高等数学 求极限方法小结及举例
求极限的方法总结及例题
求极限的方法总结及例题求极限是微积分学探究函数变化规律的基础,也是微积分学最重要的概念之一。
在求极限的运算中,由于函数的特殊性,其结果有可能是一个常数、一个变量或者无穷大,因此,求极限的计算要建立在对偏导数的理解和计算上,即在计算极限之前,首先要掌握偏导数的概念和计算方法。
一般来说,有三种常见的求极限方法:1、基本形式求极限;这种方法是指函数表达式本身具有特定性,可以用固定的简单运算公式直接求出极限值。
例如:当x趋向于0时,lim x→0 (1-cosx/x2)= 1/22、恒等式转换求极限;这种方法是指通过给出函数的形式进行合理的变换,从而使函数表达式转换成可以直接求出极限值的公式,从而解决函数求极限的问题。
例如计算:lim x→0(sin2x/x)可以将该式化简进行转换:lim x→0(sin2x/x)= lim x→0(2sinxcosx/x)= lim x→0(2cosx/1)= 2* lim x→0 (cosx)由于cosx等于1,当x趋向于0时,极限结果为2。
3、洛必达法则求极限;洛必达法则是指在求函数极限时,可以根据函数的性质将原函数转换成另外一组函数,从而推出极限结果。
例如:计算:lim x→∞ (1+1/x)x可以把原本的函数,转换成另一函数,即:lim x→∞ (1+1/x)x= lim x→∞ x/x2= lim x→∞ 1/x= 0 以上所述就是求极限的三种常见的方法。
接下来,我们就以例题来试验一下这三种方法的使用。
例题1:求lim x→0 (sin2x/x)解:由上文所述,这种情况应使用恒等式转换求极限:可以将该式化简进行转换:lim x→0(sin2x/x)= lim x→0(2sinxcosx/x)= lim x→0(2cosx/1)= 2* lim x→0 (cosx)由于cosx等于1,当x趋向于0时,极限结果为2。
例题2:求lim x→∞ (1+1/x)x解:这种情况应使用洛必达法则:可以把原本的函数,转换成另一函数,即:lim x→∞ (1+1/x)x= lim x→∞ x/x2= lim x→∞ 1/x= 0 以上就是求极限的三种方法总结及例题分析。
求极限的12种方法总结及例题
求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
高等数学B上册 求极限方法总结
求极限的几种常用方法1.约去零因子求极限例1:求极限lim1→x 114--x x【说明】1→x 表明x 与1无限接近,但1≠x ,所以1-x 这一零因子可以约去。
【解】()()()()1111lim 21-+-+→x x x x x =()()1121lim ++→x x x =42.分子分母同除求极限例2:求极限13323lim+-∞→x x x x 【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】311311lim 13lim 3323=+-=+-∞→∞→xx x x x x x 【注】(1)一般分子分母同除x 的最高次方;0 m>n(2)=++++++----∞→011011......lim b xb x b a x a x a m n m n n n n n x ∞ m<nnnb a m=n 3.分子(母)有理化求极限例3:求极限()13lim22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。
【解】()()()()131313lim13lim22222222+++++++-+=+-++∞→+∞→x x x x x x xx x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limx xx x +-+→【解】30sin 1tan 1limx x x x +-+→=()xx x xx x sin 1tan 1sin tan lim 30+++-→ =300sin tan lim sin 1tan 11limx x x xx x x -+++→→=41sin tan lim 2130=-→x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键4.应用两个重要极限求极限两个重要的极限(1)1sin lim0=→xxx(2)()e x n x x x nx xx =+=⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+→∞→∞→11lim 11lim 11lim在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。
(完整word版)高等数学求极限的常用方法(附例题和详解)
高等数学求极限的14 种方法一、极限的定义1. 极限的保号性很重要:设limf (x)A ,x x 0( i )若 A 0 ,则有0 ,使适当 0 | x x 0 |时, f (x) 0 ; ( ii )如有0, 使适当 0 | x x 0 |时, f (x)0,则A0 。
2. 极限分为函数极限、数列极限,此中函数极限又分为限能否存在在:x时函数的极限和 xx 0 的极限。
要特别注意判断极( i )数列 x n 收敛于 a 的充要条件 是它的全部子数列均收敛于 a 。
常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ”( ii )limf (x)Alimf ( x)limAxxx(iii)lim f ( x)AlimlimAx xx x 0x x 0(iv) 单一有界准则 ( v )两边夹挤准则(夹逼定理 / 夹逼原理) ( vi ) 柯 西 收 敛 准 则 ( 不 需 要 掌 握 )。
极 限 limf ( x) 存 在 的 充 分 必 要 条 件 是 :x x 00,0, 使适当 x 1、 x 2U o ( x 0 )时,恒有 | f ( x 1 ) f ( x 2 ) |二.解决极限的方法以下:1. 等价无量小代换。
只好在乘除 时候使用。
例题略。
..2. 洛必达( L ’ho spital )法例(大题目有时会有示意要你使用这个方法)它的使用有严格的使用前提。
第一一定是X 趋近,而不是 N 趋近,因此面对数列极限时候先要转变为求 x 趋近状况下的极限,数列极限的n 自然是趋近于正无量的,不行能是负无量。
其次 , 一定是函数的导数要存在,假如告诉 f (x )、g (x ), 没告诉能否可导, 不行直接用洛必达法例。
此外,一定是 “0 比 0”或“无量大比无量大” ,而且注意导数分母不可以为 0。
洛必达法例分为 3 种状况:(i )“ 0”“”时候直接用(ii) “0? ”“”,应为无量大和无量小成倒数的关系,因此无量多数写成了无量小的倒数形式了。
函数极限的求法及技巧总结
函数极限的求法及技巧总结函数极限是高等数学的一个重要概念,它在微积分、实分析等许多领域都有着广泛的应用。
在计算函数极限时,需要掌握一些求法和技巧。
本篇文章将对此进行总结。
1. 直接代入法直接代入法是最基本也是最简单的一种方法,它适用于可以直接将自变量代入函数中计算得到结果的情况。
例如,当求函数f(x) = x² + 3x + 2在x = 1处的极限时,我们可以直接将x = 1代入函数中,得到f(1) = 1² + 3×1 + 2 = 6。
因此,f(x)在x = 1处的极限为6。
2. 分式化简法分式化简法是一种常用的求极限的方法,它适用于形如“分式”的函数。
3. 夹逼定理夹逼定理是一种常用的求极限的方法,它适用于当我们无法通过代入或化简等方法直接求出函数极限时。
夹逼定理的思想是:若存在函数g(x)和h(x),满足 g(x) ≤ f(x) ≤ h(x)且limx→a g(x) = limx→a h(x) = L,那么limx→a f(x) = L。
4. 洛必达法则其中,f'(x)和g'(x)分别表示f(x)和g(x)的导数。
例如,当求函数f(x) = (e^x - 1) / x在x = 0处的极限时,我们可以将f(x)表达为g(x) / h(x)的形式,即g(x) = e^x - 1,h(x) = x,然后计算g'(x)和h'(x),得到 g'(x) = e^x,h'(x) = 1。
因此,根据洛必达法则,我们得到limx→0 f(x) = limx→0 [e^x / 1] = 1。
5. 泰勒展开法泰勒展开法是一种常用的求函数极限的方法,它适用于当函数在极限点左右存在二阶及以上的导数时。
泰勒展开法的思想是:当limx→a f(x)存在时,可以将函数f(x)在a附近进行泰勒展开,得到f(x) = f(a) + f'(a)×(x - a) + f''(a)×(x - a)² / 2 + …… + Rn(x),其中Rn(x)为余项。
大学数学经典求极限方法及解析(最全)
求极限的各种方法及解析1.约去零因子求极限例1:求极限11lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x 【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m m m n n n n x 0lim 0110113.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。
【解】13)13)(13(lim )13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限30sin 1tan 1limxxx x +-+→ 【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x【注】本题除了使用分子有理化方法外,及时分离极限式中的非........零因子...是解题的关键 4.应用两个重要极限求极限两个重要极限是1sin lim0=→xxx 和e x nx x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。
高等数学中求极限方法总结
高等数学中求极限方法总结高等数学第一章在整个高等数学的学习中都占有相当重要的地位,特别是极限,原因就是后续章节本质上都是极限。
一个经典的形容就是假如高等数学是棵树木的话,那么极限就是它的根,函数就是它的皮。
树没有跟,活不下去,没有皮,只能枯萎,可见极限的重要性。
故在这里总结了10种常用的求极限的方法并举例说明。
1、利用等价无穷小的转化求极限例:求极限x x x x 1cossin lim 20→。
解:x x x x 1cossin lim 20→x x x x 1cos lim 20→=xx x 1cos lim 0→==2注:通常在乘除时候使用,但是不是说一定在加减时候不能用,但是前提是必须证明拆分后极限依然存在,要记住常用的等价无穷小,例如当0→x 时,).(0~sin ,21~sin ,~3x x x x x tgx x tgx −−。
2、罗比达法则例:求极限∫→x x tdtx 020arctan 1lim 解:∫→x x tdt x 020arctan 1lim 21211lim 2arctan lim 200=+==→→x x t x x 例:求极限⎟⎠⎞⎜⎝⎛−−→11ln 1lim 1x x x 解:x x x x x x x x ln )1(ln 1lim 11ln 1lim 11−−−=⎟⎠⎞⎜⎝⎛−−→→21111lim 1ln 11lim 2211=+=−+−=→→xx x x x x x x x …注:使用罗比达法则必须满足使用条件,要注意分母不能为零,导数存在。
罗比达法则分为三种情况(1)0比0和无穷比无穷时候直接分子分母求导;(2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1的形式;(3)0的0次方,1的无穷次方,无穷的0次方,对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,)3、利用2个重要极限求极限例:求极限2)11(lim 22x x x x +−∞→解:211(lim 22x x x x +−∞→2)121(lim 2x x x +−+=∞→12212222])121[(lim +−−+∞→+−+=x x x x x 12lim 22+−∞→=x x x e 2−=e 。
求函数极限的方法总结(精选3篇)
求函数极限的方法总结(精选3篇)求函数极限的方法总结篇1(一) 四则运算法则四则运算法则在极限中最直接的应用就是分解,即将复杂的函数分解为若干个相对简单的函数和、积和商,各自求出极限即可得到要求的极限。
但是在分解的时候要注意:(1)分解的各部分各自的极限都要存在;(2)满足相应四则运算法则,(分母不能为0)。
四则运算的另外一个应用就是“抓大头”。
如果极限式中有几项均是无穷大,就从无穷大中选取起主要作用的那一项,选取的标准是选趋近于无穷最快的那一项,对数函数趋于无穷的速度远远小于幂函数,幂函数趋于无穷的速度远远小于指数函数。
(二) 洛必达法则(结合等价无穷小替换、变限积分求导)洛必达法则解决的是“零比零“或“无穷比无穷”型的未定式的形式,所以只要是这两种形式的未定式都可以考虑用洛必达法则。
当然,在用洛必达的时候需要注意:(1)它的三个条件都要满足,尤其要注意第二三个条件,当三个条件都满足的时候才能用洛必达法则;(2)用洛必达法则之前一定要先化简,把要求极限的式子化成“干净”的式子,否则会遇到越求导越麻烦的情况,有的甚至求不出来,所以一定要先化简。
化简常用的方法就是等价无穷小替换,有时也会用到四则运算。
考生一定要熟记常用的等价无穷小,以及替换原则(乘除因子可以替换,加减不要替换)。
考研中,除了也常常会把变限积分和洛必达相结合进行考查,这种类型的题目,首先要考虑洛必达,但是我们也要掌握变限积分求导。
另外,考试中有时候不直接考查“零比零“或“无穷比无穷”型,会出“零乘以无穷”,“无穷减无穷”这种形式,我们用的方法就是把他们变成“零比零“或“无穷比无穷”型。
(三) 利用泰勒公式求极限利用泰勒公式求极限,也是考研中常见的方法。
泰勒公式可以将常用的等价无穷小进行推广,如(四) 定积分定义考研中求n项和的极限这类题型用夹逼定理做不出来,这时候需要用定积分定义去求极限。
常用的是这种形式只要把要求的极限凑成等是左边的形式,就可以用定积分去求极限了。
求极限方法小结(实用易懂)(五篇材料)
求极限方法小结(实用易懂)(五篇材料)第一篇:求极限方法小结(实用易懂)求极限的方法小结极限思想贯穿整个高等数学的课程之中,而给定函数的极限的求法则成为极限思想的基础,因此有必要总结极限的求法,其求法可总结为以下几种:一、利用极限四则运算法则对和、差、积、商形式的函数求极限,自然会想到极限四则运算法则,法则本身很简单,但为了能够使用这些法则,往往需要先对函数做某些恒等变形或化简,采用怎样的变形和化简,要根据具体的算式确定,常用的变形或化简有分式的约分或通分、分式的分解、分子或分母的有理化、三角函数的恒等变形、某些求和或求积公式以及适当的变量替换。
11lim(-)3x→11-x1-x例 1.lim(12n-1++Λ+)n2n2n2 2.n→∞二、利用两个重要极限1sinx1xlim=1,lim(1+)=elim(1+x)x=e.x→0x→∞xx两个重要极限为:或x→0使用它们求极限时,最重要的是对所给的函数或数列做适当的变形,使之具有相应的形式,有时也可通过变量替换使问题简化。
1lim(1-)kxx 例 1.x→1lim(x+32x+1)x+2 2.x→∞三、利用夹逼准则求极限关键在于选用合适的不等式。
lim(n!)nnnlim(na1+Λ+am)n例1.n→∞a1,Λ,am},且ak>0(k=1,2,Λ,m)求n→∞ 2.设a=max{ / 4四、利用单调有界准则求极限首先常用数学归纳法讨论数列的单调性和有界性,再求解方程可求出极限。
x=a,x2=a+a=a+x1,Λ,xn+1=a+xn(n=1,2,Λ)例1.设a>0,1limxn求极限n→∞。
五、利用无穷小的性质求极限有限个无穷小的和是无穷小,有界函数与无穷小乘积是无穷小。
用等价无穷小替换求极限常常行之有效。
例 1.x→0 lim(1+xsinx-1sinsin(x-1))lim2lnxex-1 2.x→0六、利用函数连续性求极限limf(x)=f(x0)xf(x)x0设在点处连续,则→x0。
高等数学求极限的常用方法(附例题和详解)
高等数学求极限的常用方法(附例题和详解)高等数学中求极限是一项重要的数学技巧,它在数学分析、微积分和其他数学领域中都有广泛应用。
本文将介绍一些常用的求极限的方法,并给出相应的例题和详解。
一、直接代入法直接代入法是求极限的最基本方法之一。
当函数在某一点连续时,可以直接将该点代入函数中来求极限。
例题1:求函数f(x) = x^2在x=2处的极限。
解:直接将x=2代入函数中,得到f(2) = 2^2 = 4。
因此,f(x)在x=2处的极限为4。
二、夹逼法夹逼法(也称为夹挤准则)是求解一些复杂极限的常用方法。
它基于一个简单的想法:如果函数g(x)和h(x)在某一点p附近夹住函数f(x),并且g(x)和h(x)的极限都相等,那么f(x)的极限也等于这个相等的极限。
例题2:求极限lim(x→∞) [(x+1)/x]。
解:我们可以用夹逼法来求解这个极限。
首先,我们可以注意到1 ≤ [(x+1)/x] ≤ [x/x] = 1(其中[x]表示取整函数)。
因此,我们可以将极限表达式两侧夹逼:lim(x→∞) 1 ≤ lim(x→∞) [(x+1)/x] ≤ lim(x→∞) 1。
根据夹逼准则,当lim(x→∞) 1 = 1时,极限lim(x→∞) [(x+1)/x]存在且等于1。
三、极限的四则运算法则在求解复杂函数的极限时,可以利用极限的四则运算法则。
该法则规定,如果函数f(x)和g(x)在某点p处的极限存在,则函数h(x) = f(x) ± g(x)、h'(x) = f(x) * g(x)、和h''(x) = f(x) / g(x)在点p的极限也存在,并满足相应的运算法则。
例题3:求极限lim(x→0) (sinx/x)。
解:我们可以利用极限的四则运算法则来求解这个极限。
首先,观察到当x→0时,分子sinx和分母x都趋向于0,因此这个极限是一个未定式。
根据极限的四则运算法则,我们可以将lim(x→0) (sinx/x)转化为lim(x→0) sinx / lim(x→0) x。
求极限的方法及例题总结解读
求极限的方法及例题总结解读第一篇:求极限的方法及例题总结解读1.定义:说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;x→2lim(3x-1)=5 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。
利用导数的定义求极限这种方法要求熟练的掌握导数的定义。
2.极限运算法则定理1 已知limf(x),limg(x)都存在,极限值分别为A,B,则下面极限都存在,且有(1)lim[f(x)±g(x)]=A±B(2)limf(x)⋅g(x)=A⋅B (3)limf(x)A=,(此时需B≠0成立)g(x)B说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。
.利用极限的四则运算法求极限这种方法主要应用于求一些简单函数的和、乘、积、商的极限。
通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。
8.用初等方法变形后,再利用极限运算法则求极限limx→1例1 3x+1-2x-1(3x+1)2-223x-33lim=lim=x→1(x-1)(3x+1+2)x→1(x-1)(3x+1+2 )4解:原式=。
注:本题也可以用洛比达法则。
例2 limn(n+2-n-1)n→∞nn[(n+2)-(n-1)]分子分母同除以lim=n→∞n+2+n-1limn→∞31+21+1-nn=32解:原式=(-1)n+3nlimnn例3 n→∞2+3。
上下同除以3n=解:原式1(-)n+1lim3=1n→∞2n()+13。
3.两个重要极限sinx=1x→0x(1)lim(2)x→0lim(1+x)=e1xlim(1+1)x=ex;x→∞说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式,sin3x3lim=1lim(1-2x)-2x=elim(1+)3=ex例如:x→03x,x→0,x→∞;等等。
【高数总结求极限方法】百度作业帮
【高数总结求极限方法】百度作业帮1. 代入法, 分母极限不为零时使用.先考察分母的极限,分母极限是不为零的常数时即用此法.【例1】lim[x-->√3](x^2-3)/(x^4+x^2+1)lim[x-->√3](x^2-3)/(x^4+x^2+1)=(3-3)/(9+3+1)=0【例2】lim[x-->0](lg(1+x)+e^x)/arccosxlim[x-->0](lg(1+x)+e^x)/arccosx=(lg1+e^0)/arccos0=(0+1)/1=12. 倒数法,分母极限为零,分子极限为不等于零的常数时使用.【例3】 lim[x-->1]x/(1-x)∵lim[x-->1] (1-x)/x=0 ∴lim[x-->1] x/(1-x)= ∞以后凡遇分母极限为零,分子极限为不等于零的常数时,可直接将其极限写作∞.3. 消去零因子(分解因式)法,分母极限为零,分子极限也为零,且可分解因式时使用.【例4】 lim[x-->1](x^2-2x+1)/(x^3-x)lim[x-->1](x^2-2x+1)/(x^3-x)=lim[x-->1](x-1)^2/[x(x^2-1)=lim[x-->1](x-1)/x=0【例5】lim[x-->-2](x^3+3x^2+2x)/(x^2-x-6)lim[x-->-2] (x^3+3x^2+2x)/(x^2-x-6)= lim[x-->-2]x(x+1)(x+2)/[(x+2)(x-3)]= lim[x-->-2]x(x+1) / (x-3)=-2/5【例6】lim[x-->1](x^2-6x+8)/(x^2-5x+4)lim[x-->1](x^2-6x+8)/(x^2-5x+4)= lim[x-->1](x-2)(x-4)/[(x-1)(x-4)]= lim[x-->1](x-2) /[(x-1)=∞【例7】lim[h-->0][(x+k)^3-x^3]/hlim[h-->0][(x+h)^3-x^3]/h= lim[h-->0][(x+h) –x][(x+h)^2+x(x+h)+h^2]/h= lim[h-->0] [(x+h)^2+x(x+h)+h^2]=2x^2这实际上是为将来的求导数做准备.4. 消去零因子(有理化)法,分母极限为零,分子极限也为零,不可分解,但可有理化时使用.可利用平方差、立方差、立方和进行有理化.【例8】lim[x-->0][√1+x^2]-1]/xlim[x-->0][√1+x^2]-1]/x= lim[x-->0][√1+x^2]-1] [√1+x^2]+1]/{x[√1+x^2]+1]}= lim[x-->0][ 1+x^2-1] /{x[√1+x^2]+1]}= lim[x-->0] x / [√1+x^2]+1]=0【例9】lim[x-->-8][√(1-x)-3]/(2+x^(1/3))lim[x-->-8][√(1-x)-3]/(2+x^(1/3))=lim[x-->-8][√(1-x)-3] [√(1-x)+3] [4-2x^(1/3)+x^(2/3)]÷{(2+x^(1/3))[4-2x^(1/3)+x^(2/3)] [√(1-x)+3]}=lim[x-->-8](-x-8) [4-2x^(1/3)+x^(2/3)]/{(x+8)[√(1-x)+3]} =lim[x-->-8] [4-2x^(1/3)+x^(2/3)]/[√(1-x)+3]=-25. 零因子替换法.利用第一个重要极限:lim[x-->0]sinx/x=1,分母极限为零,分子极限也为零,不可分解,不可有理化,但出现或可化为sinx/x时使用.常配合利用三角函数公式.【例10】lim[x-->0]sinax/sinbxlim[x-->0]sinax/sinbx= lim[x-->0]sinax/(ax)*lim[x-->0]bx/sinbx*lim[x-->0]ax/(bx) =1*1*a/b=a/b【例11】lim[x-->0]sinax/tanbxlim[x-->0]sinax/tanbx= lim[x-->0]sinax/ sinbx*lim[x-->0]cosbx=a/b6. 无穷转换法,分母、分子出现无穷大时使用,常常借用无穷大和无穷小的性质.【例12】lim[x-->∞]sinx/x∵x-->∞ ∴1/x是无穷小量∵|sinx|∞]sinx/x=0【例13】lim[x-->∞](x^2-1)/(2x^2-x-1)lim[x-->∞](x^2-1)/(2x^2-x-1)= lim[x-->∞](1 -1/x^2)/(2-1/x-1/ x^2)=1/2【例14】lim[n-->∞](1+2+……+n)/(2n^2-n-1)lim[n-->∞](1+2+……+n)/(2n^2-n-1)=lim[n-->∞][n( n+1)/2]/(2n^2-n-1)=lim[n-->∞][ (1+1/n)/2]/(2-1/n-1/n^2)=1/4【例15】lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50= lim[x-->∞][(2x-3)/ (5x+1)]^20[(3x+2)/ (5x+1)]^30= lim[x-->∞][(2-3/x)/ (5+1/ x)]^20[(3+2/ x)/ (5+1/ x)]^30 =(2/5)^20(3/5)^30=2^20*3^30/5^50。
高等数学求极限的17种常用方法(附例题和详解)
⾼等数学求极限的17种常⽤⽅法(附例题和详解)⾼等数学求极限的14种⽅法⼀、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim 0,(i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ;(ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。
2.极限分为函数极限、数列极限,其中函数极限⼜分为∞→x 时函数的极限和0x x →的极限。
要特别注意判定极限是否存在在:(i )数列{}的充要条件收敛于a n x 是它的所有⼦数列均收敛于a 。
常⽤的是其推论,即“⼀个数列收敛于a 的充要条件是其奇⼦列和偶⼦列都收敛于a ”(ii )A x x f x A x f x =+∞→=-∞→?=∞→limlimlim)()((iii)A x x x x A x f x x =→=→?=→+-lim lim lim 0)((iv)单调有界准则(v )两边夹挤准则(夹逼定理/夹逼原理)(vi )柯西收敛准则(不需要掌握)。
极限)(lim 0x f x x →存在的充分必要条件是:εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当⼆.解决极限的⽅法如下:1.等价⽆穷⼩代换。
只能在乘除..时候使⽤。
例题略。
2.洛必达(L’ho spital )法则(⼤题⽬有时候会有暗⽰要你使⽤这个⽅法)它的使⽤有严格的使⽤前提。
⾸先必须是X 趋近,⽽不是N 趋近,所以⾯对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正⽆穷的,不可能是负⽆穷。
其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接⽤洛必达法则。
另外,必须是“0⽐0”或“⽆穷⼤⽐⽆穷⼤”,并且注意导数分母不能为0。
大一高数求极限的方法总结
大一高数求极限的方法总结大一高等数学中,求极限是一个非常重要的概念和技巧。
在学习求极限的过程中,我们需要掌握一些基本的方法和技巧。
下面是对一些常用的求极限方法进行总结。
一、无穷小量代换法当我们在求一个函数的极限时,可以将函数中的无穷小量用一个新的无穷小量来代替,从而简化计算。
例如,当求极限lim(x->0)(sinx)/x时,可以将sinx用x来代替,即lim(x->0)x/x=1二、夹逼定理夹逼定理是一种非常常用的求极限方法。
当我们无法直接计算一个函数的极限时,可以通过找到两个已知的函数,使它们的极限分别为L和L’,并且夹在待求函数的极限值周围时,我们可以得出待求函数的极限也为L。
三、洛必达法则洛必达法则是一种非常常用的求导法则,它可以用来求解一些不定型的极限。
当我们在计算一个函数的极限时,如果得到的结果为0/0或者∞/∞的形式,那么我们可以使用洛必达法则来求解极限。
具体做法是对分子和分母同时求导,并再次计算极限,直到得到一个有限的值。
四、泰勒展开法当我们计算一些函数在一点的极限时,可以使用泰勒展开来逼近函数的值。
泰勒展开是将一个函数表示为无限项的级数,通过截取有限项来逼近函数的值。
这样可以大大简化我们的计算过程。
五、换元法有时候我们可以通过进行一些变量的替换来改变函数的形式,从而更容易求解极限。
例如,当我们计算lim(x->0)(3^(2x)-2^x)时,可以令y=2^x,然后再进行计算,就可以得到较为简单的表达式。
六、分数的极限当我们计算一个函数的极限时,如果得到的结果为一个分数形式,可以进行有理化来方便我们的计算。
有理化的方法有分子分母同时乘以一些适当的因式、差化积等。
七、级数化积当我们计算一个函数的极限时,通常可以将函数展开为一个级数,然后进行计算。
例如,当我们计算lim(x->0)(e^x-1)/x时,可以将e^x展开为一个级数,再进行计算。
八、寻找特殊点有时候我们可以通过找到一些特定的点来计算极限。
高等数学求极限的常用方法(附例题和详解)
高等数学求极限的常用方法(附例题和详解)高等数学是高等教育中的重要课程之一,其涵盖的内容非常广泛,包括微积分、数理方程和变换等方面。
其中求极限是微积分中的核心内容之一,也是数学建模和应用中常用的方法之一。
本文将介绍求极限的常用方法,并提供相应的例题和详解。
一、用夹逼定理求极限夹逼定理是求极限中常用的方法之一,其思路是通过一个比较大小的框架,来判断所求极限的范围和趋势。
具体而言,假设存在两个函数 f(x) 和 g(x),满足以下条件:1. 对于 x 属于某个区间 [a, b],有 f(x) <= g(x)。
2. 在区间 [a, b] 内,f(x) 和 g(x) 的极限均存在,即 lim[f(x)] = A,lim[g(x)] = A。
3. 在区间 [a, b] 内,除有限个点外,f(x) = g(x)。
则可以得到 lim[f(x)] = lim[g(x)] = A。
下面是一个例子:例1:求极限 lim[(x^2 - 4x + 3) / (x - 3)]。
解法:可以将原式改写成 (x - 1)(x - 3) / (x - 3),即 (x - 1)。
则对于x ∈ (3,∞),有 0 <= x - 1 <= x - 3,因此:0 <= (x^2 - 4x + 3) / (x - 3) - (x - 1) <= x - 3,而 lim[x - 3] = ∞,因此可用夹逼定理得到所求极限为 lim[(x^2 - 4x + 3) / (x - 3)] = lim[(x - 1)] = 2。
二、用洛必达法则求极限洛必达法则是求导数时的常用方法,在求极限时也可以用到。
具体而言,假设有一个形如 lim[f(x) / g(x)] 的无穷小量,若这个无穷小量的分子和分母都存在极限,并且它们的极限都等于 0 或者±∞,则可以用洛必达法则来求出极限的值。
其中,洛必达法则的形式如下:若 lim[f(x)] = 0,lim[g(x)] = 0,且g'(x) ≠ 0,则 lim[f(x) / g(x)] = lim[f'(x) / g'(x)]。
高数求极限的方法小结
高等数学中求极限的方法小结2.求极限的常用方法2.1 利用等价无穷小求极限#这种方法的理论基础主要包括:(1)有限个无穷小的和、差、积仍是无穷小.(2)有界函数与无穷小的乘积是无穷小.(3)非零无穷小与无穷大互为倒数.(4)等价无穷小代换(当求两个无穷小之比的极限时,分子与分母都可用等价无穷小代替).[3]设αα'~、~ββ'且limlim ββαα'=;则:β与α是等价无穷小的充分必要条件为:0()βαα=+.常用等价无穷小:当变量0x →时,21sin ~,tan ~,arcsin ~,arctan ~,1~,ln(1)~,1cos ~,2x x x x x x x x x e x x x x x -+-~,(1)1~x x x αα+-.例1 求01cos limarctan x xx x→-.解 210,1cos ~,arctan ~2x x x x x →-Q 时, 故,原式220112lim 2x xx →==例2 求1230(1)1limcos 1x x x →+--.解 12223110,(1)1~,1cos ~32x x x x x →+--Q 时,因此: 原式202123lim 132x xx→==-.例3 求x →解 0,x →时11~,tan ~3x x x ,故:原式=0113lim 3x xx →=.例4 求()21lim2ln(1)x x e x x →-+.解 0,1~,ln(1)~xx e x x x →-+时,故:原式2201lim 22x x x →==.例5 试确定常数a 与n ,使得当0x →时,nax 与33ln(1)x x -+为等价无穷小.解 330ln(1)lim 1n x x x ax →-+= 而左边225311003331lim lim n n x x x x x x nax nax--→→-+--=, 故 15n -=即6n = 0331lim 11662x a a a →--∴=∴=∴=-.2.2 利用洛必达法则求极限#利用这一法则的前提是:函数的导数要存在;为0比0型或者∞∞型等未定式类型. 洛必达法则分为3种情况:(1)0比0,无穷比无穷的时候直接用.(2)0乘以无穷,无穷减去无穷(无穷大与无穷小成倒数关系时)通常无穷大都写成无穷小的倒数形式,通项之后,就能变成(1)中形式了.(3)0的0次方,1的无穷次方,无穷的0次方,对于(指数,幂函数)形式的方法主要是取指数的方法,这样就能把幂函数指数位置的函数移下来了,就是写成0与无穷的形式了.洛必达法则中还有一个定理:当x a →时,函数()f x 及()F x 都趋于0;在点a 的某去心邻域内,()f x ﹑()F x 的导数都存在且()F x 的导数不等于0;()lim()x af x F x →''存在,那么()()limlim ()()x ax a f x f x F x F x →→'=' . [1]求极限有很多种方法如洛必达法则,夹逼定理求极限的秘诀是:强行代入,先定型后定法.[3]例6 求22201cos lim()sin x xx x →-. 分析 秘诀强行代入,先定型后定法.22224431100(00)(00)0000000000-+--+-===(此为强行代入以定型). ()00-可能是比()00+高阶的无穷小,倘若不这样,或422(00)(00)0000000+--+= 或43(00)(00)0000000+-+-=. 解2222222240001cos sin cos (sin cos )(sin cos )lim()lim lim sin sin x x x x x x x x x x x x x x x x x x →→→--+-== 33000sin cos sin cos sin cos limlim 2lim x x x x x x x x x x x xx x x→→→-+-==, 由洛必达法则的22222001cos sin 4sin 42,2lim lim 333x x x x x x x →→-+==有:上式=. 例7 求201lim x x e x x→--.解 22000(1)1lim lim 1lim 1()21x x x x x x e e e x x x x x →→→'--==-∴=-'--- . 例8 求332132lim 1x x x x x x →-+--+.解 原式22113363lim lim 321622x x x x x x x →→-===---.(二次使用洛必达法则). 例9 求02lim sin x x x e e xx x-→---.解 原式0002limlim lim 21cos sin cos x x x x x xx x x e e e e e e x x x ---→→→----====-. 例10 求22143lim 21x x x x x →-+-+.解 原式1112422limlim lim 02211x x x x x x x x x →→→---===∴---Q 原式=∞.例11 求0tan lim sin arcsin x x xx x x→-.解 原式222222220000111(1cos)tan 1cos 1cos 2lim lim lim lim 33cos 3cos 3x x x x x x x x x xxx x x x x x →→→→-+--=====. 例12 求0cot lim ln x xx+→.解 原式22200sin cos 1lim lim sin 2sin cos x x x x x x x x ++→→---===-∞. 例13 求22201cos lim()sin x xx x →-. 解 原式22222400sin cos (sin cos )(sin cos )lim lim sin x x x x x x x x x x x xx x→→--+== 223320000sin cos sin cos sin cos 1cos sin 4lim lim 2lim 2lim 33x x x x x x x x x x x x x x x x x x x →→→→-+--+====“0⨯∞”型: 例14 求lim (arctan )2x x x π→+∞-.解 原式2221arctan 112lim lim lim 11111x x x x x xx x π→+∞→+∞→+∞-+====+.“∞-∞”型:例15 求 ()2lim sec tan x x x π→-.解 1sin 1sin sec tan cos cos cos x xx x x x x--=-=Q , 故原式221sin cos limlim 0cos sin x x x x x x ππ→→--===-.“00”型:例16 求0lim xx x +→. 解 原式ln 0lim ln ln 0lim lim 1x xxx e x x xx x e e e +→++→→====.“1∞”型:例17 求lim 1xx e x →∞⎛⎫+ ⎪⎝⎭.解 原式lim 1x e ee x e e x →∞⎛⎫=+= ⎪⎝⎭.“0∞”型:例18 求tan 01lim ()xx x+→.解 原式tan ln tan 01lim ln()tan ln 0lim lim x xxx e x xxx x e e e -+→++-→→===,而tan ~0lim(tan ln )lim(ln )0x x x x x x x x ++→→-−−−→-=,因此:原式=1. 2.3 泰勒公式(含有e 的x 次方的时候,尤其是含有正、余弦的加减的时候要特别注意)泰勒中值定理定理:如果函数()f x 在含有n 的某个开区间(,)a b 内具有直到(1)n + 阶的导数,则对任一(,)x a b -∈,有()f x =0()f x +0()f x '(x -0x )+0()2!f x ''(x -0x )2+……+()0()!n f x n (x -0x )n+n R (x )其中()()()(1)10()1!n n n f R x x x n ξ++=-+,这里ξ是x 与0x 之间的某个值. [1]例19 利用带有佩亚诺型余项的麦克劳林公式,求极限30sin cos limsin x x x xx→-.解 由于公式的分母33sin ~(0)x x x →,我们只需将分子中的3333sin 0(),cos 0()3!2!x x x x x x x x x =-+=-+代入计算,于是 3333331sin cos 0()0()0()3!2!3x x x x x x x x x x x -=-+-++=+,对上式做运算时,把两个3x 高阶的无穷小的代数和还是记作30()x .例20 323322314334lim lim 3211211x x x x x x x x x x x x →∞→∞++++==++++++, 2222111lim lim 121(1)1x x n n n n n→∞→∞++==--+, ()121(2)313limlim (2)332233nn nn n n x x ++→∞→∞⎛⎫-+ ⎪-+⎝⎭==-+⎛⎫--+ ⎪⎝⎭. 2.4 无穷小与有界函数的处理方法面对复杂函数,尤其是正、余弦的复杂函数与其它函数相乘的时候,一定要注意这个方法.[3]例21 求 sin lim x x xx→∞+.解 原式sin 1lim(1)lim(1sin )1x x x x x x→∞→∞=+=+=.2.5 夹逼定理主要介绍的是如何用之求数列极限,这个主要是看见极限中的通项是方式和的形式,对之放缩或扩大.[1]例22 求2sin sin sin lim ...1112n n n n n n n πππ→∞⎛⎫ ⎪+++ ⎪+ ⎪++⎝⎭. 解 111sin sin sin 11n n ni i i i i i n n n n n o n iπππ===≤≤+++∑∑∑, 1011sin 12lim lim sin nn n n i i i i n n x dx n o n nππππ→∞→∞====⋅=+∑∑⎰,1011sin 112lim lim 1sin 11nn n n i i i i n x dx n n n n ππππ→∞→∞==⎫⎛=⋅=⋅⋅= ⎪++⎝⎭∑∑⎰, 根据夹逼定理 1sin2lim1nx i i n n iππ→∞==+∑. 2.6 等比等差数列公式(δ的绝对值要小于1) [1]例23 设1||<δ,证等比数列1,δ,2δL 1n δ-,…的极限为0.证 任取01δ<<,为使n x a ε-<,而n n x a δ-=,使nδε<,即ln ln ln ,ln n n εδεδ<>,当ln ln N εδ⎡⎤=⎢⎥⎣⎦,当n N >时,即ln ln 11ln ln n N εεδδ⎡⎤≥+=+>⎢⎥⎣⎦, ln ln nn δεδε<⇒<即n x a ε-<,由定义知()lim 10nδδ<=()()22......lim ...11n n n δδδδδδδδδ→∞++=++=<-.因此,很显然有:()0.99...lim 0.99...1n n→∞==.2.7 各项以拆分相加[3]将待求的和式子的各项拆分相加来消除中间的大多数,主要应用于数列极限,可以使用待定系数来拆分简化函数.例24 求()111lim 1...2*33*41n n n →∞⎛⎫++++ ⎪ ⎪+⎝⎭. 解 原式111111lim 1...23341n n n →∞⎛⎫=+-+-++- ⎪+⎝⎭11lim 121n n →∞⎛⎫=+- ⎪+⎝⎭31lim 21n n →∞⎛⎫=- ⎪+⎝⎭ =32. 2.8 求左右极限的方式例25 求函数⎪⎩⎪⎨⎧>+=<-=0,10,00,1)(x x x x x x f ,求0x →时,()f x 的极限.解 ()()0lim lim 11x x f x x --→→=-=-,()()0lim lim 11x x f x x ++→→=+=, 因为()()0lim lim x x f x f x ++→→≠,所以,当0→x 时,)(x f 的极限不存在. 例26 ()0lim0x x x xαα→>.解 0)(lim )(lim 00=-=---→→ααx x x x x x ,0lim lim 00==++→→ααx x x x x x , 因为0lim )(lim 00==-+-→→xxx x x x x x αα,所以,原式=0. 2.9 应用两个重要极限1sin lim 0=→x x x ,1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭ 例27 求xe x x 1lim 0-→.解 记()ln 1x t =+ 1xe t -=,则原式=1001limlim 111ln 1t t t tt t →→==+⎛⎫+ ⎪⎝⎭ ()1lim 1x x x e →∞⎛⎫+= ⎪⎝⎭因为. 例28 求1lim 11nn n →∞⎛⎫+ ⎪+⎝⎭. 解 原式=()111lim 11n n n +-→∞⎛⎫+ ⎪+⎝⎭=e .例29 求1lim 1-1nn n →∞⎛⎫+ ⎪⎝⎭. 解 原式=()111lim 1-1n n n -+→∞⎛⎫+ ⎪⎝⎭=e .2.10 根据增长速度 )(ln ∞→<<x ex x xnλ例30 求()lim 0nx x x n e λλ→∞>为正整数,.解 原式=1lim n x x nx e λ-→∞=()221!limlim0n xn xx x n n x n e e λλλλ-→∞→∞-==.例31 求()ln lim0nx xn x →∞>.解 01limlim ln lim 11===∞→-∞→∞→nx n x x n x nx nx x x . 同函数趋近于无穷的速度是不一样的,x 的x 次方快于!x (x 的阶乘)快于指数函数,快于幂函数,快于对数函数.所以增长速度: )(ln ∞→<<x ex x xnλ.故以后上述结论可直接在极限计算中运用. 2.11 换元法例32 1lim (1)xx x→-∞+.解 令x t =-,则原式=1lim 1t t t -→+∞⎛⎫- ⎪⎝⎭1lim t t t t -→+∞-⎛⎫= ⎪⎝⎭111lim 1111t t t t -→+∞⎛⎫⎛⎫=+⋅+ ⎪ ⎪--⎝⎭⎝⎭=e 2.12 利用极限的运算法则[1]利用如下的极限运算法则来求极限: (1) 如果()()lim ,lim ,f x A g x B ==那么B A x g x f x g x f ±=±=±)(lim )(lim )]()(lim[()()()()lim lim lim f x g x f x g x A B ⋅=⋅=⋅⎡⎤⎣⎦若又有0≠B ,则BAx g x f x g x f ==)(lim )(lim )()(lim(2)如果)(lim x f 存在,而c 为常数,则)(lim )](lim[x f c x cf = (3)如果)(lim x f 存在,而n 为正整数,则nnx f x f )]([lim )](lim [= (4)如果)()(x x ϕδ≥,而b x a x ==)(lim ,)(lim ϕδ,则b a ≥ (5)设有数列{}n x 和{}n y ,如果()lim ;n n n x y A B →∞+=+那么,()lim ;n n n x y A B →∞+=+lim n n n x y A B →∞=⋅当()01,2,...n y n ≠=且0b ≠时,limn n n x A y B→∞= 2.13 求数列极限的时候可以将其转化为定积分[1]例33 已知()f x = ,在区间[]0,1上求()01limniii f x λξ→=∆∑(其中将[]0,1分为n个小区间[]1,i i x x -,1i i i x x ξ-≤≤,λ为i x ∆中的最大值).解 由已知得: ()()11limni i i f x f x dx λξ→=∆=∑⎰dx =⎰4π=.(注释:由已知可以清楚的知道,该极限的求解可以转化为定积分,求函数()f x 在区间[]0,1上的面积).在有的极限的计算中,需要利用到如下的一些结论、概念和方法:(1)定积分中值定理:如果函数()f x 在积分区间[],a b 上连续,则在[],a b 上至少有一个点,使下列公式成立:()()()baf x dx x b a ϕ=-⎰ ()a b ϕ≤≤;(2)设函数()f x 在区间[],a +∞上连续,取t a >,如果极限 ()lim tat f x dx →+∞⎰存在,则称此极限为函数()f x 在无穷区间[],a +∞上的反常积分,记作⎰∞+0)(dx x f ,即⎰⎰+∞→∞+=tat adx x f dx x f )(lim)(;设()f x 在区间[],a b 上连续且()0f x ≥,求以曲线()y f x =为曲线,底为[],a b 的曲边梯形的面积A ,把这个面积A 表示为定积分:()b=aA f x dx ⎰ 的步骤是:首先,用任意一组的点把区间[],a b 分成长度为(1,2,...)i x i n ∆=的n 个小区间,相应地把曲线梯形分成n 个窄曲边梯形,第i 个窄曲边梯形的面积设为i A ∆,于是有1nii A A ==∆∑;其次,计算i A ∆的近似值 ()()1i i i i i i A fx x x ϕϕ-∆≈∆≤≤;然后,求和,得A 的近似值 ()1niii A f x ϕ=≈∆∑;最后,求极限,得⎰∑=∆==→b ai ni i dx x f x f A )()(lim1ϕλ.例34 设函数()f x 连续,且()00f ≠,求极限 ()()()[]2lim .xx x x t f t dt x f x t dt→--⎰⎰. 解 ()()()00limxxx x t f t dtx f x t dt→--⎰⎰ =()()()0lim,xxxx xf t dt tf t dtx f u du→-⎰⎰⎰()()()()()0+limx x x f t dt xf x xf x f u du xf x →-+⎰⎰由洛必达得:,()()(),,,f x t dx u x t f u du -=-⎰x其中令得()()()()0lim0x x xf xf xf x ϕφϕ→+再由积分中值定理得:在到之间 ()()()()()()001lim002x f f f f x f f ϕϕ→===++.例35 计算反常积分: 21dx x +∞-∞+⎰.解21dx x +∞-∞+⎰ =[]arctan x +∞-∞=-lim arctan lim arctan x x x x →+∞→∞-=()22πππ--=. 2.14 利用函数有界原理证明极限的存在性,利用数列的逆推求极限(1)单调有界数列必有极限;(2)单调递增且有上界的数列必有极限,单调递减且有下界的数列必有极限.[3]例36 数列{}n x :2解 由已知可得{}n x 单调递增且有界,由单调有界原理,知lim n n x →∞存在.又n x =,lim n n n x →∞=记lim =t,n n x t →∞=则即可证2n x <,得到 2=t . 2.15 直接使用求导的定义求极限当题目中告诉你0)0(=F 时,)(x F 的导数等于0的时候,就是暗示你一定要用导数定义:(1)设函数()y f x =在点0x 的某个领域内有定义,当自变量x 在0x 处取得增量x ∆(点0x x ∆+仍在该领域内)时,相应的函数取得增量()()00y f x x f x ∆=∆+-;如果y ∆与x ∆之比0x ∆→时的极限存在,则称函数()y f x =在点0x 处可导,并称这个极限为函数()y f x =在点0x 处可导,并称这个极限为函数()y f x =在点0x 处的导数,记作()0f x ',即 ()()()00000limlim x x f x x f x yf x x x∆→∆→∆+-∆'==∆∆;(2)在某点处可导的充分必要条件是左右导数都存在且相等. 例36 ()()()()1f x x x e x π=---,求()'f π.解 ()'f π ()()()()()()=limlim 11x x f x f x x e x x e x ππππ→→-=--=---. 例37 若函数()f x 有连续二阶导数且()0=0f ,()'0=1f,()''0=-2f ,则 ()()20limx f x xx →-=.A:不存在 B :0 C :-1 D :-2 解 ()20limx f x x x →-=()()()'''00101lim lim 220x x f x f x f x x →→--=-()''1012f ==-. 所以,答案为D.例38 若()(1)(2).....(2010)f x x x x x =++++,求(0)f '.解 0()(0)(0)limx f x f f x→-'=0(1)(2) (2010)lim x x x x x x→++++=lim (1)(2).....(2010)x x x x x →=++++2010!=. 2.16 利用连续性求极限[1]例39 设()f x 在1x =处有连续的一阶导数,且(1)2f '=,求1lim x ddx+→+. 解原式1lim x f +→'=-11lim 2x f +→'=-11lim 2x f +→'=-11(lim 2x f +→'=-1(1)2f '=-1=-.2.17 数列极限转为函数极限求解数列极限中是n 趋近,而不是x 趋近.面对数列极限时,先要转化成求x 趋近情况下的极限,当然n 趋近是x 趋近的一种情况而已,是必要条件.(还有数列极限的n 当然是趋于正无穷的).[1]例40 求21lim (1sin )n n n n→∞-.解 令1t n =,则原式2320001sin sin 1cos lim (1)lim lim 3t t t t t t t t t t t →→→--=-==,所以在0t →时,1cos t -与212t 等价,因此,原式20212lim 13t tt→=16=.。
高等数学极限求法总结
高等数学极限求法总结本站小编为你整理了多篇相关的《高等数学极限求法总结》,但愿对你工作学习有帮助,当然你在本站还可以找到更多《高等数学极限求法总结》。
第一篇:6利用函数连续性(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)描述函数的一种连绵不断变化的状态,即自变量的微小变动只会引起函数值的微小变动的情况。
确切说来,函数在某点连续是指:当自变量趋于该点时,函数值的极限与函数在该点所取的值一致。
例1设 f(x)=xsin 1/x + a,x<0,b+1,x=0,x^2-1,x<0,试求:当a,b为何值时,f(x)在x=0处的极限存在?当a,b为何值时,f(x)在x=0处连续?注:f(x)=xsin 1/x +a, x< 0b+1, x=0X^2-1, x>0解:f(0)=b+1左极限:lim(x→0-) f(x)=lim(x→0-) (xsin(1/x)+a)=0+a=a左极限:lim(x→0+) f(x)=lim(x→0+) (x^2-1)=0-1=-1f(x)在x=0处连续,则lim(x→0-) f(x)=lim(x→0+) f(x)=f(0),所以a=-1=b+1,所以a=-1,b=-2第二篇:函数极限的四则运算法则学案课题:§13-3函数极限的四则运算法则(一)学习目标:掌握函数极限的运算法则,并会求简单的函数的极限学习重点:运用函数极限的运算法则求极限学习难点:函数极限法则的运用学习过程一、知识复习1.复习数列极限的四则运算法则(包括乘方的极限的法则).2.复习几个简单函数的极限.即:二、课堂学习1.指导对上述定理的证明作简要说明.2.探究问题1 根据函数极限定义和函数的图象,说出下列极限,并验证所给结论.(其中f(x)为有理分函数).所以,若f(x)为有理整函数,则有解:因为当x→x0时,分子、分母皆有极限且分母的极限不为零,因此有判断下列各极限是否存在?如果存在,求其极限;如果不存在,说明理由.三、检测1.求下列极限:2.求下列极限:四、学习小结第三篇:2利用洛必达法则洛必达(L Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
x = f ′( t ) d2y 例 12 . f ′′( t ) ≠ 0 求 . 2 dx y = t f ′( t ) − f ( t ) d y y′( t ) f ′( t ) + t f ′′( t ) − f ′( t ) 解. = = =t d x x′( t ) f ′′( t )
2
t =π − x −1 2 t ========= lim t →0 cot t
tan t = − lim = −1 . t →0 t
"∞" ∞
例 7 . lim ( x ⋅ cot x )
x →0
x = lim =1. x →0 tan x
( 有界量乘无穷小 )
"0⋅ ∞"
lim x cos 1 = 0 . x x →0
4 . "∞ ± ∞" 型 ,
1 ± 1 = f ( x ) ± g( x ) . f ( x ) g( x ) f ( x ) ⋅ g( x )
5 . " ( 1 ± 0 ) ∞ " 型 , 0 " "0 型, u( x ) v ( x ) = e v ( x )⋅ln u( x ) 6. (指数型) " ∞0 " 型 , 7. lim [v ( x )⋅ln u( x ) ] v( x )
n x n −1 sin 1 − x n − 2 cos 1 x>0 x x f ′( x ) = 0 x=0 n x n −1 x<0 ′( x ) = lim n x n −1 sin 1 − x n − 2 cos 1 lim f x x x → +0 x →+0
dt 1 d2y d 1 ′⋅ (t ) = 1( t )? = = . = 1⋅ 2 dx dx x′(t ) f ′′( t ) dx
例13 . y = tan( x + y ) , 求 y′′ .
解 . y′ = sec2 ( x + y ) ⋅ (1 + y′ ) ,
sec2 ( x + y ) 1 + tan 2 ( x + y ) 1 + y 2 1 ′= y = = 2 2 2 = − 2 −1 . 1 − sec ( x + y ) − tan ( x + y ) −y y
lim( 1 + f ( x ))
g( x )
=e
c
3
c = lim[ f ( x ) g( x )]
( x + 1)( x − 1) x +1 例 1 . lim 2 = lim = lim = −2 . x →1 x − 3 x + 2 x →1 ( x − 2)( x − 1) x →1 x − 2
= lim x
x → +0 n −1
sin 1 = 0 . x
如果 n > 1
f ( x ) − f ( 0) xn ′ f − (0) = lim = lim = 0 . 如果 n > 1 x →−0 x −0 x → −0 x
如果 n > 1 ,
则 f ′(0) = 0 .
8
∴ 当 n > 1时 ,
( (幂指型)
lim u( x )
[
]= e
=e
5 . " (1 ± 0 )∞ " 型 ,
(1Байду номын сангаас+
f ( x ))
g( x )
g( x )
g ( x )⋅ln (1+ f ( x ) )
,
lim( 1 + f ( x ))
=e
lim[ g ( x )⋅ln (1+ f ( x ) )]
,
(经验公式)
+ ⋯ + ( x − a )n ⋅ ϕ ( n −1) ( x ) ,
f ( n −1) (a ) = 0 .
f ( n −1) ( x ) − f ( n −1) (a ) f ( n ) (a ) = lim x →a x−a
n ! ϕ ( x ) + ( n − 1) ⋅ n ! ( x − a )ϕ ′( x ) = lim 2 x →a
10
例 11 .
f ( x ) = ( x − a )n ϕ ( x ) , ϕ ( x ) 在 U (a ) 内 n − 1 次可导 , 求 f ( n ) (a ) . f ( n −1) ( x ) = n !( x − a ) ⋅ ϕ ( x ) + ( n − 1) ⋅
解.
n! ( x − a ) 2 ⋅ ϕ ′( x ) 2!
lim x cos 1 = lim x ⋅ lim cos 1 = 0 . x x→0 x→0 x x→0
错!
7
x n sin 1 x > 0 x 例 8 . f ( x ) = 0 x=0 n − 正整数 . n x<0 x 讨论 f ′( x ) 的连续性及 n 的取值范围 . x n sin 1 f ( x ) − f ( 0) x ′ 解 . f + (0) = lim = lim x → +0 x → +0 x −0 x
−1
( x ) 的二阶导数 .
( x ) 的直接函数是 x = f ( y ) .
dy 1 = , d x f ′( y )
d2y d 1 − f ′′( y ) d y − f ′′( y ) = ⋅ = . = 2 2 dx 3 d x f ′( y ) [ f ′( y ) ] dx [ f ′( y )]
x 2 −1
e x −1 e x −1 ~ x x 例 2 . lim =========== lim =1. x →0 x x →1 x t = e −1 ln(1 + t ) lim x ========== lim = lim ln(1 + t ) x →0 e − 1 t →0 t t →0 x
2( x +1) 2 x +1 x →∞ 2 x +1 2 lim
=e =e.
1
可用经验公 式验证
例 5 . lim x +x
2
x →∞
x 2 − 10000
= lim
1+ 1 x 1 − 10000 x2
x →∞
=1.
"∞" ∞
6
1 x −π 2 例 6 . lim x →π tan x
x
1 t
= ln lim (1 + t )
t →0
1 t
= ln e = 1 .
∴
e −1 lim =1. x →0 x
x
当 x → 0 时, 证明e x −1 ~ x ?
4
例3 .
x → +∞
lim
(
x +x− x −x
2 2
)
=1.
"∞ − ∞"
" ∞", 用 必 法 ? 洛 达 则 ∞
= lim
= lim
2x x2 + x + x2 − x
2 1+ 1 + 1− 1 x x
x +1
x → +∞
x → +∞
2x + 3 例 4 . lim x → ∞ 2 x + 1
2 = lim 1 + x → ∞ 2 x + 1
2( x +1) 2 x +1 2 x +1 2
( ) y′ = f ′(x 2 )⋅ 2 x = 2 x f ′(x 2 ) . y′′ = 2 f ′(x 2 ) + 2 x f ′′(x 2 )⋅ 2 x = 2 f ′(x 2 ) + 4 x 2 f ′′(x 2 ) .
−1
例 10 . 设 f 二次可导 , 求 y = f 解. y= f
x +1
"(1+0 )∞"
2 = lim 1 + x →∞ 2 x + 1
"幂指函数取极限 "
5
2 = lim 1+ x→∞ 2x +1
lim 1 + 2 = x →∞ 2 x + 1
2( x+1) 2x+1 2x+1 2
5 . 约去公因子 .
6 . 代数变换 , 如取对数等 . f ′( x) = f ( x) [ln f ( x)] ′
二 . 常见未定式及对策 :
1 . " 0 "型 , 常见 . 0 2 . " ∞ " 型 , 常见 . ∞ 3. "0 ⋅ ∞" 型 , g( x ) f ( x) f ( x ) ⋅ g( x ) = 或 f ( x ) ⋅ g( x ) = . 1 1 f ( x) g( x ) 2
[
v( x )
] = [ lim u( x ) ]
lim v ( x )
.
当 x → 0 时, x ~ sin x ~ tan x ~ arcsin x ~ arctan x x ~ ln(1+ x) ~ e x −1 , a x −1 ~ x ln a .