数学分析求极限的方法

合集下载

极限求解方法总结

极限求解方法总结

千里之行,始于足下。

极限求解方法总结极限是高等数学中的重要概念,是数学分析和微积分的基础。

在实际问题中,往往需要通过求解极限来得到数学模型的一些重要结果。

本文将对极限求解的方法进行总结与归纳。

1. 基本极限公式:在求解极限问题时,我们首先要生疏一些基本的极限公式,这些公式可以挂念我们快速求解极限问题。

常用的基本极限公式有:- 数列极限:常数数列、等差数列、等比数列、级数等。

- 函数极限:幂函数、指数函数、对数函数、三角函数等。

2. 替换法:替换法是求解极限问题时常用的一种方法。

通过将极限问题中的变量进行替换,使得计算变得更加简洁。

常用的替换法有以下几种:- 分子分母同时除以最高次数的项;- 用无穷小量代替无穷大量;- 用无穷小量的幂代替无穷小量。

3. 夹逼准则:夹逼准则是求解极限问题的一种重要方法。

通过找到一个上界和一个下界,使得极限问题的解被夹在这两个界之间,可以确定极限的存在性和取值。

常用的夹逼准则有以下几种:- 当函数在某一点四周趋于同一个极限;- 当两个函数的极限分别为一正一负,但两个函数的确定值函数的极限相等。

4. 施瓦茨不等式:第1页/共3页锲而不舍,金石可镂。

施瓦茨不等式是求解极限问题中常用的一种方法。

它可以用来估量两个函数的内积,从而得到某些函数的极限。

施瓦茨不等式的形式如下:\\[|\\int_{a}^{b}f(x)g(x)dx|\\leq\\sqrt{\\int_{a}^{b}f^2(x)dx}\\s qrt{\\int_{a}^{b}g^2(x)dx}\\]5. 利用基本不等式:在求解极限问题时,我们可以利用一些基本的不等式来推导和求解极限问题。

常用的基本不等式有以下几个:- 平均值不等式:对于两个正数a和b,平均值不等式可以表示为\\[(a+b)/2≥\\sqrt{ab}\\]- 柯西不等式:对于两个数列或者两个函数,柯西不等式可以表示为\\[\\sum a_kb_k≤(\\sum a_k^2)^{1/2}(\\sum b_k^2)^{1/2}\\]6. 等价无穷小替换法:在求解极限问题时,假如消灭了不适合直接求解的形式,可以尝试使用等价无穷小替换法。

求数列极限的十五种解法

求数列极限的十五种解法

求数列极限的十五种方法1.定义法N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ;记作:lim n n a a →∞=,否则称{}n a 为发散数列.例1.求证:1lim 1nn a →∞=,其中0a >.证:当1a =时,结论显然成立.当1a >时,记11n a α=-,则0α>,由()1111(1)nn a n n ααα=+≥+=+-,得111na a n--≤, 任给0ε>,则当1a n N ε->=时,就有11n a ε-<,即11na ε-<,即1lim 1nn a →∞=.当01a <<时,令1b a=,则1b >,由上易知:1lim 1nn b →∞=,∴111lim 1lim n n nn a b→∞→∞==.综上,1lim 1nn a →∞=,其中0a >.例2.求:7lim !nn n →∞. 解:变式:77777777777771!1278917!6!n n n n n n=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅≤⋅=⋅-;∴77710!6!n n n -≤⋅, ∴0ε∀>,7716!N ε⎡⎤∃=⋅⎢⎣⎦,则当n N >时,有77710!6!n n n ε-≤⋅<;∴7lim 0!n n n →∞=. 2.利用柯西收敛准则柯西收敛准则:数列{}n a 收敛的充要条件是:0ε∀>,∃正整数N ,使得当n m N >、时,总有:n m a a ε-<成立. 例3.证明:数列1sin (1, 2, 3, )2nn kk kx n ===⋅⋅⋅∑为收敛数列. 证:11111sin(1)sin 111112(122222212n mn m m n m n m m m n x x m -+++-+-=+⋅⋅⋅+≤+⋅⋅⋅+<<<-, 0ε∀>,取1N ε⎡⎤=⎢⎥⎣⎦,当n m N >>时,有n m x x ε-<,由柯西收敛准则,数列{}n x 收敛.例4.(有界变差数列收敛定理)若数列{}n x 满足条件:11221n n n n x x x x x x M ----+-+⋅⋅⋅-≤,(1, 2, )n =⋅⋅⋅,则称{}n x 为有界变差数列,试证:有界变差数列一定收敛.证:令1112210, n n n n n y y x x x x x x ---==-+-+⋅⋅⋅-,那么{}n y 单调递增,由已知可知:{}n y 有界,故{}n y 收敛, 从而0ε∀>,∃正整数N ,使得当n m N >>时,有n m y y ε-<;此即1121n m n n n n m m x x x x x x x x ε---+-≤-+-+⋅⋅⋅-<;由柯西收敛准则,数列{}n x 收敛. 注:柯西收敛准则把N ε-定义中的n a 与a 的关系换成了n a 与m a 的关系,其优点在于无需借用数列以外的数a ,只需根据数列本身的特征就可鉴别其敛散性. 3.运用单调有界定理单调有界定理:在实数系中,有界的单调数列必有极限.例5.证明:数列n x =n 个根式,0a >,1, 2, n = )极限存在,并求lim nn x →∞.证:由假设知n x =;①用数学归纳法可证:1, n n x x k N +>∈;② 此即证{}n x 是单调递增的.事实上,10n x +<<<1=;由①②可知:{}n x 单调递增有上界,从而lim n n x l →∞=存在,对①式两边取极限得:l =解得:l =l =;∴lim n n x →∞=4.利用迫敛性准则(即两边夹法)迫敛性:设数列{}n a 、{}n b 都以a 为极限,数列{}n c 满足:存在正数N ,当n N >时,有:n n n a c b ≤≤,则数列{}n c 收敛,且lim n n c a →∞=. 例6.求:22212lim()12n nn n n n n n n→∞++⋅⋅⋅+++++++.解:记:2221212n n x n n n n n n n =++⋅⋅⋅+++++++,则:2212121n n nx n n n n n ++⋅⋅⋅+++⋅⋅⋅+≤≤++++;∴22(1)(1)2(2)2(1)n n n n n x n n n n ++≤≤+++;从而22(1)1(1)lim lim 2(2)22(1)n n n n n n n n n n →∞→∞++==+++, ∴由迫敛性,得:222121lim()122n n n n n n n n n →∞++⋅⋅⋅+=++++++.注:迫敛性在求数列极限中应用广泛,常与其他各种方法综合使用,起着基础性的作用. 5.利用定积分的定义计算极限黎曼积分定义:设为()f x 定义在[, ]a b 上的一个函数,J 为一个确定的数,若对任给的正数0ε>,总存在某一正数δ,使得对[, ]a b 的任意分割T ,在其上任意选取的点集{}i ξ,i ξ∈[]1,i i x x -,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称函数()f x 在[, ]a b 上(黎曼)可积,数J 为()f x 在[, ]a b 上的定积分,记作()baJ f x dx =⎰.例7.求:()()11lim !2!nnn n n n --→∞⎡⎤⋅⋅⎣⎦. 解:原式n n →∞→∞==112lim (1)(1)(1)nn n n n n →∞⎡⎤=++⋅⋅⋅+⎢⎥⎣⎦11exp lim ln(1)nn i i nn →∞=⎛⎫=+ ⎪⎝⎭∑()()1expln(1)exp 2ln 21x dx =+=-⎰.例8.求:2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫⎪++⋅⋅⋅+ ⎪+ ⎪++⎪⎝⎭. 解:因为:222sinsinsin sin sin sin sin sin sin 111112n n n nn n n n n n n n n n n n n n nπππππππππ++⋅⋅⋅+++⋅⋅⋅+<++⋅⋅⋅+<+++++,又:2sinsinsin 12limlim (sin sin sin )11n n n n n nn n n n n n n n ππππππππ→∞→∞++⋅⋅⋅+⎡⎤=⋅⋅++⋅⋅⋅+⎢⎥++⎣⎦∴02sinsinsin 12limsin 1n n nn n xdx n ππππππ→∞++⋅⋅⋅+=⋅=+⎰; 同理:2sinsinsin 2lim1n n nn n n nππππ→∞++⋅⋅⋅+=+; 由迫敛性,得:2sin sin sin 2lim 1112n n n n n n n n n ππππ→∞⎛⎫⎪++⋅⋅⋅+= ⎪+ ⎪++⎪⎝⎭. 注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时,可以考虑能否将极限看作是一个特殊的函数定积分的定义;部分相关的数列极限直接利用积分定义可能比较困难,这时需要综合运用迫敛性准则等方法进行讨论.6.利用(海涅)归结原则求数列极限归结原则:0lim ()x xf x A →=⇔对任何0 ()n x x n →→∞,有lim ()n n f x A →∞=. 例9.求:11lim 1n n e n →∞-. 解:11001lim lim ()111n nx x n n e e e e n n=→∞→∞--'===-. 例10.计算:211lim 1nn n n →∞⎛⎫+- ⎪⎝⎭. 解:一方面,2111(1)(1) ()n n e n n n n+-<+→→∞; 另一方面,2221112221111(1)(1)(1n n n n n n n n n n n n n -------+-=+≥+;由归结原则:(取2, 2, 3, 1n n x n n ==⋅⋅⋅-),22222111222211111lim(1)lim(1lim(1lim(1)lim(1)n n n x n n n n n n n x n n n n e x n n n n ----→∞→∞→∞→∞→∞----+=+⋅+=+=+=; 由迫敛性,得:211lim(1)nn e n n →∞+-=. 注:数列是一种特殊的函数,而函数又具有连续、可导、可微、可积等优良性质,有时我们可以借助函数的这些优良性质将数列极限转化为函数极限,从而使问题得到简化和解决. 7.利用施托尔茨(stolz )定理求数列极限stolz 定理1:()∞∞型:若{}n y 是严格递增的正无穷大数列,它与数列{}n x 一起满足:11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.stolz 定理2:0()0型:若{}n y 是严格递减的趋向于零的数列,n →∞时,0n x →且11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.例11.求:112lim ()p p pp n n p N n +→∞++⋅⋅⋅+∈. 解:令112, , p p p p n n x n y n n N +=++⋅⋅⋅+=∈,则由定理1,得:112lim p p p p n n n +→∞++⋅⋅⋅+=11(1)lim (1)p p p n n n n ++→∞+=+-1(1)1lim (1)1(1)12p n p p n p p p p n n →∞-+=+⋅++-+⋅⋅⋅+. 注:本题亦可由方法五(即定积分定义)求得,也较为简便,此处略.例12.设02ln nk nk n CS n ==∑,求:lim n n S →∞. 解:令2n y n =,则{}n y 单调递增数列,于是由定理2得:lim n n S →∞=02ln lim nknk n C n =→∞∑110022ln ln lim (1)n nk k n nk k n C C n n++==→∞-=+-∑∑01ln 1lim 21nk n n n k n =→∞+-+=+∑11(1)ln(1)ln lim 21n k n n n k n +=→∞++-=+∑ 1ln()(1)ln(1)ln ln(1)1lim lim 2122nn n n n n n n n n n →∞→∞+++--+===+.注:stolz 定理是一种简便的求极限方法,特别对分子、分母为求和型,利用stolz 定理有很大的优越性,它可以说是求数列极限的洛必达(L'Hospita )法则. 8.利用级数求和求数列极限由于数列与级数在形式上的统一性,有时数列极限的计算可以转化为级数求和,从而通过级数求和的知识使问题得到解决.例13.求:212lim()n n na a a→∞++⋅⋅⋅+,(1)a >. 解:令1x a =,则1x <,考虑级数:1nn nx ∞=∑.∵11(1)lim lim 1n n n n n n a n x x a nx ++→∞→∞+==<, ∴此级数是收敛的.令1()nn S x nx ∞==∑11n n x nx∞-==⋅∑,再令11()n n f x nx ∞-==∑,∵111()xxn n n n f t dt nt dt x ∞∞-=====∑∑⎰⎰1xx-;∴21()(1(1)x f x x x '==--; 而2()()(1)x S x x f x x =⋅=-;因此,原式=1112()(1)a S a a ---==-.9.利用级数收敛性判断极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此数列极限的存在性及极限值问题,可转化为研究级数收敛性问题. 例14.设00x >,12(1)2n n nx x x ++=+(0, 1, 2, )n =⋅⋅⋅,证明:数列{}n x 收敛,并求极限lim nn x →∞. 证:由00x >,可得:0n x >(0, 1, 2, )n =⋅⋅⋅,令2(1)(), (0)2x f x x x+=>+, 则2210'()(2)2f x x <=<+,且12(1)(), 0, (0, 1, 2, )2n nn n nx f x x x n x ++==>=⋅⋅⋅+, 考虑级数:10n n n x x ∞+=-∑;由于11n n n n x x x x +--=-11()()n n n n f x f x x x ---=-11'()()12n n n n f x x x x ξ---<-;所以,级数10n n n x x ∞+=-∑收敛,从而10()n n n x x ∞+=-∑收敛.令()10nn k k k S x x +==-∑10n x x +=-,∵lim n n S →∞存在,∴10lim lim n n n n x x Sl +→∞→∞=+=(存在);对式子:12(1)2n n n x xx ++=+,两边同时取极限:2(1)2l l l+=+,∴l =或l =(舍负);∴lim nn x →∞= 例15.证明:111lim(1ln )23n n n→∞++⋅⋅⋅+-存在.(此极限值称为Euler 常数). 证:设1111ln 23n a n n =++⋅⋅⋅+-,则1n n a a --=[]1ln ln(1)n n n---; 对函数ln y n =在[1, ]n n -上应用拉格朗日中值定理, 可得:1ln ln(1) (01)1n n n θθ--=<<-+,所以1211111(1)(1)n n a a n n n n n θθθ---=-=<-+-+-; 因为221(1)n n ∞=-∑收敛,由比较判别法知:12n n n a a ∞-=-∑也收敛, 所以lim nn a →∞存在,即111lim(1ln )23n n n→∞++⋅⋅⋅+-存在. 10.利用幂级数求极限利用基本初等函数的麦克劳林展开式,常常易求出一些特殊形式的数列极限. 例16.设11sin sin , sin sin(sin ) (2, 3, )n n x x x x n -===⋅⋅⋅,若sin 0x >,求:sin n n x →∞. 解:对于固定的x ,当n →∞时,1sin n x单调趋于无穷,由stolz 公式,有: 2222111lim sin lim lim 111sin sin sin n n n n n n n n n n x x x x →∞→∞→∞++-==-221lim 11sin (sin )sin n n n x x→∞=-46622220002244221()1sin 3lim lim lim 111sin (())sin 3t t t t t o t t t t t t t t o t t t +++→→→-⋅+⋅===----+46622004411()1()33lim lim 311()(1)33t t t t o t t o t t o t o ++→→-⋅+-⋅+===++. 11.利用微分中值定理求极限拉格朗日中值定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛.下面我们来看一下拉格朗日中值定理在求数列极限中的应用.例17.求:2lim (arctan arctan )1n a an n n →∞-+,(0)a ≠. 解:设()arctan f x x =,在[, 1a an n+上应用拉格朗日中值定理, 得:21()()( [, ]1111a a a a a af f n n n n n nξξ-=-∈++++,故当n →∞时,0ξ→,可知:原式22lim 11n a nn a n ξ→∞=⋅⋅=++. 12.巧用无穷小数列求数列极限引理:数列{}n x 收敛于a 的充要条件是:数列{}n x a -为无穷小数列. 注:该引理说明,若lim nn x a →∞=,则n x 可作“变量”替换:令n n x a α=+,其中{}n α是一个无穷小数列. 定理1:若数列{}n α为无穷小数列,则数列{}n α也为无穷小数列,反之亦成立. 定理2:若数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.推论1:设数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.例18.(算术平均收敛公式)设lim n n x a →∞=,求极限12limnn x x x n→∞++⋅⋅⋅+.解:由lim nn x a →∞=,作“变量”代换,令n n x a α=+,其中{}n α是一无穷小数列; 由定理2的结论有:12lim n n x x x n →∞++⋅⋅⋅+12()()()lim n n a a a nααα→∞++++⋅⋅⋅++= 1212()()lim lim 0n n n n na a a a n nαααααα→∞→∞+++⋅⋅⋅+++⋅⋅⋅+==+=+=.此题还可以用方法1(定义法)证明,也可通过方法7(stolz 公式)求得,此处略.例19.设lim n n x a →∞=,lim n n y b →∞=,求极限1211lim n n n n x y x y x y n-→∞++⋅⋅⋅+.解:由lim n n x a →∞=,lim n n y b →∞=,作“变量”代换,令n n x a α=+,n n y b β=+,其中{}n α,{}n β都是一无穷小数列, 故1211lim n n n n x y x y x y n -→∞++⋅⋅⋅+11()()()()lim n n n a b a b nαβαβ→∞+++⋅⋅⋅+++= 1111lim n n n n n ab b a n n n ααββαβαβ→∞+⋅⋅⋅++⋅⋅⋅++⋅⋅⋅+⎡⎤=+++⎢⎥⎣⎦ 因为0n β→()n →∞,所以{}n β有界数列,即n M β≤, 从而结合上述推论1,有:12110 ()nn n M n nnααααβαβ++⋅⋅⋅++⋅⋅⋅≤⋅→→∞,再根据定理1,即有:110 ()n n n nαβαβ+⋅⋅⋅→→∞;又由定理2,可知:10na nββ+⋅⋅⋅+⋅→,10 ()nb n nαα+⋅⋅⋅+⋅→→∞;∴1211lim n n n n x y x y x y ab n-→∞++⋅⋅⋅+=.注:利用无穷小数列求数列极限通常在高等数学和数学分析教材中介绍甚少,但却是一种很实用有效的方法.用这种方法求某类数列的极限是极为方便的. 13.利用无穷小的等价代换求某些函数列的极限定理:设函数()f x 、()g x 在0x =的某个领域有意义,()0g x >,0()lim 1()x f x g x →=,且当n →∞时,0mn a →(1, 2, 3, )m =⋅⋅⋅,11lim ()lim ()nnmn mn n n m m f a g a →∞→∞===∑∑,则在右端极限存在时成立.例20.求极限1lim 1)nn i →∞=∑.解:令()1f x =-,1()3g x x =,当0x →1x ~,由定理1,得:2111111lim 1)lim 3326nnn n i i i n→∞→∞===⋅=⋅=∑∑. 例21.求:2231lim (1)nn i i a n →∞=+∏,(a 为非零常数). 解:原式2331exp lim ln(1)nn i i a n →∞=⎛⎫=+ ⎪⎝⎭∑;令()ln(1)f x x =+,当0x →时,ln(1)x x +~, 由定理1,得:22333311lim ln(1)lim nnn n i i i i a a n n→∞→∞==+=∑∑223(1)(21)1lim 63n n n n a a n →∞++==;∴2231lim (1)nn i i a n →∞=+=∏21exp()3a . 注:我们知道,当0x →时,函数sin , tan , arcsin , arctan , 1, ln(1)x x x x x e x -+都x 与等价,倘若熟悉这些等价函数,观察它们与本文定理中的()f x 的关系,把求某些函数列极限问题转化为求熟知的数列极限问题,这样就会起到事半功倍的效果. 14.利用压缩映射原理求数列极限定义1:设()f x 在[, ]a b 上有定义,方程()f x x =在[, ]a b 上的解称为()f x 在[, ]a b 上的不动点. 定义2:若存在一个常数k ,且01k ≤<,使得[, ]x y a b ∀∈、有()()f x f y k x y -≤-,则称()f x 是[, ]a b 上的一个压缩映射.压缩映射原理:设称()f x 是[, ]a b 上的一个压缩映射且0x ∈[, ]a b ,1()n n x f x +=,对n N ∀∈,有[, ]n x a b ∈,则称()f x 在[, ]a b 上存在唯一的不动点c ,且lim nn x c →∞=. 例22.设12ax =,212n n a x x ++=(01)a <<,1, 2, n =⋅⋅⋅,求lim nn x →∞. 解:考察函数2()22a x f x =+,1[0,2ax +∈, 易见对1[0, ]2a x +∀∈,有:21()2n n n a x x f x ++==,11[0, 22a a x +=∈,1()12af x x +'=≤<; 所以,()f x 是压缩的,由压缩映射原理,数列{}n x 收敛.设lim nn x c →∞=,则c 是222a x x =+在1[0, ]2a +的解,解得1c =,即lim 1n n x →∞=例23.证明:数列n x =(n 个根式,14a >,1, 2, n =⋅⋅⋅)极限存在,并求lim nn x →∞.解:易知:n x =,考察函数:()f x =,[0, )x ∈+∞且在[0, )+∞上有:1f '<,因此,()f x 在[0, )+∞上是压缩的;1[0, )x =+∞,1()n n x f x +=,由压缩映射原理,数列{}n x 收敛且极限为方程:()x f x ==的解,解得:lim n n x →∞=本题也可通过方法三(单调有界定理)解得,此处略.注:压缩映射原理在实分析中有着十分广泛的应用,如用它可十分简单的证明稳函数存在定理、微分方程解的存在性定理,特别的在求一些数列极限中有着十分重要的作用,往往可以使数列极限问题得到简便快速的解决.15.利用矩阵求解一类数列的极限(1)若数列的递推公式形如:12n n n x px qx --=+且已知01x x 、,其中p q 、为常数且0p ≠,0q ≠,2, 3, n =⋅⋅⋅;解:可将递推公式写成矩阵形式,则有1111201010n n n n n x x x p q p q x x x ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅⋅= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2, 3, n =⋅⋅⋅,从而可利用线性代数知识求出n x 的表达式,并进一步求出lim nn x →∞.(2)若数列的递推公式形如:11n n n ax bx cx d--+=+且已知0x ,其中0c ≠且ad bc ≠,1, 2, n =⋅⋅⋅,解法1:令211n n n y cx d y ---+=,则1121()n n n y x d c y ---=-,11()n n n yx d c y -=-, 从而有:121211()(())n n n n n n y yy a d d b c y c y y ------=-+⋅,整理得:12()()n n n y a d y bc ad y --=++-,再由(1)可以求解. 解法2:设与关系式010ax b x cx d +=+对应的矩阵为a b A c b ⎛⎫= ⎪⎝⎭,由关系式11n nn ax b x cx d --+=+; 逐次递推,有00n nn n n a x b x c x d +=+,其对应的矩阵为nn n n a b B c d ⎛⎫= ⎪⎝⎭, 利用数学归纳法易证得n B A =,通过计算n A 可求出n x 的表达式,并进一步求出lim nn x →∞. 例24.证明:满足递推公式11(1)n n n x x x αα+-=+-(01)α<<的任何实数序列{}n x 有一个极限,并求出以α、0x 及1x 表示的极限.解:由已知可得:111111200111010n n n n n n x x x x A x x x x αααα-------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(110A αα-⎛⎫=⎪⎝⎭); 矩阵A 的特征值121, 1λλα==-,对应的特征向量分别为:''12(1, 1), (1, 1)ξξα==-;令1211(, )11P αξξ-⎛⎫== ⎪⎝⎭,则11001P AP α-⎛⎫= ⎪-⎝⎭,从而有:()()11111111111111120101n n n AP P ααααα----⎛⎫⎛⎫--⎛⎫⎛⎫==⎪⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭()()()()111111121111n nn n ααααααα--⎛⎫---+- ⎪= ⎪----+-⎝⎭; 于是,101(1(1))(1(1))2n n n x x x αααα=--+-+-⎡⎤⎣⎦-. 因为11α-<,所以lim(1)0nn α→∞-=,从而[]011lim (1)2n n x x x αα→∞=-+-. 例25.已知斐波那契数列定义为:1101 (1, 2, 1)n n n F F F n F F +-=+=⋅⋅⋅==;;若令1n n n F x F +=,01x =且111n n x x -=+,(1, 2, )n =⋅⋅⋅,证明极限lim nn x →∞存在并求此极限. 解:显然1011x x =+,相应矩阵0111A ⎛⎫= ⎪⎝⎭的特征值12 λλ==,对应的特征向量分别为:''12 1), 1)ξξ==;令()21121211, 111111P λλλλξξ⎛⎫--⎛⎫ ⎪==== ⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭,11211P λλ-⎫=⎪--⎭; 则有:11200P AP λλ-⎛⎫= ⎪⎝⎭;于是11112121112121200nn n n n nn n n n n A P P λλλλλλλλλλ---++--⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭;从而,()111212111212, 1, 2, n n n nn nn n n x n λλλλλλλλ--++-+-==⋅⋅⋅-+-, 由于211λλ<,上式右端分子、分母同时除以1n λ, 再令n →∞,则有:1lim limn n n n n F x F →∞→∞+==. 注:求由常系数线性递推公式所确定的数列的极限有很多种方法,矩阵解法只是其一,但与之相关的论述很少,但却简单实用.。

求极限的12种方法总结及例题

求极限的12种方法总结及例题

求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。

在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。

本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。

2. 利用极限的定义我们可以利用极限的定义来求解问题。

根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。

利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。

3. 利用夹逼准则夹逼准则是求极限常用的方法之一。

当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。

要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。

4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。

利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。

要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。

5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。

洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。

通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。

6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。

当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。

通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。

7. 利用换元法换元法是求解复杂函数极限的常用方法之一。

通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。

对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。

求极限的几种方法

求极限的几种方法

求极限的几种方法在数学分析中,求极限是一种重要的技巧和方法,用于研究数列、函数的收敛性和特性。

对于求极限的方法,可以总结为以下几类:代入法、夹逼法、等价无穷小代换法、洛必达法则、泰勒展开精确到n次、换元法、分数分解法、递归关系法等。

一、代入法:代入法是求函数极限的最基本的方法之一,适用于绝大多数最简单的函数。

通过将自变量值代入函数中,得到具体的函数值,看函数的值是否有限并趋于确定的值,如果有限且趋于确定的值,则可以认为该函数极限存在,并等于该确定的值。

当然,代入法只是一种相对简单和直观的方法,并不适用于复杂函数的极限计算。

二、夹逼法:夹逼法也被称为迫敛法或挤压定理,适用于数列或函数的极限计算。

当数列或函数存在上、下界,且上、下界的极限都为所求极限时,可以通过夹逼法来证明所求极限的存在并求得。

三、等价无穷小代换法:等价无穷小代换法是一种常用的得到极限的方法之一,将一个复杂的极限问题转化成一个简单的等价无穷小求极限问题。

其主要思想是将原函数与理论已知的函数进行比较,找出它们之间的等价关系,进而得到原函数的极限。

常用的等价无穷小有:指数、对数、三角函数等。

四、洛必达法则:洛必达法则是求函数极限的常用方法之一,主要用于求解0/0型或∞/∞型的极限。

其基本思想是将函数的极限转化成求导数的极限。

通常情况下,通过不断使用洛必达法则,可以通过求多次极限最终得到函数的极限。

五、泰勒展开精确到n次:对于有限次求导的函数,可以使用泰勒展开式来近似估计函数极限。

泰勒展开式是用若干项之和来逼近一个函数的方法,通过将函数展开成多项式形式,可以在一定程度上表示出原函数的性质。

通常情况下,使用泰勒展开精确到n次可以更加准确地求得函数的极限。

六、换元法:换元法也称为特殊换元法,通过选择合适的换元变量,将原来复杂的极限问题转化成更加简单的极限计算问题。

常见的换元方法有:取代法、正弦替换法、余弦替换法、平方根替换法等。

七、分数分解法:分数分解法是一种常用的计算复杂函数极限的方法,通过将极限问题利用分式相除的形式,将复杂的极限表达式化简成多个简单函数之比的极限表达式,进而进行求解。

求函数极限的方法与技巧

求函数极限的方法与技巧

求函数极限的方法与技巧《数学分析》是以函数为研究对象,以极限理论和极限方法为基本方法,以微积分学为主要内容的一门学科.极限理论和极限方法在这门课程中占有极其重要的地位.灵活、快捷、准确地求出所给函数的极限,除了对于函数极限的本质有较清楚地认识外,还要注意归纳总结求函数极限的方法,本文对技巧性强、方法灵活的例题进行研究,进一步完善求函数极限的方法与技巧,有利于微积分以及后继课程的学习.1基本方法1.1利用定义法求极限从定义出发验证极限,是极限问题的一个难点.做这类题目的关键是对任意给定的正数ε,如何找出定义中所说的δ.一般地,证明0lim ()x x f x A →=的方法为:0ε∀>,放大不等式0()f x A x x αε-<<-<(α为某一个常数)解出,0αε<-x x 取αεδ=. 例[1](45)1P 证明32121lim 221=---→x x x x .证 0ε∀>,若221112122132133213x x x x x x x x ε---+-=-=<<--++. (限制x :011x <-<,则211)x +>,取=min{3,1}δε,则当01x δ<-<时,便有221123321x x x x ε---<<--. 定义中的正数δ依赖于ε,但不是由ε所唯一确定.一般来说,ε愈小,δ也愈小.用定义证明极限存在,有一先决条件,即事先要猜测极限值A ,然后再证明,这一般不太容易,所以对于其它方法的研究是十分必要的.1.2 利用左、右极限求极限lim ()lim ()lim ()x x x x x x f x A f x f x A +-→→→=⇔==. 例2 设tan 3,0()3cos ,0xx f x x x x ⎧<⎪=⎨⎪>⎩ 求0lim ()x f x →.解 因为00tan 3tan 3lim ()lim lim 333x x x x xf x x x---→→→==⋅=,00lim ()lim 3cos 3x x f x x ++→→==. 得到0lim ()lim ()3x x f x f x -+→→==,所以0lim ()3x f x →=. 例3 求函数1()11x f x x +=++在1x =-处的左右极限,并说明在1x =-处是否有极限.解 111lim ()lim (1)21x x x f x x ++→-→-+=+=+,11(1)lim ()lim (1)01x x x f x x --→-→--+=+=+.因为11lim ()lim ()x x f x f x +-→-→-≠,所以)(x f 在1x =处的极限不存在.例4 若,0(),0xax b x f x e x +>⎧=⎨<⎩,求分段点0处的极限. 解 因为0lim ()lim()x x f x ax b b ++→→=+=,00lim ()lim 1xx x f x e --→→==.所以当1b =时,0lim ()1x f x →=;当1b ≠时,0lim ()x f x →不存在.可见,利用左右极限是证明分段函数在其分段点处是否有极限的主要方法.1.3 利用函数的连续性求极限 初等函数在其定义的区间I 内都连续.若I x ∈0,初等函数()f x 当0x x →时的极限就等于其在0x x =时的函数值,即0lim ()()x x f x f x →=.特别地,若[()]f x ϕ是复合函数,又0lim ()x x x a ϕ→=,且()f u 在u a =处连续,则lim [()][lim ()]()x x x x f x f x f a ϕϕ→→==.例5 求21cos 2arcsin 0lim xx x e -→.解 由于201cos 1lim2arcsin 4x x x →-=及函数ue uf =)(在14u =处连续, 所以2201cos 1cos 1lim2arcsin 2arcsin 4lim x xxx x x e e e →--→==.例[]()21196P 求4x →解4443lim4x x x x →→→==-413x →=== 在4x =连续).例[1](84)7P 求0ln(1)limx x x→+.分析 由1ln(1)ln(1)xx x x+=+,设ln y u =,1(1)x u x =+.因为10lim(1)x x x e →+=,且ln y u =在e u =点连续,故可利用函数的连续性求此极限.解 11000ln(1)limlimln(1)ln[lim(1)]ln 1xx x x x x x x e x→→→+=+=+==. 1.4 利用函数极限的四则运算法则求极限 若lim ()f x ,lim ()g x 存在,则有:(1)lim[()()]lim ()lim ()cf x bg x c f x b g x ±=±(,c b 为任意常数); (2)lim[()()]lim ()lim ()f x g x f x g x ⋅=⋅;(3)()lim ()lim[]()lim ()f x f xg x g x =(其中lim ()0)g x ≠; (4)lim[()][lim ()]nnf x f x =;(5)若lim ()f x A =,对正整数n ==.注 以上每个等式中的“lim ”均指x 的同一趋向.例8 1225lim(2)1x x x x→∞+-. 分析 该函数可以看作是两个函数的和.而对于函数2251x x -是分式函数,分子、分母都是多项式函数,并且当自变量x →∞时,归于前面介绍的第四种类型.对于函数12x,当x →∞时,01→x,故121x→.因此,只须再利用和的运算法则即可求得此极限.解 11222255lim(2)lim lim 251411x x x x x x xx x →∞→∞→∞+=+=-+=---. 1.5 利用重要极限求极限 1.5.1 0sin lim1x x x→=可推出0lim 1sin x x x →=,2000tan arctan 1cos 1lim 1,lim 1,lim 2x x x x x x x x x →→→-===.推广:0sin ()lim1()x x x φφ→=或0()lim 1sin ()x x x φφ→= 0(lim ()0)x x φ→=利用此重要极限公式求函数的极限,通常需要利用恒等变换将函数的某一组成部分变成形如sin ()()x x φφ或()sin ()x x φφ的形式.特别注意的是sin ()x φ这个复合函数的内函数()x φ要和分母或分子的函数相同,并且保证()0x φ→ (0)x →,则此部分的极限就为1.例9 求0sin 3limsin 2x xx→.分析 设sin 3()sin 2xf x x=,当0x →时,30x →,20x →故可利用恒等变换将()f x 化为sin 3()sin 2x f x x =sin 3233sin 22x x x x =⋅⋅,利用此重要极限公式即可求得.解 0000sin 3sin 323sin 3233lim lim lim lim sin 23sin 223sin 222x x x x x x x x x x x x x x →→→→=⋅⋅=⋅⋅=.1.5.2 1lim(1)xx e x→∞+=或10lim(1)x x x e →+=推广:1lim(1)x x e x φφ→∞+=()() (lim ())x x φ→∞=∞或0lim 1x e φφ→+=1(x)((x)) 0(lim ()0)x x φ→= 对于函数1()(1)x f x x φφ=+()()或()1f x φφ=+1(x)((x)),由于函数的底数和指数位置均含有变量,因此称为幂指函数.此重要极限公式解决的是1∞型幂指函数的极限问题,对于给定的函数,一般情况下也需要利用恒等变形后方可利用此公式.例10 求3lim(1)xx x→∞+.分析 设函数3()(1)xf x x=+是幂指函数,当x 趋于无穷大时,底3(1)1x+→,指数x →∞,是1∞型幂指函数,需利用此重要极限公式推广形式,将函数变形为3331()(1)((1))3xx f x x x=+=+,其中()3x x φ=,且当x →∞时,3x→∞,故有31lim(1)3x x e x →∞+=.解 3333311lim(1)lim(1)lim((1))33x xx x x x e x x x→∞→∞→∞+=+=+=.1.6 利用洛必达法则求极限在解决未定式的极限时,最简单的方法是约去分子、分母中趋于零的公因子.洛必达法则正是以求导的方法解决了这个问题.洛必达法则: 设)(),(x g x f 满足①在点0x 的领域内(点0x 可以除外)有定义,且0lim ()0x x f x →=,lim ()0x x g x →=.②在该领域内可导,且0)(≠'x g .③A x g x f x x =''→)()(lim 0. (A 可为实数,也可为∞±或∞)则A x g x f x g x f x x x x =''=→→)()(lim )()(lim00.如果()()f x g x ''在0x x →时,仍为00或∞∞型,且这时()f x '与()g x '仍满足定理中的条件,则可继续使用洛必达法则.例11 求22230sin cos lim sin x x x x x x→-.解 2223400sin cos (sin cos )(sin cos )lim lim sin x x x x x x x x x x x x x x→→-+-= 320000sin cos sin cos cos cos sin 2sin 2limlim 2lim lim 333x x x x x x x x x x x x x x x x x x x →→→→+--+=⋅===. 1.7 利用无穷小求极限1.7.1 利用无穷小量的性质求函数的极限 性质1 有限个无穷小量的代数和是无穷小量. 性质2 有限个无穷小量之积是无穷小量. 性质3 任一常数与无穷小量之积是无穷小量. 性质4 无穷小量与有界变量之积是无穷小量. 例12 求1lim()cosx x x πππ→--. 解 0)(lim =-→ππx x ,而1cos1x π≤-,所以1lim()cos 0x x x πππ→-=-.1.7.2 利用等价无穷小量替换求函数的极限 若11()~(),()~()x x x x ααββ且11()lim()x x αβ存在,则()lim ()x x αβ也存在,并且11()()limlim ()()x x x x ααββ= 注 1. 常用的几对等价无穷小量.(当0x →时)2sin ~,tan ~,ln(1)~,1~,1cos ~2xx x x x x x x e x x +--.2. 等价无穷小量替换,来源于分数的约分,只能对乘除式里的因子进行代换,在分子(分母)多项式里的单项式通常不可作等价代换.例13求0lim x +→.分析函数经过变形可化为00lim lim x x ++→→0x +→时,利用21cos ~,1~22x xx --等价无穷小来计算极限.解原式00lim lim x x ++→→==2000112lim lim lim222x x x x x x +++→→→==⋅=⋅. 例14 求0ln(1sin )lim x x x α+→-(α是实数).解 当0x →时,ln(1sin )~sin ~x x x --- 1000,1ln(1sin )lim lim()1,1,1x x x x x ααααα++-→→<⎧-⎪=-=-=⎨⎪-∞>⎩. 1.8 利用降幂法求极限 1.8.1 分子分母为有理式()lim()x P x Q x →∞,其中()P x ,()Q x 均为多项式函数方法:将分子、分母同除以x 的最高次幂.例15 求2256lim 2x x x x x →∞+++-.分析 该函数是分式函数,分子2()56P x x x =++,分母2()2Q x x x =+-均为二次多项式函数,且自变量x 趋近于∞时均趋近于∞,故采取将分子、分母同除以最高次幂2x ,即消去2x ,有22562x x x x +++-22561121x x x x++=+-而1lim 0x x →∞=,21lim 0x x →∞=,再利用极限的运算法则,即可求出函数的极限. 解 222256156100lim lim 11221001x x x x x x x x x x→∞→∞++++++===+-+-+-. 一般地,对于()lim()x P x Q x →∞(其中()P x ,()Q x 均为多项式函数),当分子的次数高于分母次数,该函数极限不存在; 当分子的次数等于分母次数,该函数极限等于分子、分母的最高次项的系数之比;当分子的次数低于分母次数,该函数极限为0.即11101110lim 0nmn n n n m m x m m a n m b a x a x a x a n m b x b xb x b n m---→∞-⎧=⎪⎪++++⎪=∞>⎨++++⎪<⎪⎪⎩ .1.8.2 分子分母为无理式(1)当x →∞时,将分子、分母同除以x 的最高方次. 例16求limlimx x →+∞.解lim lim lim 1x x x ===. limlim 021x x x x→+∞→+∞==++. (2)当0x x →时,若 1) 0()0Q x ≠,则000()()lim()()x x P x P x Q x Q x →=;2) 00()0,()0Q x P x =≠,则0()lim()x x P x Q x →=∞;3) 00()()0Q x P x ==可利用有理化分子(或分母)的方法求极限. 例17求2x → 分析 该函数是分式函数,并且含有根式,当0x →时,分子、分母均趋近于0,故将分子、22221)x x ==1而当0x →12→,故可求得此极限.解220x x →→=22001)lim 12x x x x→→+==+=. 1.9 利用中值定理求极限例18 求xx e e x x x sin lim sin 0--→.解 设xe xf =)(,对它的应用微分中值定理得:[]sin ()(sin )(sin )sin (sin )(01)x x e e f x f x x x f x x x θθ'-=-=-+-<< ,即sin [sin (sin )](01).sin x xe ef x x x x xθθ-'=+-<<- 因为 ()x f x e '=连续,所以0lim [sin (sin )](0) 1.x f x x x f e θ→''+-===从而有 sin 0lim1sin x xx e e x x→-=-. 例19 设函数()f x 在0x =处连续,又设函数102()11sin 02x x x x x xϕ⎧+≤⎪⎪=⎨⎪>⎪⎩ , 求220()()cos lim()xx xf x x t dtx x ϕϕ→+⎰.解 利用积分中值定理有,2220cos 2cos 02xt dt x x ξξ=<<⎰,因为001lim 0lim ()2x x x ξϕ→→==,,,所以2220()()cos ()()2cos limlim ()()xx x xf x x t dtxf x x x x x x x ϕϕξϕϕ→→++⋅=⎰ 200()()2cos lim lim 2(0)2()()x x xf x x x f x x x x ϕξϕϕ→→⋅=+=+. 1.10 利用泰勒公式求极限若一个函数的表达式比较复杂时,我们可以将它展成泰勒公式,使其化成一个多项式和一个无穷小量的和,而多项式的计算是比较简单的,从而此方法能简化求极限的运算.例20 计算0()sin(sin )limsin x tg tgx x tgx x→--.分析 此题虽是型,但使用洛必达法则求极限太复杂.而分母无穷小的最低阶数为3,故写出诸函数三阶泰勒公式,便可求得结果.解 33sin ()3!x x x x ο=-+ 331()()3tgx x x x ο=++. 3333111sin ()()()33!2tgx x x x x x οο-=++=+.又33333331sin(sin )sin(())(()())3!3!3!3!x x x x x x x x x x οοο=-+=---++ 333331()()3!3!3x x x x x x x οο=--+=-+. 333331111()(())(())3333tg tgx tg x x x x x x x x οο=++=++++ 3333312()()33x x x x x x x οο=+++=++.所以33()sin(sin )()tg tgx x x x ο-=+.330033()sin(sin )()lim lim 21sin ()2x x tg tgx x x x tgx x x x οο→→-+==-+. 例21 求21lim(cos sin )x x x x x →+.解 应用cos ,sin ,ln(1)x x x +的泰勒展式有2232311cos sin 1()1()22x x x x x x x x οο+=-++=++23331ln(cos sin )ln(1())()22x x x x x x x οο+=++=+因此,232200111lim ln(cos sin )lim [()]22x x x x x x x x x ο→→+=+=于是,原式211ln(cos sin )20lim x x x xx e e +→==. 例22 设()f x 在点0x =处二阶可导,且320sin 3()lim[]0x x f x x x→+=,求(0),(0),(0)f f f '''并计算极限2203()lim()x f x x x→+. 解 由已知条件,并利用麦克劳林公式,有320sin 3()0lim[]x x f x x x →=+33223201(0)3(3)()(0)(0)()3!2lim[]x f x x x f f x x x x x οο→'''-++++=+ 233301(0)9lim [(3(0))(0)()()]22x f f x f x x x x ο→'''=+++-+. 得(0)3,(0)0,(0)9f f f '''=-==. 于是2203()lim[]x f x x x →+222011lim [3(0)(0)(0)()]2x f f x f x x x ο→'''=++++ 2220199lim [33()]22x x x x ο→=-++=. 2 典型方法2.1 重要极限的再推广定理 设lim ()1,lim ()f x g x ==∞,则()lim[(()1)()]lim[()]g x f x g x f x e -=证明 1(()1)()()()1lim[()]lim[1(()1)]f xg x g x f x f x f x --=+-1lim(()1)()lim[(()1)()]()1{lim[1(()1)]}f xg x f x g x f x f x e ---=+-=例1 求211lim(1)xx x x→∞++解 这是1∞型极限,2211111()1,(),(()1)()()1f x g x x f x g x x x x x x x=++=-=+=+, 所以2111lim [(11)]lim (1)211lim(1)x x x x x x xx ee e x x→∞→∞++-⋅+→∞++==. 另解 对211lim(1)x x x x →∞++令211(1)x y x x =++取对数得211ln ln(1)y x x x=++于是有211ln(1)lim ln lim1x x x x y x→∞→∞++= (00型,可洛必达法则)232221212211lim lim 11121x x x x x x x x x x →∞→∞--+++===-++ 所以1212lim lim(1)x x x y e e x x→∞→∞=++==显然这样解要复杂的多.例2 求21lim(cos 2)x x x →.解 21()cos 2,()f x x g x x ==因为2001limcos 21,lim x x x x →→==∞所以是1∞型极限, 有2222112sin limlim (cos21)20lim(cos 2)x x x x x x x x x e e e →→---→===.例3 求1222234lim()238x x x x x x -→+--+. 解 1222234lim()238x x x x x x -→+--+222341exp{lim(1)}2382x x x x x x →+-=-⋅-+- 425222241216exp(lim )exp(lim )2382238x x x x x e x x x x x →→+-+=⋅==-+--+.2.2 洛必达法则的应用例4 计算极限2[(1)]lim(1cos )xx x arctg t dt dx x x →+-⎰⎰.分析 对0,0∞∞等未定式的极限,常可用洛必达法则来计算. 解 原式22000(1)(1)2lim lim(1cos )sin 2sin cos x x x arctg t dtarctg x xx x x x x x→→++⋅==-+⋅+⋅⎰222042(1)1lim 3cos sin 6x x arctg x x x x x π→+++==-⋅. 3 一题多解举例每一个题目并非只能用一种方法进行求解,通常可采用多种途经去解决它. 例1 求1lim(12)xx x →-.[解法一] 利用重要极限10lim(1)xx x e →+=112220lim(12)lim[(12)]xx x x x x e ---→→-=-=.[解法二] 用取对数法 令1(12)xy x =-,两边取对数,得1ln ln(12)y x x=- 由0002112limln lim[ln(12)]lim 21x x x x y x x →→→--=-==-,所以1200lim lim(12)x x x y x e -→→=-=.[解法三] 用换元法 令2x t -=,则12x t-=所以112200lim(12)lim[(1)]xt x x x t e --→→-=+=.[解法四] 利用对数式的性质001112ln(12)lim ln(12)lim2120lim(12)lim x x x x x xxx x x x eeee →→-----→→-====.例2 求22201cos lim sin x x x x →-.[解法一] 用洛必达法则和重要极限0sin lim1x xx→=原式2222222222200022sin 2sin sin 1lim lim lim sin 2sin 2cos sin cos 2cos x x x x x x x x x x x x x x x x x x x →→→====+⋅++.[解法二] 三角函数公式及洛必达法则原式2222222220002232(sin )sin cos222lim lim lim 2sin cos cos 2cos sin22222x x x x x x x x x x x xx x x x →→→===- 22202cos12lim 22cos sin22x x x x x →==-. [解法三] 三角函数恒等变换和重要极限0sin lim1x xx→= 原式2222222220022(sin )sin sin11222lim lim sin sin 2222x x x x x x x x x x x →→==⋅⋅=⋅. [解法四] 分子分母同除以4x 用重要极限和洛必达法则原式222440224002201cos 1cos lim 1cos lim lim sin sin lim x x x x x x x x x x x x x x →→→→---===2232002sin 1sin 1lim lim 224x x x x x x x →→==⋅=. [解法五] 分子分母同乘21cos x +原式2222222222222000(1cos )(1cos )sin sin lim lim lim sin (1cos )sin (1cos )(1cos )x x x x x x x x x x x x x x x →→→-+===+++22200sin 11lim lim 1cos 2x x x x x →→==+. [解法六] 变换替换后用洛必达法则令2u x = 原式0001cos sin cos 1limlim lim sin sin cos 2cos sin 2u u u u u u u u u u u u u u →→→-====+-又00sin 11lim sin cos 2lim(1cos )sin u u u uu u u u u→→==++⋅. [解法七] 用等价无穷小来代替原式222242222400012sin 2()1222lim lim lim 2sin x x x x x xx x x x x →→→⋅====⋅. 原式22430001cos 2sin 21lim lim lim 424x x x x x x x x x x→→→-====. [解法八] 级数解法因为462cos 12!4!x x x =-+- 622sin 3!x x x =-+所以4682822048()1cos 12!4!lim sin 2()3!x x x x x x x x x x οο→-+-==-+. [解法九] 连续使用两次洛必达法则原式22222222002sin sin lim lim 2cos 2sin cos sin x x x x x x x x x x x x x →→==⋅++222222222002cos cos 1lim lim 2cos 2sin 2cos 2cos sin 2x x x x x x x x x x x x x x x →→===-⋅+-. 例3[]()728P 设()x ϕ连续,0()lim2sin t t t t t ϕ→=-,求0()lim sin t t xt t tϕ→-.[解法一] 从0()lim2sin t t t t t ϕ→=- 可得0()lim 2sin 1t t ttϕ→=-所以0lim ()0t t ϕ→=.又()x ϕ连续,因此(0)0ϕ=这样可以得到:当0x =时,00()(0)lim lim 0sin sin t t t xt t t t t tϕϕ→→==--;当0x ≠时,作变量代换xt u =,有000()()()lim lim lim sin sin sin t u u uu t xt u u x u u ut t u x x x xϕϕϕ→→→==--- 00()sin lim limsin sinu u u u u u uu u u x xϕ→→-=⋅--以下利用已知极限,以及两次洛必达法则,即可求出极限为22x , 所以,原式22,00,0x x x ⎧≠=⎨=⎩.[解法二] 利用等价无穷小求解,注意到31sin ~(0)6t t t t -→这样,从0()limsin t t t t t ϕ→- 03()lim 216t t t tϕ→==可知21()~(0)3t t t ϕ→于是220031()()3lim lim 2(0)1sin 6t t t xt t xt x x t t t ϕ→→⋅==≠-;当0x =时,根据法一可得结果.综上所述,原式22,00,0x x x ⎧≠=⎨=⎩.例4 求2lim lnx x ax x a→∞++. [解法一] 原式221()(2)12ln2()lim lim 11x x x a x a x a x a x a x a x a x x→∞→∞+⋅+-+⋅+⋅+++==-222limlim 12()(2)(1)(1)x x ax ax x a a a ax a x a x x→∞→∞===⋅=++++. [解法二] 因为(2)lnln(1)()x a a x a x a +=+++ 又所以x →∞时,0ax a→+,所以ln(1)~a a x a x a +++则2lim ln lim lim 1x x x x a a a x x a a x a x a x→∞→∞→∞+⋅=⋅==+++.总之,极限的解题方法很多,这就要求我们多做练习,学会总结归纳,学会举一反三.这对拓展我们的思维,进一步学好数学是有帮助的。

探讨数学分析中求极限的方法x

探讨数学分析中求极限的方法x

探讨数学分析中求极限的方法摘要:极限的概念是高等数学中一个最基本、最重要的概念 ,极限理论是研究连续、导数、积分、级数等的基本工具 ,因此正确理解和运用极限的概念、掌握极限的求法 ,对学好高等数学是十分重要的。

极限思想贯穿整个高等数学的课程之中,而给定函数的极限的求法则成为极限思想的基础,因此有必要总结极限的求法。

本文详细介绍了一些典型的极限计算方法 ,给出解题思路及相应技巧 ,并辅以典型的例题 ,最后还强调了求极限时的注意事项。

关键词:极限;类型;方法。

一、 利用函数连续性求极限由于初等函数在定义区间内处处连续,所以求初等函数在定义区内任意点处的极限值,就是求其函数在该点处的函数值。

由函数)(x f y =在x 0 点连续定义知,)()(lim 00x f x f x x =→。

例1 求)52(lim 22-+→x x x . 解 ∵52)(2-+=x x x f 是初等函数,在其定义域(全体实数)内连续∴所以用代入法求出该点的函数值就可。

即原式=2⨯2+2⨯2-5=3 例2 求632lim 220++-→x x x x . 解 由于632)(22++-=x x x x f 在x=0处连续 所以2163632lim 220==++-→x x x x 例3 求1352lim 22+-+→x x x x分析 由于552225lim lim lim 2)52(lim 2222222=-+⨯=-+=-+→→→→x x x x x x x x 71231lim lim 3)13(lim 222=+⨯=+=+→→→x x x x x所以采用直接代入法解 原式=751235222)13(lim )52(lim 2222=+⨯-+⨯=+-+→→x x x x x二、利用无穷小的性质求极限我们知道无穷小的性质有:性质1:有限个有界函数与无穷小的乘积为无穷。

性质2:在自变量同一变化的过程中无穷大量的倒数为无穷小。

数学分析求极限的方法

数学分析求极限的方法

求极限的方法具体方法⒈利用函数极限的四则运算法则来求极限定理1①:若极限)(lim 0x f x x →和)(lim x g xx →都存在,则函数)(x f ±)(x g ,)()(x g x f ⋅当0x x →时也存在且①[])()()()(lim lim lim 0.0x g x f x g x f x x x x x →→→±=±②[])()()()(lim lim lim 0x g x f x g x f x x x x x x →→→⋅=⋅又若0)(lim 0≠→x g x x ,则)()(x g x f 在0x x →时也存在,且有 )()()()(limlim lim 0x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如∞∞、00等情况,都不能直接用四则运算法则,必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。

例1:求2422lim ---→x x x解:原式=()()()02222lim lim22=+=-+---→→x x x x x x⒉用两个重要的极限来求函数的极限①利用1sin lim=→xxx 来求极限 1sin lim 0=→x xx 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有()()1sin lim 0=→x g x g x x 或()()1sin lim =∞→x g x g x例2:xxx -→ππsin lim解:令t=x -π.则sinx=sin(-π t)=sint, 且当π→x 时0→t 故 1sin sin lim lim==-→→t tx x t x ππ例3:求()11sin 21lim --→x x x解:原式=()()()()()()()211sin 1111sin 122121lim lim =--⋅+=-+-+→→x x x x x x x x x ②利用e x x =+∞→)11(lim 来求极限e x x =+∞→)11(lim 的另一种形式为e =+→ααα1)1(lim .事实上,令.1x =α∞→x .0→⇔α所以=+=∞→x x x e )11(lim e =+→ααα10)1(lim例4: 求xx x 1)21(lim +→的极限解:原式=221210)21()21(lim e x x x x x =⎥⎦⎤+⋅⎢⎣⎡+→利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。

求数列极限的若干方法

求数列极限的若干方法

求数列极限的若干方法求解数列极限是数学分析中一个重要的问题,常用的方法有以下几种:1.直接求解最简单的方法是直接计算数列的通项公式,然后逐渐增加项数,观察数列的变化趋势,看是否有收敛或发散的特性。

如果数列趋向于一个确定的数,即极限存在,则该数即为极限值。

这种方法适用于简单数列,例如等差数列、等比数列等。

2.夹逼定理夹逼定理是数学分析中的一个基本定理,可以用来求解一些复杂数列的极限。

夹逼定理的基本思想是将待求极限数列夹在两个已知极限数列之间。

如果两个已知极限数列的极限相同,那么待求极限就是它们的共同极限。

夹逼定理适用于求解一些无法通过直接求解得到极限的数列,例如级数、递推数列等。

3.利用数列性质数列具有一些基本性质,例如收敛数列的任意子列也收敛,并且极限相同;发散数列的一些子列无极限等。

可以通过这些性质来判断数列的极限是否存在,或者通过子列的极限值来确定数列的极限。

4.数列分解对于一些复杂的数列,可以将其分解成多个部分,然后分别求解每个部分的极限。

通过对各个部分的极限进行分析,再根据极限的性质进行组合,可以得到整个数列的极限。

这种方法常用于数列具有递推关系或递归定义的情况。

5.数列收敛性的判别数列收敛有一系列的判别法则,例如柯西收敛准则、单调有界准则、无穷大准则等。

这些准则可以用来判断一个数列是否收敛,或者一部分的数列是否收敛。

6.使用极限性质根据极限的性质,例如极限的四则运算性质、极限的保号性等,可以推导出一些数列的极限值。

通过运用这些性质,可以简化数列极限的求解过程。

总结起来,求解数列极限的方法是多种多样的。

我们可以根据数列的特点和性质,选择适合的方法进行求解。

常用的方法包括直接求解、夹逼定理、数列性质、数列分解、数列收敛性的判别和使用极限性质等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求极限的方法具体方法⒈利用函数极限的四则运算法则来求极限定理1①:若极限)(lim 0x f x x →和)(lim x g xx →都存在,则函数)(x f ±)(x g ,)()(x g x f ⋅当0x x →时也存在且①[])()()()(lim lim lim 0.0x g x f x g x f x x x x x →→→±=±②[])()()()(lim lim lim 0x g x f x g x f x x x x x x →→→⋅=⋅又若0)(lim 0≠→x g x x ,则)()(x g x f 在0x x →时也存在,且有 )()()()(limlim lim 0x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如∞∞、00等情况,都不能直接用四则运算法则,必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。

例1:求2422lim ---→x x x解:原式=()()()02222lim lim22=+=-+---→→x x x x x x⒉用两个重要的极限来求函数的极限①利用1sin lim=→xxx 来求极限 1sin lim 0=→x xx 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有()()1sin lim 0=→x g x g x x 或()()1sin lim =∞→x g x g x例2:xxx -→ππsin lim解:令t=x -π.则sinx=sin(-π t)=sint, 且当π→x 时0→t 故 1sin sin lim lim==-→→t tx x t x ππ例3:求()11sin 21lim --→x x x解:原式=()()()()()()()211sin 1111sin 122121lim lim =--⋅+=-+-+→→x x x x x x x x x ②利用e x x =+∞→)11(lim 来求极限e x x =+∞→)11(lim 的另一种形式为e =+→ααα1)1(lim .事实上,令.1x =α∞→x .0→⇔α所以=+=∞→x x x e )11(lim e =+→ααα10)1(lim例4: 求xx x 1)21(lim +→的极限解:原式=221210)21()21(lim e x x xx x =⎥⎦⎤+⋅⎢⎣⎡+→利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。

一般常用的方法是换元法和配指数法。

⒊利用等价无穷小量代换来求极限所谓等价无穷小量即.1)()(lim=→x g x f x x 称)(x f 与)(x g 是0x x →时的等价无穷小量,记作)(x f )(~x g .)(0x x →.定理2②:设函数)(),(),(x h x g x f 在)(00x u 内有定义, 且有)(x f )(~x g .)(0x x →① 若,)()(lim 0A x g x f x x =→则A x h x g x x =→)()(lim 0② 若,)()(lim 0B x f x h x x =→则B x g x h x x =→)()(lim 0 证明:①A A x h x f x f x g x h x g x x x x x x =⋅=⋅=→→→1)()()()()()(lim limlim 0②可类似证明,在此就不在详细证明了!由该定理就可利用等价无穷小量代换来求某些函数的极限 例5:求3sin sin tan limx xx x -→的极限解:由 ).cos 1(cos sin sin tan x xxx x -=-而)0(,~sin →x x x ; ,2~cos 12x x -(x 0→);33sin x x -3~x ,(x 0→).故有30sin sin tan lim x x x x -→= lim 0→x 212cos 132=⋅⋅x x x x 注:由上例可以看出,欲利用此方法求函数的极限必须熟练掌握一些常用的 等价无穷小量,如:由于1sin lim 0=→x xx ,故有x sin ).0(,~→x x 又由于,1arctan lim 0=→x xx 故有arctanx x ~,(x 0→). 另注:在利用等价无穷小代换求极限时,应该注意:只有对所求极限中相乘或相除的因式才能用等价无穷小量来代换,而对极限式中的相加或相减的部分则不能随意代换。

如上式中,若因有tanx x ~,);0(→x x sin x ~).0(,→x 而推出30sin sin tan lim x x x x -→=0sin 30lim =-→xxx x 则得到的结果是错误的。

⒋ 利迫敛性来求极限定理3③:设lim 0x x →f(x)= lim 0x x →g(x)=A,且在某),('0δx u o 内有f(x)≤h(x)≤g(x),则lim 0x x →h(x)=A例6:求lim 0-→x x ⎥⎦⎤⎢⎣⎡x 1的极限解: 1≤x ⎥⎦⎤⎢⎣⎡x 1<1-x. 且1)1(lim 0=--→x x 由迫敛性知∴lim 0-→x x ⎥⎦⎤⎢⎣⎡x 1=1做此类型题目的关键在于找出大于已知函数的函数和小于已知函数的函数,并且所找出的两个函数必须要收敛于同一个极限。

⒌利用函数的连续性求极限利用函数的连续性求极限包括:如函数)(x f 在0x 点连续,则)()(0lim 0x f x f x x =→及若a x x x =→)(lim 0ϕ且f(u)在点a 连续,则[]⎥⎦⎤⎢⎣⎡=→→)()(lim lim 00x f x f x x x x ϕϕ 例7:求2arcsin 2cos 10lim x xx e -→的极限解:由于lim→x 41arcsin 2cos 12=-x x 及函数()4e uf =在41=u 处连续,故lim 0→x 2arcsin 2cos 1xxe-=20arcsin 2cos 1lim xxx e-→=41e 。

⒍利用洛比达法则求函数的极限在前面的叙述中,我们已经提到了利用等价无穷小量来求函数的极限,在此笔者叙述一种牵涉到无穷小(大)量的比较的求极限的方法。

我们把两个无穷小量或两个无穷大量的比的极限统称为不定式极限,分别记作00型或∞∞型的不定式极限。

现在我们将以导数为工具研究不定式极限,这个方法通常称为洛比达法则。

下面就给出不定式极限的求法。

(1)对于型不定式极限,可根据以下定理来求出函数的极限定理4④:若函数f(x)和函数g(x)满足:①lim 0x x →)(x f =lim 0x x →)(x g =0。

②在点0x 的某空心邻域)(00x u 内两者都可导,且0)('≠x g ③limx x →)(')('x g x f =A 。

(A 可为实数,也可为∞±或∞) 则limx x →)()(x g x f =lim 0x x →)(')('x g x f =A 。

注:此定理的证明可利用柯西中值定理,在此,笔者就不一一赘述了。

例8:求limπ→x xx2tan cos 1+ 解:容易检验f(x)=1+x cos 与g(x)=x 2tan 在π=0x 的邻域里满足定理的条件①和②,又因lim π→x )(')('x g x f =lim π→x x x x2sec tan 2sin -= -lim π→x 212cos 3=x 故由洛比达法则求得,limx x →)()(x g x f =lim 0x x →)(')('x g x f =21在此类题目中,如果limx x →)(')('x g x f 仍是0型的不定式极限,只要有可能,我们可再次利用洛比达法则,即考察极限limx x →)(')('x g x f 是否存在。

当然,这是)('x f 和)('x g 在0x 的某邻域内必须满足上述定理的条件。

例9:求)1ln()21(221lim x x e xx ++-→ 解:利用)1ln(2x +2~x (0→x ),则得 原式=lim→x 221)21(x x e x+-=lim 0→x x x e x2)21(21-+-=lim→x 1222)21(23==+--x e x在利用洛比达法则求极限时,为使计算更加快捷减少运算中的诸多不便,可用适当的代换,如下例, 例10:求lim+→x xex -1解:这是00型不定式极限,可直接运用洛比达法则求解,但是比较麻烦。

如作适当的变换,计算上就会更方便些,故 令,x t =当+→0x 时有+→0t ,于是有lim 0+→x xex-1=111lim lim00-=-=-++→→tt t t ee t (2)∞∞型不定式极限 若满足如下定理的条件,即可由如下定理计算出其极限。

定理5⑤:若函数f(x)和函数g(x)满足:①lim 0+→x x )(x f =lim 0+→x x )(x g =∞②在点0x 的某空心邻域)(00x u +内两者都可导,且0)('≠x g ③lim0+→x x )(')('x g x f =A ,(A 可为实数,也可为∞±或∞)。

则lim0+→x x )()(x g x f =lim 0+→x x )(')('x g x f =A 。

此定理可用柯西中值定理来证明,在此,笔者就不一一赘述了。

例11:求xx x ln lim+∞→ 解:由定理4得,''ln (ln )l0()lim lim lim x x x x x x x x→+∞→+∞→+∞=== 注1:若limx x →)(')('x g x f 不存在,并不能说明lim 0x x →)()(x g x f 不存在。

注2:不能对任何比式极限都按洛比达法则来求解。

首先必须注意它是不是不定式极限;其次是观察它是否满足洛比达法则的其它条件。

下面这个简单的极限lim∞→x xxx sin +=1 虽然是∞∞型的,但若不顾条件随便使用洛比达法则: lim∞→x x x x sin +=lim ∞→x 1cos 1x+就会因右式的极限不存在而推出原式的极限不存在这个错误的结论。

(3)其它类型不定式极限不定式极限还有∞⋅0,∞1,00,0∞,∞-∞等类型。

相关文档
最新文档