小学六年级奥数-简便运算(二)
六年级奥数之简便运算
简便运算(一)一、知识要点根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质:a-b-c = a-(b+c),使运算过程简便。
所以原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1:计算下面各题。
1. 6.73-2 又8/17+(3.27-1又9/17)2. 7又5/9-(3.8+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-2.1254. 13又7/13-(4又1/4+3又7/13)-0.75【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后,利用积的变化规律和乘法分配律使计算简便。
所以:原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790=100000×790=79000000练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/52. 975×0.25+9又3/4×76-9.753. 9又2/5×425+4.25÷1/604. 0.9999×0.7+0.1111×2.7【例题3】计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法,仔细观察数的特征后可知:36 = 1.2×30。
这样一转化,就可以运用乘法分配律了。
所以原式=1.2×30×1.09+1.2×67.3=1.2×(30×1.09+1.2×67.3)=1.2×(32.7+67.3)=1.2×100=120练习3:计算:1. 45×2.08+1.5×37.62. 52×11.1+2.6×7783. 48×1.08+1.2×56.84. 72×2.09-1.8×73.6【例题4】计算:3又3/5×25又2/5+37.9×6又2/5【思路导航】虽然3又3/5与6又2/5的和为10,但是与它们相乘的另一个因数不同,因此,我们不难想到把37.9分成25.4和12.5两部分。
小学六年级奥数简便运算(含答案)
简便运算(一)一、知识要点根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质:a-b-c = a-(b+c),使运算过程简便。
所以原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1:计算下面各题。
1. 6.73-2 又8/17+(3.27-1又9/17)2.7又5/9-(3.8+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-2.1254.13又7/13-(4又1/4+3又7/13)-0.75【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后,利用积的变化规律和乘法分配律使计算简便。
所以:原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790=100000×790=79000000练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/52. 975×0.25+9又3/4×76-9.753.9又2/5×425+4.25÷1/604. 0.9999×0.7+0.1111×2.7【例题3】计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法,仔细观察数的特征后可知:36= 1.2×30。
这样一转化,就可以运用乘法分配律了。
所以原式=1.2×30×1.09+1.2×67.3=1.2×(30×1.09+1.2×67.3)=1.2×(32.7+67.3)=1.2×100=120练习3:计算:1. 45×2.08+1.5×37.62. 52×11.1+2.6×7783. 48×1.08+1.2×56.84. 72×2.09-1.8×73.6【例题4】计算:3又3/5×25又2/5+37.9×6又2/5【思路导航】虽然3又3/5与6又2/5的和为10,但是与它们相乘的另一个因数不同,因此,我们不难想到把37.9分成25.4和12.5两部分。
小学六年级奥数简便运算
简便运算(一)一、知识要点根据算式的结构和数的特征.灵活运用运算法则、定律、性质和某些公式.可以把一些较复杂的四则混合运算化繁为简.化难为易。
二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号.使4.75和8.25相加凑整.再运用减法的性质:a-b-c = a-(b+c).使运算过程简便。
所以原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1:计算下面各题。
1. 6.73-2 又8/17+(3.27-1又9/17)2. 7又5/9-(3.8+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-2.1254. 13又7/13-(4又1/4+3又7/13)-0.75【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后.利用积的变化规律和乘法分配律使计算简便。
所以:原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790=100000×790=79000000练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/52. 975×0.25+9又3/4×76-9.753. 9又2/5×425+4.25÷1/604. 0.9999×0.7+0.1111×2.7【例题3】计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法.仔细观察数的特征后可知:36 = 1.2×30。
这样一转化.就可以运用乘法分配律了。
所以原式=1.2×30×1.09+1.2×67.3=1.2×(30×1.09+1.2×67.3)=1.2×(32.7+67.3)=1.2×100=120练习3:计算:1. 45×2.08+1.5×37.62. 52×11.1+2.6×7783. 48×1.08+1.2×56.84. 72×2.09-1.8×73.6【例题4】计算:3又3/5×25又2/5+37.9×6又2/5【思路导航】虽然3又3/5与6又2/5的和为10.但是与它们相乘的另一个因数不同.因此.我们不难想到把37.9分成25.4和12.5两部分。
小学六年级奥数简便运算(含答案)
简便运算(一)一、知识要点根据算式的结构和数的特征.灵活运用运算法则、定律、性质和某些公式.可以把一些较复杂的四则混合运算化繁为简.化难为易。
二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号.使4.75和8.25相加凑整.再运用减法的性质:a-b-c = a-(b+c).使运算过程简便。
所以原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1:计算下面各题。
1. 6.73-2 又8/17+(3.27-1又9/17)2. 7又5/9-(3.8+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-2.1254. 13又7/13-(4又1/4+3又7/13)-0.75【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后.利用积的变化规律和乘法分配律使计算简便。
所以:原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790=100000×790=79000000练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/52. 975×0.25+9又3/4×76-9.753. 9又2/5×425+4.25÷1/604. 0.9999×0.7+0.1111×2.7【例题3】计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法.仔细观察数的特征后可知:36 = 1.2×30。
这样一转化.就可以运用乘法分配律了。
所以原式=1.2×30×1.09+1.2×67.3=1.2×(30×1.09+1.2×67.3)=1.2×(32.7+67.3)=1.2×100=120练习3:计算:1. 45×2.08+1.5×37.62. 52×11.1+2.6×7783. 48×1.08+1.2×56.84. 72×2.09-1.8×73.6【例题4】计算:3又3/5×25又2/5+37.9×6又2/5【思路导航】虽然3又3/5与6又2/5的和为10.但是与它们相乘的另一个因数不同.因此.我们不难想到把37.9分成25.4和12.5两部分。
小学六年级奥数简便运算(含答案)
简便运算(一)一、知识要点根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
二、精讲精练【例题1】计算()【思路导航】先去掉小括号,使和相加凑整,再运用减法的性质:a-b-c = a-(b+c),使运算过程简便。
所以原式=+--=13-(+)=13-11=2练习1:计算下面各题。
1.-2 又8/17+(-1又9/17)2. 7又5/9-(+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-4. 13又7/13-(4又1/4+3又7/13)-【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后,利用积的变化规律和乘法分配律使计算简便。
所以:原式=×79+790×=×790+790×=(+)×790=100000×790=练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/52. 975×+9又3/4×76-3. 9又2/5×425+÷1/604. ×+×【例题3】计算:36×+×【思路导航】此题表面看没有什么简便算法,仔细观察数的特征后可知:36 = ×30。
这样一转化,就可以运用乘法分配律了。
所以原式=×30×+×=×(30×+×)=×(+)=×100=120练习3:计算:1. 45×+×2. 52×+×7783. 48×+×4. 72×-×【例题4】计算:3又3/5×25又2/5+×6又2/5【思路导航】虽然3又3/5与6又2/5的和为10,但是与它们相乘的另一个因数不同,因此,我们不难想到把分成和两部分。
小学六年级奥数简便运算(含答案)
简便运算(一)一、知识要点根据算式的结构和数的特征.灵活运用运算法则、定律、性质和某些公式.可以把一些较复杂的四则混合运算化繁为简.化难为易。
二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号.使4.75和8.25相加凑整.再运用减法的性质:a-b-c = a-(b+c).使运算过程简便。
所以原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1:计算下面各题。
1. 6.73-2 又8/17+(3.27-1又9/17)2. 7又5/9-(3.8+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-2.1254. 13又7/13-(4又1/4+3又7/13)-0.75【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后.利用积的变化规律和乘法分配律使计算简便。
所以:原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790=100000×790=79000000练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/52. 975×0.25+9又3/4×76-9.753. 9又2/5×425+4.25÷1/604. 0.9999×0.7+0.1111×2.7【例题3】计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法.仔细观察数的特征后可知:36 = 1.2×30。
这样一转化.就可以运用乘法分配律了。
所以原式=1.2×30×1.09+1.2×67.3=1.2×(30×1.09+1.2×67.3)=1.2×(32.7+67.3)=1.2×100=120练习3:计算:1. 45×2.08+1.5×37.62. 52×11.1+2.6×7783. 48×1.08+1.2×56.84. 72×2.09-1.8×73.6【例题4】计算:3又3/5×25又2/5+37.9×6又2/5【思路导航】虽然3又3/5与6又2/5的和为10.但是与它们相乘的另一个因数不同.因此.我们不难想到把37.9分成25.4和12.5两部分。
六年级奥数-简便计算
六年级奥数-简便计算 work Information Technology Company.2020YEAR简便计算——简便计算(一)【知识点拨】1.简便计算是一种特殊的计算,就是灵活、正确、合理地运用各种性质、定律,使复杂的计算变得简单,从而大幅度地提高计算速度与正确率。
2.运算定律和性质(1)加法交换律: a+b=b+a(2)加法结合律: (a+b)+c= a+(b+c)(3)乘法交换律: a×b=b×a(4)乘法结合律: (a×b)×c= a×(b×c)(5)乘法分配律: (a+b)×c=a×c+b×c(a-b)×c=a×c-b×c(a+b+c)×d=a×d+b×d+c×d(a+b-c)×d=a×d+b×d-c×d(6)减法性质: a-b-c= a-(b+c) a-(b+c)= a-b-c(7)除法性质: a÷b÷c= a÷(b×c) (b、c不能为0)(8)分数的性质:(9)添去括号法则:括号前是“+”,添、去括号不变号括号前是“-”,添、去括号要变号(10)数字前面符号搬家:在只有加减法运算中,可带数字前面符号搬家,如:a+b-c= a-c+b在只有乘、除法运算中,可带着数字前面符号搬家。
如:a×b÷c= a÷c×b(c 不为0)【典型例题】例1. 4.75-9.63+(8.25-1.37)【解析】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质,使运算过程简便。
所以:原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2例2.399998+39998+3998+398【解析】先凑成整数再减去相差的数,凑整调整后一定要与原数保持相等,所以:原式=(400000-2)+(40000-2)+(4000-2)+(400-2)=444400-8=444392【练一练】1、6.73-2+(3.27-1)2、 99【典型例题】例3. 2.5【解析】熟记25并且在做简便计算时要灵活运用小数的性质,所以:原式=2.5=10=100例4. 98【解析】利用乘法分配率,先凑成整数再加上相差的数,把101拆成100加1,凑整调整后一定要与原数保持相等,所以:原式=98×(100+1)=98×100+98×1=9800+98=9898例5.【解析】上题是分数与整数相乘,仔细观察数字间特点,(1)中的与1只相差,如果把写成(1-)的形式与37相乘,再运用乘法的分配率就能简化运算了,所以:原式=(1- )=37-=37-=【练一练】3、(13×125)×(3×8)4、198×10015、【典型例题】例6.【解析】同例5一样,本题中的27可以写成(26+1)。
小学六年级奥数简便运算(含答案)
.简便运算(一)一、知识要点根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
二、精讲精练【例题1】计算()【思路导航】先去掉小括号,使和相加凑整,再运用减法的性质:a-b-c = a-(b+c),使运算过程简便。
所以原式=+--《=13-(+)=13-11=2练习1:计算下面各题。
1.-2 又8/17+(-1又9/17)2. 7又5/9-(+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-4. 13又7/13-(4又1/4+3又7/13)--【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后,利用积的变化规律和乘法分配律使计算简便。
所以:原式=×79+790×=×790+790×=(+)×790=100000×790=练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/5—2. 975×+9又3/4×76-3. 9又2/5×425+÷1/604. ×+×【例题3】计算:36×+×【思路导航】此题表面看没有什么简便算法,仔细观察数的特征后可知:36 = ×30。
这样一转化,就可以运用乘法分配律了。
所以原式=×30×+×=×(30×+×)=×(+)。
=×100=120练习3:计算:1. 45×+×2. 52×+×7783. 48×+×'4. 72×-×【例题4】计算:3又3/5×25又2/5+×6又2/5【思路导航】虽然3又3/5与6又2/5的和为10,但是与它们相乘的另一个因数不同,因此,我们不难想到把分成和两部分。
小学数学人教新版六年级上册奥数系列讲座:简便运算(含答案解析)
小学数学人教新版六年级上册实用资料简便运算(一)一、知识要点根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质:a-b-c = a-(b+c),使运算过程简便。
所以原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1:计算下面各题。
1.6.73-2 又8/17+(3.27-1又9/17)2. 7又5/9-(3.8+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-2.1254. 13又7/13-(4又1/4+3又7/13)-0.75【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后,利用积的变化规律和乘法分配律使计算简便。
所以:原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790=100000×790=79000000练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/52. 975×0.25+9又3/4×76-9.753. 9又2/5×425+4.25÷1/604. 0.9999×0.7+0.1111×2.7【例题3】计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法,仔细观察数的特征后可知:36= 1.2×30。
这样一转化,就可以运用乘法分配律了。
六年级奥数-简便计算
简便计算——简便计算(一)【知识点拨】1.简便计算是一种特殊的计算,就是灵活、正确、合理地运用各种性质、定律,使复杂的计算变得简单,从而大幅度地提高计算速度与正确率。
2.运算定律和性质(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c= a+(b+c)(3)乘法交换律:a×b=b×a(4)乘法结合律:(a×b)×c= a×(b×c)(5)乘法分配律:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c(a+b+c)×d=a×d+b×d+c×d(a+b-c)×d=a×d+b×d-c×d(6)减法性质:a-b-c= a-(b+c) a-(b+c)= a-b-c (7)除法性质:a÷b÷c= a÷(b×c) (b、c不能为0)(8)分数的性质:(9)添去括号法则:括号前是“+”,添、去括号不变号括号前是“-”,添、去括号要变号(10)数字前面符号搬家:在只有加减法运算中,可带数字前面符号搬家,如:a+b-c= a-c+b在只有乘、除法运算中,可带着数字前面符号搬家。
如:a×b÷c= a÷c×b(c 不为0)【典型例题】例1. 4.75-9.63+(8.25-1.37)【解析】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质,使运算过程简便。
所以:原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2例2.399998+39998+3998+398【解析】先凑成整数再减去相差的数,凑整调整后一定要与原数保持相等,所以:原式=(400000-2)+(40000-2)+(4000-2)+(400-2)=444400-8=444392【练一练】1、6.73-2+(3.27-1)2、99【典型例题】例3. 2.5【解析】熟记25并且在做简便计算时要灵活运用小数的性质,所以:原式=2.5=10=100例4. 98【解析】利用乘法分配率,先凑成整数再加上相差的数,把101拆成100加1,凑整调整后一定要与原数保持相等,所以:原式=98×(100+1)=98×100+98×1=9800+98=9898例5.【解析】上题是分数与整数相乘,仔细观察数字间特点,(1)中的与1只相差,如果把写成(1-)的形式与37相乘,再运用乘法的分配率就能简化运算了,所以:原式=(1- )=37-=37-=【练一练】3、(13×125)×(3×8)4、198×10015、【典型例题】例6.【解析】同例5一样,本题中的27可以写成(26+1)。
小学六年级奥数简便运算(含答案)
简便运算(一)一、知识要点根据算式的结构和数的特征.灵活运用运算法则、定律、性质和某些公式.可以把一些较复杂的四则混合运算化繁为简.化难为易。
二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号.使4.75和8.25相加凑整.再运用减法的性质:a-b-c = a-(b+c).使运算过程简便。
所以原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1:计算下面各题。
1. 6.73-2 又8/17+(3.27-1又9/17)2. 7又5/9-(3.8+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-2.1254. 13又7/13-(4又1/4+3又7/13)-0.75【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后.利用积的变化规律和乘法分配律使计算简便。
所以:原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790=100000×790=79000000练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/52. 975×0.25+9又3/4×76-9.753. 9又2/5×425+4.25÷1/604. 0.9999×0.7+0.1111×2.7【例题3】计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法.仔细观察数的特征后可知:36 = 1.2×30。
这样一转化.就可以运用乘法分配律了。
所以原式=1.2×30×1.09+1.2×67.3=1.2×(30×1.09+1.2×67.3)=1.2×(32.7+67.3)=1.2×100=120练习3:计算:1. 45×2.08+1.5×37.62. 52×11.1+2.6×7783. 48×1.08+1.2×56.84. 72×2.09-1.8×73.6【例题4】计算:3又3/5×25又2/5+37.9×6又2/5【思路导航】虽然3又3/5与6又2/5的和为10.但是与它们相乘的另一个因数不同.因此.我们不难想到把37.9分成25.4和12.5两部分。
小学六年级奥数--简便运算专题(2)(2021年整理)
(完整)小学六年级奥数--简便运算专题(2)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)小学六年级奥数--简便运算专题(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)小学六年级奥数--简便运算专题(2)(word版可编辑修改)的全部内容。
小学六年级奥数 简便运算专题(一)一、考点、热点回顾根据算式的结构和特征,灵活运用运算法则、定律、性质和某些公式,可以把比较复杂的四则混合运算化繁为简,化难为易.四则混合运算法则:先算括号,再乘除后加减,同级间依次计算加法交换律:a b b a +=+ 加法结合律:)()(c b a c b a ++=++ 乘法交换律:ba ab = 乘法结合律:)()(bc a c ab =乘法分配律:bc ab c b a +=+)( 乘法结合律:)(c b a bc ab +=+除法分配律:c b c a c b a ÷+÷=÷+)( c b a c b c a ÷+=÷+÷)(※没有)(c b a +÷=c a b a ÷+÷和c a b a ÷+÷=)(c b a +÷减法性质:从一个数里连续减去两个数,可以减去这两个数的和,也可以先减去第二个数,再减去第一个数。
b c a c b a c b a --=+-=--)(二、典型例题例1:计算)37.125.8(63.975.4-+- )38.648.2(17.348.7--+练习1:计算511)9518.3(957-+-例2:计算41666617907921333387⨯+⨯练习2 计算 7.21111.07.09999.0⨯+⨯例3:计算3.672.109.136⨯+⨯练习3:计算8.562.108.148⨯+⨯例4:计算 5269.375225533⨯+⨯练习4:计算2.33.198.168.6⨯+⨯例5:计算5.186.678.515.818.155.81⨯+⨯+⨯练习5:计算3.541352.422351.12235⨯-⨯+⨯例6:计算4123341223411234+++练习6:计算8124668124468122468112468++++例7:计算199419921993119941993⨯+-⨯练习7:120122011201020122011-⨯⨯+数与第2001个数相差多少?练习8:计算2220112012-1999999992+※ 2220102012-例9:计算9575)927729(+÷+练习9:计算)9475113()11673198(++÷++例10:计算①374544⨯ ②261527⨯练习10:计算①20121212010⨯ ②201220112010⨯例11:计算8115173⨯练习11:计算544151433141⨯+⨯三、习题练习 ①75.97643925.0975-⨯+⨯ ②108185581⨯++⨯③5.622.1657308373575.3⨯+⨯-⨯④5691335691135699135669135++++⑤186548362361548362-⨯⨯+⑥1217661734371⨯+⨯+⨯。
(2021年整理)小学六年级奥数--简便运算专题
小学六年级奥数--简便运算专题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(小学六年级奥数--简便运算专题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为小学六年级奥数--简便运算专题的全部内容。
小学六年级奥数 简便运算专题(一)一、考点、热点回顾根据算式的结构和特征,灵活运用运算法则、定律、性质和某些公式,可以把比较复杂的四则混合运算化繁为简,化难为易。
四则混合运算法则:先算括号,再乘除后加减,同级间依次计算加法交换律:a b b a +=+ 加法结合律:)()(c b a c b a ++=++ 乘法交换律:ba ab = 乘法结合律:)()(bc a c ab =乘法分配律:bc ab c b a +=+)( 乘法结合律:)(c b a bc ab +=+除法分配律:c b c a c b a ÷+÷=÷+)( c b a c b c a ÷+=÷+÷)(※没有)(c b a +÷=c a b a ÷+÷和c a b a ÷+÷=)(c b a +÷减法性质:从一个数里连续减去两个数,可以减去这两个数的和,也可以先减去第二个数,再减去第一个数。
b c a c b a c b a --=+-=--)(二、典型例题例1:计算)37.125.8(63.975.4-+- )38.648.2(17.348.7--+练习1:计算511)9518.3(957-+-例2:计算41666617907921333387⨯+⨯练习2 计算 7.21111.07.09999.0⨯+⨯例3:计算3.672.109.136⨯+⨯练习3:计算8.562.108.148⨯+⨯例4:计算 5269.375225533⨯+⨯练习4:计算2.33.198.168.6⨯+⨯例5:计算5.186.678.515.818.155.81⨯+⨯+⨯练习5:计算3.541352.422351.12235⨯-⨯+⨯例6:计算4123341223411234+++练习6:计算8124668124468122468112468++++例7:计算199419921993119941993⨯+-⨯练习7:120122011201020122011-⨯⨯+数与第2001个数相差多少?练习8:计算2220112012-1999999992+※ 2220102012-例9:计算9575)927729(+÷+练习9:计算)9475113()11673198(++÷++例10:计算①374544⨯ ②261527⨯练习10:计算①20121212010⨯ ②201220112010⨯例11:计算8115173⨯练习11:计算544151433141⨯+⨯三、习题练习 ①75.97643925.0975-⨯+⨯ ②108185581⨯++⨯③5.622.1657308373575.3⨯+⨯-⨯④5691335691135699135669135++++⑤186548362361548362-⨯⨯+⑥12176********⨯+⨯+⨯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、精讲精练
【例题4】有一串数1,4,9,16,25,36…….它们是按一定的规律排 列的,那么其中第2000个数与2001个数相差多少? 【思路导航】这串数中第2000个数是2000^2,而第2001个数是2001^2, 它们相差:2001^2-2000^2,即 2001^2-2000^2 =2001×2000-2000^2+2001 =2000×(2001-2000)+2001 =2000+2001 =4001
=(1992×1994+1994-1)/(1993+1992×1994)
=1
二、精讲精练
关口13:计算下面各题: 1.(362+548×361)/(362×548-186) 2.(1988+1989×1987)/(1988×1989-1) 3.(204+584×1991)/(1992×584―380)―1/143
小学奥数 举一反三
(六年级)
第3讲 简便运算(二)
一、知识要点 计算过程中,我们先整体地分析算式的特点,然后进行 一定的转化,创造条件运用乘法分配律来简算,这种思考方 法在四则运算中用处很大。
二、精讲精练
【例题1】计算:1234+2341+3412+4123 【思路导航】整体观察全式,可以发现题中的4个四位数均由数1,2,3, 4组成,且4个数字在每个数位上各出现一次,于是有 原式=1×1111+2×1111+3×1111+4×1111 =(1+2+3+4)×1111
=65÷5
=13
二、精讲精练
关口15: 计算下面各题: 1.(8/9+1又3/7+6/11)÷(3/11+5/7+4/9) 2.(3又7/11+1又12/13)÷(1又5/11+10/13) 3.(96又63/73+36又24/25)÷(32又21/73+12又8/25)
二、精讲精练
关口12:计算下面各题: 1.99999×77778+33333×66666 2.34.5×76.5-345×6.42-123×1.45 3.77×13+255×999+510
二、精讲精练
例题3】计算(1993×1994-1)/(1993+1992×1994) 【思路导航】仔细观察分子、分母中各数的特点,就会发现 分子中1993×1994可变形为1992+1) ×1994=1992×1994+1994,同时发现1994-1 = 1993, 这样就可以把原式转化成分子与分母相同,从而简化运算。 所以 原式=【(1992+1)×1994-1】/(1993+1992×1994)
二、精讲精练
关口14:计算: 1.1991^2-1990^2 2.9999^2+19999 3.999×274+6274
二、精讲精练Байду номын сангаас
【例题5】计算:(9又2/7+7又2/9)÷(5/7+5/9) 【思路导航】在本题中,被除数提取公因数65,除数提取公因数5,再把 1/7与1/9的和作为一个数来参与运算,会使计算简便得多。 原式=(65/7+65/9)÷(5/7+5/9) =【65×(1/7+1/9)】÷【5×(1/7+1/9)】
【思路导航】我们可以先整体地分析算式的特点,然后进行一定的转化,创造条 件运用乘法分配律来简算。所以
原式=2.8×23.4+2.8×65.4+11.1×8×7.2 =2.8×(23.4+65.4)+88.8× 7.2 =2.8×88.8+88.8×7.2 =88.8×(2.8+7.2) =88.8×10 =888
=10×1111
=11110
二、精讲精练
关口11: 1.23456+34562+45623+56234+62345 2.45678+56784+67845+78456+84567 3.124.68+324.68+524.68+724.68+924.68
二、精讲精练
【例题2】计算:2又4/5×23.4+11.1×57.6+6.54×28