利用数学方法求解临界问题

合集下载

初中数学临界点问题与取值范围探究

初中数学临界点问题与取值范围探究

初中数学临界点问题与取值范围探究临界点和取值范围问题是中考数学常考内容之⼀,⼀般与⼏何、函数⼀起考查,⽽取值范围问题,可能涉及不等式和代数式有意义的问题。

我们今天简单看⼀下临界点问题和取值范围常考哪些内容。

(1)求取值范围:①根据判别式求取值范围:例:已知x²-2mx m 6=0有两个不相等的实数根,求m的取值范围思路:显然有两个不相等的实数根需满⾜△=b²-4ac>0,本式中a=1,b=-2m,c=m 6。

所以有(-2m)²-4(m 6)=4(m-3)(m 2)>0易知 m的取值范围为m<-2或m>3②有⽆数解问题:例:❶若ax² ax 1>0恒成⽴,求a的取值范围。

【⼀般不等式均有⽆数解,这⾥我们说是恒成⽴】思路:实际上是考查对⼆次函数图像的认识,因为不等⽅程是>0,所以⼆次函数需满⾜开⼝向上即a>0,且与x轴⽆交点,即判别式△<0,易知0<a<4例:❷关于x的不等式2x 5-a>1-bx恒成⽴,试确定a,b的取值范围。

思路:对于任意的⽅程ax b=0,只有在a和b同时为0的时候,⽅程有⽆数解(为什么?因为a=0,则ax恒为0,与x的取值⽆关)。

⽽对于不等式ax b>0,则必须是在a=0,b>0,时才可能恒成⽴。

所以此题先移项化为(2 b)x 4-a>0,则有b=-2,a<4。

②⽆解问题(⼆次函数问题不再举例):例:❶思路:不等式组⽆解的思路是让两个不等式解到的解⽆公共部分例如(不存在x>1且x<0的值)。

本题中x-3(x-2)≤4,解得x≥1,第⼆个分式不等式解得x<a,所以只需保证a不⼤于1即可,即a≤1。

(注意对于a是否能取1,不熟练时单独拿出来分析⼀下)❷我们将上⼀题略微改动:思路:注意改动的位置,第⼀个不等式不等式改变,则解变为了x≤1,⽽整个不等式组的解也是x≤1,所以第⼆个不等式解到的解必须是x<b,且b需要时⼤于1的数。

数学圆法巧解磁场中的临界问题-2024年高考物理答题技巧(解析版)

数学圆法巧解磁场中的临界问题-2024年高考物理答题技巧(解析版)

数学圆法巧解磁场中的临界问题一、应用技巧1.“放缩圆”法适用条件速度方向一定,大小不同粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v越大,运动半径也越大。

可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP′上界定方法以入射点P为定点,圆心位于PP′直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法1如图所示,一束电子以大小不同的速率沿图示方向垂直飞入横截面是一正方形的匀强磁场区域,下列判断正确的是()A.电子在磁场中运动时间越长,其轨迹线越长B.电子在磁场中运动时间越长,其轨迹线所对应的圆心角越大C.在磁场中运动时间相同的电子,其轨迹线不一定重合D.电子的速率不同,它们在磁场中运动时间一定不相同【答案】 BC【解析】 由t=θ2πT知,电子在磁场中运动时间与轨迹对应的圆心角成正比,所以电子在磁场中运动的时间越长,其轨迹线所对应的圆心角θ越大,电子飞入匀强磁场中做匀速圆周运动,轨迹线弧长s=rθ,运动时间越长,θ越大,但半径r不一定大,s也不一定大,故A错误,B正确.由周期公式T=2πmqB知,电子做圆周运动的周期与电子的速率无关,所以电子在磁场中的运动周期相同,若它们在磁场中运动时间相同,但轨迹不一定重合,比如:轨迹4与5,它们的运动时间相同,但它们的轨迹对应的半径不同,由r= mvqB可知它们的速率不同,故C正确,D错误.2.“旋转圆”法适用条件速度大小一粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射定,方向不同入初速度为v0,则圆周运动半径为R=mv0qB。

如图所示轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P为圆心、半径R=mvqB的圆上界定方法将一半径为R=mv0qB的圆以入射点为圆心进行旋转,从而探索粒子的临界条件,这种方法称为“旋转圆”法2如图所示为圆形区域的匀强磁场,磁感应强度为B,方向垂直纸面向里,边界跟y轴相切于坐标原点O。

(word完整版)高一物理牛顿运动定律运用中的临界问题

(word完整版)高一物理牛顿运动定律运用中的临界问题

牛顿运动定律运用中的临界问题在应用牛顿定律解题时常遇到临界问题,它包括:平衡物体(a=0)的平衡状态即将被打破而还没有被打破的瞬间;动态物体(a≠0)的状态即将发生突变而还没有变化的瞬间。

临界状态也可归纳为加速度即将发生突变的状态。

加速度发生突变的本质原因是物体的外力发生了突变,物体处于临界状态,必然隐含着某些力(如弹力、摩擦力等)的突变。

抓住这些力突变的条件,是我们解题的关键。

一、和绳子拉力相联系的临界情况例1. 小车在水平路面上加速向右运动,一质量为m的小球用一条水平线和一条斜线(与竖直方向成30°角)把小球系于车上,求下列情况下,两绳的拉力:(1)加速度;(2)加速度。

解析:小车处于平衡态(a=0)对小球受力分析如下图所示。

当加速度a由0逐渐增大的过程中,开始阶段,因m在竖直方向的加速度为0,角不变,不变,那么,加速度增大(即合外力增大),OA绳承受的拉力必减小。

当时,m存在一个加速度,物体所受的合外力是的水平分力。

当时,a增大,(OA绳处于松弛状态),在竖直方向的分量不变,而其水平方向的分量必增加(因合外力增大),角一定增大,设为a。

当时,。

当,有:(1)(2)解得当,有:。

点评:1. 通过受力分析和对运动过程的分析找到本题中弹力发生突变的临界状态是绳子OA拉力恰好为零;2. 弹力是被动力,其大小和方向应由物体的状态和物体所受的其他力来确定。

二、和静摩擦力相联系的临界情况例2. 质量为m=1kg的物体,放在=37°的斜面上如下图所示,物体与斜面的动摩擦因数,要是物体与斜面体一起沿水平方向向左加速运动,则其加速度多大?解析:当物体恰不向下滑时,受力分析如下图所示,解得当物体恰不向上滑时,受力分析如下图所示,解得因此加速度的取值范围为:。

点评:本题讨论涉及静摩擦力的临界问题的一般方法是:1. 抓住静摩擦力方向的可能性。

2. 最大静摩擦力是物体即将由相对静止变为相对滑动的临界条件。

临界问题

临界问题

临界和极值问题台前县第一高级中学刘庆真在处理临界问题时,一般用极限法,特别是当某些题目的条件比较隐蔽、物理过程又比较复杂时.1.在物体的运动状态发生变化的过程中,往往达到某一个特定状态时,有关的物理量将发生突变,此状态即为临界状态,相应的物理量的值为临界值.临界状态一般比较隐蔽,它在一定条件下才会出现.2.临界问题的解法一般有三种方法(1)极限法:在题目中如出现“最大”“最小”“刚好”等词语时,一般隐含着临界问题,处理这类问题时,应把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,达到尽快求解的目的.(2)假设法:有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,也可能不出现临界问题,解答这类题,一般用假设法.(3)数学方法:将物理过程转化为数学公式,根据数学表达式求解得出临界条件.3.具体思路:(1).平衡方程( 2).临界方程(3).位移方程1.如图所示,光滑水平面上静止放着长L=1 m,质量为M=3 kg 的木板(厚度不计),一个质量为m=1 kg的小物体放在木板的最右端,m和M之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F.(g取10 m/s2)(1)为使小物体与木板恰好不相对滑动,F不能超过多少?(2)如果拉力F=10 N恒定不变,求小物体所能获得的最大速率?思维点拨:找出使小物体不掉下去的临界条件,求出其加速度,应用牛顿运动定律即可求得F的值.再分别找出木板和木块间的位移关系,应用运动学公式即可得到小物块的最大速率.解:(1)为使小物体与木板恰好不相对滑动,必须是最大静摩擦力提供最大加速度,即μmg =ma ,把小物体和木板看作整体,则由牛顿第二定律得F =(M +m )a ,联立两个式子可得:F =μ(M +m )g =0.1×(3+1)×10 N =4 N.(2)小物体的加速度a 1=μmg m=μg =0.1×10 m/s 2=1 m/s 2,木板的加速度a 2=F -μmg M =10-0.1×1×103 m/s 2=3 m/s 2,由12a 2t 2-12a 1t 2=L ,解得小物体滑出木板所用时间t =1 s ,小物体离开木板时的速度v 1=a 1t =1 m/s.解答临界问题的关键是找临界条件,审题时一定要抓住特定的词语,如“恰好”、“至少”等来挖掘内含规律.有时,有些临界问题中并不显现上述常见的“临界术语”,但当发现某个物理量在变化过程中会发生突变,则该物理量突变时物体所处的状态即为临界状态.2.如图所示,光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg .现用水平拉力F 拉其中一个质量为2m 的木块,使四个木块以同一加速度运动,则轻绳对m 的最大拉力为( )A.3μmg 5B.3μmg 4C.3μmg 2D .3μmg 解:选B.经过受力分析,A 、B 之间的静摩擦力给B 、C 、D 组成的系统提供加速度,加速度达到最大值的临界条件为A 、B 间达到最大静摩擦力,即a m =μmg 4m =μg 4,而绳子拉力F T 给C 、D 组成的系统提供加速度,因而拉力的最大值F Tm =3ma m =3μmg 4,故选B.3.如图所示,质量为m 的物体A 放在倾角为θ的质量为M 的斜面体B 上,并在图示的水平恒力F 作用下使它们之间刚好不发生相对滑动而向左运动.已知斜面和水平面均光滑,那么下列关于这个物理情境的讨论中正确的是( )A .题目中描述的这种物理情境不可能发生B .A 、B 只有向左匀速运动时才能发生这种可能C .斜面体B 对物体A 不做功是由于它们之间的弹力方向垂直于斜面D .A 、B 具有共同加速度时能发生,并且恒力F 大小为(M +m )g tan θ 解析:选D.A 、B 间的弹力始终垂直于斜面方向,与运动状态无关.不发生相对滑动即保持相对静止,具有共同的加速度和速度,经分析A 的加速度a =g tan θ时,即能出现这种情境.4.(2011年南京调研)如图所示,物块a 放在轻弹簧上,物块b 放在物块a 上静止不动.当用力F 使物块b 竖直向上做匀加速直线运动,在下面所给的四个图象中,能反映物块b 脱离物块a 前的过程中力F 随时间t 变化规律的是( )解析:选C.将a 、b 两物体作为一个整体来进行分析,设两物体的质量为m ,物体向上的位移为Δx =12at 2,受到向上的拉力F 、弹簧的支持力N 和竖直向下的重力G ,开始时kx 0=mg ,运动Δx 后N =k (x 0-Δx ),得N =mg -k Δx ,由牛顿第二定律,F +N -mg =ma ,即F =mg +ma -(mg -k Δx )=ma +k ×12at 2,故C 正确. 5.一有固定斜面的小车在水平面上做直线运动,小球通过细绳与车顶相连.小球某时刻正处于图示状态.设斜面对小球的支持力为N,细绳对小球的拉力为T,关于此时刻小球的受力情况,下列说法正确的是( )A.若小车向左运动,N可能为零 B.若小车向左运动,T可能为零C.若小车向右运动,N不可能为零 D.若小车向右运动,T不可能为零解析:选AB.对小球进行受力分析,小球受重力G、斜面对小球的支持力N、细绳对小球的拉力T.若N为零,小球受的合力一定为水平向右,小球可做向右加速或向左减速的变速运动;若T为零,小球受的合力一定为水平向左,小球可做向左加速或向右减速的变速运动,故A、B正确.6.(10分)如图所示,质量m=2 kg的小球用细绳拴在倾角θ=37°的斜面上,g取10 m/s2,求:(1)当斜面以a1=5 m/s2的加速度向右运动时,绳子拉力的大小;(2)当斜面以a2=20 m/s2的加速度向右运动时,绳子拉力的大小.解:当斜面对小球的弹力恰好为零时,小球向右运动的加速度为:a0=g tan θ=7.5 m/s2.(1)a1<a0,小球仍在斜面上,根据牛顿第二定律,有:F T sin θ+F N cos θ=mg,F T cos θ-F N sin θ=ma1,得F T=20 N.(2)a2>a0,小球离开斜面,设绳子与水平方向的夹角为α,则:F T cos α=ma2,F T sin α=mg,得F T=20 5 N.7.如图5所示,质量为M的木板上放着一质量为m的木块,木块与木板间的动摩擦因数为μ1, 木板与水平地面间的动摩擦因数为μ2.若要将木板从木块下抽出,则加在木板上的力F至少为多大?图5解析 木板与木块通过摩擦力联系,只有当两者发生相对滑动时,才有可能将木板从木块下抽出.此时对应的临界状态是:木板与木块间的摩擦力必定是最大静摩擦力Ffm(Ffm=μ1mg),且木块运动的加速度必定是两者共同运动时的最大加速度am.以木块为研究对象, 根据牛顿第二定律得F fm =ma m . ①a m 也就是系统在此临界状态下的加速度,设此时作用在木板上的力为F 0,取木板、木块整体为研究对象, 则有F 0-μ2(M+m)g=(M+m) a m ②联立①、②式得F 0=(M+m)(μ1+μ2)g.当F >F 0时,必能将木板抽出,即F >[例3] 于静止状态。

牛顿第二定律的临界问题

牛顿第二定律的临界问题
公式
F=ma,其中F表示作用力,m表示物 体的质量,a表示物体的加速度。
适用范围与限制
适用范围
适用于宏观低速物体,即物体速度远小于光速的情况。
限制
不适用于微观粒子或高速运动的情况,此时需要考虑相对论效应。
牛顿第二定律的重要性
基础性
牛顿第二定律是经典力学的基础,为物 理学和工程学提供了重要的理论支持。
流体动力学临界问题主要研究流体在流速达 到极限状态时的流动规律和受力情况。
详细描述
当流体的流速达到极限值时,如湍流或流体 中的音速,其流动规律和受力情况会发生显 著变化。在流体动力学临界问题中,需要运 用牛顿第二定律和流体动力学的基本原理, 分析流体的流动规律和受力情况,以确定其 极限流速和安全系数。
在物理教学中的应用
高中物理教学
高中物理教学中,牛顿第二定律临界问题是一个重要的知识点, 有助于学生理解力和运动的关系。
大学物理教学பைடு நூலகம்
在大学物理教学中,牛顿第二定律临界问题可以帮助学生深入理解 力学的基本原理,提高他们的科学素养。
物理竞赛
在物理竞赛中,牛顿第二定律临界问题是一个常见的考点,有助于 选拔具有潜力的优秀学生。
利用牛顿第二定律临界问题,工程师 可以优化车辆的动力学设计,提高车 辆的稳定性和安全性。
在机械系统设计中,牛顿第二定律临 界问题可以帮助工程师优化机器的性 能,提高机器的工作效率和稳定性。
航空航天设计
在航空航天领域,牛顿第二定律临界 问题被广泛应用于飞行器的设计和优 化,以确保飞行器的稳定性和安全性。
在物理、工程和科学实验等领域中, 当需要精确地找出临界点和临界条件 时,解析法具有广泛的应用价值。
解析法的优缺点分析

临界问题

临界问题

平衡中的临界与极值问题1.临界问题当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”、“刚能”、“恰好”等语言叙述.2.极值问题平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题.3.解决极值问题和临界问题的方法(1)极限法:首先要正确地进行受力分析和变化过程分析,找出平衡的临界点和极值点;临界条件必须在变化中去寻找,不能停留在一个状态来研究临界问题,而要把某个物理量推向极端,即极大和极小.(2)数学分析法:通过对问题的分析,依据物体的平衡条件写出物理量之间的函数关系(画出函数图象),用数学方法求极值(如求二次函数极值、公式极值、三角函数极值).(3)物理分析方法:根据物体的平衡条件,作出力的矢量图,通过对物理过程的分析,利用平行四边形定则进行动态分析,确定最大值与最小值.例1、(2016·东北三校二联)如图7所示,有一倾角θ=30°的斜面体B ,质量为M 。

质量为m 的物体A 静止在B 上。

现用水平力F 推物体A ,在F 由零逐渐增加至32mg 再逐渐减为零的过程中,A 和B 始终保持静止。

对此过程下列说法正确的是( )A .地面对B 的支持力大于(M +m )gB .A 对B 的压力的最小值为32mg ,最大值为334mgC .A 所受摩擦力的最小值为0,最大值为mg 4D .A 所受摩擦力的最小值为12mg ,最大值为34mg 例2、如图10所示,质量为m 的物体放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F 水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F 多大,都不能使物体沿斜面向上滑行,试求:(1)物体与斜面间的动摩擦因数; (2)这一临界角θ0的大小.例3、质量为M的木楔倾角为θ,在水平面上保持静止,当将一质量为m的木块放在木楔斜面上时,它正好匀速下滑.如果用与木楔斜面成α角的力F拉着木块匀速上升,如图12所示(已知木楔在整个过程中始终静止).(1)当α=θ时,拉力F有最小值,求此最小值;(2)当α=θ时,木楔对水平面的摩擦力是多大?例4、拖把是由拖杆和拖把头构成的擦地工具(如图)。

数学临界值计算公式

数学临界值计算公式

数学临界值计算公式数学中的临界值是指在某种条件下,一个变量的取值达到临界点或临界状态的值。

临界值的计算对于准确预测和分析各种现象具有重要意义。

在数学中,我们可以通过一些公式来计算临界值,下面将详细介绍一些常见的临界值计算公式。

首先,我们来谈谈求解方程的临界值计算公式。

在许多实际问题中,我们需要找到一个方程的根或者使方程取得某种特定值的条件。

为此,我们可以使用牛顿迭代法来逼近方程的根或者临界值。

牛顿迭代法的基本公式为:Xn+1=Xn-f(Xn)/f'(Xn),其中f(Xn)表示方程的函数值,f'(Xn)表示方程的导数值。

通过不断迭代,我们可以逐步逼近方程的根或者临界值。

其次,我们可以用插值法来计算一些临界点的位置。

插值法是一种利用已知的临界点来逼近未知临界点的方法。

其中,最为常见的插值方法是拉格朗日插值法和牛顿插值法。

拉格朗日插值法利用n个已知的临界点构造一个n-1次的多项式,并通过该多项式来逼近未知临界点的值。

牛顿插值法则是通过构造一个n次的差商多项式,同样利用已知的临界点来逼近未知临界点的值。

这些插值方法能够帮助我们在一定精度范围内计算出临界点的近似值。

此外,在概率与统计中,我们经常遇到需要计算一些临界值的情况。

比如在假设检验中,我们常常需要找到一个临界值,当样本统计量超过这个临界值时,我们可以拒绝原假设。

根据正态分布的性质,我们可以使用标准正态分布表来查找对应的临界值。

以95%的置信水平为例,查表得到的临界值为1.96。

当样本统计量大于等于1.96时,我们可以拒绝原假设。

最后,临界值的计算还与微积分中极限的概念有关。

当我们需要研究某个函数在某点的极限时,就需要计算该点的临界值。

根据极限的定义,我们可以通过左极限和右极限的比较来判断一个函数在某点是否存在极限。

如果左极限和右极限相等,则该点存在极限。

为了计算极限,我们可以利用洛必达法则等方法来求解临界值。

综上所述,数学临界值计算公式在各个领域具有广泛的应用。

3-3-3-专题突破:三 动力学中的临界和极值问题的分析方法

3-3-3-专题突破:三 动力学中的临界和极值问题的分析方法

素养提升
模型1 斜面中的“平衡类模型” 【典例1】 (多选)如图所示,质量为m的物体A放在质量为M 、倾角为θ的斜面B上,斜面B置于粗糙的水平地面上,用平行于 斜面的力F拉物体A,使其沿斜面向下匀速运动,斜面B始终静止 不动,重力加速度为g,则下列说法中正确的是( ) A.斜面B相对地面有向右运动的趋势 B.地面对斜面B的静摩擦力大小为Fcos θ C.地面对斜面B的支持力大小为(M+m)g+Fsin θ D.斜面B与物体A间的动摩擦因数为tan θ 思路点拨 由于A在斜面上匀速下滑,B静止不动,故A和B均处 于平衡状态。因此,在分析B与地面间的相互作用时,可将A、B 看成一个整体进行分析;由A在斜面上匀速下滑可知,A在斜面 方向上受力平衡,由此可计算出A、B之间的动摩擦因数。
突破三
动力学中的临界和极值问题 的分析方法
课堂互动
01 02
03
多维训练
素养提升
04
备选训练
课堂互动
1.临界或极值条件的标志 (1)有些题目中有“刚好”“恰好”“正好”等字眼,即表明题 述的过程存在着临界点。 (2)若题目中有“取值范围”“多长时间”“多大距离”等词语, 表明题述的过程存在着“起止点”,而这些起止点往往对应临界 状态。 (3)若题目中有“最大”“最小”“至多”“至少”等字眼,表 明题述的过程存在着极值,这个极值点往往定速度”等,即是求收尾加 速度或收尾速度。
转到解析
)
多维训练
3 2.如图所示,一足够长的木板,上表面与木块之间的动摩擦因数为 μ= ,重 3 力加速度为 g,木板与水平面成 θ 角,让小木块从木板的 底端以大小恒定的初速率 v0 沿木板向上运动。随着 θ 的改 变,小木块沿木板向上滑行的距离 x 将发生变化,当 θ 角 为何值时,小木块沿木板向上滑行的距离最小,并求出此 最小值。

物理-动力学中的连接体问题和临界极值问题

物理-动力学中的连接体问题和临界极值问题

动力学中的连接体问题和临界极值问题物理题型 1.知道连接体的类型以及运动特点,会用整体法、隔离法解决连接体问题.2.理解几种常见的临界极值条件.3.会用极限法、假设法、数学方法解决临界极值问题.题型一 动力学中的连接体问题1.连接体多个相互关联的物体连接(叠放、并排或由绳子、细杆联系)在一起构成的物体系统称为连接体.连接体一般具有相同的运动情况(速度、加速度).2.常见连接体的类型(1)同速连接体(如图1)图1特点:两物体通过弹力、摩擦力作用,具有相同速度和相同加速度.处理方法:用整体法求出a与F合的关系,用隔离法求出F内力与a的关系.(2)关联速度连接体(如图2)图2特点:两连接物体的速度、加速度大小相等,方向不同,但有所关联.处理方法:分别对两物体隔离分析,应用牛顿第二定律进行求解.同速连接体例1 (2020·江苏卷·5)中欧班列在欧亚大陆开辟了“生命之路”,为国际抗疫贡献了中国力量.某运送防疫物资的班列由40节质量相等的车厢组成,在车头牵引下,列车沿平直轨道匀加速行驶时,第2节对第3节车厢的牵引力为F .若每节车厢所受摩擦力、空气阻力均相等,则倒数第3节对倒数第2节车厢的牵引力为( )A.FB.C.D.19F 20F 19F 20答案 C解析 设列车的加速度为a ,每节车厢的质量为m ,每节车厢受到的阻力为F f ,对后38节车厢,由牛顿第二定律有F -38F f =38ma ;设倒数第3节车厢对倒数第2节车厢的牵引力为F 1,对后2节车厢,由牛顿第二定律得F 1-2F f =2ma ,联立解得F 1=,故选项C 正确.F 19关联速度连接体例2 (多选)物块B 放在光滑的水平桌面上,其上放置物块A ,物块A 、C 通过细绳相连,细绳跨过定滑轮,如图3所示,物块A 、B 、C 质量均为m ,现释放物块C ,A 和B 一起以相同加速度加速运动,不计细绳与滑轮之间的摩擦力,重力加速度大小为g ,则细线中的拉力大小及A 、B 间的摩擦力大小分别为( )图3A.F T =mgB.F T =mg 23C.F f =mgD.F f =mg2313答案 BD解析 以C 为研究对象,由牛顿第二定律得mg -F T =ma ;以A 、B 为研究对象,由牛顿第二定律得F T =2ma ,联立解得F T =mg ,a =g ,以B 为研究对象,由牛顿第二定律得2313F f =ma ,得F f =mg ,故选B 、D.131.(同速连接体)(多选)(2020·湖北黄冈中学模拟)如图4所示,材料相同的物体m 1、m 2由轻绳连接,在恒定拉力F 的作用下沿斜面向上加速运动.轻绳拉力的大小( )图4A.与斜面的倾角θ有关B.与物体和斜面之间的动摩擦因数μ有关C.与两物体的质量m 1和m 2有关D.若改用F 沿斜面向下拉连接体,轻绳拉力的大小与θ,μ无关答案 CD解析 对整体受力分析有F -(m 1+m 2)g sin θ-μ(m 1+m 2)g cosθ=(m 1+m 2)a ,对m 2有F T -m 2g sin θ-μm 2g cos θ=m 2a ,解得F T =F ,与μ和θ无关,与两物体的质量m 1m 2m 1+m 2和m 2有关,故A 、B 错误,C 正确;若改用F 沿斜面向下拉连接体,同理可得F T =F ,故D 正确.m 1m 1+m 22.(同速连接体)(多选)如图5所示,倾角为θ的斜面体放在粗糙的水平地面上,现有一带固定支架的滑块m 正沿斜面加速下滑.支架上用细线悬挂的小球达到稳定(与滑块相对静止)后,悬线的方向与竖直方向的夹角也为θ,斜面体始终保持静止,则下列说法正确的是( )图5A.斜面光滑B.斜面粗糙C.达到稳定状态后,地面对斜面体的摩擦力水平向左D.达到稳定状态后,地面对斜面体的摩擦力水平向右答案 AC解析 隔离小球,可知稳定后小球的加速度方向沿斜面向下,大小为g sin θ,小球稳定后,支架系统的加速度与小球的加速度相同,对支架系统进行分析,只有斜面光滑,支架系统的加速度才是g sin θ,A 正确,B 错误.隔离斜面体,斜面体受到的力有自身重力、地面的支持力、支架系统对它垂直斜面向下的压力,因斜面体始终保持静止,则斜面体还应受到地面对它水平向左的摩擦力,C正确,D错误.题型二 动力学中的临界和极值问题1.常见的临界条件(1)两物体脱离的临界条件:F N=0.(2)相对滑动的临界条件:静摩擦力达到最大值.(3)绳子断裂或松弛的临界条件:绳子断裂的临界条件是绳中张力等于它所能承受的最大张力;绳子松弛的临界条件是F T=0.(4)最终速度(收尾速度)的临界条件:物体所受合外力(加速度)为零.2.解题基本思路(1)认真审题,详细分析问题中变化的过程(包括分析整个过程中有几个阶段);(2)寻找过程中变化的物理量;(3)探索物理量的变化规律;(4)确定临界状态,分析临界条件,找出临界关系.3.解题方法极限法把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的假设法临界问题存在多种可能,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题数学法将物理过程转化为数学表达式,根据数学表达式解出临界条件脱离的临界问题例3 (2019·江西宜春市期末)如图6所示,一弹簧一端固定在倾角为θ=37°的足够长的光滑固定斜面的底端,另一端拴住质量为m1=6 kg的物体P,Q为一质量为m2=10 kg的物体,弹簧的质量不计,劲度系数k=600 N/m,系统处于静止状态.现给物体Q施加一个方向沿斜面向上的力F,使它从静止开始沿斜面向上做匀加速运动,已知在前0.2 s时间内,F为变力,0.2 s以后F为恒力,sin 37°=0.6,cos 37°=0.8,g取10 m/s2.求:图6(1)系统处于静止状态时,弹簧的压缩量x 0;(2)物体Q 从静止开始沿斜面向上做匀加速运动的加速度大小a ;(3)力F 的最大值与最小值.答案 (1)0.16 m (2) m/s 2 (3) N N10328031603解析 (1)设开始时弹簧的压缩量为x 0,对整体受力分析,平行斜面方向有(m 1+m 2)g sin θ=kx 0解得x 0=0.16 m.(2)前0.2 s 时间内F 为变力,之后为恒力,则0.2 s 时刻两物体分离,此时P 、Q 之间的弹力为零且加速度大小相等,设此时弹簧的压缩量为x 1,对物体P ,由牛顿第二定律得:kx 1-m 1g sin θ=m 1a前0.2 s 时间内两物体的位移:x 0-x 1=at 212联立解得a = m/s 2.103(3)对两物体受力分析知,开始运动时F 最小,分离时F 最大,则F min =(m 1+m 2)a = N1603对Q 应用牛顿第二定律得F max -m 2g sin θ=m 2a解得F max = N.2803相对滑动的临界问题例4 (多选)如图7所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为μ.最大静摩擦力等于滑动摩擦力,12重力加速度为g .现对A 施加一水平拉力F ,则( )图7A.当F <2μmg 时,A 、B 都相对地面静止B.当F =μmg 时,A 的加速度为μg5213C.当F >3μmg 时,A 相对B 滑动D.无论F 为何值,B 的加速度不会超过μg12答案 BCD解析 当0<F ≤μmg 时,A 、B 均静止;当μmg <F ≤3μmg 时,A 、B 相对静止,但两者相3232对地面一起向右做匀加速直线运动;当F >3μmg 时,A 相对B 向右做加速运动,B 相对地面也向右加速,选项A 错误,选项C 正确.当F =μmg 时,A 与B 共同的加速度52a ==F -32μmg 3m μg ,选项B 正确.F 较大时,取物块B 为研究对象,物块B 的加速度最大为a 2=13=μg ,选项D 正确.2μmg -32μmg m 123.(脱离的临界问题)如图8所示,质量m =2 kg 的小球用细绳拴在倾角θ=37°的光滑斜面上,此时,细绳平行于斜面.取g =10 m/s 2(sin 37°=0.6,cos 37°=0.8).下列说法正确的是( )图8A.当斜面以5 m/s 2的加速度向右加速运动时,绳子拉力大小为20 NB.当斜面以5 m/s 2的加速度向右加速运动时,绳子拉力大小为30 NC.当斜面以20 m/s 2的加速度向右加速运动时,绳子拉力大小为40 ND.当斜面以20 m/s 2的加速度向右加速运动时,绳子拉力大小为60 N答案 A解析 小球刚好离开斜面时的临界条件是斜面对小球的弹力恰好为零,斜面对小球的弹力恰好为零时,设绳子的拉力为F ,斜面的加速度为a 0,以小球为研究对象,根据牛顿第二定律有F cos θ=ma 0,F sin θ-mg =0,代入数据解得a 0≈13.3 m/s 2.①由于a 1=5 m/s 2<a 0,可见小球仍在斜面上,此时小球的受力情况如图甲所示,以小球为研究对象,根据牛顿第二定律有F 1sin θ+F N cos θ-mg =0,F 1cos θ-F N sin θ=ma 1,代入数据解得F 1=20 N ,选项A 正确,B 错误;②由于a 2=20 m/s 2>a 0,可见小球离开了斜面,此时小球的受力情况如图乙所示,设绳子与水平方向的夹角为α,以小球为研究对象,根据牛顿第二定律有F 2cosα=ma 2,F 2sinα-mg =0,代入数据解得F 2=20 N,选项C 、D 错误.54.(极值问题)如图9甲所示,木板与水平地面间的夹角θ可以随意改变,当θ=30°时,可视为质点的一小物块恰好能沿着木板匀速下滑.如图乙,若让该小物块从木板的底端每次均以大小相同的初速度v 0=10 m/s 沿木板向上运动,随着θ的改变,小物块沿木板向上滑行的距离x 将发生变化,重力加速度g 取10 m/s 2.图9(1)求小物块与木板间的动摩擦因数;(2)当θ角满足什么条件时,小物块沿木板向上滑行的距离最小,并求出此最小值.答案 (1) (2)θ=60° m33532解析 (1)当θ=30°时,小物块恰好能沿着木板匀速下滑,则mg sin θ=F f ,F f =μmg cos θ联立解得:μ=.33(2)当θ变化时,设沿斜面向上为正方向,物块的加速度为a ,则-mg sinθ-μmg cos θ=ma ,由0-v 02=2ax 得x =,v 022g (sin θ+μcos θ)令cos α=,sin α=,11+μ2μ1+μ2即tan α=μ=,33故α=30°,又因x =v 022g 1+μ2sin (θ+α)当α+θ=90°时x 最小,即θ=60°,所以x 最小值为x min =v 022g (sin 60°+μcos 60°)== m.3v 024g 532课时精练1.(多选)(2020·贵州贵阳市摸底)如图1所示,水平地面上有三个靠在一起的物块A、B和C,质量均为m,设它们与地面间的动摩擦因数均为μ,用水平向右的恒力F推物块A,使三个物块一起向右做匀加速直线运动,用F1、F2分别表示A与B、B与C之间相互作用力的大小,则下列判断正确的是( )图1A.若μ≠0,则F1∶F2=2∶1B.若μ≠0,则F1∶F2=3∶1C.若μ=0,则F1∶F2=2∶1D.若μ=0,则F1∶F2=3∶1答案 AC解析 三物块一起向右做匀加速直线运动,设加速度为a,若μ=0,分别对物块B、C组成的系统和物块C应用牛顿第二定律有F1=2ma,F2=ma,易得F1∶F2=2∶1,C项正确,D项错误;若μ≠0,分别对物块B、C组成的系统和物块C应用牛顿第二定律有F1-2μmg=2ma,F2-μmg=ma,易得F1∶F2=2∶1,A项正确,B项错误.2.(多选)如图2所示,在粗糙的水平面上,质量分别为m和M的物块A、B用轻弹簧相连,两物块与水平面间的动摩擦因数均为μ,当用水平力F作用于B上且两物块共同向右以加速度a1匀加速运动时,弹簧的伸长量为x1;当用同样大小的恒力F沿着倾角为θ的光滑斜面方向作用于B上且两物块共同以加速度a2匀加速沿斜面向上运动时,弹簧的伸长量为x2,则下列说法正确的是( )图2A.若m>M,有x1=x2B.若m<M,有x1=x2C.若μ>sin θ,有x1>x2D.若μ<sin θ,有x1<x2答案 AB解析 在水平面上滑动时,对整体,根据牛顿第二定律,有F-μ(m+M)g=(m+M)a1①隔离物块A,根据牛顿第二定律有F T -μmg =ma 1②联立①②解得F T =③Fmm +M 在斜面上滑动时,对整体,根据牛顿第二定律,有F -(m +M )g sin θ=(m +M )a 2④隔离物块A ,根据牛顿第二定律有F T ′-mg sin θ=ma 2⑤联立④⑤解得F T ′=⑥FmM +m 比较③⑥可知,弹簧弹力相等,即弹簧伸长量相等,与动摩擦因数和斜面的倾角无关,故A 、B 正确,C 、D 错误.3.如图3所示,质量为M 、中空为半球形的光滑凹槽放置于光滑水平地面上,光滑凹槽内有一质量为m 的小铁球,现用一水平向右的推力F 推动凹槽,小铁球与光滑凹槽相对静止时,凹槽圆心和小铁球的连线与竖直方向成α角.重力加速度为g ,则下列说法正确的是( )图3A.小铁球受到的合外力方向水平向左B.凹槽对小铁球的支持力为mgsin αC.系统的加速度为a =g tan αD.推力F =Mg tan α答案 C解析 根据小铁球与光滑凹槽相对静止可知,系统有向右的加速度a =g tan α,小铁球受到的合外力方向水平向右,凹槽对小铁球的支持力为,推力F =(M +m )g tanα,选项mgcos αA 、B 、D 错误,C 正确.4.如图4所示,质量为1 kg 的木块A 与质量为2 kg 的木块B 叠放在水平地面上,A 、B 间的最大静摩擦力为2 N ,B 与地面间的动摩擦因数为0.2,最大静摩擦力等于滑动摩擦力.用水平力F 作用于B ,则A 、B 保持相对静止的条件是(g 取10 m/s 2)( )图4A.F ≤12 NB.F ≤10 NC.F ≤9 ND.F ≤6 N答案 A解析 当A 、B 间有最大静摩擦力(2 N)时,对A 由牛顿第二定律知,加速度为2 m/s 2,对A 、B 整体应用牛顿第二定律有:F -μ(m A +m B )g =(m A +m B )a ,解得F =12 N ,则A 、B 保持相对静止的条件是F ≤12 N ,A 正确,B 、C 、D 错误.5.(多选)(2019·河北保定市一模)如图5所示,一质量为M =3 kg 、倾角为α=45°的斜面体放在光滑水平地面上,斜面体上有一质量为m =1 kg 的光滑楔形物体.用一水平向左的恒力F 作用在斜面体上,系统恰好保持相对静止地向左运动.重力加速度为g =10 m/s 2,下列判断正确的是( )图5A.系统做匀速直线运动B.F =40 NC.斜面体对楔形物体的作用力大小为5 N2D.增大力F ,楔形物体将相对斜面体沿斜面向上运动答案 BD解析 对整体受力分析如图甲所示,由牛顿第二定律有F =(M +m )a ,对楔形物体受力分析如图乙所示,由牛顿第二定律有mg tan 45°=ma ,可得F =40 N ,a =10 m/s 2,A 错误,B 正确;斜面体对楔形物体的作用力F N2==mg =10 N ,C 错误;外力F 增大,则斜面体加速度增mgsin 45°22加,楔形物体不能获得那么大的加速度,将会相对斜面体沿斜面上滑,D 正确.6.(2020·安徽合肥市模拟)如图6所示,钢铁构件A 、B 叠放在卡车的水平底板上,卡车底板与B 间的动摩擦因数均为μ1,A 、B 间动摩擦因数为μ2,μ1>μ2,卡车刹车的最大加速度为a (a >μ2g ),可以认为最大静摩擦力与滑动摩擦力大小相等,卡车沿平直公路行驶途中遇到紧急刹车情况时,要求其刹车后在s 0距离内能安全停下,则卡车行驶的速度不能超过( )图6A. B.2as 02μ1gs 0C. D.2μ2gs 0(μ1+μ2)gs 0答案 C解析 若卡车以最大加速度刹车,则由于a >μ2g ,A 、B 之间发生相对滑动,故不能以最大加速度刹车,由于刹车过程中要求A 、B 和车相对静止,当A 、B 整体相对车发生滑动时,a 1==μ1g ,当A 、B 间发生相对滑动时,a 2==μ2g ,由于μ1>μ2,所以μ1(mA +mB )gmA +mB μ2mAg mA a 1>a 2,即当以a 1刹车时,A 、B 间发生相对滑动,所以要求整体都处于相对静止时,汽车刹车的最大加速度为a 2,v 02=2μ2gs 0,解得v 0=,C 项正确.2μ2gs 07.(多选)(2019·广东湛江市第二次模拟)如图7所示,a 、b 、c 为三个质量均为m 的物块,物块a 、b 通过水平轻绳相连后放在水平面上,物块c 放在b 上.现用水平拉力作用于a ,使三个物块一起水平向右匀速运动.各接触面间的动摩擦因数均为μ,重力加速度大小为g .下列说法正确的是( )图7A.该水平拉力大于轻绳的弹力B.物块c 受到的摩擦力大小为μmgC.当该水平拉力增大为原来的1.5倍时,物块c 受到的摩擦力大小为0.5μmgD.剪断轻绳后,在物块b 向右运动的过程中,物块c 受到的摩擦力大小为μmg答案 ACD解析 三物块一起做匀速直线运动,由平衡条件,对a 、b 、c 系统:F =3μmg ,对b 、c 系统:F T =2μmg ,则:F >F T ,即水平拉力大于轻绳的弹力,故A 正确;c 做匀速直线运动,处于平衡状态,则c 不受摩擦力,故B 错误;当水平拉力增大为原来的1.5倍时,F ′=1.5F =4.5μmg ,由牛顿第二定律,对a 、b 、c 系统:F ′-3μmg =3ma ,对c :F f =ma ,解得:F f =0.5μmg ,故C 正确;剪断轻绳后,b 、c 一起做匀减速直线运动,由牛顿第二定律,对b 、c 系统:2μmg =2ma ′,对c :F f ′=ma ′,解得:F f ′=μmg ,故D 正确.8.(多选)(2020·湖北荆州市高三上学期质量检测)如图8所示,倾角为30°的光滑斜面上放一质量为m 的盒子A ,A 盒用轻质细绳跨过光滑轻质定滑轮与B 盒相连,A 盒与定滑轮间的细绳与斜面平行,B 盒内放一质量为的物体.如果把这个物体改放在A 盒内,则B 盒加速度m2恰好与原来等值反向,重力加速度大小为g ,则B 盒的质量m B 和系统的加速度a 的大小分别为( )图8A.m B =B.m B =m 43m 8C.a =0.2gD.a =0.4g答案 BC解析 当物体放在B 盒中时,以A 、B 和B 盒内的物体整体为研究对象,根据牛顿第二定律有(m B g +mg )-mg sin 30°=(m +m B +m )a1212当物体放在A 盒中时,以A 、B 和A 盒内的物体整体为研究对象,根据牛顿第二定律有(m +m )g sin 30°-m B g =(m +m B +m )a 1212联立解得m B =3m 8加速度大小为a =0.2g故A 、D 错误、B 、C 正确.9.(2019·广东汕头市模拟)如图9所示,载货车厢通过悬臂固定在缆绳上,缆绳与水平方向夹角为θ,当缆绳带动车厢以加速度a 匀加速向上运动时,货物在车厢中与车厢相对静止,则货物与车厢的动摩擦因数至少为(悬臂竖直,最大静摩擦力等于滑动摩擦力,重力加速度为g )( )图9A.B.a sin θg +a cos θa cos θg +a sin θC.D.a sin θg -a cos θa cos θg -a sin θ答案 B解析 把加速度沿水平方向和竖直方向进行分解,对货物进行受力分析有F N -mg =ma sinθ,F f =ma cos θ≤μF N ,联立得出μ≥,B 正确.a cos θg +a sinθ10.(2019·广东深圳市模拟)如图10所示,两个质量均为m 的相同的物块叠放在一个轻弹簧上面,处于静止状态.弹簧的下端固定于地面上,弹簧的劲度系数为k .t =0时刻,给A 物块一个竖直向上的作用力F ,使得两物块以0.5g 的加速度匀加速上升,下列说法正确的是( )图10A.A 、B 分离前合外力大小与时间的平方t 2成线性关系B.分离时弹簧处于原长状态C.在t =时刻A 、B 分离2m k D.分离时B 的速度大小为gm4k 答案 C解析 A 、B 分离前两物块做匀加速运动,合外力不变,选项A 错误;开始时弹簧的压缩量为x 1,则2mg =kx 1;当两物块分离时,加速度相同且两物块之间的弹力为零,对物体B ,有kx 2-mg =ma ,且x 1-x 2=at 2,解得x 1=,x 2=,t =,此时弹簧仍处于压缩122mg k 3mg 2k 2mk 状态,选项B 错误,C 正确;分离时B 的速度大小为v =at =g ·=g ,选项D 错误.122m k m2k。

动力学中临界问题

动力学中临界问题

2m k
D.这个过程A的位移为 mg k
图13
ACD
一弹簧称的称盘质量m1=1.5kg,盘内放一物体P,P的质量
m2=10.5kg,弹簧质量不计,其劲度系数k=800N/m,系统处于静
止状态,现给P施加一竖直向上的力F使P从静止开始向上做匀 加速运动,已知在最初0.2s内F是变力,在0.2s后F是恒力,求F
(3)数学方法
将物理过程转化为数学表达式,再由数学中求极值的方法,求出临界条件。通常 要涉及二次函数、不等式、三角函数等。
典型问题一:张紧的绳子变成松驰绳子的临界条件是FT=0
a
典型问题二:相互挤压的物体发生分离的临界条件是FN=0
变式7 (多选)(2018·盐城中学段考)如图13所示,在倾角θ=30°的光滑斜面上
、t、x五个量中知“ 三”可求“二”
找准角度不要与斜面 倾角混淆
(1)极限法
特征:题目中出现“最大”、“最小”、“刚好”等关键词时,一般隐含着临界问题。处 理方法:常把物理问题或过程推向极端,从而将临界状态及临界条件显露出来,以 达到快速求解的目的。
(2)假设法
特征:有些物理过程无明显的临界问题线索,但在变化过程中可能出现临界状态, 也可能不会出现临界状态。处理方法:一般用假设法,即假设出现某种临界状态, 分析物体的受力情况及运动状态与题设是否相符,然后根据实际情况进行处理。
的最小值和最大值各为多少?
典型问题三:相对静止的物体发生相对运题,详尽分析问题中变化的过程(包括分析整体 过程中有几个阶段); (2)寻找过程中变化的物理量; (3)探索物理量的变化规律; (4)确定临界状态,分析临界条件,找出临界关系。 挖掘临界条件是解题的关键。
2.几种临界状态和其对应的临界条件如下表所示:

高中物理中的临界与极值问题

高中物理中的临界与极值问题

有关“物理”的临界与极值问题高中物理中的临界与极值问题涉及到多个知识点,包括牛顿第二定律、圆周运动、动量守恒等。

有关“物理”的临界与极值问题如下:1.牛顿第二定律与临界问题:●牛顿第二定律描述了物体的加速度与合外力之间的关系。

当物体受到的合外力为零时,物体处于平衡状态。

●在某些情况下,物体受到的合外力不为零,但物体仍然处于平衡状态,这是因为物体受到的合外力恰好等于某个临界值。

这种状态被称为“临界平衡”。

●在解决与临界平衡相关的问题时,通常需要考虑物体的平衡条件和牛顿第二定律。

通过分析物体的受力情况,可以确定物体是否处于临界平衡状态,以及需要施加多大的力才能使物体离开临界平衡状态。

2.圆周运动中的极值问题:●圆周运动中的极值问题通常涉及向心加速度和线速度的最大值和最小值。

●当物体在圆周运动中达到最大速度时,其向心加速度最小。

此时,物体的线速度最大,而向心加速度为零。

●当物体在圆周运动中达到最小速度时,其向心加速度最大。

此时,物体的线速度最小,而向心加速度为最大值。

●在解决与圆周运动中的极值问题相关的问题时,通常需要考虑向心加速度和线速度之间的关系,以及如何通过分析物体的受力情况来确定其最大速度和最小速度。

3.动量守恒与极值问题:●动量守恒定律描述了系统在不受外力作用的情况下,系统内各物体的动量之和保持不变。

●在某些情况下,系统受到的外力不为零,但系统仍然保持动量守恒。

这是因为系统受到的外力恰好等于某个临界值。

这种状态被称为“临界动量守恒”。

在解决与临界动量守恒相关的问题时,通常需要考虑系统的动量守恒条件和外力的作用。

通过分析系统的受力情况,可以确定系统是否处于临界动量守恒状态,以及需要施加多大的外力才能使系统离开临界动量守恒状态。

旋转圆法解决磁场临界问题

旋转圆法解决磁场临界问题

旋转圆法解决磁场临界问题旋转圆法是解决磁场临界问题的一种常见方法,它主要基于电磁学原理和数学计算方法,通过构建旋转圆的方式来求解磁场临界值。

本文将从以下几个方面展开介绍旋转圆法的主要内容。

一、旋转圆法的基本原理旋转圆法是一种基于电磁学原理和数学计算方法的解决磁场临界问题的方法。

其基本思想是:在磁场中存在一个旋转圆,通过对旋转圆内外两侧的磁场进行分析,可以得到磁场在旋转圆上的切向分量和法向分量,并进而求解出磁场临界值。

二、旋转圆法的具体步骤1. 绘制旋转圆:首先需要根据实际情况绘制出一个合适大小和位置的旋转圆。

2. 确定计算区域:根据实际情况确定计算区域,并将其划分为内外两侧。

3. 计算切向分量:对于内外两侧的磁场,可以通过高斯定理或安培环路定理等方法计算出其切向分量。

4. 计算法向分量:根据旋转圆的法向方向,可以将内外两侧的磁场分别投影到法向方向上,从而得到其法向分量。

5. 求解临界值:根据切向分量和法向分量的计算结果,可以求解出磁场在旋转圆上的大小和方向,并进而求解出磁场临界值。

三、旋转圆法的优缺点旋转圆法作为一种常见的解决磁场临界问题的方法,具有以下优缺点:1. 优点:旋转圆法简单易行,适用范围广泛;计算结果相对准确,能够满足实际需求;计算过程可视化,易于理解和掌握。

2. 缺点:旋转圆法需要对计算区域进行划分,并对内外两侧的磁场进行精确测量或估算;计算过程中需要考虑多种因素,如边界条件、材料特性等;在某些情况下可能存在误差或不确定性。

四、总结与展望旋转圆法是一种基于电磁学原理和数学计算方法的解决磁场临界问题的方法。

通过构建旋转圆并对其内外两侧的磁场进行分析,可以求解出磁场临界值。

旋转圆法具有简单易行、适用范围广泛、计算结果相对准确等优点,但也存在一些缺点和不足。

未来,随着科学技术的不断发展和进步,旋转圆法或许会得到更多的改进和完善,在实际应用中发挥更加重要的作用。

超级经典实用的临界问题和极值问题(吐血整理)

超级经典实用的临界问题和极值问题(吐血整理)

如图3—51所示,把长方体切成质量分别为m和M的 两部分,切面与底面的夹角为θ长方体置于光滑的 水平地面,设切面亦光滑,问至少用多大的水平力 推m,m才相对M滑动?
如图1所示,质量均为M的两个木块A、B在水平力F 的作用下,一起沿光滑的水平面运动,A与B的接触面 光滑,且与水平面的夹角为60°,求使A与B一起运 动时的水平力F的范围。
临界问题和极值问题
一、临界状态
在物体的运动状态发生变化的过程中,往往 达到某一特定的状态时,有关物理量将发生 变化,此状态即为临界状态,相应物理量的 值为临界值。【讨论相互作用的物体是否会 发生相对滑动,相互接触的物体是否会分离 等问题就是临界问题】 注意:题目中出现“最大、刚好、恰好、最 小”等词语时,常有临界问题。
F
A
ห้องสมุดไป่ตู้
B 60°
图1
1、在水平向右运动的小车上,有一倾角θ=370的光 滑斜面,质量为 m 的小球被平行于斜面的细绳系住 而静止于斜面上,如图所示。当小车以(1)a1=g, (2) a2=2g 的加速度水平向右运动时,绳对小球的拉 力及斜面对小球的弹力各为多大?
a
θ
二、动力学中常见的临界问题
1、接触的两物体发生脱离(分离)临界条件: 弹力FN=0; 2、两相对静止的物体发生相对滑动的临界条 件:静摩擦力达到最大值,即f=fMax; 3、绳子断裂和松弛的临界条件:(1)断裂 的临界条件:绳子受的拉力达到它能承受拉 力的最大值;(2)松弛临界条件:绳子受的 拉力为零,即FT=0
4、加速度达到最大和最小的临界条件:物体 受到变化的合外力作用,加速度不断变化, 当所受合外力最大时,加速度最大;合外力 最小时,加速度最小; 5、速度最大或最小的临界条件:加速度为零, 即a=0

圆盘临界问题总结

圆盘临界问题总结

圆盘临界问题总结
圆盘临界问题通常指的是在平面上放置一个圆盘,通过调整其位置,使得盘子的某一点或多点与平面上的某些条件达到特定的临界状态。

这种问题在物理学、工程学和数学等领域都有应用。

以下是解决这类问题时可能的总结:
数学建模:
使用几何和数学工具对圆盘的位置、形状等进行建模。

考虑约束条件,如与平面的接触点、某一点到平面的距离等。

优化问题:
将圆盘的位置调整问题转化为优化问题,寻找使得某一目标函数达到最优值的位置。

可以采用数值优化方法或数学规划等技术进行求解。

静力学分析:
考虑平衡状态下的静力学平衡条件,包括力矩平衡等。

分析在平面上放置圆盘时所受的力和力矩,以确定平衡位置。

稳定性分析:
考虑圆盘的稳定性问题,即在微小扰动下是否能保持平衡。

通过研究平衡位置的稳定性来确定可能的临界状态。

约束条件的处理:
处理与平面的接触点、与其他物体的接触等约束条件,确保问题的实际可解性。

通过约束条件的引入,使得问题更符合实际情境。

实验验证:
利用物理实验或计算机模拟进行验证,确保理论分析的正确性。

考虑不同参数和条件下的实际情况,对理论结果进行验证。

应用领域:
考虑圆盘临界问题在不同领域的应用,例如工程结构设计、物理实验等。

确定问题的具体背景和实际需求,有针对性地进行建模和分析。

总的来说,解决圆盘临界问题需要综合运用数学、物理学、工程学等多学科知识,通过建模、优化、分析等方法来寻找问题的合理解。

求代数函数在半代数系统约束下的临界值的符号算法

求代数函数在半代数系统约束下的临界值的符号算法

求代数函数在半代数系统约束下的临界值的符号算法随着科学技术的不断进步,代数函数在各个领域的应用越来越广泛。

然而,在某些情况下,我们需要在半代数系统的约束下,求解代数函数的临界值。

本文将介绍一种符号算法,用于求解代数函数在半代数系统约束下的临界值。

首先,我们需要明确半代数系统的概念。

半代数系统是一种在代数系统基础上加入了一些特定的约束条件的数学模型。

在半代数系统中,运算符的结果仅取值于非负实数集合,且运算符满足一系列特定的性质。

为了求解代数函数在半代数系统约束下的临界值,我们首先需要将代数函数转化为半代数形式。

具体而言,我们可以使用符号算法来将代数函数中的变量和常数转化为半代数变量和半代数常数。

符号算法的基本思想是将代数函数中的变量和常数替换为半代数变量和半代数常数,并将代数运算符替换为半代数运算符。

接下来,我们需要确定半代数系统的约束条件。

这些约束条件可以是代数函数在特定区间内的取值范围,或者是代数函数的导数在特定区间内的变化趋势等。

根据约束条件,我们可以推导出代数函数在半代数系统中的约束条件。

在求解代数函数的临界值时,我们可以利用符号算法和约束条件来进行推导和计算。

具体而言,我们可以使用符号计算软件,如Mathematica或Maple等,来进行代数函数和半代数函数的转化,以及约束条件的推导和计算。

通过对半代数函数进行求导,并根据约束条件进行推导和计算,我们可以得到代数函数在半代数系统约束下的临界值。

需要注意的是,在使用符号算法求解代数函数的临界值时,我们需要保证约束条件的合理性和有效性。

同时,由于符号算法的计算复杂性,求解过程可能会比较耗时。

因此,在实际应用中,我们需要根据具体情况,合理选择符号算法的求解方法和计算工具,以提高求解效率和准确性。

总之,求解代数函数在半代数系统约束下的临界值是一个具有挑战性的问题。

本文介绍了一种基于符号算法的求解方法,并强调了约束条件的重要性。

希望本文能为相关领域的研究者提供一些参考和启示,推动代数函数在半代数系统中的应用和发展。

临界欧拉公式

临界欧拉公式

临界欧拉公式欧拉公式是数学中一个重要且存在价值的定理,它最初是由18世纪德国数学家欧拉提出的,它表达的是pi(π)和自然对数之间的关系:2π。

它可以说是数学研究的基础,它可以用来解决各种复杂的计算问题,甚至还可以帮助我们求解宇宙的起源。

欧拉公式是以pi(π)为基础,它可以写成如下形式:2π =( Zn/n)这里面,n是一个任意大小的整数;Zn是一个虚数,它表示着暂时未知的值。

临界欧拉公式是以上欧拉公式的一般形式,从概念上讲,它就是分析欧拉公式在大n值时,其表达式极限的定义。

临界欧拉公式可以写成如下形式:2π =( Zn/n) + O(1/n^2)其中,O表示随n的增大而减小的系数,也就是所谓的约等于运算。

临界欧拉公式的求解法有很多种,最常用的就是基于分段的数值积分法,即根据n的变化,将原来的表达式分成一段一段的,再分别求出每段的积分值,最后将所有积分值相加得出求解结果。

临界欧拉公式的求解结果有很多,如Euler-Mascheroni常数,可以用来对欧拉公式进行更精确的分析,从而获得更准确的求解结果,而且它也是许多更复杂的数学问题和实验结果求解的基础。

基于临界欧拉公式,我们可以求解一系列的七定理,其中包括了克拉默-欧拉定理、拉格朗日定理、几何学定理等,它们对数学的深层次理解和发展都有很大的贡献。

在实际应用中,临界欧拉公式也可以用来解决各种实际工程问题,如计算心率、分析经济数据等,使我们有更好地掌握关键数据和推算未来的发展情况,为我们的实际行动提供有力支持。

总之,临界欧拉公式是一个显示出数学规律、传播知识的重要定理,它也是解决实际问题的重要武器,为我们的实践活动和科学研究奠定了坚实的基础。

专题3 临界极值问题(学生版)--2025版动力学中的九类常见模型精讲精练讲义

专题3 临界极值问题(学生版)--2025版动力学中的九类常见模型精讲精练讲义

动力学中的九类常见模型精讲精练专题3 临界极值问题【问题解读】1.题型概述在动力学问题中出现某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态即临界问题。

问题中出现“最大”“最小”“刚好”“恰能”等关键词语,一般都会涉及临界问题,隐含相应的临界条件。

2.临界问题的常见类型及临界条件(1)接触与分离的临界条件:两物体相接触(或分离)的临界条件是弹力为零且分离瞬间的加速度、速度分别相等。

临界状态是某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态,有关的物理量将发生突变,相应的物理量的值为临界值。

(2)相对静止或相对滑动的临界条件:静摩擦力达到最大静摩擦力。

(3)绳子断裂与松弛的临界条件:绳子断与不断的临界条件是实际张力等于它所能承受的最大张力;绳子松弛的临界条件是绳上的张力恰好为零。

(4)出现加速度最值与速度最值的临界条件:当物体在变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合力最大时,具有最大加速度;当所受合力最小时,具有最小加速度。

当出现加速度为零时,物体处于临界状态,对应的速度达到最大值或最小值。

【方法归纳】求解临界、极值问题的三种常用方法极限法把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的假设法临界问题存在多种可能,特别是非此即彼两种可能时,变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题数学方法 将物理过程转化为数学公式,根据数学表达式解出临界条件出隐含的临界条件。

【典例精析】【典例】. (2024河北安平中学自我提升)如图所示,A 、B 两个木块静止叠放在竖直轻弹簧上,已知A B 1kg m m ==,轻弹簧的劲度系数为100N/m 。

若在木块A 上作用一个竖直向上的力F ,使木块A 由静止开始以22m/s 的加速度竖直向上做匀加速直线运动,从木块A 向上做匀加速运动开始到A 、B 分离的过程中。

两种介质临界角的公式

两种介质临界角的公式

两种介质临界角的公式
临界角是光线从一种介质射入另一种介质时的最大偏折角。

根据光的折射定律,我们可以得到两种介质临界角的公式。

考虑光线从光密介质射入光疏介质的情况。

假设光线从介质1射入介质2,临界角用θc表示。

根据折射定律,我们有sinθc = n2/n1,其中n1和n2分别表示介质1和介质2的折射率。

当光线的入射角大于临界角时,光线将无法从介质1射入介质2,而会发生全反射。

这一现象在实际生活中很常见,比如水中的鱼儿看不到水面上的事物。

接下来,考虑光线从光疏介质射入光密介质的情况。

同样假设光线从介质1射入介质2,临界角用θc'表示。

根据折射定律,我们有sinθc' = n2'/n1',其中n1'和n2'分别表示介质1和介质2的折射率。

同样地,当光线的入射角大于临界角时,光线将无法从介质1射入介质2,而会发生全反射。

这种现象在光纤通信中得到了广泛应用,光信号通过光纤的全反射传输,避免了信号的能量损失。

临界角的公式为我们解释了光在不同介质之间传播的规律,也给我们提供了很多实际应用的思路。

通过合理设计介质的折射率,我们可以实现光的控制传输和反射,从而应用于光学器件和通信系统中。

这些技术的发展,不仅推动了科学的进步,也为人类的生活带来了便利和进步。

通过深入研究临界角的公式和相关的光学原理,我们可以更好地理解和应用光的特性,为人类的科学研究和生活创造更
多可能性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档