历史模拟法计算VARPDF.pdf
历史模拟法计算VAR

历史模拟计算VAR金融专硕江雨林142025100024VaR 实质上是损失分布上分位数的概念。
因此VaR 计算离不开三个要素: 一是持有期限; 二是置信水平;三是未来资产组合收益分布。
持有期限是风险所在的时间区间, 也是取得观察数据的频率, 即所观察数据是日收益率、周收益率, 月收益率或是年收益率。
持有期限的选择通常受流动性、头寸调整和数据三个因素约束。
例如市场流动性影响持有期限的选取, 如果资产头寸快速流动, 可以选择较短的持有期限, 如果资产头寸流动性较差, 较长持有期限更加合适。
置信水平是指跟据某种概率测算结果的可信程度, 它表示了承担风险的主体对风险的偏好程度。
如置信水平过低, 损失超过VaR 的极端事件发生的概率过高这使得VaR 失去意义;置信水平过高, 损失超过VaR 的极端事件发生的概率可以得到降低, 但统计样本中反映极端事件的数据过少, 这使得对VaR 估计的准确性下降。
一般取90% -99% 塞尔银行监管委员会选择的置信水平是95%。
收益分布是VaR 计算方法重要的前提条件。
如果认定收益分布服从一定的条件, 则可以利用该条件分布的参数求得VaR。
在计算VaR时,往往对资产收益分布作一些假定。
金融经济学的实证研究表明, 时间跨度相对短的前提下, 实际收益分布越接近正态分布。
除此之外,VaR计算通常需要选取一个计量单位,可以是美元、马克或金融业务所涉及的其它主要币种,VaR 依赖于基础货币的选取。
VaR 方法的核心在于论述金融时间序列的统计分布或概率密度函数。
通常我们以价格或指数的对数收益率序列为论述对象, 之所以不直接刻画价格、指数序列是因为价格或指数的取值范围为[0,+ 0 ],这样在我们论述该金融时间序列的统计分布过程中就会受到一定的限制; 另外对数收益率R t的取值范围位于整个实数域, 且多期对数收益率是单期对数收益率的和。
考虑一个证券组合,假定Po为证券组合的初始价值,R是持有期内的投资回报率, 在期末证券组合的价值为:P=P0 (1+R)假定回报率R的期望和波动性(通常用标准差来论述)分别为卩和①。
VaR分析的三种计算方法

VaR度量的三种经典方法1.正态分布法正态分布法计算组合Va R有三种计算方法:A.假设债券组合的对数日收益率服从均值为u,标准差为σ的正态分布。
则由独立同分布随机变量和的特征知,持有期Δt内组合的对数收益率服从均值为u∗Δt,方差为σ2∗Δt的正态分布。
通过计算债券组合的收益率分布,估计分布参数,直接计算债券组合的Va R。
若将债券组合看作单一债券,则此种方法也适用于单个债券的Va R计算。
具体步骤为:1、根据成分债券的价格矩阵和对应持仓量矩阵计算债券组合的价格序列,这里价格使用债券的盯市价格(以持仓量计算权重);2、根据债券组合的价格序列计算对数日收益率;3、根据成分债券的当前价格和当前持仓量计算债券组合的当前价格P0(以持仓量计算权重);4、由债券组合的对数收益率序列计算其标准差,作为收益率的波动率σ;5、计算置信度α对应的标准正态分布的分位数zα;6、计算组合的在置信度下的最大损失金额V aR为:VaR=P0∗zα∗σ∗Δt,也称为相对V a R,是指以组合的当前价格为基点考察持有期内组合的价指变化P−P0。
其中Δt为持有期;u P0Δt−P0∗zα∗σ∗Δt (此值为负),是指以持有在该置信度下,债券组合绝对V aR为:期内组合的预期收益率为基点考察持有期内组合的变化P−E(P),其中u为债券组合的收益率均值。
B.假设债券组合中各成分债券的对数收益率服从多元正态分布,均值为向量U,协方差矩阵为V。
通过计算成分债券的收益率矩阵,估计向量U和协方差矩阵V,进而计算债券组合的Va R.1、计算成分债券的对数收益率矩阵R,每一列表示一种成分债券的收益率序列;2、由成分债券的当前持仓量计算权重向量W(分量和为1);3、计算收益率矩阵的列均值向量U,计算列均值的加权和,得到债券组合的收益率均值u;计算收益率矩阵的列协方差,得到协方差矩阵V,则债券组合的方差为W∗V∗W T;4、计算组合在置信度下的最大损失金额为:VaR=P0∗zα∗W∗V∗W T∗Δt,也就是相对V a R;债券组合在该置信度下的最差价格为:uP0Δt−P0∗zα∗W∗V∗W T∗Δt (此值为负),也就是绝对V a R,其中u为组合收益率的均值。
基于历史模拟法的VaR计算

P96
P100+…+P96
T
求满97 足66802.6p13k0j 6 1-267c78.3869
P97
P100+…+P97
jm 的最大值m
26
p {(Δf(kj), k)j :j=1,2,…,T }
Kt
远期合约价值 f的可能取值
(美元)
远期合约损益 值Δf的可能取 值(美元)
ΔΔff的的(度可概能kc率取m下值)的即ΔV的f的为a累可R积置能概取信率值
2 4.8985 5.9468 1.6658 113592.003
20011.003
3 4.9505 5.9418 1.66385 96672.74176 3091.741755
4 4.9575 6.0028 1.6622 78235.15927 -15345.8407
5 4.9375 5.9488 1.66315 88969.37713 -4611.62287
差。 第五,第三节所言有关VaR方法的一些缺陷仍
然存在。
23
3.5.4 计算VaR的标准历史模拟法的修 正及扩展
1. 时间加权历史模拟法
风险因子在过去第t期的变化值
Δfi(-t)在未来出现的可能性
1
是pt
2
…
-T … -t
…
-2 -1 0 1
t
pt
(1 ) t1 1T
η-衰减因子
… T
24
p {(Δf(kj), k)j :j=1,2,…,T }
[Tc] ,则根据分位数和证券组合未来的损 益分布即可求得置信度c下的VaR值为ΔV (k[Tc]+1)。
9
-T … -t
三种Copula_VaR计算方法与传统VaR方法的比较

=
∗ ∗
- + + + - + 1 VaR1y
f ( x , y ) dx dy
=
∗ ∗
- + - +
c( u, v) f 1 ( x ) dx f 2 ( y ) dy
通过上式, 只要得到各资产收益的边沿密度函数, 并且得到它们的 连接函数 Co pula, 在给定一定置信水平 的情况下 , 就可以求出资产组合的 VaR 值。这种解析方法同样可以 推广到含有多个资产组合的 VaR 值求解中。 2 用 Copula 变换相关系数的 V aR 的分析方法 在传统的 VaR 计算的分析方法中, JP Mo rgan 的 RiskM et rics 方法是最常用的方法 , 这种方法基于正态性假设 , 关键部分在于求解组合的方差 2 p , 有了组合的方差就可以应用正 态分布的性质求解 V aR, 即 V aR = E ( r p ) - z
The Comparison between Three Copula VaR Approaches and Traditional VaR Methods
Abstract: T he f inancial risk m easurement VaR approach has been w idely ap plied in bank and the ot her f inancial inst itut ions M eanw hile, Co pula t echnique has beco me t he hot spot all o ver t he w or ld w it h it s good characterist ics o f dealing t he no n- nor mal dist ribution T his ar ticle applies t he Copula t heo ry in t he calculatio n of VaR, co mparing t hr ee Copula VaR met ho ds and the t radit ional VaR m et h o ds T hroug h t he em pirical research of t he po rt fo lio w it h U S do llar and Euro dol lar, w e get a conclusio n that t he Copula based VaR appro ach does bet ter in t he risk m anagement Key words: Copula; V aR; GARCH ; Ex chang e Rat e
历史模拟法计算VAR.pdf

历史模拟计算VAR金融专硕江雨林 142025100024VaR 实质上是损失分布上分位数的概念。
因此 VaR 计算离不开三个要素:一是持有期限;二是置信水平;三是未来资产组合收益分布。
持有期限是风险所在的时间区间,也是取得观察数据的频率,即所观察数据是日收益率、周收益率,月收益率或是年收益率。
持有期限的选择通常受流动性、头寸调整和数据三个因素约束。
例如市场流动性影响持有期限的选取,如果资产头寸快速流动,可以选择较短的持有期限,如果资产头寸流动性较差,较长持有期限更加合适。
置信水平是指跟据某种概率测算结果的可信程度,它表示了承担风险的主体对风险的偏好程度。
如置信水平过低,损失超过 VaR 的极端事件发生的概率过高,这使得 VaR 失去意义;置信水平过高,损失超过 VaR 的极端事件发生的概率可以得到降低,但统计样本中反映极端事件的数据过少,这使得对 VaR 估计的准确性下降。
一般取 90% -99% 塞尔银行监管委员会选择的置信水平是95%。
收益分布是 VaR 计算方法重要的前提条件。
如果认定收益分布服从一定的条件,则可以利用该条件分布的参数求得 VaR。
在计算 VaR 时,往往对资产收益分布作一些假定。
金融经济学的实证研究表明,时间跨度相对短的前提下,实际收益分布越接近正态分布。
除此之外,VaR 计算通常需要选取一个计量单位,可以是美元、马克或金融业务所涉及的其它主要币种,VaR 依赖于基础货币的选取。
VaR 方法的核心在于论述金融时间序列的统计分布或概率密度函数。
通常我们以价格或指数的对数收益率序列为论述对象,之所以不直接刻画价格、指数序列是因为价格或指数的取值范围为[0,+∞ ], 这样在我们论述该金融时间序列的统计分布过程中就会受到一定的限制;另外对数收益率 R t 的取值范围位于整个实数域,且多期对数收益率是单期对数收益率的和。
考虑一个证券组合,假定P0 为证券组合的初始价值,R是持有期内的投资回报率,在期末证券组合的价值为:P=P0 (1+R)假定回报率R的期望和波动性(通常用标准差来论述)分别为μ和σ。
VaR的历史模拟法的实证分析

香 港 恒 生 指 数 2 0 一i 2至 2 6 8 线 圜 0 一 3 00 9 折
Po( P V R=』■ f ) 直接应用组合或组合中资产的投资收 r A <一 a) ’ (d b rr
益率来确定 △尸分布 的方法 , 即所谓 的收益率映射估值法 。该法是 A P分布的确定 方法 中最经典 、 最基本也是 最简单 的方法 。 当组合 中 资产数量 另一种 例如 , 某一投资者持 有的证券组合在未来 2 时内 , 4小 置信度 为 9 %, 7 任证券市场正常波动的情况下 , a V R值为 2 0万元 。其含 义是 0 指, 该证券组合在一 天内(4小 时 )由于市场价格变 化而带来 的最 2 , 大损 失 超 过 2 0万 元 的概 率 为 3 平 均 2 交 易 日才 可 能 出现 一 0 %, 0个 图 1 香 港 恒 生 指数 2 0 — — 0 3 1 2至 2 0 — — 0 6 9 8折 线 图 次这 种 情 况 。 眷 说 有 9 %的把 握 判 断 该 投 资 者 在 下 一个 交 易 日内 或 7 的损 失在 2 0万 元 以 内 。 0 2 V R 的估 值 在 香 港 证 券 市 场 的 历 史 模 拟 法 实证 a 21 标 的 选取 .指 股票价格指数是衡 量股票市场 总体价格 水平及其变 动趋势 的 尺度 , 是衡量股价波动和走势 的重要指标 。目前 , 国际上几种著 名的 股 票 指 数 有 : ・ 斯 股 票 指 数 、 准 ・ 尔 指 数 、l 道 ・ 斯 股 价 道 琼 标 普 E经 琼 指 数( 经平均股价 )《 融时报》 票价格指数 和香港恒生 指数 。 l E 、金 股 图 2香 港 恒 生指 数 2 0 0 3年 1月 一 0 6年 8月 的 月 几 20 我国的主要股票 价格指数包括 上证综合指数 、 沪深 综合指数 、 上证 何 平 均收 益率 的折 线 图 成份指数 ( 或称上证 10指数 )上证 5 8 、 0指数 、 深证成份指数 和深证 10指数 等。香港恒生指数是香港股票市 场历史最久 、 响最 大的 0 影 股票价格指数 , 由香港恒 生银行 于 16 9 9年 1 月 2 1 4日开始发 表。 恒 生股票价格指数 包括从在香港 上市 的 5 0多 家公司 中挑 选 出来 的 0 3 3家有代表性且经济实力雄 厚的大公司股票作 为成 分股 。由于恒 生股票价格指数 所选择 的基期适 当 , 因此 , 论股票市场 是狂升 或 不 猛 跌 , 是 处 于 正 常交 易 水 平 , 生 股 票 价 格 指 数 基 本 上 能 反 映 整 还 恒 个股 市的活动情况 。因此 , 我采用 香港恒生股票价格指数作为我们 的研 究对 象。在这里 , 我们其 实把香港恒生股票价格指数把作为一 种 金融资产 、 投资1 具或一 只“ 虚拟” 股票 的价格 。 图 3几何 收益 率直方图 样本取 自2 0/1 2 2 0/9 8 0 30/ — 0 60 / 。金融时间序列通常带有一些 0 0 上升 的趋势 。( 1 图 ) 明 的特性 , 比如 , 回报分布存在 的尖峰厚尾性 、 不对称性等。 下面 , 由于股票指数 是对相对 价格而 言的 ,由于价格序 列 的非 稳定 我们来观 察一下指数的折线 图, 在本段时间 内指数是在波 动中平稳 性, 因此必须将股票指数转化 为收益率序列 。收益率序列分算术收
5第五讲 VaR方法

第五讲VaR方法一、VaR方法的基本概念VaR 的起源J.P. Morgan 总裁Dennis Weatherstone 对他每天收到冗长的风险报告非常不满意,报告中的大量信息是关于不同风险暴露的敏感度报告(希腊值),这些报告对于银行的整体风险管理的意义不大Dennis Weatherstone 希望收到更为简洁的报告,报告应该阐明银行的整体交易组合在今后24小时所面临的风险报告这Dennis Weatherstone管理人员最终建立了VaR 报告,这一报告被称为“16:15报告”,因为这一报告要在每天16:15呈现在J.P. Morgan 前总裁Dennis Weatherstone 的办公室上VaR 的定义VaR 是指在给定的置信度下,资产组合在未来持有期内所遭受的最大可能损失用数学公式表示为:其中表示概率度量P =P t+-Pr 1ob P VaR c∆≤-=-()其中,Prob 表示概率度量,ΔP P (t+ Δt )P(t )表示组合在未来持有期Δt 内的损失,P (t )表示组合在当前时刻t 的价值(也可以是收益率),c 为置信度水平,VaR 为置信度水平c 下组合的在险价值例如,未来一周内(持有期)损失不超过1000万元的概率为95%,我们可以表示为:Pr 10000.05ob P ∆≤-=(万元)VaR 的定义(续)1-cV R 损失收益-VaRVaR的基本特点•VaR方法仅在市场处于正常波动的状态下才有效,而无法准确度量极端情形的风险•VaR是在某个综合框架下考虑了所有可能的市场风险来源后得到的一个概括性的风险度量值,而且在置信度和持有期给定的条件下,VaR值越大,说明组合面临的风险就越大,反之则说明组合面临的风险越小•由于VaR可以用来比较分析由不同的市场风险因子引起的、不同资产组合之间的风险大小,所有VaR是一种具有可比性的风险度量指标•在市场处于正常波动的状态下,时间跨度越短,收益率就越接近于正态分布,此时,假定收益率服从正态分布计算的VaR比较准确、有效•置信度和持有期是影响VaR值的两个基本参数置信度和持有期的选择和设定()∆≤-=-Pr1ob P VaR c从上式可以看到,VaR值实质上可以看作是持有期Δt 和置信度c 的函数,而且,持有期越长、置信度越大,此时计算出来的VaR也就越大,反之亦是因此,在其他因素不变的情况下,VaR值由持有期和置信度这两个参数决定换句话说要得到值就首先确定持有期和置信度这两个参决定,换句话说,要得到VaR值,就首先确定持有期和置信度这两个参数那,那么,应如何正确地选择和设定持有期和置信度呢?巴塞尔委员会要求计算交易账户中的市场风险采用:10天持有期及99%置信度微软公司采用:20天持有期及97.5%置信度持有期的选择和设定一般来说,在其他因素不变的情况下,持有期越长,组合面临的风险就越大,从而计算出的VaR值就越大,同时,持有期的选择还对VaR值的越大从而计算出的值就越大同时持有期的选择还对可靠性也产生很大影响,持有择常因此,持有期的选择和设定非常重要持有期的选择和设定应考虑以下两个因素:•组合收益率分布的确定方式•组合的市场流动性和头寸交易频繁程度组合收益率分布的确定方式要计算VaR,应先确定组合收益率的概率分布概率分布的确定一般有两种方式:•直接假定收益率服从某一概率分布–通常假定收益率服从正态分布–实际分布往往不符合正态分布,但持有期越短,正态分布假设下计算的VaR值就越有效、可靠–因此,在正态分布假设下应选择较短的持有期•用组合的历史样本数据来模拟收益率的概率分布–应考虑数据的可得性和有效性–持有期越长,需要考察的历史数据的时间跨度就越长,出现的问题和困难就越多–因此,此时也应选择较短的持有期组合的市场流动性和头寸交易频繁程度由于计算VaR时一般都假定持有期内组合的头寸保持不变,所以无视持有期内组合头寸的变化而得到的VaR值并不可靠因此,持有期的选择必须考察交易头寸的变动情况:•市场流动性越强,交易就越容易实现,金融交易者越容易适时调整资产组合,头寸变化的可能性也就越大,此时,为保证VaR值的可靠性,应选择较短的持有期•市场流动性较差,金融交易者调整头寸的频率和可能性比较小,则宜选择较长的持有期•金融交易者一般会在很多不同的市场上持有资产头寸,而不同市场的流动性差异很大,此时,金融交易者应根据组合中比重较大的头寸的流动性来设定持有期置信度的选择和设定置信度的选择和设定,应考虑以下三个因素:•历史数据的可得性和充分性•VaR的用途•比较分析的方便性历史数据的可得性和充分性在实际应用中,我们常常要以历史数据为基础来计算VaR置信度设定得越高,意味着VaR值就越大,为保证VaR计算的可靠性和有效性,所需要的历史样本数据就越多然而,过高的置信度使损失超过VaR的事件发生的可能性很小,因而,损失超过VaR的历史数据就很少因此,为保证VaR的可靠性、有效性和可计算性,必须根据历史样本数据的可得性和充分性,选取一个合适的置信度VaR的用途如果只是将VaR作为比较不同部门或公司所面临的市场风险,或者同一部门或公司所面临的不同市场风险的尺度,那么所选择的置信度是大是部门或公司所面临的不同市场风险的尺度那么所选择的置信度是大是小本身并不重要,重要的是所选择的置信度能否确保VaR的可靠性和有效性,而这就取决于之前说的历史数据的可得性和充分性效性而这就取决于之前说的历史数据的可得性和充分性如果金融机构是以VaR为基础确定经济资本需求,则置信水平的选择和设定极为重要,这主要依赖于金融机构对风险的厌恶程度和损失超过设定极为重要这主要依赖于金融机构对风险的厌恶程度和损失超过VaR的成本风险厌恶程度越高,损失成本越大,则弥补损失所需要的经济资本量越风险厌恶程度越高损失成本越大则弥补损失所需要的经济资本量越大,因而所选择的置信度也应越高,反之则可以选择较低的置信度比较分析的方便性由于人们经常要利用VaR对不同金融交易者的风险进行比较分析,而不同置信度下的VaR值的比较没有意义,所以置信度的选择和设定,还需V R值的比较没有意义所以置信度的选择和设定还需要考虑比较分析的方便性然如存在着准的式(如益率态分布)地当然,如果存在着标准的转换方式(如收益率正态分布),可以方便地将不同置信度下的VaR值转换成同意置信度下的VaR值,则置信度的选择就变得不那么重要算二、VaR的计算方法VaR 的计算方法概括Pr 1ob P VaR c∆≤-=-()从上式可以看出,计算VaR的核心问题是组合未来损益ΔP 的概率分布或统计分布的估计若某组合在未来持有期内的损益ΔP 服从概率密度函数为f(r)的连续分布,则可得:1Pr ()VaRc ob P VaR f r dr--∞-=∆≤-=⎰()VaR的计算方法概括(续)ΔP分布的确定方法收益率映射估值法风险因子映射估值法风险因子映射估值模拟法风险因子映射估值分析法(全部估值法)(局部估值法)基于历史模拟法Monte Carlom模拟法Delta、Gamma等灵敏度指标的方法率三、收益率映射估值法基于收益率映射估值法由于金融资产价格序列常常缺乏平稳性,而收益率序列则一般满足平稳性,所以人们普遍使用收益率的概率分布来考察组合的未来损益变化考察一个初始价值为P0、在持有期Δt内投资收益率为R 的组合,假设R 的概率分布已知,其期望收益率与波动率分别为μ和σ,于是,该组合期末价值为P = P0(1 + R),P的预期价值为:期末价值为P=P(1+R)P的预期价值为:E(P)= E(P0(1+R))= P0(1+E(R))=P0(1+μ)根据组合价值变化的确定方式不同,有两种VaR:根据组价变的确式有种•绝对VaR–以组合的初始值为基点考察持有期内组合的价值变化•相对VaR–以持有期内组合的预期收益为基点考察持有期内组合的价值变化以组合的初始值为基点考察持有期内组合的价值变化,即此时根据下式计算所得的记为00A P P P P R∆=-=此时,根据下式计算所得的VaR 称为绝对VaR ,记为VaR APr 1ob P VaR c∆≤-=-()以持有期内组合的预期收益为基点考察持有期内组合的价值变化,即此时根据下式计算所得的记为0()()R P P E P P R μ∆=-=-此时,根据下式计算所得的VaR 称为相对VaR ,记为VaR RPr 1ob P VaR c∆≤-=-()正态分布下的VaR计算在实际计算中,最常用的是正态分布为简单和清楚起见,我们设定持有期,置信度为Δt = 1c作业:计算组合收益率服从正态分布的相对VAR初始价值为P 0、日收益率为R 的组合假设R 假设:R 服从正态分布N (μ,σ2)设定:持有期Δt = 1,置信度为c 请计算相对VaR RV R -Φ10R VaRP c σ=()组合中资产收益率服从正态分布的相对VAR 计算计算相对VaR 时,资产i 的日损益ΔP R, i = P 0,i (R i -μi )于是组合的日损益率为于是,组合的日损益率为:nn∑∑,0,11()R R iii i i i P PPR μ==∆=∆=-根据正态分布的可加性的△P R 服从正态分布N (0,σR 2),而且直接验证可知σR 2= σA 210R AVaR P c σ-=Φ()资产组合的VaR 计算要计算的资产组合ω=(ω1,ω2,…ωn )T 的VaRn1i ω=∑相当于计算初始价值为1的资产组合ω的VaR ,即取资产i 的初始价值为P 0i = ω,于是:i 1=0, i i ,于是ni iμωμ=∑i 1=n2n可求得:0, 0, 1j 1i j ij i ji σωωρσσ===∑∑求得101A VaR P c σμ--=Φ-(())0R VaR P c σ=Φ()四、VaR的扩展边际VaR、增量VaR、成分VaR尽管VaR可以有效地描述组合的整体风险状况,但对金融交易者来说,可能还远远不够,因为实际中的金融交易者经常要根据市场情况不断地可能还远远不够因为实际中的金融交易者经常要根据市场情况不断地对组合中各资产的头寸进行调整这就需要金融交易者进一步了解构成组合的每项资产头寸以及每项资产解头寸的调整变化对整个组合风险的影响于是,我们将VaR扩展到:边际VaR、增量VaR、成分VaR增量VaR (Increment VaR ,I-VaR )增量VaR 是指一个新交易的出现或者现存交易的退出对组合的VaR 的影响假设在资产组合ω=(ω1,ω2,…,ωn )T 中,新增加另一个资产组合(d ω=(d ω1 ,d ω2 ,…,d ωn )调整后的资产组合的VaR 记做VaR (ω+d ω)资产组合d ω中的各个分量d ωi 可以取正值、0和负值于是,d ω的VaR ,即增量VaR 为:,,即I-VaR d VaR d VaR ωωωω=+-()()()成分VaR (Component VaR ,C-VaR )假设资产组合ω=(ω1,ω2,…ωn )T ,成分VaR 是指第i 种资产对组合V R 的贡献量即VaR 的贡献量,即C V nV R R 1()C-V ii VaR aR ω==∑成分VaR的特征资产组合中所有资产的成分VaR之和恰好等于资产组合的VaR资产i 的成分VaR恰好为资产i 对组合VaR的贡献份额,即在一个大的资产组合中,成分VaR等于增量VaR资产组合中成分V R V R。
VaR方法

第五讲VaR方法一、VaR方法的基本概念VaR 的起源J.P. Morgan 总裁Dennis Weatherstone 对他每天收到冗长的风险报告非常不满意,报告中的大量信息是关于不同风险暴露的敏感度报告(希腊值),这些报告对于银行的整体风险管理的意义不大Dennis Weatherstone 希望收到更为简洁的报告,报告应该阐明银行的整体交易组合在今后24小时所面临的风险报告这Dennis Weatherstone管理人员最终建立了VaR 报告,这一报告被称为“16:15报告”,因为这一报告要在每天16:15呈现在J.P. Morgan 前总裁Dennis Weatherstone 的办公室上VaR 的定义VaR 是指在给定的置信度下,资产组合在未来持有期内所遭受的最大可能损失用数学公式表示为:其中表示概率度量P =P t+-Pr 1ob P VaR c∆≤-=-()其中,Prob 表示概率度量,ΔP P (t+ Δt )P(t )表示组合在未来持有期Δt 内的损失,P (t )表示组合在当前时刻t 的价值(也可以是收益率),c 为置信度水平,VaR 为置信度水平c 下组合的在险价值例如,未来一周内(持有期)损失不超过1000万元的概率为95%,我们可以表示为:Pr 10000.05ob P ∆≤-=(万元)VaR 的定义(续)1-cV R 损失收益-VaRVaR的基本特点•VaR方法仅在市场处于正常波动的状态下才有效,而无法准确度量极端情形的风险•VaR是在某个综合框架下考虑了所有可能的市场风险来源后得到的一个概括性的风险度量值,而且在置信度和持有期给定的条件下,VaR值越大,说明组合面临的风险就越大,反之则说明组合面临的风险越小•由于VaR可以用来比较分析由不同的市场风险因子引起的、不同资产组合之间的风险大小,所有VaR是一种具有可比性的风险度量指标•在市场处于正常波动的状态下,时间跨度越短,收益率就越接近于正态分布,此时,假定收益率服从正态分布计算的VaR比较准确、有效•置信度和持有期是影响VaR值的两个基本参数置信度和持有期的选择和设定()∆≤-=-Pr1ob P VaR c从上式可以看到,VaR值实质上可以看作是持有期Δt 和置信度c 的函数,而且,持有期越长、置信度越大,此时计算出来的VaR也就越大,反之亦是因此,在其他因素不变的情况下,VaR值由持有期和置信度这两个参数决定换句话说要得到值就首先确定持有期和置信度这两个参决定,换句话说,要得到VaR值,就首先确定持有期和置信度这两个参数那,那么,应如何正确地选择和设定持有期和置信度呢?巴塞尔委员会要求计算交易账户中的市场风险采用:10天持有期及99%置信度微软公司采用:20天持有期及97.5%置信度持有期的选择和设定一般来说,在其他因素不变的情况下,持有期越长,组合面临的风险就越大,从而计算出的VaR值就越大,同时,持有期的选择还对VaR值的越大从而计算出的值就越大同时持有期的选择还对可靠性也产生很大影响,持有择常因此,持有期的选择和设定非常重要持有期的选择和设定应考虑以下两个因素:•组合收益率分布的确定方式•组合的市场流动性和头寸交易频繁程度组合收益率分布的确定方式要计算VaR,应先确定组合收益率的概率分布概率分布的确定一般有两种方式:•直接假定收益率服从某一概率分布–通常假定收益率服从正态分布–实际分布往往不符合正态分布,但持有期越短,正态分布假设下计算的VaR值就越有效、可靠–因此,在正态分布假设下应选择较短的持有期•用组合的历史样本数据来模拟收益率的概率分布–应考虑数据的可得性和有效性–持有期越长,需要考察的历史数据的时间跨度就越长,出现的问题和困难就越多–因此,此时也应选择较短的持有期组合的市场流动性和头寸交易频繁程度由于计算VaR时一般都假定持有期内组合的头寸保持不变,所以无视持有期内组合头寸的变化而得到的VaR值并不可靠因此,持有期的选择必须考察交易头寸的变动情况:•市场流动性越强,交易就越容易实现,金融交易者越容易适时调整资产组合,头寸变化的可能性也就越大,此时,为保证VaR值的可靠性,应选择较短的持有期•市场流动性较差,金融交易者调整头寸的频率和可能性比较小,则宜选择较长的持有期•金融交易者一般会在很多不同的市场上持有资产头寸,而不同市场的流动性差异很大,此时,金融交易者应根据组合中比重较大的头寸的流动性来设定持有期置信度的选择和设定置信度的选择和设定,应考虑以下三个因素:•历史数据的可得性和充分性•VaR的用途•比较分析的方便性历史数据的可得性和充分性在实际应用中,我们常常要以历史数据为基础来计算VaR置信度设定得越高,意味着VaR值就越大,为保证VaR计算的可靠性和有效性,所需要的历史样本数据就越多然而,过高的置信度使损失超过VaR的事件发生的可能性很小,因而,损失超过VaR的历史数据就很少因此,为保证VaR的可靠性、有效性和可计算性,必须根据历史样本数据的可得性和充分性,选取一个合适的置信度VaR的用途如果只是将VaR作为比较不同部门或公司所面临的市场风险,或者同一部门或公司所面临的不同市场风险的尺度,那么所选择的置信度是大是部门或公司所面临的不同市场风险的尺度那么所选择的置信度是大是小本身并不重要,重要的是所选择的置信度能否确保VaR的可靠性和有效性,而这就取决于之前说的历史数据的可得性和充分性效性而这就取决于之前说的历史数据的可得性和充分性如果金融机构是以VaR为基础确定经济资本需求,则置信水平的选择和设定极为重要,这主要依赖于金融机构对风险的厌恶程度和损失超过设定极为重要这主要依赖于金融机构对风险的厌恶程度和损失超过VaR的成本风险厌恶程度越高,损失成本越大,则弥补损失所需要的经济资本量越风险厌恶程度越高损失成本越大则弥补损失所需要的经济资本量越大,因而所选择的置信度也应越高,反之则可以选择较低的置信度比较分析的方便性由于人们经常要利用VaR对不同金融交易者的风险进行比较分析,而不同置信度下的VaR值的比较没有意义,所以置信度的选择和设定,还需V R值的比较没有意义所以置信度的选择和设定还需要考虑比较分析的方便性然如存在着准的式(如益率态分布)地当然,如果存在着标准的转换方式(如收益率正态分布),可以方便地将不同置信度下的VaR值转换成同意置信度下的VaR值,则置信度的选择就变得不那么重要算二、VaR的计算方法VaR 的计算方法概括Pr 1ob P VaR c∆≤-=-()从上式可以看出,计算VaR的核心问题是组合未来损益ΔP 的概率分布或统计分布的估计若某组合在未来持有期内的损益ΔP 服从概率密度函数为f(r)的连续分布,则可得:1Pr ()VaRc ob P VaR f r dr--∞-=∆≤-=⎰()VaR的计算方法概括(续)ΔP分布的确定方法收益率映射估值法风险因子映射估值法风险因子映射估值模拟法风险因子映射估值分析法(全部估值法)(局部估值法)基于历史模拟法Monte Carlom模拟法Delta、Gamma等灵敏度指标的方法率三、收益率映射估值法基于收益率映射估值法由于金融资产价格序列常常缺乏平稳性,而收益率序列则一般满足平稳性,所以人们普遍使用收益率的概率分布来考察组合的未来损益变化考察一个初始价值为P0、在持有期Δt内投资收益率为R 的组合,假设R 的概率分布已知,其期望收益率与波动率分别为μ和σ,于是,该组合期末价值为P = P0(1 + R),P的预期价值为:期末价值为P=P(1+R)P的预期价值为:E(P)= E(P0(1+R))= P0(1+E(R))=P0(1+μ)根据组合价值变化的确定方式不同,有两种VaR:根据组价变的确式有种•绝对VaR–以组合的初始值为基点考察持有期内组合的价值变化•相对VaR–以持有期内组合的预期收益为基点考察持有期内组合的价值变化以组合的初始值为基点考察持有期内组合的价值变化,即此时根据下式计算所得的记为00A P P P P R∆=-=此时,根据下式计算所得的VaR 称为绝对VaR ,记为VaR APr 1ob P VaR c∆≤-=-()以持有期内组合的预期收益为基点考察持有期内组合的价值变化,即此时根据下式计算所得的记为0()()R P P E P P R μ∆=-=-此时,根据下式计算所得的VaR 称为相对VaR ,记为VaR RPr 1ob P VaR c∆≤-=-()正态分布下的VaR计算在实际计算中,最常用的是正态分布为简单和清楚起见,我们设定持有期,置信度为Δt = 1c作业:计算组合收益率服从正态分布的相对VAR初始价值为P 0、日收益率为R 的组合假设R 假设:R 服从正态分布N (μ,σ2)设定:持有期Δt = 1,置信度为c 请计算相对VaR RV R -Φ10R VaRP c σ=()组合中资产收益率服从正态分布的相对VAR 计算计算相对VaR 时,资产i 的日损益ΔP R, i = P 0,i (R i -μi )于是组合的日损益率为于是,组合的日损益率为:nn∑∑,0,11()R R iii i i i P PPR μ==∆=∆=-根据正态分布的可加性的△P R 服从正态分布N (0,σR 2),而且直接验证可知σR 2= σA 210R AVaR P c σ-=Φ()资产组合的VaR 计算要计算的资产组合ω=(ω1,ω2,…ωn )T 的VaRn1i ω=∑相当于计算初始价值为1的资产组合ω的VaR ,即取资产i 的初始价值为P 0i = ω,于是:i 1=0, i i ,于是ni iμωμ=∑i 1=n2n可求得:0, 0, 1j 1i j ij i ji σωωρσσ===∑∑求得101A VaR P c σμ--=Φ-(())0R VaR P c σ=Φ()四、VaR的扩展边际VaR、增量VaR、成分VaR尽管VaR可以有效地描述组合的整体风险状况,但对金融交易者来说,可能还远远不够,因为实际中的金融交易者经常要根据市场情况不断地可能还远远不够因为实际中的金融交易者经常要根据市场情况不断地对组合中各资产的头寸进行调整这就需要金融交易者进一步了解构成组合的每项资产头寸以及每项资产解头寸的调整变化对整个组合风险的影响于是,我们将VaR扩展到:边际VaR、增量VaR、成分VaR增量VaR (Increment VaR ,I-VaR )增量VaR 是指一个新交易的出现或者现存交易的退出对组合的VaR 的影响假设在资产组合ω=(ω1,ω2,…,ωn )T 中,新增加另一个资产组合(d ω=(d ω1 ,d ω2 ,…,d ωn )调整后的资产组合的VaR 记做VaR (ω+d ω)资产组合d ω中的各个分量d ωi 可以取正值、0和负值于是,d ω的VaR ,即增量VaR 为:,,即I-VaR d VaR d VaR ωωωω=+-()()()成分VaR (Component VaR ,C-VaR )假设资产组合ω=(ω1,ω2,…ωn )T ,成分VaR 是指第i 种资产对组合V R 的贡献量即VaR 的贡献量,即C V nV R R 1()C-V ii VaR aR ω==∑成分VaR的特征资产组合中所有资产的成分VaR之和恰好等于资产组合的VaR资产i 的成分VaR恰好为资产i 对组合VaR的贡献份额,即在一个大的资产组合中,成分VaR等于增量VaR资产组合中成分V R V R。
历史模拟法

第35组:郭娇娇、徐熙瑶、郭雨珊、王心玥、 唐晓宇
a
1
目录
一、历史模拟法基本原理 二、实施步骤 三、实证分析 四、总结 五、不足之处
a
2
一.历史模拟法基本原理
将各个风险因子在过去某一时期上的变化分布或变化情景准确刻 画出来,作为该风险因子未来的变化分布或变化情景;
a
7
识别风险因子变量,寻找影响股票日收益率的因素(股票价格); 确定股票日收益率和价格之间的映射关系
设日收益率为Y,第i个交易日的股价为,根据日收益率计算公式,
得到表2。其中,Y(t)表示t时刻单只股票的价值,t=0为当前时刻,
t>0为将来时刻,t<0为过去时p刻(t)。,t0,1,2,...,T
测是为了形成对比,分析问题。本文采用历史模拟法计算VAR。
本文从wind资讯端选取四家上市公司从2015年8月4日到2015年12月 31所有交易日的历史数据,一共是过去101个交易日的股票收盘价。
a
6
B.计算步骤——历史数据
选取
提取万科A股、长安汽车、 京东商城有限公司和ST黑化 这四家公司在过去101个交 易日的股票价格历史数据, 记为T(0),T(1),T(2),...T(101), 依次排列
同时进行横向对比我们能够发现,ST黑化在99%的置信水平下其每股未来损 失最大不超过0.1128万元,而同样置信度水平下,长安汽车每股最大损失不 会超过0.0938元,由此可发现,经营状况的好坏和公司股票的风险值直接相 关,风险值越大,公司的经营风险越大,股票波动越剧烈,越不稳定。通常 不是风险厌恶类投资者的首选。
历史模拟法的局限性主要在于:当在管理金融风险的过程中己经出现了极端损
第10章_市场风险---历史模拟法

对最近的观察数据赋予更大的权重,可保证模型充分反映
当前市场波动率及当前市场经济环境的变化。 最佳的选取
权重随时间回望期的延伸而按指数速度递减:即 可通过实验
不同的,并
情形1所对应的权重(最遥远的数据)=×情形2在的回权测重实验
情形2所对应的权重=×情形3的权重 依此类推
中选取最佳 匹配
所有权重当基之本和→模为1,拟1,趋法情于的景i所对应的权重为: n i (1 )
所有情形中的一种 形变化而计算出的损失
假定某市场变量在i-天所对应的数值记为vi ,今天为n-天 由此得出交易组合每天价值变化的概率分布图
由此得出交易组合每天价值变化的概率分布图 由此得出交易组合每天价值变化的概率分布图
分布中所对应的99%的分位数是500个计算数值中第5个最坏的损失。
P市(场v 变> x量) 在≈ K明分x天-a所布对应中的第所i个情对景为应的99%的分位数是500个计算数值中第5个最 坏的损失。 目的:计算VaR的区间估计
金融风险管理, Copyright © 赵树然,2010
二、在 模拟法中包括波动率的更 新
基本思想:将市场变量波动率的更新模式(如 EWMA, GARCH)与 模拟法并用。
若 n+1是 i的两倍,则可预见今天到明天的变 化量也应该是从第i-1天到第i天变化量的两倍
故在进行 模拟分析时,若试图从 上第i-1天到第i 天的变化得出今天到明天的变化的一个抽样时, 很自然应该将第i-1天到第i天的变化乘以2.
对每组数据进行VaR计算,并对计算值从小到大排序,
数据开始的第1天记为0-天,第2天记为1-天,依此类推 若 n+1是 i的两倍,则可预见今天到明天的变化量也应该是从第i-1天到第i天变化量的两倍
历史模拟法计算VAR

历史模拟计算VAR金融专硕江雨林VaR 实质上是损失分布上分位数的概念。
因此 VaR 计算离不开三个要素:一是持有期限;二是置信水平;三是未来资产组合收益分布。
持有期限是风险所在的时间区间,也是取得观察数据的频率,即所观察数据是日收益率、周收益率,月收益率或是年收益率。
持有期限的选择通常受流动性、头寸调整和数据三个因素约束。
例如市场流动性影响持有期限的选取,如果资产头寸快速流动,可以选择较短的持有期限,如果资产头寸流动性较差,较长持有期限更加合适。
置信水平是指跟据某种概率测算结果的可信程度,它表示了承担风险的主体对风险的偏好程度。
如置信水平过低,损失超过 VaR 的极端事件发生的概率过高,这使得 VaR 失去意义;置信水平过高,损失超过 VaR 的极端事件发生的概率可以得到降低,但统计样本中反映极端事件的数据过少,这使得对 VaR 估计的准确性下降。
一般取 90% -99% 塞尔银行监管委员会选择的置信水平是95%。
收益分布是 VaR 计算方法重要的前提条件。
如果认定收益分布服从一定的条件,则可以利用该条件分布的参数求得 VaR。
在计算 VaR 时,往往对资产收益分布作一些假定。
金融经济学的实证研究表明,时间跨度相对短的前提下,实际收益分布越接近正态分布。
除此之外,VaR 计算通常需要选取一个计量单位,可以是美元、马克或金融业务所涉及的其它主要币种,VaR 依赖于基础货币的选取。
VaR 方法的核心在于论述金融时间序列的统计分布或概率密度函数。
通常我们以价格或指数的对数收益率序列为论述对象,之所以不直接刻画价格、指数序列是因为价格或指数的取值范围为[0,+∞ ], 这样在我们论述该金融时间序列的统计分布过程中就会受到一定的限制;另外对数收益率 R t 的取值范围位于整个实数域,且多期对数收益率是单期对数收益率的和。
考虑一个证券组合,假定P0 为证券组合的初始价值,R是持有期内的投资回报率,在期末证券组合的价值为:P=P0 (1+R)假定回报率R的期望和波动性(通常用标准差来论述)分别为μ和σ。
历史模拟法计算VAR

历史模拟计算VAR金融专硕江雨林 142025100024VaR 实质上就是损失分布上分位数的概念。
因此 VaR 计算离不开三个要素:一就是持有期限;二就是置信水平;三就是未来资产组合收益分布。
持有期限就是风险所在的时间区间,也就是取得观察数据的频率,即所观察数据就是日收益率、周收益率,月收益率或就是年收益率。
持有期限的选择通常受流动性、头寸调整与数据三个因素约束。
例如市场流动性影响持有期限的选取,如果资产头寸快速流动,可以选择较短的持有期限,如果资产头寸流动性较差,较长持有期限更加合适。
置信水平就是指跟据某种概率测算结果的可信程度,它表示了承担风险的主体对风险的偏好程度。
如置信水平过低,损失超过 VaR 的极端事件发生的概率过高,这使得 VaR 失去意义;置信水平过高,损失超过 VaR 的极端事件发生的概率可以得到降低,但统计样本中反映极端事件的数据过少,这使得对 VaR 估计的准确性下降。
一般取 90% -99% 塞尔银行监管委员会选择的置信水平就是95%。
收益分布就是 VaR 计算方法重要的前提条件。
如果认定收益分布服从一定的条件,则可以利用该条件分布的参数求得 VaR。
在计算 VaR 时,往往对资产收益分布作一些假定。
金融经济学的实证研究表明,时间跨度相对短的前提下,实际收益分布越接近正态分布。
除此之外,VaR 计算通常需要选取一个计量单位,可以就是美元、马克或金融业务所涉及的其它主要币种,VaR 依赖于基础货币的选取。
VaR 方法的核心在于论述金融时间序列的统计分布或概率密度函数。
通常我们以价格或指数的对数收益率序列为论述对象,之所以不直接刻画价格、指数序列就是因为价格或指数的取值范围为[0,+∞ ], 这样在我们论述该金融时间序列的统计分布过程中就会受到一定的限制;另外对数收益率 R t 的取值范围位于整个实数域,且多期对数收益率就是单期对数收益率的与。
考虑一个证券组合,假定P0 为证券组合的初始价值,R就是持有期内的投资回报率,在期末证券组合的价值为:P=P0 (1+R)假定回报率R的期望与波动性(通常用标准差来论述)分别为μ与σ。
历史模拟法计算VARword.doc

历史模拟计算VAR金融专硕江雨林 142025100024VaR 实质上是损失分布上分位数的概念。
因此 VaR 计算离不开三个要素:一是持有期限;二是置信水平;三是未来资产组合收益分布。
持有期限是风险所在的时间区间,也是取得观察数据的频率,即所观察数据是日收益率、周收益率,月收益率或是年收益率。
持有期限的选择通常受流动性、头寸调整和数据三个因素约束。
例如市场流动性影响持有期限的选取,如果资产头寸快速流动,可以选择较短的持有期限,如果资产头寸流动性较差,较长持有期限更加合适。
置信水平是指跟据某种概率测算结果的可信程度,它表示了承担风险的主体对风险的偏好程度。
如置信水平过低,损失超过 VaR 的极端事件发生的概率过高,这使得 VaR 失去意义;置信水平过高,损失超过 VaR 的极端事件发生的概率可以得到降低,但统计样本中反映极端事件的数据过少,这使得对 VaR 估计的准确性下降。
一般取 90% -99% 塞尔银行监管委员会选择的置信水平是95%。
收益分布是 VaR 计算方法重要的前提条件。
如果认定收益分布服从一定的条件,则可以利用该条件分布的参数求得 VaR。
在计算 VaR 时,往往对资产收益分布作一些假定。
金融经济学的实证研究表明,时间跨度相对短的前提下,实际收益分布越接近正态分布。
除此之外,VaR 计算通常需要选取一个计量单位,可以是美元、马克或金融业务所涉及的其它主要币种,VaR 依赖于基础货币的选取。
VaR 方法的核心在于论述金融时间序列的统计分布或概率密度函数。
通常我们以价格或指数的对数收益率序列为论述对象,之所以不直接刻画价格、指数序列是因为价格或指数的取值范围为[0,+∞ ], 这样在我们论述该金融时间序列的统计分布过程中就会受到一定的限制;另外对数收益率 R t 的取值范围位于整个实数域,且多期对数收益率是单期对数收益率的和。
考虑一个证券组合,假定P0 为证券组合的初始价值,R是持有期内的投资回报率,在期末证券组合的价值为:P=P0 (1+R)假定回报率R的期望和波动性(通常用标准差来论述)分别为μ和σ。
VaR值计算中历史模拟法的分类比较

VaR值计算中历史模拟法的分类比较作者:贾照杰来源:《大经贸》2018年第02期【摘要】随着世界经济的发展和规则的复杂多变,金融市场的波动变得频繁且剧烈,《巴塞尔资本协议》的发展使得风险计量方法不断得到完善,随着越来越多的国际机构开始采用和推广,VaR值逐渐成为衡量风险的行业标准。
本文对历史模拟法中的一般历史模拟法、过滤历史模拟法进行研究和实证比较,结果显示加过滤历史模拟法更加精确。
【关键词】 VaR值历史模拟法过滤历史模拟法一、历史模拟法的二种模型(一)一般历史模拟法一般历史模拟法其实就是一般意义上的历史模拟法。
顾名思义,从历史模法中的“历史”二字,我们便就不难看出历史模拟法是对历史的一种模拟,然后从模拟中计算VaR值,所以这种历史模拟法的缺点之一便是他的VaR值精准度较为依赖所选择的历史数据。
(二)过滤历史模拟法过滤历史模拟法可以有效的将一般历史模拟法和蒙特卡洛模拟法结合在一起。
基本逻辑是:我们首先设定一组序列,这组序列包含N个过去回报率。
然后我们通过对历史观测区间的数据用GARCH建立模型,把每一个历史数据用同一天的已经估计出的标准差进行标准化,从而得到了历史回报率的标准化序列。
这样我们就能在样本的期末得到下一天的波动率的估计值。
二、基于上证综指的二种历史模拟法的实证对比研究(一)样本区间选择及数据来源我们对上证综合指数进行时间截取,样本区间选择2000年1月4日到2017年2月24日的上证综合指数的收盘价数据,即共计400个上证综合指数的收盘价数据作为历史数据抽取样本。
(二)比较研究的方法我们首先选取了历史观测区间的样本标的及样本区间,即2000年1月4日到2017年2月24日的上证综合指数收盘价。
然后我们利用数据建立模型计算一般历史模拟法,加权历史模拟法和过滤历史模拟法的VaR值,分别分析在90%,95%,99%的置信水平下。
模型的建立和分析我们是利用Eviews进行,三种模型我们均选取1000的样本外数据。
6.计算VaR的方法 (1)

例:考虑一个由A和B两种股票构成的资产组合,
其中A股票为n1=100股,每股价格S1=91.7 美元,B股票为n2=120股,每股价格 S1=79.1美元,根据历史交易数据估计,A和 B两种股票日收益率的均值、标准差和相关 系数如下: μ1=0.155% σ1=2.42% μ2=0.0338% σ2=1.68% ρ=0.14
方差协方差方法的优缺点
优点: 计算简单方便。 根据中心极限定理,即使风险因子回报不是 正态分布,但只要风险因子数量足够大和相 互独立,仍然可以采用方差协方差方法。 缺点: 正态分布假设不能处理厚尾分布。 需要估计风险因子的波动性及收益间的相关 性。 近似性。
6.3 历史模拟法
采用几何布朗运动模型时,股票价格未来变 化情景的建立:依次产生〔0,1〕均匀分布 的m个随机变量xi(i=1,…,m),随机数是由 随机数产生程序生成的。设标准正态分布的 分布函数为Ф(y),令Ф(εi)=xi,则可以得 到标准正态分布的随机变量序列εi (i=1,…,m),根据股票价格的随机过程模型 可依次得到St+iΔt(i=1,…,m)。St+mΔt(ST) 为股票价格在持有期末的一个变化情景,重 复该步骤,可得到股票价格的n个变化情景。
广义 Pareto 分布
广义Pareto分布有两个参数:形状参数x和规 模参数b,其累积分布函数为
1 / x
x Gx , b y 1 1 b
y
极大似然估计法 (式12-4, page 189)
假设大于u的观测值个数为 nu 选择 x 和 b 使下式最大化
蒙特卡洛模拟法计算VaR的优缺点
优点: 能够用于风险因子的各种分布。 能有用于任何复杂的资产组合。 允许计算 VaR的置信区间。 缺点: 有些意外情况会未被考虑。 计算过程复杂,极端依赖于计算机。
金融市场中风险管理VaR值的计算和应用

该表运用蒙特卡罗模拟方法列出了一部分股票价格变化的走
势,当然不同的抽样分布将产生不同的价格变化,表中股票第 10 个
时间段的变化价格为 9.96 美元,运用蒙特卡洛法反复进行上表的
模拟可以得出年后的股票价格的一个完成的概率分布走势,因此蒙
特卡洛模拟法在进行 Va R 测算时非常有效,对金融市场风险管理提
2.Va R 的优点
的连续历史数据,并且其中所用的波动因子的未来变化完全与历史
参数法和模拟法计算VaR

参数法和模拟法计算VaR回顾VaR的定义, F 为未来收益的累计分布函数,那么VaRp=−F−1(1−p)所以,VaR本质上为未来收益的分位点。
要计算它,最重要的是估计未来收益 X 的分布。
在实际计算中有两种大的方向:在 X 满足某种分布(通常使用正态分布)的假设上,估计该分布的参数,便可确定整个分布,然后求分位点。
对 X 进行抽样,通过样本的分位点估计整个分布的分位点。
第一个方向被称为参数法;后一个方向成为模拟法,在实际使用中,又可分为历史模拟法和蒙特卡洛模拟法两种。
对于这三种方法,不单需要知道它们的计算方法,更重要地是了解它们的假设和适用范围。
以下提到的风险因子、风险映射、风险矩阵、估值等概念,已在【VaR Primer】风险因子和估值框架里详细描述。
其它比如风险矩阵等计算方法将在【VaR Primer】VaR的参数选择和计算细节里给出。
1.参数法在参数法中,通常假设未来收益 X 满足正态分布,这个假设的合理性在于:风险因子的短期表现如股票收益率、利率变动等可以用联合正态分布近似大多数资产都可以表示为风险因子的线性组合,并且正态分布的任意线性组合仍然是正态分布,故一个组合的预期收益分布还是正态分布,由其方差唯一确定。
参数法的计算步骤:选择风险因子计算风险因子的风险矩阵Σ(通常选取指数加权法,详情见【VaR Primer】VaR的参数选择和计算细节)。
计算组合分解到各个风险因子上的暴露市值(或者delta) w=(w1,w2,⋯,wn计算组合的事前波动率σ=wΣw′−−−−−√然后将波动率转化为VaR:VaR95%=1.645×σVaR99%=2.40×σ2.模拟法模拟法是在模拟场景下,计算组合的收益样本,通过大量的模拟场景,取这些模拟出来的收益样本的分位点得到VaR。
根据生成样本的方法,有历史模拟法和蒙特卡洛模拟法,其中历史模拟法使用历史实际场景,而蒙特卡洛模拟法则随机生成场景(基于某种假设的分布和用历史数据拟合的参数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
历史模拟计算VAR
金融专硕江雨林 142025100024
VaR 实质上是损失分布上分位数的概念。
因此 VaR 计算离不开三个要素:一是持有期限;二是置信水平;三是未来资产组合收益分布。
持有期限是风险所在的时间区间,也是取得观察数据的频率,即所观察数据是日收益率、周收益率,月收益率或是年收益率。
持有期限的选择通常受流动性、头寸调整和数据三个因素约束。
例如市场流动性影响持有期限的选取,如果资产头寸快速流动,可以选择较短的持有期限,如果资产头寸流动性较差,较长持有期限更加合适。
置信水平是指跟据某种概率测算结果的可信程度,它表示了承担风险的主体对风险的偏好程度。
如置信水平过低,损失超过 VaR 的极端事件发生的概率过高,这使得 VaR 失去意义;置信水平过高,损失超过 VaR 的极端事件发生的概率可以得到降低,但统计样本中反映极端事件的数据过少,这使得对 VaR 估计的准确性下降。
一般取 90% -99% 塞尔银行监管委员会选择的置信水平是95%。
收益分布是 VaR 计算方法重要的前提条件。
如果认定收益分布服从一定的条件,则可以利用该条件分布的参数求得 VaR。
在计算 VaR 时,往往对资产收益分布作一些假定。
金融经济学的实证研究表明,时间跨度相对短的前提下,实际收益分布越接近正态分布。
除此之外,VaR 计算通常需要选取一个计量单位,可以是美元、马克或金融业务所涉及的其它主要币种,VaR 依赖于基础货币的选取。
VaR 方法的核心在于论述金融时间序列的统计分布或概率密度函数。
通常我们以价格或指数的对数收益率序列为论述对象,之所以不直接刻画价格、指数序列是因为价格或指数的取值范围为[0,+∞ ], 这样在我们论述该金融时间序列的统计分布过程中就会受到一定的限制;另外对数收益率 R t 的取值范围位于整个实数域,且多期对数收益率是单期对数收益率的和。
考虑一个证券组合,假定P0 为证券组合的初始价值,R是持有期内的投资回报率,在期末证券组合的价值为:
P=P0 (1+R)
假定回报率R的期望和波动性(通常用标准差来论述)分别为μ和σ。
若在某
一置信水平α下,证券组合的最低价值为 P *
=P0 (1+R
*
),则根据 VaR 的定义,
证券组合偏离均值的非预期损失即为 VaR,公式为:
VaRα = E(P) –P*= P0 (1+μ) - P0 (1+R*) = P0 (μ- R*)
因此计算 VaR 就相当于在一定置信水平下计算最小的 P *
或最低回报率
R *。
由于证券组合未来的日回报率为随机过程,假定未来日回报率的概率密度函
数为f (p),则对于一定置信水平α下的证券组合VaR为P *
,其中
f
(p)dp。
* 以上介绍了一般意义上 VaR 的计算方法,现实应用中,在拟合时间序列的分布时通常进行一定的假设,这样就产生很多计算 VaR 值的方法。
无论采用何种方法其目的主要是尽量精确地刻画时间序列的波动性,使得计算结果更精确,从而高 VaR 的指导价值;再有就是设法减少待估计参数的个数高模型的实用性。
两者是一对矛盾,需要在这两个目标之间进行平衡。
历史模拟法的基本步骤
历史模拟法是一种非参数方法,它不需要对市场因子的统计分布作出假设,而是直接根据VaR的定义进行计算。
历史模拟法以“历史资料可以不偏地反映未来”为假设前提,核心在于根据市场因子的历史样本变化模拟证券组合的未来损益分布,利用分位数给出一定置信区间下的 VaR 估计。
可分为历史数据法和历史数据模拟法。
历史数据法是根据每种资产的历史损益数据计算当前组合的损益数据,将 N 个历史收益数据从低水平到高水平依次排列,那么位于(1-α)*N 处的临界收
益值 R *
就是 VaR 的估计值。
该方法纯粹从历史收益数据中简单计数得到 VaR
值,适用于比较简单的资产或资产组合。
当投资组合中的金融产品不存在历史数据或没有足够的历史数据时,需要用历史数据模拟法改进历史数据法,从而能够适于复杂的投资组合。
历史数据模拟法的计算步骤如下:
(1)找出影响组合的基础金融工具或其他市场因素。
(2)根据市场因子过去N+1个时期的价格时间序列,计算市场因子过去N个时期相邻两天各因素数值变动的百分率。
(3)根据市场因子的历史 N 种可能价格水平,利用证券定价公式求出证券组合的N种未来盯市价值,并与对应当前市场因子的证券组合价值比较,得到证券组合未来的N种潜在收益,即损益分布。
(4)将组合的损益从小到大排序,得到损益分布,通过给定置信区间下的分位数求得 VaR。
案例分析:
(1)历史数据法以深圳成分指数为例,选取 2006-1-31 至 2008-4-23的历史数据作为样本,分析 VaR 大小。
样本数据以及收益率排序部分结果见下图。
部分样本数据及排序结果选取 95%作为置信水平。
由于总样本为 545 个,因此该置信水平下对应的最小收益率应该为 545×0.05=27,预期收益率为
0.00105,因此 VaR 为: VaR0。
95=(0.00105-(-0.019))*3154=63.24。