高等数学求极限的常用方法
高等数学中函数极限的求法技巧解析

高等数学中函数极限的求法技巧解析函数极限是高等数学中的一个重要概念,常常用于研究各种复杂的数学问题。
在求解函数极限的过程中,有一些常用的技巧,可以使计算更加简洁、高效。
下面简要介绍一些常用的函数极限求法技巧。
一、分子分母同除分子分母同除是一种常用的技巧,可以化简分式,便于计算。
具体操作如下:假设要求的函数极限为:lim f(x) / g(x)当分子和分母都含有相同的项时,可以将它们同除以这个公共项,得到新的分式。
例如:将分子和分母都除以 (x+1) ,得到:这样就将原问题化简成了一个更简单的问题。
二、恒等式变形在计算函数极限时,可以通过运用一些基本恒等式进行变形,以使计算更加简单。
例如:1、三角函数的基本恒等式:sin^2 x + cos^2 x = 1这些恒等式可以用于化简三角函数的表达式,使计算更加简便。
2、指数运算的恒等式:a^x / a^y = a^(x-y)三、用等价无穷小代替函数极限中经常会涉及到等价无穷小的概念。
如果 lim f(x) = 0,lim g(x) = 0,且lim f(x) / g(x) = 1,那么就可以将 f(x) 用 g(x) 的等价无穷小代替,求解新的函数极限。
例如:可以用等价无穷小代替 sin x,得到:lim 1 / x = 0四、洛必达法则洛必达法则是一种用于求解 0/0 或∞/∞ 型无穷小的极限的方法,也是求导数时的基本工具。
该法则的核心思想是将原问题转化成一个求导数的问题,并通过对导数的求解来解决原问题。
具体操作如下:且在极限点 x0 处,f(x0) = 0,g(x0) = 0。
1、求出 f'(x0) 和 g'(x0),如果两者都存在且g'(x0) ≠ 0,则原极限等于 f'(x0) / g'(x0)。
f(x) = f(x0) + f'(x0)(x-x0) + o(x-x0)其中 o(x-x0) 表示 x -> x0 时比 (x-x0) 高阶的无穷小量。
高等数学求极限的14种方法(完整资料).doc

【最新整理,下载后即可编辑】高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim 0,(1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。
2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。
要特别注意判定极限是否存在在:(1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。
常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ”(2)A x x f x A x f x =+∞→=-∞→⇔=∞→lim lim lim )()((3) A x x x x A x f x x =→=→⇔=→+-lim lim lim 0)((4) 单调有界准则(5)两边夹挤准 (夹逼定理/夹逼原理)(6) 柯西收敛准则(不需要掌握)。
极限)(lim 0x f x x →存在的充分必要条件。
是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当二.解决极限的方法如下: 1.等价无穷小代换。
只能在乘除..时候使用。
例题略。
2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法)它的使用有严格的使用前提。
首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。
其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。
另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。
洛必达法则分为3种情况: (1)“00”“∞∞”时候直接用(2)“∞•0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。
高等数学极限求法总结

高等数学极限求法总结高等数学极限求法总结极限的判断定义是:单调递增有上界则有极限,单调递减有下界则有极限。
下面是小编整理的高等数学极限求法总结,希望对你有帮助!函数极限可以分成而运用ε-δ定义更多的见诸于已知的极极限值的证明题中。
掌握这类证明对初学者深刻理解运用极限定义大有裨益。
限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x时的极限。
1.利用极限的四则运算法则:极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。
方能利用极限四则运算法则进行求之。
不满足条件者,不能直接利用极限四则运算法则求之。
但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。
而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。
例 1 求 lim( x 2 3x + 5).x→ 2解: lim( x 2 3x + 5) = lim x 2 lim 3x + lim 5= (lim x) 2 3 lim x + lim 5= 2 2 3 2 + 5 = 3.x→2 x →2 x →2 x →2 x →2 x →2 x →22.利用洛必达法则洛必达(L Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。
一般用在求导后为零比零或无穷比无穷的类型。
利用洛必达求极限应注意以下几点:设函数f(x)和F(x)满足下列条件:(1)x→a时,lim f(x)=0,lim F(x)=0;(2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;(3)x→a时,lim(f(x)/F(x))存在或为无穷大则x→a时,lim(f(x)/F(x))=lim(f(x)/F(x))例1:1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2xsinx = 2xsin(x/2)cos(x/2)原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x对分子分母同时求导(洛必达法则)(tgx) = 1 / (cosx)^2(x) = 1原式 = lim 1/(cosx)^2当 x --> 0 时,cosx ---> 1原式 = 13.利用两个重要极限:应用第一重要极限时,必须同时满足两个条件:① 分子、分母为无穷小,即极限为 0 ;② 分子上取正弦的角必须与分母一样。
计算极限的三种方法

计算极限的三种方法计算极限的三种方法引言在高等数学中,计算极限是一个重要的概念,它不仅在微积分中应用广泛,还在其他领域中起着关键作用。
本文将详细介绍计算极限的三种常用方法,并对它们的原理进行解释。
方法一:代入法代入法是计算极限中最简单、直观的方法之一。
它的基本思想是通过给定函数的输入值逐渐接近极限点,然后计算对应的函数输出值。
使用代入法计算极限的步骤如下: - 根据题目给出的极限点,选取一系列逼近极限点的数值。
- 将选取的数值代入给定函数中,得到对应的函数输出值。
- 观察函数输出值的变化趋势,判断是否趋近于某个确定的值。
- 如果输出值逐渐趋近于一个常数,该常数即为极限的结果。
方法二:夹逼法夹逼法是一种常用的计算极限的方法,它的基本思想是通过夹逼定理找到一个上界和下界,从而确定函数极限。
使用夹逼法计算极限的步骤如下: - 首先,找到与给定函数相关的两个函数,它们的极限等于同一个常数。
- 接着,通过比较给定函数与这两个函数之间的大小关系,找到一个夹逼定理的条件。
- 利用夹逼定理,证明给定函数的极限也等于这个常数。
夹逼法在一些复杂的函数中特别有用,它可以将函数极限的计算转化为求解两个简单函数的极限问题。
方法三:泰勒展开法泰勒展开法是一种通过近似多项式来计算函数极限的方法,它基于泰勒级数的理论,并利用函数的导数信息建立多项式模型。
使用泰勒展开法计算极限的步骤如下: - 首先,确定需要计算极限的函数。
- 接着,根据函数的性质以及泰勒级数的定义,将函数展开成多项式。
- 选择合适的近似阶数,截断多项式展开式,得到一个近似函数。
- 计算近似函数在极限点处的极限值,作为原函数在该点的极限近似。
泰勒展开法在计算复杂函数的极限时非常有用,它可以将复杂的函数问题转化为求解多项式的问题,简化计算过程。
结论计算极限的三种方法,即代入法、夹逼法和泰勒展开法,各有其适用的情况。
代入法简单直观,适用于求解简单函数的极限;夹逼法适用于复杂函数的极限求解,能够通过夹逼定理得到确定的结果;泰勒展开法在函数特性和导数信息已知的情况下,通过多项式近似求解函数极限。
函数极限的十种求法

函数极限的十种求法函数极限是高等数学中的一个重要概念,在数学分析、微积分、实变函数、复变函数等领域均有应用。
函数极限的求法有很多种,以下将介绍其中的十种方法。
一、代数方法利用现有函数的代数性质,根据极限的定义求解。
例如,对于函数 f(x)=2x+1-x,当 x 趋近于 1 时,有:lim f(x) = lim (2x+1-x) = lim x+1 = 2x→1 x→1 x→1 x→1二、夹逼定理夹逼定理也称为夹逼准则或夹逼定律。
当f(x)≤g(x)≤h(x),且lim f(x)=lim h(x)=l 时,有 lim g(x)=l。
例如,对于函数 f(x)=sin(x)/x 和 g(x)=1,当 x 趋近于 0 时,有:-1 ≤sin(x)/x ≤ 1lim -1 ≤ lim sin(x)/x ≤ lim 1x→0 x→0 x→0 x→0lim sin(x)/x = 1三、单调有界准则单调有界准则也称收敛定理。
当一个数列同时满足单调有界性质,即数列单调递增或单调递减且有上(下)界时,该数列必定收敛。
对于函数而言,只需要证明其单调有界的性质,即可用该准则求出其极限值。
例如,对于函数 f(x)=sin(x)/x,当 x 趋近于 0 时,此时 f(x) 没有极限值,但是根据单调有界准则,可以求得其极限是 1。
四、洛必达法则洛必达法则是一种有效的求函数极限值的方法,通常用在0/0形式的极限中。
对于连续可导的函数 f(x) 和 g(x),若 lim f(x)/g(x)存在,则有:lim f(x) lim f'(x)lim ——— = lim ———x→a g(x) x→a g'(x)其中“lim” 表示极限符号,f'(x) 表示 f(x) 的导数,g'(x) 表示 g(x) 的导数。
如果上式右边的极限存在,那么左边的极限也存在,并且二者相等。
例如,对于函数 f(x)=x^2+2x 和 g(x)=x+1,当 x 趋近于 1 时,有:lim (x^2+2x) lim (2x+2)lim ———— = lim ———— = 4x→1 x+1 x+1五、泰勒公式泰勒公式是求解函数在某点处的极限值的有效方法之一。
高等数学中几种求极限的方法

豆俊梅 河南工业大学 450008
摘 要 文章对贯穿于整个高等数学教材中的极限、 求极限的方法做了一定的概括与总结。 关键词 极限;极限方法
极限的概念是高等数学中最重要、 最基本的概念之一,它是研究分析方法的 重要理论基础,许多重要的概念如连续、 导数、定积分、无穷级数的和及广义积分 等都是用极限来定义的。 掌握好求极限的 方法对学好高等数学是十分重要的。但 极限定义并未直接提供如何去求极限。 求极限的方法因题而异,变化多端,有 时甚至感到变幻莫测无从下手,本文总 结几种常用的求极限的方法以供参考。
c o s x ~ ,(1 + x )a - 1 ~α x 等等。
例1求 解
-227-
科技教育创新 中国科技信息 2006 年第 15 期 CHINA SCIENCE AND TECHNOLOGY INFORMATION Aug.2006
错在对加减中的某一项进行了等价无 穷小代换。
五、利用两个重要极限
,
等七种未
定式均可用洛必达法则求解。
九、利用定积分求极限
由于定积分是一个有特殊结构和式的 极限,这样又可利用定积分的值求出某一 和数的极限.若要利用定积分求极限,其关 键在于将和数化成某一特殊结构的和式。
参考文献 [1]裘卓明编.研究生入学考试指导.山东科 学技术出版社 [2]初等数学论丛.上海教育出版社出版 [3]高等数学.同济大学数学教研室主编.高 等教育出版社 [4]数学分析.华东师范大学数学系编.高等 教育出版社
即利用①
= 1 ,②
=e 和
=e,其中的 x
都可以看作整体来对待。其中第一个重要
极限是“ ”型;第二个重要极限是
“ ”型,在“ ”型中满足“外大内 小,内外互倒”。在利用重要极限求函数极 限时,关键在于把要求的函数极限化成重 要极限的标准型或它们的变形,这就要抓 住它们的特征,并且能够根据它们的特征, 辨认它们的变形。
高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法一、极限的定义1、极限的保号性很重要:设A x f x x =→)(lim 0,(i)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。
2、极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限与0x x →的极限。
要特别注意判定极限就是否存在在:(i)数列{}的充要条件收敛于a n x 就是它的所有子数列均收敛于a 。
常用的就是其推论,即“一个数列收敛于a 的充要条件就是其奇子列与偶子列都收敛于a ”(ii)A x x f x A x f x =+∞→=-∞→⇔=∞→limlimlim)()((iii)A x x x x A x f x x =→=→⇔=→+-lim lim lim 0)((iv)单调有界准则(v)两边夹挤准则(夹逼定理/夹逼原理)(vi)柯西收敛准则(不需要掌握)。
极限)(lim 0x f x x →存在的充分必要条件就是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o时,恒有、使得当二.解决极限的方法如下:1、等价无穷小代换。
只能在乘除..时候使用。
例题略。
2、洛必达(L’ho spital)法则(大题目有时候会有暗示要您使用这个方法)它的使用有严格的使用前提。
首先必须就是X 趋近,而不就是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然就是趋近于正无穷的,不可能就是负无穷。
其次,必须就是函数的导数要存在,假如告诉f(x)、g(x),没告诉就是否可导,不可直接用洛必达法则。
另外,必须就是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。
洛必达法则分为3种情况:(i)“00”“∞∞”时候直接用 (ii)“∞•0”“∞-∞”,应为无穷大与无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。
高等数学常用极限求法[1]1
![高等数学常用极限求法[1]1](https://img.taocdn.com/s3/m/5036c9ca4afe04a1b071dea4.png)
一、求函数极限的方法1、运用极限的定义 例: 用极限定义证明:1223lim 22=-+-→x x x x 证: 由244122322-+-=--+-x x x x x x()2222-=--=x x x0>∀ε取εδ= 则当δ<-<20x 时,就有ε<--+-12232x x x由函数极限δε-定义有:1223lim 22=-+-→x x x x 2、利用极限的四则运算性质若 A x f x x =→)(lim 0B x g x x =→)(lim 0(I)[]=±→)()(lim 0x g x f x x )(lim 0x f x x →±B A x g x x ±=→)(lim 0(II)[]B A x g x f x g x f x x x x x x ⋅=⋅=⋅→→→)(lim )(lim )()(lim 0(III)若 B ≠0 则:BAx g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 000(IV )cA x f c x f c x x x x =⋅=⋅→→)(lim )(lim 0(c 为常数)上述性质对于时也同样成立-∞→+∞→∞→x x x ,,例:求 453lim 22+++→x x x x解: 453lim 22+++→x x x x =254252322=++⋅+3、约去零因式(此法适用于型时0,0x x →)例: 求121672016lim 23232+++----→x x x x x x x解:原式=()())12102(65)2062(103lim2232232+++++--+---→x x x x xx x x x xx =)65)(2()103)(2(lim 222+++--+-→x x x x x x x=)65()103(lim 222++---→x x x x x =)3)(2()2)(5(lim 2+++--→x x x x x =2lim -→x 735-=+-x x4、通分法(适用于∞-∞型) 例: 求 )2144(lim 22xx x ---→解: 原式=)2()2()2(4lim2x x x x -⋅++-→=)2)(2()2(lim2x x x x -+-→=4121lim2=+→x x5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质) 设函数f(x)、g(x) 满足: (I )0)(lim 0=→x f x x(II) M x g ≤)( (M 为正整数) 则:0)()(lim 0=→x f x g x x例: 求 xx x 1sinlim 0⋅→ 解: 由 0lim 0=→x x 而 11sin≤x故 原式 =01sinlim 0=⋅→xx x6、利用无穷小量与无穷大量的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学求极限的14种方法
一、极限的定义
1.极限的保号性很重要:设Axfxx)(lim0,
(i)若A0,则有0,使得当||00xx时,0)(xf;
(ii)若有,0使得当||00xx时,0A,0)(则xf。
2.极限分为函数极限、数列极限,其中函数极限又分为x时函数的极限和0xx的极限。要特别注意判定极
限是否存在在:
(i)数列的充要条件收敛于anx是它的所有子数列均收敛于a。常用的是其推论,即“一个数列收敛于a的
充要条件是其奇子列和偶子列都收敛于a”
(ii)AxxfxAxfxlimlimlim)()(
(iii)AxxxxAxfxxlimlimlim000)(
(iv)单调有界准则
(v)两边夹挤准则(夹逼定理/夹逼原理)
(vi)柯西收敛准则(不需要掌握)。极限)(lim0xfxx存在的充分必要条件是:
|)()(|)(,0,021021xfxfxUxxo时,恒有、使得当
二.解决极限的方法如下:
1.等价无穷小代换。只能在乘除..时候使用。例题略。
2.洛必达(L’hospital)法则(大题目有时候会有暗示要你使用这个方法)
它的使用有严格的使用前提。首先必须是X趋近,而不是N趋近,所以面对数列极限时候先要转化成求x趋
近情况下的极限,数列极限的n当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假
如告诉f(x)、g(x),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,
并且注意导数分母不能为0。洛必达法则分为3种情况:
(i)“00”“”时候直接用
(ii)“•0”“”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通
项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(xfxgxgxfxgxfxgxf或;)()(1)(1)(1)()(xgxfxfxgxgxf
(iii)“00”“1”“0”对于幂指函数,方法主要是取指数还取对数的方法,即exfxgxgxf)(ln)()()(,
这样就能把幂上的函数移下来了,变成“•0”型未定式。
3.泰勒公式(含有xe的时候,含有正余弦的加减的时候)
12)!1(!!21nxnx
xnenxxxe
;
3211253)!32(cos)1()!12()1(!5!3sinmmmm
xmxmxxxxx
cos=221242)!22(cos)1()!2()1(!4!21mmmmxmxmxxx
ln(1+x)=x-11132)1)(1()1()1(32nnnnnxnxnxxx
(1+x)u=1112)1(!2)1(1nnununnuxxCxCxuuux
以上公式对题目简化有很好帮助
4.两多项式相除:设均不为零mnba,,
P(x)=0111axaxaxannnn,0111)(bxbxbxbxQmmmm
(i))(,)(,0)(,)()(limmnmnnmbaxQxPxnn(ii)若0)(0xQ,则)()()()(00lim0xQxPxQxPxx
5.无穷小与有界函数的处理办法。例题略。
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的
函数可能只需要知道它的范围结果就出来了。
6.夹逼定理:主要是应用于数列极限,常应用放缩和扩大不等式的技巧。以下面几个题目为例:(1)设0cba,
n
nnn
n
cbax
,求nnxlim
解:由于aaaaaxannnnn)3(,,3limlim以及,由夹逼定理可知axnnlim
(2)求222)2(1)1(11limnnnn
解:由nnnnnnn1111)2(1)1(110222222,以及010limlimnnn可知,原式=0
(3)求nnnnn22212111lim
解:由nnnnnnnnnnnnnnnn222222111121111111,以及
11111limlimlim2
nnnnnnn
得,原式=1
7.数列极限中等比等差数列公式应用(等比数列的公比q绝对值要小于1)。例如:
求12321limnnnxxx )1|(|x。提示:先利用错位相减得方法对括号内的式子求和。
8.数列极限中各项的拆分相加(可以使用待定系数法来拆分化简数列)。例如:
)1(1321211limnnn=1)1(11)1(113121211limlimnnnnn
9.利用1nxxx与极限相同求极限。例如:
(1)已知nnaaa12,211,且已知nnalim存在,求该极限值。
解:设nnalim=A,(显然A0)则AA12,即0122AA,解得结果并舍去负值得A=1+2
(2)利用..单调有界的性质.......。.利.用这种方法时一定要先证明单调性和有界性。....................例如
设nnnnxxxxxlim,2,,22,2121求
解:(i)显然221xx(ii)假设,21kkxx则22221kkxx,即21kkxx。所以,
n
x
是单调递增数列,且有上界,收敛。设Anlim,(显然)0A则AA2,即022AA。
解方程并舍去负值得A=2.即2limnnx
10.两个重要极限的应用。
(i)1sinlim0xxx 常用语含三角函数的“00” 型未定式
(ii)exxx101lim,在“1”型未定式中常用
11.还有个非常方便的方法就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的,nn快于n!,n!快
于指数型函数nb(b为常数),指数函数快于幂函数,幂函数快于对数函数。当x趋近无穷的时候,它们比值的
极限就可一眼看出。
12.换元法。这是一种技巧,对一道题目而言,不一定就只需要换元,但是换元会夹杂其中。例如:求极限
xxx2sin
2
arccoslim0
。解:设ttxtxxtsin)2cos(,00,2arccos且时,则。
原式=21sin222arccos22arccos2sin2limlimlim000ttxxxxxxtxx
13.利用定积分求数列极限。例如:求极限nnnnn12111lim。由于ninin111,所以
2ln11111111211121limlimxnnnnnnnnnn
14.利用导数的定义求“00”型未定式极限。一般都是x0时候,分子上是“)()(afxaf”的形式,看见了这
种形式要注意记得利用导数的定义。(当题目中告诉你m')(af告诉函数在具体某一点的导数值时,基本上
就是暗示一定要用导数定义)
例:设)(,0)('afaf存在,求nnafnaf1lim
解:原式=nafafnafafnafafnnnafafnafafafnaf)()()1()()1()()()()1(1)(11limlim
=)()(')(11)()1(limafafafnafnafnee