三角函数的图像和性质
三角函数的定义和性质
三角函数与复数的基本关系:复数可以表示为三角函数的形式,即z=r(cosθ+i sinθ)。
三角函数在复平面上的表示:复平面上,三角函数可以表示为点或向量,其模长和幅角分别对应于实部和虚部。
三角函数与复数在交流电中的应用:交流电的电压和电流可以用三角函数表示,而复数则可以更方便地描述正弦波的幅度和频率。
04
三角函数的扩展知识
反三角函数
添加标题
添加标题
添加标题
添加标题
性质:反三角函数具有连续性、单调性、奇偶性和周期性等性质。
定义:反三角函数是三角函数的反函数,表示为arcsin、arccos和arctan等。
图像:反三角函数的图像与三角函数图像关系密切,可以通过三角函数图像得出反三角函数图像。
应用:反三角函数在数学、物理和工程等领域有广泛应用,例如求解三角形、解决极值问题等。
三角恒等式和不等式
三角恒等式:表示三角函数之间关系的等式,如正弦、余弦、正切等函数之间的相互转化。
三角不等式:表示三角函数值大小关系的不等式,用于比较三角函数值的大小或证明不等关系。
三角恒等变换:通过三角函数的和差、倍角、半角等公式,进行恒等变换,简化表达式或证明等式。
三角不等式的证明方法:利用三角函数的性质和几何意义等方法,证明三角不等式的关系。
三角函数与复数在信号处理中的应用:信号处理中,信号常常被表示为复数形式的三角函数,这使得信号的合成、分析和滤波变得更加方便。
汇报人:XX
感谢观看
周期性:三角函数具有明显的周期性,图像呈现规律性的重复。
奇偶性:三角函数具有奇偶性,可以根据函数值的正负判断其奇偶性。
最大值和最小值:三角函数具有最大值和最小值,可以通过函数的极值点判断其最大值和最小值。
高一数学三角函数的图像和性质
高一数学三角函数的图像性质1、正弦函数和余弦函数的图象:正弦函数sin y x =和余弦函数cos y x =图象的作图方法:五点法:先取横坐标分别为0,3,,,222ππππ的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。
2、正弦函数sin ()y x x R =∈、余弦函数cos ()y x x R =∈的性质: (1)定义域:都是R 。
(2)值域:都是[]1,1-;①对sin y x =,当()22x k k Z ππ=+∈时,y 取最大值1;当()322x k k Z ππ=+∈时,y 取最小值-1;②对cos y x =,当()2x k k Z π=∈时,y 取最大值1,当()2x k k Z ππ=+∈时,y 取最小值-1。
3、周期性:①sin y x =,cos y x =的最小正周期都是2π;②()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+的最小正周期都是2||T πω=。
4、奇偶性、对称性与单调性: 奇偶性与单调性:①正弦函数sin ()y x x R =∈是奇函数,对称中心是()(),0k k Z π∈,对称轴是直线()2x k k Z ππ=+∈;②余弦函数cos ()y x x R =∈是偶函数,对称中心是(),02k k Z ππ⎛⎫+∈ ⎪⎝⎭,对称轴是直线()x k k Z π=∈;(正(余)弦型函数的对称轴为过最高点或最低点且垂直于x 轴的直线,对称中心为图象与x 轴的交点)。
单调性: ①()sin 2,222y x k k k Z ππππ⎡⎤=-+∈⎢⎥⎣⎦在上单调递增,在()32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦单调递减; ②cos y x =在[]()2,2k k k Z πππ+∈上单调递减,在[]()2,22k k k Z ππππ++∈上单调递增。
知识点:画出三角函数图像。
三角函数图像与性质
三角函数图像与性质在数学中,三角函数是研究角与角度关系的一类函数。
其中最重要的三角函数包括正弦函数、余弦函数和正切函数。
这些函数在数学和科学领域中有着广泛的应用,尤其是在研究周期性现象时起到了关键作用。
本文将详细介绍三角函数的图像特征和性质。
正弦函数的图像与性质正弦函数是最基本的三角函数之一,通常用符号$\\sin$表示。
它的图像是一条连续的波浪线,呈现出周期性的特点。
正弦函数的定义域为整个实数集$\\mathbb{R}$,值域为闭区间[−1,1]。
在0度、90度、180度、270度和360度等特殊角度上,正弦函数的取值分别为0、1、0、-1和0。
正弦函数是奇函数,即$\\sin(-x)=-\\sin(x)$,具有对称性。
余弦函数的图像与性质余弦函数是另一个重要的三角函数,通常用符号$\\cos$表示。
它的图像类似于正弦函数,也是一条连续的波浪线,同样呈现周期性。
余弦函数的定义域为整个实数集$\\mathbb{R}$,值域为闭区间[−1,1]。
在0度、90度、180度、270度和360度等特殊角度上,余弦函数的取值分别为1、0、-1、0和1。
余弦函数是偶函数,即$\\cos(-x)=\\cos(x)$,具有对称性。
正切函数的图像与性质正切函数是三角函数中的另一个重要函数,通常用符号$\\tan$表示。
它的图像是一组相互平行的直线,具有间断点。
正切函数的定义域为整个实数集$\\mathbb{R}$,在某些特殊角度上可能不存在定义,例如在90度和270度时。
正切函数的值域为整个实数集$\\mathbb{R}$。
正切函数是奇函数,即$\\tan(-x)=-\\tan(x)$。
三角函数的性质除了上述基本性质外,三角函数还有一些重要的性质:1.周期性:正弦函数和余弦函数的周期为$2\\pi$,即在$[0, 2\\pi]$范围内图像重复;2.奇偶性:正弦函数和正切函数是奇函数,余弦函数是偶函数;3.最值:正弦函数和余弦函数的最大值为1,最小值为-1;正切函数在定义域内取值范围较广;4.单调性:正弦函数、余弦函数和正切函数在各自的定义域上具有不同的单调性特点。
三角函数的图像和性质
(ω>0)的最小正周期为π,则函数 ( π B.关于直线x= 对称 8 π D.关于点8 ,0对称 )
π 2π 解析:∵f(x)=sin ωx+4 的最小正周期为π,∴ ω =π,ω=2, π π π 3π ∴f(x)=sin 2x+4 .当x= 时,2x+ = ,∴A、C错误;当x 4 4 4
[即时应用] 求函数 y=cos x+sin
2
π x|x|≤ 4的最大值与最小值.
π 2 2 解:令 t=sin x,∵|x|≤ ,∴t∈- , . 4 2 2
∴y=-t
2
1 2 5 +t+1=-t-2 + , 4
1- 2 1 5 2 ∴当 t= 时,ymax= ,当 t=- 时,ymin= . 2 4 2 2 ∴函数 y=cos x+sin
2.求三角函数单调区间的 2 种方法 (1)代换法: 就是将比较复杂的三角函数含自变量的代 数式整体当作一个角 u(或 t),利用基本三角函数的单调性 列不等式求解. (2)图象法:画出三角函数的正、余弦曲线,结合图象 求它的单调区间.
[演练冲关] π 1.最小正周期为π且图象关于直线x= 对称的函数是( 3
π π B,因为sin2×3-6 =sin
π =1,所以选B. 2
答案:B
2.函数
π y=cos4-2x的单调减区间为____________. π π y=cos4-2x=cos2x-4 得
解析:由
π 2kπ≤2x- ≤2kπ+π(k∈Z), 4 π 5π 解得 kπ+ ≤x≤kπ+ (k∈Z). 8 8
π π π π 3 在 3,2 上单调递减知, = ,∴ω= . 2ω 3 2
三角函数的图象与性质
-
;
-1
y=cosx
2 3
4 5 4 5
6 x 6 x
五.定义域 、值域及取到最值时相应的x的集合:
-6 -5
-4 -3
复习回顾
-2 -
y y=sinx
1 o
-1
2 3
y
si-n6x的对称-5轴:x
k -4
2-,3对 称点-:2(k
,0);
-
y cosx的对称轴:x k , 对称点:(k ,0);
1.4.1正弦、余弦函数的图象
复习
回顾 三角函数
三角函数线
正弦函数 余弦函数 正切函数
sin=MP
正弦线MP cos=OM 余弦线OM tan=AT 正切线AT
y PT
-1
O
M A(1,0) x
正弦、余弦函数的图象
问题:如何作出正弦、余弦函数的图象?
途径:利用单位圆中正弦、余弦线来解决。
描图:用光滑曲线
复习回顾
一.正弦余弦函数的作图: 几何描点法(利用三角函数线) 五点法作简图
二.周期性:
函数y Asin(x )和y Acos(x ),x R的周期T 2 | |
三.奇偶性:
y sin x为奇函数,图像关于原点对称; y cosx为偶函数图像关于y轴对称。
-6 -5
-4 -3
复习回顾 y y=sinx
(0,11)
3
( 2 ,1)
-
(-o12 ,0)
( 2 ,0)
2
( ,-1)
3
线
4
5 6 x
正弦、余弦函数的图象
y
五点画图法
1
(
2
,1)
三角函数图像与性质的知识点
三角函数的图像与性质一、 正弦函数、余弦函数的图像与性质二、正切函数的图象与性质R R x =2k π+π2(k ∈Z )时,y max =1; x =2k π-π2(k ∈Z )时,y min =-1 奇函数三、三角函数图像的平移变换和伸缩变换1. 由x y sin =的图象得到)sin(ϕω+=x A y (0,0A ω>>)的图象注意:平移变换或伸缩变换都是针对自变量x 而言的,因此在用这样的变换法作图象时一定要注意平移与伸缩的先后顺序,否则会出现错误。
2. )sin(ϕω+=x A y (0,0A ω>>)的性质(1)定义域、值域、单调性、最值、对称性:将ϕω+x 看作一个整体,与相应的简单三角函数比较得出;(2)奇偶性:只有当ϕ取特殊值时,这些复合函数才具备奇偶性:)sin(ϕω+=x A y ,当πϕk =时为奇函数,当2ππϕ±=k 时为偶函数;(3)最小正周期:ωπ2=T3. y =A sin(ωx +φ), x ∈[0,+∞) (0,0A ω>>)中各量的物理意义(1) A 称为振幅; (2)2T πω=称为周期; (3)1f T =称为频率; (4)x ωϕ+称为相位; (5)ϕ称为初相 (6)ω称为圆频率.赠送以下资料英语万能作文(模板型)Along with the advance of the society more and more problems are brought to our attention, one of which is that....随着社会的不断发展,出现了越来越多的问题,其中之一便是____________。
As to whether it is a blessing or a curse, however, people take different attitudes.然而,对于此类问题,人们持不同的看法。
三角函数的图像与性质(名师经典总结)
三角函数的图像与性质(正弦、余弦、正切)【知识点1】函数y =sin x ,y =cos x ,y =tan x 的图象性质题型1:定义域例1:求下列函数的定义域(1)xx y cos 2cos 1+=; (2)x y 2sin = 2lg(4)x -题型2:值域 例2:求下列函数值域 (1))3π2,6π(,sin 2-∈=x x y (2)y=2sin(2x-3π),x 5,46ππ⎡⎤∈⎢⎥⎣⎦(3) )3π,2π(),3π2cos(2-∈+=x x y(4)函数1)6π21cos(2++-=x y 的最大值以及此时x 的取值集合题型3:周期例3:求下列函数的周期: (1)f(x)=2sin2x (2)y=cos(123x π-) (3)y=tan(2x 4π-) (4)y=sin x 例4: 若函数()2sin(2)3f x kx π=+的最小正周期T 满足12T <<,则自然数k 的值为______.例5:若)10(sin 2)(<<=ϖϖx x f 在区间[0,]3π上的最大值是2,则ϖ=________.例6:使x y ωsin =(ω>0)在区间[0,1]至少出现2次最大值,则ω的最小值为【 】A .π25B .π45C .πD .π23例7:设函数f(x)=2sin(25x ππ+),若对于任意的x R ∈,都有f(1x )2()()f x f x ≤≤成立,则12x x -的最小值是A.4B.2C.1D.12题型4:奇偶性 例8:函数y =sin (x +2π)(x ∈[-2π,2π])是【 】A.增函数B.减函数C.偶函数D.奇函数例9:判断下列函数的奇偶性 (1)y=xsin(x π+) (2)y=cos 1sin x x+例10:已知函数f(x)=x 3cosx+1,若f(a)=11,则f(-a)=________ 题型5:单调性例11:函数y =21log sin(2x +4π)的单调递减区间是【 】 A.(k π-4π,k π](k ∈Z ) B.(k π-8π,k π+8π](k ∈Z ) C.(k π-83π,k π+8π](k ∈ D.(k π+8π,k π+83π](k ∈Z )例12:.求1cos()3412logx y π+=的单调区间例13:求下列函数的单调增区间(1))3π21cos(-=x y ; (2) ]0,π[),6π2sin(2-∈+=x x y ;(3))23πsin(2x y -=例14:(1)求函数y=2sin(2x-3π)的单调递减区间。
三角函数的图像及其性质
三角函数的图像及其性质1、三角函数的图像及性质sin y xsin y A x k图像值域周期对称轴2x k2x k对称中心(零点)令x k 代入求y令x k 代入,求出x 和y 单调增区间2,222x k k2,222x k k单调减区间32,222x k k32,222x k kcos y xcos y A x k图像值域周期对称轴x kx k 对称中心(零点)2x k代入,求y 2x k求出x 和y 单调增区间 2,2x k k 2,2x k k 单调减区间2,2x k k2,2x k k tan y x图像定义域值域周期单调性与对称性性质【考点分类】考点一:图像变换:1.把函数y =sin x 的图象向右平移个单位得到y =g (x )的图象,再把y =g (x )图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为()A.B.C.D.2.将函数f (x )=sin x 图象上所有点的横坐标变为原来的(ω>0),纵坐标不变,得到函数g (x )的图象,若g (x )的最小正周期为6π,则ω=()A.B.6C.D.33.将函数y =2sin2x 图象上的所有点向右平移个单位,然后把图象上所有点的横坐标缩短为原来的倍,(纵坐标不变)得到y =f (x )的图象,则f (x )等于()A.2sin(x ﹣)B.2sin(x ﹣)C.2sin(4x ﹣)D.2sin(4x ﹣)4.已知曲线C 1:y =cos x ,C 2:y =sin(2x +),则下面结论正确的是()A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再向右平移个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再向左平移个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的,纵坐标不变,再向右平移个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的,纵坐标不变,再向左平移个单位长度,得到曲线C 25.把函数y =cos(3x +4)的图象适当变动就可以得到y =sin(-3x )的图象,这种变动可以是()A 向右平移4 B 向左平移4 C 向右平移12 D 向左平移126..函数32sin( x y 的图象是由2sin xy 的图象沿x 轴()得到的。
三角函数的性质知识点总结
三角函数的性质知识点总结三角函数是数学中重要的一部分,主要涉及到正弦函数、余弦函数和正切函数。
它们在数学、物理、工程等学科中都有广泛的应用。
本文将对三角函数的性质进行总结,包括周期性、对称性、函数值范围等方面的内容。
一、正弦函数的性质1. 周期性:正弦函数的周期是2π,即sin(x+2π) = sin(x),其中x表示角度。
2. 对称性:正弦函数关于原点对称,即sin(-x) = -sin(x)。
3. 函数值范围:正弦函数的函数值范围在[-1, 1]之间。
二、余弦函数的性质1. 周期性:余弦函数的周期也是2π,即cos(x+2π) = cos(x)。
2. 对称性:余弦函数关于y轴对称,即cos(-x) = cos(x)。
3. 函数值范围:余弦函数的函数值范围同样在[-1, 1]之间。
三、正切函数的性质1. 周期性:正切函数的周期是π,即tan(x+π) = tan(x),其中x表示角度。
2. 对称性:正切函数关于原点对称,即tan(-x) = -tan(x)。
3. 函数值范围:正切函数的函数值范围是整个实数集。
1. 正弦函数和余弦函数的特殊角度值如下: sin(0) = 0, cos(0) = 1;sin(π/6) = 1/2, cos(π/6) = √3/2;sin(π/4) = √2/2, cos(π/4) = √2/2;sin(π/3) = √3/2, cos(π/3) = 1/2;sin(π/2) = 1, cos(π/2) = 0;2. 正切函数的特殊角度值如下:tan(0) = 0;tan(π/4) = 1;tan(π/3) = √3;tan(π/2) 没有定义。
五、三角函数的基本关系1. 正切函数与正弦函数和余弦函数的关系: tan(x) = sin(x) / cos(x)。
2. 正弦函数和余弦函数的关系:sin^2(x) + cos^2(x) = 1。
1. 正弦函数和余弦函数的图像是波形振动,具有周期性和对称性。
三角函数的图像和性质
当0<A<1时,图像在y轴方向压缩。
02
周期变换
ω表示周期变换的系数,周期T=2π/|ω|。当ω>1时,周期减小,图像
在x轴方向压缩;当0<ω<1时,周期增大,图像在x轴方向拉伸。
03
相位变换
φ表示相位变换的角度,当φ>0时,图像左移;当φ<0时,图像右移。
正弦型曲线应用举例
振动问题
在物理学中,正弦函数常用来描述简谐振动,如弹簧振子 、单摆等。通过正弦函数的振幅、周期和相位等参数,可 以描述振动的幅度、频率和初始状态。
三角函数的图像和性 质
汇报人:XX 2024-01-28
contents
目录
• 三角函数基本概念 • 正弦函数图像与性质 • 余弦函数图像与性质 • 正切函数图像与性质 • 三角函数复合与变换 • 三角函数在解决实际问题中的应用
01
三角函数基本概念
角度与弧度制
角度制
01
将圆周分为360等份,每份称为1度,用度(°)作为单位来度量
角的大小。
弧度制
02
以弧长等于半径所对应的圆心角为1弧度,用符号rad表示,是
国际通用的角度度量单位。
角度与弧度的换算
03
1° = (π/180)rad,1rad = (180/π)°。
三角函数定义及关系
正弦函数
sinθ = y/r,表示单位圆上任意 一点P(x,y)与x轴正方向形成的 角θ的正弦值。
光学
在光的反射、折射等现象中,三角函数可以 帮助计算入射角、折射角等角度问题。
在工程问题中的应用
1 2
建筑设计
在建筑设计中,三角函数可以帮助计算建筑物的 角度、高度、距离等参数,确保设计的准确性和 安全性。
数学公式知识:三角函数的图像及其性质
数学公式知识:三角函数的图像及其性质三角函数是数学中的重要内容,有着广泛的应用。
在几何、物理、工程等领域中都有着重要作用。
在三角函数中,正弦函数、余弦函数、正切函数等图像及其性质是比较基础且重要的内容。
本文将介绍三角函数的图像及其性质,帮助读者更好地理解和掌握三角函数的知识。
一、正弦函数的图像及其性质正弦函数的函数式为:y=sin(x),其中x表示自变量的取值,范围为实数;y表示正弦函数对应的因变量。
正弦函数的图像是一条典型的正弦曲线。
其图像的周期为2π。
正弦函数的图像在坐标轴上为(0,0)处,且在x轴的取值为kπ(k为整数)时,函数值为0,即sin(kπ)=0。
正弦函数的图像在x轴上的最大正值和最小负值分别为1和-1,即sin(±π/2)=±1。
正弦函数在π/2+nπ(n为整数)时,取得最大值1;在-π/2+nπ(n为整数)时,取得最小值-1。
当自变量x增加2π时,正弦函数的函数值也将再次取得最大值1或最小值-1,即满足周期性。
正弦函数为奇函数,即sin(-x)=-sin(x),即正弦函数的图像呈现关于y轴对称的性质。
二、余弦函数的图像及其性质余弦函数的函数式为:y=cos(x),其中x表示自变量的取值,范围为实数;y表示余弦函数对应的因变量。
余弦函数的图像是一条典型的余弦曲线。
其图像的周期为2π。
余弦函数的图像在坐标轴上为(0,1)(0度),且在x轴的取值为kπ(k 为整数)时,函数值为1,即cos(kπ)=1。
余弦函数的图像在x轴上的最大正值和最小负值都为0,即cos(±π/2)=0。
余弦函数在nπ(n为整数)时,取得最小值-1;在π+nπ(n为整数)时,取得最大值1。
当自变量x增加2π时,余弦函数的函数值也将再次取得最大值1或最小值-1,即满足周期性。
余弦函数为偶函数,即cos(-x)=cos(x),即余弦函数的图像呈现关于y轴对称的性质。
三角函数的图像和性质
三角函数的图像和性质三角函数是数学中的重要概念,它们在几何、物理、工程等领域都有广泛的应用。
本文将重点讨论三角函数的图像和性质,并通过具体的例子来说明。
一、正弦函数的图像和性质正弦函数是最基本的三角函数之一,它的图像可以用来描述周期性变化的现象。
正弦函数的图像是一条连续的曲线,它在[-π/2, π/2]区间内单调递增,在[π/2, 3π/2]区间内单调递减。
在整个定义域[-∞, ∞]上,正弦函数的值域为[-1, 1],且具有奇对称性。
例如,我们考虑正弦函数y = sin(x)在[0, 2π]上的图像。
根据正弦函数的性质,当x=0时,y=0;当x=π/2时,y=1;当x=π时,y=0;当x=3π/2时,y=-1;当x=2π时,y=0。
连接这些点,我们可以得到正弦函数在[0, 2π]上的图像,即一条上下波动的连续曲线。
二、余弦函数的图像和性质余弦函数是另一个基本的三角函数,它也可以用来描述周期性变化的现象。
与正弦函数相比,余弦函数的图像在水平方向上发生了平移,它在[0, 2π]区间内单调递减,在[-π/2, π/2]和[3π/2, 5π/2]区间内单调递增。
在整个定义域[-∞, ∞]上,余弦函数的值域为[-1, 1],且具有偶对称性。
以余弦函数y = cos(x)在[0, 2π]上的图像为例,当x=0时,y=1;当x=π/2时,y=0;当x=π时,y=-1;当x=3π/2时,y=0;当x=2π时,y=1。
连接这些点,我们可以得到余弦函数在[0, 2π]上的图像,即一条波动的连续曲线。
三、正切函数的图像和性质正切函数是三角函数中的另一个重要概念,它描述了斜率的变化。
正切函数的图像具有周期性,其周期为π。
正切函数在定义域的每个周期内,都有无穷多个渐近线,即x=π/2+kπ,其中k为整数。
正切函数的值域为(-∞, ∞)。
以正切函数y = tan(x)在[-π/2, π/2]上的图像为例,当x=-π/4时,y=-1;当x=0时,y=0;当x=π/4时,y=1。
高中数学三角函数图像和性质
三角函数的图象和性质
知识点
一.正弦函数:
1.正弦函数的图象:
2.
定义域为
;值域为•
(1)
当且仅当
时,取得最大值1;
⑵
当且仅当
时,取得最小值1
3.单调性:
在闭区间上都是增函数,其值从1增大到1;
在闭区间上都是减函数,其值从1减小到1.
4.奇偶性:.
5.周期性:最小正周期是,周期是
6.对称性:对称轴是,对称中心是.
r
rK,
(1)将正切函数y tanx在区间(亍'上的图象向左、右扩展,就可以得到正切函y tanx,(x R, x-k , k Z)的图象,我们把它叫做正切曲线.正切曲线是由被互相平行的直线x
(k Z)所隔开的无数多支曲线组成的.这些平行直线x=(k Z)叫做正切曲线各支的
⑵结合正切曲线的特征,类比正弦、余弦函数的“五点法”作图,也可用三点两线作图法作出正切函数
6.对称性:对称轴是,对称中心是.
题型一 正弦,余弦函数的图象和性质
【例1】求函数y=g+sinx的定义域
函数y=2sin(4x+^)的对称轴方程为
3
【过关练习】
1•求函数y 3sin x2的值域以及取得最值时x的值
2.判断函数y=xsin( x)的奇偶性
3.求函数y1sinx的单调区间
二.余弦函数:
1.余弦函数的Βιβλιοθήκη 象:2.定义域为值域为
(1)当且仅当
时,取得最大值1;
(2)当且仅当
时,取得最小值1.
3.单调性:
在闭区间
上都是增函数,其值从
1增加到1;
在闭区间
上都是减函数,其值从
三角函数的图像与性质
三角函数的图像与性质三角函数是数学中重要的概念,对描述周期性变化具有广泛应用。
本文将探讨三角函数的图像及其性质,包括正弦函数、余弦函数和正切函数。
一、正弦函数的图像与性质正弦函数是一种周期性的函数,用于描述角度和长度的关系。
正弦函数的图像呈现出一条连续的波浪线,具有以下性质:1. 定义域和值域:正弦函数的定义域为实数集,值域为闭区间[-1,1]。
2. 奇偶性:正弦函数是奇函数,即满足f(-x) = -f(x),图像关于y轴对称。
3. 周期性:正弦函数的周期为2π,即f(x + 2π) = f(x)。
4. 对称性:正弦函数关于直线x = π的中心对称。
二、余弦函数的图像与性质余弦函数也是一种周期性的函数,常用于描述角度和长度的关系。
余弦函数的图像呈现出一条连续的波浪线,具有以下性质:1. 定义域和值域:余弦函数的定义域为实数集,值域为闭区间[-1, 1]。
2. 奇偶性:余弦函数是偶函数,即满足f(-x) = f(x),图像关于y轴对称。
3. 周期性:余弦函数的周期为2π,即f(x + 2π) = f(x)。
4. 对称性:余弦函数关于直线x = π/2的中心对称。
三、正切函数的图像与性质正切函数是一种周期性的函数,用于描述角度和斜率的关系。
正切函数的图像呈现出一条连续的曲线,具有以下性质:1. 定义域和值域:正切函数的定义域为实数集,值域为整个实数集。
2. 奇偶性:正切函数是奇函数,即满足f(-x) = -f(x),图像关于原点对称。
3. 周期性:正切函数的周期为π,即f(x + π) = f(x)。
4. 渐近线:正切函数有两条水平渐近线,分别为y = π/2和y = -π/2。
总结:正弦函数、余弦函数和正切函数是三角函数中最常见的函数,它们的图像及性质对理解角度和长度、角度和斜率的关系有着重要的意义。
熟练掌握它们的图像和性质,能够帮助我们更好地解决与周期性变化相关的问题。
通过本文的探讨,我们了解到了正弦函数、余弦函数和正切函数的图像特点以及几个基本性质,包括定义域和值域、奇偶性、周期性和对称性等。
最全三角函数的图像与性质知识点总结
三角函数的图像与性质一、 正弦函数、余弦函数的图像与性质函数 y =sin x y =cos x图 象定义域 R R 值域[-1,1][-1,1]单调性递增区间:2,2()22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦递减区间:32,2()22k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦递增区间:[2k π-π,2k π] (k ∈Z ) 递减区间:[2k π,2k π+π] (k ∈Z )最 值x =2k π+π2(k ∈Z )时,y max =1;x =2k π-π2(k ∈Z )时,y min =-1x =2k π(k ∈Z )时,y max =1;x =2k π+π(k ∈Z ) 时,y min =-1奇偶性奇函数偶函数对称性对称中心:(k π,0)(k ∈Z )(含原点)对称轴:x =k π+π2,k ∈Z对称中心:(k π+π2,0)(k ∈Z )对称轴:x =k π,k ∈Z (含y 轴)最小正周期2π2π二、正切函数的图象与性质 定义域 {|,}2x x k k Z ππ≠+∈值域 R单调性 递增区间(,)()22k k k Z ππππ-+∈奇偶性奇函数对称性 对称中心:(,0)()2k k Z π∈(含原点)最小正周期 π三、三角函数图像的平移变换和伸缩变换1. 由x y sin =的图象得到)sin(ϕω+=x A y (0,0A ω>>)的图象x y sin =方法一:先平移后伸缩 方法二:先伸缩后平移 操作 向左平移φ个单位横坐标变为原来的1ω倍结果 )sin(ϕ+=x yx y ωsin =操作 横坐标变为原来的1ω倍向左平移ϕω个单位结果 )sin(ϕω+=x y操作 纵坐标变为原来的A 倍结果)sin(ϕω+=x A y注意:x 要注意平移与伸缩的先后顺序,否则会出现错误。
2. )sin(ϕω+=x A y (0,0A ω>>)的性质(1)定义域、值域、单调性、最值、对称性:将ϕω+x 看作一个整体,与相应的简单三角函数比较得出; (2)奇偶性:只有当ϕ取特殊值时,这些复合函数才具备奇偶性:)sin(ϕω+=x A y ,当πϕk =时为奇函数,当2ππϕ±=k 时为偶函数; (3)最小正周期:ωπ2=T3. y =A sin(ωx +φ), x ∈[0,+∞) (0,0A ω>>)中各量的物理意义(1) A 称为振幅;(2)2T πω=称为周期;(3)1f T=称为频率;(4)x ωϕ+称为相位; (5)ϕ称为初相(6)ω称为圆频率.如有侵权请联系告知删除,感谢你们的配合!。
三角函数的图像与性质(学生版)
一部分,则 f(π2)=________.
15.(精选考题·江苏)设定义在区间0,π2 上的函数 y=6cosx 的图象与 y=5tanx 的图象交于点 P,过点
P 作 x 轴的垂线,垂足为 P1,直线 PP1 与函数 y=sinx 的图象交于点 P2,则线段 P1P2 的长为________.
第7页共8页
时,求 x0 的值.
17.求当函数 y=sin2x+acosx-12a-32的最大值为 1 时 a 的值. 分析:先通过变形化为关于 cosx 的二次函数,配方后,根据函数式的特点,对 a 进行分类讨论.
第8页共8页
题型九:三角函数的图像变换
三角函数的图像与性质(学生版)
例 9:试述如何由 y= 1 sin(2x+ π )的图象得到 y=sinx 的图象
3
3
变试题:(1)指出将 y sin x 的图象变换为 y 1 cos(2x ) 1的图象的变换过程;
2
3
(2)指出将 y sin x 的图象变换为 y 3sin(2x ) 1的图象的变换过程. 6
三角函数的图像与性质(学生版)
三、解答题 15.据市场调查,某种商品一年内每件出厂价在 6 千元的基础上,按月呈 f(x)=Asin(ωx+φ)+B 的模型波 动(x 为月份),已知 3 月份达到最高价 8 千元,7 月份价格最低为 4 千元,该商品每件的售价为 g(x)(x 为月 份),且满足 g(x)=f(x-2)+2.(1)分别写出该商品每件的出厂价函数 f(x)、售价函数 g(x)的解析式;(2)问哪 几个月能盈利?
2
2
图;
法二:图像变换法
先将 y=sinx 的图象向左平移 个单位,再将图象上各点的横坐标变为原来的 1 倍(ω>0),最后将图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲 三角函数的图像和性质◆ 课前预习1.下列函数中,最小正周期为π,且图象关于直线3π=x 对称的是( )(A ))x sin(y 32π-= (B) )x sin(y 62π-=(C) )x sin(y 62π+= (D) )x sin(y 62π+=解:B.2.已知点)tan ,cos (sin P αα-α在第一象限,则在[]π20,内,α的取值范围是( )(A ) ⎝⎛⎪⎭⎫ ⎝⎛ππ⋃⎪⎭⎫ππ45432,, (B )⎪⎭⎫ ⎝⎛ππ⋃⎪⎭⎫ ⎝⎛ππ4524,, (C )⎪⎭⎫ ⎝⎛ππ⋃⎪⎭⎫ ⎝⎛ππ2345432,, (D )⎪⎭⎫⎝⎛ππ⋃⎪⎭⎫ ⎝⎛ππ,,4324解:B.3.函数)x cos lg(y 12-=的定义域为 ( )(A )⎭⎬⎫⎩⎨⎧π<<π-33x x (B )⎭⎬⎫⎩⎨⎧π<<π-66x x(C )⎭⎬⎫⎩⎨⎧∈π+π<<π-πZ k ,k x k x 3232 (D )⎭⎬⎫⎩⎨⎧∈π+π<<π-πZ k ,k x k x 6262 解:C.4.若x sin )x (f 是周期为π的奇函数,则)x (f 可以是( )(A )x sin (B )x cos (C )x sin 2 (D )x cos 2 解:B.5. (天津)要得到函数x cos y 2=的图象,只需将函数)x sin(y 422π+=的图象上所有的点的( )(A )横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π个单位长度(B )横坐标缩短到原来的21倍(纵坐标不变),再向右平行移动4π个单位长度(C )横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4π个单位长度(D )横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度解:C.◆课堂典例精讲例1:已知函数)R x (x cos )x sin x cos (x sin )x cos x (sin )x (f ∈-+-=3.(Ⅰ)求函数)x (f 的周期;(Ⅱ)函数)x (f 的图象是由函数x sin y 22=的图象经过怎样的变换得到? 分析:三角函数周期性的题目是命题者送给考生的见面礼物!就像考虑三角函数的其它性质一样,把三角函数式化作只含一个三角符号的一次式是求解此类题的决定性步骤,然后套用正弦(或余弦、正切、余切)型函数k )x sin(A y +ϕ+ω=的最小正周期公式||T ωπ=2即可。
另外三角函数的图像变换是重点也是难点,要求学生切实掌握平移和伸缩变换的规律。
解:)x sin(x cos x sin x cos x sin x cos x sin )x (f 432222222322π++=+-=-+=.(Ⅰ)函数)x (f 的最小正周期为π.(Ⅱ)函数x sin y 22=的图象向左平移83π个单位得到函数)x sin(y 4322π+=的图象;将函数)x s i n (y 4322π+=的图象向上平移2个单位得到函数)x sin(y 4222π++=的图象.即将函数x sin y 22=的图象按向量),(a 283π-=→平移得到函数)x (f 的图象.反思:三角函数的图象和性质在本章中占有非常重要的地位,因此,必须认真掌握三角函数的图象特征,图象变换(平移、伸缩)理论;以及三角函数的定义域、值域、单调性、奇偶性、周期性、对称性等性质,并能以三角变换为手段,以其中的数学思想和方法为依托解决三角函数与向量、函数的综合问题.例2:(重庆)若函数)x cos(x sin a )x sin(x cos )x (f 222421-π-+π+=的最大值为2,试确定常数a 的值.分析:三角函数的最值问题是一个常考知识点,要求学生切实掌握三角函数的值域。
并且能熟练的对所给三角式子进行变形,转化为正、余弦函数,从而利用正、余弦函数的有界性求出所给函数的最值。
解:22422x cos x sin a x cos x cos )x (f +=x sin a x cos 221+=)x si n(a ϕ++=4412,其中,211asi n +=ϕ,由已知412=+a ,解得15±=a 反思:三角函数最值类型常有两种解法:一是化为只含一个三角符号的一次式后利用正弦或余弦函数的有界性,要特别注意自变量的范围限制;二是通过换元转化为有范围限制的一元二次函数的最值问题.例3:(2005年江苏模拟题)设函数)||,()x sin()x (f 20π<ϕ>ωϕ+ω=,给出以下四个论断:①它的最小正周期为π;②它的图象关于直线12π=x 成轴对称图形;③它的图象关于点),(03π成中心对称图形;④在区间)0,6[π-上是增函数.以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题 (用序号表示即可).分析:本题是一个开放性题目,综合考查了正弦型函数的单调性,周期性以及对称性。
解:若①、②成立,则22=π=ω;令2π+π=ϕ+π⋅k ,Z k ∈,且π<ϕ||,故0=k ,∴π=ϕ. 此时)x sin()x (f 2π+=,当π=x 时,02=π=π+sin )x sin(,∴)x (f 的图象关于),(03π成中心对称;又)x (f 在]12,125[ππ-上是增函数,∴在)0,6[π-上也是增函数,因此 ①②⇒③④,用类似的分析可得①③⇒②④. 因此填①②⇒③④或①③⇒②④.反思:三角函数的周期性、对称性是三角函数的特有性质,要切实掌握,并注意结合三角函数的图像,从而达到解决问题的目的.例4:已知电流I 与时间t 的关系式为sin()I A t ωϕ=+.(Ⅰ)右图是sin()I A t ωϕ=+(ω>0,||2πϕ<)在一个周期内的图象,根据图中数据求sin()I A t ωϕ=+ 的解析式;(Ⅱ)如果t 在任意一段1150秒的时间内,电流sin()I A t ωϕ=+都能取得最大值和最小值,那么ω的最小正整数值是多少?分析:本小题主要考查三角函数的图象与性质等基础知识,考查运算能力和逻辑推理能力.解:(Ⅰ)由图可知A =300.设t 1=-1900,t 2=1180,则周期T =2(t 2-t 1)=2(1180+1900)=175.∴ω=2T π=150π.又当t =1180时,I =0,即sin (150π·1180+ϕ)=0,而||2πϕ<, ∴ ϕ=6π. 故所求的解析式为300sin(150)6I t ππ=+.(Ⅱ)依题意,周期≤T 1150,即2πω≤1150,(0>ω) ∴ω≥300π>942,又ωN ∈,故最小正整数ω=943.反思:本题解答的关键点是将图形语言转化为符号语言,其中读图、识图、用图是形数结合的有效途径.例5:方程m x cos x sin =+3在),(π20上有两个不同根α、β,求m 的范围及β+α的值.分析:本题如果直接去考虑方程的根的情况,比较困难。
遇到这种情况的时候,我们不妨换个角度来看问题。
正所谓是“退一步海阔天空”,“横看成岭侧成峰”。
当我们把方程的左右两边分开来看时,思路就有了。
其实我们可以用“数形结合”的方法解决。
解:原方程即23m )x sin(=π+,设)x sin(y 31π+=,22m y =,两函数的图象如右图.由图知:121<<-m 且232≠m 时,原方程在),(π20总有两个不同根;另一方面,当1223<<m 时,α,β关于6π=x 对称,故β-π⨯=α62,所以3π=β+α;当2321<<-m 时,α,β关于67π=x 对称,故β-π⨯=α672,所以37π=β+α.所以m 的范围是32<<-m 或23<<m ;3π=β+α或37π. 反思:“数形结合”是一种非常重要的数学思想方法。
在数学问题中,如果能充分的结合图形,往往能受到意想不到的效果。
三角函数是函数的一种,所以有关函数中的数形结合,都可移植到三角中来:诸如方程根的个数的探讨、解不等式、单调性与值域等,只要看作函数时,图象易于作出即可.◆课后练习A 基础练习1. 函数x y 2cos =在下列哪个区间上是减函数( )(A )]4,4[ππ- (B )]43,4[ππ (C )]2,0[π (D )],2[ππ解:C.2.、函数y=cos(2x+π2)的图象的一个对称轴方程为 ( ) (A ) 2π-=x (B ) 4π-=x (C )8π=x (D) π=x解:B.3.(全国卷Ⅱ)函数|x cos x sin |)x (f +=的最小正周期是( )(A )4π (B )2π (C )π (D )π2解:C .4.右图是周期为π2的三角函数)x (f y =的图象,那么)x (f 可以写成 ( )y(A ) )x sin(+1 (B ))x sin(--1 (C) )x sin(1- (D ))x sin(-1 解:D.5.设函数f (x )=A +B sin x ,若B <0时,f (x )的最大值是23,最小值是-21,则A =_______,B =_______.解:填:21 -1.根据题意,由⎪⎪⎩⎪⎪⎨⎧-=+=-2123B A B A ,可得结论.B 能力提升1.(山东)已知函数)x cos()x sin(y 1212π-π-=,则下列判断正确的是( )(A )此函数的最小正周期为π2,其图象的一个对称中心是),(012π(B )此函数的最小正周期为π,其图象的一个对称中心是),(012π(C )此函数的最小正周期为π2,其图象的一个对称中心是),(06π(D )此函数的最小正周期为π,其图象的一个对称中心是),(06π解:B.2.(全国卷Ⅱ)已知函数x tan y ω=在),(22ππ-内是减函数,则( )(A )10≤ω< (B )01<ω≤- (C )1≥ω (D )1-≤ω 解:B.3.定义运算⎩⎨⎧>≤=*b a ,b ba ,ab a ,例如121=*,则函数x cos x sin )x (f *=的值域为.解:]2,1[- 当x cos x sin ≤,即)Z k (k x k ∈π+π≤≤π+π-24243时,x sin )x (f =,此时∈=x s i n )x (f ]22,1[-;当x sin x cos <,即)Z k (k x k ∈π+π<<π+π24524时,x co s )x (f =,此时∈=x co s )x (f ]22,1[-,综上,x co s x s i n )x (f *=的值域为]22,1[-.4.已知P (1,cos x ),Q (cos x ,1),x ∈[-4π,4π].(1)求向量OP 和OQ 的夹角θ的余弦用x 表示的函数f (x ); (2)求θcos 的最值.解:(1)∵·=2cos x ,||·||=1+cos 2x ,∴f (x )=θcos =xx 2cos 1cos 2+;(2) x ∈[-4π,4π],∴cos x ∈[22,1]∴θcos =x x 2cos 1cos 2+=xx cos 1cos 2+, ∴2≤cos x +xcos 1≤223,∴322≤cos θ≤1.即θcos 的最大值为1,最小值为322. 5.是否存在实数a ,使得函数23852-++=a x cos a x sin y 在闭区间]2,0[π上的最大值是1?若存在,求出对应的a 值;若不存在,试说明理由.解:21854223851222-++--=-++-=a a )a x (cos a x cos a x cos y当20π≤≤x 时,10≤≤x cos 。