象限,如图1,则,3OD m PD n m +=== -∴3)6PEOD C m m ++==2(-矩形654321EN AD B CMNADB CMyy = -x+33)PEOD S m m +=(-矩形∵点P 是“和谐点”∴3)6m m +(-= ⋯⋯⋯3分 260m m +-3=2(-3)460=-⨯△<∴此方程无实根∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分② 若点P 在第四象限,如图2,则,3)3OD m PD n m m -=+=-== --( ∴3)46PEOD C m m m +=-=2(-矩形3)PEOD S m m =(-矩形 ∵点P 是“和谐点”∴3)46m m m -(-= ⋯⋯5分 260m m +-7=1261m m ==,∵点P (m ,-m +3)在第四象限 ∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分综上所述,满足条件的点P 的坐标为P (6,-3).(解法二)① 若点P 在第一象限,如图1,则,3OD m PD n m +=== - ∴3)6PEOD C m m ++==2(-矩形∵133 4.52MON S ⨯⨯==△ ⋯⋯⋯3分而MONPEOD S S <△矩形 ∴PEOD PEOD C S 矩形矩形≠∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分 ② 若点P 在第四象限,如图2,则,OD m PD n == -∴)PEOD C m n =2(-矩形PEOD S mn =-矩形∵点P 是“和谐点”∴2)m n mn (-=- ⋯⋯⋯⋯⋯5分 ∴22mn m =-∵点P (m ,n )在直线3y x =-+上 ∴3n m =-+yxy = -x+3EDP (m ,-m +3)O y x 33y = -x+3E D MN OP (m ,-m +3)图1∴232m m m =-+-260m m +-7= 1261m m ==, 经检验,1261m m ==,是方程232m m m=-+-的解 ∵点P (m ,-m +3)在第四象限∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分 综上所述,满足条件的点P 的坐标为P (6,-3).yx y = -x+3E D P (m ,-m +3)O。

2016-2017年七年级上学期期末考试数学试题及答案

2016-2017年七年级上学期期末考试数学试题及答案

2015-2016学年第一学期七年级期末测试数学试题(本试题共4页,满分为120分,考试时间为90分钟)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的绝对值是()1A.6B.﹣6C.±6D.62.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A.0.109×105B.1.09×104C.1.09×103D.109×1023.计算23-的结果是()A.9B.9-C.6D.6-4.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是()A.数B.学C.活D.的5.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况6.下面合并同类项正确的是( )A .32523x x x =+B .1222=-b a b aC .0=--ab ab D.022=+-xy xy7.如图,已知点O 在直线AB 上,CO ⊥DO 于点O ,若∠1=145°,则∠3的度数为( )A .35°B .45°C .55°D .65°8. 下列说法中错误的是( )A .y x 232-的系数是32- B .0是单项式 C .xy 32的次数是1 D .x -是一次单项式 9. 方程x =+-32▲,▲处被墨水盖住了,已知方程的解x=2,那么▲处的数字是( ) A .2 B .3 C .4 D .610. 如果A 、B 、C 三点在同一直线上,且线段AB=6cm ,BC=4cm ,若M,N 分别为AB ,BC 的中点,那么M,N 两点之间的距离为( )A .5cmB .1cmC .5或1cmD .无法确定11.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x ﹣1)+3x=13B .2(x+1)+3x=13C .2x+3(x+1)=13D .2x+3(x ﹣1)=1312.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形.则m 、n 的值分别为( )7题图A .4,3B .3,3C .3,4D .4,413.钟表在8:25时,时针与分针的夹角是( )度.A .101.5B .102.5C .120D .12514.某商品的标价为132元,若以9折出售仍可获利10%,则此商品的进价为( )A .88元B .98元C .108元D .118元15.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n (n 是正整数)的结果为( )1+8=? 1+8+16=? 1+8+16+24=?A.(2n+1)2B.(2n-1)2C.(n+2)2D.n 2二、填空题(本大题共6个小题,每小题3分,共18分.只要求填写最后结果,把答案填在题中的横线上.)16.比较大小:30.15° 30°15′(用>、=、<填空)17.若代数式123--x a 和243+x a 是同类项,则x=_______. 18.若()521||=--m x m 是一元一次方程,则m= .19.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°, 则∠AOD= °.20.已知3x+1和2x+4互为相反数,则x= .21.小明与小刚规定了一种新运算△:,则a△b = b a 23-.小明计算出2△5= -4,请你帮小刚计算2△(-5)=________________.19题图三、解答题:(本大题共7小题,共57分.解答要写出必要的文字说明、证明过程或演算步骤。

2014-2015学年江西省景德镇市乐平市七年级(下)期末数学试卷(解析版)

2014-2015学年江西省景德镇市乐平市七年级(下)期末数学试卷(解析版)

2014-2015学年江西省景德镇市乐平市七年级(下)期末数学试卷一、选择题(共6小题,每小题3分,满分18分)1.(3分)一个事件发生的概率不可能是()A.0 B.1 C.D.2.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2 B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b23.(3分)在下列各组图形中,是全等的图形是()A.B. C.D.4.(3分)下面有4个汽车标志图案,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个5.(3分)长方形的周长为24cm,其中一边为xcm(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A.y=x2 B.y=12﹣x2C.y=(12﹣x)•x D.y=2(12﹣x)6.(3分)下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角 B.已知两边和其中一边的对角C.已知两角和夹边 D.已知三边二、填空题(共8小题,每小题3分,满分24分)7.(3分)某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图所示,则该汽车的号码是.8.(3分)如图,∠AOB=125°,AO⊥OC,BO⊥OD,则∠COD=.9.(3分)(2m+3)()=4m2﹣9.10.(3分)如果∠1与∠2互为补角,∠1=72°,∠2=度,若∠3=∠1,则∠3的补角为度,理由是.11.(3分)在直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为.12.(3分)如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,还需要添加的条件是.13.(3分)如图,平面镜A与B之间夹角为110°,光线经平面镜A反射到平面镜B上,再反射出去,若∠1=∠2,则∠1的度数为.14.(3分)已知:如图,矩形ABCD的长和宽分别为2和1,以D为圆心,AD 为半径作AE弧,再以AB的中点F为圆心,FB长为半径作BE弧,则阴影部分的面积为.三、解答题(共10小题,满分78分)15.(6分)计算:(1)(ab2c)2÷(ab3c2);(2)(﹣x﹣y)(x﹣y)+(x+y)2.16.(6分)先化简再求值:(a﹣2)2+(2a﹣1)(a+4),其中a=﹣2.17.(6分)如图,在△ABC中,D是AB上一点,DF交AC于点E,DE=FE,AE=CE,AB与CF有什么位置关系?证明你的结论.18.(6分)设计一个转盘,使得自由转动这个转盘,指针停在红色区域中的概率为.19.(8分)如图,两根钢绳一端固定在地面两个铁勾上,另一端固定在电线杆上(电线杆垂直于地面),已知两根钢绳的长度相等,则两个铁柱到电线杆底部的距离即BO与CO相等吗?为什么?20.(8分)如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.21.(8分)如图所示,要想判断AB是否与CD平行,我们可以测量哪些角;请你写出三种方案,并说明理由.22.(8分)李大爷按每千克2.1元批发了一批南丰蜜橘到镇上出售,为了方便,他带了一些零钱备用.他先按市场售出一些后,又降低出售.售出蜜橘千克数x 与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)李大爷自带的零钱是多少?(2)降价前他每千克蜜橘出售的价格是多少?(3)卖了几天,南丰蜜橘卖相不好了,随后他按每千克下降1.5元将剩下的蜜橘售完,这时他手中的钱(含备用的钱)是450元,问他一共批发了多少千克的蜜橘?(4)请问李大爷亏了还是赚了?若亏(赚)了,亏(赚)多少钱?23.(10分)将若干张长为20里面、宽为10里面的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为2厘米.(1)求2张白纸贴合后的总长度;那么3张白纸粘合后的总长度呢?4张呢?(2)设a张白纸粘合后的总长度为b里面,写出b与a之间的关系式,并求当a=100时,b的值.24.(12分)如图,AP∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的延长线交AP于D.(1)思考AE与BE的位置关系并加以说明;(2)说明AB=AD+BC;(3)若BE=6,AE=6.5,求四边形ABCD的面积?2014-2015学年江西省景德镇市乐平市七年级(下)期末数学试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.(3分)一个事件发生的概率不可能是()A.0 B.1 C.D.【解答】解:∵>1,∴D不成立.故选:D.2.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2 B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b2【解答】解:A、应为(a﹣b)2=a2﹣2ab+b2,本选项错误;B、(a+b)(a﹣b)=a2﹣b2,本选项正确;C、应为(a+b)2=a2+2ab+b2,本选项错误;D、应为(a+b)2=a2+2ab+b2,本选项错误.故选:B.3.(3分)在下列各组图形中,是全等的图形是()A.B. C.D.【解答】解:根据全等图形的定义可得C是全等图形,故选:C.4.(3分)下面有4个汽车标志图案,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故是轴对称图形的有3个.故选:C.5.(3分)长方形的周长为24cm,其中一边为xcm(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A.y=x2 B.y=12﹣x2C.y=(12﹣x)•x D.y=2(12﹣x)【解答】解:∵长方形的周长为24cm,其中一边为x(其中x>0),∴长方形的另一边长为12﹣x,∴y=(12﹣x)•x.故选:C.6.(3分)下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角 B.已知两边和其中一边的对角C.已知两角和夹边 D.已知三边【解答】解:A、符合全等三角形的判定SAS,能作出唯一三角形;B、而已知两边和其中一边的对角对应相等,不能作出唯一三角形,如等腰三角形底边上的任一点与顶点之间的线段两侧的三角形;C、符合全等三角形的判定ASA,能作出唯一三角形;D、符合全等三角形的判定SSS,能作出唯一三角形;故选:B.二、填空题(共8小题,每小题3分,满分24分)7.(3分)某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图所示,则该汽车的号码是B6395.【解答】解:根据镜面对称的性质,题中所显示的图片中的数字与“B6395”成轴对称,则该汽车的号码是B6395.8.(3分)如图,∠AOB=125°,AO⊥OC,BO⊥OD,则∠COD=55°.【解答】解:∵AO⊥OC,BO⊥OD,∴∠AOC+∠BOD=∠AOD+∠DOC+∠DOC+∠COB=90°+90°=180°,∴∠COD=∠AOC+∠BOD﹣∠AOB=180°﹣125°=55°.9.(3分)(2m+3)(2m﹣3)=4m2﹣9.【解答】解:(2m+3)(2m﹣3)=4m2﹣9,故答案为:2m﹣3.10.(3分)如果∠1与∠2互为补角,∠1=72°,∠2=108度,若∠3=∠1,则∠3的补角为108度,理由是如果两个角互为补角,那么这两个角的和为180°.【解答】解:如果∠1与∠2互为补角,则∠1+∠2=180°,∠2=180°﹣72°=108°,若∠3=∠1,则∠3=72°,其补角为108度.故填108°;108°;如果两个角互为补角,那么这两个角的和为180度.11.(3分)在直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为65°,25°.【解答】解:设这两个锐角的度数分别为x,y,根据题意得,,解得.故答案为:65°,25°.12.(3分)如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,还需要添加的条件是AC=AE(或BC=DE,∠E=∠C,∠B=∠D).【解答】解:∵∠BAC=∠DAE=90°,AB=AD,∴可添加AC=AE,利用SAS判定.故填AC=AE(或BC=DE,∠E=∠C,∠B=∠D).13.(3分)如图,平面镜A与B之间夹角为110°,光线经平面镜A反射到平面镜B上,再反射出去,若∠1=∠2,则∠1的度数为35°.【解答】解:由反射角等于入射角,可得:∠1=∠3,∠2=∠4,∵∠1=∠2,∴∠3=∠4,∵∠AOB=110°,∠AOB+∠3+∠4=180°,∴∠3+∠4=70°,∴∠3=35°,∴∠1=35°.故答案为:35°.14.(3分)已知:如图,矩形ABCD的长和宽分别为2和1,以D为圆心,AD 为半径作AE弧,再以AB的中点F为圆心,FB长为半径作BE弧,则阴影部分的面积为1.【解答】解:∵AF=BF,AD=1,AB=2,∴AD=BF=1,∴扇形DAE的面积=扇形FBE的面积,∴阴影部分的面积=1×1=1.故答案为1.三、解答题(共10小题,满分78分)15.(6分)计算:(1)(ab2c)2÷(ab3c2);(2)(﹣x﹣y)(x﹣y)+(x+y)2.【解答】解:(1)(ab2c)2÷(ab3c2),=a2b4c2÷(ab3c2),=ab;(2)(﹣x﹣y)(x﹣y)+(x+y)2,=y2﹣x2+x2+2xy+y2,=2y2+2xy.16.(6分)先化简再求值:(a﹣2)2+(2a﹣1)(a+4),其中a=﹣2.【解答】解:(a﹣2)2+(2a﹣1)(a+4)=a2﹣4a+4+2a2+7a﹣4=3a2+3a,当a=﹣2时,原式=3×(﹣2)2+3×(﹣2)=12﹣6=6.17.(6分)如图,在△ABC中,D是AB上一点,DF交AC于点E,DE=FE,AE=CE,AB与CF有什么位置关系?证明你的结论.【解答】解:AB∥CF.证明如下:∵∠AED与∠CEF是对顶角,∴∠AED=∠CEF,在△ADE和△CFE中,∵DE=FE,∠AED=∠CEF,AE=CE,∴△ADE≌△CFE.∴∠A=∠FCE.∴AB∥CF.18.(6分)设计一个转盘,使得自由转动这个转盘,指针停在红色区域中的概率为.【解答】解:根据几何概率的求法:指针停在有色区域的概率就是该色区域的面积与总面积的比值;即红色区域的面积与总面积的比值为,故设计如下:把圆分成相等的6等份,红色占2份即可.19.(8分)如图,两根钢绳一端固定在地面两个铁勾上,另一端固定在电线杆上(电线杆垂直于地面),已知两根钢绳的长度相等,则两个铁柱到电线杆底部的距离即BO与CO相等吗?为什么?【解答】解:BO与CO相等.理由:∵AB=AC,∴△ABC是等腰三角形,∵AO⊥BC,∴BO=CO,因此两个铁柱到电线杆底部的距离即BO与CO相等.20.(8分)如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.【解答】解:(1)△ABC关于直线MN的对称图形如图所示;(2)△ABC的面积=4×5﹣×1×4﹣×1×4﹣×5×3,=20﹣2﹣2﹣7.5,=8.5.21.(8分)如图所示,要想判断AB是否与CD平行,我们可以测量哪些角;请你写出三种方案,并说明理由.【解答】解:(1)可以测量∠EAB与∠D,如果∠EAB=∠D,那么根据同位角相等,两直线平行,得出AB与CD平行.(2)可以测量∠BAC与∠C,如果∠BAC=∠C,那么根据内错角相等,两直线平行,得出AB与CD平行.(3)可以测量∠BAD与∠D,如果∠BAD+∠D=180°,那么根据同旁内角互补,两直线平行,得出AB与CD平行.22.(8分)李大爷按每千克2.1元批发了一批南丰蜜橘到镇上出售,为了方便,他带了一些零钱备用.他先按市场售出一些后,又降低出售.售出蜜橘千克数x 与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)李大爷自带的零钱是多少?(2)降价前他每千克蜜橘出售的价格是多少?(3)卖了几天,南丰蜜橘卖相不好了,随后他按每千克下降1.5元将剩下的蜜橘售完,这时他手中的钱(含备用的钱)是450元,问他一共批发了多少千克的蜜橘?(4)请问李大爷亏了还是赚了?若亏(赚)了,亏(赚)多少钱?【解答】解:(1)由图可得农民自带的零钱为50元.(2)(330﹣50)÷80=280÷80=3.5元.答:降价前他每千克蜜橘出售的价格是3.5元;(3)(450﹣330)÷(3.5﹣1.5)=120÷2=60(千克),80+60=140(千克).答:他一共批发了140千克的蜜橘;(4)450﹣140×2.1﹣50=106(元).答:李大爷一共赚了106元钱.23.(10分)将若干张长为20里面、宽为10里面的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为2厘米.(1)求2张白纸贴合后的总长度;那么3张白纸粘合后的总长度呢?4张呢?(2)设a张白纸粘合后的总长度为b里面,写出b与a之间的关系式,并求当a=100时,b的值.【解答】解:(1)2张白纸粘合后的总长度=2×20﹣2×1=40﹣2=38(厘米);3张白纸粘合后的总长度=3×20﹣2×2=60﹣4=56(厘米);4张白纸粘合后的总长度=4×20﹣2×3=80﹣6=74(厘米);(2)由题意得:b=20a﹣(a﹣1)×2=18a+2.当a=100时,b=18×100+2=1802.24.(12分)如图,AP∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的延长线交AP于D.(1)思考AE与BE的位置关系并加以说明;(2)说明AB=AD+BC;(3)若BE=6,AE=6.5,求四边形ABCD的面积?【解答】(1)解:AE与BE垂直,理由如下:∵AP∥BC,∴∠DAB+∠CBA=180°,∵∠PAB的平分线与∠CBA的平分线相交于E,∴∠EAB+∠EBA=90°,∴∠AEB=90°,∴AE⊥EB;(2)证明:延长AE交BC的延长线于M,∵AE平分∠PAB,BE平分∠CBA,∴∠1=∠2,∠3=∠4,∵AD∥BC∴∠1=∠M=∠2,∠1+∠2+∠3+∠4=180°∴BM=BA,∠3+∠2=90°,∴BE⊥AM,在△ABE和△MBE中,,∴△ABE≌△MBE∴AE=ME,在△ADE和△MCE中,;∴△ADE≌△MCE,∴AD=CM,∴AB=BM=BC+AD.(3)解:由(2)知:△ADE≌△MCE,=S△ABM∴S四边形ABCD又∵AE=ME=6.5,BE=6,∴,∴S=39.四边形ABCD。

七年级上第一次月考数学试卷含答案解析

七年级上第一次月考数学试卷含答案解析

2015-2016学年江西省新余七年级(上)第一次月考数学试卷一、选择题(本大题共8小题,每题3分,共24分)1.在﹣6,0,3,8这四个数中,最小的数是()A.﹣6 B.0 C.3 D.82.|﹣|的相反数是()A.B.﹣C.3 D.﹣33.在﹣|﹣2|,|﹣(﹣3)|,﹣(+2),﹣(﹣),+(﹣2),﹣(﹣3),﹣22中,负数有()A.2个B.3个C.4个D.5个4.计算(﹣1)÷(﹣15)×15的结果是()A.﹣1 B.1 C. D.﹣2255.已知a、b互为相反数,c是绝对值最小的负整数,m、n互为倒数,则+c2﹣4mn的值等于()A.1 B.2 C.3 D.﹣36.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律,5小时后细胞存活的个数是()A.31 B.33 C.35 D.377.给出下列判断:①若|m|>0,则m>0;②若m>n,则|m|>|n|;③若|m|>|n|,则m>n;④任意数m,则|m是正数;⑤在数轴上,离原点越远,该点对应的数的绝对值越大,其中正确的结论的个数为()A.0 B.1 C.2 D.38.有理数a,b在数轴上的位置如图所示,则下列关系式:①|a|>|b|;②a﹣b>0;③a+b>0;④+>0;⑤﹣a>﹣b,其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每题3分,共24分)9.﹣|﹣|的倒数是,(﹣4)2的相反数是.10.如果x,y的平均数为4,x,y,z的和为零,那么z=.11.在比例尺为1:8000000的地图上,量得太原到北京的距离为6.4厘米,将实际距离用科学记数法表示为千米(保留两个有效数字).12.若|m+3|+(n+2)2=0,则(m+2n)3的值为.13.计算:1﹣3+5﹣7+9﹣11+…+97﹣99=.14.如果数轴上的点A和点B分别代表﹣2,1,P是到点A或者点B距离为3的点,那么所有满足条件的点P到原点的距离之和为.15.现有四个有理数3,4,﹣6,10,将这四个数(每个数用且只用一次)进行加、减、乘、除四则运算,使其结果等于24,(只需写出一个算式).16.若约定:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2013=.三、计算题(本大题共5小题,每题5分,共25分)17.75+|(﹣81)+67|﹣73.18.(﹣70)÷5+(﹣19)×20.19.﹣92+2(﹣3)2+(﹣6)÷(﹣)2.20.(﹣1)×+2÷5+×(﹣1).21.﹣23+|(﹣4)3|×()×2﹣27÷|(﹣3)3|.四、解答题(本大题共5小题,22大题7分,其余各每大题10分,共47分)22.根据如图所示的程序计算,若输入的数为1,求输出的数.23.有一张厚度为0.1毫米的纸片,对折一次后的厚度是2×0.1毫米.(1)对折两次后的厚度是多少毫米?(2)假设这张纸能无限折叠下去,那么对折20次后的厚度是多少毫米?(结果用科学记数法表示,精确到千位)24.为体现社会对教师的尊重,今年教师节出租车司机小王在东西方向的公路上免费接送教师,如果规定向东为正,向西为负,出租车的行程如下(单位:千米)+15,﹣4,+13,﹣10,﹣12,+3,﹣13,﹣17(1)最后一名教师被送到目的地时,小王在出发地的什么位置?(2)若汽车耗油量为0.4升/千米,小王出发前加满了40升油,当他送完最后一名教师后,问他能否开车顺利返回?为什么?25.同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=.(2)找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是.(3)由以上探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.26.读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为,这里“”是求和符号.例如:“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为;又如“13+23+33+43+53+63+73+83+93+103”可表示为.同学们,通过对以上材料的阅读,请解答下列问题:①2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为;②计算:=(填写最后的计算结果).2015-2016学年江西省新余七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每题3分,共24分)1.在﹣6,0,3,8这四个数中,最小的数是()A.﹣6 B.0 C.3 D.8【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,正数大于负数,两负数绝对值大的反而小,解答即可.【解答】解:∵8>3>0>﹣6,∴最小的数是﹣6.故选A.2.|﹣|的相反数是()A.B.﹣C.3 D.﹣3【考点】绝对值;相反数.【分析】一个负数的绝对值是它的相反数,求一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:∵|﹣|=,∴的相反数是﹣.故选:B.3.在﹣|﹣2|,|﹣(﹣3)|,﹣(+2),﹣(﹣),+(﹣2),﹣(﹣3),﹣22中,负数有()A.2个B.3个C.4个D.5个【考点】绝对值;正数和负数.【分析】根据相反数的定义,绝对值的性质以及有理数的乘方计算,再根据正负数的定义进行判断.【解答】解:﹣|﹣2|=﹣2,|﹣(﹣3)|=3,﹣(+2)=﹣2,﹣(﹣)=,+(﹣2)=﹣2,﹣(﹣3)=3,﹣22=﹣4,负数有﹣|﹣2|,﹣(+2),+(﹣2),﹣22,一共4个.故选:C.4.计算(﹣1)÷(﹣15)×15的结果是()A.﹣1 B.1 C. D.﹣225【考点】有理数的除法;有理数的乘法.【分析】原式从左到右依次计算即可得到结果.【解答】解:原式=×15=1.故选B5.已知a、b互为相反数,c是绝对值最小的负整数,m、n互为倒数,则+c2﹣4mn的值等于()A.1 B.2 C.3 D.﹣3【考点】代数式求值.【分析】利用相反数,绝对值,以及倒数的定义求出a+b,c,mn的值,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,c=﹣1,mn=1,则原式=0+1﹣4=﹣3,故选D6.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律,5小时后细胞存活的个数是()A.31 B.33 C.35 D.37【考点】有理数的乘方.【分析】根据题意可知,1小时后分裂成4个并死去1个,剩3个,3=2+1;2小时后分裂成6个并死去1个,剩5个,5=22+1;3小时后分裂成10个并死去1个,剩9个,9=23+1;…∴5小时后细胞存活的个数是25+1=33个.【解答】解:25+1=33个.故选B.7.给出下列判断:①若|m|>0,则m>0;②若m>n,则|m|>|n|;③若|m|>|n|,则m>n;④任意数m,则|m是正数;⑤在数轴上,离原点越远,该点对应的数的绝对值越大,其中正确的结论的个数为()A.0 B.1 C.2 D.3【考点】绝对值;数轴.【分析】分别利用绝对值的定义以及有理数的定义以及数轴的性质分析得出即可.【解答】解:①若|m|>0,则m<0或m>0,题干的说法是错误的;②1>﹣2,|1|<|﹣2|,题干的说法是错误的;③|﹣2|>|1|,﹣2<1,题干的说法是错误的;④任意数m,则|m是正数、0或负数,题干的说法是错误的;⑤在数轴上,离原点越远,该点对应的数的绝对值越大是正确的.故选:B.8.有理数a,b在数轴上的位置如图所示,则下列关系式:①|a|>|b|;②a﹣b>0;③a+b>0;④+>0;⑤﹣a>﹣b,其中正确的个数有()A.1个B.2个C.3个D.4个【考点】绝对值;数轴.【分析】由图象可知,a<0<b且|a|>|b|,再根据有理数的加减法则、不等式的基本性质逐一判断即可.【解答】解:由图象可知,a<0<b,且|a|>|b|,故①正确;a﹣b=a+(﹣b)=﹣(|a|+|b|)<0,故②错误;a+b=﹣(|a|﹣|b|)<0,故③错误;∵a+b<0,且ab<0,∴>0,即+>0,故④正确;∵a<b,∴﹣a>﹣b,故⑤正确;故选:C.二、填空题(本大题共8小题,每题3分,共24分)9.﹣|﹣|的倒数是﹣,(﹣4)2的相反数是﹣16.【考点】倒数;相反数;绝对值.【分析】根据乘积为的两个数互为倒数,只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣|﹣|的倒数是﹣,(﹣4)2的相反数是﹣16,故答案为:﹣,﹣1210.如果x,y的平均数为4,x,y,z的和为零,那么z=﹣8.【考点】有理数的减法.【分析】本题是有理数的减法与平均数的综合考题,求解时可以根据平均数的定义列式然后求解即可.【解答】解:因为x,y的平均为4,所以(x+y)÷2=4,所以x+y=8,又因为x,y,z的和为零,即x+y+z=0,所以z=0﹣(x+y)=﹣8.11.在比例尺为1:8000000的地图上,量得太原到北京的距离为6.4厘米,将实际距离用科学记数法表示为 5.1×102千米(保留两个有效数字).【考点】科学记数法与有效数字.【分析】先根据比例尺求出太原到北京的实际距离,然后用科学记数法保留两个有效数字得出结果.【解答】解:6.4厘米×8 000 000=51 200 000厘米=512千米≈5.1×102千米.12.若|m+3|+(n+2)2=0,则(m+2n)3的值为﹣125.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出求出m、n的值,计算即可.【解答】解:由题意得,m+3=0,n+2=0,解得,m=﹣3,n=﹣2,则(m+2n)3=﹣125,故答案为:﹣125.13.计算:1﹣3+5﹣7+9﹣11+…+97﹣99=﹣50.【考点】有理数的加减混合运算.【分析】认真审题不难发现:相邻两数之差为﹣2,整个计算式中正好为100以内的所有相邻奇数的差,一共有50个奇数,所以可以得到50÷2=25个﹣2.【解答】解:1﹣3+5﹣7+…+97﹣99=(1﹣3)+(5﹣7)+(9﹣11)+…+(97﹣99)=(﹣2)×25=﹣50.故应填﹣50.14.如果数轴上的点A和点B分别代表﹣2,1,P是到点A或者点B距离为3的点,那么所有满足条件的点P到原点的距离之和为12.【考点】数轴;绝对值.【分析】根据两点间的距离计算方法:数轴上表示两个点的坐标的差的绝对值即两点间的距离.【解答】解:则到点A的距离是3的点有﹣5,1;到点B的距离是3的点有﹣2,4.那么所有满足条件的点P到原点的距离之和是5+1+2+4=12.15.现有四个有理数3,4,﹣6,10,将这四个数(每个数用且只用一次)进行加、减、乘、除四则运算,使其结果等于24,3×(4﹣6+10)(只需写出一个算式).【考点】有理数的混合运算.【分析】由于24=1×24=2×12=3×8=4×6,由此从24最简单的不同表达式入手,逆推,拼凑即可求解.【解答】解:3×(4﹣6+10)=3×8=24.故答案为:3×(4﹣6+10).16.若约定:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2013=4.【考点】规律型:数字的变化类.【分析】根据差倒数的定义分别求出前几个数便不难发现,每3个数为一个循环组依次循环,用2013除以3,根据余数的情况确定出与a2013相同的数即可得解.【解答】解:∵a1=﹣,∴a2==,a3==4,a4==﹣,…2013÷3=671.∴a2013与a3相同,为4.故答案为:4.三、计算题(本大题共5小题,每题5分,共25分)17.75+|(﹣81)+67|﹣73.【考点】有理数的加减混合运算.【分析】根据有理数的加减混合运算的运算方法,应用加法交换律和加法结合律,求出算式的值是多少即可.【解答】解:75+|(﹣81)+67|﹣73=75+81﹣67﹣73=(75﹣67)+(81﹣73)=8+8=1618.(﹣70)÷5+(﹣19)×20.【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式(﹣70)÷5+(﹣19)×20的值是多少即可.【解答】解:(﹣70)÷5+(﹣19)×20=(﹣70﹣)÷5+(﹣19﹣)×20=(﹣70)÷5﹣÷5+(﹣19)×20﹣×20=﹣14﹣﹣380﹣18=﹣41219.﹣92+2(﹣3)2+(﹣6)÷(﹣)2.【考点】有理数的混合运算.【分析】先算乘方,再算乘除,最后算加法,由此顺序列式计算即可.【解答】解:原式=﹣81+2×9+(﹣6)÷=﹣81+18﹣6×=﹣63﹣=﹣76.20.(﹣1)×+2÷5+×(﹣1).【考点】有理数的混合运算.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=﹣×+×﹣×=×(﹣+﹣)=×(﹣)=﹣.21.﹣23+|(﹣4)3|×()×2﹣27÷|(﹣3)3|.【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:﹣23+|(﹣4)3|×()×2﹣27÷|(﹣3)3|=﹣8+64×()×2﹣27÷27=﹣8﹣48×2﹣1=﹣8﹣96﹣1=﹣105四、解答题(本大题共5小题,22大题7分,其余各每大题10分,共47分)22.根据如图所示的程序计算,若输入的数为1,求输出的数.【考点】代数式求值.【分析】根据运算程序进行计算.【解答】解:12×2﹣4=2﹣4=﹣2<0,(﹣2)2×2﹣4=8﹣4=4>0.故输出的数为4.23.有一张厚度为0.1毫米的纸片,对折一次后的厚度是2×0.1毫米.(1)对折两次后的厚度是多少毫米?(2)假设这张纸能无限折叠下去,那么对折20次后的厚度是多少毫米?(结果用科学记数法表示,精确到千位)【考点】科学记数法与有效数字.【分析】(1)根据对折一次的厚度是0.1×21毫米,可知对折2次的厚度是0.1×22毫米;(2)根据(1)中的规律即可得出结论.【解答】解:(1)∵有一张厚度为0.1毫米的纸,将它对折一次后,厚度为2×0.1毫米,∴对折2次的对折两次的厚度是0.1×22=0.4毫米.答:对折2次的对折两次的厚度是0.4毫米;(2)对折20次的对折两次的厚度是0.1×220毫米≈1.05×105(毫米).答:对折20次的厚度大约是1.05×105毫米.24.为体现社会对教师的尊重,今年教师节出租车司机小王在东西方向的公路上免费接送教师,如果规定向东为正,向西为负,出租车的行程如下(单位:千米)+15,﹣4,+13,﹣10,﹣12,+3,﹣13,﹣17(1)最后一名教师被送到目的地时,小王在出发地的什么位置?(2)若汽车耗油量为0.4升/千米,小王出发前加满了40升油,当他送完最后一名教师后,问他能否开车顺利返回?为什么?【考点】正数和负数.【分析】(1)将记录的数字相加得到结果,即可做出判断;(2)将记录的数字绝对值相加得到总路程数,再乘以0.4即可得到耗油升数.【解答】解:(1)根据题意得:15﹣4+13﹣10﹣12+3﹣13﹣17=﹣25,则小王在出发地的西25千米位置;(2)15+|﹣4|+13+|﹣10|+|﹣12|+3+|﹣13|+|﹣17|=87,87×0.4=34.8(升),∴共耗油34.8升.34.8+|﹣25|×0.4=44.8>40,所以不能开车顺利返回.25.同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=7.(2)找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2.(3)由以上探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.【考点】绝对值;数轴.【分析】(1)直接去括号,再按照去绝对值的方法去绝对值就可以了.(2)要x的整数值可以进行分段计算,令x+5=0或x﹣2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.【解答】解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x﹣2=0时,则x=﹣5或x=2当x<﹣5时,∴﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(范围内不成立)当﹣5<x<2时,∴(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(范围内不成立)∴综上所述,符合条件的整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)的探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|有最小值为3.26.读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为,这里“”是求和符号.例如:“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为;又如“13+23+33+43+53+63+73+83+93+103”可表示为.同学们,通过对以上材料的阅读,请解答下列问题:①2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为2n;②计算:=50(填写最后的计算结果).【考点】整式的混合运算.【分析】(1)2+4+6+8+10+…+100表示从2开始的100以内50个的连续偶数的和,由通项公式为2n,n从1到50的连续偶数的和,根据题中的新定义用求和符号表示即可;(2)根据题意得到原式表示n2﹣1,当n=1,2,3,4,5时,对应的五个式子的和,表示出五个式子的和,即可得到最后的结果.【解答】解:(1)2+4+6+8+10+…+100=2n;(2)(n2﹣1)=(12﹣1)+(22﹣1)+(32﹣1)+(42﹣1)+(52﹣1)=0+3+8+15+24=50.故答案为:2n;502016年12月5日。

2015-2016学年第一学期红山区数学期末测试题

2015-2016学年第一学期红山区数学期末测试题

2015-2016学年第一学期红山区七年级学习评价一、选择题(本大题共8小题,每小题3分,共24分) 1.-5的相反数是( ) A.51 B.51- C.5 D.-5 2.下列图形中正确的表示数轴的是( )A B C D 3.多项式22b a +-的二次项系数是( )A.2B.-2C.1D.-14.如图,在直线上顺次取A 、B 、C 、D 四点,则下列表示不正确的是( )A.AC=AB+BCB.AD=AC+CDC.CD=BD-BCD.AB=AD-CD5.下列说法:①若2=x ,则2±=x ;②1是单项式,且它的次数为1;③在直线、射线中,射线比直线短;④对于有理数m 、a 、b ,若ma=mb ,则a=b.其中正确的是( ) A.①② B.①④ C.③④ D.①6.某商品提价25%后,欲恢复原价,则应降价( )A.15%B.25%C.20%D.50% 7.下列四个图中,是三棱锥的表面展开图的是( )A B C D8.若()()08112=++--x m x m 是关于x 的一次方程,则m 的取值为( ) A.1 B.-1 C.1± D.1≠m 的全体有理数 二、填空题(本大题共8个小题,每小题3分,共24分)9.据统计,赤峰市红山区常住人口约为430000人,将430000用科学记数法表示为。

10.①比较大小:-3-2 ②οο544.54=';③已知'18351ο=∠,则1∠的余角是ο. 11.化简:-(-6)=;=-3;()[]=+--52。

13.四棱柱有个面,这些面相交形成了条棱,这些棱相交形成了点。

14.X=2是方程2x-3=n-21x 的解,则2n+6=。

15.如果多项式21231x y x m +-+-是三次二项式,则m=。

16.已知方程()02≠+-=-ab axb b a x 是关于x 的一元一次方程,则a ,b 之间的关系是。

三、解答题(本大题共10个小题,满分102分,解答时应写出必要的文字说明、证明过程或验算步骤) 17.(本题满分8分)计算:(1)(-9)x (-8)÷3-25 (2)()32433236--⎪⎭⎫ ⎝⎛-⨯18.(本题满分10分)解下列方程:(1)363-=-x x (2)613121+-=-x x19.(本题满分6分)列式计算下列问题: 一天,小红与小丽利用温差测量山的高度,小红在山顶测得温度是-4℃,小丽此时在山脚测得温度是6℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?20.(本题满分10分)先化简,再求值。

七年级数学下学期开学试卷(含解析) 新人教版-新人教版初中七年级全册数学试题

七年级数学下学期开学试卷(含解析) 新人教版-新人教版初中七年级全册数学试题

2015-2016学年某某省潍坊市高密市银鹰某某中学七年级(下)开学数学试卷一、选择题(请将正确答案填入下表中,每小题3分,共30分)1.下列几何体没有曲面的是()A.圆锥 B.圆柱 C.球D.棱柱2.下面4个图均由6个小正方形组成,若以每个小正方形为面,则可以折叠成正方体的是()A.B. C.D.3.平面上有3条直线,则交点可能是()A.1个B.1个或3个C.1个或2个或3个D.0个或1个或2个或3个4.已知A、B、C是同一直线上的三个点,且AB=5cm,BC=4cm,则AC的长为()A.1cm B.9cm C.1cm或9cm D.不能确定5.如图,下列各式中错误的是()A.AB=AD+DB B.CB=AB﹣AC C.CD=CB﹣DB D.AC=CB﹣DB6.下列说法:①﹣2.5既是负数、分数,也是有理数;②﹣22既是负数、整数,也是自然数;③0既不是正数,也不是负数,但是整数;④0是非负数.其中正确的有()A.1个B.2个C.3个D.4个7.下列说法错误的是()A.若AP=BP,则点P是线段的中点B.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.两点之间,线段最短8.a、b两数在数轴上的位置如图所示,下列结论中正确的是()A.a<0 B.a>1 C.b>﹣1 D.b<﹣19.|﹣2|的相反数为()A.﹣2 B.2 C.D.10.一个点从数轴上的原点开始,先向右移动2个单位长度,再向左移动3个单位长度,经过两次移动后到达的终点表示的是什么数?()A.+5 B.+1 C.﹣1 D.﹣5二、填空:(每小题3分,共24分)11.工人师傅在砌墙时,先在两端各固定一点,中间拉紧一条细线,然后沿着细线砌墙就能砌直.运用的数学原理:.12.如图,从公园甲到公园乙的三条路线中,最短的是,这是因为.13.最小的正整数是,最大的负整数是.14.如果a与1互为相反数,则|a+2|等于.15.在数轴上,与原点距离为4的点表示的数是.16.小明与小刚规定了一种新运算*:若a、b是有理数,则a*b=3a﹣2b.小明计算出2*5=﹣4,请你帮小刚计算2*(﹣5)=.17.绝对值大于5并且小于8的所有整数是.所有绝对值小于4的负整数的乘积是.18.计算:(﹣1)+2+(﹣3)+4+…+50=.三、解答题19.画出数轴,把下列各组数分别在数轴上表示出来,并按从大到小的顺序排列,用“>”连接起来:1,﹣2,3,﹣4,1.6,3,﹣2,0.20.计算(1)(﹣2.48)+(+4.33)+(﹣7.52)+(﹣4.33)(2)(+3)+(﹣5)+(﹣2)+(﹣32)(3)﹣(+)﹣(+)+(4)﹣14﹣×[2﹣(﹣3)2].21.计算(1)(﹣)÷×(﹣)÷(﹣)(2)﹣3﹣[﹣5+×)÷(﹣2)](3)(4﹣3)×(﹣2)﹣2÷(﹣)(4)[50﹣(﹣+)×(﹣6)2]÷(﹣7)2.22.某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,小组的出发地记为0,某天检修完毕时,行走记录(单位:千米)如下:+10,﹣2,+3,﹣1,+9,﹣3,﹣2,+11,+3,﹣4,+6.(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?(2)若检修车每千米耗油2.8升,求从出发到收工共耗油多少升?2015-2016学年某某省潍坊市高密市银鹰某某中学七年级(下)开学数学试卷参考答案与试题解析一、选择题(请将正确答案填入下表中,每小题3分,共30分)1.下列几何体没有曲面的是()A.圆锥 B.圆柱 C.球D.棱柱【考点】认识立体图形.【分析】根据立体图形的形状即可判断.【解答】解:A、圆锥由一个平面和一个曲面组成,不符合题意;B、圆柱由2个平面和一个曲面组成,不符合题意;C、球由一个曲面组成,不符合题意;D、棱柱是由多个平面组成,符合题意.故选D.2.下面4个图均由6个小正方形组成,若以每个小正方形为面,则可以折叠成正方体的是()A.B. C.D.【考点】展开图折叠成几何体.【分析】根据正方体展开图的11种形式对各小题分析判断即可得解.【解答】解:A、折叠后无法组成正方体,故此选项错误;B、折叠后可以组成正方体,故此选项正确;C、折叠后无法组成正方体,故此选项错误;D、折叠后无法组成正方体,故此选项错误;故选:B.3.平面上有3条直线,则交点可能是()A.1个B.1个或3个C.1个或2个或3个D.0个或1个或2个或3个【考点】相交线.【分析】根据题意画出图形,根据图形判断即可.【解答】解:3条直线的分布情况可能是:如图,交点个数分别是0个或1个或2个或3个,故选D.4.已知A、B、C是同一直线上的三个点,且AB=5cm,BC=4cm,则AC的长为()A.1cm B.9cm C.1cm或9cm D.不能确定【考点】两点间的距离.【分析】根据题意画出图形,根据点C在AB之间与点C在AB外两种情况进行讨论.【解答】解:当如图1所示时,∵AB=5cm,BC=4cm,∴AC=5+4=9(cm);当如图2所示时,∵AB=5cm,BC=4cm,∴AC=5﹣4=1(cm).故选C.5.如图,下列各式中错误的是()A.AB=AD+DB B.CB=AB﹣AC C.CD=CB﹣DB D.AC=CB﹣DB【考点】两点间的距离.【分析】结合图形,求出各个式子,再判断即可.【解答】解:A、AB=AD+DB,正确,故本选项错误;B、CB=AB﹣AC,正确,故本选项错误;C、CD=CB﹣DB,正确,故本选项错误;D、CD=CB﹣DB,而AC和CD不一定相等,错误,故本选项正确;故选D.6.下列说法:①﹣2.5既是负数、分数,也是有理数;②﹣22既是负数、整数,也是自然数;③0既不是正数,也不是负数,但是整数;④0是非负数.其中正确的有()A.1个B.2个C.3个D.4个【考点】有理数.【分析】按照有理数的分类即有理数,即可得出答案.【解答】解:①﹣2.5既是负数、分数,也是有理数,正确;②﹣22既是负数、整数,但不是自然数,错误;③0既不是正数,也不是负数,但是整数,正确;④0是非负数,正确;故选C.7.下列说法错误的是()A.若AP=BP,则点P是线段的中点B.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.两点之间,线段最短【考点】两点间的距离.【分析】根据线段中点的定义,线段的和的定义,线段的性质对各选项分析后,利用排除法求解.【解答】解:A、如果点P不在线段AB上,例如AP、BP是等腰三角形ABP的两条腰,那么AP=BP,但是点P不是线段AB的中点,原说法错误,故本选项符合题意;B、若点C在线段AB上,则AB=AC+BC,原说法正确,故本选项不符合题意;C、若AC+BC>AB,则点C不可能在线段AB上,因为如果点C在线段AB上,那么AC+BC=AB,与已知条件AC+BC>AB矛盾,则点C一定在线段AB外,原说法正确,故本选项不符合题意;D、两点之间,线段最短,原说法正确,故本选项不符合题意.故选A.8.a、b两数在数轴上的位置如图所示,下列结论中正确的是()A.a<0 B.a>1 C.b>﹣1 D.b<﹣1【考点】数轴.【分析】根据数轴可以得到b、﹣1、0、a的大小关系,从而可以得到哪个选项是正确的.【解答】解:由数轴可得:b<﹣1<0<a.故选D.9.|﹣2|的相反数为()A.﹣2 B.2 C.D.【考点】相反数;绝对值.【分析】利用相反数,绝对值的概念及性质进行解题即可.【解答】解:∵|﹣2|=2,∴|﹣2|的相反数为:﹣2.故选A.10.一个点从数轴上的原点开始,先向右移动2个单位长度,再向左移动3个单位长度,经过两次移动后到达的终点表示的是什么数?()A.+5 B.+1 C.﹣1 D.﹣5【考点】数轴.【分析】根据向右移动用加,向左移动用减,求出经过两次移动后到达的终点表示的是什么数即可.【解答】解:∵0+2﹣3=﹣1,∴经过两次移动后到达的终点表示的是﹣1.故选:C.二、填空:(每小题3分,共24分)11.工人师傅在砌墙时,先在两端各固定一点,中间拉紧一条细线,然后沿着细线砌墙就能砌直.运用的数学原理:两点确定一条直线.【考点】直线的性质:两点确定一条直线.【分析】直接根据直线的性质即可得出结论.【解答】解:∵经过两点有且只有一条直线,∴工人师傅在砌墙时,先在两端各固定一点,中间拉紧一条细线,然后沿着细线砌墙就能砌直.故答案为:两点确定一条直线.12.如图,从公园甲到公园乙的三条路线中,最短的是(3),这是因为两点之间线段最短.【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质:两点之间线段最短进行解答.【解答】解:从公园甲到公园乙的三条路线中,最短的是(3),这是因为两点之间线段最短.故答案为:(3);两点之间线段最短.13.最小的正整数是 1 ,最大的负整数是﹣1 .【考点】有理数.【分析】根据有理数的相关知识进行解答.【解答】解:最小的正整数是1,最大的负整数是﹣1.14.如果a与1互为相反数,则|a+2|等于 1 .【考点】绝对值;相反数.【分析】根据相反数的定义,求出a的值为﹣1,将a=﹣1代入|a+2|,再根据绝对值的性质去绝对值即可.【解答】解:∵a与1互为相反数,∴a=﹣1,把a=﹣1代入|a+2|得,|a+2|=|﹣1+2|=1.故答案为1.15.在数轴上,与原点距离为4的点表示的数是±4 .【考点】数轴.【分析】先设出这个数为x,再根据数轴上各点到原点的距离进行解答即可.【解答】解:设这个数是x,则|x|=4,解得x=+4或﹣4.故答案为:±4.16.小明与小刚规定了一种新运算*:若a、b是有理数,则a*b=3a﹣2b.小明计算出2*5=﹣4,请你帮小刚计算2*(﹣5)= 16 .【考点】有理数的混合运算.【分析】根据题中的新定义a*b=3a﹣2b,将a=2,b=﹣5代入计算,即可求出2*(﹣5)的值.【解答】解:根据题中的新定义得:2*(﹣5)=3×2﹣2×(﹣5)=6+10=16.故答案为:16.17.绝对值大于5并且小于8的所有整数是±6,±7 .所有绝对值小于4的负整数的乘积是﹣6 .【考点】绝对值.【分析】根据绝对值概念:数轴上某个数与原点的距离叫做这个数的绝对值可得绝对值大于5而小于8的所有整数是±6,±7;先根据绝对值的性质求出所有所有符合条件的整数,再求出符合条件的整数,求出其积即可.【解答】解:绝对值大于5并且小于8的所有整数是±6,±7;∵绝对值小于4的所有整数是﹣3,﹣2,﹣1,0,1,2,3,∴符合条件的负整数是﹣3,﹣2,﹣1,∴其积为:(﹣3)×(﹣2)×(﹣1)=﹣6.故答案为:±6,±7;﹣6.18.计算:(﹣1)+2+(﹣3)+4+…+50= 25 .【考点】有理数的加法.【分析】原式结合后,相加即可得到结果.【解答】解:原式=(﹣1+2)+(﹣3+4)+…+(﹣49+50)=1+1+…+1=25.故答案为:25.三、解答题19.画出数轴,把下列各组数分别在数轴上表示出来,并按从大到小的顺序排列,用“>”连接起来:1,﹣2,3,﹣4,1.6,3,﹣2,0.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出来,再根据右边的数总比左边的数大,即可得出答案.【解答】解:根据题意画图如下:用“>”连接起来:3>3>>1>0>﹣2>﹣2>﹣4.20.计算(1)(﹣2.48)+(+4.33)+(﹣7.52)+(﹣4.33)(2)(+3)+(﹣5)+(﹣2)+(﹣32)(3)﹣(+)﹣(+)+(4)﹣14﹣×[2﹣(﹣3)2].【考点】有理数的混合运算.【分析】(1)原式结合后,相加即可得到结果;(2)原式结合后,相加即可得到结果;(3)原式结合后,相加即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=(﹣2.48﹣7.52)+[(+4.33)+(﹣4.33)]=﹣10;(2)原式=(3﹣2)+(﹣5﹣32)=1﹣38=﹣36;(3)原式=(﹣)+(﹣+)=﹣=﹣;(4)原式=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.21.计算(1)(﹣)÷×(﹣)÷(﹣)(2)﹣3﹣[﹣5+×)÷(﹣2)](3)(4﹣3)×(﹣2)﹣2÷(﹣)(4)[50﹣(﹣+)×(﹣6)2]÷(﹣7)2.【考点】有理数的混合运算.【分析】(1)原式从左到右依次计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣×××=﹣;(2)原式=﹣3+5+(1﹣)×=﹣3+5+=2;(3)原式=﹣+7+=3;(4)原式=(50﹣28+33﹣6)×=49×=1.22.某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,小组的出发地记为0,某天检修完毕时,行走记录(单位:千米)如下:+10,﹣2,+3,﹣1,+9,﹣3,﹣2,+11,+3,﹣4,+6.(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?(2)若检修车每千米耗油2.8升,求从出发到收工共耗油多少升?【考点】正数和负数.【分析】(1)求得记录的数的和,根据结果即可确定所处的位置;(2)求得记录的数的绝对值的和,乘以2.8即可求解.【解答】解:(1)10﹣2+3﹣1+9﹣3﹣2+11+3﹣4+6=+30,则距出发地东侧30米.(2)(10+2+3+1+9+3+2+11+3+4+6)×2.8=151.2(升).则共耗油151.2升.。

江西省吉安县立中学2023-2024学年七年级下学期期末数学试题(含详细答案)

江西省吉安县立中学2023-2024学年七年级下学期期末数学试题(含详细答案)

2023~2024学年度第二学期期末质量检测七年级数学试卷说明:1.本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共6小题,每题3分,共18分)1. 下列事件中,是必然事件的是( )A. 两条线段可以组成一个三角形B. 400人中有两个人的生日在同一天C. 早上的太阳从西方升起D. 打开电视机,它正在播放动画片2. 据报道:芯片被誉为现代工业的掌上明珠,芯片制造的核心是光刻技术,我国的光刻技术水平已突破到.已知,则用科学记数法表示为是( )m .A. B. C. D. 3. 如图,下列条件中,不能判断直线的是( )A. B. C. D. 4. 小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s 米,所经过的时间为t 分钟,下列选项中的图像,能近似刻画s 与t 之间关系的是( )A. B.C. D.5. 如图,点,分别是,平分线上的点,于点,于点,14nm 91nm 10m -=14nm 91410-⨯101410-⨯101.410-⨯81.410-⨯12l l ∥13∠=∠23∠∠=45∠=∠24180∠+∠=︒A B NOP ∠MOP ∠AB OP ⊥E BC MN ⊥C于点,则以下结论错误的是( )A. B. C. 与相等的角只有 D. 6. 如图,在和中,与相交于点,与相交于点,与相交于点,,,.给出下列结论:①;②;③;④.其中正确结论是( )A. ①③④B. ①②③④C. ①②③D. ①②④二、填空题(本大题共6小题,每题3分,共18分)7. 计算:_____________.8. 在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为________.9. 如图,直线,直线与直线相交于点A ,与直线相交于点,且,若,则____.10. 如图,在中,,,,是边上的动点,且点从点向点A运动.若设,的面积为,则与之间的关系式为_____________(不写的取值范围)的AD MN ⊥D AD BC AB+=90AOB ∠∠= CBO ∠EBO ∠OC OD=Rt AEB Rt AFC △BE AC M CF D AB CF N 90E F ∠∠==︒EAC FAB ∠∠=AE AF =B C ∠=∠CD DN =BE CF =ACN ABM ≅ ()224a b ab ⨯-=a b l a b B AC l ⊥155∠=︒2∠=︒Rt ABC △90C ∠=o 4BC =6AC =D AC D C CD x =ABD △y y x x11. 如图,在中,,,,点,分别在,上,且与关于对称,则的周长为_____________.12. 在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”,例如:三个内角分别为,,的三角形是“灵动三角形”.如图,,在射线上找一点,过点作交于点,以为端点作射线,交线段于点(规定).当为“灵动三角形”时,则的度数为_____________.三、解答题(本大题共5小题,每题6分,共30分)13. (1)计算:;(2)如图,已知,,,试说明.ABC 8cm AB =4cm AC =5cm =BC D E AC AB BCD △BED BD ADE V cm 120︒40︒20︒60MON ∠=︒OM A A AB OM ⊥ON B A AD OB C 090OAC <∠<︒︒ABC OAC ∠()()()2311x x x +-+-BAC DAE ∠=∠12∠=∠AD AE =AB AC =14. 先化简,再求值:,其中,.15. 如图,点为边上一点,过作,交于,且平分,那么有.请你完善下面的推理过程,推理过程如下:∵(已知),(两直线平行,内错角相等)()平分() (角平分线的定义)( )即:.16. 在正方形网格上有一个.(1)画关于直线的对称图形(不写画法);(2)在直线上找一点,使最短;(3)若网格上的每个小正方形的边长为1,则的面积为 .17. 如图,直线与分别是边和的垂直平分线,与分别交边于点和点.的()()()()22432x y x y x y x ⎡⎤+-++÷⎣⎦2x =-2y =E ABC AB E EF AC ∥BC F EF BED ∠EGA A ∠=∠EF AC ∥1∴∠=BEF ∠=EF BED ∠2∴∠=1A ∴∠=∠EGA A ∠∠=ABC ABC MN A B C ''' MN P PA PB +A B C ''' l m ABC AC BC l m AB D E(1)若,求的周长是多少?(2)若,问是什么三角形?说明理由.四、解答题(本大题共3小题,每题8分,共24分)18. 如图1、2均是一个均匀的可以自由转动的转盘,图1被平均分成8等份,分别标有1、2、3、4、5、6、7、8这8个数字,转动转盘,当转盘停止后,指针指向的数字即为转出的数字,图2被涂上红色与绿色,转动转盘,当转盘停止后,指针指向的颜色即为转出的颜色,小明转动图1的转盘,小亮转动图2的转盘.(1)小明转出来的数字是3的倍数的概率是;(2)小亮转出的颜色是绿色的概率是 ;(3)小颖认为,小明转出来的数字是偶数的概率与小亮转出的颜色是红色的概率相同,她的看法对吗?为什么?19. 测得一弹簧的长度与悬挂的质量有下面几组对应值:悬挂物质量()01234…弹簧的长度8910…(1)用代数式表示悬挂质量为的物体时的弹簧长度;(2)所挂物体质量为时,弹簧长度是多少?(3)若测得弹簧长度为,则所挂物体质量是多少千克?12AB =CDE 135ACB ∠= CDE ()cm y ()kg x xkg y ()cm 8.59.5()kg x ()cm y 9kg 17cm20. 如图所示的两个长方形用不同形式拼成图1和图2两个图形.(1)若图1中的阴影部分面积为;则图2中的阴影部分面积为.(用含字母的代数式表示)(2)由(1)你可以得到等式 ;(3)根据你所得到的等式解决下面的问题:①计算:;②解方程:.五、(本大题共2小题,每题9分,共18分)21. 甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,同时出发,匀速行驶,各自到达终点后停止,甲、乙离A 点的距离分别为、,与行驶的时间为之间的关系如图所示.(1)①经______小时,甲到达终点.②经______小时,甲、乙两人相遇,此时距地距离为______.③经______小时,乙到达终点.(2)A 、B 两地之间的路程为______;(3)求甲、乙各自的速度;(4)甲出发______后甲、乙两人相距.22. 已知直线,直线和直线交于点和,点是直线上一动点.的22a b -a b 、2277.7522.25-()()2212214a a +--=-S 甲(km)S 乙(h)t B km km h 180km 12L L ∥3L 12L L 、C D P 3L(1)如图①,当点在线段上运动时,①若,,则 ;②问,,之间存在什么数量关系?请你猜想结论并说明理由.(2)当点在两点的外侧运动时(点与点不重合,如图②和图③),上述(1)中的结论是否还成立?若不成立,写出,,之间的数量关系,并选择其中一种情况说明理由.六、(本大题共1小题,12分)23. 如图,在中,,,为直线上一动点,连接.在直线的右侧作,且.观察发现:(1)如图①,当点在线段上时,过点作的垂线,垂足为,判断线段与之间的关系,并说明理由;探究迁移:(2)将如图①中,连接,交直线于点,我们很容易发现.如图②,当点在线段的延长线上时,连接交直线于点,线段和线段之间的关系有没有变化?此时吗?说说理由.拓展应用:(3)如图③,当点在线段延长线上时,当,时,求和的面积.的的P CD 36PAC ∠=︒29PBD ∠=︒APB ∠=PAC ∠APB ∠PBD ∠P C D 、P C D 、PAC ∠APB ∠PBD ∠ABC 90C ∠=o BC AC =D BC AD AC AE AD ⊥AE AD =D BC E AC N EN BC B E AC M MN MC =D BC BE CA M EN BC MN MC =D CB 7AC =2CM =ABD △ABE参考答案一、选择题(本大题共6小题,每题3分,共18分)1. 解:A. 两条线段可以组成一个三角形是不可能事件,故错误,不符合题意;B. 400人中有两个人的生日在同一天是必然事件,故正确,符合题意;C. 早上的太阳从西方升起是不可能事件,故错误,不符合题意;D. 打开电视机,它正在播放动画片是随机事件,故错误,不符合题意;故选B .2.解:由题可得,故选:D .3. 解:A 、,,故不符合题意;B 、当时,无法判断,故符合题意;C 、∵,∴,故不符合题意;D 、∵,∴,故不符合题意;故选:B .4. 解:对各段时间与路程的关系进行分析如下:从家到凉亭,用时10分钟,路程600米,s 从0增加到600米,t 从0到10分,对应图像为在凉亭休息10分钟,t 从10分到20分,s 保持600米不变,对应图像为从凉亭到公园,用时间10分钟,路程600米,t 从20分到30分,s 从600米增加到1200米,对应图像为9814nm=1410m 1.410m --⨯=⨯13∠=∠ ∴12l l ∥23∠∠=12l l ∥45∠=∠12l l ∥24180∠+∠=︒12l l ∥故选:A .5. 解:∵A ,B 分别是,平分线上的点,∴,,∵,∴,故选项A 结论正确,在和中,,∴,∴,,同理可得,,∴,故B 选项结论正确,∵,∴,∵A ,B 分别是,平分线上的点,∴,,∴,,∴,∵于点C ,于点D ,∴,,∴,,与互余的角有,,,共4个,故选项C 结论错误∵,故选项D 结论正确.故选:C .6. 解:∵,∴,NOP ∠MOP ∠AD AE =BC BE =AB AE BE =+AB AD BC =+Rt AOD Rt AOE △AO AO AD AE =⎧⎨=⎩()Rt Rt HL AOD AOE ≌OD OE =AOE AOD ∠=∠OC OE =BOC BOE Ð=Ð1180902AOB ∠=⨯︒=︒BC MN ⊥90CBO COB ∠+∠=︒NOP ∠MOP ∠COB EOB ∠=∠AOD AOE ∠=∠90BOE AOE ∠+∠=︒90EOB AOE ∠+∠=︒90CBO EOB ∠+∠=︒BC MN ⊥AD MN ⊥90AOE OAD ∠+∠=︒90AOD OAE ∠+∠=︒90CBO OAD ∠+∠=︒90CBO OAE ∠+∠=︒CBO ∠COB ∠EOB ∠OAD ∠OAE ∠OC OD OE ==EAC FAB ∠=∠EAB FAC ∠=∠在和中,,∴,∴,∴①③都正确,在中,,∴,故④正确,根据已知条件无法证明②是否正确,故①③④正确,故选:A .二、填空题(本大题共6小题,每题3分,共18分)7. 解:,故答案为:.8. 解:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据旋转的性质易证阴影区域的面积=正方形面积4份中的一份,故针头扎在阴影区域的概率为;故答案为.9.解:∵,∴,∵,∴,EAB FAC 90E F AE AFEAB FAC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()ASA EAB FAC ≌,,B C BE CF AB AC ∠=∠==ACN ABM △和△B C AB ACCAN BAM ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ACN ABM ≌()224a b ab ⨯-()211124a b ++=⨯-328a b =-328a b -1414a b 2901180∠+︒+∠=︒155∠= 2180905535∠=︒-︒-︒=︒故答案为:35.10. 解:∵,,∴,∵,∴,∴,故答案为:.11.解:∵与关于对称,∴,∵,,∴,∴,故答案为:7.12.解:,,,,当时,,,,,当时,,当时,6AC =CD x =6AD x =-4BC =()116422ABD S AD BC x =⨯⨯=-⨯△122y x =-122y x =-BCD △BED BD ,CD DE BC BE ==8cm AB =5cm =BC 3cm AE AB BE AB BC =-=-=7cm ADE C AD DE AE AD DC AE AC AE =++=++=+= ⊥ AB OM 90OAB ︒∴∠=60MON ︒∠= 30ABO ∴∠=︒3ACB ABC ∠=∠30ABO ∠=︒ 90ACB ∴∠=︒60CAB ∴∠=︒30OAC ∴∠=︒3ABC CAB ∠=∠30,ABO ∠=︒ 10,CAB ∴∠︒=90,OAB ∠=︒ 80OAC ∴∠=︒3ACB CAB ∠=∠30,ABO ∠=︒,综上所述,的度数为或或,故答案为:或或三、解答题(本大题共5小题,每题6分,共30分)13.解:(1) ;(2) ,,,在与中,,,.14. 解:[(x +2y )2−(x +4y )(3x +y )]÷(2x )=[x 2+4xy +4y 2−3x 2−xy−12xy−4y 2]÷(2x )=[−2x 2−9xy]÷(2x )=−x−y ,当x =−2,y =2是,原式=−(−2)−×2=−7.15. 证明:∵(已知),(两直线平行,内错角相等)(两直线平行,同位角相等)418030150,CAB ∴∠=-︒=︒︒37.5,CAB ∠=︒∴9037.552.5OAC ︒∴∠=︒-︒=OAC ∠80︒52.5︒30︒80︒52.5︒30︒()()()2311x x x +-+-()22691x x x =++--22691x x x =++-+610x =+BAC DAE ∠=∠ BAC DAC DAE DAC ∴∠-∠=∠-∠BAD CAE ∴∠=∠ABD △ACE △12BAD CAE AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABD ACE ∴≅ AB AC ∴=9292EF AC ∥1∴∠=2∠BEF ∠=A ∠平分(已知)(角平分线的定义)(等量代换)即.故答案为:; ; 同两直线平行,同位角相等; 已知; (或者填); 等量代换16.解:(1)关于直线的对称图形如图:(2)如图,点P 为所求:(3)的面积,故答案为:;17. 解:(1)直线与分别是边和的垂直平分线,,,;(2)解:,,,,,,,EF BED ∠2∴∠=3∠1A ∴∠=∠EGA A ∠=∠2∠A ∠3∠BEF ∠ABC MN A B C ''' 1115232131122222=⨯-⨯⨯-⨯⨯-⨯⨯=52l m ABC AC BC DA DC ∴=EC EB =12CDE C DC DE CE AD DE EB AB ∴=++=++== DA DC =Q EC EB =A ACD ∠∠∴=B BCE ∠∠=135ACB ∠=︒ 18013545ACD BCE A B ∠∠∠∠∴+=+=︒-︒=︒()1354590DCE ACB ACD BCE ∠∠∠∠∴=-+=︒-︒=︒是直角三角形.四、解答题(本大题共3小题,每题8分,共24分)18.解:(1)图1的转盘被平均分成8等份,转到每个数字的可能性相等,共有8种可能结果,数字是3的倍数的结果有2种,转出来的数字是3的倍数的概率是.故答案为;(2)图2的转盘被涂上红色与绿色,其中绿色部分所在扇形圆心角的度数是,转出的颜色是绿色的概率是.故答案为;(3)她的看法错误.理由如下:小明转出来的数字是偶数的概率是,小亮转出的颜色是红色的概率是,,小颖的看法错误.19. 解:(1)由表可得,悬挂质量每增加1千克,弹簧长度增加,∵弹簧原来的长度为,∴弹簧的长度与增加的质量关系为:;(2)解:所挂物体质量为时,此时;(3)解:若测得弹簧长度为,此时,解得:,即若测得弹簧长度为,则所挂物体质量是18千克.20. 解:(1)图2中的阴影部分面积为;故答案为:;(2)由(1)你可以得到的等式是:;故答案为:;CDE ∴ ∴2184=14120︒∴12013603=134182=12133-=1223≠∴0.5cm 8cm 80.5y x =+9kg 80.5912.5cm y =+⨯=17cm 80.517y x =+=18x =17cm ()()a b a b +-()()a b a b +-22()()a b a b a b -=+-22()()a b a b a b -=+-(3)①;②,,,.五、(本大题共2小题,每题9分,共18分)21. 解:(1)根据函数图象知,①经6小时,甲到达终点.②经2小时,甲、乙两人相遇,因为乙的速度,此时距地的距离为.③经3小时,乙到达终点.故答案为:6;2;160;3;(2)根据函数图象知,A 、B 两地之间的路程为;故答案为:240;(3)甲的速度为,乙的速度;(4)设甲出发后甲、乙两人相距,相遇前,由题意得,解得;相遇后,由题意得,解得,不合题意,舍去;乙到达终点后,由题意得,解得;综上,甲出发或后甲、乙两人相距.故答案为:或.2277.7522.25-(77.7522.25)(77.7522.25)=+-10055.5=⨯5550=()()2212214a a +--=-(1221)(1221)4a a a a ∴++-+-+=-84a ∴=-12a ∴=-()h 240803km /=B ()280=160km ⨯240km ()h 240406km /=()h 240803km /=h x 180km 4080180240x x ++=0.5x =4080180240x x +-=3.5x =40180x =4.5x =0.5 4.5h 180km 0.5 4.5h22.解:(1)①∵,,∴,∵,,∴,∵,∴,∴,∵,∴.②解:猜想:.理由:由上可得,,∴,∵,∴,∴,化简可得.(2)不成立,如图:,理由:过点作,∴,∵,∴,∴,180PBD PDB BPD ∠+∠+∠=︒180APC ACP PAC ∠+∠+∠=︒360PBD PDB BPD APC ACP PAC ∠+∠+∠+∠+∠+∠=︒36PAC ∠=︒29PBD ∠=︒295PDB BPD APC ACP ∠+∠+∠+∠=︒12L L ∥180PDB ACP ∠+∠=︒295180115BPD APC ∠+∠=︒-︒=︒180BPD APC APB ∠+∠+∠=︒18011565APB ∠=︒-︒=︒APB PAC PBD ∠=∠+∠360PBD PDB BPD APC ACP PAC ∠+∠+∠+∠+∠+∠=︒180PDB ACP ∠+∠=︒360180180PBD BPD APC PAC ∠+∠+∠+∠=︒-︒=︒180BPD APC APB ∠+∠+∠=︒180BPD APC APB ∠+∠=︒-∠180180PBD APB PAC ∠+︒-∠+∠=︒APB PAC PBD ∠=∠+∠2PAC APB PBD ∠=∠+∠P 1PE L APE PAC ∠=∠12L L ∥2PE L BPE PBD ∠=∠∵,∴;如图:,理由:过点P 作,∴,∵,∴,∴,∵,∴.六、(本大题共1小题,12分)23. 解:(1) 且在与中,,APB APE BPE PAC PBD ∠=∠-∠=∠-∠PAC APB PBD ∠=∠+∠3PBD PAC APB ∠=∠+∠1PE L APE PAC ∠=∠12L L ∥2PE L BPE PBD ∠=∠APB BPE APE PBD PAC ∠=∠-∠=∠-∠PBD PAC APB ∠=∠+∠EN BC =EN BC∥90DAC CAE ∠∠+=90E CAE ∠∠+=E DAC∴∠=∠EAN ADC △90C ANE E DACAD AE ⎧∠=∠=⎪∠=∠⎨⎪=⎩()AAS EAN ADC ∴ ≌,90EN AC ENA C ∴=∠=∠=︒90ENC C ∴∠=∠=︒EN BC∴∥BC AC=(2) 它们的关系没有变化,此时,,,,在与中,,在与中(3) 由(2)可得,和仍然成立EN BC∴=MN MC =90DAC NAE ∠∠+= 90AEN NAE ∠∠+= DAC AEN ∠∠∴=EAN ADC △90ACD ANE AEN DACAD AE ⎧∠=∠=⎪∠=∠⎨⎪=⎩()AAS EAN ADC ∴ ≌EN AC ∴=90ACD ENA ∠=∠=︒EN BC∴∥BC AC= EN BC∴=MEN MBC 90BMC EMN N ACB EN BC ∠=∠⎧⎪∠=∠=⎨⎪=⎩()AAS MEN MBC ∴ ≌MN MC=EAN ADC ≌MEN MBC ≌2MC MN ∴==7AC BC EN ===1174BD AN BC =-=-=11471422ABD S BD AC ∴=⨯⨯=⨯⨯= 11119797632222ABE S AM BC AM EN =⨯⨯+⨯⨯=⨯⨯+⨯⨯=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年江西省七年级(下)期末数学试卷 学校:___________姓名:___________班级:___________考号:___________
一、选择题(本大题共6小题,共18.0分)
1.如图,直线a ∥b ,直线c 分别与a 、b 相交于点A 、B .已
知∠1=35°,则∠2的度数为( )
A.165°
B.155°
C.145°
D.135°
2.若m >n ,下列不等式不一定成立的是( )
A.m +2>n +2
B.2m >2n
C.m 2>n 2
D.m 2>n 2
3.与1+ 5最接近的整数是( )
A.4
B.3
C.2
D.1
4.一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是( )
A.a +1
B.a 2+1
C. a 2+1
D. a +1
5.点P (2-a ,2a -1)到x 轴的距离为3,则a 为( )
A.2
B.-2
C.2或-1
D.-1
6.小华和小明到同一早餐店买汉堡和豆浆,已知小华买了5个汉堡和5杯豆浆;小明买了7个汉堡和3杯豆浆,且小华花的钱比小明花的钱少10元,关于汉堡和豆浆的价钱,下列叙述正确的是( )
A.2个汉堡比2杯豆浆多10元
B.2个汉堡比2杯豆浆少10元
C.12个汉堡比8杯豆浆多10元
D.12个汉堡比8杯豆浆少10元
二、填空题(本大题共8小题,共24.0分)
7.不等式13(x -m )>3-m 的解集为x >1,则m 的值为 ______ .
8.若实数m ,n 满足(m -1)2+ n +2=0,则(m +n )5= ______ .
9.若a 2=b 2,则a =b ,这个命题是 ______ (填“正确的”或“错误的”).
10.方程组 5x −2y −4=0x +y −5=0
的解是 ______ . 11.学生问老师:“您今年多大了”老师风趣地说:“我像你这么大时,你刚1岁;你到我这么大时,我已37岁了”.那么老师现在的年龄是 ______ 岁.
12.小华将若干个苹果放进若干个筐子里,若每只筐子放4只苹果,还剩20个苹果未放完;若每个筐子放8个苹果,则还有一个筐子没有放满,那么小华原来共有苹果 ______ 个.
13.按商品质量规定:商店出售的标明500g 的袋装食盐,其实际克数与所标克数相差不能超过5g ,设实际克数是x 个,则x 应满足的不等式是 ______ .
14.七(一)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据整理如下表(部分):
若该小区有800户家庭,据此估计该小区月均用水量不超过103的家庭约有 ______ 户.
15.如图,AD∥EF,∠1=∠2,求证:AB∥DG.
四、计算题(本大题共1小题,共6.0分)
16.解方程组:.
五、解答题(本大题共7小题,共54.0分)
17.解不等式组:3x−1
2<1
5x−12≤2(4x−3)
,并把它的解集在
数轴上表示出来.
18.在如图所示的正方形网格中,每个小正方形的边长均为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(-4,5)、(-1,3).
(1)请在如图所示的网格平面内画出平面直角坐标系;(2)请把三角形ABC先向右平移5个单位长度,再向下平移3个单位长度得到三角形A′B′C′,在图中画出三角形A′B′C′;
(3)求三角形ABC的面积.
19.如图中,A、B两点的坐标分别为(2,3)、(4,
1),
(1)求△ABO的面积.
(2)把△ABO向下平移3个单位后得到一个新三
角形△O′A′B′,求△O′A′B′的3个顶点的
坐标.
20.已知关于x的方程5m+2x=-1
2
+4x的解是x=4,求关于y的不等式(m-3)y<-6的解集.
21.(经典题)已知关于x的不等式组x−a≥0
3−2x>−1的整数解共有5个,求a的取值范围.
22.某校九年级(1)班所有学生参加2012年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:
(1)九年级(1)班参加体育测试的学生有______ 人;
(2)将条形统计图补充完整;
(3)在扇形统计图中,等级B部分所占的百分比是______ ,等级C对应的圆心角的度数为______ °.
23.如图,在下面直角坐标系中,已知A(0,a),B(b,
0),C(b,c)三点,其中a、b、c满足关系式|a-2|+(b-3)
2=0,(c-4)2≤0
(1)求a、b、c的值;
(2)如果在第二象限内有一点P(m,1
2
),请用含m的
式子表示四边形ABOP的面积;
(3)在(2)的条件下,是否存在点P,使四边形ABOP
的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.
六、计算题(本大题共1小题,共12.0分)
24.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:
(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?
(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?。

相关文档
最新文档