T-REC-G.984.7-201007-P!!MSW-E

合集下载

Q.763 - Formats and codes of the ISDN User Part of Signalling System No. 7

Q.763 - Formats and codes of the ISDN User Part of Signalling System No. 7
a) routing label; b) circuit identification code; c) message type code; d) the mandatory fixed part; e) the mandatory variable part; f) the optional part, which may contain fixed length and variable length parameter fields.
The format of and the codes used in the service information octet are described in 14.2/Q.704. The service indicator for the ISDN User Part is coded 0101.
Recommendation Q.763 (03/93)
1
1.2 Circuit identification code The format of the circuit identification code (CIC) is shown in Figure 2.
8
7
6
5
4
3
2
1
Circuit identification code (least significant bits)
INTERNATIONAL TELECOMMUNICATION UNION
ITU-T
TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU
Q.763
(03/93)
SPECIFICATIONS OF SIGNALLING SYSTEM No. 7

JESD22A115C Nov 2010 Electrostatic Discharge (ESD)..Machine Model

JESD22A115C Nov 2010 Electrostatic Discharge (ESD)..Machine Model

STANDARDElectrostatic Discharge (ESD) Sensitivity Testing, Machine Model (MM)JESD22-A115C(Revision of JESD22-A115B, March 2010)NOVEMBER 2010JEDEC SOLID STATE TECHNOLOGY ASSOCIATIONNOTICEJEDEC standards and publications contain material that has been prepared, reviewed, and approved through the JEDEC Board of Directors level and subsequently reviewed and approvedby the JEDEC legal counsel.JEDEC standards and publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for use by those other than JEDEC members, whether the standard is tobe used either domestically or internationally.JEDEC standards and publications are adopted without regard to whether or not their adoption may involve patents or articles, materials, or processes. By such action JEDEC does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adoptingthe JEDEC standards or publications.The information included in JEDEC standards and publications represents a sound approach to product specification and application, principally from the solid state device manufacturer viewpoint. Within the JEDEC organization there are procedures whereby a JEDEC standard or publication may be further processed and ultimately become an ANSI standard.No claims to be in conformance with this standard may be made unless all requirements stated inthe standard are met.Inquiries, comments, and suggestions relative to the content of this JEDEC standard or publication should be addressed to JEDEC at the address below, or call (703) 907-7559 orPublished by©JEDEC Solid State Technology Association 20103103 North 10th StreetSuite 240 SouthArlington, VA 22201-2107This document may be downloaded free of charge; however JEDEC retains thecopyright on this material. By downloading this file the individual agrees not tocharge for or resell the resulting material.PRICE: Refer to Printed in the U.S.A.All rights reservedPLEASE!DON’T VIOLATETHELAW!This document is copyrighted by JEDEC and may not bereproduced without permission.Organizations may obtain permission to reproduce a limited number of copies through entering into a license agreement. For information, contact:JEDEC Solid State Technology Association3103 North 10th StreetSuite 240 SouthArlington, VA 22201-2107or call (703) 907-7559SPECIAL NOTE⏹JESD22-A115 is a reference document; it is not a requirement per JESD47 (Stress Test DrivenQualification of Integrated Circuits).⏹Machine Model as described in JESD22-A115 should not be used as a requirement forintegrated circuit ESD qualification.⏹Only HBM and CDM are the necessary ESD qualification test methods as specified in JESD47.JEDEC Standard No. 22-A115CPage 1Test Method A115C(Revision of Test Method A115B)TEST METHOD A115CELECTROSTATIC DISCHARGE (ESD) SENSITIVITY TESTING,MACHINE MODEL (MM)(From JEDEC Board Ballot JCB-97-10, and JCB-10-13, and JCB-10-60, formulated under the cognizance of JC-14.1 Committee on Reliability Test Methods for Packaged Devices.)1 ScopeThis method establishes a standard procedure for testing microcircuits using an electrostatic discharge (ESD) model known commonly in the industry as the Machine Model (MM). The objective is to provide reliable, repeatable MM ESD test results. There is limited data supporting the ability of this model to simulate discharges of machinery or to establish manufacturing handling practices. However, the model is useful for producing human-body model (HBM)-like ESD effects at lower voltages and for failure mode determination. The method produces results with are closely related to HBM and produces similar failure modes.2 ApparatusThis test method requires the following equipment. 2.1 SimulatorAn ESD Pulse Simulator and a Device Under Test (DUT) socket equivalent to the circuit of Figure 1. The simulator must be capable of supplying pulses with the characteristics required by Figure 2 and Figure 3.2.2 OscilloscopeThe oscilloscope and amplifier combination shall have a 350 MHz minimum single-shot bandwidth and a visual writing speed of 4 cm/ns minimum.2.3 Current probeThe current probe shall have a minimum pulse-current bandwidth of 350 MHz. A current probe(transformer and cable with a nominal length of 1 meter) with a 1 GHz bandwidth and a current rating of 12 amperes maximum pulse-current is recommended.2.4 Evaluation LoadsAn 18 AWG tinned copper wire is recommended for the short waveform verification test. The lead length should be as short as practicable to span the distance between the two farthest pins in the socket while passing through the current probe. The ends of the 18 AWG wire may be ground to a point where clearance is needed to make contact on fine pitch socket pins.JEDEC Standard No. 22-A115C Page 2Test Method A115B(Revision of Test Method A115B)2 Apparatus (cont’d) 2.4 Evaluation Loads (cont’d)A 500 ohm +/-1%, 1000 volt, low inductance resistor shall be used for initial system checkout and periodic system recalibration.Figure 1 — Typical equivalent MM ESD circuitNOTE 1 The performance of any simulator is influenced by its parasitic capacitance and inductance.NOTE 2 Precautions must be taken in tester design to avoid recharge transients and multiple pulses.NOTE 3 R2, used for initial equipment qualification and requalification as specified in 3.1, shall be a low inductance, 1000 volt, 500 ohm resistor with +/-1% tolerance.NOTE 4 Stacking of DUT socket adaptors (piggybacking) is allowed only if the waveforms can be verified to meet the specifications in Table 1.NOTE 5 Reversal of terminal A and B to achieve dual polarity is not permitted.NOTE 6 S2 should be closed 10 to 100 milliseconds after the pulse delivery period to ensure the DUT socket is not left in a charged state.NOTE 7 C1, 200 pF +/- 10%.JEDEC Standard No. 22-A115CPage 3Test Method A115C(Revision of Test Method A115B)2 Apparatus (cont’d)Figure 2 — Current Waveform through a shorting wire, 400 volt dischargeFigure 3 — Current waveform through a 500 ohm resistor, 400 volt dischargeJEDEC Standard No. 22-A115C Page 4Test Method A115B(Revision of Test Method A115B)3 Qualification, calibration, and waveform verification3.1 Equipment qualificationEquipment calibration must be performed during initial acceptance testing. Recalibration is required whenever equipment repairs are made that may affect the waveform and a minimum of every 12 months. The tester must meet the requirements of Table 1 and Figure 2 at all voltage levels using the shorting wire and at the 400 volt level with the 500 ohm resistor (see Figure 3). The waveform measurements during calibration shall be made using the worst-case pin on the highest pin count board with a positivemechanical clamp socket. (Machine repeatability should be verified during initial equipment acceptance by performing a minimum of 5 consecutive positive and a minimum of 5 consecutive negative waveforms at a voltage level in Table 1.) The high-voltage relays and associated high-voltage circuitry shall be tested by the user of computer-controlled systems per the equipment manufacturer's instructions (system diagnostics). This test will check for any open or short relays.Table 1 — Waveform specificationVoltage Level (V) Positive Ipeak for Short, Ips1(A) Positive Ipeak for 500 Ohm* Ipr (A) Current at 100 ns for 500 Ohm* I100 (A)Maximum Ringing Current, I R(A) Resonance Frequency for Short, FR (1/t fr )(Mhz)100 1.5 - 2.0 N/A N/A Ips1 x 30% 11 - 16 200 2.8 - 3.8 N/A N/A Ips1 x 30% 11 - 16 4005.8 - 8.0I100 x 4.5 maximum0.29+/-20%Ips1 x 30%11 - 16* The 500 ohm load is used only during Equipment Qualification as specified in 3.1.3.1.1 Safety TrainingDuring initial equipment set-up, the safety engineer or applicable safety representative, shall inspect the equipment in its operating location to ensure that the equipment is not operated in a combustible (hazardous) environment.Additionally, all personnel shall receive system operational training and electrical safety training prior to using the equipment.JEDEC Standard No. 22-A115CPage 5Test Method A115C(Revision of Test Method A115B)3 Qualification, calibration, and waveform verification (cont’d)3.2 Worst-case pinThe worst-case pin combination for each socket and DUT board shall be identified and documented. It is recommended that the manufacturers supply the worst-case pin data with each DUT board. The pin combination with the waveform closest to the limits (see Table 1) shall be designated for waveform verification.The worst-case pin combination shall be identified by the following procedure.3.2.1 For each test socket, identify the socket pin with the shortest wiring path from the pulsegenerating circuit to the test socket. Connect this pin to Terminal B (where it will remain the referenced pin throughout the worst case pin search) and connect one of the remaining pins to Terminal A. Attach a shorting wire between these pins with the current probe around the shorting wire, as close to Terminal B as practicable.3.2.2 Apply a positive 400 volt pulse and a negative 400 volt pulse and verify that the waveform meets the requirements defined in Table 1 for both positive and negative pulses.3.2.3 Repeat steps 3.2.1 and 3.2.2 until all socket pins have been evaluated.3.2.4 Determine the worst-case pin pair (within the limits and closest to the minimum or maximum parameter values as specified in Table 1) to be used for future waveform verification.3.2.5 For initial board check-out, connect a 500 ohm resistor between the worst-case pins previously identified with the shorting wire in step 3.2.4. Apply a positive and negative 400 volt pulse and verify that the waveform meets the requirements defined in Table 1.NOTE In case the test socket/test board has already been characterized for worst-case pin on HBM, then that pin combination is acceptable for use with MM waveform verification.As an alternative to the worst-case pin search, the reference pin pair may be identified for each test socket of each test fixture. The reference pin combination shall be identified by determining the socket pin with the shortest wiring path from the pulse generating circuit to the test socket. Connect this pin to Terminal B and then connect the socket pin with the longest wiring path from the pulse generating circuit to the test socket to Terminal A (normally provided by the manufacturer). Attach a shorting wire between these pins with the current probe around the shorting wire. Follow the procedure in step 3.2.2. For the initial board check-out connect a 500 ohm resistor between the reference pins. Apply a positive and negative 400 volt pulse and verify that the waveform meets the parameters in Table 1.JEDEC Standard No. 22-A115C Page 6Test Method A115B(Revision of Test Method A115B)3 Qualification, calibration, and waveform verification (cont’d)3.3 Waveform verificationThe waveform verification shall be performed at the beginning of each shift a tester is operated and when a socket/DUT board is changed. If at any time the waveforms do not meet the requirements defined in Figure 1 and Table 1 at the 400 volt level, the testing shall be halted until the waveform is in compliance. Additionally, the system diagnostics test as defined in 3.1 for automated systems shall be performed prior to the beginning of each shift testing is done. The period between waveform checks may be extended providing test data supports the increased interval. In case the waveform no longer meets the limits in Table 1, all ESD testing performed after the previous satisfactory waveform check will be considered invalid.3.3.1 With the required DUT socket installed and with no part in the socket, attach a shorting wire in the DUT socket such that the worst-case pins are connected between Terminal A and Terminal B as shown in Figure 2. Place the current probe around the shorting wire.3.3.2 Initiate a positive pulse at the 400 volt level per Table 1 and Figure 2. Verify that all parameters meet the limits specified in Table 1 and Figure 1.3.3.3 Initiate a negative pulse at the 400 volt level per Table 1. Verify that all parameters meet the limits specified in Table 1 and Figure 1.4 CharacterizationThe devices used for characterization testing must have completed all normal manufacturing operations.4.1 Prior to ESD testing, dc parametric and functional testing at room temperature and, if applicable, high temperature shall be performed on all devices submitted for ESD testing. The test devices shall meet device data sheet requirements for these parameters.4.2 A sample of 3 devices for each voltage level shall be characterized for the device ESD failurethreshold using the voltage steps shown in Table 1. Finer voltage steps may optionally be used to obtain a more accurate measure of the failure threshold. ESD Testing should begin at the lowest step in Table 1. The ESD test shall be performed at room temperature.4.3 Each sample of 3 devices shall be stressed at one voltage level using 1 positive and 1 negative pulses with a minimum of 0.5 second between pulses per pin for all pin combinations specified in Table 2. It is permitted to use a separate sample of 3 devices for each pin combination specified in Table 2. It is permitted to use the same sample (3) at the next higher voltage stress level if all parts pass the failure criteria specified in clause 5 after ESD exposure to a specified voltage level.JEDEC Standard No. 22-A115CPage 7Test Method A115C(Revision of Test Method A115B)4 Characterization (cont’d)4.4 Pin combinations, t he pin combinations to be used are given in Table 2. The actual number of pin combinations depends on the number of power pin groups. Like named power pins (VCC1, VCC2, VSS1, VSS2, GND, etc.) that are directly connected by metal (inside the package) may be tied together and treated as one pin for Terminal B connection. Otherwise, each power pin must be treated as a separate power pin. Programming pins that do not draw current should be considered as I/O pins(example: Vpp pins on memory devices). Active discrete devices (FETs, transistors, etc.) shall be tested using all possible pin-pair combinations (one pin connected to Terminal A, another pin connected to Terminal B) regardless of pin name or function. All pins configured as "no connect" pins shall beverified as “no-connect” and left open (floating) at all times. Pins labeled “no-connect”, that in fact are connected, shall be tested as non-supply pins.Table 2 — Pin Combinations for Integrated Circuits PinCombinationConnect Individually to Terminal A Connect to Terminal B (Ground) Floating Pins (unconnected) 1All pins one at a time, except the pin(s) connectedto Terminal B First power pin(s)All pins except 1/PUT* and first power pin(s) 2 All pins one at a time, except the pin(s) connectedto Terminal B Second power pin(s)All pins except PUT and second power pin(s) 3 All pins one at a time, except the pin(s) connectedto Terminal B Nth power pin(s)All pins except PUT and Nth power pin(s) 4Each Non-supply pin, oneat a timeAll other Non-supply pins collectively except PUTAll power pins* 1/PUT - Pin under test.4.5 If a different sample group is ESD tested at each stress level, it is permitted to perform the dc parametric and functional ATE testing after all sample groups have been ESD tested.5 Failure criteriaA part will be defined as a failure if, after exposure to ESD pulses, it no longer meets the device datasheet requirements using parametric and functional testing. If testing is required at multiple temperatures, testing shall be performed at the lowest temperature first.JEDEC Standard No. 22-A115CPage 8Annex A (informative) Differences between JESD22-A115C and JESD22A-115BThis table briefly describes most of the changes made to entries that appear in this standard,JESD22-A115C, compared to its predecessor, JESD22-A115B (March 2010). If the change to a concept involves any words added or deleted (excluding deletion of accidentally repeated words), it is included. Some punctuation changes are not included.Clause Description of ChangeCover Added a “Special Note” to the forth page of the documentA.1 Differences between JESD22-A115B and JESD22A-115-AClause Description of Change1 Modified Scope to give users a better understanding of the relative merits and status ofmachine Model 9MM) testing.4 Changed title from Classification testing to Characterization4 First paragraph, replaced classification with characterization6 This clause was removed in this revision.Test Method A115B(Revision of Test Method A115B)Rev. 7/08Standard Improvement Form JEDEC JESD22-A115CThe purpose of this form is to provide the Technical Committees of JEDEC with input from the industry regarding usage of the subject standard. Individuals or companies are invited to submit comments to JEDEC. All comments will be collected and dispersed to the appropriate committee(s).If you can provide input, please complete this form and return to:JEDECAttn: Publications Department 3103 North 10th Street Suite 240 SouthArlington, VA 22201-2107Fax: 703.907.75831. I recommend changes to the following: Requirement, clause numberTest method number Clause numberThe referenced clause number has proven to be:Unclear Too Rigid In ErrorOther2. Recommendations for correction:3. Other suggestions for document improvement:Submitted by Name: Phone: Company: E-mail:Address:City/State/Zip:Date:。

T-REC-G[1].7042-200603-I!!PDF-C

T-REC-G[1].7042-200603-I!!PDF-C

附件 A — LCAS 协议....................................................................................................................................... 10
I.1
术语 ........................................................................................................................................ 22
I.2
编号系统 ................................................................................................................................ 22
2 参考文献 ................................................................................................................................................ 1
A.5
VCG 的状态图....................................................................................................................... 20
附录一 — LCAS 时序图 .................................................................................................................................. 22

国标目录-电路

国标目录-电路

序号标准代号标准名称页数15225GB 13140.1-97家用和类似用途低压电路用的连接器件第1部分:通用要求2014 13884GB 13140.2-98家用和类似用途低压电路用的连接器件 第2部分:作为独立部件的带螺14 16950GB 13140.3-98家用和类似用途低压电路的连接器件 第2部分:作为独立单元的带无螺17441GB 13140.4-98家用和类似用途低压电路用的连接器件第2部分:作为独立单元的带刺16 17301GB 13140.5-98家用和类属用途低压电路用的连接器件 第二部分:扭接式连接器件的15 18719GB 13140.6-00家用和类似用途低压电路用的连接器件 第2部分:端子或连接器件用3057 09288GB 14048.5-01低压开关设备和控制设备 第5-1部分:控制电路电器和开关元件 机电05496GB/T 11014-89平衡电压数字接口电路的电气特性12 05524GB/T 11053-89特定带宽特殊质量租用电路特性7 05525GB/T 11054-89基本带宽特殊质量租用电路特性6 06072GB/T 11497.1-89半导体集成电路CMOS电路系列和品种 54/74HC系列的品种124 06073GB 6995.2-86半导体集成电路CMOS电路系列和品种 54/74HCT系列的品种63 06074GB/T 11498-89膜集成电路和混合膜集成电路分规范(可供认证用)1126 07146GB/T 11592-89公用数据网上起止传输业务使用的数据终端设备(DTE)和数据电路终接07147GB/T 11593-01公用数据网上同步工作的数据终端设备(DTE)和数据电路终接设备(DC52 07148GB/T 11594-89公用数据网上数据终端设备(DTE)与数据电路终接设备(DCE)间的互换5133 07142GB/T 11595-99用专用电路连接到公用数据网上的分组式数据终端设备(DTE)与数据电07505GB/T 12057-89使用串行二进制数据交换的数据终端设备和数据电路终接设备之间的36 06890GB/T 12084-89半导体集成电路TTL 电路系列和品种 54/74F系列的品种159 06937GB/T 12166-90非平衡电压数字接口电路电气特性14 08286GB/T 12559-90印制电路用照相底图图形系列18 08649GB/T 12750-91半导体集成电路分规范 (不包括混合电路) (可供认证用)21 15865GB/T 12842-91膜集成电路和混合膜集成电路术语24 15866GB/T 12843-91半导体集成电路电参数测试方法的基本原理14 15867GB/T 12844-91半导体集成电路非线性电路系列和品种采样/保持放大器的品种13 15868GB/T 12845-91半导体集成电路非线电路系列和品种电压/频率/电压转换器的品种16 16011GB/T 13062-91膜集成电路和混合膜集成电路空白详细规范(采用鉴定批准程序)9 16013GB/T 13064-91半导体集成电路系列和品种复印系列的品种15 16016GB/T 13067-91半导体集成电路系列和品种石英电子钟表系列的品种23 16017GB/T 13068-91半导体集成电路系列和品种磁敏传感器用系列的品种13 16018GB/T 13069-91半导体集成电路系列和品种数控机床用系列的品种15 16134GB/T 13133-91数据通信 DTE 提供定时的使用X.24 互换电路的DTE 到DTE 物理连接6 16378GB/T 13286-01核电厂安全级电气设备和电路独立性准则19 11869GB/T 13555-92印制电路用挠性覆铜箔聚酰亚胺薄膜8 11870GB/T 13556-92印制电路用挠性覆铜箔聚酯薄膜5 12254GB/T 13557-92印制电路用挠性覆铜箔材料试验方法10 01194GB/T 1360-98印制电路网络体系7 12676GB/T 14025-92半导体集成电路门阵列电路系列品种ECL 系列和品种64 12677GB/T 14026-92半导体集成电路微型计算机电路系列和品种80C86 系列的品种40 12678GB/T 14027.1-92半导体集成电路通信电路系列和品种 有源滤波器系列的品种16 12679GB/T 14027.2-92半导体集成电路通信电路系列和品种 脉码调制编译码器系列品种10 12680GB/T 14027.3-92半导体集成电路通信电路系列和品种 模拟开关阵列系列品种10 12681GB/T 14027.4-92半导体集成电路通信系列和品种 双音频电路系列品种11 12682GB/T 14027.5-92半导体集成电路通信电路系列和品种 电话电路系列品种10 12683GB/T 14027.6-92半导体集成电路通信电路系列和品种 频率合成器系列品种96 12684GB/T 14027.7-92半导体集成电路通信电路系列和品种 数字交换系统接口电路系列品种12685GB/T 14028-92半导体集成电路模拟开关测试方法的基本原理19 12686GB/T 14029-92半导体集成电路模拟乘法器测试方法的基本原理19 12687GB/T 14030-92半导体集成电路时基电路测试方法13 12688GB/T 14031-92半导体集成电路模拟锁相环测试方法基本原理17 12689GB/T 14032-92半导体集成电路数字锁相环测试方法基本原理10 17841GB/T 14048.10-99低压开关设备和控制设备 控制电路电器和开关元件 第2部分:接近开59 09299GB/T 14112-93半导体集成电路 塑料双列封装冲制型引线框架规范19 09300GB/T 14113-93半导体集成电路封装术语1609619GB/T 14114-93半导体集成电路电压/频率和频率/电压转换器测试方法的基本原理20 09620GB/T 14115-93半导体集成电路采样/保持放大器测试方法的基本原理14 09067GB/T 14119-93半导体集成电路双极熔丝式可编程只读存储器 空白详细规范(可供认14 09304GB/T 14129-93半导体集成电路TTL电路系列和品种 PAL系列的品种85 09394GB/T 14398-93数据通信 使用V.24和X.24互换电路的DTE到DTE物理连接的接法10 10650GB/T 14619-93厚膜集成电路用氧化铝陶瓷基片9 10651GB/T 14620-93薄膜集成电路用氧化铝陶瓷基片7 10703GB/T 14708-93挠性印制电路用涂胶聚酯薄膜10 10705GB/T 14709-93挠性印制电路用涂胶聚酰亚胺薄膜13 10810GB/T 14862-93半导体集成电路封装结到外壳热阻测试方法12 11611GB/T 15136-94半导体集成电路石英钟表电路测试方法的基本原理20 11613GB/T 15138-94膜集成电路和混合集成电路外形尺寸34 11661GB/T 15295-94电缆分配系统用混合集成电路高频宽带放大器系列和品种 22 11663GB/T 15297-94微电路模块机械和气候试验方法16 11705GB/T 15431-95微电路模块总规范9 13896GB/T 15509-95半导体集成电路系列和品种 彩电遥控器用电路系列的品种30 14743GB/T 15650-95半导体集成电路系列和品种 CMOS门阵电路系列的品种37 13600GB/T 15651-95半导体器件 分类器件和集成电路 第5部分:光电子器件82 10264GB/T 16315-96印制电路用限定燃烧性的覆铜箔聚酰亚胺玻璃布层压板10 14311GB/T 16317-96多层印制电路用限定燃烧性的薄覆铜箔聚酰亚胺玻璃布层压板8 10308GB/T 16464-96半导体器件 集成电路第一部分:总则21 10309GB/T 16465-96膜集成电路和混合膜集成电路分规范(采用能力批注程序)37 14332GB/T 16466-96膜集成电路和混合模集成电路空白详细规范(采用能力批准程序)9 14895GB/T 16503-96信息技术 平衡互换电路的电隔离107 14355GB/T 16521-96提供数据传输业务的分组交换公用数据网(PSPDN)和电路交换公用数据10 20175GB/T 16649.10-02识别卡 带触点的集成电路卡 第10部分:同步卡的电信号和复位应答14434GB/T 16649.1-96识别卡 带触点的集成电路卡 第1部分:物理特性8 14435GB/T 16649.2-96识别卡 带触点的集成电路卡 第2部分:触点的尺寸和位置7 14436GB/T 16649.3-96识别卡 带触点的集成电路卡 第3部分:电信号和传输协议41 19712GB/T 16649.5-02识别卡 带触点的集成电路卡 第5部分:应用标识符的国家编号体系11 18940GB/T 16649.6-01识别卡 带触点的集成电路卡 第6部分:行业间数据元26 18786GB/T 16649.7-00识别卡 带触点的集成电路卡 第7部分:用于结构化卡查询语言(SCQ36 20174GB/T 16649.8-02识别卡 带触点的集成电路卡 第8部分:与安全相关的行业间命令3212 15008GB/T 16790.1-97金融交易卡 使用集成电路卡的金融交易系统的安全结构第1部分:卡的9 15009GB/T 16791.1-97金融交易卡 集成电路卡与卡接受设备之间的报文第1部分:概念与结构15039GB/T 16816-97点对点数字租用电路上使用的48/56/64 KBIT/S 数据电路终接设备技13 14933GB/T 16878-97用于集成电路制造技术的检测图形单元规范1322 16740GB/T 17023-97半导体器件 集成电路 第2部分:数字集成电路第二篇 HCMOS 数字集成16741GB/T 17024-97半导体器件 集成电路 第2部分:数字集成电路第三篇 HCMOS 数字集成13 16814GB/T 17183-97数据终端设备和数据电路终接设备用的高速25针接口暨可替换的26插26 17280GB/T 17553.1-98识别卡 无触点集成电路卡 第1部分:物理特性11 18787GB/T 17553.2-00识别卡 无触点集成电路卡 第2部分:耦合区域的尺寸和位置11 18788GB/T 17553.3-00识别卡 无触点集成电路卡 第3部分:电信号和复位规程2215 17296GB/T 17572-98半导体器件 集成电路 第2部分:数字集成电路 第四篇工CMOS数字集成17297GB/T 17573-98半导体器件 分立器件和集成电路 第1部分:总则52 17831GB/T 17574-98半导体器件集成电路 第2部分:数字集成电路131 17849GB/T 17789-99在PSTN或二线点对点租用电话型电路上同时传送数据和数字化编码语20 17863GB/T 17801-99经公用交换电话网综合业务数字网或电路交换公用数据网接入分组式51 18201GB/T 17940-00半导体器件 集成电路 第3部分:模拟集成电路114 18816GB/T 18239-00集成电路(IC)卡读写机通用规范14 19005GB/T 18349-01集成电路/计算机硬件描述语言Verilog483 19103GB/T 18392-01中华人民共和国组织机构代码证 集成电路(IC)卡技术规范31 19313GB/T 18500.1-01半导体器件 集成电路 第4部分:接口集成电路 第一篇:线性数字/18 19314GB/T 18500.2-01半导体器件 集成电路 第4部分:接口集成电路 第二篇:线性数字/18 13128GB/T 2036-94印制电路术语6005777GB/T 3430-89半导体集成电路型号命名方法5 01772GB/T 3431.2-86半导体集成电路文字符号 引出端功能符号7 05778GB/T 3432.4-89半导体集成电路TTL电路系列和品种 54/74LS系列的品种127 01773GB/T 3434-86半导体集成电路ECL电路系列和品种108 04194GB/T 3435-87半导体集成CMOS电路系列和品种 4000系列的品种129 14554GB/T 3436-96半导体集成电路运算放大器系列和品种 182 15292GB/T 3454-82数据终端设备(DTE)和数据电路终接设备(DCE)之间的接口电路定义表15 01235GB/T 3455-82非平衡双流接口电路的电特性5 08755GB/T 3789.13-91发射管电性能测试方法 共栅电路静态特性曲线的测试方法3 08756GB/T 3789.14-91发射管电性能测试方法 共阴电路静态特性曲线的测试方法4 01783GB/T 4023-97半导体分立器件和集成电路 第2部分:整流二极管53 11575GB/T 4376-94半导体集成电路电压调整器系列和品种83 10480GB/T 4377-96半导体集成电路 电压调整器测试方法的基本原理20 01256GB/T 4574-84模拟通信网中实际电路噪声与模拟系统负荷的电路噪声测试方法9 13828GB/T 4587-94半导体分立器件和集成电路 第7部分:双极型晶体管93 05780GB/T 4589.1-89半导体器件 分立器件和集成电路总规范(可供认证用)23 13010GB/T 4721-92印制电路用覆铜箔层压板通用规程10 13011GB/T 4722-92印制电路用覆铜箔层压板试验方法32 12047GB/T 4723-92印制电路用覆铜箔酚醛纸层压板8 12048GB/T 4724-92印制电路用覆铜箔环氧纸层压板6 12049GB/T 4725-92印制电路用覆铜铂环氧玻璃布层压板6 01869GB/T 4855-84半导体集成电路线性放大器系列和品种16 02610GB/T 5965-00半导体器件 集成电路 第2部分:数字集成电路 第一篇 双极型单片数14 02687GB/T 6107-00使用串行二进制数据交换的数据终端设备和数据电路终接设备之间的27 03057GB/T 6648-86半导体集成电路静态读/写存储器空白详细规范(可供认证用)11 03063GB/T 6659-86具有自动增益控制电路的助听器电声特性的测量方法5 10560GB/T 6798-96半导体集成电路 电压比较器测试方法的基本原理29 03201GB/T 6800-86半导体集成音响电路音频功率放大器测试方法的基本原理13 03206GB/T 6812-86半导体集成非线性电路系列和品种 模拟乘-除法器的品种15 03207GB/T 6813-86半导体集成非线性电路系列和品种 时基电路的品种5 03208GB/T 6814-86半导体集成非线性电路系列和品种 模拟开关的品种61 03209GB/T 6815-86半导体集成非线性电路系列和品种 锁相环的品种10 09207GB/T 7092-93半导体集成电路外形尺寸37 04226GB/T 7361-87半挂牵引车制动及电路连接装置2 04249GB/T 7362-87全挂牵引车和货车的制动及电路连接位置2 04310GB/T 7436-87在模拟电话电路上开放电报及低速数据的时分复用设备技术要求21 06204GB/T 7509-87半导体集成电路微处理器空白详细规范(可供认证用)12 08202GB/T 7618-87在数据通信领域中通常同集成电路设备一起使用的非平衡双流接口电17 07945GB/T 7619-87在数据通信领域中通常同集成电路设备一起使用的平衡双流接口电路13 07949GB/T 7621-87在电话自动交换网和点对点二线租用电话型电路上使用的标准化的1215 07946GB/T 7624-87在四线租用电话型电路上使用的标准化2400比特/秒调制解调器46 07951GB/T 7626-87在租用电话型电路上使用的带人工均衡器的标准化的4800比特/秒调制06382GB/T 8445-87有关电路和磁路的基本规定13 10585GB/T 8976-96膜集成电路和混合膜集成电路总规范25 06281GB/T 9178-88集成电路术语99 08051GB/T 9315-88印制电路板外形尺寸系列3 07914GB/T 9412-88用于60~108kHz基群电路的48 Kbit/s数据传输的调制解调器9 07915GB/T 9413-88用于60~108kHz基群电路的宽带调制解调器的测量方法14 04151GB/T 9423-88半导体集成TTL电路系列和品种 54/74 ALS 系列的品种241 08164GB/T 9424-98半导体器件 集成电路 第2部分:数字集成电路 第五篇 CMOS数字集成11 08165GB/T 9425-88半导体集成电路运算放大器空白详细规范(可供认证用)9 03546GB/T 9540-88同步数据传输数据信号速率高于72千比特/秒使用60~108 kHz基群电路10 03545GB/T 9541-88在普通电话交换网和点对点二线租用电路型电路上使用标准化的回波16实施日期采标情况A845 980901≡IEC 998-1-90990901≡IEC 998-2-1-90990901≡IEC 998-2-2-91990901≡IEC 998-2-3-91991001≡IEC 998-2-4-93010701idt IEC 60998-2-5-96020601=IEC 60947-5-1:1997eqv EIA RS-422-A-78900201idt CCITT Rec.M1020900201idt CCITT Rec.M1025900301900301900301900301idt CCITT X.20-84020601=ITU-T X.21:1992900301idt CCITT X.24-84000601idt ITU-T X.25-1996eqv EIA RS-449-77900701900801eqv EIA RS423A-78911001911101911201911201911201911201920301920301920301920301920301920401≡ISO 8481-86020401=ANSI/IEEE STD 384-1992930401930401930401981001≡ IEC 97-91930801930801930801930801930801930801930801930801930801930501930801930801930801930801000401≡IEC 60947-5-2-92930801930801930801930801930801940101≡ISO/TR 7477-1985931201931201940701≈BS 4584/715-78%ANSI/IPC-FC-232B-86 940701941001950201950401950701950701950801950901960301960401≡IEC 747-5-92970101970101=IEC 249-2-92970101等同采用 IEC 784-1:84970101IEC 748-22-92/QC 760 200970101本标准等同采用 IEC 748 -22-1/QC 76020-91 970501≡ISO/IEC 9549-90970501≡CCITT X 322-88030501≡ISO/IEC 7816-10:1999970701≡ISO 7816-1-87970701≡ISO 7816-2-88970701≡ISO/ IEC 7816-3-89021001011001idt ISO/IEC 7816-6-96011001idt ISO/IEC 7816-7-99030501≡ISO/IEC 7816-8:1999980301≡ISO 10202.1-91980301≡ISO 9992-1-90980201=ITU-TU.38:93980301980901≡IEC 748-2-2-92 QC 790109980901≡IEC 748-2-3-92 QC790130980801=ANSI/TIA/EIA 530-A-92990601≡ISO/IEC 10536-1-92011001idt ISO/IEC 10536-2-95011001idt ISO/IEC 10536-3-96990601≡IEC 748-2-4-92QC 790104990601≡IEC 747-1-83990601≡IEC 748-2-85000101=ITU TV.70-96000301=ITU-T X.32-96000701idt IEC 748-3-1986010801011001idt IEEE Std 1364-95020301020601≡IEC 748-4-1:1993%QC 790303020601≡IEC 748-4-2:1993%QC 790304950801≈IEC 194-8887049004861287089701018310018310neq CCITT V28920401GB/T 3789.1-91 920401GB/T 3789.1-91 980901eqv IEC 747-2-839504019701018504950801≡IEC 747-7-889004idt IEC 747-10-849304019304019304019304019304018510000701idt IEC 748-2-1-91 QC 790132000801idt ANSI EIA/TIA-232-E870801neq IEC (CO)988-85870801neq IEC 118-2-81GB 6657-86 97010187078708GB 6811-86 8708Gb 6811-86 8708GB 6811-86 8708GB 6811-86 93080188018801neq ISO 4009-7787118711neq IEC 47A(SEC)153-85871101eqv CCITT 建议 V.10-84871101eqv CCITT V.11-84871101eqv CCITT V.22-84871101eqv CCITT V.26-84871101eqv CCITT V.27-84880701neq IEC 375-72970101等效采用 IEC 748-20/QC63000-88881001neq IEC 748881201881201eqv CCITT V.35-848812018902990601≡IEC 748-2-5-92 QC 790131890201eqv IEC 47A(sec)1618902eqv CCITT Rec.V.37-848902eqv CCITT Rec.V.26ter-84。

G.984.3翻译中文

G.984.3翻译中文

GPON TC层规范概要本建议描述了一个能提供宽带和窄带业务能力的灵活的接入网家族中的GPON(吉比特无源光网络) 的TC(传输汇聚层)的规范。

本建议描述了具有1.244和2.488 Gb/s下行线路速率,0.155、0.622、1.244和2.488 Gb/s上行线路速率的系统。

该建议给出了基于GPON网络的TC层(GTC)的帧结构,信息,测距方法,OAM功能和安全性的规范。

本建议是G.984系列不可缺少的一部分,G.984系列是由一系列接入传输系统共同组成的。

G.984系列和G.983系列的主要不同在于更高的线路比特速率,在这里做了描述。

由于此不同,G.984系列在很多技术细节和特征的处理方式上和G.983系列不同。

两种系统不互通。

1 范围在本建议中:描述了支持包括POTS,数据,视频,租用线和分布业务的灵活的光纤接入网技术。

描述了在用户网络接口和业务网络接口间有传输多业务能力的无源光网络PON的特性。

集中讨论了在光纤上的应用,在铜线和混合系统上的应用在其他标准中规定,例如:xDSL的标准。

规定了业务节点接口和用户网络接口间对传输汇聚层(TC)的要求。

规范了GPON网络中的帧格式、媒质接入方式、测距方法、OAM功能和安全性。

2 引用标准本建议中所包含条文,通过在本建议中引用而构成为本建议的条文。

本标准出版时,所示版本均为有效。

所有建议都会被修订,使用本建议的各方应探讨使用下列标准最新版本的可能性。

本建议引用了以下标准或规范:[1]IEEE Standardization 802.3 (2002), Part 3: Carrier sense multiple access with collisiondetection (CSMA/CD) access method and physical layer specifications.[2]ITU-T Recommendation G.983.1 (1998), Broadband optical access systems based on PassiveOptical Networks (PON).[3]ITU-T Recommendation G.983.4 (2001), A broadband optical access system with increasedservice capability using dynamic bandwidth assignment.[4]ITU-T Recommendation G.983.5 (2002), A broadband optical access system with enhancedsurvivability.[5]ITU-T Recommendation I.432.1 (1996), B-ISDN User-Network Interface – Physical LayerSpecification: General characteristics.[6]ITU-T Recommendation I.361 (1999), B-ISDN A TM layer specification.[7]ITU-T Recommendation G.803 (1993), Architecture of transport networks based on thesynchronous digital hierarchy (SDH).[8]ITU-T Recommendation G.704 (1995), Synchronous frame structures used at 1544, 6312,2048, 8448 and 44 736 kbit/s hierarchical levels.[9]ITU-T Recommendation G.707 (2000), Network node interface for the synchronous digitalhierarchy (SDH).[10]ITU-T Recommendation G.984.1 (2003), Gigabit-capable Passive Optical Networks(G-PON): Service requirement (GSR).[11]ITU-T Recommendation G.984.2 (2003), Gigabit-capable Passive Optical Networks(G-PON): Physical Media Dependent (PMD) layer Specification.[12]Federal Information Processing Standard 197, Advanced Encryption Standard, NationalInstitute of Standards and Technology, U.S. Department of Commerce, November 26, 20013 术语(略)4 缩略词(略)5 约定下面提供了整个建议中的相关信息以增强可读性。

国标目录-电力

国标目录-电力

序号标准代号标准名称页数14034GB 1094.1-96电力变压器 第1部分 总则29 11810GB 1094.2-96电力变压器 第二部分 温升18 01678GB 1094.3-03电力变压器 第3部分:绝缘水平、绝缘试验和外绝缘空气间隙45 01679GB 1094.5-03电力变压器 第5部分:承受短路的能力18 15963GB 12971.1-91电力牵引用接触线 第1部分:一般规定3 15964GB 12971.2-91电力牵引用接触线 第2部分:铜接触线5 15966GB 12971.3-91电力牵引用接触线 第3部分:钢、铝复合接触线6 15965GB 12971.4-91电力牵引用接触线 第4部分:钢、铝及铝合金复合接触线5 15967GB 12971.5-91电力牵引用接触线 第5部分:铝合金接触线3 14016GB 13395-92电力设备带电水冲洗规程26 01381GB 1402-98铁道干线电力牵引交流电压4 20655GB 6995.2-86电力变压器、电源装置和类似产品的安全 第1部分:通用要求和试验96 17492GB 2314-97电力金具通用技术条件9 09866GB 50056-93电热设备电力装置设计规范48 15721GB 50058-92爆炸和火灾危险环境电力装置设计规范63 15566GB 50061-9766KV 及以下架空电力线路设计规范67 14880GB 50062-92电力装置的继电保护和自动装置设计规范38 15392GB 50070-94矿山电力设计规范62 15405GB 50173-92电气装置安装工程35KV及以下架空电力线路施工及验收规范29 15430GB 50217-94电力工程电缆设计规范75 15728GB 50255-96电气装置安装工程电力变流设备施工及验收规范14 15571GB 50260-96电力设施抗震设计规范82 17805GB 50293-99城市电力规划规范76 02899GB 6450-86干式电力变压器14 18231GB 6771-00电力机车防火和消防措施的规程6 03380GB 6995.5-86电线电缆识别标志 第5部分:电力电缆绝缘线芯识别标志2 04311GB 7495-87架空电力线路与调幅广播收音台的防护间距5 06369GB 7597-87电力用油(变压器油、汽轮机油)取样方法5 07837GB 7969-87电力电缆纸7 07868GB 9331.1-88额定电压0.6/1KV及以下船用电力电缆和电线 一般规定34 07878GB/T 10228-97干式电力变压器技术参数和要求10 05667GB/T 10236-88半导体电力变流器与电网互相干扰及其防护方法导则41 20580GB/T 1094.10-03电力变压器 第10部分:声级测定3029 20023GB/T 11017.1-02额定电压110KV交联聚乙烯绝缘电力电缆及其附件 第1部分:试验方法20024GB/T 11017.2-02额定电压110KV交联聚乙烯绝缘电力电缆及其附件 第2部分:额定电压1712 20025GB/T 11017.3-02额定电压110KV交联聚乙烯绝缘电力电缆及其附件 第3部分:额定电压05337GB/T 11024.1-01标称电压1kV以上交流电力系统用并联电容器 第1部分:总则 性能、32 19284GB/T 11024.2-01标称电压1kv以上交流电力系统用并联电容器 第2部分:耐久性试验10 19286GB/T 11024.4-01标称电压1kv以上交流电力系统用并联电容器 第4部分:内部熔丝9 08419GB/T 12626.1-02额定电压 1KV(Um=1.2KV)到35KV(Um=40.5KV)挤包绝缘电力电缆及附件22 08420GB/T 12626.2-02额定电压 1KV(Um=1.2KV)到35KV(Um=40.5KV)挤包绝缘电力电缆及附件2 08421GB/T 12626.3-90额定电压 1KV(Um=1.2KV)到35KV(Um=40.5KV)挤包绝缘电力电缆及附件08597GB/T 12706.1-02额定电压1KV(Um=1.2KV)到35kV(Um=40.5KV)挤包绝缘电力电缆及附件42 08598GB/T 12706.2-02额定电压1KV(Um=1.2KV)到35kV(Um=40.5KV)挤包绝缘电力电缆及附件39 08599GB/T 12706.3-02额定电压1KV(Um=1.2KV)到35kV(Um=40.5KV)挤包绝缘电力电缆及附件36 20026GB/T 12706.4-02额定电压1KV(Um=1.2KV)到35KV(Um=40.5KV)挤包绝缘电力电缆及附件21 15834GB/T 12788-00核电厂安全级电力系统准则21 15979GB/T 12976.1-91额定电压35kV及以下铜芯、铝芯纸绝缘电力电缆 第1部分:一般规定14 15980GB/T 12976.2-91额定电压 35kV及以下铜芯、铝芯纸绝缘电力电缆 第2部分:不滴流油5 15981GB/T 12976.3-91额定电压 35kV及以下铜芯、铝芯纸绝缘电力电缆 第3部分:粘性油浸5 08811GB/T 13029.1-91船舶低压电力系统电缆的选择和敷设23 08814GB/T 13030-91船舶电力推进系统技术条件10 08815GB/T 13031-91电压为 1kV以上至11kV的船舶交流电力系统7 14175GB/T 13422-92半导体电力变压器 电气试验方法3012193GB/T 13462-92工矿企业电力变压器经济运行导则13 12220GB/T 13499-02电力变压器应用导则57 15046GB/T 1386.1-97低压电力线路绝缘子第1部分:低压架空电力线路绝缘缘子11 15047GB/T 1386.2-97低压电力线路绝缘子第2部分:架空电力线路用拉紧绝缘子9 15048GB/T 1386.3-97低压电力线路绝缘子第3部分:低压布线用绝缘子10 15049GB/T 1386.4-97低压电力线路绝缘子第4部分:电车线路用绝缘子7 12530GB/T 13865-92电力容量器23 09339GB/T 14315-93电力电缆导体用压接型铜、铝接线端子和连接管18 09415GB/T 14430-93单边带电力线载波系统设计导则28 15686GB/T 14546-93核电厂安全级直流电力系统设计准则13 11615GB/T 15148-94电力负荷控制系统通用技术条件13 19519GB/T 15149.1-02电力系统远方保护设备的性能及试验方法 第1部分:命令系统35 16955GB/T 15149.2-98电力系统远方保护设备的性能及试验方法 第2部分:模拟比较系统28 11737GB/T 15164-94油浸式电力变压器负载导则68 10104GB/T 15708-95交流电气化铁道电力机车运行产生的无线电辐射干扰的测量方法7 12694GB/T 15708-95交流电气化铁道电力机车运行产生的无线电辐射干扰的测量法7 12877GB/T 15945-95电能质量 电力系统频率允许偏差4 10239GB/T 16274-96油浸式电力变压器 技术参数和要求 500KV级8 15501GB/T 16859-97阀器件堆、装置和电力变流设备的端子标记12 15141GB/T 16904.3-97标准轨距铁路机车车辆限界规 电力机车上部限界规3 16186GB/T 17211-98干式电力变压器负载导则25 16539GB/T 17246-98电力系统通信业务导则26 17022GB/T 17468-98电力变压器选用导则30 17283GB/T 17556-98船用电力和通信电缆护套材料7 17284GB/T 17557-98船用电力电缆绝缘材料7 17469GB/T 17702.1-99电力电子电容器 第1部分:总则2314 17470GB/T 17702.2-99电力电子电容器 第2部分:熔丝的隔离试验、破坏试验、自愈性试验及17569GB/T 17755-99额定电压6KV、10KV、15KV挤包绝缘单芯和三芯船用电力电缆14 18050GB/T 17886.1-99标称电压1KV及以下交流电力系统用非自愈式并联电容器 第1部分:总268 18051GB/T 17886.2-99标称电压1KV及以下交流电力系统用非自愈式并联电容器 第2部分:老18052GB/T 17886.3-99标称电压1KV及以下交流电力系统用非自愈式并联电容器 第3部分:内10 18899GB/T 18293-01电力整流设备运行效率的在线测量30 20127GB/T 18889-02额定电压6KV(Um=7.2KV)到35KV(Um=40.5KV)电力电缆附件试验方法20 20131GB/T 18891-02三相电力系统相导体的钟时序数标识5 20877GB/T 19263.1-03船舶电气装置--低压电力系统用电缆的选择和安装02021GB/T 2315-00电力金具 标称破坏载荷系列及连接型式尺寸6 18569GB/T 2317.1-00电力金具 机械试验方法12 18570GB/T 2317.2-00电力金具 电晕和无线电干扰试验9 18571GB/T 2317.3-00电力金具 热循环试验方法12 02022GB/T 2317.4-00电力金具 验收规则、标志与包装6 02025GB/T 2338-02架空电力线路间隔棒技术条件和试验方法14 07962GB/T 2679.15-97纸和纸板印刷表面强度的测定法(电力加速度)9 10455GB/T 2900.16-96电工术语 电力电容器20 11313GB/T 2900.32-94电工术语 电力半导体器件35 11354GB/T 2900.33-93电工术语 电力电子技术28 10456GB/T 2900.36-03电工术语 电力牵引109 11355GB/T 2900.49-94电工术语 电力系统保护15 19870GB/T 2900.58-02电工术语 发电、输电及配电 电力系统规划和管理25 01391GB/T 3317-82电力机车通用技术条件5 01392GB/T 3318-82电力机车组装后的检查与试验规则9 01393GB/T 3319-98电力机车和电动车组额定功率的确定5 19742GB/T 3886.1-01半导体电力变流器用于调速电气传动系统的一般要求 第1部分:关于25 02020GB/T 5075-01电力金具名词术语12 19094GB/T 5582-93高压电力设备外绝缘污秽等级527 16086GB/T 6115.1-98电力系统用串联电容器 第一部分:总则性能、试验和额定值 安全要求20013GB/T 6115.2-02电力系统用串联电容器 第2部分:串联电容器组用保护设备34 20014GB/T 6115.3-02电力系统用串联电容器 第3部分:内部熔丝11 13868GB/T 6451-99三相油浸式电力变压器技术参数和要求42 03285GB/T 6915-86高原电力电容器3 03286GB/T 6916-97湿热带电力电容器6 04380GB/T 7180-87铁路干线电力机车基本参数2 04382GB/T 7183-87铁路干线电力机车车内设备机械振动烈度评定方法4 16087GB/T 7255-98单边带电力线载波机26 04211GB/T 7266-87电力系统二次回路电气控制台基本尺寸2 04212GB/T 7267-03电力系统二次回路控制、保护屏及柜基本尺寸系列6 04213GB/T 7268-87电力系统二次回路控制、保护装置用插箱及插件面板基本尺寸系列3 16088GB/T 7329-98电力线载波结合设备13 16089GB/T 7330-98交流电力系统阻波器23 15034GB/T 7409.2-97电力系统研究用模型24 07888GB/T 7449-87电力变压器和电抗器的雷电冲击和操作冲击试验导则30 19590GB/T 767-65电力电缆介质损失角正切值测量方法(交流高压电桥法)07044GB/T 8446.1-87电力半导体器件用散热器23 07045GB/T 8446.2-87电力半导体器件用散热器热阻和流阻测试方法3 05562GB/T 8446.3-88电力半导体器件用散热器 绝缘件和紧固件17 05554GB/T 999-88直流电力牵引额定电压220 19285GB/Z 11024.3-01标称电压1kv以上交流电力系统用并联电容器 第3部分:并联电容器和18394GB/Z 17625.4-00电磁兼容 限值 中、高压电力系统中畸变负荷发射限值的评估48 18395GB/Z 17625.5-00电磁兼容 限值 中、高压电力系统中波动负荷发射限值的评估33 20128GB/Z 18890.1-02额定电压220KV(Um=252KV)交联聚乙烯绝缘电力电缆及其附件 第1部28 20129GB/Z 18890.2-02额定电压220KV(Um=252KV)交联聚乙烯绝缘电力电缆及其附件 第2部9 20130GB/Z 18890.3-02额定电压220KV(Um=252KV)交联聚乙烯绝缘电力电缆及其附件 第3部11 17202GBJ 143-90架空电力线路、变电所对电台、转播台无线电干扰防护间距标准17207GBJ 148-90电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规范17215GBJ 233-90110-500KV 架空电力线路施工及验收规范17127GBJ 61-83工业与民用35kV及以下架空电力线路设计规范17128GBJ 63-90电力装置的电气测量仪表装置设计规范17129GBJ 64-83工业与民用电力装置的过电压保护设计规范17130GBJ 65-83工业与民用电力装置的接地设计规范实施日期采标情况A845961201本标准等效采用IEC 76-1-938607neq IEC 76-2-76040101=IEC 60076-3:2000040101=IEC 60076-5:2000920301920301GB 12971.1-91 920301GB 12971.1-91 920301GB 12971.1-91 920301GB 12971.1-91 990801=IEC 850-88040201MOD IEC 61558-1:19989810019402019212019806019212019504019307019507019612019703010 09910018705eqv IEC 726-82000801eqv UIC 617-1 OR-798710GB 6995.1-86 8711GB 3175.1-87 880101GB 7595-87 871201neq IEC 554-79890101neq IEC 92-351;neq IEC 352980501900101neq ANSI/IEEE Std519-81031201MOD IEC 60076-10:2001030401=IEC 60840:1999030401NEQ IEC 60840:1999030401NEQ IEC 60840:1999011201eqv IEC 60871-1:1997020601≡IEC/TS 60871-2:1999020601030401neq ISO 818-75030401neq ISO 2695-76GB 12626.1-90 030401neq ISO 766-72GB 12626.1-90 030401=IEC 60502-1:1997030401030401NEQ IEC 60502-2:1997030401=IEC 60502-4:1997000801eqv ANSI IEEE 308-80920301920301GB/T 12976.1-91 920301GB/T 12976.1-91 920401neq IEC 92-352-79920401neq IEC 92-501-84920401neq IEC 92-503-75930701921201030301≡IEC 60076-8:1997980401NEQ IEC 383-83980401NEQ IEC 383-83980401NEQ IEC 383-83980401NEQ IEC 383-83930801931201931201≈IEC 663-80940201950101021201≡IEC 60834-1:1999990601≡IEC 834-2-93950101≡IEC 354-91961001961001NEQ CISPR 18.16960801961201980301≡IEC 1148-92980201981001=IEC 905-87981201=IEC 1085-92990901990601=IEC 92-359-87990601=IEC 92-351-83991001≡IEC 61071-1-91991001≡IEC 61071-2-94991201eqv IEC 92-354-94000501≡IEC 60931-1-96000501≡IEC 60931-2-95000501idt IEC 60931-3-96010701030601MOD IEC 61442030501≡IEC 60152:1963040101001201001201001201001201001201021201971201eqv ISO 3783-80970701非等效采用 IEC 50(436):90 950101≈IEC 出版物 747%出版物 50(521) 940901=IEC 50(551)-82031001MOD IEC 60050(811):1991950101=IEC 50(448)030101≡IEC 60050(603):19868310neq IEC 165-738310neq IEC 165-73990801≡UIC 614-90020601≡IEC 61136-1:1992020401940201981001=IEC 143-1-92030401≡IEC 60143-2:1994030401≡IEC 60143-3:1998000501870798090187078707981201=IEC 495-9387120312018712981201NEQ IEC 481-74981201NEQ IEC 353-89980401≡IEC 34-16-2-91871001neq IEC 722-82881001881001890701900101neq IEC 38-83020601=IEC/TR 60871-3:1996001201idt IEC 61000-3-6-96001201idt IEC 61000-3-7-00030601=IEC 62067:2001030601NEQ IEC 62067:2001030601NEQ IEC 62067:200110。

不同酒庄相同年份产区品种干红葡萄酒中甲醇含量差异性分析

不同酒庄相同年份产区品种干红葡萄酒中甲醇含量差异性分析

不同酒庄相同年份产区品种干红葡萄酒中甲醇含量差异性分析文 林泽庆 佛山市食品药品检验检测中心号:67-56-1,纯度≥99.77%;叔戊醇(C 5H 12O ),CAS 号:75-85-4,纯度≥99.88%。

仪器设备:气相色谱仪(Agilent 8890,自动进样器,氢火焰离子化检测器FID );色谱柱(Agilent DB-WAX 毛细管柱,内径0.250mm ,长度30m ,液膜厚度0.25µm );电子天平(梅特勒ME204E 感量为0.1mg );多功能快速蒸馏仪(德国格哈特维普得V AP200)。

1.2实验方法1.2.1气相色谱条件色谱柱温度:初温40℃,保持8min ,以15℃/min 升到80℃,保持5min 。

检测器温度:250℃、空气流量400mL/min 、氢气流量30mL/min 、尾吹气流量25mL/min 。

进样口温度:250℃、压力10.863psi 、总流量7.0mL/min 、隔垫吹扫流量1mL/min 。

进样量:1.0μL 、分流比:5:1、分流流量5mL/min 。

1.2.2溶液制备、标准系列制备乙醇溶液(40%,体积分数)、甲醇标准储备液(5000mg/L )、叔戊醇标准溶液(20000mg/L ),以及甲醇系列标准工作液的制备按标准GB 5009.266-2016中3.4条款执行。

1.2.3样品前处理准确移取100mL 酒样于1L 的蒸馏瓶中,加入100mL 水,把蒸馏瓶装在蒸馏仪固定卡位,出液口接上容量瓶,选择蒸馏模式开始蒸馏,收集馏出液,当接近刻度时,取下容量瓶,待溶液冷却到室温后,用水定容至刻度,摇匀。

吸取10.0mL 蒸馏后的溶液于试管中,加入0.10mL 叔戊醇标准溶液,混匀,备用。

采用毛细管气相色谱法测定了美国俄勒冈州威廉姆特谷不同酒庄相同年份产区品种干红葡萄酒中甲醇含量,4家酒庄葡萄酒的甲醇含量均小于400mg/L 的标准要求,数值范围128.6-176.7mg/L 。

西门子技术问题总汇

西门子技术问题总汇

文档标题
如何设置模拟量输入模板 SM 431-7KF00的温度补偿? 如何解决 SIMATIC BATCH 的 IL43基本设备上 hotfix 安装的问题? 如果通过 PCS7 V6.1 SP1 DVD 单独安装 SIMATIC BATCH Report 需要注意哪些设置? 为什么冗余模拟量输出模块的每个通道只有一半电流输出? 使用WinCC/Web Navigator V6.1 SP1需要什么样的操作系统和软件? 是否 COM PROFIBUS 可以使用所有版本的 GSD 文件? 如何在 WinCC flexible 中组态与S7 控制器的 Profinet 连接? 如何在操作面板上设定定时器时间, 同时如何输出定时器的剩余时间? 数据块初始值与实际值的含义 如何通过窗口对象滚动条步进调节过程值参数? 使用 SINAUT ST7 向电子邮箱接受方发送文本信息 SMS 需要做何设置? 可以使用CPU317-2PN/DP替代在iMap中组态的CPU315-2PN/DP吗? 什么情况下插入C-PLUG卡或者C-PLUG有什么作用? 通过一台PC,可以使用哪种方式访问与IWLAN/PB link PNIO或IE/PB link PNIO连接的PROFIBUS设备? 当在SINAUT网络中使用4线变压器应该注意哪些设置? 在 SINAUT 网络中,使用MD3拨号调制解调器作为专线调制解调器时,要进行哪些设置? 如何安装 DCF77 天线, 当选择 DCF77 天线时需要注意什么? 使用SINAUT ST7向传真机发送文本信息时,需要进行哪些设置? 在 SINAUT 项目中发送短消息必须进行哪些特殊服务的设置? 如何在S7-300 PN CPU和CP343-1之间建立一个open TCP 通讯连接,以及如何进行数据交换? 如何在两个S7-300 PN CPU之间建立一个open TCP 通讯连接,以及如何进行数据交换? 哪些控制系统可以成功与SINAUT ST7一起使用? 使用“零-Modem”电缆连接 TIM 模块应该注意什么? 当用 SINAUT 诊断工具的ST1协议进行诊断时,为什么TIM的状态不能显示? TIM 3V-IE 和 TIM 3V-IE Advanced 模块在以太网上通信时使用哪个端口号? 如何对没有接入网络的S7-200CPU编程? 掉电后,LOGO!的程序会丢失吗? 从 PCS7 V6.1 起,为什么没有分配任何 hierarchy (PH) 的 测量点(变量)通过编译不能在OS中自动创建相应的变量? 在SFC中,如何实现从一个 Sequencer 跳出后回到另一个 Sequencer 的某个固定位置并继续执行? 如何实现过程变量的平均值归档? 存储文件的目标路径和备份可选路径有何作用? WinCC变量归档中如何实现采集周期小于500ms的变量归档? 为什么在 OS 上会显示如下信息“时间跳变通知-永久切换为从站模式”? 在西门子A&D产品支持网站是否可以下载关于ET200M的手册? 在S7-400上怎样安装冗余电源? UDT改变后怎样更新使用UDT产生的数据块。 为什么在FB块中使用OUT变量赋值被调用FB块的IN变量时出现错误信息34:4469? 如何查看4-mation导入-导出错误 不能正确引导8212-1QU IBM/Lenovo M52 ThinkCentre 实时趋势更新缓慢的原因 如何保存变量名字典CSV文件的格式

2.车型数据库-歌诗图-1

2.车型数据库-歌诗图-1

4S价
396 17 17 209 510 209 510 683 1346 1346 67 100 100 721 1044 4827 4827 3153 3153 3456 3456 1024 432 432 432 432 1665 1665 350 2970 2970 467 467 1484 1771 1771 1771 1527 2008 4586 3971 171 999 999 823 748 823 748 477 477 71 52 80
单位
束 件 件 件 件 件 件 件 件 件 件 件 件 件 件 件 歌诗图HG7350 件 3.5 件 歌诗图HG7350 件 3.5 件 歌诗图HG7350 件 3.5 歌诗图HG7350 件 3.5 件 歌诗图HG7350 件 3.5 件 歌诗图HG7350 件 3.5 束 束 歌诗图HG7350 件 3.5 歌诗图HG7350 件 3.5 歌诗图HG7350 件 3.5 件 件 歌诗图HG7350 件 3.5 歌诗图HG7350 件 3.5 件 件 件 歌诗图HG7350 件 3.5 歌诗图HG7350 件 3.5 歌诗图HG7350 件 3.5 歌诗图HG7350 件 3.5 件 件 件 件 件 件 歌诗图HG7350 件 3.5 歌诗图HG7350 件 3.5 歌诗图HG7350 件 3.5 件 件
前减震器螺旋弹簧 L/R 前减震器螺旋弹簧 L/R 前减震器上盖 L 前减震器上盖 R 前减震器总成 L 前减震器总成 L 前减震器总成 R 前减震器总成 R 前立柱内板 L 前立柱内板 R 前立柱上内衬 L 前立柱上内衬 R 前立柱下内衬 L 前立柱下内衬 R 前轮边制动软管 L 前轮边制动软管 R 前轮边制动硬管 L 前轮边制动硬管 R 前轮毂 L/R 前轮毂轴承 L/R 前轮罩板 L 前轮罩板 L 前轮罩板 R 前轮罩加强板 L 前轮罩加强板 R 前门玻璃 L 前门玻璃 R 前门玻璃后导轨 L 前门玻璃后导轨 R 前门玻璃内压条 L 前门玻璃内压条 R 前门玻璃前导轨 L 前门玻璃前导轨 R 前门玻璃绒槽 L 前门玻璃绒槽 R 前门玻璃升降开关 L 前门玻璃升降开关 L 前门玻璃升降开关 R 前门玻璃升降开关 R 前门玻璃升降开关装饰板 前门玻璃升降开关装饰板 前门玻璃升降器 L 前门玻璃升降器 R 前门玻璃外饰条(右后) 前门玻璃外饰条(右上) 前门玻璃外饰条(左后) 前门玻璃外饰条(左上) 前门玻璃外压条 L 前门玻璃外压条 R 前门扶手 L 前门扶手 R 前门槛内板 L 前门槛内板 L 前门槛内板 R

ITUT 984.4

ITUT 984.4

ITU-T Recommendation G.984.4 Gigabit-capable Passive Optical Networks ( G-PON ) : ONT management and control interface specificationReference models and terms6.1 OMCI in ITU-T Rec. G.984.2The architecture reference model is in ITU-T Rec.G.984.2 .While this document provides some minimal modelling for ONUs with service interfaces,detailedOMCI support for ONUs with 802.11 and xDSLinterface is in ITU-T Recs G.983.9 and G.983.10 .( OMCI = ONT management and control interface )Reference models and terms 6.2 ONT/ONU functionsReference models and terms access network line termination function (AN-LT)user network interface line termination function (UNI-LT)service multiplexing and de-multiplexing function (Service MUX and DEMUX).Reference models and terms6.3 VP/VC Mux functionality in the ONTIn ITU-T Rec. G.984.3, the end-to-end G-PONsystem (i.e., OLT, ODN and ONT) can function as an ATM VP or VC cross-connection.Reference models and terms6.4 Encapsulation in GEM frameAs the GEM is embedded in the PON section,it is independent of the types of UNIs .The UNI traffic is always encapsulated in GEM frames .(GEM = G-PON encapsulation method)Reference models and terms6.5 Support of Multicast connectionWhile a Port-ID is assigned to a T-CONT in aunicast connection, a Port-ID is shared by multiple T-CONTs in a multicast connection.(T-CONT = Transmission Container)interface specificationsThe OMCI is used by the OLT to control an ONT. This protocol allows the OLT to:establish and release connections across the ONTmanage the UNIs at the ONTrequest configuration information and performance statisticsautonomously inform the system operator of events such as link failuresinterface specificationsThe OMCI protocol is asymmetric: the controller in the OLT is the master and the one in the ONT is the slave.The OMCI requirements given in this Recommendation are needed to manage the ONT in the following areas:configuration managementfault managementperformance managementsecurity managementinterface specifications7.1 Configuration managementIt involves the following:Configuration of equipmentConfiguration of the UNIsConfiguration of the VP Network CTP-Gs, ATM VPCross-Connections, and GEM Port Network CTPsConfiguration of Interworking Termination PointsConfiguration of the OAM flowsinterface specificationsConfiguration of the physical portsConfiguration of AAL profilesConfiguration of service profilesConfiguration of traffic descriptorsConfiguration of GAL profiles( CTP = Connection Termination Point )( AAL = ATM Adaptation Layer )( GAL = GEM Adaptation Layer )interface specificationsFor cases as the supports of ONUs with xDSL interfaceinterface specifications7.2 Fault managementThe ONT supports limited fault management only.ONT-G;Subscriber Line Cardholder;Subscriber Line Card;PON IF Line Card-G;Physical Path Termination Point ATM UNI;interface specificationsPhysical Path Termination Point Ethernet UNI;Physical Path Termination Point CES UNI;Physical Path Termination Point ISDN UNI;Physical Path Termination Point POTS UNI;Physical Path Termination Point Video UNI;Physical Path Termination Point Video ANI;Physical Path Termination Point ADSL UNI;Physical Path Termination Point VDSL UNI;interface specificationsTC AdapterB-PON;ATM Interworking VCC Termination Point;GEM Interworking Termination Point;VP Network CTP-G;VC Network CTP-G;GEM Port Network CTP;ONU-G.interface specifications7.3 Performance managementThe ONT has only limited performancemonitoring.UPC Disagreement Monitoring History DataB-PON;AAL1 Protocol Monitoring History DataB-PON;AAL5 Protocol Monitoring History DataB-PON;Ethernet Performance Monitoring History Data;Ethernet Performance Monitoring History Data 2;interface specificationsCES Physical Interface Monitoring History Data;TC Adapter Protocol Monitoring History Data;AAL 2 CPS Protocol Monitoring History Data B-PON;AAL 2 SSCS Protocol Monitoring History Data B-PON;Priority Queue-G;MAC Bridge PM History Data;MAC Bridge Port PM History Data;interface specificationsVoice PM History Data;VP PM History Data;VC PM History Data;ICMP PM History Data1;ICMP PM History Data2IP Router PM History Data1;IP Router PM History Data2;802.11 Counters;interface specificationsGEM Port Protocol Monitoring History Data;GAL TDM Protocol Monitoring History Data;GAL Ethernet Protocol Monitoring History Data;ADSL ATU-C Performance Monitoring History Data;ADSL ATU-R Performance Monitoring History Data;ADSL ATU-C Channel Performance Monitoring History Data;ADSL ATU-R Channel Performance Monitoring History Data;TC Adaptor Performance Monitoring History Data ADSL;VDSL VTU-O Physical Interface Monitoring History Data;interface specificationsVDSL VTU-R Physical Interface Monitoring History Data;VDSL VTU-O Channel Performance Monitoring History Data;VDSL VTU-R Channel Performance Monitoring History Data.( GAL = GEM Adaptation Layer )( CPS = Common Part Sublayer )( PM = Protocol Monitoring )( ATU-C = ADSL Transceiver Unit, Central office end )( ATU-R = ADSL Transceiver Unit, Remote Terminal End )( VDSL = Very High Speed Digital Subscriber Line )( VTU-O = VDSL Transceiver Unit, ONU end )( VTU-R = VDSL Transceiver Unit, Remote Terminal end )interface specifications7.4 Security managementThe protection configuration that is defined inITU-T Rec. G.983.5 is considered in this Recommendation.Though ITU-T Rec. G.983.6 specifies the OMCI for B-PON protection, a new schemefor G-PON protection is needed because G-PON has a different protocol stack fromB PON.‑the OMCIThis Recommendation defines a protocol necessary to support capabilities identified by ITU-T Recs G.984.2 and G.984.3.A protocol-independent MIB is used to describe the exchange of information across the OMCI.the OMCI8.1 Managed entitiesThe protocol-independent MIB presented in this Recommendation has been defined in terms ofmanaged entities. The managed entities are abstractrepresentations of resources and services in an ONT.This Recommendation uses three levels for indicatingthe degree of compliance necessary for specific functions and managed entities associated with theOMCI specification:Requirement (R)Conditional Requirements (CR)Option (O)Figure 5 is a managed entity relation diagram from the viewpoint of ONT configuration.Figure 6 is a managed entity relation diagram from the viewpoint of user traffic.Figure 7 shows the Managed entity relation diagram in the case of MAC bridged LAN.Figure 8 shows the managed entity relation diagram in the case of structured CES ( circuit emulation service ).Figure 9 shows a part of ME relation diagram in that an ONT supports 1+1 protection function.Figure 10 shows a part of ME relation diagram in that an ONT supports 1:1 protection function.。

T-REC-G[1][1].Imp8032-201006-I!!MSW-E

T-REC-G[1][1].Imp8032-201006-I!!MSW-E

ITU-T G.8032/Y.1344Implemente rs’ GuideTELECOMMUNICATIONSTANDARDIZATION SECTOROF ITU(11 June 2010) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKSPacket over Transport aspects – Ethernet over Transport aspectsSERIES Y: GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKSInternet protocol aspects – TransportEthernet ring protection switching -Implementers' GuideEthernet ring protection switching - Implementers' GuideSummaryThis Implementers’ Guide identifies terms originally listed in Rec. G.8032/Y.1344, which can now be removed from that Rec. and replaced with text pointing to the appropriate Terminology Rec. for the definition. This Implemente rs’ Guide should remain in force until such time as Rec.G.8032/Y.1344 is revised and reissued.IntroductionStudy Group 15 has agreed to the development of a single source Recommendation for definitions currently found in Working Party 3 Ethernet Frames over Transport Recommendations. However, not all affected Recommendations are currently in process for revision. To facilitate this transition, this Implementers’ Guide identifies the terms which can be removed and replaced when the initial source Recommendation is revised and reissued. This Implementers’ Guide should remain in force until such time as Rec. G.8032/Y.1344 is revised and reissued.Ethernet ring protection switching - Implementers' GuideTerms to be removed from Rec. G.8032/Y.1344The following table identifies the target term, with appropriate replacement definition text for the Recommendation identified in the title of this Implementers’ Guide._______________。

副本MSAP新设备工日 new

副本MSAP新设备工日 new
MSAP设备
序号 1 2 3 4 5 6 7 8 9 10 11 12 设备名称及型号 E6200-OO E6300P-OO E31OO E31-OPT-4E1-EAAAA E3US-OTU-PDH4-G E60V-BBAABABA E120M-ACAAAA ZXWT-A80 ZXWT-A70T ZXWT-A50V ZXWT-PDH60W/ES ZXWT-PDH60AFW/ES5 厂家 格林威尔 格林威尔 格林威尔 格林威尔 格林威尔 格林威尔 格林威尔 中兴皖通 中兴皖通 中兴皖通 中兴皖通 中兴皖通 工日(技工) 6 5 5 3 3 3 3 5 6 2 3 2 工日(普工) 大致安装工序 插2块板子,焊接6个2M头,跳尾纤,接电 插3~5块板子,跳尾纤,接电 插2块板子,焊接4个2M头,跳尾纤,接电 此为PDH板卡,单纤,需配套E3100机框,仅作板卡插入机框槽位后 跳纤对通远端PDH,焊接1-2路E1头即可。 E6300P或E6200上的PDH接入板卡,不需焊接2M头,仅需跳纤及配置 业务数据即可。 类光端机设备,除2M头个数差异外,其余类似光端机安装工序 类光端机设备,除2M头个数差异外,其余类似光端机安装工序 插4-12个光模块,接-48V电,跳尾纤 插2-3块板卡,焊接4个2M头,跳尾纤,接电 此设备放置农信社营业网点,工序较为简单,加电,跳纤即可。 类光端机设备,除2M头个数差异外,其余类似光端机安装工序 此设备放置农信社营业网点

BS 970-1 - 1996 General Inspection And Testing Procedures And Specific Requirements For Carbon, Carb

BS 970-1 - 1996 General Inspection And Testing Procedures And Specific Requirements For Carbon, Carb

16
Section 5. Specific requirements for stainless and heat resisting steels
24
Section 6. Specific requirements for sizes and tolerances
6.1 Sizes
27
6.2 Mass/unit length tolerances
8
1.14 Selection and preparation of material for mechanical testing
8
1.15 Frequency of other tests
9
1.16 Test methods and test results
10
1.17 Retests
11
1.18 Inspection
ISBN 0 580 25120 9
Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Fri Jul 20 10:06:19 GMT+00:00 2007, Uncontrolled Copy, (c) BSI
© BSI 10-1998
Contents
BS 970-1:1996
Committees responsible Foreword
Page Inside front cover
iii
Section 1. General inspection and testing procedure
1.1 Scope
1
1.2 References
1

IPS2010目录-中文

IPS2010目录-中文

40 37 27 13 34 43 45 44
工程设计(E)
e-pr-460 e-pr-551 e-pr-700 e-pr-750 e-pr-771 e-pr-810 e-pr-850
安全、防火、环境污染控制(SF) 二级目录 标准号 英文
中文
页数
施工与安装(C)
c-sf-550
safety boundary limit 土建(CE)
工程设计(E) e-pi-221 e-pi-240 材料与设备(M) m-pi-150
Piping material selection(on plot 管材选择(平面管线) piping)part one general Plant piping systems Flanges and fittings
工程设计(E)
e-pr-170 e-pr-190
工程设计(E)
e-pr-200 e-pr-230 e-pr-308 e-pr-360 e-pr-440
Basic engineering design data Piping & instrumentation diagram Numbering system Process design of liquid & gas transfer and storage Process design of piping systems(process piping and pipline size) Process design of pressure relieving systems inclusive saftey relief valves Process design of flare blowdown systems Process design of gas treating units Process design of crude oil electrostatic desalters Process design of compressors Process requirements of heat exchanging equipment Process design of furnaces Process requirements of vessels,reactors and separators

海关总署公告2010年第72号--批准三项海关化验标准的公告

海关总署公告2010年第72号--批准三项海关化验标准的公告

海关总署公告2010年第72号--批准三项海关化验
标准的公告
文章属性
•【制定机关】中华人民共和国海关总署
•【公布日期】2010.11.30
•【文号】海关总署公告2010年第72号
•【施行日期】2011.01.01
•【效力等级】部门规范性文件
•【时效性】现行有效
•【主题分类】海关综合规定
正文
海关总署公告
(2010年第72号)
根据《中华人民共和国海关行业标准管理办法(试行)》,海关总署批准《碳纤维中碳含量的测定高频红外碳硫分析仪法》、《混合甲酚组成的定量分析毛细管气相色谱法》和《石油润滑剂中矿物油含量的定量分析法》三项海关化验标准,现予以公布(标准名称见附件,标准文本由中国海关出版社出版),自2011年1月1日起实施。

特此公告。

附件:海关行业标准编号名称表
二○一○年十一月三十日附件
海关行业标准编号名称表。

T-REC-G.975-200010-I!!PDF-E

T-REC-G.975-200010-I!!PDF-E

ITU-T G.975 (10/2000)
i
FOREWORD The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis. The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics. The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

Eaton Moeller NZM系列无接触开关数据手册说明书

Eaton Moeller NZM系列无接触开关数据手册说明书

Eaton 259551Eaton Moeller series NZM - Molded Case Circuit Breaker.Undervoltage release, 60 V DC, +2early N/O, 1General specificationsEaton Moeller series NZM release259551NZM1-XUHIV60DC401508259551737 mm66 mm32 mm0.056 kgUL/CSAIECRoHS conform CSA (File No. 22086)CSA (Class No. 1437-01)UL489UL listedCSA certifiedUL (Category Control Number DIHS) UL (File No. E140305)CE markingCSA-C22.2 No. 5-09IEC60947Product Name Catalog Number Model Code EANProduct Length/Depth Product Height Product Width Product Weight Compliances CertificationsIs the panel builder's responsibility. The specifications for the switchgear must be observed.0 VMeets the product standard's requirements.10 msIs the panel builder's responsibility. The specifications for the switchgear must be observed.Does not apply, since the entire switchgear needs to be evaluated.1.5 VAMeets the product standard's requirements.60 VTwo early-make auxiliary contacts0.8 W0 VIs the panel builder's responsibility.15 msUndervoltage release with 2 early-make auxiliary contacts, e.g., for early-make connection of undervoltage release in main switch applications, as well as for interlock and load shedding circuits. For use with emergency-stop devices in connection with an emergency-stop button. When the under-voltage trip is switched eaton-feerum-the-whole-grain-solution-success-story-en-us.pdf eaton-digital-nzm-brochure-br013003en-en-us.pdfeaton-digital-nzm-catalog-ca013003en-en-us.pdfDA-DC-03_NZM1eaton-circuit-breaker-release-nzm-mccb-dimensions.epseaton-circuit-breaker-undervoltage-nzm-mccb-3d-drawing-004.epsM1-XUHIV60DCThe new digital NZM RangeIntroduction of the new digital circuit breaker NZMeaton-nzm-technical-information-sheet10.11 Short-circuit ratingRated control supply voltage (Us) at AC, 50 Hz - min 10.4 Clearances and creepage distancesMinimum command time - min10.12 Electromagnetic compatibility10.2.5 LiftingPick-up power consumption at AC (undervoltage release) 10.2.3.1 Verification of thermal stability of enclosures Rated control supply voltage (Us) at DC - minFitted with:Pick-up power consumption at DC (undervoltage release) Rated control supply voltage (Us) at AC, 50 Hz - max 10.8 Connections for external conductorsMinimum command time - maxSpecial features BrochuresCatalogs Certification reports DrawingseCAD model Installation videos Technical data sheetsoff, accidental contact with the circuit breaker’s primary contacts is prevented when switched on. Early make of auxiliary contacts on switching on and off (manual operation): approx. 20 ms Undervoltage releases cannot be installed simultaneously with NZM...-XHIV... early-make auxiliary contact or NZM...-XA... shunt release.Rated control supply voltage (Us) at DC - max60 V10.9.3 Impulse withstand voltageIs the panel builder's responsibility.Rated control supply voltage60 V DC10.6 Incorporation of switching devices and componentsDoes not apply, since the entire switchgear needs to be evaluated.10.5 Protection against electric shockDoes not apply, since the entire switchgear needs to be evaluated.Used withNZM1(-4), N1(-4)Electric connection typeScrew connection10.13 Mechanical functionThe device meets the requirements, provided the information in the instruction leaflet (IL) is observed.10.2.6 Mechanical impactDoes not apply, since the entire switchgear needs to be evaluated.10.9.4 Testing of enclosures made of insulating materialIs the panel builder's responsibility.Number of contacts (normally closed contacts)10.3 Degree of protection of assembliesDoes not apply, since the entire switchgear needs to be evaluated.Voltage typeACDrop-out voltage of undervoltage release AC/DC - min0.35 x UsFrameNZM1Reaction time19 msSuitable forOff-load switchVoltage tolerance - min.85Rated control voltage (relay contacts)60 V DCPower consumption0.8 W (sealing DC)1.5 VA (sealing AC)10.2.3.2 Verification of resistance of insulating materials to normal heatMeets the product standard's requirements.Drop-out voltage of undervoltage release AC/DC - max0.7 x Us10.2.3.3 Resist. of insul. mat. to abnormal heat/fire by internal elect. effectsMeets the product standard's requirements.Connection typeWith terminal block on the left-hand switch side10.9.2 Power-frequency electric strengthIs the panel builder's responsibility.Voltage tolerance - max1.1Undelayed short-circuit release - min0 ARated control supply voltage (Us) at AC, 60 Hz - min0 V10.7 Internal electrical circuits and connectionsIs the panel builder's responsibility.Terminal capacity (solid/flexible conductor)18 - 14 AWG (1x) for undervoltage releases, off-delayed0.75 mm² - 2.5 mm² (2x) at shunt release with ferrule18 - 14 AWG (2x) at shunt release18 - 14 AWG (2x) for undervoltage releases, off-delayed0.75 mm² - 2.5 mm² (1x) at shunt release with ferruleEaton Corporation plc Eaton House30 Pembroke Road Dublin 4, Ireland © 2023 Eaton. All Rights Reserved. Eaton is a registered trademark.All other trademarks areproperty of their respectiveowners./socialmedia18 - 14 AWG (1x) at shunt release0.75 mm² - 2.5 mm² (1x) for undervoltage releases, off-delayed with ferrule0.75 mm² - 2.5 mm² (2x) for undervoltage releases, off-delayed with ferruleThe panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.Accessory Undervoltage release Undervoltage release with early-make auxiliary contact Meets the product standard's requirements.Meets the product standard's requirements.Meets the product standard's requirements.0 V20 A10.10 Temperature riseType10.2.2 Corrosion resistance10.2.4 Resistance to ultra-violet (UV) radiation 10.2.7 InscriptionsRated control supply voltage (Us) at AC, 60 Hz - max Number of contacts (normally open contacts)Undelayed short-circuit release - max Number of contacts (change-over contacts)。

GSM_GPRS_EGPRS射频性能测试要求规范

GSM_GPRS_EGPRS射频性能测试要求规范

产品测试规范PCMCIA 卡〈EDGE射频测试规范〉版本V1.0This document contains proprietary information of Wewins Corporation and is not to be disclosed or used except in accordance with applicable agreementsThe offer of Wewins is valid for three months on submission.@ 2007 Wewins Corporation. All Rights Reserved前言技术文件技术文件名称:SunnyCat SC700 PCMCIA 卡EDGE射频性能测试规范技术文件编号:版本:V1.0共28 页(包括封面)拟制审核批准WEWINS修改记录目录1 概述 (7)1.1适用范围 (7)1.2执行标准 (7)2 测试要求 (8)2.1常温测试环境 (8)2.2测试仪器和设备 (9)2.3测试基本要求 (9)3 样机版本确认 (10)3.1软件版本 (10)3.2硬件版本 (10)4 测试台搭建 (10)4.1测试台搭建 (10)5 射频测试 (11)5.1频率误差和相位误差测试 (11)5.1.1 基本概念 (11)5.1.2 测试目的 (11)5.1.3 测试初始条件 (11)5.1.4 测试步骤 (12)5.1.5 通过准则 (12)5.1.6 多径与干扰条件下的频率误差 (13)5.2发射机输出功率 (14)5.3发射输出频谱 (17)5.3.1 基本概念 (17)5.3.2 测试目的 (17)5.3.3 初始测试条件 (18)5.3.4 测试步骤 (18)5.3.5 通过准则 (18)5.4参考灵敏度 (20)5.4.1 基本概念 (20)5.4.2 测试目的 (20)5.4.3 初始测试条件 (20)5.4.4 测试步骤 (21)5.4.5 通过准则 (21)5.5同信道抑制测试 (24)5.5.1 基本概念 (24)5.6.1 测试目的 (24)5.6.2 初始测试条件 (25)5.6.3 测试步骤 (25)5.5.4 通过准则 (26)5.6邻信道抑制测试 (29)5.6.1 基本概念 (29)5.6.1 测试目的 (30)5.6.2 初始测试条件 (30)5.6.3 测试步骤 (30)5.6.4 通过准则 (31)5.7互调抑制测试 (36)5.7.1 基本概念 (36)5.7.2 测试目的 (36)5.7.3 初始测试条件 (37)5.7.4 测试步骤 (37)5.7.5 通过准则 (38)5.8阻塞和杂散响应测试 (39)5.8.1 基本概念 (39)5.8.2 测试目的 (39)5.8.3 初始测试条件 (39)5.8.4 测试步骤 (40)5.8.5 通过准则 (40)5.9有效的接收机输入电平范围测试 (41)1概述1.1适用范围本测试规范主要依据最新的EDGE/GPRS/GSM终端的相关行业标准,国家标准规范、进网检测要求制定的,可用于指导EDGE/GPRS/GSM终端产品整机射频性能测试。

光伏电站变压器油检测数据

光伏电站变压器油检测数据

光伏电站变压器油检测报告检测依据的标准(名称、代号):1、《运行中变压器油质量》GB/T 7595-20172、《运行中变压器油水溶性酸测定法》GB/T7598-20083、《石油产品酸值测定法》GB/T7598-20084、《石油产品闪点测定法(闭口法)》GB/T261-20085、《运行中变压器油和汽轮机油水分含量测定法》GB/T7600-20146、《石油产品对水界面张力测定法》GB/T6541-19867、《液体绝缘材料工频相对介电常数、介质损耗因数和体积电阻率的测量》GB/T5654.20078、《绝缘油介电强度测定法》GB/T507-20029、《电气装置安装工程电气设备交接试验标准》GB 50105-2016变压器油常规试验报告含量单位:μL/L 安装地点光伏厂区光伏厂区光伏厂区设备名称09 箱变13 箱变14箱变外状透明透明透明水分(μL/L)10.9 11.0 10.5闪点(℃)144.4 144.2 143.5水溶性酸(PH 值) 5.74 5.69 5.70酸值(mgKOH/g)0.01 0.01 0.01介质损耗因数0.015 0.013 0.015(90℃)界面张力35 34 36(25℃CmN/m)体积电阻(90℃)≥5.0*109≥5.0*109≥5.0*109Ω.m击穿电压(kV)09 箱变13 箱变14箱变一次49.3 49.7 51.4二次49.4 51.3 51.4三次50.3 52.4 49.6四次51.3 51.9 49.0五次51.2 50.4 51.4六次52.0 51.7 51.0平均50.6 51.2 50.6 试验结论合格变压器油色谱分析报告含量单位:μL/L 安装地点光伏厂区光伏厂区光伏厂区设备名称09 箱变13 箱变14箱变甲烷(CH4) 1.42 1.40 1.25乙烯(C2H4)0.06 0.04 0.05乙烷(C2H6)0.02 0.03 0.03乙炔(C2H2)0.00 0.00 0.00 氢气(H2) 3.30 3.19 2.87一氧化碳(CO)59.9 60.7 57.2二氧化碳(CO2)732.3 719.7 683.7 总烃 2.17 2.23 2.34试验结论含量未发现异常变压器油常规试验报告含量单位:μL/L 安装地点光伏厂区光伏厂区光伏厂区设备名称16 箱变25 箱变27箱变外状透明透明透明水分(μL/L)13.1 12.9 12.5闪点(℃)142.9 143.5 143.6水溶性酸(PH 值) 5.41 5.87 6.17酸值(mgKOH/g)0.02 0.01 0.01介质损耗因数0.017 0.017 0.018(90℃)界面张力38 36 38(25℃CmN/m)体积电阻(90℃)≥5.0*109≥5.0*109≥5.0*109Ω.m击穿电压(kV)16 箱变25 箱变27箱变一次49.8 50.7 50.0二次49.3 51.3 51.8三次50.3 51.4 50.9四次50.3 51.9 49.7五次51.2 50.3 51.6六次51.0 49.2 49.0平均50.3 50.8 50.5 试验结论合格变压器油色谱分析报告含量单位:μL/L 安装地点光伏厂区光伏厂区光伏厂区设备名称16 箱变25 箱变27箱变甲烷(CH4) 1.42 1.42 1.37乙烯(C2H4)0.05 0.05 0.07乙烷(C2H6)0.05 0.07 0.07乙炔(C2H2)0.00 0.00 0.00 氢气(H2) 3.33 3.15 3.30一氧化碳(CO)69.5 67.6 65.8二氧化碳(CO2)723.5 739.6 696.5 总烃 2.53 2.44 2.75试验结论含量未发现异常变压器油常规试验报告含量单位:μL/L 安装地点光伏厂区光伏厂区光伏厂区设备名称30箱变38 箱变40箱变外状透明透明透明水分(μL/L)13.9 14.5 13.2闪点(℃)143.6 143.4 144.5水溶性酸(PH 值) 5.97 6.08 6.07酸值(mgKOH/g)0.02 0.02 0.01介质损耗因数0.016 0.019 0.018(90℃)界面张力35 36 36(25℃CmN/m)体积电阻(90℃)≥5.0*109≥5.0*109≥5.0*109Ω.m击穿电压(kV)30箱变38 箱变40箱变一次50.4 50.2 50.9二次51.7 49.7 51.5三次50.7 51.9 50.5四次50.8 51.6 50.4五次51.8 50.3 51.2六次51.7 51.4 49.1平均51.2 50.8 50.5 试验结论合格变压器油色谱分析报告含量单位:μL/L 安装地点光伏厂区光伏厂区光伏厂区设备名称30箱变38 箱变40箱变甲烷(CH4) 1.45 1.36 1.35乙烯(C2H4)0.08 0.06 0.05乙烷(C2H6)0.06 0.07 0.08乙炔(C2H2)0.00 0.00 0.00 氢气(H2) 3.43 3.59 3.72一氧化碳(CO)64.9 67.2 65.8二氧化碳(CO2)699.5 703.5 689.3 总烃 2.76 2.79 2.81试验结论含量未发现异常变压器油常规试验报告含量单位:μL/L 安装地点光伏厂区设备名称41箱变外状透明水分(μL/L)13.4闪点(℃)145.7水溶性酸(PH 值) 6.10酸值(mgKOH/g)0.02介质损耗因数0.015(90℃)界面张力34(25℃CmN/m)体积电阻(90℃)≥5.0*109Ω.m击穿电压(kV)41箱变一次53.0二次51.2三次50.1四次51.8五次51.1六次51.0平均51.4试验结论合格变压器油色谱分析报告含量单位:μL/L 安装地点光伏厂区设备名称41箱变甲烷(CH4) 1.79乙烯(C2H4)0.06乙烷(C2H6)0.05乙炔(C2H2)0.00氢气(H2) 3.64一氧化碳(CO)69.3二氧化碳(CO2)689.6总烃 2.45试验结论含量未发现异常变压器油常规试验报告含量单位:μL/L 安装地点110KV升压站110KV升压站110KV升压站设备名称主变底主变中主变上外状透明透明透明水分(μL/L)14.7 14.5 15.1闪点(℃)145.2 146.2 145.1水溶性酸(PH 值) 6.23 6.21 6.12酸值(mgKOH/g)0.01 0.01 0.01介质损耗因数0.013 0.014 0.010(90℃)界面张力36 36 37(25℃CmN/m)体积电阻(90℃)≥5.0*109≥5.0*109≥5.0*109Ω.m击穿电压(kV)主变底主变中主变上一次50.0 50.6 50.2二次52.8 50.6 52.4三次51.5 51.3 49.2四次48.9 50.9 49.7五次48.0 51.3 51.7六次49.7 51.0 52.2平均50.1 50.9 50.9 试验结论合格变压器油色谱分析报告含量单位:μL/L 安装地点110KV升压站110KV升压站110KV升压站设备名称主变底主变中主变上甲烷(CH4) 1.30 1.29 1.24乙烯(C2H4)0.04 0.03 0.04乙烷(C2H6)0.01 0.01 0.02乙炔(C2H2)0.00 0.00 0.00 氢气(H2)8.33 7.76 7.71一氧化碳(CO)62.1 65.3 61.5二氧化碳(CO2)563.3 485.4 566.8 总烃 1.34 1.60 1.75含量未发现异常试验结论。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

INTERNATIONAL TELECOMMUNICATION UNIONITU-T G.984.7 TELECOMMUNICATION(07/2010) STANDARDIZATION SECTOROF ITUSERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKSDigital sections and digital line system – Optical line systems for local and access networksGigabit-capable Passive Optical Networks(GPON): Long reachCAUTION !PREPUBLISHED RECOMMENDATIONThis prepublication is an unedited version of a recently approved Recommendation.It will be replaced by the published version after editing. Therefore, there will be differences between this prepublication and the published version.FOREWORDThe International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.NOTEIn this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.INTELLECTUAL PROPERTY RIGHTSITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.As of the date of approval of this Recommendation, ITU [had/had not] received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at http://www.itu.int/ITU-T/ipr/.ITU 2010All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.Gigabit-capable Passive Optical Networks (GPON): Long reach SummaryITU-T Recommendation G.984 defines the maximum differential distance between any two ONUs on the PON as 20 km and the GPON logical reach has been defined as 60 km. However, based on practical deployment experience, it has been found that a differential distance of 40 km ranging from 0 to 40 km, 20 to 60 km or distances in between allows significant flexibility in PON deployment and offers many benefits including the ability to serve sparsely populated areas in an efficient manner. The present Recommendation describes the necessary requirements for GPON to support the differential distance of 40 km.KeywordsGPON, differential distance, quiet windowGigabit-capable Passive Optical Networks (GPON): Long reachScopeThis Recommendation contains the set of G-PON physical media dependent requirements and transmission convergence layer requirements that allow extending the maximum differential fibre distance of a G-PON system to 40 km versus the conventional 20km differential fibre distance, as required by ITU-T Recommendation G.984.1. This Recommendation introduces additional capabilities to the G.984 series Recommendations and does not replace other Recommendations in the series. The appropriate G.984 series Recommendations should be selected for the intended application and distance requirements.ReferencesThe following ITU-T Recommendations and other references contain provisions, which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published.The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.[ITU-T G.984.1] ITU-T Recommendation G.984.1 (2008), Gigabit-capable Passive OpticalNetworks (GPON): General Characteristics.[ITU-T G.984.2] ITU-T Recommendation G.984.2 (2003), Gigabit-capable Passive OpticalNetworks (GPON): Physical Media Dependent (PMD) layer specification. [ITU-T G.984.3] ITU-T Recommendation G.984.3 (2008), Gigabit-capable Passive OpticalNetworks (GPON): Transmission convergence layer specification.DefinitionsThis Recommendation does not introduce any new concepts that would require a definition. Abbreviations and acronymsConventionsThis Recommendation does not introduce any new conventions.OverviewFigure 0-1 shows the construction of a quiet window for the Serial Number acquisition in the G.984 GPON system, where all ONUs are within the 20 km fibre reach. The quiet window in this case must accommodate the 200 μs variation of the round-trip propagation delay (0 to 200 μs), the 2μs variation of the ONU processing time (34 to 36 μs), and the 48μs ONU random delay (0 to 48 μs) (see Clause 10.4.2/G.984.3). Therefore, the minimum size of the quiet window is 250 μs.For the sake of specificity, assume that the OLT does not start the quiet window construction until the transmission of the Serial Number request grant. (See Clause 10.4.5/G.984.3 for the discussion of the alternatives.) In this case, the OLT employs the pre-assigned delay which is not less than the combined variation of round-trip propagation delay and ONU processing time (202 μs). The minimum offset of the quiet window at the OLT (i.e., the time to earliest arrival of the Serial Number response after transmission of a Serial Number request grant) can be determined as 236 μs, a sum of the pre-assigned delay and the minimum ONU response time.Figure 0-1: Construction of GPON quiet window with the 0 to 20km distance rangeFigure 0-2 shows the quiet window construction for Serial Number acquisition in a GPON system where the fibre distances of all ONUs vary between 20 km and 40 km. The maximum differential fibre distance is the same as in the example above, i.e., 20 km. Since ONU’s design and protocol parameters depend on fibre distance only through the maximum differential fibre distance, they too remain the same. The minimum quiet window size in this case is also 250 μs. On the other hand, the round-trip propagation delay now varies from 200 to 400 μs, and the minimum round-trip propagation contributes to the quiet window offset, which becomes 436 μs.Figure 0-2: Construction of GPON quiet window with the standard differential distance and 20km to 40kmdistance rangeIn a GPON system with extended differential reach (an EDR GPON system) the differential fibre distance is increased so that the ONUs could be placed anywhere between 0 and 40 km. This increases the variation of round-trip propagations delay to 400 μs (ranging from 0 to 400μs). Therefore, the size of the quiet window that the OLT has to open for Serial Number acquisition is such a system with other parameters being invariant must be at least 450 μs. Figure 0-3 shows the construction of the quiet window for EDR GPON. Following the pattern adopted earlier, the pre-assigned delay is assumed to be equal to the combined variation of round-trip propagation delay and ONU processing time, i.e., 402 μs. The offset of the quiet window in this case is can be determined as 436 μs.Figure 0-3: Construction of GPON quiet window with proposed extended differential distance (0 to 40km) Note that Serial Number acquisition requires a broadcast PLOAM grant, and that multiple ONUs may attempt to respond. The random delay (0..48 μs) helps to reduce the probability of collision. When the OLT opens a quiet window for ranging, it uses a unicast grant with no possibility contention, so that the minimum quiet window sizes are 202 μs for the case of the 20km differential fibre distance case and 402 μs for the 40 km differential fibre distance case.Physical layer requirementsSpectral WidthThe ITU-T Recommendation G.984.2 defines certain PMD specifications for the OLT and ONU. For a GPON system operating at 2488 Mbps downstream rate and 1244 Mbps upstream rate, the 20 dB spectral width was originally specified as 1nm. In order to serve ONUs deployed 0 – 40 km, 20 – 60 km or at distances in between with a 40km differential distance from the OLT, the OLT laser 20 dB spectral width needs to be less than or equal to 0.6 nm.Attenuation rangeAn EDR GPON system shall employ the optical components and maintain the optical power levels consistent with one of the standard attenuation range classes: Class B+, Class C, and Class C+. It shall support the maximum fibre distance and the maximum differential fibre distance as specified in the following table.Table 1– Physical medium dependant layer parameters of ODNODN topologyThe ODN shall be based on ITU-T G.652 fibre and shall possess the topology, including the location and degree of the power splitter and possible use of passive optical attenuators, to ensure that the minimum loss requirement is met for each ONU.An ODN accommodating the differential fibre reach approaching 40 km may employ an unbalanced cascade of splitters, where the shortest fibre branches experience the highest degree of split. An example of a Class B+ ODN supporting 13 – 28 dB attenuation range with maximum physical reach of 40 km and differential fibre reach of 40 km is shown in Figure 2.1. In this example, the ONUs with shorter fibre distance experiences the higher degree of split than the remote ONUs. Specifically, assuming, in the first approximation, 3.5 dB attenuation per binary split and 0.4 dB per kilometre of fibre, one can obtain for the group of near ONUs the total attenuation of 17.5 dB and for the group of remote ONUs the total attenuation of 26.5 dB, both values being within the allowed window for the class.Other topologies may be possible, provided the ODN meets the G.984.2 specifications.Figure 0-1: An example of Class B+ ODN supporting the differential fibre reach of 40 km.GPON Transmission convergence layer requirementsOLT side considerationsAt the Serial Number acquisition and ranging phases of the Activation process, the OLT shall be able to create a quiet window appropriate for a 40 km differential fibre distance between the farthest and closest ONU.While the possibility to use narrow quiet windows based on the previous knowledge of ONU location is for further study, it should be noted that on the first ONU activation no a priori fibre distance information is available.ONU side considerationsAn ONU in an EDR GPON system has to provide enough buffering for the upstream traffic arriving at the ONU within the quiet window, which is approximately twice as large as in a conventional GPON system.An ONU in an EDR GPON system shall support larger storage of twice as many BWmaps as a conventional GPON system._____________。

相关文档
最新文档