七年级数学上册2.6有理数的加减混合运算第2课时有理数加减混合运算中的简便计算课件(新版)北师大版
2023-2024学年北师大版七年级数学上册《第二章有理数及其运算2.6有理数的加减混合运算(第2课
2023-2024学年北师大版七年级数学上册《第二章有理数及其运算2.6有理数的加减混合运算(第2课时)》教学设计一. 教材分析本节课的主要内容是第二章有理数及其运算2.6有理数的加减混合运算(第2课时)。
在这一节中,学生需要掌握有理数的加减混合运算的法则,并能熟练地进行相关运算。
教材通过具体的例题和练习题,帮助学生理解和掌握这些运算规则。
二. 学情分析学生在学习本节课之前,已经学习了有理数的基本概念,包括正数、负数、整数、分数等,并对有理数的加减法有了初步的了解。
然而,对于加减混合运算,学生可能还存在一定的困惑,需要通过本节课的学习,进一步理解和掌握。
三. 教学目标1.让学生理解有理数的加减混合运算的法则。
2.培养学生能熟练地进行有理数的加减混合运算。
3.培养学生运用数学知识解决实际问题的能力。
四. 教学重难点1.重点:有理数的加减混合运算的法则。
2.难点:如何运用这些运算规则解决实际问题。
五. 教学方法采用讲授法、案例分析法、小组合作法等多种教学方法,以激发学生的学习兴趣,提高学生的学习效果。
六. 教学准备1.准备相关的教学PPT。
2.准备一些实际的例子,用于讲解和练习。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入本节课的主题——有理数的加减混合运算。
例如,小华买了一本书,原价是25元,然后又买了一支笔,价格是10元,请问小华一共花费了多少钱?2.呈现(15分钟)通过PPT,展示有理数的加减混合运算的法则,并通过具体的例子,讲解这些法则的应用。
3.操练(15分钟)让学生进行一些实际的运算,以巩固所学的知识。
可以让学生独立完成,也可以分组进行。
4.巩固(10分钟)通过一些练习题,帮助学生巩固所学知识。
可以设置一些难易不同的问题,以满足不同学生的需求。
5.拓展(10分钟)通过一些综合性的问题,让学生运用所学知识解决实际问题。
例如,可以让学生设计一个购物预算,或者计算一个长方形的面积等。
七年级数学上册第2章《有理数的加减混合运算》知识点解读(北师大版)
《有理数的加减混合运算》知识点解读知识点1 将有理数的加减混合运算统一为加法运算(重点)★在进行有理数的加减混合运算时,可以通过有理数的减法法则,把减法转化为加法,也就是将有理数的加减混合运算统一为单一的加法运算.如(-8)-7+(-6)-(-5)=(-8)+(-7)+(-6)+(+5).★在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式.如(-8)+(-7)+(-6)+(+5)=-8-7-6+5.★和式的读法:如上面的例子,一是按这个式子表示的意义读作“负8,负7,负6,正5的和”;二是按运算意义读作“负8减7减6加5”.★省略括号的和的形式,可看作是有理数的加法运算.因此,可运用加法运算律来使计算简化,但要注意运算的合理性.①在交换加数位置时,要连同前面的符号一起交换.②在运用加法结合律时,有时也把减号看作负号.例1把(-6)-(-3)+(-2)-(+6)-(-7)写出省略括号的和的形式是读作或.分析:首先应把这个式子中的减法转化为加法,再写成省略号的和的形式.解:(-6)-(-3)+(-2)-(+6)-(-7)=(-6)+(+3)+(-2)+(-6)+(+7)=-6+3-2-6+7.读作:负6,正3,负2,负6,正7的和,或读作:负6加3减2减6加7.答案:-6+3-2-6+7;负6,正3,负2,负6,正7的和;负6加3减2减6加7.点拨:(1)在省略括号的代数和中,性质符号和运算符号是统一的.(2)省略括号的方法:①若括号前是“+”,则省略括号及括号前的“+”后,原括号内的各项不变号;②若括号前是“-”则省略括号及括号前的“-”后,原括号内各项的符号变为原来相反的符号.知识点2 有理数加减混合运算的步骤(难点)第一步:运用减法法则将有理数混合运算中的减法转化为加法.第二步:写出省略加号、括号的各数和的形式.第三步:运用加法法则、加法交换律、加法结合律进行简便运算.例2 计算:11(0.5)(3) 3.75(8).42---+-+ 分析:按有理数减法法则,把减法统一成加法,运用运算律进行简便运算.解:原式=11311113338(8)(33)97224422244-++-=--++=-+=-. 点拨:进行有理数加减混合运算时一定要注意符号.同时在运算过程中,通常把同分母的分数或者易于通分的分数归类进行计算.知识点3 有理数加减混合运算的注意事项①运用加法交换律,在交换各数的位置时要连同它们前面的符号一起交换,千万不要把符号漏掉,因为一个数包括两个方面,一方面是符号,另一方面是绝对值.例如8-5+7应变成8+7-5,而不能变成8-7+5;②应用加法结合律时,应充分考虑同号加数结合、同分母或便于通分的加数结合、凑整的加数结合、互为相反数的加数结合等情形,从而选择适当的方法,使运算简便;③当分数、小数混在一块运算时,可以把它们统一成分数或小数再运算; ④如果有大括号和小括号应当先转化小括号里的运算,再转化大括号里的运算.反之,进行有理数的加减混合运算,有时候需要添加括号,一定要连同加数的符号一起括进括号内,并将原来已省略的加号写进来.【例3】 计算:⎝ ⎛⎭⎪⎫-837+(-7.5)+⎝⎛⎭⎪⎫-2147+⎝ ⎛⎭⎪⎫+312; 分析:异分母分数的加减混合运算统一成加法之后,应用运算律使同分母分数相加可以简化运算.解:(1)⎝ ⎛⎭⎪⎫-837+(-7.5)+⎝⎛⎭⎪⎫-2147+⎝ ⎛⎭⎪⎫+312 =-837-7.5-2147+312=-837-2147-7.5+312=-30-4=-34.知识点4 既含小数又含分数的有理数加减混合运算解题时先将减法转化为加法,再按照以下的四条思路进行转化:一是将小数统一化成分数,二是将分数统一化成小数,三是将小数与小数,分数与分数分别结合,四是将各数的整数部分和分数(小数)部分分别结合.析规律 有理数加减混合运算的运算顺序 注意运算的顺序,如果是同一级的运算,可以同时完成化简绝对值符号和减法变加法的运算过程.有括号的要先计算括号里面的,有绝对值符号的也要先根据数或式的取值范围化去绝对值符号再进行运算.【例4】 计算:(1)-4.2-[(-0.2)-(-7.5+0.4)]+(-3.8);(2)(-1)-⎣⎢⎡⎦⎥⎤-2-(-4)+⎪⎪⎪⎪⎪⎪-12+⎝ ⎛⎭⎪⎫-13. 分析:有多重括号的,先计算小括号里面的,再计算大括号里面的,有绝对值符号的要先把绝对值符号化简.解:(1)-4.2-[(-0.2)-(-7.5+0.4)]+(-3.8)=-4.2-[(-0.2)-(-7.1)]+(-3.8)=-4.2-[(-0.2)+(+7.1)]+(-3.8)=-4.2+(-6.9)+(-3.8)=-14.9.(2)(-1)-⎣⎢⎡⎦⎥⎤-2-(-4)+⎪⎪⎪⎪⎪⎪-12+⎝ ⎛⎭⎪⎫-13 =(-1)-⎣⎢⎡⎦⎥⎤-2+(+4)+12+⎝ ⎛⎭⎪⎫-13 =(-1)-216=-316. 知识点5 利用有理数加减法运算解决实际问题(重点)“水位的变化”问题是典型的利用有理数的加减混合运算的实际问题,首先要理解在水位的变化图表下面标明的“注”或者“注意”的含义:正号表示水位比前一天上升,负号表示水位比前一天下降,参考对象是前一天的水位.例3 一名潜水员在水下80米处发现一条鲨鱼在离他不远处的上方25米的位置往下游追逐猎物,当它向下游42米后追上猎物,此时猎物做垂死挣扎立刻反向上游,鲨鱼紧紧尾随,又游了10米后被鲨鱼一口吞吃.(1)求鲨鱼吃掉猎物时所在的位置;(2)与刚开始潜水员发现鲨鱼的位置相比,鲨鱼的位置有什么变化?解析:本题主要考查应用有理数的加减混合运算解释实际问题,向上游与向下游是一对具有相反意义的量,可以用正数、负数来表示.若设向上游的高度为正数,则向下游的高度为负数.求出几个有理数的和,就可以判断鲨鱼吃掉猎物时所在的位置.答案:(1)设鲨鱼向上游的高度为正,潜水员在水下80米记为-80米,依据题意可得,鲨鱼吃掉猎物时所在的位置是-80+25-42+10=(-80-42)+(25+10)=-122+35=-87(米).(2)鲨鱼原来的位置是-80+25=-55(米).所以鲨鱼原来在水下55米处.所以与刚开始潜水员发现鲨鱼的位置相比,它向下游了32米.点拨:题目中已知条件给出一对具有相反意义的量,但没规定正负,解题时应先规定正、负才能解决问题.【类型突破】某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下:(增加的车辆数为正数,减少的车辆数为负号)根据记录回答下列问题:(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加了还是减少了?(3)产量最多的一天比产量最少的一天多生产了多少辆?解析:首先必须弄清表中每个数据的意义,它是表示实际每日与计划量的差额,列出准确算式是关键.答案:(1)300+(-3)=297辆,即本周三生产了297辆.(2)因为表数据中是每日与计划量300的差值,故先求出这些差值的和:(-5)+7+(-3)+4+10+(-9)+(-25)=[(-5)+(-3)+(-9)+(-25)]+7+4+10=-42+21=-21.所以本周总生产量与计划生产量相比,是减少了21辆;(3)产值最多的一天是周五,而产量最少的一天是周日,其差是:(+10)-(-25)=10+25=35辆.即产量最多的一天比产量最少的一天多生产了35辆.点拨:弄清表格中数据表示的意义是解题的首要条件.知识点6 折线统计图(难点)根据相关数据,在图中标出能反映这些数据特征的点,然后再按照事物发展的一种趋势,将标出的点连成折线,这样就得到了折线统计图.★画折线统计图的步骤:(1)首先确定题目中折线统计图的标题,即应弄清楚要画的是说明什么问题的折线统计图.(2)确定一个量或一个数值为0点,有的题目直接给出0点.(3)标出横线和竖线的单位,使看图的人能够看懂,并能正确使用.(4)恰当选择单位长度,使画出的折线统计图既不太靠上,又不太靠下,有明显的上升和下降的幅度,能清楚地看出变化的情况.(5)竖线上选取的最高点最好比实际最高值略高一些,最低点比实际最低值略低些,这样能突出最大值和最小值的变化幅度.例4下表为某个雨季某水库管理员记录的水库一周内的水位变化情况,警戒水位为150m(上周末的水位达到警戒水位).注:正数表示比前一天水位上升,负数表示比前一天水位下降.(1)本周哪一天水位最高?有多少米?(2)根据给出的数据,请利用折线统计图分析一下本周内该水库的水位变化情况.(在不放水的情况下)分析:本周星期一到星期四,水位一直上升,星期五下降,星期六的上升值又低于星期五的下降值,故最高水位出现在周四.解:星期四水位最高,(+0.38+0.25+0.54+0.13)+150=151.3(m)(2)由已知条件,可求出一周内各天相对于警戒水位的变化情况,列表如下:星期一二三四五六日水位变化/m +0.38 +0.63 +1.17 +1.30 +0.85 +1.21 +1.02 以警戒水位为0点,用折线统计图表示在不放水的情况下该水库一周内的水位变化情况如图所示.。
北师大版数学七年级上册2.6《有理数的加减混合运算》(第2课时)教学设计
北师大版数学七年级上册2.6《有理数的加减混合运算》(第2课时)教学设计一. 教材分析《有理数的加减混合运算》是北师大版数学七年级上册第2.6节的内容,本节课主要让学生掌握有理数的加减混合运算的法则,并能够熟练地进行计算。
教材通过例题和练习题的形式,帮助学生理解和掌握运算规则,培养学生的运算能力和逻辑思维能力。
二. 学情分析学生在七年级上册已经学习了有理数的基本概念,包括加法和减法运算。
他们对有理数的加减法有一定的了解,但可能在混合运算方面还存在一些困惑。
因此,在教学过程中,教师需要关注学生的学习情况,及时解答他们的疑问,并通过例题和练习题的讲解,帮助学生理解和掌握运算规则。
三. 教学目标1.让学生掌握有理数的加减混合运算的法则。
2.培养学生熟练进行有理数混合运算的能力。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.教学重点:有理数的加减混合运算的法则。
2.教学难点:理解并掌握运算规则,能够熟练地进行计算。
五. 教学方法采用讲授法、例题解析法、练习法、小组合作法等教学方法。
通过讲解例题,让学生了解运算规则,并通过练习题进行巩固。
同时,学生进行小组合作,互相讨论和解答问题,培养学生的合作意识和解决问题的能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示例题和练习题。
2.练习题:准备一些有关有理数加减混合运算的练习题,用于课堂练习和巩固。
3.教学素材:准备一些与生活实际相关的例子,用于解释和引导学生理解运算规则。
七. 教学过程1.导入(5分钟)教师通过提问方式复习上节课所学的有理数加法和减法运算,引导学生回顾相关概念和规则。
然后,引入本节课的主题——有理数的加减混合运算,激发学生的学习兴趣。
2.呈现(15分钟)教师通过PPT展示例题,讲解有理数的加减混合运算的法则。
引导学生观察和分析例题,解答学生的疑问。
同时,教师可以通过生活中的实际例子,帮助学生理解运算规则。
3.操练(15分钟)教师布置一些练习题,让学生独立进行计算。
北师大版数学七年级上册第二章 2.6《有理数的加减混合运算》教案
第六节有理数的加减混合运算考点一:有理数加减混合运算中的符号化简1、导引:有理数的加减混合运算课运用有理数减法法则把减法转化为加法,进行单一的加法运算。
2、误区警示:将加减混合运算的式子写成省略加号的和的形式,要防止符号出错;括号前有“-”号时,不能直接将括号去掉。
3、题型解析:例1 (1)下列运算正确的是()A、(-3)+(-4)=-3+-4B、(-3)+(-4)=-3+4C、(-3)-(-4)=-3+4D、(-3)-(-4)=-3-4(2)下列交换加数位置的变形中,正确的是()A、1-4+5-4=1-4+4-5B、1-2+3-4=2-1+4-3C、4-7-5+8=4-5+8-7D、-3+4-1-2=2+4-3-1(3)计算0-2+4-6+8所得的结果是()A、4B、-4C、2D、-2考点二:有理数加减混合运算的顺序1、运算顺序:(1)转化——将算式中的减法都转化为加法。
(2)计算——利用加法法则和加法运算律计算。
2、方法导引:综合法(1)列出已知条件——有理数的加减混合运算。
(2)由已知进行计算——统一成加法,写成省略加号,括号的各数和的形式。
(3)用运算律得结果——用加法交换律、结合律进行计算。
3、误区警示:在运用运算律进行简便运算时,应注意:(1)交换加数位置时,要连同加数前的符号一起交换;(2)结合时,一般将互为相反数的结合,或正数、负数分别结合,或易凑整数、易通分的结合。
4、题型解析:例2 (1)计算(2-3)+(-1)的结果是()A、-2B、0C、1D、2(2)计算:①2-7+9-5 ②(-9)-(+9)③-32-(-12)+5-(-15)④(-7)+(+10)+(-11)+(-2)(3)小明和小红在游戏中规定:长方形表示加,圆形表示减,结果小者为胜,根据图列式计算,小明和小红谁为胜者?(4)李老师从学校出发,向东走了3.5千米到了图书馆,又向东继续走了1千米到了超市,然后向西走了8.5千米到了博物馆,又继续向西走了1.5千米到了动物园,最后又回到学校,问:①博物馆离图书馆多远?②李老师共走了多少千米?考点三:将有理数的加减混合运算同一成加法运算1、导引:(1)有理数的加减混合运算可运用有理数减法法则把减法转化为加法,进行单一的加法运算。
黄龙县第一中学七年级数学上册第二章有理数及其运算6有理数的加减混合运算第2课时有理数加减混合运算中运
第2课时有理数加减混合运算中运算律的应用【知识与技能】能根据具体问题适当运用运算律简化运算.【过程与方法】通过用有理数的加减混合运算解决问题的过程,体会从数学的角度理解问题,适当利用运算律简化运算,提高解题的灵活性.【情感态度】感受不同数学知识之间的紧密联系,养成善于思考,积极运用所学知识解决问题的习惯.【教学重点】熟练掌握有理数的加减混合运算,并利用运算律简化运算.【教学难点】在运算中灵活地使用运算律.一、情境导入,初步认识我们上节课学习了有理数的加减混合运算,加减混合运算就是先利用减法法则将减法转化成加法,再利用加法的运算律简便运算.今天我们将继续练习加减混合运算,能熟练地进行加减混合运算.(1)叙述有理数的加法法则、减法法则及有理数加法的运算律.(2)说出下列各式的意义并计算出结果.-(-5),-(+10),+(+9),+(-8)【教学说明】通过复习有理数的加法法则、减法法则及有理数的加减混合运算,加深对法则的认识,同时让学生明确有理数的加减混合运算可以统一成加法运算.二、思考探究,获取新知加法的运算律在有理数加减混合运算中的应用问题计算:(1)4.7-3.4+(-8.3);(2)1-16-(56-);(3)23+(15-)+1+13(4)(12-)14-+2 【教学说明】 有理数加减混合运算可运用加法交换律和结合律简化运算.【归纳结论】 用加法的运算律使运算简便,其技巧:互为相反数的两数相结合;为整数的两数相结合;同分母分数相结合.三、运用新知,深化理解1.计算:(1)-5+7-2+136-88;(2)143- 152-173+ ; (3)11323243⎛⎫⎛⎫⎛⎫⎛⎫++--+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 2.计算: (1)()()1121021048⎛⎫⎛⎫+----+- ⎪ ⎪⎝⎭⎝⎭;(2)317162838282⎛⎫-++-+-- ⎪⎝⎭. 【答案】1.(1)48 (2)122- (3)14- 2.(1)348 (2)112- 【教学说明】 学生自主完成,加深对新学知识的理解,检测对有理数加减混合运算中运算律应用的掌握,四、师生互动,课堂小结1.师生共同回顾加法运算律在有理数加减混合运算中的应用.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?【教学说明】 教师引导学生教师要引导学生观察每道题的特点,指导学生灵活运用运算律完成有理数加减混合运算.【板书设计】1.布置作业:从教材“习题2.8”中选取.2.完成练习册中本课时的相应作业.在有理数加减混合运算中运用运算律简化运算时要特别注意对各加数包括它前面的符号的强调,预防出现符号错误.科学记数法教学目标知识与技能:利用10的乘方,进行科学记数,会用科学记数法表示大于10的数,会解决与科学记数法有关的实际问题.过程与方法:体会科学记数法的好处和化繁为简的方法.情感态度与价值观:正确使用科学记数法表示数,培养学生一丝不苟的精神.教学重难点重点:正确运用科学记数法表示比10大的数.难点:正确掌握10n的特征以及科学记数法中n与数值的关系.教学过程一、创设情境,导入新课设计意图:通过创设情境,引起学生的探究欲望,激发学生的学习兴趣.教师出示投影1:(1)310的底数是,指数是;103的底数是,指数是.(2)102= ;103= ;104= ;105= .(3)100=10×10= (写成幂的形式,下同),10 000= ,100 000= .学生先独立完成,然后合作小组内交流.教师出示投影2:光的传播速度是目前所知物质中最快的,每秒钟可传播300 000 000米,你能快速准确地读出这个数字并把它写出来吗?教师引导:通过刚才对较大数字的读和写,感觉怎么样?请同学们畅谈感受,并进行归纳,对大数进行读和写确实比较麻烦和困难,容易出错.二、推进新课设计意图:通过学生的观察、比较、讨论,归纳得出科学记数法的概念和方法,使学生参与到教学过程中来,感受数学的乐趣.师:既然大数的读和写都比较困难和麻烦,那么能否想办法解决这个问题呢?也就是说能否用另外的比较适当的方法来直接表示比较困难的大数呢?小组讨论,尝试用适当的方法将100 000 000这个数字快速而准确地表示出来,使得这个数字的读和写比较简单、明了和直观.学生分小组进行讨论.教师可适当加以引导,然后师生归纳出科学记数法的概念.教师出示例题:(1)用科学记数法表示下列各数.①1 000 000;②57 000 000;③123 000 000 000.师生共同完成,师进一步提出问题,观察以上各式的结果,你发现了什么?学生讨论,归纳结果:用科学记数法表示一个n位整数,其中10的指数是n-1.补例:(2)下列用科学记数法表示的数,原来各是什么数?①1×105;②5.18×105;③7.04×106.学生练习,独立完成,然后与同学交流.三、巩固练习设计意图:通过练习进一步加深学生对科学记数法的理解与掌握,感受科学记数法的优势. 投影展示:1.分析下列各题用科学记数法表示是否正确,并说明原因.(1)36 000=36×103;(2)567.8=5.678×103.2.用科学记数法表示下列各数:(1)1 000 000;(2)57 000 000;(3)961.34.3.下列用科学记数法表示的数,原来各是什么数?(1)1×107;(2)3.96×104;(3)7.80×104.学生练习,完成后集体纠正.四、课后作业1.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米,将2 500 000平方千米用科学记数法表示应为( )××107平方千米×106平方千米D.25×105平方千米【答案】C2.一种电子计算机每秒可做108次计算,用科学记数法表示它工作8分钟可做次计算.【答案】4.8×10103.下列是用科学记数法表示的数,写出它们的原数.(1)3.1×104;(2)7.09×108;(3)-5.201×105.【答案】(1)3.1×104=31 000;(2)7.09×108=709 000 000;(3)-5.201×105=-520 100. 板书设计一、创设情境,导入新课二、推进新课三、巩固练习四、课后作业《整式的加减》说课稿大家好!我今天的说课课题是《整式的加减》第一课时。
北师大版七年级数学上册 (有理数的加减混合运算)有理数及其运算教学课件(第2课时)
D.-1-(-3)-6-(-8)
4 -2-3+5的读法正确的是( A )
A.负2,负3,正5的和 B.负2,减3,正5的和
C.负2,3,正5的和
D.以上都不对
(来自《典中点》)
知1-练
5 将-3-(+6)-(-5)+(-2)写成省略括号和加号 的和的形式,正确的是( D ) A.-3+6-5-2 B.-3-6+5+2 C.-3-6-5-2 D.-3-6+5-2
1 课堂讲解 有理数的加减运算统一成加法
加法运算律在加减混合运算中的应用
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
复习回顾 加法的交换律: 两个数相加,交换加数的位置,和不变.
ab ba
加法的结合律: 三个数相加,先把前两个数相加或先把 后两个数相加,和不变.
(a b) c a (b c)
55,-40,10,-16,27,-5
今年的小麦总量与去年相比情况如何?
3、某日小明再一条南北:方向的公路上跑步,他从A地出发,每隔 10min记录下自己的跑步情况(向南为正方向,单位:m):
-1008,1100,-976,1010,-827,946
1小时后他停下来休息,此时他在A地什么方向?据A地多远?小明共 跑了多少米?
4、某中学七(1)班学生的平均身高是160厘米 (1)下表给出了该班6名同学的身高情况(单位:厘米),试完成下表.
姓名 身高 身高与平均身高的差值
小明 小彬 小丽 小亮 小颖 小山
159 162 160 154 163 165 -1 +2 0 -6 +3 +5
(2)谁最高?谁最矮? 小山最高,小亮最矮 (3)最高与最矮的学生身高相差多少? 11厘米 (4)求平均身高?
《2.6有理数的加减混合运算》第二课时(教案)北师大版数学七年级上册
第二章有理数及其运算··第二课时教案班级:课时:课型:一、学情分析在对本章的学习过程中,学生已经具备了一定的探究能力,能主动发现、探究一些数学活动.在上一课时学生已经掌握简单的加减混合运算,能应用加减混合运算解决一些简单问题,这为本课学习奠定了基础.二、教学目标1. 能将有理数的加减混合运算统一成加法.2. 能将加法运算写成省略括号及前面加号的形式.3. 能根据具体问题,适当运用运算律简化运算.三、重点难点【教学重点】将有理数的加减混合运算统一成加法及省略加号和括号.【教学难点】能根据具体情况,适当运用运算律简化运算.四、教学过程设计第一环节【复习旧知引入新课】1.有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加.(2)异号两数相加,绝对值相等时和为0 ;绝对值不等时取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.(3)一个数同0 相加,仍得这个数.2.有理数的减法法则:减去一个数,等于加上这个数的相反数.3.计算:(1)(-12)+25 = 13 ;(2)17+(-21)= -4 ;(3)(-4)-16 = -20 ;(4)33-(-27)= 60 ;(5)(-37)-(-12)+(-13)+28 = -10 ;(6)(-12)+(-8)+(-6)+5 = -21 .设计意图:有理数的加减法法则是有理数加减混合运算的依据,本环节通过帮学生复习回顾,巩固学生基础,减小新课学习难度.第二环节【合作交流探索新知】一架飞机进行特技表演,起飞后的高度变化如下表:此时飞机比起飞点高了多少千米?教师提问:对于题中的“高度变化”,你是怎么理解的?你能通过列式计算此时飞机的高度吗?学生踊跃发言.教师展示PPT.关于这个问题,国国和粒粒有着不同的解法.国国的解法:粒粒的解法:-- 4.5+(-)+1.1+(-)-= 1.3+1.1+(-)--= 1(km). = 1(km).师:比较以上两种算法,你发现了什么?教师引导学生发现:4.5+(-)+1.1+(-)=--当左边省略加号和括号变成了右边的式子,因此--可以看作4.5、-3.2、1.1、-1.4 这 4 个数的和.师:有理数的加减混合运算可以统一成加法运算.如何将有理数加减法统一成加法呢?例如:(-13)-(-7)+(-8)-(+5)=(-13)+(+7)+(-8)+(-5)在和式中,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式.即(-13)-(-7)+(-8)-(+5)= -13+7-8-5.师:有理数加减法统一成加法的依据是什么呢?学生思考后回答:有理数减法法则.师:-13+7-8-5按不同的意义有不同的读法.①按这个式子表示的意义来读:可读作“负13、正7、负8、负 5 的和”;②按算式来读:可读作“负13 加7 减8 减5”.--1.4 可以读作?选取一名学生代表回答:“正 4.5、负 3.2、正1.1、负1.4 的和”或“4.5 减3.2 加1.1 减1.4”.师:4.5+(-)+1.1+(-)还有其他计算方法吗?学生猜测是否可以用加法运算律进行简化运算?师生共同进行运算.4.5+(-)+1.1+(-)= 4.5+1.1+[(-)+(-)]= 5.6+(-)= 1.设计意图:本环节主要引导学生思考,通过对两种算法的比较,让学生体会到加减混合运算课统一成加法,理解利用运算律可以简化运算,为进一步学习有理数的加减混合运算做铺垫.第三环节【应用迁移巩固提高】例1.将下列式子写成省略括号和加号的形式,并用两种读法将它读出来.(1)(-12)-(+8)+(-6)-(-5);(2)(-13)-(-7)+(-21)-(+9)+(+32).例2.计算:(1)(-8)-(-15)+(-9)-(-12);(2)5.8432143++⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-; (3)()5.273165.12743--⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-; (4)⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛-341531; (5)()()10785612--+⎪⎭⎫ ⎝⎛---; (6)⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-813414215874.例3.下表是某年某市汽油价格的调整情况:注:正号表示比前一次上涨,负号表示比前一次下降.与上一年年底相比,11 月 9 日汽油价格是上升了还是下降了?变化了多少元?设计意图:通过例题教学使学生巩固解决有理数加减混合运算的方法,掌握有理数加减混合运算统一成加法的方法,进一步提高学生的运算能力.【答案】例1.解:(1)(-12)-(+8)+(-6)-(-5)=(-12)+(-8)+(-6)+(+5)= -12-8-6+5;读作负 12 减 8 减 6 加 5 或负 12,负 8,负 6,正 5 的和.(2)(-13)-(-7)+(-21)-(+9)+(+32)=(-13)+(+7) +(-21)+(-9)+(+32)= -13+7-21-9+32.读作负13 加 7 减 21 减 9 加 32 或负 13,正 7,负 21,负 9,正 32 的和.例2.解:(1)原式 =(-8)+15+(-9)+12= 15 +12+[(-8)+(-9)] = 27+(-17)= 10;(2)原式 =5.8432143+++⎪⎭⎫ ⎝⎛- =⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-5.8214343 =0+9=9;(3)原式 =5.273165.12743+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛- =()5.25.127316743++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛- =-20+15=-5;(4)原式 =()⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛-341531 =()153431-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛- =()1535-+⎪⎭⎫ ⎝⎛- =3216-;(5)原式 =10785612--+- =⎪⎭⎫ ⎝⎛-+--10756812 =2120+- =239-;(6)原式 =813414215874--+⎪⎭⎫ ⎝⎛- =813414215874----++--=()⎪⎭⎫ ⎝⎛--+-+--+-814121873454 =436-- =436-.例3.解:由题意得:-140+290+400+600-220+300-190+480 = 1520,所以与上一年年底相比,11 月 9 日汽油价格上升了,上升了 1520 元/吨.第四环节 【随堂练习 巩固新知】1.(2022秋•新乐市期末)把算式:(-5)-(-4)+(-7)-(+2)写成省略括号的形式,结果正确的是( )A .-5-4+7-2B .5+4-7-2C .-5+4-7-2D .-5+4+7-22.(2022秋•桥西区校级期中)下列式子可读作:“负 1,负 3,正 6,负 8的和”的是( )A .-1+(-3)+(+6)-(-8)B .-1-3+6-8C .-1-(-3)-(-6)-(-8)D .-1-(-3)-6-(-8)3.(2022秋•福田区校级月考)计算:()⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-++85443125.0=( ) A .415 B .4 C .853-D .-44.(2022秋•当涂县期末)8-(+11)-(-20)+(-19)写成省略加号的和的形式是 .5.(2022秋•潍城区期中)一只蜗牛从地面开始爬高为 6 米的墙,向上爬 3 米,然后向下滑 1 米,接着又向上爬 3 米,然后又向下滑1 米,则此时蜗牛离地面的距离为 米.设计意图:本环节为基础练习,让学生能熟练的进行加减混合运算统一成加法的写法,加强学生的运算技能.【答案】2.B3.B4.8-11+20-19.5.4.第五环节 【当堂检测 及时反馈】-32-23 中把省略的“+”号填上应得到( )A .1.17+32+23B .-1.17+(-32)+(-23)C .1.17+(-32)+(-23)-(+32)-(+23)2.(2022秋•点军区期中)a ,b ,c 为三个有理数,下列各式可写成a -b +c 的是( )A .a -(-b )-(+c )B .a -(+b )-(-c )C .a +(-b )+(-c )D .a +(-b )-(+c )3.(2022秋•沙河市期末)为计算简便,把(-)-(-)-()+()+(-)写成省略加号的和的形式,并按要求交换加数的位置正确的是( )A .---3.5B .--3.5C .----3.5D .---0.5+3.54.(2022秋•金堂县校级月考)计算1+(-2)+3+(-4)+5+(-6)+…+19+(-20)得( )A .10B .-10C .20D .-20a = 41-,b = -2,c = 432-,那么|a |+|b |-|c |等于( )A .21-B .211C .21D .211-6.(2022秋•淅川县期中)某件商品原价 18 元,后来又跌 1.5 元,下午又涨价 0.3 元,则这一商品最终价格是( )A .0.3 元B .16.2 元C .16.8 元D .18 元7.(2022秋•海曙区期中)和式431121132+--中第 3 个加数是 ,该和式的运算结果是 .8.数学活动课上,王老师给同学们出了一道题,规定一种新运算“☆”,对于任意有理数a 和b ,有a ☆b = a -b +1,则[2☆(-3)]☆(-2)的值为 .9.计算:--|-2.32|+(-);(2)⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-+-21775.24335.0;(3)2134317329655-+--.10.(2022秋•槐荫区期中)上海世博会第一天(5 月 1 日)的进园人数为 20.3 万人,以后的 6 天里每天的进园数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数,(单位:万人)①5 月 2 日的进园人数是多少?② 5 月 1 日- 5 月 7 日这 7 天内的进园人数最多的是哪天?最少的是哪天?它们相差多少?③求出这 7 天进园的总人数.设计意图:通过本环节练习,巩固学生对新知识的掌握,同时进一步培养学生分析问题、解决问题的能力.【答案】1. C2.B3.A4.A5.7.311-,611. 8.9.---=(-)-()= 10-20= -10;(2)原式=21743243321++--=⎪⎭⎫⎝⎛--⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-43243321721=7-1=6;(3)原式 =2134317329655--++----=()⎪⎭⎫⎝⎛-+--+-+--2143326531795 =450- =45-.(万人),则 5 月 2 日进园人数为 21.5 万人;②根据题意得:这 7 天的人数分别为:20.3,21.5,13.1,14.5,8.2,10.9,14.8,则 5 月 2 日人数最多,5 日人数最少,-(万人);(万人),则这7 天进园总人数为103.3 万人.第六环节【拓展延伸能力提升】1.若|a|= 3,|b|= 1,|c|= 5,且|a+b|= a+b,|a+c|= -(a+c),求a-b+c的值.2.(1)有1,2,3,…,11,12 共12 个数字,请在每两个数字之间添上“+”或“-”,使它们的和为0;(2)若有1,2,3,…,2007,2008 共2008 个数字,请在每两个数字之间添上“+”或“-”,使它们的和为0;(3)根据(1)(2)的规律,试判断能否在1,2,3,…,2022,2022,共2022 个数字的每两个数字之间添上“+”或“-”,使它们的和为0?若能,请说明添法;若不能,请说明理由.设计意图:本环节为拔高练习,拓展学生的知识面,展现有梯度的教学理念.【答案】1.解:因为|a|= 3,|b|= 1,|c|= 5,且|a+b|= a+b,|a+c|= -(a+c),所以a = 3,b = ±1,c = -5,当a = 3,b = 1,c = -5 时,a-b+c = 3-1+(-5)= -3;当a = 3,b = -1,c = -5 时,a-b+c = 3-(-1)+(-5)= -1;综上所述,a-b+c的值为-3 或-1.2.解:(1)1-2+3-4+5-6-7+8-9+10-11+12 = 0;(2)1-2+3-4+...+1003-1004-1005+1006+ (2007)2008 = 0;(3)不能.因为 1 到2022 的总个数为奇数,每两个数字之间添上“+”或“-”,不能使它们的为和0.第七环节【总结反思知识内化】课堂小结:1.将有理数的加减混合运算统一成加法运算,依据是:有理数的减法法则.2.在把有理数的加减混合运算统一成加法运算的算式中,通常把各个加数的括号和它前面的加号省略不写,从而写成省略加号的和的形式.3. 运用加法交换律和结合律简化运算:(1)同号结合法;(2)凑整法;(3)相反数结合法;(4)同分母结合法;(5)同形结合法;(6)拆项法.设计意图:通过小结,使学生梳理本节课所学内容,把握本节课的核心——有理数的加减混合运算. 第八环节【布置作业夯实基础】。
北师大版数学七年级上册2.6《有理数的加减混合运算》(第2课时)说课稿
北师大版数学七年级上册2.6《有理数的加减混合运算》(第2课时)说课稿一. 教材分析《有理数的加减混合运算》是北师大版数学七年级上册第2.6节的内容,本节内容是在学生已经掌握了有理数的加法和减法的基础上,进一步引申出有理数的加减混合运算。
通过本节内容的学习,使学生能够熟练掌握有理数的加减混合运算的法则,并能够灵活运用解决实际问题。
二. 学情分析面对刚从小学升入初中的学生,他们在小学阶段已经接触过简单的数学运算,对加减法有了一定的认识。
但是,对于有理数的加减混合运算,还是初次接触,可能会感到有些抽象和难以理解。
因此,在教学过程中,我将会以学生已有的知识为基础,循序渐进地引导学生学习新知识。
三. 说教学目标1.知识与技能:学生能够理解有理数的加减混合运算的定义,掌握有理数的加减混合运算的法则,能够正确进行有理数的加减混合运算。
2.过程与方法:通过实例演示和练习,使学生能够熟练运用有理数的加减混合运算解决实际问题。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的逻辑思维能力,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:有理数的加减混合运算的法则,以及如何正确进行有理数的加减混合运算。
2.教学难点:理解有理数的加减混合运算的概念,以及如何在实际问题中灵活运用有理数的加减混合运算。
五. 说教学方法与手段在教学过程中,我将采用讲授法、示范法、练习法等多种教学方法,以学生为主体,注重师生互动,引导学生主动探索,积极思考。
同时,利用多媒体教学手段,如PPT等,使教学内容更加直观形象,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过复习小学阶段学过的加减法运算,引导学生进入初中阶段的有理数加减混合运算的学习。
2.讲解:讲解有理数的加减混合运算的定义和法则,通过实例演示,让学生理解并掌握有理数的加减混合运算。
3.练习:布置一些练习题,让学生独立完成,巩固所学知识。
4.应用:通过解决实际问题,让学生学会将有理数的加减混合运算运用到实际生活中。
北师大版七年级数学上册《有理数的加减混合运算第2课时》精品教学课件
第2课时
1.理解并掌握有理数加减混合运算的简便算法,感受简算带来的便利.2.能根据具体情况进行有理数加减混合的简便运算.3.能应用有理数加减混合的简便运算解决实际问题.4.通过解决实际问题,体会数学与生活的紧密联系.
有理数的加减混合运算的简算
重点
难点
准备好了吗?一起去探索吧!
相加得整的可先相加;同分母的可先相加;互为相反数的可先相加;正数、负数可分别相加.
下表是某年某市汽油价格的调整情况:.
时间
1月14日
3月25日
6月1日
6月30日
7月28日
9月1日
9月29日
11月9日
价格变化 (元/吨)
–140
+290
+400
+600
–220
+300
–190
+480
与上一年年底相比,11月9日汽油价格是上升了还是下降了?变化了多少元?
如图所示,一架飞机进行特技表演,起飞后的高度变化如下表:
高度变化
记作
上升4.5 km
+4.5 km
下降3.2 km
–3.2 km
上升1.1 km
+1.1 km
下降1.4 km
–1.4 km
此时飞机比起飞点高了多少千米?
4.5–3.2+1.1–1.4
=1.3+1.1–1.4
答:此时飞机比起飞点高了1千米.
=2.4–1.4
如图所示,一架飞机进行特技表演,起飞后的高度变化如下表:
高度பைடு நூலகம்化
记作
上升4.5 km
+4.5 km
下降3.2 km
七年级数学上册2.6有理数的加减混合运算第2课时有理数加减混合运算中的简便计算练习(新版)北师大版
第2课时 有理数加减混合运算中的简便计算01 基础题知识点 有理数加减混合运算中的简便计算1.计算56-38+(-258)的结果是( ) A .-356 B .-256 C .-216 D .2162.计算(-3)+(+2.5)+(-0.5)+4-(-3)的结果是( )A .3B .6C .7D .93.计算:1+45-(+23)-(-15)-(+113)=________. 4.计算:(1)-4.27+3.8-0.73+1.2=________;(2)814+637-314+547-367=________. 5.计算:(1)-8-6+22-9;(2)0-16+(-29)-(-7)-(+11).02 中档题6.计算:(1)213+635+(-213)+(-525);(2)0.25+(-18)-34-|-78|.7.某气象站每天下午4点需要测量一次气温,下面是某地星期一至星期五气温变化情况,该地上个星期日下午4点的气温是12 ℃.求该地星期五下午4点的气温.03 综合题8.(1)有1、2、3、…11、12共12个数字,请在每两个数字之间添上“+”或“-”,使它们的和为0;(2)有1、2、3、…2 015、2 016共2 016个数字,请在每两个数字之间添上“+”或“-”,使它们的和为0;(3)根据(1)(2)的规律,试判断能否在1、2、3、…2 014、2 015,共2 015个数字的每两个数字之间添上“+”或“-”,使它们的和为0.若能,请说明添法;若不能,请说明理由.参考答案 基础题1.C 2.B 3.0 4.(1)0 (2)13175.(1)原式=-23+22=-1.(2)原式=-16-29+7-11=-56+7=-49.中档题6.(1)原式=[213+(-213)]+[635+(-525)]=0+115=115. (2)原式=14-18-34-78=(14-34)-(18+78)=-12-1=-32. 7.由题意,得(0.2-0.7+0.3+0.8-0.6)+12=(0.2+0.3+0.8)+(-0.7-0.6)+12=1.3-1.3+12=12. 答:该地星期五下午4点的气温是12 ℃.综合题8.(1)1-2+3-4+5-6-7+8-9+10-11+12=0.(2)1与2 016是正的,2与2 015是负的;3与2 014是正的,4与2 013是负的;依次类推…1 007与1 010是正的,1 008与1 009是负的.即:1-2+3-4+…+1 007-1 008-1 009+1 010-…-2 013+2 014-2 015+2 016=0. (3)不能,因为由(1)(2)可知:数字的总个数应该是偶数个.。
2021-2022学年北师大版七年级数学上册 2.6有理数的加减混合运算(第2、3课时)课件
=-
39
2
7 熟练后这一步
+(-8)+(- )
.
10 省略.
-8-
7
.
10
6
+
5
6
+
5
1
+ .
2
.
7
+(-8)- .
10
6
+
5
= -12 - 8
= -20
6
−
5
-
7
.
10
教学过程——新知探究
第二章 有理数及其运算
从上面的例题可以总结出有理数混合运算的步骤:
1.利用减法法则将有理数的混合运算统一成加法运算;
第二章 有理数及其运算
右图是流花河的水文资料(单位:m),
取河流的警戒水位作为0点,那么图中
的其他数据可以分别记作什么?
下表是今年雨季流花河一周内的水位变化情
况(上周末的水位达到警戒水位).
星期
一
二
三
四
五
六
日
水位变化/m
+0.20
+0.81
-0.35
+0.03
+0.28
-0.36
-0.01
注:正号表示水位比前一天上升,负号表示水位比前一天下降.
北师大版数学∙七年级上册
教学课件
第二章 有理数及其运算
6.有理数的的混合运算(第2、3课时)
教学目标
第二章 有理数及其运算
1.灵活运用有理数加法的运算律
(重点)
2.会应用有理数加减法的混合运算
解决实际问题(难点)
教学过程——新课引入
2024秋七年级数学上册第2章有理数及其运算2.6有理数的加减混合运算教案(新版)北师大版
2. 有理数加减混合运算基础知识讲解(10分钟)
目标: 让学生了解有理数加减混合运算的基本概念、运算规则和计算方法。
过程:
讲解有理数加减混合运算的定义,包括其运算规则和计算方法。
3. 有理数加减混合运算案例分析(20分钟)
目标: 通过具体案例,让学生深入了解有理数加减混合运算的特性和重要性。
4. 有理数加减混合运算的运算律:
- 加法结合律:a + (b + c) = (a + b) + c
- 加法交换律:a + b = b + a
- 减法性质:a - b = a + (-b)
5. 有理数加减混合运算的注意事项:
- 注意运算符号的正确使用。
- 注意运算顺序,尤其是括号的使用。
- 计算过程中要注意正负号的正确性。
- 异号有理数相减:取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
2. 有理数加减混合运算的计算方法:
- 先进行括号内的运算。
- 按照从左到右的顺序进行计算。
- 如果有多个运算符号,先算乘除,再算加减。
3. 有理数加减混合运算的应用:
- 解决实际问题:如购物找零、制作食谱等。
- 数学题目:如解方程、计算几何图形的面积等。
总体来说,这节课的教学效果还是不错的,大多数学生能够理解和掌握有理数加减混合运算的知识。在今后的教学中,我将继续改进教学方法和策略,以提高学生的学习效果和兴趣。
课后作业
1. 计算题:
a) 计算:3 + (-2) - 4 + 5
b) 计算:-8 + 2 + (-3) - (-6)
《有理数的加减混合运算》第2课时公开课教学PPT课件【北师大版七年级数学上册】
探究新知
还可以这样计算: 4.5-3.2+1.1-1.4 =1.3+1.1-1.4 =2.4-1.4 =1(km).
探究新知
有理数的加减混合运算可以统一成加法运算,算式“4.5-3.2+ 1.1-1.4”可以看成4.5,-3.2,1.1,-1.4这4个数的和
探究新知
(-11)-7+(-9)-(-6)=-11+(-7)+(-9)+6=-11-7-9+6
随堂练习
2.计算(-3)+(+5)+(-7)+212所得的结果是
A.-713
B.1213
C.-2.5
D.-1223
3.若|a-2|+b+12=0,则 b+a-12的值为
A.-3
B.2
C.-112
D.1
(C ) (D )
随堂练习
4.计算: (1)
1 2
2 3
4 5
1 2
;
(2)
10 3
第二章 有理数及其运算
2.6 有理数加减混合运算
第2课时
学习目标
1.能将加减混合运算统一成省略加号与括号的代数和运算; 2.掌握有理数加减混合运算的技能,适当运用运算律简化运算.
复习巩固
(1)7+(-2)-3.4;
(2) -21.6
+3-7.4+
-
2 5
(3)31
5 4
0.25
1.6 -26.4
典型例题
例3
计算:
12
6 5
8
7 10
.
解:
12
6 5
8
7 10
= 12 6 8 7 5 10
= 12 8 6 7 = 20 1
潜山县二中七年级数学上册 第二章 有理数及其运算 2.6 有理数的加减混合运算 第2课时 有理数的加
有理数的加减混合运算的实际应用1教学目标1.能综合运用有理数及其加法、减法的有关知识,解决简单的实际问题,培养学生分析问题和解决问题的能力.2.会画折线统计图,并能根据折线统计图反映的信息解决实际问题,培养读图能力,增强学习兴趣.教学过程一、情境导入一架飞机进行特技表演,雷达记录起飞后的高度变化如下表:高度变化记作上升4.5千米+4.5千米下降3.2千米-3.2千米上升1.1千米+1.1千米下降1.4千米-1.4千米此时飞机比起飞点高多少千米?小组探究此时飞机与起飞点的高度,得出以下两种计算方法:(1)4.5+(-3.2)+1.1+(-1.4)=1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米);(2)4.5-3.2+1.1-1.4=1.3+1.1-1.4=2.4-1.4=1(千米).比较以上两种算法,你发现了什么?二、合作探究探究点一:水位变化中的加减混合运算下表是某水位站记录的潮汛期某河流一周内的水位变化情况(“+”号表示水位比前一天上升,“-”号表示水位比前一天下降,上周末的水位恰好达到警戒水位.单位:米).星期一二三四五六日水位变化0.20 0.81 -0.35 0.13 0.28 -0.36 -0.01(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?解析:(1)先规定其中一个为正,则另一个就用负表示.理解表中的正负号表示的含义,根据条件计算出每天的水位即可求解;(2)只要观察星期日的水位是正负即可. 解:(1)前两天的水位是上升的,第1天的水位是+0.20米;第2天的水位是+0.20+0.81=+1.01米;第3天的水位是+1.01-0.35=+0.66米;第4天的水位是+0.66+0.13=+0.79米;第5天的水位是0.79+0.28=+1.07米;第6天的水位是1.07-0.36=+0.71米;第7天的水位是0.71-0.01=+0.7米;则水位最低的是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米,则本周末河流的水位上升了0.7米.方法总结:解此题的关键是分析题意列出算式,用的数学思想是转化思想,即把实际问题转化成数学问题.探究点二:有理数的加减混合运算在生活中的其他应用某汽车制造厂计划前半年内每月生产汽车20辆,由于另有任务,每月上班人数有变化,1月至6月实际每月生产量和计划每月生产量相比,变化情况如下(增加为正,减少为负,单位:辆):+3,-2,-1,+4,+2,-5.(1)生产量最多的一个月比生产量最少的一个月多生产多少辆?(2)前半年的实际总产量是多少?比计划的总产量多了还是少了?相差多少?解析:(1)生产量最多的是四月份,最少的是六月份;(2)先求实际总产量与计划总产量,再比较.解:(1)(20+4)-(20-5)=9(辆).故生产量最多的一个月比生产量最少的一个月多生产了9辆;(2)前半年实际总产量为20×6+[(+3)+(-2)+(-1)+(-4)+(+2)+(-5)]=120+(+1)=121(辆).因为121>120,所以比计划的总产量多了.星期 一 二 三 四 五 六 日 水位变化/m+0.38+0.25+0.54+0.13-0.45+0.36-0.19因为121-120=1(辆),所以比原计划的总产量多了1辆.方法总结:仔细读题理解题意,把实际问题转化为数学问题解决.探究点三:折线统计图下表为某个雨季某水库管理员记录的水库一周内的水位变化情况,警戒水位为15m(上周末的水位达到警戒水位).注:正数表示比前一天水位上升,负数表示比前一天水位下降.(1)本周那一天水位最高?有多少米?(2)根据给出的数据,请利用折线统计图分析本周内该水库的水位变化情况(在不放水的情况下).解析:本周星期一到星期四,水位一直上升,星期五下降,星期六的上升值又低于星期五的下降值,故最高水位出现在星期四.解:(1)星期四水位最高,(+0.38+0.25+0.54+0.13)+15=16.3(m);(2)由已知条件,可求出一周内各天相对于警戒水位的变化情况,列表如下:星期一二三四五六日水位变化/m +0.38+0.63+1.17+1.30+0.85+1.21+1.02以警戒水位为0点,用折线统计图表示在不放水的情况下该水库一周内的水位变化情况如图所示.方法总结:很多实际问题可以转化为有理数的加减混合运算来解决.利用折线统计图可直观地反映出事物的变化情况.三、板书设计教学反思教学过程中,强调解决简单的实际问题,让学生进一步理解所学知识,并提高解决实际问题的能力,体会数学与现实生活的联系,培养学生的数学应用意识,增强学习数学的意识,提高学习的兴趣.3.3 解一元一次方程(二)——去括号与去分母 第1课时 去括号掌握去括号的方法步骤.进一步学习列方程解应用题,培养分析解决问题的能力.重点1.去括号解方程.2.将实际问题抽象为方程,列方程解应用题. 难点将实际问题抽象为方程的过程中,如何找等量关系.活动1:复习引入 练习:解下列方程.(1)3x +5=4x +1;(2)9-3y =5y +5; (3)12x -6=34x ;(4)2x -25=20-4x. 学生完成以后,与同学交流复习学过的知识. 活动2:探究新知 例1 解下列方程:(1)2x -(x +10)=5x +2(x -1); (2)3x -7(x -1)=3-2(x +3).师:这两个方程与上面几个方程有什么不同,怎样解这两个方程? 生:进行观察、讨论、交流.师:引导学生找出解决问题的方法,将这个方程化成上面几个方程的形式,然后再向x =a 形式的方程化归,也就是先去括号,然后师生共同回忆去括号的方法,教师板书解答过程.解:(1)去括号,得2x -x -10=5x +2x -2, 移项,得2x -x -5x -2x =-2+10,(移项要变号) 合并同类项,得-6x =8,(将同类项的系数相加) 系数化为1,得x =-43.(两边同除以未知项的系数)师生共同完成第(1)小题,学生独立完成第(2)小题. 活动3:巩固练习 教材第95页练习.教师可安排学生板演,小组交流、抽样阅卷等多种形式以发现学生的问题,及时反馈,及时纠正.活动4:拓展应用教师投影出示教材第93页的问题1并提出问题,你能用方程解决这个问题吗?教师可点拨:列方程解应用题的关键是找等量关系,这个问题中有哪些等量关系?若设上半年平均每月用电x kW·h,你能列出方程吗?①上半年月均用电量一下半年月均用电量=2 000,②上半年总用电量+下半年总用电量=150 000.学生讨论后独立列出方程并解答.然后小组交流,看一看所列的方程是否相同,并说一说你是如何借助上边的等量关系列方程的,你是否还有其他的列法.活动5:学习例题教师出示教材例2.一艘船从甲码头到乙码头顺流而行,用了2 h;从乙码头返回甲码头逆流而行,用了2.5 h,已知水流的速度是3 km/h,求船在静水中的平均速度.学生讨论交流解决,然后学生口述,教师板书.由于上边已经对本问题的难点做了分解突破,所以这里采用学生完成的方式,过程中教师巡视指导,根据情况也可适当点拨.教师归纳点评:行程问题中最基本的关系式是路程=速度×时间,具体的问题中注意分析等量关系,尤其是一些隐含的等量关系.另外这样的问题中还应当关注具体的各个量之间的关系.类似的还有风速问题等.活动6:小结与作业小结:谈谈你这节课的收获.作业:教材习题3.3第6,7,10,11题.本节课的教学安排是学习用去括号解一元一次方程,并初步根据实际问题列方程.复习巩固去括号法则有的放矢,恰到好处,能降低本节课的难度;经历方程解决实际问题的过程,体会方程是现实世界的有效数学模型.二元一次方程组的应用1.宜昌至万县的游船可游览三峡全程,由万县开往宜昌(顺水)时,每小时行20千米,由宜昌开往万县(逆水)时,每小时行16千米,求游船在静水中的速度和水速. 2.A.B 两地开行便民列车,中途停在C 站一次,该车实行车上售票,全程(从A 到B )票价6元,半程(A 到C 或C 到B )票价3元,某日某节车厢列车员共售出车票120张,共收票款645元,问该车厢售出全程、半程票各多少张?3.某校购买教学用29吋,21吋彩色电视机共7台,用去人民币15900元,已知两种型号的彩电价格分别为3000元和1300元,求该校两种彩电各买了多少台?4.已知向本埠邮寄一封平信需0.60元,向外埠寄一封平信需0.80元,北方大学某班辅导员在假期里向本班同学发一个通知,共发平信52封,用去邮资38元,问该班在本埠和外埠居住的各多少人?5.一只船载重量是520吨,容积是20003米,现有甲、乙两种货物,甲种货物每吨的体积是23米,乙种货物每吨的体积是83米,两种货物应该各装多少吨,才能最充分地利用船的载重量和体积.6.油漆厂用白铁皮做圆柱形油漆小桶,一张铁皮可做侧面32个,或底面160个,现有铁皮140张,用多少张做侧面,多少张做底面,可以正好制成配套的油漆小桶? 7.(中国古代问题)设马四匹,牛六头,共价四十八两;马三匹,牛五头,共价三十八两,问马、牛各价几何?参考答案1.游船在静水中的速度为18千米/时,水速为2千米/时.2.全程票95张,半程票25张.3.29吋彩电4台,21吋彩电3台.4.本埠有18人,外埠34人.5.甲种货物应装360吨,乙种货物装160吨.6.100张做侧面,40张做底面.提示:设用x张铁皮做侧面,y张做底面正好可配套,则⎪⎩⎪⎨⎧⨯==+.1602132,140yxyx7.马价6两,牛价4两.。
有理数的除法(第2课时 有理数加减乘除混合运算)课件七年级数学上册(人教版2024)
2.2.2 有理数的除法
第二课时 有理数加减乘除混合运算
目录/CONTENTS
学习目标
情景导入
新知探究
分层练习
课堂反馈
课堂小结
学习目标
1.
通过类比小学学过的运算顺序,能得出有理数的运算顺
序,按照有理数的运算顺序,正确熟练地进行有理数的加、
减、乘、除混合运算,提高学生的运算能力(重点).
-22 .
11.
【新视角·规律探究题】 a 是不为1的有理数,我们把
−
称为 a 的差倒数.如:2的差倒数是
=-1,-1的差倒
−
数是
= .已知 a1=- , a2是 a1的差倒数, a3是
−(−)
a2的差倒数, a4是 a3的差倒数,……,以此类推,则
a2 024=
.
只能用一次),使得运算结果为24或-24,其中红色扑克牌代表负数,黑色扑克牌
代表正数,A,J,Q,K分别代表1,11,12,13.
(1)如果抽到的四张牌是“黑桃3,4,10和红桃6”,请你运用上述规则写出三个
不同的算式,使其结果等于24或-24;
解: 答案不唯一.(1)(10-4)-3×(-6)=24;3×(-6)-(10-4)=-24;
2.有理数的加减乘除混合运算
问题:下列式子含有哪几种运算?先算什么,后算什么?
第二级运算
乘除运算
1
3 50 2 1 ?
5
第一级运算
加减运算
典例剖析
例7
计算:
(1) −8+4÷(−2);
泸西县九中七年级数学上册第二章有理数及其运算2.6有理数的加减混合运算第2课时有理数的加减混合运算的
第二章 有理数及其运算
2.6 有理数的加减混合运算
第2课时 有理数的加减混合运算的应用
在进行有理数加减混合运算时,可以运用加法交换律和结合律. 可以进行归类运算,正负归类,凑整归类,同分母或易于通分的分数归类. 练习:计算:(1)-4.27+3.8-0.73+1.2=__0__; (2)1+45-(+23)-(-15)-(+113)=__0__.
13.某数学小组12名同学在某次数学测试中的成绩以95分为基准 , 超过的 分数记为正数 , 不足的分数记为负数 , 评分记录如下(单位 : 分) :
-2 , +3 , -1 , 0 , +5 , -7 , +5 , 0 , -1 , -2 , +2 , +1. 求这个数学小组的平均成绩. 解 : 这个数学小组平均成绩95.25分
O 答 : 结果都是仍在原处 , 即结果都是 零 ,
假设用式子表达 : 0×3=0 ; 0×(-3)=0 ; 2×0=0 ; (-2)×0=0.
发现 : 任何数与0相乘 , 积仍为0.
练闯考
两数相乘,综合如下: (1) 2×3 = 6 (2)(-2)×(-3)= 6 (3)(-2) × 3 = -6 (4) 2×(-3) = -6 (5) 3×0= 0,
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
七年级数学上册第2课时 有理数的加减混合运算
作品编号:15635478925896743学校:山黄市鹤仙镇那年小学*教师:戒悟空*班级:蝶舞伍班*第2课时有理数的加减混合运算【知识与技能】使学生理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算.【过程与方法】通过加减法的相互转化,培养学生的应变能力,口头表达能力及计算能力.【情感态度】敢于面对数学活动中的困难,并获得独立克服困难和运用知识解决问题的成功体验.【教学重点】把加减混合运算理解为加法算式.【教学难点】把省略括号的和的形式直接按有理数加法进行计算.一、情境导入,初步认识竞赛活动比一比,看谁算得快(-20)+(+3)-(-5)-(+7)①(-7)+(+5)+(-4)-(-10)②师:对比上式①,你首先想到将原式如何变形?生:根据有理数的减法法则把减号统一成加号,即原式变为:-20+(+3)+(+5)+(-7)③师:很好,可见在引入相反数后,加减混合运算可以统一为加法运算.用字母可表示成:a+b-c=a+b+(-c).下面,请大家一起来练习计算以上两道题.【教学说明】式③表示的是-20,+3,+5,-7的和,为了书写简单,可以省略式中的括号,从而有-20+3+5-7.大家要注意到,虽然加号和括号都省略了,但-20+3+5-7仍表示-20,+3,+5,-7的和,所以这个算式可以读作“负20,正3,正5,负7的和”.当然,按运算意义也可读作“负20加3加5减7”.学生尝试用两种读法读.同桌间互相出式,并读出两种读法.刚才在大家练习的过程中,我们看到有两种典型的处理方法,一是将原式按次序计算;二是将原式换成(-20-7)+(3+5).大家观察比较一下,你看哪种方法更好,为什么?生:第二种过程更简便、合理.因为它运用了有理数加法的交换律、结合律.师:太棒了,在有理数的加法运算中,通常应用加法运算律,可使计算简化,根据刚才过程可见,在有理数加减混合运算统一成加法后,一般应注意运算的合理性,适当运用运算律.大家一起看栏目二中的思考题.二、思考探究,获取新知【教学说明】解题过程由学生口述、教师板演,同时提问每步的根据和目的,并强调书写的规范化,然后由学生小组交流并归纳得出结论.【归纳结论】有理数的加减混合运算的计算有如下几个步骤:1.将减法转化成加法运算;2.省略加号和括号;3.运用加法交换律和结合律,将同号两数相加;4.按有理数加法法则计算.三、典例精析,掌握新知例1比谁算得对,算得快【分析】按照正确的运算法则进行运算.【答案】(1)-1;(2)1;(3)-5050例2银行储蓄所办理了8笔工作业务,取出950元,存进500元,取出800元,存进1200元,存进2500元,取出1025元,取出200元,存进400元,这时,银行现款是增加了,还是减少了?增加或减少了多少元?【分析】根据题意把取出记为“-”,存进记为“+”,列出算式进行运算.解:每次存款数记为-950,+500,-800,+1200,+2500,-1025,-200,+400.则总额为:银行存款增加3,且增加了1625元-950+500+(-800)+1200+2500+(-1025)+(-200)+400=1625(元)例3计算:1-3+5-7+9-11+……+97-99【分析】抓住算式的结构规律,可以考虑两两结合.解:原式=(1-3)+(5-7)+(9-11)+……+(97-99)=-50四、运用新知,深化理解1.(1)式子-6-8+10+6-5读作,或读作.(2)把-a+(+b)-(-c)+(-d)写成省略加号的和的形式为.(3)若|x-1|+|y+1|=0,则x-y= .(4)运用交换律填空:-8+4-7+6= - + + .2.(1)已知m是6的相反数,n比m的相反数小2,则m+n等于()A.4B.8C.-10D.-2(2)使等式|-5-x|=|-5|+|x|成立的x是()A.任意一个数B.任意一个正数C.任意一个负数D.任意一个非负数(3)-a+b-c由交换律可得()A.-b+a-cB.b-a-cC.a-+c-bD.-b+a+c(4)a、b两数在数轴上位置如图,设M=a+b,N=-a+b,H=a-b,G=-a-b,则下列各式中正确的是()A.M>N>H>GB.H>M>G>NC.H>M>N>GD.G>H>M>N3.计算题.4.股票交易是市场经济中的一种金融活动,它可以促进投资和资金流通.南京某证券交易所的一种股票第一天最高价比开盘价高0.3元,最低价比开盘价低0.3元,第二天的最高价比开盘价高0.3元,最低价比开盘价低0.1元,第三天的最高价等于开盘价,最低价比开盘价低0.2元.一天中最高价与最低价的差,叫做这天股票的涨幅.计算这三天的平均涨幅.【教学说明】这4题可由学生独立完成,老师评讲.【答案】1.(1)负6,负8,正10,正6与负5的和负6减8加10加6减5 (2)-a+b+c-d(3)2(4)-8 7 4 62.(1)D(2)D(3)B(4)B3.(1)-1(2)25/24(3)-52 74.0.4五、师生互动,课堂小结回顾一下本节课所学内容,你学会了什么?【教学说明】在学生思考回答的过程中将本节的重点知识纳入知识系统.1.布置作业::从教材习题1.3中选取.2.完成练习册中本课时的练习.本课时主要通过学生习题的训练,巩固有理数加法、减法及加减混合运算的法则与技能,教师要认真归纳学生在进行有理数加法、减法运算时常犯的错误,以便本节课教学时针对性指导.训练以学生自主解答为主,教师根据学生所做的解法,及时指出最具代表性的方法给学生指明解题方向.。
七年级数学上册有理数及其运算 . 有理数的加减混合运算 有理数加减混合运算中的简便计算
A.-356
B.-256
C.-216
D.216
6.下列与-9+31+28-45 相等的是( B )
A.-9+45+28-31 B.31-45-9+28
C.28-9-31-45
D.45-9-28+31
第五页,共二十一页。
7.计算(-3)+(+2.5)+(-0.5)+4-(-3)的结果是( B ) A.3 B.6 C.7 D.9 8.计算:1+45 -(+23 )-(-15 )-(+113 )=__0_.
第十七页,共二十一页。
第十八页,共二十一页。
18.阅读理解: 计算:(-556 )+(-923 )+1734 +(-312 ). 解析:因为-556 =(-5)+(-56 ),-923 =(-9)+(-23 ),1734 = 17+34 ,-312 =(-3)+(-12 ),所以,原式=[(-5)+(-56 )]+[(-9)+(-23 )] +(17+34 )+[(-3)+(-12 )]=[(-5)+(-9)+17+(-3)] +[(-56 )+(-23 )+34 +(-12 )]=0+(-114 )=-114 . 上面这种计算方法叫拆项法,你看懂了吗?
);
解:原式=[213 +(-213 )]+[635 +(-525 )]=0+115 =115
(2)0.25+(-18 )-34 -|-78 |;
解:原式=14 -18 -34 -78 =(14 -34 )-(18 +78 )=-12 -1=-32
第十四页,共二十一页。
(3)-0.6-0.08+25 -2151 -0.92+2151 . 解:原式=(-0.6-0.08-0.92)+25 +(-2151 +2151 )= -1.6+0.4+0=-1.2
2014七年级数学上册 2.6 有理数的加减混合运算(第2课时)教学设计 (新版)北师大版
第二章有理数及其运算6.有理数的加减混合运算(二)一、学生知识状况分析学生的知识技能基础:在上一节课的学习中学生已经学习了有理数的加减混合运算,初步接触了含有小数或分数的有理数的加减混合运算,知道加减混合运算可以利用运算顺序从左往右依次进行运算,但还不够熟练,同时对在混合运算中如何运用加法交换律和结合律简化计算还不了解。
学生活动经验基础:在本章前面知识的学习过程中,学生已经经历了一些探索、发现的数学活动,积累了初步的数学活动经验,具备了一定的探究能力;经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力;同时在本章前面的数学学习中学生已经具备了一定的运算技能,能够解决一些简单的实际问题。
这些为本节课的学习作了很好的奠基和知识准备。
二、教学任务分析本节课就是在前面学习的基础上进一步熟练有理数的加减混合运算,体会可以适当地运用加法交换律和结合律来简化运算.通过对一架特技飞机起飞的高度变化这个实际问题的讨论,引导学生从减法法则与实际问题两个方面回答两种算法的关系.对两种算法比较的同时,学生将体会到加减混合运算可以统一成加法,以及加法运算可以省略括号及前面加号的形式(即“代数和”的问题),使学生进一步熟悉有理数加减混合运算. 具体教学目标如下:1.使学生理解有理数的加减法可以互相转化,并了解代数和概念;2.使学生熟练地进行有理数的加减混合运算;3.培养学生的运算能力.三、教学过程分析本节课设计了六个教学环节:第一环节:问题引入;第二环节:讲授新课;第三环节:巩固练习;第四环节:合作学习;第五环节:课堂小结;第六环节:布置作业。
第一环节:问题引入活动内容:一架飞机进行特技表演,飞行的高度变化由表格给出。
对于题中的“高度变化”,你是怎么理解的?你能通过列式计算此时飞机的高度吗?4.5+(-3.2)+1.1+(-1.4)=1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米)还可以这样计算:4.5----=1(千米)活动目的:通过对身边的数学问题的讨论,学生将回顾有理数的运算法则,加深对法则的认识,并用以进行有关复杂数据的运算.活动的实际效果:对于这一实际问题,学生特别是男同学很感兴趣,都瞪大眼睛仔细听讲。