【全国区级联考】北京市西城区2016-2017学年八年级下学期期末考试数学试题
北京西城区初二下期末数学试卷
8.A. B. C. D.如图,在中,,,将绕点顺时针旋转角()至,使得点恰好落在边上,则等于( ).
Rt △ABC ∠ACB =90∘∠ABC =30∘△ABC C α0<α<180∘∘△C A ′B ′A ′AB α150∘90∘60∘30∘
康
智
A. B.
C. D.
的坐标为 ,关于的不等式的解集
x kx−1>2x+b
(1)求的度数.(2)求边的长.
∠ACB CD 《九章算术》卷九“勾股”中记载:今有户不知高广,竿不知长短.横之不出四尺,纵之不出二尺,斜之适出注.问户斜几何.
12
(2)请从图、图的结论中选择一个进行证明.
26.如图,在平面直角坐标系中,点在直线上,过点作轴,交直线于点,以为直角顶点,为直角边,在的右侧作等腰直角三角形;再过点作轴,分别交直线和于,
两点,以为直角顶点,为直角边,在的右侧作等腰直角三角形,…,按此规律进行下去,点的横坐标为 ,点的横坐标为 ,点的横坐标为 .(用含的式子表示,为正整数)
xOy (2,2)A 1y =x A 1//y A 1B 1y =
x 1
2
B 1A 1A 1B 1A 1B 1A 1B 1
C 1C 1//y A 2B 2y =x y =x 1
2A 2B 2A 2A 2B 2A 2B 2A 2B 2C 2C 1C 2C n n n
康
智
ABCD∠D=90∘∠A≠90∘
(3)在图③中画出符合条件的一个四边形,使,且.
111。
20170704-西城区八下数学期末附加题答案
北京市西城区2016-2017学年度第二学期期末试卷 八年级数学附加题参考答案及评分标准 2017.7
一、填空题(本题6分)
1.解:3,92,322n
⎛⎫⨯ ⎪⎝⎭
.(各2分) 二、操作题(本题6分)
2. 解:
(1)答案不唯一,如: 或其他.
(2)答案不唯一,如: 或其他.
(3)
说明:每图2分,答案不唯一时,其他正确答案相应给分.
三、解答题(本题8分)
3.解:(1)如图1.由△1OFF ≌△1BOB ,及B (m, n )可得点F 的坐标为(,)n m -,同理可得点
D 的坐标为(,)a n a m +-. (全等1分,两个坐标各1分)…………………3分
(2)①设点M 的坐标为(,)M x y .
∵ 点M 为线段FD 的中点,(,)F n m -,(,)D a n a m +-,
可得点M 的坐标为(,)22
a a
. …………………………………………………… 5分 ∴ ,2.2
a x a y ⎧=⎪⎪⎨⎪=⎪⎩ 消去a ,得y x =.
所以,当点A 在x 轴的正半轴上指定范围内运动时,相应的点M 在运动时总落在直线y x =上,即点M 总落在函数y x =的图象上. ………………………6分 ②如图2,当点A 在x 轴的正半轴上运动且满足2≤a ≤8时,点A 运动的路径为线段12A A ,其中1(2,0)A ,2(8,0)A ,相应地,点M 所经过的路径为直线y x =上的一条线段12M M ,其中1(1,1)M ,2(4,4)M .……………………………… 7分
而12M M =
∴ 点M
所经过的路径的长为. ……………………………………………8分。
2016年北京市西城区八年级(下)期末数学试卷与参考答案PDF
三、解答题(本题共 16 分,第 19 题 8 分,第 20 题 8 分) 19. (8 分)计算: (1) (2) ﹣ × +( ÷ +1) ( . ﹣1 )
20. (8 分)解方程: (1)x2﹣6x+5=0 (2)2x2﹣3x﹣1=0.
四、解答题(本题共 34 分,第 21-22 题,每小题 7 分,第 23 题 6 分,第 24-25 题,每小题 7 分) 21. (7 分)如图,在▱ABCD 中,点 E,M 分别在边 AB,CD 上,且 AE=CM,点 F, N 分别在边 BC,AD 上,且 DN=BF. (1)求证:△AEN≌△CMF; (2)连接 EM,FN,若 EM⊥FN,求证:EFMN 是菱形.
A.16 B.24 C.4
D.8 )
6. (3 分)下列命题中,正确的是( A.有一组邻边相等的四边形是菱形
B.对角线互相平分且垂直的四边形是矩形 C.两组邻角相等的四边形是平行四边形
D.对角线互相垂直且相等的平行四边形是正方形 7. (3 分)如图,正方形 ABCD 的两条对角线 AC,BD 相交于点 O,点 E 在 BD 上, 且 BE=CD,则∠BEC 的度数为( )
22. (7 分)为了让同学们了解自己的体育水平,初二 1 班的体育康老师对全班 45 名学生进行了一次体育模拟测试(得分均为整数)成绩满分为 10 分,成绩达 到 9 分以上(包含 9 分)为优秀,成绩达到 6 分以上(包含 6 分)为合格,1 班 的体育委员根据这次测试成绩,制作了统计图和分析表如下:
10. (3 分)中国数学史上最先完成勾股定理证明的数学家是公元 3 世纪三国时 期的赵爽, 他为了证明勾股定理, 创制了一幅“弦图”, 后人称其为“赵爽弦图” (如 图 1) .图 2 由弦图变化得到,它是用八个全等的直角三角形拼接而成.将图中 正方形 MNKT ,正方形 EFGH,正方形 ABCD 的面积分别记为 S1, S2 ,S3,若 S1+S2+S3=18,则正方形 EFGH 的面积为( )
2016-2017学年八年级下期末数学试题含答案
2016-2017学年八年级下期末数学试题含答案2016~2017学年度第二学期期末练习初二数学考生须知1. 本试卷共6页,共三道大题,26道小题。
满分100分。
考试时间90分钟。
2. 在试卷和答题卡上认真填写学校名称、姓名和考号。
3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个.1.在平面直角坐标系xOy中,点P(2,-3)关于原点O对称的点的坐标是A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)2.如果一个多边形的每个内角都是120°,那么这个多边形是A.五边形B.六边形C.七边形D.八边形3.下面四个图案依次是我国汉字中的“福禄寿喜”的艺术字图.这四个图案中是.中心对称图形的是①②③④A.①② B.②③C.②④ D.②③④4.方程()xxx=-1的解是A.x = 0 B.x = 2 C.x1= 0,x2= 1 D.x1= 0,x2= 2 5.数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值x与方差2S:甲乙丙丁x(秒)30 30 28 282S 1.21 1.05 1.211.05 要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择 A .甲 B .乙C .丙D .丁6.矩形ABCD 中,对角线AC ,BD 相交于点O ,如果∠ABO =70°,那么∠AOB的度数是A .40°B .55°C .60°D .70° 7.用配方法解方程2210x x --=,原方程应变形为 A .2(1)2x -= B .2(1)2x +=C .2(1)1x -=D .2(1)1x +=8.德国心理学家艾宾浩斯(H.Ebbinghaus )研究发现,遗忘在学习之后立即开始,遗忘是有规律的.他用无意义音节作记忆材料,用节省法计算保持和遗忘的数量.通过测试,他得到了一些数据,根据这些数据绘制出一条曲线,即著名的艾宾浩斯记忆遗忘曲线,如图.该曲线对人类记忆认知研究产生了重大影响.小梅观察曲线,得出以下四个结论: ①记忆保持量是时间的函数②遗忘的进程是不均匀的,最初遗忘速度快,以后逐渐减慢 ③学习后1小时,记忆保持量大约为40%④遗忘曲线揭示出的规律提示我们学习后要及时复习 其中错误的结论是 A .①B .②C .③D .④ 9.关于x 的一元二次方程2210kx x -+=有两个实数根,那么实数k 的取值范围是A .1k ≤B .1k <且0k ≠C .1k ≤且0k ≠D .1k ≥10.如图1所示,四边形ABCD 为正方形,对角线AC ,BD 相交于点O ,动点P 在正方形的边和对角线上匀速运动. 如果点P 运动的时间为x ,点P 与点A 的距离为y ,且表示 y 与x 的函数关系的图象大致如图2所示,那么点P 的运动路线可能为图1 图2A .A →B →C →A B .A →B →C →D C .A →D →O →A D .A →O →B →C 二、填空题(本题共18分,每小题3分) 11.函数12y x =-中,自变量x 的取值范围是 . 12.在△ABC 中,D ,E 分别是边AB ,AC 的中点,如果DE =10,那么BC = .13.“四个一”活动自2014年9月启动至今,北京市已有60万中小学生参观了天安门广场的升旗仪式.下图是利用平面直角坐标系画出的天安门广场周围的景点分布示意图. 如果这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示故宫的点的坐标为(0,1),表示中国国家博物馆的点的坐标为(1,-1),那么表示人民大会堂的点的坐标是 .14.在四边形ABCD 中,对角线AC ,BD 相交于点O .如果AB ∥CD ,请你添加一个条件,使得四边形ABCD 成为平行四边形,这个条件可以 是 .(写出一种情况即可) 15.在平面直角坐标系xOy 中,一次函数y kx =和3y x =-+的图象如图所示,则关于x 的一元一次不等式3kx x <-+的解集美术馆景山电报大楼故宫王府井天安门中国国家博物馆前门人民大会堂北y =kxy3214O BC D A已知:∠AOB .求作:射线OE ,使OE 平分∠AOB . 作法:如图,(1)在射线OB 上任取一点C ;(2)以点O 为圆心,OC 长为半径作弧,交射线OA 于点D ;(3)分别以点C ,D 为圆心,OC 长为半径作弧,两弧相交于点E ; (4)作射线OE .所以射线OE 就是所求作的射线.是 .16.下面是“作已知角的平分线”的尺规作图过程.请回答:该作图的依据是 .三、解答题(本题共52分,第17题4分,第18-24题每小题5分,第25题6分,第26题7分) 17.解方程:2430x x -+=.18.在平面直角坐标系xOy 中,已知一次函数112y x =-+的图象与x 轴交于点A ,OBAEDC ABO与y 轴交于点B . (1)求A ,B 两点的坐标;(2)在给定的坐标系中画出该函数的图象;(3)点M (-1,y 1),N (3,y 2)在该函数的图象上,比较y 1与y 2的大小.19.已知:如图,E ,F 为□ABCD 的对角线BD 上的两点,且BE =DF . 求证:AE ∥CF .20.阅读下列材料:为引导学生广泛阅读古今文学名著,某校开展了读书月活动. 学生会随机调查了部分学生平均每周阅读时间的情况,整理并绘制了如下的统计图表:学生平均每周阅读时间频数分布表FEABCD yOx312123321321平均每周阅读 时间x (时)频数 频率 02x ≤<10 0.025 学生平均每周阅读时间频数分布直方图请根据以上信息,解答下列问题:(1)在频数分布表中,a = ______,b = _______; (2)补全频数分布直方图;(3)如果该校有1 600名学生,请你估计该校平均每周阅读时间不少于6小时的学生大约有 人.21.“在线教育”指的是通过应用信息科技和互联网技术进行内容传播和快速学习的方法.“互联网+”时代,中国的在线教育得到迅猛发展. 请根据下面张老师与记者的对话内容,求2014年到2016年中国在线教育市场产值的年平均增长率.86420频数12080402010060时间/时101222.如图,在四边形ABCD 中,AB AD =,CB CD =,我们把这种两组邻边分别相等的四边形叫做筝形.根据学习平行四边形性质的经验,小文对筝形的性质进行了探究. (1)小文根据筝形的定义得到筝形边的性质是______________________; (2)小文通过观察、实验、猜想、证明得到筝形角的性质是“筝形有一组对角相等”.请你帮他将证明过程补充完整.已知:如图,在筝形ABCD 中,AB AD =,CB CD =.求证:_____________. 证明:BADC在线教育打破了时空限制,可碎片化学习,可以说具有效率高、方便、低门槛、教学资源丰富的特点.那么这两年中国在线教育市场产值如何呢?根据中国产业信息网数据统计及分析,2014年中国在线教育市场产值约为1 000亿元,2016年中国在线教育市场产值约为1 440亿元.(3)小文连接筝形的两条对角线,探究得到筝形对角线的性质是__________________________.(写出一条即可)23.已知关于x 的一元二次方程21102x mx m ++-=.(1)求证:此方程有两个不相等的实数根; (2)选择一个m 的值,并求出此时方程的根.24.小明租用共享单车从家出发,匀速骑行到相距2 400米的邮局办事. 小明出发的同时,他的爸爸以每分钟96米的速度从邮局沿同一条道路步行回家,小明在邮局停留了2分钟后沿原路按原速返回. 设他们出发后经过t (分)时,小明与家之间的距离为s 1(米),小明爸爸与家之间的距离为s 2(米),图中折线OABD ,线段EF 分别表示s 1,s 2与t 之间的函数关系的图象. (1)求s 2与t 之间的函数表达式;E 2400OFD CBt /分10A s /米(2)小明从家出发,经过多长时间在返回途中追上爸爸?25.已知:如图,正方形ABCD中,点F是对角线BD上的一个动点.(1)如图1,连接AF,CF,直接写出AF与CF的数量关系;(2)如图2,点E为AD边的中点,当点F运动到线段EC上时,连接AF,BE相交于点O.①请你根据题意在图2中补全图形;②猜想AF与BE的位置关系,并写出证明此猜想的思路;③如果正方形的边长为2,直接写出AO的长.A D FBCC DABE图1 图2 26.在平面直角坐标系xOy 中,如果点A ,点C 为某个菱形的一组对角的顶点,且点A ,C 在直线y = x 上,那么称该菱形为点A ,C 的“极好菱形”. 下图为点A ,C 的“极好菱形”的一个示意图.已知点M 的坐标为(1,1),点P 的坐标为(3,3).(1)点E (2,1),F (1,3),G (4,0)中,能够成为点M ,P 的“极好菱形”的顶点的是 ;(2)如果四边形MNPQ 是点M ,P 的“极好菱形”.①当点N 的坐标为(3,1)时,求四边形MNPQ 的面积;②当四边形MNPQ 的面积为8,且与直线y = x + b 有公共点时,写出b 的取值范围.y=xDCBA4444123123321213xO y丰台区2016—2017学年度第二学期期末练习初二数学参考答案选择题(本题共30分,每小题3分) 题号1 2 3 4 5 6 7 8 9 10 答案B BCD D A A C C A二、填空题(本题共18分,每小题3分)11.2x ≠; 12.20; 13.()11--,; 14. AB=CD 或AD ∥BC 等,答案不唯一; 15.1x <; 16.四条边都相等的四边形是菱形,菱形的每一条对角线平分一组对角,两点确定一条直线.三、解答题(本题共52分,第17题4分,第18-24题每小题5分,第25题6分,第26题7分)17. 解:(1)(3)0x x --=, ……2分∴121, 3.x x == ……4分其他解法相应给分.18.解:(1)令0y =,则2x =;令0x =,则1y =.∴点A 的坐标为(2,0),……1分点B 的坐标为(0,1). ……2分(2)如图:y =12x +1y O x31212211……4分(3)12.y y .……5分19.证明:连接AC 交BD 于点O ,连接AF ,CE .∵四边形ABCD 是平行四边形,∴OB =OD ,OA =OC .(平行四边形的对角线互相平分)2分∵BE =DF ,∴OB -BE =OD -DF即OE =OF .……3分∴四边形AECF 是平行四边形.(对角线互相平分的四边形是平行四边形)4分∴AE ∥CF . ……5分其他证法相应给分.20.解:(1)80,0.275; ……2分(2) O DC B A E F 6010080120频数…4分(3)1000 ……5分21.解:设2014年到2016年中国在线教育市场产值的年平均增长率是x , ……1分依题意,得:错误!未找到引用源。
北京西城区2016-2017年八年级下期末模拟数学试卷含答案解析
北京西城区2016-2017学年八年级下册期末模拟数学试卷一.选择题(共16小题,满分48分,每小题3分)1.下列式子一定是二次根式的是()A.B.C.D.2.在以下图标中,是轴对称图形的是()A.节水标志B.回收标志C.绿色食品D.环保标志3.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.4.甲、乙、丙、丁四人进行射击测试,每人10次,射击成绩的平均数都是8.6环,方差分别是S甲2=0.45,S乙2=0.50,S丙2=0.55,S丁2=0.60,则射击成绩最稳定的是()A.甲B.乙C.丙D.丁5.下列条件中,能判定四边形是平行四边形的是()A.一组对边相等B.两条对角线相等C.一条对角线平分另一条对角线D.两组对角分别相等6.当k<0时,一次函数y=kx﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.某中学规定学生的学期体育成绩满分100分,其中课外体育占20%,其中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,94,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.938.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3B.6 C.3D.9.下列命题是假命题的是()A.不在同一直线上的三点确定一个圆B.角平分线上的点到角两边的距离相等C.正六边形的内角和是720°D.角的边越大,角就越大10.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差11.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.4812.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.1250条 B.1750条 C.2500条 D.5000条13.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A.k>﹣ B.k<﹣ C.k=D.k=014.将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=60°,则∠BAD′的大小是()A.30°B.45°C.50°D.60°15.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y (m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=960;④a=34.以上结论正确的有()A.①②B.①②③C.①③④D.①②④16.如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°+∠C,则BC+2AE等于()A.AB B.AC C.AB D.AC二.填空题(共4小题,满分12分,每小题3分)17.若式子有意义,则x的取值范围是.18.下面三个命题:①若是方程组的解,则a+b=1或a+b=0;②函数y=﹣2x2+4x+1通过配方可化为y=﹣2(x﹣1)2+3;③最小角等于50°的三角形是锐角三角形,其中正确命题的序号为.19.某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:植树棵数3456人数2015105那么这50名学生平均每人植树棵.20.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=度.三.解答题(共6小题,满分60分)21.(12分)计算: +(﹣1)2﹣9+()﹣1.22.(8分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.23.(8分)罗山县尚文学校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分、90分、80分、79分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整:(2)填表:平均数(分)中位数(分)众数(分)一班90二班87.680(3)请从以下给出的三个方面中任选一个对这次竞赛成绩的结果进行分析;①从平均数和中位数方面来比较一班和二班的成绩;②从平均数和众数方面来比较一班和二班的成绩;③从B级以上(包括B级)的人数方面来比较一班和二班的成绩.24.(10分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.25.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.26.(12分)为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)0.3超过30平方米不超过m(平方米)部分(45≤m≤60)0.5超过m平方米部分0.7根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y 关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.北京西城区2016-2017学年八年级下册期末模拟数学试卷参考答案与试题解析一.选择题(共16小题,满分48分,每小题3分)1.下列式子一定是二次根式的是()A.B.C.D.【分析】根据二次根式的定义即可求出答案.【解答】解:(A)当x﹣1<0时,此时原式无意义,故A不一定是二次根式;(B)当x<0时,此时原式无意义,故B不一定是二次根式;(D)当x2﹣2<0时,此时原式无意义,故D不一定是二次根式;故选(C)【点评】本题考查二次根式的定义,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.2.在以下图标中,是轴对称图形的是()A.节水标志B.回收标志C.绿色食品D.环保标志【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故此选项错误;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故此选项错误;.故选C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【分析】根据题意判断出S随t的变化趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.【点评】此题主要考查了函数图象,关键是正确理解题意,根据题意判断出两个变量的变化情况.4.甲、乙、丙、丁四人进行射击测试,每人10次,射击成绩的平均数都是8.6环,方差分别是S甲2=0.45,S乙2=0.50,S丙2=0.55,S丁2=0.60,则射击成绩最稳定的是()A.甲B.乙C.丙D.丁【分析】方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:因为S甲2=0.45,S乙2=0.50,S丙2=0.55,S丁2=0.60,所以s甲2<s乙2<s丙2<s丁2,由此可得成绩最稳定的为甲.故选A.【点评】本题考查方差的定义.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.下列条件中,能判定四边形是平行四边形的是()A.一组对边相等B.两条对角线相等C.一条对角线平分另一条对角线D.两组对角分别相等【分析】根据平行四边形的判定定理:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形,分别进行判断即可.【解答】解:A、两组对边分别相等的四边形为平行四边形,故此选项错误;B、两条对角线互相平分的四边形为平行四边形,故此选项错误;C、一条对角线平分另一条对角线,不行,必须两条对角线互相平分的四边形为平行四边形,故此选项错误;D、两组对角分别相等的四边形为平行四边形,故此选项正确;故选:D.【点评】此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定方法.6.当k<0时,一次函数y=kx﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】由k<0可得出﹣k>0,结合一次函数图象与系数的关系即可得出一次函数y=kx﹣k的图象经过第一、二、四象限,此题得解.【解答】解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限.故选C.【点评】本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.7.某中学规定学生的学期体育成绩满分100分,其中课外体育占20%,其中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,94,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.93【分析】根据加权平均数的公式,套入数据即可得出结论.【解答】解:小彤这学期的体育成绩为=(20×95+30×90+50×94)=93(分).故选D.【点评】本题考查了折线统计图以及加权平均数,解题的关键是利用加权平均数的公式求出小彤这学期的体育成绩.本题属于基础题,难度不大,解决该题型题目时,熟记加权平均数的公式是解题的关键.8.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3B.6 C.3D.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB==3,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=3,∴∠CAB′=90°,∴B′C==3,故选:A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.9.下列命题是假命题的是()A.不在同一直线上的三点确定一个圆B.角平分线上的点到角两边的距离相等C.正六边形的内角和是720°D.角的边越大,角就越大【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、不在同一直线上的三点确定一个圆,真命题;B、角平分线上的点到角两边的距离相等,真命题;C、正六边形的内角和是720°,真命题;D、角的边越大,角就越大是假命题,因为角的大小与边的长短无关.故选D.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是2,添加数字2后平均数扔为2,故A与要求不符;B、原来数据的中位数是2,添加数字2后中位数扔为2,故B与要求不符;C、原来数据的众数是2,添加数字2后众数扔为2,故C与要求不符;D、原来数据的方差==,添加数字2后的方差==,故方差发生了变化.故选:D.【点评】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.11.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.48【分析】根据已知条件得到AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,根据平行四边形的性质得到CE=AD,AE=CD=3,由已知条件得到∠BAE=90°,根据勾股定理得到BE==2,于是得到结论.【解答】解:∵S1=3,S3=9,∴AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,∵AD∥BC,∴四边形AECD是平行四边形,∴CE=AD,AE=CD=3,∵∠ABC+∠DCB=90°,∴∠AEB+∠ABC=90°,∴∠BAE=90°,∴BE==2,∵BC=2AD,∴BC=2BE=4,∴S2=(4)2=48,故选D.【点评】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.12.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.1250条 B.1750条 C.2500条 D.5000条【分析】首先求出有记号的2条鱼在50条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【解答】解:由题意可得:50÷=1250(条).故选A.【点评】本题考查了统计中用样本估计总体,表示出带记号的鱼所占比例是解题关键.13.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A.k>﹣ B.k<﹣ C.k=D.k=0【分析】根据正比例函数图象与系数的关系列出关于k的不等式2k+1<0,然后解不等式即可.【解答】解:∵正比例函数y=(2k+1)x中,y的值随自变量x的值增大而减小,∴2k+1<0,解得,k<﹣;故选B.【点评】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.14.将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=60°,则∠BAD′的大小是()A.30°B.45°C.50°D.60°【分析】利用翻折变换前后图形全等,推出∠DED′=120°,得∠DAD′=60°,所以∠BAD′=30°.【解答】解:如图,∵△EDA≌△ED′A,∴∠D=∠D′=∠DAB=90°,∠DEA=∠D′EA,∵∠CED′=60°,∴∠DED′=120°,∴∠DAD′=60°,∴∠BAD′=30°.故选A.【点评】本题主要考查了翻折变换的性质、矩形的性质、四边形内角和定理,解题的关键在于求出∠DAD′的度数.15.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y (m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=960;④a=34.以上结论正确的有()A.①②B.①②③C.①③④D.①②④【分析】①由x=0时y=1200,可得出A、B之间的距离为1200m,结论①正确;②根据速度=路程÷时间可求出乙的速度,再根据甲的速度=路程÷时间﹣乙的速度可求出甲的速度,二者相除即可得出乙行走的速度是甲的1.5倍,结论②正确;③根据路程=二者速度和×运动时间,即可求出b=800,结论③错误;④根据甲走完全程所需时间=两地间的距离÷甲的速度+4,即可求出a=34,结论④正确.综上即可得出结论.【解答】解:①当x=0时,y=1200,∴A、B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24﹣4)=60(m/min),甲的速度为1200÷12﹣60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②正确;③b=(60+40)×(24﹣4﹣12)=800,结论③错误;④a=1200÷40+4=34,结论④正确.故选D.【点评】本题考查了一次函数的应用,观察函数图象结合数量关系逐一分析四个说法的正误是解题的关键.16.如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°+∠C,则BC+2AE等于()A.AB B.AC C.AB D.AC【分析】如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.由三角形中位线的性质得到EF=AE.则由平行线的性质和邻补角的定义得到∠DEF=∠BFC=90°﹣∠C,即∠FBC=∠BFC,等角对等边得到BC=FC,故BC+2AE=AC.【解答】解:如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.又∵点D是AB的中点,∴EF=AE.∵∠DEF=∠BFC=180°﹣∠AED=180°﹣(90°+∠C)=90°﹣∠C,∴∠FBC=∠BFC,∴BC=FC,∴BC+2AE=AC.故选B.【点评】本题考查了三角形中位线定理和等腰三角形的判定与性质.三角形的中位线平行于第三边且等于第三边的一半.二.填空题(共4小题,满分12分,每小题3分)17.若式子有意义,则x的取值范围是x.【分析】根据二次根式有意义的条件:被开方数为非负数,再结合分式有意义的条件:分母≠0,可得不等式1﹣2x>0,再解不等式即可.【解答】解:由题意得:1﹣2x>0,解得:x<,故答案为:x,【点评】此题主要考查了二次根式有意义的条件;用到的知识点为:二次根式有意义,被开方数为非负数.18.下面三个命题:①若是方程组的解,则a+b=1或a+b=0;②函数y=﹣2x2+4x+1通过配方可化为y=﹣2(x﹣1)2+3;③最小角等于50°的三角形是锐角三角形,其中正确命题的序号为②③.【分析】①根据方程组的解的定义,把代入,即可判断;②利用配方法把函数y=﹣2x2+4x+1化为顶点式,即可判断;③根据三角形内角和定理以及锐角三角形的定义即可判断.【解答】解:①把代入,得,如果a=2,那么b=1,a+b=3;如果a=﹣2,那么b=﹣7,a+b=﹣9.故命题①是假命题;②y=﹣2x2+4x+1=﹣2(x﹣1)2+3,故命题②是真命题;③最小角等于50°的三角形,最大角不大于80°,一定是锐角三角形,故命题③是真命题.所以正确命题的序号为②③.故答案为②③.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义以及性质定理等知识.19.某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:植树棵数3456人数2015105那么这50名学生平均每人植树4棵.【分析】利用加权平均数的计算公式进行计算即可.【解答】解:平均每人植树(3×20+4×15+5×10+6×5)÷50=4棵,故答案为:4.【点评】本题考查了加权平均数的计算,解题的关键是牢记加权平均数的计算公式,难度不大.20.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=75度.【分析】只要证明△ABE≌△ADF,可得∠BAE=∠DAF=(90°﹣60°)÷2=15°,即可解决问题.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABE和Rt△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠DAF=(90°﹣60°)÷2=15°,∴∠AEB=75°,故答案为75.【点评】本题考查正方形的性质、等边三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.三.解答题(共6小题,满分60分)21.(12分)计算: +(﹣1)2﹣9+()﹣1.【分析】根据负整数指数幂和分数指数幂的意义计算.【解答】解:原式=3+2﹣2+1﹣3+2=+2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.(8分)(2017•台州)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.【分析】(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.(2)当x=a时,y C=2a+1;当x=a时,y D=4﹣a.∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=.∴a的值为或.【点评】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及解含绝对值符号的一元一次方程,解题的关键是:(1)利用一次函数图象上点的坐标特征求出b、m的值;(2)根据CD=2,找出关于a的含绝对值符号的一元一次方程.23.(8分)罗山县尚文学校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分、90分、80分、79分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整:(2)填表:平均数(分)中位数(分)众数(分)一班87.69090二班87.680100(3)请从以下给出的三个方面中任选一个对这次竞赛成绩的结果进行分析;①从平均数和中位数方面来比较一班和二班的成绩;②从平均数和众数方面来比较一班和二班的成绩;③从B级以上(包括B级)的人数方面来比较一班和二班的成绩.【分析】(1)利用总人数减去A、B、D等级的人数即可得出C等级的人数.(2)根据平均数、众数、中位数的定义即可求出答案.(3)根据平均数、众数、中位数进行分析即可.【解答】(1)一班中C级的有25﹣6﹣12﹣5=2人,如图所示:(2)一班的平均数为:a=(6×100+12×90+2×80+70×5)÷25=87.6;一班的中位数为:b=90;一班的众数为:c=100;(3)①从平均数和中位数的角度来比较一班的成绩更好;②从平均数和众数的角度来比较二班的成绩更好;③从B级以上(包括B级)的人数的角度来比较一班的成绩更好﹣(只回答一个即可)故答案为:(2)87.6;90;100【点评】本题考查统计问题,涉及统计学相关公式,中位数、平均数和众数等知识,属于中等题型.24.(10分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【分析】证明BC=EF,然后根据SSS即可证明△ABC≌△DEF,然后根据全等三角形的对应角相等即可证得.【解答】证明:如图,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).∴∠A=∠D.【点评】本题考查了全等三角形的判定与性质,证明线段相等常用的方法是证明所在的三角形全等.25.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.【点评】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.26.(12分)为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)0.3超过30平方米不超过m(平方米)部分(45≤m≤60)0.5超过m平方米部分0.7根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y 关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.【分析】(1)根据房款=房屋单价×购房面积就可以表示出应缴房款;(2)由分段函数当0≤x≤30,当30<x≤m时,当x>m时,分别求出y与x 之间的表达式即可;(3)当50≤m≤60和当45≤m<50时,分别讨论建立不等式组就可以求出结论.【解答】解:(1)由题意,得三口之家应缴购房款为:0.3×90+0.5×30=42(万元).(2)由题意,得①当0≤x≤30时,y=0.3×3x=0.9x;②当30<x≤m时,y=0.3×3×30+0.5×3×(x﹣30)=1.5x﹣18;③当x>m时,y=0.3×3×30+0.5×3(m﹣30)+0.7×3×(x﹣m)=2.1x﹣0.6m ﹣18.∴y=;(3)由题意,得①当50≤m≤60时,则人均面积为50平方米没有超过m,所以应缴纳的房款:y=1.5x﹣18=1.5×50﹣18=57(舍);②当45≤m<50时,则人均面积为50平方米超过m,则y=2.1x﹣0.6m﹣18=2.1×50﹣0.6m﹣18=87﹣0.6m,∵57<y≤60,∴57<87﹣0.6m≤60解得45≤m<50.综上,45≤m<50.【点评】本题考查了房款=房屋单价×购房面积在实际生活中的运用,求分段函数的解析式的运用,建立不等式组求解的运用,解答本题时求出函数的解析式是关键.。
2016~2017学年北京西城区北京四中初二下学期期末数学试卷
选择题(本题共30分,每小题3分1. 如图所示的四个图案,能通过基本图形旋转得到的有( ).A. 1个B. 2个C. 3个D. 4个2. 直线y = −x − 2不经过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 方程x 2 + 4x + 2 = 0配方后,原方程变形为( ). A. (x + 4)2= 2B. (x + 2)2= 2 C. (x + 4)2= −3D. (x + 2)2= −54. 一次函数y = 2x + 4的图象与两坐标轴围成的三角形的面积为( ).A. 16B. 8C. 4D. 25. 若一次函数y = x + 4的图象上有两点A ( 1 y 1)、B (1, y 2),则下列说法正确的是( ).A. y 1 > y 2− ,2B. y 1 ⩾ y 2C. y 1 < y 2D. y 1 ⩽ y 26. 某工厂由于管理水平提高,生产成本逐月下降. 原来每件产品的成本是1600元,两个月后,降至900元.如果产品成本的月平均降低率是x ,那么根据题意所列方程正确的是( ). A. 1600(1 − x ) = 900 B. 900(1 + x ) = 1600 C. 1600(1 − x )2= 900D. 900(1 + x )2= 16007. 若关于x 的方程(m − 2)x 2 − 2x + 1 = 0有两个不等的实根,则m 的取值范围是( ). A. m < 3 B. m < 3且m ≠ 2 C. m ⩽ 3D. m ⩽ 3且m ≠ 28. 某校为了了解学生每周体育锻炼时间情况,随机抽取了20名同学进行调查,结果如下:则这些同学每周体育锻炼时间的平均数和中位数是( ).A. 6.6,10B. 7,7C. 6.6,7D.7,109.在菱形ABCD 中,对角线AC 与BD 交于点O ,如果∠ABC = 60∘,AC = 4,那么该菱形的面积是( ). A. 16√3B. 16C. 8√3D. 810. 如图,在矩形ABCD 中,动点P 从点A 开始沿A → B → C → D 的路径匀速运动到点D 为止,在这个过程中,下列图象可以大致表示△AP D 的面积S 随点P 的运动时间t 的变化关系的是( ).A.B.C.D.填空题:(本题共24分,每小题3分)11. 在函数y =3x − 2中,自变量x 的取值范围是 .12. 如图,A 、B 两点被池塘隔开,在AB 外选一点C ,连接AC 和BC ,并分别找出它们的中点M 和N .如果测得MN = 15m ,则A ,B 两点间的距离为m .13. 如图,在平行四边形ABCD 中,CE ⊥AB 于E ,如果∠A = 125∘,那么∠BCE =∘.14. 直线l 1:y = kx 与直线l 2:y = ax + b 在同一平面直角坐标系中的图象如图所示,则直线l 1、l 2的交点坐标为,关于x的不等式ax + b > kx 的解集为.人数 3 5 10 1 115. 如图,已知矩形ABCD 的对角线长为8cm ,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,则四边形EFGH 的周长等于cm ,它的形状是 ,判断的依据是 .A HDEGBC16. 某函数符合如下条件:①图象经过点(1, 3);②y 随x 的增大而减小.请写出一个符合上述条件的函数表达式.17. 如图1,已知△ABC 是等腰直角三角形,∠BAC = 90∘,点D 是BC 的中点.作正方形DEFG ,使点A 、C 分别在DG 和DE上,连接AE ,将正方形DEFG 绕D 逆时针方向旋转α(0∘ < α ⩽ 360∘),若BC = DE = 4,则AE 的最大值为.18. 在平面直角坐标系xOy 中,正方形A 1B 1C 1O 、A 2B 2C 2B 1、A 3B 3C 3B 2,…,按下图所示的方式放置.点A 1、A 2、A 3,…和B 1、B 2、B 3,…分别在直线y = kx + b 和x 轴上.已知C 1(1 , − 1),C 2( 7 , − 3),则点A 3的坐标是 ;点A n 的坐2 2标是.解答题:(本题共46分)19. 解方程:2x 2 − 8x + 3 = 0.20.如图,在△ABC 中,D是BC 边上的一点,E是AD的中点,过A点作BC 的平行线交CE的延长线于点F,且AF = BD,连接BF .F AEB DC (1)求证:BD = CD.(2)如果AB = AC,试判断四边形AFBD的形状,并证明你的结论.21.某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率. 为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1 甲种种植技术种出的西瓜质量统计表表乙种种植技术种出的西瓜质量统计表回答下列问题:(1)若将质量为4.5 5.5(单位:kg)的西瓜记为优等品,完成下表:(2)根据以上数据,你认为该科研小组应选择哪种种植技术,并请说明理由.22.已知:直线l的解析式为y = 2x + 3,若先作直线l关于原点的对称直线l1,再作直线l1关于y轴的对称直线l2,最后将直线l2沿y轴向上平移4个单位长度,沿x轴向左平移2个单位长度得到直线l3,试求l3的解析式.23. 已知:关于x的方程mx2 + (3m + 1)x + 3 = 0.(1)求证:不论m为任何实数,此方程总有实数根.(2) 如果该方程有两个不同的整数根,且m 为正整数,求m 的值.(3) 在(2)的条件下,令y = mx 2 + (3m + 1)x + 3,如果当x 1 = a 与x 2 = a + n (n ≠ 0)时有y 1 = y 2,求代数式4a 2 + 12an + 5n 2 + 16n + 8的值.24. 《九章算术》“勾股”章有一题:“今有二人同立.甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走十 步,后又斜向北偏东方向走了一段后与乙相遇.甲、乙各走了几步?”25. 在△ABC 中,AB = BC ,∠B = 90∘,点D 为直线BC 上一个动点(不与B 、C 重合),连结AD ,将线段AD 绕点D 按顺时针方向旋转90∘,使点A 旋转到点E ,连结EC . (1) 如果点D 在线段BC 上运动,如图1:图依题意补全图1.求证:∠BAD = ∠EDC .通过观察、实验,小明得出结论:在点D 运动的过程中,总有∠DCE = 135∘.小明与同学讨论后,形成了证明这个结论的几种想法:想法一:在AB 上取一点F ,使得BF = BD ,要证∠DCE = 135∘,只需证△ADF ≌△DEC . 想法二:以点D 为圆心,DC 为半径画弧交AC 于点F .要证∠DCE = 135∘,只需证△AFD ≌△ECD . 想法三:过点E 作BC 所在直线的垂线段EF ,要证∠DCE = 135∘,只需证EF =CF .……请你参考上面的想法,证明∠DCE = 135∘.(2) 如果点D 在线段CB 的延长线上运动,利用图2画图分析,∠DCE 的度数还是确定的值吗?如果是,直接写出∠DCE 的度数;如果不是,说明你的理由.图附加题1 2 326.在平面直角坐标系xOy中,点A的坐标为(1, 0),P 是第一象限内任意一点,连接P O,P A,若∠P OA = m∘,∠P AO = n∘,则我们把(m∘, n∘)叫做点P 的“双角坐标”.例如,点(1, 1)的“双角坐标”为(45∘, 90∘).(1)点( 1 , √3)的“双角坐标”为.2 2(2)若m ⩽n,则点P 到y轴的距离d的取值范围为.27.如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45∘角,使点A或点B是这个角的顶点,且AB为这个角的一边.图(2)在图2中画出线段AB的垂直平分线.图28.已知,如图,平面直角坐标系xOy中,线段AB//y轴,点B在x轴正半轴上,点A在第一象限,AB = 10.点P 是线段AB上的一动点,当点P 在线段AB上从点A向点B开始运动时,点B同时在x轴上从点C(4,0)向点O运动,点P 、点B运动的速度都是每秒1个单位,设运动的时间为t(0 < t < 4).(1)用含有t的式子表示点P 的坐标.(2)当点P 恰好在直线y = 3x上时,求线段AP 的长.(3)求点P 运动路径的函数解析式,并写出自变量的取值范围.(4)在(2)的条件下,直角坐标平面内是否存在点D,使以O、P 、A、D为顶点的四边形是平行四边形.如果存在,请直接写出点D的坐标.如果不存在,请说明理由.。
北京市西城区2017年抽样测试八年级(下)数学试卷
北京市西城区2017年抽样测试八年级(下)数学试卷 2017.7一、精心选一选(第1~8题每题3分,第9、10题每题2分,共28分)在下列各题的四个备选答案中,只有一个是正确的,请把正确结论的代号写在题后的括号内.1.以下各式中,正确的是( ).(A)5)5(2= (B)25)5(2= (C)416=±(D)416±=2.下列二次根式中,最简二次根式是( ). (A)4(B)8(C)21 (D)23.下列关于反比例函数xy 1=的说法中,正确的是( ). (A)y 随x 的增大而增大 (B)y 随x 的增大而减小(C)它的图象分别位于第一、三象限 (D)它的图象分别位于第二、四象限4.下列各组长度的线段能组成直角三角形的是( ). (A)a =2,b =3,c =4 (B)a =4,b =4,c =5 (C)a =5,b =6,c =7 (D)a =5,b =12,c =135.以下数据2,3,3,4,5,6,6,6,7的众数和中位数分别是( ). (A)3,5 (B)6,5 (C)5,6 (D)5,36.如图,□ABCD 中,AB =3,BC =5,若BD 的垂直平分线交AD 于E ,则△ABE 的周长是( ).(A)6 (B)8 (C)9 (D)107.在数学活动课上,同学们要判断一张四边形纸片是否为矩形,下面是某合作学习小组的四位同学拟定的方案,其中正确的是( ). (A)测量两组对边是否分别相等 (B)测量一组对角是否都为直角 (C)测量两条对角线是否互相平分 (D)测量三个角是否都为直角8.如图,等腰梯形ABCD 中,AD ∥BC ,AB =DC ,对角线AC ⊥BD ,若BD =4,则梯形ABCD 的上、下底之和等于( ).(A)22 (B)4 (C)24 (D)89.如图,在第一象限内,正比例函数y 1=k 1x 与反比例函数xk y 22=的图象都经过A (1,4)点,当y 1>y 2>0时,x 的范围是( ).(A)x >1 (B)0<x <1 (C)x >0 (D)0<x <410.如图,正方形ABCD 的边长为4,若边长为2的正方形BEFG 的对角线BF 落在AB边上,则DG 的长为( ).(A)4(B)24+(C)6 (D)224+二、细心填一填(第11~19题每题3分,第20题2分,共29分)11.使3-x 在实数范围内有意义的x 的条件是________.12.如图,矩形ABCD 中,对角线AC 、BD 交于点O ,∠AOB =60°,若AB =1,则BD=________.13.小明家购买了1000度电,若他家平均每天的用电数为x (度),买到的电所够使用的天数为y (天),则y 与x 的函数关系式为________.(不要求写出自变量的取值范围) 14.北京市近年来一直在大力整治空气污染,右图反映了从2001年到2007年北京市空气质量达到及好于二级的天数的变化情况,那么这组数据的极差是________.15.若关于x 的一元二次方程x 2-2x +k =0的一个实数根为2,则k 的值为________. 16.如图,直角坐标系xOy 中,正方形ABCD 的顶点A 、C 的坐标分别为A (0,3)、C (0,-3),则正方形ABCD 的面积等于________.17.如图,梯形ABCD 中,AD ∥BC ,AB =DC ,DE ∥AB 交BC 于点E ,若∠B =60°,AD =3,DE =5,则梯形ABCD 的周长为________.18.如图,点A 在反比例函数xky =的图象上,AB ⊥y 轴,垂足为B ,若S △AOB =2,则反比例函数的解析式为________第18题图19.已知直角三角形两条边的长x 、y 满足,065422=+-+-y y x 则第三边的长为________.20.如图,矩形ABCD 中,AD =a ,AB =b ,依次连结它的各边中点得到第一个四边形E 1F 1G 1H 1,再依次连结四边形E 1F 1G 1H 1的各边中点得到第二个四边形E 2F 2G 2H 2,按此方法继续下去,得到的第n 个四边形E n F n G n H n 的面积等于________.第20题图三、解答题(共5个小题,共30分)21.计算:(每小题4分,满分8分)(1);75621224+-- 解: (2)).13)(13(18627-++⨯解:22.解一元二次方程:(第(1)小题3分,第(2)小题4分)(1)x2+3x=0;解:(2)3x2-6x-2=0.解:23.(本小题满分5分)已知:如图,□ABCD中,AE平分∠BAD交BC于E,EF⊥AE交CD于F.(1)求证:BE=BA;(2)当∠B=70°时,求∠CFE的度数;(3)当AB、BC满足什么条件时,点F能与点O重合?(直接写出答案)(1)证明:(2)解:(3)答:当AB、BC满足条件________________时,点F能与点D重合.24.(本小题满分4分)甲、乙两名同学参加学校组织的100米短跑集训,教练把10天的训练结果用折线图进行了记录(如右图所示).(1)请你用已知的折线图所提供的信息完成下表:(2)不用计算,根据折线图比较甲、乙两人这10天成绩的方差的大小:2甲S ___2乙S ;(填“>”或“<”)(3)学校打算根据两名同学这10天训练的情况,从中选出一人参加市中学生运动会100米比赛,①如果学校想派成绩较为稳定的同学参加比赛力争取得名次,选谁去合适?为什么?②如果学校想根据这10天成绩变化的趋势选派更有夺冠实力的同学参赛,选谁去合适?为什么? 解:(3)25.(本小题满分6分)将两张宽度相等....的矩形纸片叠放在一起,使两个矩形对角线的交点重合,记该点为O ,得到如图所示的四边形ABCD ,作DE ⊥AB 于E ,BF ⊥AD 于F . (1)判断DE 与BF 的大小关系; (2)求证:四边形ABCD 是菱形;(3)如果两张矩形纸片的长都是8cm ,宽都是2cm ,将其中一张纸片绕点O 转动,那么在纸片转动的过程中,菱形ABCD 的周长是否存在最大值和最小值?如果存在,请直接写出最大值和最小值(无需过程),并在备用图中画出第二张纸片位置的示意图;如果不存在,请简要说明理由. (1)答:DE ________BF ; (2)证明:(3)答:备用图 备用图四、解答题(本题满分6分)26.已知:如图,梯形ABCD 中,AD ∥BC ,AB <DC ,AD =4cm ,BC =12cm ,BD =CD =10cm ,点E 以2cm/s 的速度在线段CB 上由C 向B 运动,运动的时间为t (s). (1)若四边形ABED 的面积为y (cm 2),求y 关于t 的函数解析式及自变量t 的取值范围;(2)t 为何值时四边形ABED 与△DEC 的面积相等?判断此时四边形ABED 的形状并说明理由. 解:五、解答题(本题满分7分)27.已知:如图,直线y =-x +1与x 轴交于点A ,与y 轴交于点B ,与反比例函数xky =在第一象限内的图象交于C 、D 两点,已知点C 的横坐标为41.(1)求C 点的坐标及反比例函数的解析式; (2)求证:△BOC ≌△AOD ;(3)请直接写出以O 、C 、D 为顶点的平行四边形的第四个顶点E 的坐标,并画出图...形.. (1)解:(2)证明:(3)点E 的坐标为.B 卷 满分20分一、填空题(每空2分,共6分)28.如图,两个反比例函数x y 3=、xy 6=在第一象限内的图象如图所示,点P 1,P 2,P 3,…,P n 在反比例函数xy 6=的图象上,它们的横坐标分别是x 1,x 2,x 3,…,x n ,纵坐标分别是1,3,5,…,共n 个连续奇数,若过点P 1,P 2,P 3,…,P n 分别作y 轴的平行线,与xy 3=的图象的交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q n (x n ,y n ),则y 1=_______,y 2=_______,y n =_______.二、解答题(本题满分7分)29.已知:如图①,矩形ABCD被一些线段分割成四部分,其中某些线段的长度如图中所示,已知这四部分可以没有重叠、没有空隙地拼成一个正方形.(1)求出所拼得正方形的边长,并写出计算过程;(2)求证:∠EAF=∠CGH;(3)将五边形DEFGH的位置不动,在图②中用实线补全拼接后得到的正方形,并标出图中所有线段的长(在不添加新线段的条件下).图①(1)解:(2)证明:(3)图②三、解答题(本题满分7分)30.如图,∠MBN的两边BM、BN上分别有两点A、C,满足BC=2BA,作□ABCD,取AD的中点E,作CF⊥CD,CF与AB所在的直线交于点F.(1)当∠B=90°时,直接写出∠DEF的度数;(2)在射线BM绕B点旋转的过程中,若∠B=x°,∠DEF=y°(0°<x<180°,0°<y<180°),求y关于x的函数解析式及相应自变量x的取值范围.(1)答:∠DEF=________°;(2)解:。
20170704-西城区八下数学期末百分卷答案
北京市西城区2016-2017学年度第二学期期末试卷八年级数学参考答案及评分标准 2017.7一、选择题(本题共30分,每小题3分)二、填空题(本题共26分,其中第18题5分,其余每小题3分)11. 2-. 12. 12. 13. (2,0),(0,4),4.(各1分) 14. 60. 15.(1,2)-(2分),x <1(1分).16. 答案不唯一,如2y x =-等.(只满足一个条件的得2分) 17.18. 第一步:a= 4 ,b= 2 (或a= 2 ,b= 4 );…………2分第二步: 如图1. ……………………………………… 3分第三步:如图1,在数轴上画出点M . ………………………………………………………4分 第三步的画图步骤:以原点O 为圆心,OF 长为半径作弧,弧与数轴正半轴的交点即为 点M . ………………………………………………………………………………………… 5分 说明:其他正确图形相应给分,如2OE =,4EF =.三、解答题(本题共44分,第19、20、22题各5分,第21、23、24题各7分,第25题8分) 19. (本题5分)解:1a =,6b =-,1c =-. …………………………………………………………………… 1分224(6)41(1)40b ac ∆=-=--⨯⨯-=>0. …………………………………………………2分 方程有两个不相等的实数根x = ……………………………………………………………………… 3分3===±所以原方程的根为13x =,23x =…………………………………………5分 20.(本题5分) 解:(1)如图2.∵ △ABC 中,AB=10,BC=6,AC =8, ∴ 222+=AC BC AB . ……………………… 1分 ∴ △ABC 是直角三角形,=90ACB ∠︒.……2分 (2)∵ AD //BC ,∴ ==90CAD ACB ∠∠︒. …………………………………………………………… 3分∵ 在Rt △ACD 中,=90CAD ∠︒,AC =AD=8,图2∴CD = …………………………………………………………… 4分= 5分21.(本题7分)解:(1)4,2. ………………………………………………………………………………… 2分 (2)设户斜x 尺.…………………………………… 3分则图3中BD=x ,4BC BE CE x =-=-,(x >4) 2CD CF DF x =-=-.(x >2)又在Rt △BCD 中,=90BCD ∠︒, 由勾股定理得 222+=BC CD BD .所以 222(4)+(2)=x x x --. ………………… 4分 整理,得 212200x x -+=. 因式分解,得 (10)(2)=0x x --.解得 110x =,22x =.……………………………………………………………… 5分 因为 x >4 且 x >2,所以2x =舍去,10x =.…………………………………… 6分 答:户斜为10尺. …………………………………………………………………… 7分22.(本题5分)解:(1)6.…………………………………………………………………………………………1分 (2)学农2班的同学制作的酸奶整体口感较优.………………………………………… 2分理由如下:所抽取的样本中,两个学农班酸奶口感最佳的杯数一样,每杯酸奶中所添加蔗糖克数的平均值基本相同,学农2班的方差较小,更为稳定. ……………………5分23.(本题7分)解:(1)(1,1),23y x =-+.…………………………………………………………………… 2分 (2)22y x =-+,上,2.(各1分)…………………………………………………………5分 (3)直线2y x =-上的点(1,2)A -进行一次“斜平移”后的对应点的坐标为(2,1),进行两次“斜平移”后的对应点的坐标为(3,4).设经过两次“斜平移”后得到的直线的解析式为2y x b =-+. 将(3,4)点的坐标代入,得 234b -⨯+=. 解得 10b =.所以两次“斜平移”后得到的直线的解析式为210y x =-+. ……………………… 7分 说明:其他正确解法相应给分.24.(本题7分)解:(1)见图4,图5,连线、依据略. ……………………………5分(两个画图各1分,连线1分,两个依据各1分,所写依据 的答案不唯一) (2)①如图4.图3图5 图4∵ NP ∥DE ,EQ ∥DN ,NP 与EQ 的交点为点M ,∴ 四边形DEMN 为平行四边形. ∵ D 为矩形ABEN 对角线的交点, ∴ AE=BN ,12DE AE =,12DN BN =. ∴ DE= DN .∴ 平行四边形DEMN 是菱形.……………………………………………………… 7分 ②如图6,连接AF ,BG ,记交点为H .∵ D ,N 两点分别为AB ,GA 边的中点,∴ DN ∥BG ,12DN BG =. 同理,EM ∥BG ,12EM BG =,DE ∥AF ,12DE AF =.∴ DN ∥EM ,DN =EM .∴ 四边形DEMN 为平行四边形. ∵ 四边形ABFG 是菱形, ∴ AF ⊥BG .∴ 90AHB ∠=︒.∴ 118090AHB ∠=︒-∠=︒. ∴ 2180190∠=︒-∠=︒.∴ 平行四边形DEMN 是矩形. ………………………………………………………7分25.(本题8分) 解:(1)(0,4). ……………………………………………………………………………………1分 (2)①补全图形见图7. ……………………………………………………………………… 2分②BF ⊥直线l. …………………………………………………………………………… 3分③法1:证明:如图8,作CM ⊥CF ,交直线l 于点M . ∵ (4,0)B ,(4,4)C ,(0,4)D ,∴ ==4OB BC DC OD ==,90BCD ∠=︒. ∵ CE ⊥直线l ,CM ⊥CF ,45ECF ∠=︒,可得△CEF ,△CEM 为等腰直角三角形,=45CMD CFE ∠∠=︒, 图6图7 图8CF=CM . ①∵ =90BCF DCF ∠︒-∠,=90DCM DCF ∠︒-∠, ∴ =BCF DCM ∠∠. ②又∵ CB=CD , ③∴ △CBF ≌△CDM .…………………………………………………………6分 ∴ =45CFB CMD ∠∠=︒.……………………………………………………7分 ∴ =90BFE CFB CFE ∠∠+∠=︒.∴ BF ⊥直线l .………………………………………………………………8分法2:证明:如图9,作BN ⊥CE ,交直线CE 于点N .∵ (4,0)B ,(4,4)C ,(0,4)D ,∴ ==4OB BC CD OD ==,90BCD ∠=︒.∵ CE ⊥直线l , BN ⊥CE , ∴ 90BNC CED ∠=∠=︒. ① ∴ 1390∠+∠=︒,2390∠+∠=︒. ∴ 12∠=∠. ②又∵ CB=DC , ③∴ △BCN ≌△CDE .………………6分 ∴ BN= CE .又∵ 45ECF ∠=︒,可得△CEF 为等腰直角三角形,EF = CE . ∴ BN= EF .又∵ 180BNE NED ∠+∠=︒, ∴ BN ∥FE .∴ 四边形BFEN 为平行四边形. 又∵ 90CEF ∠=︒,∴ 平行四边形BFEN 为矩形.…………………………………………………7分 ∴ =90BFE ∠︒. ∴ BF ⊥直线l .……………………………………………………………… 8分。
北京西城区2016-2017年八年级下期末模拟数学试卷(有答案)-(新课标人教版)AKwPKH
北京西城区2016-2017学年八年级下册期末模拟数学试卷一.选择题(共16小题,满分48分,每小题3分)1.下列式子一定是二次根式的是()A.B.C.D.2.在以下图标中,是轴对称图形的是()A.节水标志B.回收标志C.绿色食品D.环保标志3.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.4.甲、乙、丙、丁四人进行射击测试,每人10次,射击成绩的平均数都是8.6环,方差分别是S甲2=0.45,S乙2=0.50,S丙2=0.55,S丁2=0.60,则射击成绩最稳定的是()A.甲B.乙C.丙D.丁5.下列条件中,能判定四边形是平行四边形的是()A.一组对边相等B.两条对角线相等C.一条对角线平分另一条对角线D.两组对角分别相等6.当k<0时,一次函数y=kx﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.某中学规定学生的学期体育成绩满分100分,其中课外体育占20%,其中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,94,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.938.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3B.6 C.3D.9.下列命题是假命题的是()A.不在同一直线上的三点确定一个圆B.角平分线上的点到角两边的距离相等C.正六边形的内角和是720°D.角的边越大,角就越大10.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差11.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC 为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.4812.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.1250条 B.1750条 C.2500条 D.5000条13.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A.k>﹣ B.k<﹣ C.k=D.k=014.将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=60°,则∠BAD′的大小是()A.30°B.45°C.50°D.60°15.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=960;④a=34.以上结论正确的有()A.①②B.①②③C.①③④D.①②④16.如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°+∠C,则BC+2AE等于()A.AB B.AC C.AB D.AC二.填空题(共4小题,满分12分,每小题3分)17.若式子有意义,则x的取值范围是.18.下面三个命题:①若是方程组的解,则a+b=1或a+b=0;②函数y=﹣2x2+4x+1通过配方可化为y=﹣2(x﹣1)2+3;③最小角等于50°的三角形是锐角三角形,其中正确命题的序号为.19.某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:棵.20.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=度.三.解答题(共6小题,满分60分)21.(12分)计算: +(﹣1)2﹣9+()﹣1.22.(8分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.23.(8分)罗山县尚文学校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分、90分、80分、79分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整:(2)填表:位数方面来比较一班和二班的成绩;②从平均数和众数方面来比较一班和二班的成绩;③从B 级以上(包括B级)的人数方面来比较一班和二班的成绩.24.(10分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.25.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.26.(12分)为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.北京西城区2016-2017学年八年级下册期末模拟数学试卷参考答案与试题解析一.选择题(共16小题,满分48分,每小题3分)1.下列式子一定是二次根式的是()A.B.C.D.【分析】根据二次根式的定义即可求出答案.【解答】解:(A)当x﹣1<0时,此时原式无意义,故A不一定是二次根式;(B)当x<0时,此时原式无意义,故B不一定是二次根式;(D)当x2﹣2<0时,此时原式无意义,故D不一定是二次根式;故选(C)【点评】本题考查二次根式的定义,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.2.在以下图标中,是轴对称图形的是()A.节水标志B.回收标志C.绿色食品D.环保标志【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故此选项错误;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故此选项错误;.故选C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【分析】根据题意判断出S随t的变化趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.【点评】此题主要考查了函数图象,关键是正确理解题意,根据题意判断出两个变量的变化情况.4.甲、乙、丙、丁四人进行射击测试,每人10次,射击成绩的平均数都是8.6环,方差分别是S甲2=0.45,S乙2=0.50,S丙2=0.55,S丁2=0.60,则射击成绩最稳定的是()A.甲B.乙C.丙D.丁【分析】方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:因为S甲2=0.45,S乙2=0.50,S丙2=0.55,S丁2=0.60,所以s甲2<s乙2<s丙2<s丁2,由此可得成绩最稳定的为甲.故选A.【点评】本题考查方差的定义.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.下列条件中,能判定四边形是平行四边形的是()A.一组对边相等B.两条对角线相等C.一条对角线平分另一条对角线D.两组对角分别相等【分析】根据平行四边形的判定定理:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形,分别进行判断即可.【解答】解:A、两组对边分别相等的四边形为平行四边形,故此选项错误;B、两条对角线互相平分的四边形为平行四边形,故此选项错误;C、一条对角线平分另一条对角线,不行,必须两条对角线互相平分的四边形为平行四边形,故此选项错误;D、两组对角分别相等的四边形为平行四边形,故此选项正确;故选:D.【点评】此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定方法.6.当k<0时,一次函数y=kx﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】由k<0可得出﹣k>0,结合一次函数图象与系数的关系即可得出一次函数y=kx﹣k 的图象经过第一、二、四象限,此题得解.【解答】解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限.故选C.【点评】本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.7.某中学规定学生的学期体育成绩满分100分,其中课外体育占20%,其中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,94,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.93【分析】根据加权平均数的公式,套入数据即可得出结论.【解答】解:小彤这学期的体育成绩为=(20×95+30×90+50×94)=93(分).故选D.【点评】本题考查了折线统计图以及加权平均数,解题的关键是利用加权平均数的公式求出小彤这学期的体育成绩.本题属于基础题,难度不大,解决该题型题目时,熟记加权平均数的公式是解题的关键.8.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3B.6 C.3D.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB==3,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=3,∴∠CAB′=90°,∴B′C==3,故选:A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.9.下列命题是假命题的是()A.不在同一直线上的三点确定一个圆B.角平分线上的点到角两边的距离相等C.正六边形的内角和是720°D.角的边越大,角就越大【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、不在同一直线上的三点确定一个圆,真命题;B、角平分线上的点到角两边的距离相等,真命题;C、正六边形的内角和是720°,真命题;D、角的边越大,角就越大是假命题,因为角的大小与边的长短无关.故选D.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是2,添加数字2后平均数扔为2,故A与要求不符;B、原来数据的中位数是2,添加数字2后中位数扔为2,故B与要求不符;C、原来数据的众数是2,添加数字2后众数扔为2,故C与要求不符;D、原来数据的方差==,添加数字2后的方差==,故方差发生了变化.故选:D.【点评】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.11.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC 为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.48【分析】根据已知条件得到AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,根据平行四边形的性质得到CE=AD,AE=CD=3,由已知条件得到∠BAE=90°,根据勾股定理得到BE==2,于是得到结论.【解答】解:∵S1=3,S3=9,∴AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,∵AD∥BC,∴四边形AECD是平行四边形,∴CE=AD,AE=CD=3,∵∠ABC+∠DCB=90°,∴∠AEB+∠ABC=90°,∴∠BAE=90°,∴BE==2,∵BC=2AD,∴BC=2BE=4,∴S2=(4)2=48,故选D.【点评】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.12.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.1250条 B.1750条 C.2500条 D.5000条【分析】首先求出有记号的2条鱼在50条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【解答】解:由题意可得:50÷=1250(条).故选A.【点评】本题考查了统计中用样本估计总体,表示出带记号的鱼所占比例是解题关键.13.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A.k>﹣ B.k<﹣ C.k=D.k=0【分析】根据正比例函数图象与系数的关系列出关于k的不等式2k+1<0,然后解不等式即可.【解答】解:∵正比例函数y=(2k+1)x中,y的值随自变量x的值增大而减小,∴2k+1<0,解得,k<﹣;故选B.【点评】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.14.将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=60°,则∠BAD′的大小是()A.30°B.45°C.50°D.60°【分析】利用翻折变换前后图形全等,推出∠DED′=120°,得∠DAD′=60°,所以∠BAD′=30°.【解答】解:如图,∵△EDA≌△ED′A,∴∠D=∠D′=∠DAB=90°,∠DEA=∠D′EA,∵∠CED′=60°,∴∠DED′=120°,∴∠DAD′=60°,∴∠BAD′=30°.故选A.【点评】本题主要考查了翻折变换的性质、矩形的性质、四边形内角和定理,解题的关键在于求出∠DAD′的度数.15.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=960;④a=34.以上结论正确的有()A.①②B.①②③C.①③④D.①②④【分析】①由x=0时y=1200,可得出A、B之间的距离为1200m,结论①正确;②根据速度=路程÷时间可求出乙的速度,再根据甲的速度=路程÷时间﹣乙的速度可求出甲的速度,二者相除即可得出乙行走的速度是甲的1.5倍,结论②正确;③根据路程=二者速度和×运动时间,即可求出b=800,结论③错误;④根据甲走完全程所需时间=两地间的距离÷甲的速度+4,即可求出a=34,结论④正确.综上即可得出结论.【解答】解:①当x=0时,y=1200,∴A、B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24﹣4)=60(m/min),甲的速度为1200÷12﹣60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②正确;③b=(60+40)×(24﹣4﹣12)=800,结论③错误;④a=1200÷40+4=34,结论④正确.故选D.【点评】本题考查了一次函数的应用,观察函数图象结合数量关系逐一分析四个说法的正误是解题的关键.16.如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°+∠C,则BC+2AE等于()A.AB B.AC C.AB D.AC【分析】如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.由三角形中位线的性质得到EF=AE.则由平行线的性质和邻补角的定义得到∠DEF=∠BFC=90°﹣∠C,即∠FBC=∠BFC,等角对等边得到BC=FC,故BC+2AE=AC.【解答】解:如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.又∵点D是AB的中点,∴EF=AE.∵∠DEF=∠BFC=180°﹣∠AED=180°﹣(90°+∠C)=90°﹣∠C,∴∠FBC=∠BFC,∴BC=FC,∴BC+2AE=AC.故选B.【点评】本题考查了三角形中位线定理和等腰三角形的判定与性质.三角形的中位线平行于第三边且等于第三边的一半.二.填空题(共4小题,满分12分,每小题3分)17.若式子有意义,则x的取值范围是x.【分析】根据二次根式有意义的条件:被开方数为非负数,再结合分式有意义的条件:分母≠0,可得不等式1﹣2x>0,再解不等式即可.【解答】解:由题意得:1﹣2x>0,解得:x<,故答案为:x,【点评】此题主要考查了二次根式有意义的条件;用到的知识点为:二次根式有意义,被开方数为非负数.18.下面三个命题:①若是方程组的解,则a+b=1或a+b=0;②函数y=﹣2x2+4x+1通过配方可化为y=﹣2(x﹣1)2+3;③最小角等于50°的三角形是锐角三角形,其中正确命题的序号为②③.【分析】①根据方程组的解的定义,把代入,即可判断;②利用配方法把函数y=﹣2x2+4x+1化为顶点式,即可判断;③根据三角形内角和定理以及锐角三角形的定义即可判断.【解答】解:①把代入,得,如果a=2,那么b=1,a+b=3;如果a=﹣2,那么b=﹣7,a+b=﹣9.故命题①是假命题;②y=﹣2x2+4x+1=﹣2(x﹣1)2+3,故命题②是真命题;③最小角等于50°的三角形,最大角不大于80°,一定是锐角三角形,故命题③是真命题.所以正确命题的序号为②③.故答案为②③.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义以及性质定理等知识.19.某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:棵.【分析】利用加权平均数的计算公式进行计算即可.【解答】解:平均每人植树(3×20+4×15+5×10+6×5)÷50=4棵,故答案为:4.【点评】本题考查了加权平均数的计算,解题的关键是牢记加权平均数的计算公式,难度不大.20.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=75度.【分析】只要证明△ABE≌△ADF,可得∠BAE=∠DAF=(90°﹣60°)÷2=15°,即可解决问题.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABE和Rt△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠DAF=(90°﹣60°)÷2=15°,∴∠AEB=75°,故答案为75.【点评】本题考查正方形的性质、等边三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.三.解答题(共6小题,满分60分)21.(12分)计算: +(﹣1)2﹣9+()﹣1.【分析】根据负整数指数幂和分数指数幂的意义计算.【解答】解:原式=3+2﹣2+1﹣3+2=+2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.(8分)(2017•台州)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.【分析】(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.(2)当x=a时,y C=2a+1;当x=a时,y D=4﹣a.∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=.∴a的值为或.【点评】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及解含绝对值符号的一元一次方程,解题的关键是:(1)利用一次函数图象上点的坐标特征求出b、m的值;(2)根据CD=2,找出关于a的含绝对值符号的一元一次方程.23.(8分)罗山县尚文学校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分、90分、80分、79分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整:(2)填表:位数方面来比较一班和二班的成绩;②从平均数和众数方面来比较一班和二班的成绩;③从B 级以上(包括B级)的人数方面来比较一班和二班的成绩.【分析】(1)利用总人数减去A、B、D等级的人数即可得出C等级的人数.(2)根据平均数、众数、中位数的定义即可求出答案.(3)根据平均数、众数、中位数进行分析即可.【解答】(1)一班中C级的有25﹣6﹣12﹣5=2人,如图所示:(2)一班的平均数为:a=(6×100+12×90+2×80+70×5)÷25=87.6;一班的中位数为:b=90;一班的众数为:c=100;(3)①从平均数和中位数的角度来比较一班的成绩更好;②从平均数和众数的角度来比较二班的成绩更好;③从B级以上(包括B级)的人数的角度来比较一班的成绩更好﹣(只回答一个即可)故答案为:(2)87.6;90;100【点评】本题考查统计问题,涉及统计学相关公式,中位数、平均数和众数等知识,属于中等题型.24.(10分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【分析】证明BC=EF,然后根据SSS即可证明△ABC≌△DEF,然后根据全等三角形的对应角相等即可证得.【解答】证明:如图,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).∴∠A=∠D.【点评】本题考查了全等三角形的判定与性质,证明线段相等常用的方法是证明所在的三角形全等.25.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.【点评】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.26.(12分)为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.【分析】(1)根据房款=房屋单价×购房面积就可以表示出应缴房款;(2)由分段函数当0≤x≤30,当30<x≤m时,当x>m时,分别求出y与x之间的表达式即可;(3)当50≤m≤60和当45≤m<50时,分别讨论建立不等式组就可以求出结论.【解答】解:(1)由题意,得三口之家应缴购房款为:0.3×90+0.5×30=42(万元).(2)由题意,得①当0≤x≤30时,y=0.3×3x=0.9x;②当30<x≤m时,y=0.3×3×30+0.5×3×(x﹣30)=1.5x﹣18;③当x>m时,y=0.3×3×30+0.5×3(m﹣30)+0.7×3×(x﹣m)=2.1x﹣0.6m﹣18.∴y=;(3)由题意,得①当50≤m≤60时,则人均面积为50平方米没有超过m,所以应缴纳的房款:y=1.5x﹣18=1.5×50﹣18=57(舍);②当45≤m<50时,则人均面积为50平方米超过m,则y=2.1x﹣0.6m﹣18=2.1×50﹣0.6m﹣18=87﹣0.6m,∵57<y≤60,∴57<87﹣0.6m≤60解得45≤m<50.综上,45≤m<50.【点评】本题考查了房款=房屋单价×购房面积在实际生活中的运用,求分段函数的解析式的运用,建立不等式组求解的运用,解答本题时求出函数的解析式是关键.。
北京西城区2016-2017年八年级下期末模拟数学试卷(有答案)-(新课标人教版)
北京西城区2016-2017学年八年级下册期末模拟数学试卷一.选择题(共16小题,满分48分,每小题3分)1.下列式子一定是二次根式的是()A.B.C.D.2.在以下图标中,是轴对称图形的是()A.节水标志B.回收标志C.绿色食品D.环保标志3.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.4.甲、乙、丙、丁四人进行射击测试,每人10次,射击成绩的平均数都是8.6环,方差分别是S甲2=0.45,S乙2=0.50,S丙2=0.55,S丁2=0.60,则射击成绩最稳定的是()A.甲B.乙C.丙D.丁5.下列条件中,能判定四边形是平行四边形的是()A.一组对边相等B.两条对角线相等C.一条对角线平分另一条对角线D.两组对角分别相等6.当k<0时,一次函数y=kx﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.某中学规定学生的学期体育成绩满分100分,其中课外体育占20%,其中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,94,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.938.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3B.6 C.3D.9.下列命题是假命题的是()A.不在同一直线上的三点确定一个圆B.角平分线上的点到角两边的距离相等C.正六边形的内角和是720°D.角的边越大,角就越大10.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差11.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC 为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.4812.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.1250条 B.1750条 C.2500条 D.5000条13.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A.k>﹣ B.k<﹣ C.k=D.k=014.将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=60°,则∠BAD′的大小是()A.30°B.45°C.50°D.60°15.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=960;④a=34.以上结论正确的有()A.①②B.①②③C.①③④D.①②④16.如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°+∠C,则BC+2AE等于()A.AB B.AC C.AB D.AC二.填空题(共4小题,满分12分,每小题3分)17.若式子有意义,则x的取值范围是.18.下面三个命题:①若是方程组的解,则a+b=1或a+b=0;②函数y=﹣2x2+4x+1通过配方可化为y=﹣2(x﹣1)2+3;③最小角等于50°的三角形是锐角三角形,其中正确命题的序号为.19.某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:名学生平均每人植树棵.20.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=度.三.解答题(共6小题,满分60分)21.(12分)计算: +(﹣1)2﹣9+()﹣1.22.(8分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.23.(8分)罗山县尚文学校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分、90分、80分、79分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整:(2)填表:①从平均数和中位数方面来比较一班和二班的成绩;②从平均数和众数方面来比较一班和二班的成绩;③从B级以上(包括B级)的人数方面来比较一班和二班的成绩.24.(10分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.25.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.26.(12分)为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.北京西城区2016-2017学年八年级下册期末模拟数学试卷参考答案与试题解析一.选择题(共16小题,满分48分,每小题3分)1.下列式子一定是二次根式的是()A.B.C.D.【分析】根据二次根式的定义即可求出答案.【解答】解:(A)当x﹣1<0时,此时原式无意义,故A不一定是二次根式;(B)当x<0时,此时原式无意义,故B不一定是二次根式;(D)当x2﹣2<0时,此时原式无意义,故D不一定是二次根式;故选(C)【点评】本题考查二次根式的定义,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.2.在以下图标中,是轴对称图形的是()A.节水标志B.回收标志C.绿色食品D.环保标志【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故此选项错误;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故此选项错误;.故选C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【分析】根据题意判断出S随t的变化趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.【点评】此题主要考查了函数图象,关键是正确理解题意,根据题意判断出两个变量的变化情况.4.甲、乙、丙、丁四人进行射击测试,每人10次,射击成绩的平均数都是8.6环,方差分别是S甲2=0.45,S乙2=0.50,S丙2=0.55,S丁2=0.60,则射击成绩最稳定的是()A.甲B.乙C.丙D.丁【分析】方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:因为S甲2=0.45,S乙2=0.50,S丙2=0.55,S丁2=0.60,所以s甲2<s乙2<s丙2<s丁2,由此可得成绩最稳定的为甲.故选A.【点评】本题考查方差的定义.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.下列条件中,能判定四边形是平行四边形的是()A.一组对边相等B.两条对角线相等C.一条对角线平分另一条对角线D.两组对角分别相等【分析】根据平行四边形的判定定理:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形,分别进行判断即可.【解答】解:A、两组对边分别相等的四边形为平行四边形,故此选项错误;B、两条对角线互相平分的四边形为平行四边形,故此选项错误;C、一条对角线平分另一条对角线,不行,必须两条对角线互相平分的四边形为平行四边形,故此选项错误;D、两组对角分别相等的四边形为平行四边形,故此选项正确;故选:D.【点评】此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定方法.6.当k<0时,一次函数y=kx﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】由k<0可得出﹣k>0,结合一次函数图象与系数的关系即可得出一次函数y=kx﹣k的图象经过第一、二、四象限,此题得解.【解答】解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限.故选C.【点评】本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.7.某中学规定学生的学期体育成绩满分100分,其中课外体育占20%,其中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,94,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.93【分析】根据加权平均数的公式,套入数据即可得出结论.【解答】解:小彤这学期的体育成绩为=(20×95+30×90+50×94)=93(分).故选D.【点评】本题考查了折线统计图以及加权平均数,解题的关键是利用加权平均数的公式求出小彤这学期的体育成绩.本题属于基础题,难度不大,解决该题型题目时,熟记加权平均数的公式是解题的关键.8.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3B.6 C.3D.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB==3,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=3,∴∠CAB′=90°,∴B′C==3,故选:A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.9.下列命题是假命题的是()A.不在同一直线上的三点确定一个圆B.角平分线上的点到角两边的距离相等C.正六边形的内角和是720°D.角的边越大,角就越大【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、不在同一直线上的三点确定一个圆,真命题;B、角平分线上的点到角两边的距离相等,真命题;C、正六边形的内角和是720°,真命题;D、角的边越大,角就越大是假命题,因为角的大小与边的长短无关.故选D.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是2,添加数字2后平均数扔为2,故A与要求不符;B、原来数据的中位数是2,添加数字2后中位数扔为2,故B与要求不符;C、原来数据的众数是2,添加数字2后众数扔为2,故C与要求不符;D、原来数据的方差==,添加数字2后的方差==,故方差发生了变化.故选:D.【点评】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.11.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC 为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.48【分析】根据已知条件得到AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,根据平行四边形的性质得到CE=AD,AE=CD=3,由已知条件得到∠BAE=90°,根据勾股定理得到BE==2,于是得到结论.【解答】解:∵S1=3,S3=9,∴AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,∵AD∥BC,∴四边形AECD是平行四边形,∴CE=AD,AE=CD=3,∵∠ABC+∠DCB=90°,∴∠AEB+∠ABC=90°,∴∠BAE=90°,∴BE==2,∵BC=2AD,∴BC=2BE=4,∴S2=(4)2=48,故选D.【点评】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.12.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.1250条 B.1750条 C.2500条 D.5000条【分析】首先求出有记号的2条鱼在50条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【解答】解:由题意可得:50÷=1250(条).故选A.【点评】本题考查了统计中用样本估计总体,表示出带记号的鱼所占比例是解题关键.13.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A.k>﹣ B.k<﹣ C.k=D.k=0【分析】根据正比例函数图象与系数的关系列出关于k的不等式2k+1<0,然后解不等式即可.【解答】解:∵正比例函数y=(2k+1)x中,y的值随自变量x的值增大而减小,∴2k+1<0,解得,k<﹣;故选B.【点评】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.14.将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=60°,则∠BAD′的大小是()A.30°B.45°C.50°D.60°【分析】利用翻折变换前后图形全等,推出∠DED′=120°,得∠DAD′=60°,所以∠BAD′=30°.【解答】解:如图,∵△EDA≌△ED′A,∴∠D=∠D′=∠DAB=90°,∠DEA=∠D′EA,∵∠CED′=60°,∴∠DED′=120°,∴∠DAD′=60°,∴∠BAD′=30°.故选A.【点评】本题主要考查了翻折变换的性质、矩形的性质、四边形内角和定理,解题的关键在于求出∠DAD′的度数.15.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=960;④a=34.以上结论正确的有()A.①②B.①②③C.①③④D.①②④【分析】①由x=0时y=1200,可得出A、B之间的距离为1200m,结论①正确;②根据速度=路程÷时间可求出乙的速度,再根据甲的速度=路程÷时间﹣乙的速度可求出甲的速度,二者相除即可得出乙行走的速度是甲的1.5倍,结论②正确;③根据路程=二者速度和×运动时间,即可求出b=800,结论③错误;④根据甲走完全程所需时间=两地间的距离÷甲的速度+4,即可求出a=34,结论④正确.综上即可得出结论.【解答】解:①当x=0时,y=1200,∴A、B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24﹣4)=60(m/min),甲的速度为1200÷12﹣60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②正确;③b=(60+40)×(24﹣4﹣12)=800,结论③错误;④a=1200÷40+4=34,结论④正确.故选D.【点评】本题考查了一次函数的应用,观察函数图象结合数量关系逐一分析四个说法的正误是解题的关键.16.如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°+∠C,则BC+2AE等于()A.AB B.AC C.AB D.AC【分析】如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.由三角形中位线的性质得到EF=AE.则由平行线的性质和邻补角的定义得到∠DEF=∠BFC=90°﹣∠C,即∠FBC=∠BFC,等角对等边得到BC=FC,故BC+2AE=AC.【解答】解:如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.又∵点D是AB的中点,∴EF=AE.∵∠DEF=∠BFC=180°﹣∠AED=180°﹣(90°+∠C)=90°﹣∠C,∴∠FBC=∠BFC,∴BC=FC,∴BC+2AE=AC.故选B.【点评】本题考查了三角形中位线定理和等腰三角形的判定与性质.三角形的中位线平行于第三边且等于第三边的一半.二.填空题(共4小题,满分12分,每小题3分)17.若式子有意义,则x的取值范围是x.【分析】根据二次根式有意义的条件:被开方数为非负数,再结合分式有意义的条件:分母≠0,可得不等式1﹣2x>0,再解不等式即可.【解答】解:由题意得:1﹣2x>0,解得:x<,故答案为:x,【点评】此题主要考查了二次根式有意义的条件;用到的知识点为:二次根式有意义,被开方数为非负数.18.下面三个命题:①若是方程组的解,则a+b=1或a+b=0;②函数y=﹣2x2+4x+1通过配方可化为y=﹣2(x﹣1)2+3;③最小角等于50°的三角形是锐角三角形,其中正确命题的序号为②③.【分析】①根据方程组的解的定义,把代入,即可判断;②利用配方法把函数y=﹣2x2+4x+1化为顶点式,即可判断;③根据三角形内角和定理以及锐角三角形的定义即可判断.【解答】解:①把代入,得,如果a=2,那么b=1,a+b=3;如果a=﹣2,那么b=﹣7,a+b=﹣9.故命题①是假命题;②y=﹣2x2+4x+1=﹣2(x﹣1)2+3,故命题②是真命题;③最小角等于50°的三角形,最大角不大于80°,一定是锐角三角形,故命题③是真命题.所以正确命题的序号为②③.故答案为②③.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义以及性质定理等知识.19.某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:名学生平均每人植树4棵.【分析】利用加权平均数的计算公式进行计算即可.【解答】解:平均每人植树(3×20+4×15+5×10+6×5)÷50=4棵,故答案为:4.【点评】本题考查了加权平均数的计算,解题的关键是牢记加权平均数的计算公式,难度不大.20.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB= 75度.【分析】只要证明△ABE≌△ADF,可得∠BAE=∠DAF=(90°﹣60°)÷2=15°,即可解决问题.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABE和Rt△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠DAF=(90°﹣60°)÷2=15°,∴∠AEB=75°,故答案为75.【点评】本题考查正方形的性质、等边三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.三.解答题(共6小题,满分60分)21.(12分)计算: +(﹣1)2﹣9+()﹣1.【分析】根据负整数指数幂和分数指数幂的意义计算.【解答】解:原式=3+2﹣2+1﹣3+2=+2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.(8分)(2017•台州)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.【分析】(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.(2)当x=a时,y C=2a+1;当x=a时,y D=4﹣a.∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=.∴a的值为或.【点评】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及解含绝对值符号的一元一次方程,解题的关键是:(1)利用一次函数图象上点的坐标特征求出b、m的值;(2)根据CD=2,找出关于a的含绝对值符号的一元一次方程.23.(8分)罗山县尚文学校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分、90分、80分、79分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整:(2)填表:①从平均数和中位数方面来比较一班和二班的成绩;②从平均数和众数方面来比较一班和二班的成绩;③从B级以上(包括B级)的人数方面来比较一班和二班的成绩.【分析】(1)利用总人数减去A、B、D等级的人数即可得出C等级的人数.(2)根据平均数、众数、中位数的定义即可求出答案.(3)根据平均数、众数、中位数进行分析即可.【解答】(1)一班中C级的有25﹣6﹣12﹣5=2人,如图所示:(2)一班的平均数为:a=(6×100+12×90+2×80+70×5)÷25=87.6;一班的中位数为:b=90;一班的众数为:c=100;(3)①从平均数和中位数的角度来比较一班的成绩更好;②从平均数和众数的角度来比较二班的成绩更好;③从B级以上(包括B级)的人数的角度来比较一班的成绩更好﹣(只回答一个即可)故答案为:(2)87.6;90;100【点评】本题考查统计问题,涉及统计学相关公式,中位数、平均数和众数等知识,属于中等题型.24.(10分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【分析】证明BC=EF,然后根据SSS即可证明△ABC≌△DEF,然后根据全等三角形的对应角相等即可证得.【解答】证明:如图,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).∴∠A=∠D.【点评】本题考查了全等三角形的判定与性质,证明线段相等常用的方法是证明所在的三角形全等.25.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.【点评】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.26.(12分)为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.【分析】(1)根据房款=房屋单价×购房面积就可以表示出应缴房款;(2)由分段函数当0≤x≤30,当30<x≤m时,当x>m时,分别求出y与x之间的表达式即可;(3)当50≤m≤60和当45≤m<50时,分别讨论建立不等式组就可以求出结论.【解答】解:(1)由题意,得三口之家应缴购房款为:0.3×90+0.5×30=42(万元).(2)由题意,得①当0≤x≤30时,y=0.3×3x=0.9x;②当30<x≤m时,y=0.3×3×30+0.5×3×(x﹣30)=1.5x﹣18;③当x>m时,y=0.3×3×30+0.5×3(m﹣30)+0.7×3×(x﹣m)=2.1x﹣0.6m﹣18.∴y=;(3)由题意,得①当50≤m≤60时,则人均面积为50平方米没有超过m,所以应缴纳的房款:y=1.5x﹣18=1.5×50﹣18=57(舍);②当45≤m<50时,则人均面积为50平方米超过m,则y=2.1x﹣0.6m﹣18=2.1×50﹣0.6m﹣18=87﹣0.6m,∵57<y≤60,∴57<87﹣0.6m≤60解得45≤m<50.综上,45≤m<50.【点评】本题考查了房款=房屋单价×购房面积在实际生活中的运用,求分段函数的解析式的运用,建立不等式组求解的运用,解答本题时求出函数的解析式是关键.。
北京西城区八年级下期末模拟数学试卷(有答案)-(新课标人教版)-精编
北京西城区2016-2017学年八年级下册期末模拟数学试卷一.选择题(共16小题,满分48分,每小题3分)1.下列式子一定是二次根式的是()A.B.C.D.2.在以下图标中,是轴对称图形的是()A.节水标志B.回收标志C.绿色食品D.环保标志3.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.4.甲、乙、丙、丁四人进行射击测试,每人10次,射击成绩的平均数都是8.6环,方差分别是S甲2=0.45,S乙2=0.50,S丙2=0.55,S丁2=0.60,则射击成绩最稳定的是()A.甲B.乙C.丙D.丁5.下列条件中,能判定四边形是平行四边形的是()A.一组对边相等B.两条对角线相等C.一条对角线平分另一条对角线D.两组对角分别相等6.当k<0时,一次函数y=kx﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.某中学规定学生的学期体育成绩满分100分,其中课外体育占20%,其中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,94,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.938.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3B.6 C.3D.9.下列命题是假命题的是()A.不在同一直线上的三点确定一个圆B.角平分线上的点到角两边的距离相等C.正六边形的内角和是720°D.角的边越大,角就越大10.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差11.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC 为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.4812.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.1250条 B.1750条 C.2500条 D.5000条13.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A.k>﹣ B.k<﹣ C.k=D.k=014.将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=60°,则∠BAD′的大小是()A.30°B.45°C.50°D.60°15.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=960;④a=34.以上结论正确的有()A.①②B.①②③C.①③④D.①②④16.如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°+∠C,则BC+2AE等于()A.AB B.AC C.AB D.AC二.填空题(共4小题,满分12分,每小题3分)17.若式子有意义,则x的取值范围是.18.下面三个命题:①若是方程组的解,则a+b=1或a+b=0;②函数y=﹣2x2+4x+1通过配方可化为y=﹣2(x﹣1)2+3;③最小角等于50°的三角形是锐角三角形,其中正确命题的序号为.19.某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:植树棵数3456人数2015105那么这50名学生平均每人植树棵.20.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=度.三.解答题(共6小题,满分60分)21.(12分)计算: +(﹣1)2﹣9+()﹣1.22.(8分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.23.(8分)罗山县尚文学校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分、90分、80分、79分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整:(2)填表:平均数(分)中位数(分)众数(分)一班90二班87.680(3)请从以下给出的三个方面中任选一个对这次竞赛成绩的结果进行分析;①从平均数和中位数方面来比较一班和二班的成绩;②从平均数和众数方面来比较一班和二班的成绩;③从B 级以上(包括B级)的人数方面来比较一班和二班的成绩.24.(10分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.25.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.26.(12分)为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)0.3超过30平方米不超过m(平方米)部分(45≤m≤60)0.5超过m平方米部分0.7根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.北京西城区2016-2017学年八年级下册期末模拟数学试卷参考答案与试题解析一.选择题(共16小题,满分48分,每小题3分)1.下列式子一定是二次根式的是()A.B.C.D.【分析】根据二次根式的定义即可求出答案.【解答】解:(A)当x﹣1<0时,此时原式无意义,故A不一定是二次根式;(B)当x<0时,此时原式无意义,故B不一定是二次根式;(D)当x2﹣2<0时,此时原式无意义,故D不一定是二次根式;故选(C)【点评】本题考查二次根式的定义,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.2.在以下图标中,是轴对称图形的是()A.节水标志B.回收标志C.绿色食品D.环保标志【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故此选项错误;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故此选项错误;.故选C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【分析】根据题意判断出S随t的变化趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.【点评】此题主要考查了函数图象,关键是正确理解题意,根据题意判断出两个变量的变化情况.4.甲、乙、丙、丁四人进行射击测试,每人10次,射击成绩的平均数都是8.6环,方差分别是S甲2=0.45,S乙2=0.50,S丙2=0.55,S丁2=0.60,则射击成绩最稳定的是()A.甲B.乙C.丙D.丁【分析】方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:因为S甲2=0.45,S乙2=0.50,S丙2=0.55,S丁2=0.60,所以s甲2<s乙2<s丙2<s丁2,由此可得成绩最稳定的为甲.故选A.【点评】本题考查方差的定义.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.下列条件中,能判定四边形是平行四边形的是()A.一组对边相等B.两条对角线相等C.一条对角线平分另一条对角线D.两组对角分别相等【分析】根据平行四边形的判定定理:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形,分别进行判断即可.【解答】解:A、两组对边分别相等的四边形为平行四边形,故此选项错误;B、两条对角线互相平分的四边形为平行四边形,故此选项错误;C、一条对角线平分另一条对角线,不行,必须两条对角线互相平分的四边形为平行四边形,故此选项错误;D、两组对角分别相等的四边形为平行四边形,故此选项正确;故选:D.【点评】此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定方法.6.当k<0时,一次函数y=kx﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】由k<0可得出﹣k>0,结合一次函数图象与系数的关系即可得出一次函数y=kx﹣k 的图象经过第一、二、四象限,此题得解.【解答】解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限.故选C.【点评】本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.7.某中学规定学生的学期体育成绩满分100分,其中课外体育占20%,其中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,94,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.93【分析】根据加权平均数的公式,套入数据即可得出结论.【解答】解:小彤这学期的体育成绩为=(20×95+30×90+50×94)=93(分).故选D.【点评】本题考查了折线统计图以及加权平均数,解题的关键是利用加权平均数的公式求出小彤这学期的体育成绩.本题属于基础题,难度不大,解决该题型题目时,熟记加权平均数的公式是解题的关键.8.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3B.6 C.3D.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB==3,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=3,∴∠CAB′=90°,∴B′C==3,故选:A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.9.下列命题是假命题的是()A.不在同一直线上的三点确定一个圆B.角平分线上的点到角两边的距离相等C.正六边形的内角和是720°D.角的边越大,角就越大【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、不在同一直线上的三点确定一个圆,真命题;B、角平分线上的点到角两边的距离相等,真命题;C、正六边形的内角和是720°,真命题;D、角的边越大,角就越大是假命题,因为角的大小与边的长短无关.故选D.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是2,添加数字2后平均数扔为2,故A与要求不符;B、原来数据的中位数是2,添加数字2后中位数扔为2,故B与要求不符;C、原来数据的众数是2,添加数字2后众数扔为2,故C与要求不符;D、原来数据的方差==,添加数字2后的方差==,故方差发生了变化.故选:D.【点评】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.11.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC 为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.48【分析】根据已知条件得到AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,根据平行四边形的性质得到CE=AD,AE=CD=3,由已知条件得到∠BAE=90°,根据勾股定理得到BE==2,于是得到结论.【解答】解:∵S1=3,S3=9,∴AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,∵AD∥BC,∴四边形AECD是平行四边形,∴CE=AD,AE=CD=3,∵∠ABC+∠DCB=90°,∴∠AEB+∠ABC=90°,∴∠BAE=90°,∴BE==2,∵BC=2AD,∴BC=2BE=4,∴S2=(4)2=48,故选D.【点评】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.12.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.1250条 B.1750条 C.2500条 D.5000条【分析】首先求出有记号的2条鱼在50条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【解答】解:由题意可得:50÷=1250(条).故选A.【点评】本题考查了统计中用样本估计总体,表示出带记号的鱼所占比例是解题关键.13.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A.k>﹣ B.k<﹣ C.k=D.k=0【分析】根据正比例函数图象与系数的关系列出关于k的不等式2k+1<0,然后解不等式即可.【解答】解:∵正比例函数y=(2k+1)x中,y的值随自变量x的值增大而减小,∴2k+1<0,解得,k<﹣;故选B.【点评】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.14.将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=60°,则∠BAD′的大小是()A.30°B.45°C.50°D.60°【分析】利用翻折变换前后图形全等,推出∠DED′=120°,得∠DAD′=60°,所以∠BAD′=30°.【解答】解:如图,∵△EDA≌△ED′A,∴∠D=∠D′=∠DAB=90°,∠DEA=∠D′EA,∵∠CED′=60°,∴∠DED′=120°,∴∠DAD′=60°,∴∠BAD′=30°.故选A.【点评】本题主要考查了翻折变换的性质、矩形的性质、四边形内角和定理,解题的关键在于求出∠DAD′的度数.15.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=960;④a=34.以上结论正确的有()A.①②B.①②③C.①③④D.①②④【分析】①由x=0时y=1200,可得出A、B之间的距离为1200m,结论①正确;②根据速度=路程÷时间可求出乙的速度,再根据甲的速度=路程÷时间﹣乙的速度可求出甲的速度,二者相除即可得出乙行走的速度是甲的1.5倍,结论②正确;③根据路程=二者速度和×运动时间,即可求出b=800,结论③错误;④根据甲走完全程所需时间=两地间的距离÷甲的速度+4,即可求出a=34,结论④正确.综上即可得出结论.【解答】解:①当x=0时,y=1200,∴A、B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24﹣4)=60(m/min),甲的速度为1200÷12﹣60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②正确;③b=(60+40)×(24﹣4﹣12)=800,结论③错误;④a=1200÷40+4=34,结论④正确.故选D.【点评】本题考查了一次函数的应用,观察函数图象结合数量关系逐一分析四个说法的正误是解题的关键.16.如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°+∠C,则BC+2AE等于()A.AB B.AC C.AB D.AC【分析】如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.由三角形中位线的性质得到EF=AE.则由平行线的性质和邻补角的定义得到∠DEF=∠BFC=90°﹣∠C,即∠FBC=∠BFC,等角对等边得到BC=FC,故BC+2AE=AC.【解答】解:如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.又∵点D是AB的中点,∴EF=AE.∵∠DEF=∠BFC=180°﹣∠AED=180°﹣(90°+∠C)=90°﹣∠C,∴∠FBC=∠BFC,∴BC=FC,∴BC+2AE=AC.故选B.【点评】本题考查了三角形中位线定理和等腰三角形的判定与性质.三角形的中位线平行于第三边且等于第三边的一半.二.填空题(共4小题,满分12分,每小题3分)17.若式子有意义,则x的取值范围是x.【分析】根据二次根式有意义的条件:被开方数为非负数,再结合分式有意义的条件:分母≠0,可得不等式1﹣2x>0,再解不等式即可.【解答】解:由题意得:1﹣2x>0,解得:x<,故答案为:x,【点评】此题主要考查了二次根式有意义的条件;用到的知识点为:二次根式有意义,被开方数为非负数.18.下面三个命题:①若是方程组的解,则a+b=1或a+b=0;②函数y=﹣2x2+4x+1通过配方可化为y=﹣2(x﹣1)2+3;③最小角等于50°的三角形是锐角三角形,其中正确命题的序号为②③.【分析】①根据方程组的解的定义,把代入,即可判断;②利用配方法把函数y=﹣2x2+4x+1化为顶点式,即可判断;③根据三角形内角和定理以及锐角三角形的定义即可判断.【解答】解:①把代入,得,如果a=2,那么b=1,a+b=3;如果a=﹣2,那么b=﹣7,a+b=﹣9.故命题①是假命题;②y=﹣2x2+4x+1=﹣2(x﹣1)2+3,故命题②是真命题;③最小角等于50°的三角形,最大角不大于80°,一定是锐角三角形,故命题③是真命题.所以正确命题的序号为②③.故答案为②③.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义以及性质定理等知识.19.某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:植树棵数3456人数2015105那么这50名学生平均每人植树4棵.【分析】利用加权平均数的计算公式进行计算即可.【解答】解:平均每人植树(3×20+4×15+5×10+6×5)÷50=4棵,故答案为:4.【点评】本题考查了加权平均数的计算,解题的关键是牢记加权平均数的计算公式,难度不大.20.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=75度.【分析】只要证明△ABE≌△ADF,可得∠BAE=∠DAF=(90°﹣60°)÷2=15°,即可解决问题.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABE和Rt△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠DAF=(90°﹣60°)÷2=15°,∴∠AEB=75°,故答案为75.【点评】本题考查正方形的性质、等边三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.三.解答题(共6小题,满分60分)21.(12分)计算: +(﹣1)2﹣9+()﹣1.【分析】根据负整数指数幂和分数指数幂的意义计算.【解答】解:原式=3+2﹣2+1﹣3+2=+2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.(8分)(2017•台州)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.【分析】(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.(2)当x=a时,y C=2a+1;当x=a时,y D=4﹣a.∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=.∴a的值为或.【点评】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及解含绝对值符号的一元一次方程,解题的关键是:(1)利用一次函数图象上点的坐标特征求出b、m的值;(2)根据CD=2,找出关于a的含绝对值符号的一元一次方程.23.(8分)罗山县尚文学校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分、90分、80分、79分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整:(2)填表:平均数(分)中位数(分)众数(分)一班87.69090二班87.680100(3)请从以下给出的三个方面中任选一个对这次竞赛成绩的结果进行分析;①从平均数和中位数方面来比较一班和二班的成绩;②从平均数和众数方面来比较一班和二班的成绩;③从B 级以上(包括B级)的人数方面来比较一班和二班的成绩.【分析】(1)利用总人数减去A、B、D等级的人数即可得出C等级的人数.(2)根据平均数、众数、中位数的定义即可求出答案.(3)根据平均数、众数、中位数进行分析即可.【解答】(1)一班中C级的有25﹣6﹣12﹣5=2人,如图所示:(2)一班的平均数为:a=(6×100+12×90+2×80+70×5)÷25=87.6;一班的中位数为:b=90;一班的众数为:c=100;(3)①从平均数和中位数的角度来比较一班的成绩更好;②从平均数和众数的角度来比较二班的成绩更好;③从B级以上(包括B级)的人数的角度来比较一班的成绩更好﹣(只回答一个即可)故答案为:(2)87.6;90;100【点评】本题考查统计问题,涉及统计学相关公式,中位数、平均数和众数等知识,属于中等题型.24.(10分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【分析】证明BC=EF,然后根据SSS即可证明△ABC≌△DEF,然后根据全等三角形的对应角相等即可证得.【解答】证明:如图,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).∴∠A=∠D.【点评】本题考查了全等三角形的判定与性质,证明线段相等常用的方法是证明所在的三角形全等.25.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.【点评】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.26.(12分)为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)0.3超过30平方米不超过m(平方米)部分(45≤m≤60)0.5超过m平方米部分0.7根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.【分析】(1)根据房款=房屋单价×购房面积就可以表示出应缴房款;(2)由分段函数当0≤x≤30,当30<x≤m时,当x>m时,分别求出y与x之间的表达式即可;(3)当50≤m≤60和当45≤m<50时,分别讨论建立不等式组就可以求出结论.【解答】解:(1)由题意,得三口之家应缴购房款为:0.3×90+0.5×30=42(万元).(2)由题意,得①当0≤x≤30时,y=0.3×3x=0.9x;②当30<x≤m时,y=0.3×3×30+0.5×3×(x﹣30)=1.5x﹣18;③当x>m时,y=0.3×3×30+0.5×3(m﹣30)+0.7×3×(x﹣m)=2.1x﹣0.6m﹣18.∴y=;(3)由题意,得①当50≤m≤60时,则人均面积为50平方米没有超过m,所以应缴纳的房款:y=1.5x﹣18=1.5×50﹣18=57(舍);②当45≤m<50时,则人均面积为50平方米超过m,则y=2.1x﹣0.6m﹣18=2.1×50﹣0.6m﹣18=87﹣0.6m,∵57<y≤60,∴57<87﹣0.6m≤60解得45≤m<50.综上,45≤m<50.【点评】本题考查了房款=房屋单价×购房面积在实际生活中的运用,求分段函数的解析式的运用,建立不等式组求解的运用,解答本题时求出函数的解析式是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前【全国区级联考】北京市西城区2016-2017学年八年级下学期期末考试数学试题试卷副标题考试范围:xxx ;考试时间:84分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(题型注释)1、函数中,自变量x 的取值范围是( ).A .x ≠B .x ≠1C .x >D .x ≥2、一次函数的图象不经过的象限是( ).A .第一象限B .第二象限C .第三象限D .第四象限3、彩陶、玉器、青铜器等器物以及壁画、织锦上美轮美奂的纹样,穿越时空,向人们呈现出古代中国丰富多彩的物质与精神世界,各种纹样经常通过平移、旋转、轴对称以及其它几何构架连接在一起,形成复杂而精美的图案.以下图案纹样中,从整体观察(个别细微之处的细节忽略不计),大致运用了旋转进行构图的是( ).试卷第2页,共12页A .B .C . D.4、如图,矩形ABCD 的对角线AC ,BD 的交点为O ,点E 为BC 边的中点,,如果OE =2,那么对角线BD 的长为( ).A .4B .6C .8D .105、如果关于x 的方程有两个相等的实数根,那么以下结论正确的是( ).A .B .C .k >D .k >16、下列命题中,不正确的是( ).A .平行四边形的对角线互相平分B .矩形的对角线互相垂直且平分C .菱形的对角线互相垂直且平分D .正方形的对角线相等且互相垂直平分7、北京市6月某日10个区县的最高气温如下表:(单位:℃) 区县 大兴 通州 平谷 顺义 怀柔 门头沟 延庆昌平 密云 房山 最高气温 32 32 30 32 30 32 29 32 30 32则这10个区县该日最高气温的中位数是( ). A. 32 B. 31 C. 30 D. 298、如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,将△ABC 绕点C 顺时针旋转角(0°<<180°)至△A ′B ′C ,使得点A ′恰好落在AB 边上,则等于( ).A .150°B .90°C .60°D .30°9、教育部发布的统计数据显示,近年来越来越多的出国留学人员学成后选择回国发展,留学回国与出国留学人数“逆差”逐渐缩小.2014年各类留学回国人员总数为36.48万人,而2016年各类留学回国人员总数为43.25万人.如果设2014年到2016年各类留学回国人员总数的年平均增长率为x ,那么根据题意可列出关于x 的方程为( ).试卷第4页,共12页A .B .C .D .10、如图,点E 为菱形ABCD 边上的一个动点,并沿ABCD 的路径移动,设点E 经过的路径长为x ,△ADE 的面积为y ,则下列图象能大致反映y 与x 的函数关系的是( ).A .B .C .D .第II 卷(非选择题)二、填空题(题型注释)11、如果关于x 的方程有两个相等的实数根,那么m 的值为 .12、如果平行四边形的一条边长为4cm ,这条边上的高为3cm ,那么这个平行四边形的面积等于_______.13、在平面直角坐标系xOy 中,直线与x 轴的交点坐标为______,与y 轴的交点坐标为_____,与坐标轴所围成的三角形的面积等于_______.14、如图,在ABCD 中,CH ⊥AD 于点H ,CH 与BD 的交点为E .如果,,那么_____°.15、如图,函数与函数的图象交于点P ,那么点P 的坐标为_______,关于x 的不等式的解集是________.16、写出一个一次函数的解析式,满足以下两个条件:①y 随x 的增大而增大;②它的图象经过 坐标为的点. 你写出的解析式为_______.17、如图,正方形ABCD 的边长为2cm ,正方形AEFG 的边长为1cm. 正方形AEFG 绕点A 旋转的过程中,线段CF 的长的最小值为_______cm.试卷第6页,共12页三、解答题(题型注释)18、解方程:.19、(1)画图-连线-写依据:先分别完成以下画图(不要求尺规作图),再与判断四边形DEMN 形状的相应结论连线,并写出判定依据(只将最后一步判定特殊平行四边形的依据填在横线上). ①如图1,在矩形ABEN 中,D 为对角线的交点,过点N 画直线NP ∥DE ,过点E 画直线EQ ∥DN ,NP 与EQ 的交点为点M ,得到四边形DEMN ;②如图2,在菱形ABFG 中,顺次连接四边AB ,BF ,FG ,GA 的中点D ,E ,M ,N ,得到四边形DEMN .(2)请从图1、图2的结论中选择一个进行证明.证明:20、利用勾股定理可以在数轴上画出表示的点,请依据以下思路完成画图,并保留画图痕迹:第一步:(计算)尝试满足,使其中a ,b 都为正整数.你取的正整数a=____,b=________; 第二步:(画长为的线段)以第一步中你所取的正整数a ,b 为两条直角边长画Rt △OEF ,使O 为原点,点E 落在数轴的正半轴上,,则斜边OF 的长即为.请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法) 第三步:(画表示的点)在下面的数轴上画出表示的点M ,并描述第三步的画图步骤:_______________________________________________________________.21、如图,在四边形ABCD 中,AD //BC ,AB=10,BC=6,AC =AD=8. (1)求∠ACB 的度数;(2)求CD 边的长.22、《九章算术》卷九“勾股”中记载:今有户不知高广,竿不知长短.横之不出四尺,纵之不出二尺,斜之适出注.问户斜几何.注释:横放,竿比门宽长出四尺;竖放,竿比门高长出二尺;斜放恰 好能出去. 解决下列问题:(1)示意图中,线段CE 的长为 尺,线段DF 的长为 尺;(2)求户斜多长.23、2016年9月开始,初二年级的同学们陆续到北京农业职业技术学院进行了为期一周的学农教育活动.丰富的课程开阔了同学们的视野,其中“酸奶的制作”课程深受同学们喜爱.学农1班和学农2班的同学们经历“煮奶—降温—发酵—后熟”四步,制作了“凝固型”酸奶.现每班随机抽取10杯酸奶做样本(每杯100克),记录制作时所添加蔗糖克数如表1、表2所示.表1 学农1班所抽取酸奶添加蔗糖克数统计表 (单位:克)试卷第8页,共12页表2 学农2班所抽取酸奶添加蔗糖克数统计表 (单位:克)据研究发现,若蔗糖含量在5%~8%,即100克酸奶中,含糖5~8克的酸奶口感最佳.两班所抽取酸奶的相关统计数据如表3所示. 表3 两班所抽取酸奶的统计数据表根据以上材料回答问题: (1)表3中,x= :(2)根据以上信息,你认为哪个学农班的同学制作的酸奶整体口感较优?请说明理由.24、(1)阅读以下内容并回答问题:小雯用这个方法进行了尝试,点向上平移3个单位后的对应点的坐标为 ,过点的直线的解析式为 .(2)小雯自己又提出了一个新问题请全班同学一起解答和检验此方法,请你也试试看: 将直线向右平移1个单位,平移后直线的解析式为 ,另外直接将直线向 (填“上”或“下”)平移 个单位也能得到这条直线.(3)请你继续利用这个方法解决问题:对于平面直角坐标系xOy 内的图形M ,将图形M 上所有点都向上平移3个单位,再向右平移1个单位,我们把这个过程称为图形M 的一次“斜平移”. 求将直线进行两次“斜平移”后得到的直线的解析式.25、如图所示,在平面直角坐标系x O y 中,B ,C 两点的坐标分别为,,CD ⊥y 轴于点D ,直线l 经过点D . (1)直接写出点D 的坐标;(2)作CE ⊥直线l 于点E ,将直线CE 绕点C 逆时针旋转45°,交直线l 于点F ,连接BF .试卷第10页,共12页①依题意补全图形;②通过观察、测量,同学们得到了关于直线BF 与直线l 的位置关系的猜想,请写出你的猜想;③通过思考、讨论,同学们形成了证明该猜想的几种思路:思路1:作CM ⊥CF ,交直线l 于点M ,可证△CBF ≌△CDM ,进而可以得出,从而证明结论.思路2:作BN ⊥CE ,交直线CE 于点N ,可证△BCN ≌△CDE ,进而证明四边形BFEN 为矩形,从而证明结论. ……请你参考上面的思路完成证明过程.(一种方法即可) 解:(1)点D 的坐标为 . (2)①补全图形.②直线BF 与直线l 的位置关系是 .③证明:26、如图,在平面直角坐标系xOy 中,点在直线上,过点作∥y轴,交直线于点,以为直角顶点,为直角边,在的右侧作等腰直角三角形;再过点作∥y 轴,分别交直线和于,两点,以为直角顶点,为直角边,在的右侧作等腰直角三角形,…,标为_______.(用含n的式子表示,n为正整数)27、如图,在由边长都为1个单位长度的小正方形组成的正方形网格中,点A,B,P 都在格点上.请画出以AB为边的格点四边形(四个顶点都在格点的四边形),要求同时满足以下条件:条件1:点P到四边形的两个顶点的距离相等;条件2:点P在四边形的内部或其边上;条件3:四边形至少一组对边平行.(1)在图①中画出符合条件的一个ABCD,使点P在所画四边形的内部;(2)在图②中画出符合条件的一个四边形ABCD,使点P在所画四边形的边上;(3)在图③中画出符合条件的一个四边形ABCD,使∠D=90°,且∠A≠90°.28、如图,在平面直角坐标系xOy中,动点A(a,0)在x轴的正半轴上,定点B(m, n)在第一象限内(m<2≤a).在△OAB外作正方形ABCD和正方形OBEF,连接FD,点M为线段FD的中点.作BB1⊥x轴于点B1,作FF1⊥x轴于点F1.(1)填空:由△≌△,及B(m, n)可得点F的坐标为,同理可得点D的坐标为;(说明:点F,点D的坐标用含m,n,a的式子表示)(2)直接利用(1)的结论解决下列问题:①当点A在x轴的正半轴上指定范围内运动时,点M总落在一个函数图象上,求该函数的解析式(不必写出自变量x的取值范围);②当点A 在x 轴的正半轴上运动且满足2≤a ≤8时,求点M 所经过的路径的长.参考答案1、A2、D3、B4、C5、A6、B7、A8、C9、C10、D11、.12、1213、,, 4.14、6015、x<116、答案不唯一,如等.17、18、,19、(1)见解析;(2)见解析.20、 4, 2 以原点O为圆心,OF长为半径作弧,弧与数轴正半轴的交点即为点M.21、(1)90°;(2)22、(1)4,2.(2)户斜为10尺.23、(1)6.(2)学农2班的同学制作的酸奶整体口感较优,理由见解析.24、(1),.(2),上,2.(3)25、(1).(2)①补图见解析;②BF⊥直线l.26、 3,,.27、(1)作图见解析;(2)作图见解析;(3)作图见解析.28、(1);,,(2)①点M总落在函数的图象上.②.【解析】1、由题意得,, .故选A.2、∵1>0,3>0,∴一次函数y=x+3的图象经过一、二、三象限,不经过第四象限.故选D.3、是轴对称图案,故不符合题意;是旋转图案,符合题意;是其它几何构架图案,故不符合题意;是平移图案,故不符合题意;故选B.4、∵点E为BC边的中点,∴OE是△ABC的中位线,∴AB=2OE=4.∵∠OCB=30°,∴AC=2AB=8,∴BC=AC=8.故选C.5、由题意得,.故选A.6、A. ∵平行四边形的对角线互相平分,故正确;B. ∵矩形的对角线互相平分且相等,故不正确;C. ∵菱形的对角线互相垂直且平分,故正确;D. ∵正方形的对角线相等且互相垂直平分,故正确;故选B.7、∵从小到大排列后,排在中间位置的两个数都是32,∴中位数是32.故选A.8、∵∠ACB =90°,∠ABC=30°,∴∠A=60°.∵AC=A′C,∴△AA′C是等边三角形,∴∠A′CA=60°,∴α=∠A′CA =60°故选C.9、∵年平均增长率为x,∴2016年变为2014年的 .∴可列方程故选C.10、作EH⊥AD于点H.则 .,∴当点E在AB上时,y与x成一次函数关系,且逐渐变大;当点E在BC上时,y的值不变;当点E在CD上时,y的值逐渐变小.故选D11、试题分析:若一元二次方程有两相等根,则根的判别式△=b2-4ac=0,建立关于m 的等式,求出m的值:∵方程有两相等的实数根,∴.考点:一元二次方程根的判别式.12、面积为:4×3="12."13、∵当y=0时,,∴x=2,∴与x轴的交点坐标为(2,0);∵当x=0时,,∴与y轴的交点坐标为(0,4);∴与坐标轴所围成的三角形的面积等于 .14、∵∠1=70°,∴∠DEH=70°.∵CH⊥AD,∴∠HDE=90°-70°=20°.∵AD∥BC,∴∠2=∠HDE==20°.∵∠ABC=3∠2,∴∠ABC=60°.∵四边形ABCD是平行四边形,∴∠ADC=∠ABC=60°.15、由图像可得点P的坐标为(1,-2);不等式的解集是x<116、∵y随x的增大而增大,∴可设y=x+b.把代入得,b=-2.∴y=x-2.17、如图,当当点F在线段AC上时,CF最小., ,.18、试题分析:运用配方法求解即可.试题解析:故:,考点:解一元二次方程-配方法.19、(1)见图4,图5,连线、依据略. ……………………………5分(两个画图各1分,连线1分,两个依据各1分,所写依据的答案不唯一)(2)①如图4.∵NP∥DE,EQ∥DN,NP与EQ的交点为点M,∴四边形DEMN为平行四边形.∵D为矩形ABEN对角线的交点,∴AE=BN,,.∴DE= DN.∴平行四边形DEMN是菱形.……………………………………………………… 7分②如图6,连接AF,BG,记交点为H.∵D,N两点分别为AB,GA边的中点,∴DN∥BG,.同理,EM∥BG,,DE∥AF,.∴DN∥EM,DN=EM.∴四边形DEMN为平行四边形.∵四边形ABFG是菱形,∴AF⊥BG.∴.∴.∴.∴平行四边形DEMN是矩形.20、 ,∴a=4,b=2.以原点O为圆心,OF长为半径作弧,弧与数轴正半轴的交点即为点M.21、(1)如图2.∵△ABC中,AB=10,BC=6,AC =8,∴. ……………………… 1分∴△ABC是直角三角形,.……2分(2)∵AD//BC,∴. …………………………………………………………… 3分∵在Rt△ACD中,,AC=AD=8,∴……………………………………………………………4分.22、(1)4,2.………………………………………………………………………………… 2分(2)设户斜x尺.…………………………………… 3分则图3中BD=x,,(x>4).(x>2)又在Rt△BCD中,,由勾股定理得.所以.………………… 4分整理,得.因式分解,得.解得,.………………………………………………………………5分因为x>4 且x>2,所以舍去,.……………………………………6分答:户斜为10尺.23、(1)6.......................................................................................................1分(2)学农2班的同学制作的酸奶整体口感较优. (2)分理由如下:所抽取的样本中,两个学农班酸奶口感最佳的杯数一样,每杯酸奶中所添加蔗糖克数的平均值基本相同,学农2班的方差较小,更为稳定.24、(1),............................................................................... 2分(2),上,2.(各1分) (5)分(3)直线上的点进行一次“斜平移”后的对应点的坐标为,进行两次“斜平移”后的对应点的坐标为.设经过两次“斜平移”后得到的直线的解析式为.将点的坐标代入,得.解得.所以两次“斜平移”后得到的直线的解析式为25、(1).……………………………………………………………………………………1分(2)①补全图形见图7.……………………………………………………………………… 2分②BF⊥直线l.…………………………………………………………………………… 3分③法1:证明:如图8,作CM⊥CF,交直线l于点M.∵,,,∴,.∵CE⊥直线l,CM⊥CF,,可得△CEF,△CEM 为等腰直角三角形,,CF=CM.①∵,,∴.②又∵CB=CD,③∴△CBF≌△CDM.…………………………………………………………6分∴.……………………………………………………7分∴.∴BF⊥直线l.………………………………………………………………8分法2:证明:如图9,作BN⊥CE,交直线CE于点N.∵,,,∴,.∵CE⊥直线l,BN⊥CE,∴.①∴,.∴.②又∵CB=DC,③∴△BCN≌△CDE.………………6分∴BN= CE.又∵,可得△CEF为等腰直角三角形,EF = CE.∴BN= EF.又∵,∴BN∥FE.∴四边形BFEN为平行四边形.又∵,∴平行四边形BFEN为矩形.…………………………………………………7分∴.∴BF⊥直线l.26、∵点在直线上,过点作∥y轴,交直线于点,∴B1(2,1),∴A1C1= A1B1=1,∴C1(3,2).∵A2B2∥y,∴A2(3,3),,∴A2C2= A2B2=,,即 .∵A3B3∥y,,,∴A3C3= A3B3=,,即 . ∴C1的横坐标为;C2的横坐标为;C3的横坐标为;……∴C n的横坐标为 .27、(1)答案不唯一,如:(2)答案不唯一,如:或其他.(3)28、(1)如图1.由△≌△,及B(m, n)可得点F的坐标为,同理可得点D的坐标为. (全等1分,两个坐标各1分)…………………3分(2)①设点M的坐标为.∵点M为线段FD的中点,,,可得点M的坐标为. …………………………………………………… 5分∴消去a,得.所以,当点A在x轴的正半轴上指定范围内运动时,相应的点M在运动时总落在直线上,即点M总落在函数的图象上. ………………………6分②如图2,当点A在x轴的正半轴上运动且满足2≤a≤8时,点A运动的路径为线段,其中,,相应地,点M所经过的路径为直线上的一条线段,其中,.……………………………… 7分而,∴点M所经过的路径的长为.。