2017年黑龙江省大庆市中考数学模拟试卷(一)
2017大庆市中考数学模拟试题
初四数学测试题一.选择题(共10小题)1.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B 的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A、B之间C.介于B、C之间D.在C的右边2.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A .B .C .D .3.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3 B.7×10﹣3C.7×10﹣4D.7×10﹣54.一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是()A.15个 B.13个 C.11个 D.5个5.下面四个手机应用图标中是轴对称图形的是()A .B .C .D .6.若0<x<1,则x ,,x2的大小关系是()A .<x<x2 B.x <<x2 C.x2<x < D .<x2<x7.下列命题中假命题是()A.两组对边分别相等的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.一组对边平行一组对角相等的四边形是平行四边形D.一组对边平行一组对边相等的四边形是平行四边形8.如图,从①∠1=∠2 ②∠C=∠D ③∠A=∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0 B.1 C.2 D.39.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3B.x1<x3<x2 C.x2<x1<x3 D.x2<x3<x110.从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上一年减少;本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业的收人每年比上年增加,设4年内(本年度为第一年)的总投入为M万元,总收入为N万元,则有()A.M=N B.M>N C.M<N D.无法确定二.选择题(共8小题)11.在函数中,自变量x的取值范围是.12.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是(填“甲”或“乙”).13.在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC=.14.若a2n=5,b2n=16,则(ab)n=.15.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为.16.如图,河流两岸a、b互相平行,点A、B是河岸a上的两座建筑物,点C、D是河岸b上的两点,A、B的距离约为200米.某人在河岸b上的点P处测得∠APC=75°,∠BPD=30°,则河流的宽度约为米.17.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA 交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.18.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是.三.选择题(共10小题)19.计算:.20.关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.21.若关于x 的不等式组恰有三个整数解,求实数a的取值范围.22.在咸宁创建”国家卫生城市“的活动中,市园林公司加大了对市区主干道两旁植“景观树”的力度,平均每天比原计划多植5棵,现在植60棵所需的时间与原计划植45棵所需的时间相同,问现在平均每天植多少棵树?23.某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是.(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数.(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?24.在△ABC中,AC=BC,∠ACB=90°,E是线段BC的中点,D在边AC上,线段BD和AE交于点F.(1)如图1,AD=CD 时,求的值;(2)如图2,=时,求∠BFE的正切值.25.如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=(m 为常数,且m≠0)的图象交于点A(﹣2,1)、B(1,n).(1)求反比例函数和一次函数的解析式;(2)连结OA、OB,求△AOB的面积;(3)直接写出当y1<y2<0时,自变量x的取值范围.26.由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其它因素).(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x的范围.27.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.28.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M 的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.。
2017大庆中考数学模拟试卷
2017大庆中考数学模拟试卷备战中考的考生可以对中考数学模拟试题多加练习,这样可以提高自己的中考数学成绩,以下是小编精心整理的2017大庆中考数学模拟试题,希望能帮到大家!2017大庆中考数学模拟试题一、选择题:1.若|m|=3,|n|=5且m-n>0,则m+n的值是( )A.-2B.-8或 -2C.-8或 8D.8或-22.如图,已知∠α的一边在x轴上,另一边经过点A(2,4),顶点为(﹣1,0),则sinα的值是( )A.0.4B.C.0.6D.0.83.下列四个图案中,属于中心对称图形的是( )A. B. C. D.4.2016年2月19日,经国务院批准,设立无锡市新吴区,将无锡市原新区的鸿山、旺庄、硕放、梅村、新安街道划和滨湖区的江溪街道归新吴区管辖.新吴区现有总人口322819人,这个数据用科学记数法(精确到千位)可表示为( )A.323×103B.3.22×105C.3.23×105D.0.323×1065.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是( )A.5个B.6个C.7个D.8个6.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心、正方形对角线的长为半径画弧,交数轴于点A,则点A表示的数是 ( )A.-B.2-C.1-D.1+7.如果( )2÷( )2=3,那么a8b4等于( )A.6B.9C.12D.818.若非零实数a、b满足4a2+b2=4ab,则 =( )A.2B.﹣2C.4D.﹣49.使有意义的x的取值范围是( )A.x≥B.x>C.x>﹣D.x≥﹣10.下列说法中,正确的是( )A.两条对角线相等的四边形是平行四边形B.两条对角线相等且互相垂直的四边形是矩形C.两条对角线互相垂直平分的四边形是菱形D.两条对角线互相垂直平分且相等的四边形是菱形11.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m,则y与x的函数关系式为( )12.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是( )二、填空题:13.分解因式:a2﹣6a+9﹣b2= .14.化简: =_______.15.暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一个社区参加实践活动的概率为 .16.结合正比例函数y=4x的图像回答:当x>1时,y的取值范围是17.如图,正方形ABCD的边长为25,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,则每个小正方形的边长为 .18.若函数y=mx2+(m+2)x+0.5m+1的图象与x轴只有一个交点,那么m的值为 .三、解答题:19.解不等式组 .20.央视新闻报道从5月23日起,在《朝闻天下》、《新闻直播间》、《新闻联播》和《东方时空》等多个栏目播放《湟鱼洄游季探秘青海湖》新闻节目,广受全国观众关注,青海电视台到我市某中学进行宣传调查活动,随机调查了部分学生对湟鱼洄游的了解程度,以下是根据调查结果做出的统计图的一部分:(1)根据图中信息,本次调查共随机抽查了名学生,其中“不了解”在扇形统计图中对应的圆心角的度数是,并补全条形统计图;(2)该校共有3000名学生,试估计该校所有学生中“非常了解”的有多少名?(3)青海电视台要从随机调查“非常了解”的学生中,随机抽取两人做为“随行小记者”参与“湟鱼洄游”的宣传报道工作,请你用树状图或列表法求出同时选到一男一女的概率是多少?并列出所有等可能的结果.21.如图,△ABC内接于⊙O,且BC是⊙O的直径,AD⊥BC于D,F是弧BC中点,且AF交BC于E,连接OA,(1)求证:AE平分∠DAO;(2)若AB=6,AC=8,求OE的长.22.如图,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据: =1.414, =1.732)23.如图,在一面靠墙的空地商用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)已知墙的最大可用长度为8米;①求所围成花圃的最大面积;②若所围花圃的面积不小于20平方米,请直接写出x的取值范围.24.(1)如图1,在线段AB上取一点C(BC>AC),分别以AC、BC 为边在同一侧作等边ACD与等边BCE,连结AE、BD,则ACE经过怎样的变换(平移、轴对称、旋转)能得到DCB?请写出具体的变换过程;(不必写理由)(2)如图2,在线段AB上取一点C(BC>AC),如果以AC、BC为边在同一侧作正方形ACDG与正方形CBEF,连结EG,取EG的中点M,设 DM的延长线交EF于N,并且DG=NE;请探究DM与FM的关系,并加以证明;(3)在图2的基础上,将正方形CBEF绕点C顺时针旋转(如图3),使得A、C、E在同一条直线上,请你继续探究线段MD、MF的关系,并加以证明.25.如图,已知抛物线与x轴交于A(﹣1,0)、B(5,0)两点,与y 轴交于点C(0,5).(1)求该抛物线所对应的函数关系式;(2)D是笫一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连结BD、CD.设点D的横坐标为m,△BCD的面积为S.①求S关于m的函数关系式及自变量m的取值范围;②当m为何值时,S有最大值,并求这个最大值;③直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.。
2017年黑龙江大庆中考数学模拟真题
2017年黑龙江大庆中考数学模拟真题学生在准备中考数学的时候多做中考数学模拟试题并多复习,这样才能更好提升,以下是小编精心整理的2017年黑龙江大庆中考数学模拟试题,希望能帮到大家!2017年黑龙江大庆中考数学模拟试题一、选择题(每小题3分,共30分)1 .在下列各数中,比-1小的数是( )A.1B.-1C.-2D.02.某种生物细菌的直径为0.0000382cm,把0.0000382用科学记数法表示为( )A.3.82×10-4B.3.82×10-5C.3.82×10-6D.38.2×10-63.所示是由四个大小相同的正方体组成的几何体,那么它的主视图是( )4.下列运算正确的是( )A.a6+a3=a9B.a2•a3=a6C.(2a)3=8a3D.(a-b)2=a2-b25.剪纸是中国特有的民间艺术,在所示的四个剪纸图案中,既是轴对称图形又是中心对称图形的是( )6.已知:,O为⊙O的圆心,点D在⊙O上,若∠AOC=110°,则∠ADC的度数为( )A.55°B.110°C.125°D.72.5°第6题图第7题图第8题图7.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得(单位:尺),则井深为( )A.1.25尺B.57.5尺C.6.25尺D.56.5尺8.,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1∶0.75,坡长BC=10米,则此时AB的长约为(参考数据:sin40°≈0.64,cos40°≈0. 7 7,tan40°≈0.84)()A.5.1米B.6.3米C.7.1米D.9.2米9.,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG的延长线恰好经过点D,则CD的长为( )A.2cmB.23cmC.4cmD.43cm第 9题图第10题图10.,直线y=12x与双曲线y=kx(k>0,x>0)交于点A,将直线y=12x向上平移4个单位长度后,与y轴交于点C,与双曲线y=kx(k>0,x>0)交于点B,若OA=3BC,则k的值为( )A.3B.6C.94D.92二、填空题(每小题3分,共24分)11.分解因式:x3-4x= .12.,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是.第12题图第14题图第15题图13.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是.14.某同学在体育训练中统计了自己五次“1分钟跳绳”的成绩,并绘制了所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是个.15.,△ABC的两条中线AD和BE相交于点G,过点E作EF∥BC 交AD于点F,那么FGAG= .16.设一列数中相邻的三个数依次为m、n、p,且满足p=m2-n,若这列数为-1,3,-2,a,-7,b,…,则b= .17.在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′1x,1y称为点P的“倒影点”,直线y=-x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=kx的图象上.若AB=22,则k= .18.,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=33,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE=92CE;④S阴影=32.其中正确结论的序号是.三、解答题(共66分)19.(6分),AB∥CD,点E是CD上一点,∠ AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.20.(6分)(1)计算:(2017-π)0-14-1+|-2|;(2)化简:1-1a-1÷a2-4a+4a2-a.21.(8分),延长▱ABCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连接AE,CF.求证:AE=CF.22.(8分)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:030),根据图中信息,解答下列问题:(1)求调查的总人数并补全条形统计图;(2)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.23.(8分)在江苏卫视《最强大脑》节目中,搭载百度大脑的小度机器人以3∶1的总战绩,斩获2017年度脑王巅峰对决的晋级资格,人工智能时代已经扑面而来.某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其他因素),那么每个机器人的标价至少是多少元?24.(8分),直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于点D,过点D作DE⊥MN于点E.(1)求证:DE是⊙O 的切线;。
黑龙江省大庆市2017年中考数学模拟试卷(3月)(含答案解析)
2017年黑龙江省大庆市中考数学模拟试卷(3月份)一、选择题(本题共10个小题,每小题3分,共30分)1.5的倒数为()A.B.5C.D.﹣52.下列各式运算正确的是()A.2﹣1=﹣2B.23=6C.22•23=26D.(23)2=263.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm4.如图,在△ABC中,AC=DC=DB,∠ACD=100°,则∠B等于()A.50°B.40°C.25°D.20°5.甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差S甲2=0.006,2=0.035,则()乙10次立定跳远成绩的方差S乙A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人成绩的稳定性不能比较6.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是()A.B.C.D.7.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是()A.B.C.D.8.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4B.∠A+∠ADC=180°C.∠1=∠2D.∠A=∠59.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)10.反比例函数y=(k>0)的部分图象如图所示,A,B是图象上两点,AC⊥x轴于点C,BD ⊥x轴于点D,若△AOC的面积为S1,△BOD的面积为S2,则S1和S2的大小关系为()A.S1>S2B.S1=S2C.S1<S2D.无法确定二、填空题(本题共8小题,每小题3分,共24分)11.2008年5月18日晚,中央电视台举办了“爱的奉献”大型募捐活动.据了解,本次活动社会各界共向四川灾区捐款大约1510000000元人民币,这个数字用科学记数法可表示为元人民币.12.已知|x|=5,y=3,则x﹣y=.13.计算:=.。
2017年黑龙江省大庆市中考数学模拟试卷(一)
2017年黑龙江省大庆市中考数学模拟试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)数据显示,2015年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数法表示应为()A.5.166×107B.5.166×108C.51.66×106D.0.5166×1082.(3分)实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a 3.(3分)下列说法正确的是()A.对角线相等的四边形是矩形B.一组对边相等一组对边平行的四边形是平行四边形C.对角线垂直且相等的四边形是正方形D.一组对边平行一组对角相等的四边形是平行四边形4.(3分)下列实数最小的是()A.B.C.﹣1 D.2﹣5.(3分)甲、乙两箱内分别装有除颜色外其他均相同的2个小球,甲箱球的颜色分别为红、黄;乙箱球的颜色分别为红、黑;小明同时从甲、乙两个箱子中各取出一个小球(同一箱中每球被取出的机会相等),则小明取出的两个小球颜色相同的概率为()A.B.C.D.6.(3分)由若干个相同的小正方体搭成的几何体的主视图、左视图如图所示,则搭成这个几何体的小正方体的个数最少有()A.4个 B.6个 C.8个 D.10个7.(3分)下列图形有4条对称轴的是()A.矩形B.菱形C.正三角形D.正方形8.(3分)如图,点P为正方形ABCD内一点,从①PA=PB;②∠PAB=15°;③∠ADP=30°三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,命题正确的个数为()A.0个 B.1个 C.2个 D.3个9.(3分)点(x1,y1)、(x2,y2)、(x3,y3)在反比例函数的图象上,且x1<0<x2<x3,则有()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y2<y110.(3分)设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=kx+b(k≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()A.a(x1﹣x2)=k B.a(x2﹣x1)=k C.a(x1﹣x2)2=k D.a(x1+x2)2=k二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)在函数中,自变量x的取值范围为.12.(3分)若x2+4x+m=(x﹣2)(x+n),则m+n=.13.(3分)将一副三角尺按如图所示的方式叠放(两条直角边重合),则∠α的度数是.14.(3分)若一组数据2,3,x的方差与另一组数据12,13,14的方差相等,则x的值为.15.(3分)下列图案是用长度相同的火柴棒按一定规律拼搭而成的,第1个图案需4根火柴棒,第2个图案需10根火柴棒,第3个图案需16根图案…按此规律,第n个图案需根火柴棒.16.(3分)如图,九年级某班数学兴趣小组利用数学活动课时间测量位于铁人纪念馆台阶顶部铁人雕像的高度,已知台阶坡面与水平面的夹角∠BDC=30°,台阶总高BC=5m,组员从台阶底部D处沿台阶前行8m到达E点,在点E处测得雕像顶端A的仰角为60°,则雕像AB的高度为m.17.(3分)如图,在Rt△ABC中,∠A=60°,AB=2,以点B为圆心,BC为半径的弧交AB于点D,以点A为圆心,AC为半径的弧交AB于点E,则图中阴影部分的面积为.18.(3分)二次函数y=ax2﹣2ax﹣1+a(a≠0)恒过一定点,该定点坐标为.三、解答题(本大题共10小题,共66分)19.(4分)计算:(﹣)﹣1﹣|1﹣|+(π﹣3.14)0+2sin45°.20.(4分)已知x﹣y=,z﹣y=﹣,求x2+y2+z2﹣xy﹣yz﹣xz的值.21.(5分)解不等式组,并求其最大整数解.22.(6分)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?23.(7分)某中学为了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,绘制成如下两幅尚不完整的统计图,请根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)求作业完成时间在1.5﹣2h的部分对应扇形的圆心角的度数;(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5h内完成家庭作业?24.(7分)如图,在四边形ABCD中,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,若AD=3,BC=5.(1)求证:AE=BE;(2)求EF的长.25.(7分)如图,矩形OABC的顶点A,C分别在x,y轴的正半轴上,D为对角线OB的中点,反比例函数y=在第一象限内的图象经过点D,且与AB、BC分别交于点E,F,点B的坐标为(2,2).(1)求反比例函数的解析式;(2)连接DE,求△BDE的面积;(3)直接写出在第一象限内当x满足什么条件时,直线FD的函数值大于反比例函数y=的函数值.26.(8分)甲、乙两车从A地出发匀速行驶至B地,在整个行驶过程中,甲、乙两车离开A地的距离y1(单位:km),y2(单位:km)关于甲车行驶的时间t (单位:h)的函数关系如图所示,根据图象解答下列问题:(1)求乙车的速度;(2)乙车出发多长时间追上甲车?(3)当甲、乙两车相距50km时,求t的值.27.(9分)如图,△ABC中,∠C=90°,AC=3,AB=5,点O在BC边的中线AD 上,⊙O与BC相切于点E,且∠OBA=∠OBC.(1)求证:AB为⊙O的切线;(2)求⊙O的半径;(3)求tan∠BAD.28.(9分)如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是﹣2.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?2017年黑龙江省大庆市中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)数据显示,2015年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数法表示应为()A.5.166×107B.5.166×108C.51.66×106D.0.5166×108【解答】解:51 660 000用科学记数法表示应为5.166×107,故选A.2.(3分)实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a 【解答】解:∵从数轴可知:a<0<b,∴﹣a>﹣b,﹣b<0,﹣a>0,∴﹣b<0<﹣a,故选C.3.(3分)下列说法正确的是()A.对角线相等的四边形是矩形B.一组对边相等一组对边平行的四边形是平行四边形C.对角线垂直且相等的四边形是正方形D.一组对边平行一组对角相等的四边形是平行四边形【解答】解:A、对角线相等的四边形不一定是平行四边形,故不一定是矩形,故A不正确;B、一组对边相等一组对边平行的四边形可能是等腰梯形,故B不正确;C、对角线垂直且相等的四边形不一定是正方形,也可能是等腰梯形,故C不正确;D、由条件一组对边平行,一组对角相等,则可求得另一组对角也相等,故可判断其为平行四边形,故D正确;故选D.4.(3分)下列实数最小的是()A.B.C.﹣1 D.2﹣【解答】解:∵≈1.414,∴≈0.707,﹣1≈0.414,2﹣≈0.586.最小的是﹣1.故选C.5.(3分)甲、乙两箱内分别装有除颜色外其他均相同的2个小球,甲箱球的颜色分别为红、黄;乙箱球的颜色分别为红、黑;小明同时从甲、乙两个箱子中各取出一个小球(同一箱中每球被取出的机会相等),则小明取出的两个小球颜色相同的概率为()A.B.C.D.【解答】解:画树状图得:∵共有4种等可能的结果,从两个袋子中各随机摸出1个小球,两球颜色恰好相同的只有1种情况,∴从两个袋子中各随机摸出1个小球,两球颜色恰好相同的概率为:.故选:C.6.(3分)由若干个相同的小正方体搭成的几何体的主视图、左视图如图所示,则搭成这个几何体的小正方体的个数最少有()A.4个 B.6个 C.8个 D.10个【解答】解:综合主视图和左视图,底层最少有2个小立方体,第二层最少有2个小立方体,俯视图可能为:或因此搭成这个几何体的小正方体的个数最少是4个.故选A.7.(3分)下列图形有4条对称轴的是()A.矩形B.菱形C.正三角形D.正方形【解答】解:A、矩形有2条对称轴,故此选项错误;B、菱形有2条对称轴,故此选项错误;C、正三角形有3条对称轴,故此选项错误;D、正方形有4条对称轴,故此选项正确;故选:D.8.(3分)如图,点P为正方形ABCD内一点,从①PA=PB;②∠PAB=15°;③∠ADP=30°三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,命题正确的个数为()A.0个 B.1个 C.2个 D.3个【解答】解:①②⇒③是真命题,理由:作PF⊥AB于F,PE⊥AD于E,当△PDC是等边三角形时,①②条件成立,易证PE=AF=AB=DC=PD,可得∠ADP=30°①③⇒②是真命题,理由:首先证明△PDC是等边三角形,推出DA=DP,推出∠DAP=75°,可得结论.②③⇒①是真命题,理由:首先证明:DA=DP,△PDC是等边三角形,即可推出结论.故选D.9.(3分)点(x1,y1)、(x2,y2)、(x3,y3)在反比例函数的图象上,且x1<0<x2<x3,则有()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y2<y1【解答】解:∵k<0,∴函数图象在二,四象限,由x1<0<x2<x3可知,横坐标为x1的点在第二象限,横坐标为x2,x3的点在第四象限.∵第四象限内点的纵坐标总小于第二象限内点的纵坐标,∴y1最大,在第二象限内,y随x的增大而增大,∴y2<y3<y1.故选B.10.(3分)设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=kx+b(k≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()A.a(x1﹣x2)=k B.a(x2﹣x1)=k C.a(x1﹣x2)2=k D.a(x1+x2)2=k 【解答】解:∵一次函数y2=kx+b(k≠0)的图象经过点(x1,0),∴kx1+b=0,b=﹣kx1,∴y2=k(x﹣x1),∴y=y1+y2=a(x﹣x1)(x﹣x2)+k(x﹣x1)=ax2﹣axx2﹣ax1x+ax1x2+kx﹣kx1=ax2+(k﹣ax2﹣ax1)x+ax1x2﹣kx1,∵当x=x1时,y1=0,y2=0,∴当x=x1时,y=y1+y2=0,∵y=ax2+(k﹣ax2﹣ax1)x+ax1x2﹣kx1与x轴仅有一个交点,∴y=y1+y2的图象与x轴的交点为(x1,0),∴﹣=x1,化简得:a(x2﹣x1)=k.故选:B.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)在函数中,自变量x的取值范围为x≥0且x≠2.【解答】解:由题意,得x≥0且x﹣2≠0,解得x≥0且x≠2,故答案为:x≥0且x≠2.12.(3分)若x2+4x+m=(x﹣2)(x+n),则m+n=﹣6.【解答】解:已知等式整理得:x2+4x+m=x2+(n﹣2)x﹣2n,可得n﹣2=4,﹣2n=m,解得:m=﹣12,n=6,则m+n=﹣12+6=﹣6.故答案为:﹣613.(3分)将一副三角尺按如图所示的方式叠放(两条直角边重合),则∠α的度数是75°.【解答】解:∵∠DAC+∠ACB=180°,∴AD∥BC,∴∠B=∠DAE=30°,∴∠DEB=∠D+∠DAE=45°+30°=75°,即∠α的度数是75°.故答案为:75°.14.(3分)若一组数据2,3,x的方差与另一组数据12,13,14的方差相等,则x的值为1或4.【解答】解:∵一组数据2,3,x的方差与另一组数据12,13,14的方差相等,∴这组数据可能是2,3,4或1,2,3,∴x=1或4,故答案为1或4.15.(3分)下列图案是用长度相同的火柴棒按一定规律拼搭而成的,第1个图案需4根火柴棒,第2个图案需10根火柴棒,第3个图案需16根图案…按此规律,第n个图案需(6n﹣2)根火柴棒.【解答】解:第1个图形中,有4根火柴,4=1+3×1;第2个图形中,有10根火柴,10=1+3×3;第3个图形中,有16根火柴,16=1+3×5;…按此规律,第n个图形中,火柴的根数是1+3(2n﹣1)=6n﹣2.故答案为:(6n﹣2).16.(3分)如图,九年级某班数学兴趣小组利用数学活动课时间测量位于铁人纪念馆台阶顶部铁人雕像的高度,已知台阶坡面与水平面的夹角∠BDC=30°,台阶总高BC=5m,组员从台阶底部D处沿台阶前行8m到达E点,在点E处测得雕像顶端A的仰角为60°,则雕像AB的高度为2m.【解答】过点E作EF⊥AC,EG⊥CD,在Rt△DEG中,∵DE=1620,∠D=30°,∴EG=DEsin∠D=8×=4米,∵BC=5米,CF=EG,∴BF=BC﹣CF=1米,在Rt△BEF中,tan∠BEF=,∴EF=BF,在Rt△AEF中,∠AEF=60°,设AB=x,∵tan∠AEF=,∴AF=EF×tan∠AEF,∴x+1=3×1,∴x=2,故答案为2.17.(3分)如图,在Rt△ABC中,∠A=60°,AB=2,以点B为圆心,BC为半径的弧交AB于点D,以点A为圆心,AC为半径的弧交AB于点E,则图中阴影部分的面积为.【解答】解:S阴影部分=S扇形ACE+S扇形BCD﹣S△ABC,∵S扇形ACE==,S扇形BCD==,S△ABC=×1×=,∴S阴影部分=+﹣=.故答案为.18.(3分)二次函数y=ax2﹣2ax﹣1+a(a≠0)恒过一定点,该定点坐标为(1,﹣1).【解答】解:∵y=ax2﹣2ax﹣1+a=a(x﹣1)2﹣1,∴不论a取任何不为0的实数,当x=1时,y=﹣1,即二次函数恒过的定点为(1,﹣1),故答案为:(1,﹣1).三、解答题(本大题共10小题,共66分)19.(4分)计算:(﹣)﹣1﹣|1﹣|+(π﹣3.14)0+2sin45°.【解答】解:原式=﹣2﹣+1+1+=0.20.(4分)已知x﹣y=,z﹣y=﹣,求x2+y2+z2﹣xy﹣yz﹣xz的值.【解答】解:由x﹣y=,z﹣y=﹣得:(x+y)(z﹣y)=xz﹣xy﹣yz+y2=﹣2①;(x﹣y)﹣(z﹣y)=x﹣z=2,则x2﹣2xz+z2=8②,①+②得:x2+y2+z2﹣xy﹣yz﹣xz=﹣2+8=6.21.(5分)解不等式组,并求其最大整数解.【解答】解:由①得:x<1,由②得:x≥﹣3,则不等式组的解集为:﹣3≤x<1,则不等式组的最大整数解为0.22.(6分)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?【解答】解:设原计划每小时检修管道x米.由题意,得﹣=2.解得x=50.经检验,x=50是原方程的解.且符合题意.答:原计划每小时检修管道50米.23.(7分)某中学为了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,绘制成如下两幅尚不完整的统计图,请根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)求作业完成时间在1.5﹣2h的部分对应扇形的圆心角的度数;(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5h内完成家庭作业?【解答】解:(1)∵10÷25%=40(名),∴B的人数为40﹣10﹣14﹣3﹣1=12(名),补全条形统计图:(2)∵1﹣25%﹣30%﹣35%﹣2.5%=7.5%,∴360°×7.5%=27°,∴作业完成时间在1.5~2h的部分对应扇形圆心角的度数为27°.(3)∵2000×(25%+30%+35%)=1800(名).24.(7分)如图,在四边形ABCD中,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,若AD=3,BC=5.(1)求证:AE=BE;(2)求EF的长.【解答】解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,∴EA=EF,BE=EF,∴AE=BE;(2)∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,∴DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四边形ABHD为矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.25.(7分)如图,矩形OABC的顶点A,C分别在x,y轴的正半轴上,D为对角线OB的中点,反比例函数y=在第一象限内的图象经过点D,且与AB、BC分别交于点E,F,点B的坐标为(2,2).(1)求反比例函数的解析式;(2)连接DE,求△BDE的面积;(3)直接写出在第一象限内当x满足什么条件时,直线FD的函数值大于反比例函数y=的函数值.【解答】解:(1)∵B(2,2),点D为对角线OB的中点,∴D(,1),∵点D在反比例函数y=(k≠0)的图象上,∴k=×1=,∴反比例函数的关系式为:y=;(2)设点E的坐标为(2,m),代入y=,可得m=,∴BE=2﹣=,如图,过点D作DH⊥AB于H,则DH=AO=,=BE×DH=××=;∴S△BDE(3)设点F的坐标为(n,2),代入y=,可得n=,∴F(,2),又∵D(,1),∴在第一象限内,当一次函数值大于反比例函数y=的函数值时,x的取值范围为:<x<.26.(8分)甲、乙两车从A地出发匀速行驶至B地,在整个行驶过程中,甲、乙两车离开A地的距离y1(单位:km),y2(单位:km)关于甲车行驶的时间t (单位:h)的函数关系如图所示,根据图象解答下列问题:(1)求乙车的速度;(2)乙车出发多长时间追上甲车?(3)当甲、乙两车相距50km时,求t的值.【解答】解:(1)由图象可知乙车比甲车晚出发1个小时,乙车3小时行驶300千米,所以乙车的速度是:300÷3=100(千米/时);(2)设甲车离开A地的距离y1关于甲车行驶的时间t的函数解析式为y1=kt,把点(5,300)代入,得5k=300,解得k=60,所以y1=60t(0≤t≤5).设乙车离开A地的距离y2关于甲车行驶的时间t的函数解析式为y2=mt+n,把点(1,0)和点(4,300)代入,得,解得,所以y2=100t﹣100(1≤t≤4).令y1=y2,得60t=100t﹣100,解得t=2.5.2.5﹣1=1.5(小时).故此时乙车出发时间为1.5小时,即乙车出发1.5小时后追上甲车;(3)当甲、乙两车相距50km时,分三种情况:①当乙车没有出发即0≤t≤1时,y1=50,解得t=;②当1<t≤4时,由题意,得:|y1﹣y2|=50,即60t﹣(100t﹣100)=50或100t﹣100﹣60t=50,解得t=或;③当乙车到达B地即4<t≤5时,时,y1=250,解得t=.综上,当甲、乙两车相距50km时,t的值为h或h或h或h.27.(9分)如图,△ABC中,∠C=90°,AC=3,AB=5,点O在BC边的中线AD 上,⊙O与BC相切于点E,且∠OBA=∠OBC.(1)求证:AB为⊙O的切线;(2)求⊙O的半径;(3)求tan∠BAD.【解答】(1)证明:如图,作OF垂直AB于点F,∵⊙O与BC相切于点E,∴OE⊥BC又∠OBA=∠OBC,∴OE=OF,∴AB 为⊙O 的切线(2)解:∵∠C=90°,AC=3,AB=5,∴BC==4,又D 为BC 的中点,∴CD=DB=2,∵S △ACD +S △COB +S △AOB =S △ABC设⊙O 的半径为r ,即AC•CD +BD•r +∴6+2r +5r=12∴r=∴⊙O 的半径为(3)解:∵∠C=90°,OE ⊥BC ,∴OE ∥AC ,∴Rt △ODE ∽Rt △ADC , ∴,∴DE=,∴BF=BE=,∴AF=AB ﹣BF=,∴tan ∠BAD==.28.(9分)如图,已知一条直线过点(0,4),且与抛物线y=x 2交于A ,B两点,其中点A的横坐标是﹣2.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?【解答】解:(1)∵点A是直线与抛物线的交点,且横坐标为﹣2,∴y=×(﹣2)2=1,A点的坐标为(﹣2,1),设直线的函数关系式为y=kx+b,将(0,4),(﹣2,1)代入得,解得,∴直线y=x+4,∵直线与抛物线相交,∴x+4=x2,解得:x=﹣2或x=8,当x=8时,y=16,∴点B的坐标为(8,16);(2)如图1,连接AC,BC,∵由A(﹣2,1),B(8,16)可求得AB2=325.设点C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m﹣8)2+162=m2﹣16m+320,①若∠BAC=90°,则AB2+AC2=BC2,即325+m2+4m+5=m2﹣16m+320,解得:m=﹣;②若∠ACB=90°,则AB2=AC2+BC2,即325=m2+4m+5+m2﹣16m+320,解得:m=0或m=6;③若∠ABC=90°,则AB2+BC2=AC2,即m2+4m+5=m2﹣16m+320+325,解得:m=32;∴点C的坐标为(﹣,0),(0,0),(6,0),(32,0)(3)设M(a,a2),如图2,设MP与y轴交于点Q,在Rt△MQN中,由勾股定理得MN==a2+1,又∵点P与点M纵坐标相同,∴+4=a2,∴x=,∴点P的横坐标为,∴MP=a﹣,∴MN+3PM=+1+3(a﹣)=﹣a2+3a+9,∴当a=﹣=6,又∵2≤6≤8,∴取到最大值18,∴当M的横坐标为6时,MN+3PM的长度的最大值是18.。
2017年黑龙江省大庆市中考数学试题及解析
2017年黑龙江省大庆市中考数学试卷一、选择题(共10小题,每小题3分,满分30分) B25.(3分)(2017•大庆)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总6.(3分)(2017•大庆)在⊙O 中,圆心O 到弦AB 的距离为AB 长度的一半,则弦AB 所..D8.(3分)(2017•大庆)某射击小组有20人,教练根据他们某次射击的数据绘制如图所示的统计图,则这组数据的众数和中位数分别是( )9.(3分)(2017•大庆)已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x210.(3分)(2017•大庆)已知点A(﹣2,0),B为直线x=﹣1上一个动点,P为直线AB与双曲线y=的交点,且AP=2AB,则满足条件的点P的个数是()二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2017•大庆)函数y=的自变量x的取值范围是.12.(3分)(2017•大庆)已知=,则的值为.13.(3分)(2017•大庆)底面直径和高都是1的圆柱侧面积为.14.(3分)(2017•大庆)边长为1的正三角形的内切圆半径为.15.(3分)(2017•大庆)用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).16.(3分)(2017•大庆)方程3(x﹣5)2=2(x﹣5)的根是.17.(3分)(2017•大庆)若a2n=5,b2n=16,则(ab)n=.18.(3分)(2017•大庆)在Rt△ABC中,∠C=90°,AC=BC=1,将其放入平面直角坐标系,使A点与原点重合,AB在x轴上,△ABC沿x轴顺时针无滑动的滚动,点A再次落在x 轴时停止滚动,则点A经过的路线与x轴围成图形的面积为.三、解答题(共10小题,满分66分)19.(4分)(2017•大庆)求值:+()2+(﹣1)2017.20.(4分)(2017•大庆)解关于x的不等式:ax﹣x﹣2>0.21.(5分)(2017•大庆)已知实数a,b是方程x2﹣x﹣1=0的两根,求+的值.22.(6分)(2017•大庆)已知一组数据x1,x2,…x6的平均数为1,方差为(1)求:x12+x22+ (x62)(2)若在这组数据中加入另一个数据x7,重新计算,平均数无变化,求这7个数据的方差(结果用分数表示)23.(7分)(2017•大庆)某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.24.(7分)(2017•大庆)小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)25.(7分)(2017•大庆)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,联结DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.26.(8分)(2017•大庆)如图,一次函数y=kx+b的图象与反比例函数y=﹣的图象交于A(﹣1,m)、B(n,﹣1)两点(1)求一次函数的解析式;(2)求△AOB的面积.27.(9分)(2017•大庆)如图,四边形ABCD内接于⊙O,AD∥BC,P为BD上一点,∠APB=∠BAD.(1)证明:AB=CD;(2)证明:DP•BD=AD•BC;(2)证明:BD2=AB2+AD•BC.28.(9分)(2017•大庆)已知二次函数y=x2+bx﹣4的图象与y轴的交点为C,与x轴正半轴的交点为A,且tan∠ACO=(1)求二次函数的解析式;(2)P为二次函数图象的顶点,Q为其对称轴上的一点,QC平分∠PQO,求Q点坐标;(3)是否存在实数x1、x2(x1<x2),当x1≤x≤x2时,y的取值范围为≤y≤?若存在,直接写在x1,x2的值;若不存在,说明理由.2017年黑龙江省大庆市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)B2=|a|=55.(3分)(2017•大庆)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总6.(3分)(2017•大庆)在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所..D8.(3分)(2017•大庆)某射击小组有20人,教练根据他们某次射击的数据绘制如图所示的统计图,则这组数据的众数和中位数分别是( )=7.59.(3分)(2017•大庆)已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x210.(3分)(2017•大庆)已知点A(﹣2,0),B为直线x=﹣1上一个动点,P为直线AB与双曲线y=的交点,且AP=2AB,则满足条件的点P的个数是()),于是得到这样的点,﹣,=,=)二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2017•大庆)函数y=的自变量x的取值范围是x>0.12.(3分)(2017•大庆)已知=,则的值为﹣.=,=﹣.13.(3分)(2017•大庆)底面直径和高都是1的圆柱侧面积为π.14.(3分)(2017•大庆)边长为1的正三角形的内切圆半径为.,BOD==OD=故答案为:15.(3分)(2017•大庆)用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱①③④(写出所有正确结果的序号).16.(3分)(2017•大庆)方程3(x﹣5)2=2(x﹣5)的根是x1=5,x2=..17.(3分)(2017•大庆)若a2n=5,b2n=16,则(ab)n=.故答案为:18.(3分)(2017•大庆)在Rt△ABC中,∠C=90°,AC=BC=1,将其放入平面直角坐标系,使A点与原点重合,AB在x轴上,△ABC沿x轴顺时针无滑动的滚动,点A再次落在x轴时停止滚动,则点A经过的路线与x轴围成图形的面积为π+.的扇形,加上=;△,半径为+=;.三、解答题(共10小题,满分66分)19.(4分)(2017•大庆)求值:+()2+(﹣1)2017.+.20.(4分)(2017•大庆)解关于x的不等式:ax﹣x﹣2>0.><21.(5分)(2017•大庆)已知实数a,b是方程x2﹣x﹣1=0的两根,求+的值.+=+=﹣22.(6分)(2017•大庆)已知一组数据x1,x2,…x6的平均数为1,方差为(1)求:x12+x22+ (x62)(2)若在这组数据中加入另一个数据x7,重新计算,平均数无变化,求这7个数据的方差(结果用分数表示)再根据方差为,利用完全平方公式求出,进而求解即可;;再根据[又∵方差为,[[x((,[=[[10+.=﹣))23.(7分)(2017•大庆)某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.=能获得的优惠为:=25×=2024.(7分)(2017•大庆)小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)AG=xm+125.(7分)(2017•大庆)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,联结DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.26.(8分)(2017•大庆)如图,一次函数y=kx+b的图象与反比例函数y=﹣的图象交于A(﹣1,m)、B(n,﹣1)两点(1)求一次函数的解析式;(2)求△AOB的面积.,得:坐标代入一次函数解析式得:=8d==3AB27.(9分)(2017•大庆)如图,四边形ABCD内接于⊙O,AD∥BC,P为BD上一点,∠APB=∠BAD.(1)证明:AB=CD;(2)证明:DP•BD=AD•BC;(2)证明:BD2=AB2+AD•BC.)利用平行线的性质结合圆周角定理得出====28.(9分)(2017•大庆)已知二次函数y=x2+bx﹣4的图象与y轴的交点为C,与x轴正半轴的交点为A,且tan∠ACO=(1)求二次函数的解析式;(2)P为二次函数图象的顶点,Q为其对称轴上的一点,QC平分∠PQO,求Q点坐标;(3)是否存在实数x1、x2(x1<x2),当x1≤x≤x2时,y的取值范围为≤y≤?若存在,直接写在x1,x2的值;若不存在,说明理由.ACO=,求出的坐标为(﹣,﹣≤当﹣≤即可.,ACO=,﹣的坐标为(﹣,±,)或(﹣,﹣﹣的取值范围为4=4=,﹣Ⅰ、当﹣的取值范围为,可得<,Ⅱ、当﹣的取值范围为=<的取值范围为,,≤.。
2017年黑龙江省大庆市中考数学试卷解析版
2017年黑龙江省大庆市中考数学试卷满分:120分 版本:人教版一、选择题(每小题3分,共10小题,合计30分)1.(2017黑龙江大庆,1,3分)若a 的相反数是3-,则a 的值为( ) A .1B .2C . 3D .4答案:C ,解析:-3和3互为相反数,故选C .2.(2017黑龙江大庆,2,3分)数字150000用科学记数法表示为( ) A . 4105.1⨯B .61015.0⨯C . 41015⨯D .5105.1⨯答案:D ,解析:科学计数法.3.(2017黑龙江大庆,3,3分)下列说法中,正确的是( )A . 若b a ≠,则22b a ≠ B . 若||b a >,则b a >C . 若||||b a =,则b a =D .若||||b a >,则b a >答案:B ,解析:考查绝对值的相关概念,B 正确.4.(2017黑龙江大庆,4,3分)对于函数12-=x y ,下列说法正确的是( )A .它的图象过点)0,1(B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当1>x 时,0>y答案:D ,解析:图象不过点(1,0),y 随着x 增大而增大,图象经过第一、三、四象限,未经过第二象限,D 正确.5.(2017黑龙江大庆,5,3分)在ABC ∆中,C B A ∠∠∠,,的度数之比为2:3:4,则B ∠的度数为( ) A .0120B .080C .060D .040答案:C ,解析:设三个内角分别为2x ,3x ,4x ,则2x +3x +4x =180°,故3x =60°.6.(2017黑龙江大庆,6,3分)将一枚质地均匀的硬币先后抛掷两次,则至少出现一次正面向上的概率为( ) A .41B .21 C .43 D .32 答案:C ,解析:树状图或列表可得.7.(2017黑龙江大庆,7,3分)由若干个相同的正方体组成的几何体,如图(1)所示,其左视图如图(2)所示,则这个几何体的俯视图为( )图(1) 图(2)A .B .C .D .答案:A ,解析:由三视图相关知识可知,选A .8.(2017黑龙江大庆,8,3分)如图,ABD ∆是以BD 为斜边的等腰直角三角形,BCD ∆中,090=∠DBC ,060=∠BCD ,DC 中点为E ,AD 与BE 的延长线交于点F ,则AFB ∠的度数为( )A .030B .015C .045D .025答案:B ,解析:AFB ∠=∠ADE -∠DEB =75°- 60°=15°.9.(2017黑龙江大庆,9,3分)若实数3是不等式022<--a x 的一个解,则a 可取的最小正整数为( ) A . 2B .3C .4D .5答案:D ,解析:由题意解不等式得:x <22+a ,∵3是不等式的一个解,∴22+a >3,∴a >4,即a 的最小正整数解为5.10.(2017黑龙江大庆,10,3分)如图,BC AD //,AB AD ⊥,点B A ,在y 轴上,CD 与x 轴交于点)0,2(E ,且DE AD =,CE BC 2=,则BD 与x 轴交点F 的横坐标为( ) A .32B .43 C .54 D .65答案:A ,解析:设AD =DE =a ,BC =EC =2b ,由已知可得:b a a a b a +=--22,整理得:32=+b a ab ,CD CE BD BF AD OF ==.即b a ba m +=,∴m =32=+b a ab ,故选A. 二、填空题:(每小题3分,共8小题,合计24分) 11.(2017黑龙江大庆,11,3分)=060sin 2 .答案:3,解析:=060sin 22×23=3. 12.(2017黑龙江大庆,12,3分)分解因式:=-x x 43.答案:x (x +2)(x -2),解析:=-x x 43x (x 2-4)= x (x +2)(x -2).13.(2017黑龙江大庆,13,3分)已知一组数据:3,5,x ,7,9的平均数为6,则=x .答案:6,解析:依题意6=59753++++x ,解得x=6.14.(2017黑龙江大庆,14,3分)ABC ∆中,C ∠为直角,2=AB ,则这个三角形的外接圆半径为 .答案:1,解析:直角三角形外接圆圆心在斜边中点,或90°所对的弦为直径可知,半径为1.15.(2017黑龙江大庆,15,3分)若点)2,3(-a M ,),(a b N 关于原点对称,则=+b a .答案:-2,解析:由M 、N 关于原点对称知:⎩⎨⎧=+-=+0203a a b ,解得⎩⎨⎧-==31b a ,则a+b= - 2.16.(2017黑龙江大庆,16,3分)如图,点N M ,在半圆的直径AB 上,点Q P ,在AB 上,四边形MNPQ 为正方形,若半圆的半径为5,则正方形的边长为 .答案:2,解析:如图,取AB 中点,即为MN 中点O ,则OM :QM :OQ =1:2:5.,∴QM =2 17.(2017黑龙江大庆,17,3分)圆锥的底面半径为1,它的侧面展开图的圆心角为0180,则这个圆锥的侧面积为 .答案:2π,解析:侧面展开图的圆心角为180°,则有:2π×1=180180Rπ,∴R=2,侧面积S=3601802R π=2π.18.(2017黑龙江大庆,18,3分)如图,已知一条东西走向的河流,在河流对岸有一点A ,小明在岸边点B 处测得点A 在点B 的北偏东030方向上,小明沿河岸向东走m 80后到达点C ,测得点A 在点C 的北偏西060方向上,则点A 到河岸BC 的距离为 .答案:203m ,解析:作AH ⊥BC 于H ,设BH =x .则AH =3x ,CH =3x .∴x +3x =80,所以x =20,所以AH =3x =203.三、解答题:本大题共10个小题,满分66分. 19.(2017黑龙江大庆,19,4分)计算:|3|2745tan )1(302017π-+++-思路分析:分别计算相应部分,再合并同类项 解:原式= -1+1+3+π-3=π.20.(2017黑龙江大庆,20, 4分)解方程:112=++xx x思路分析:两边同时乘最小公分母,化为整式方程,再解之,注意验根.解:方程两边同时乘以(x +2)x 得:x 2+x +2=x 2+2x .解得x =2.把x =2代入(x +2)x ≠0,则x =2是原分式方程的解.21.(2017黑龙江大庆,21, 5分)已知非零实数b a ,满足3=+b a ,2311=+b a ,求代数式22ab b a +的值.思路分析:22ab b a +因式分解可化为ab (a +b )实数的运算, 解:由2311=+b a 可得:23=+ab b a ,又∵a +b =3,∴ab =2.∴22ab b a +=ab (a +b )= 2×3= 622.(2017黑龙江大庆,22, 6分)某快递公司的每位“快递小哥”日收入与每日的派送量成一次函数关系,如图所示.(1)求每位“快递小哥”的日收入y (元)与日派送量x (件)之间的函数关系式; (2)已知某“快递小哥”的日收入不少于110元,则他至少要派送多少件?思路分析:(1)显然是一次函数,所以寻找到两个点的坐标,利用待定系数法求解.(2)根据题意列出不等式,得出x 的取值范围.解:(1)由题意知,y 关于x 的函数是一次函数经过点(0,70)和点(30,100),设解析式为y =kx +b ,将两点代入得:⎩⎨⎧+==b k b 3010070,解得⎩⎨⎧==701b k ,∴解析式为:y =x +70(2)依题意得:x +70≥110,即x ≥40,所以他至少要派送40件,才能保证日收入不低于110元. 23.(2017黑龙江大庆,23, 7分)某校为了解学生平均每天课外阅读的时间,随机调查了该校部分学生一周内平均每天课外阅读的时间(以分钟为单位,并取整数),将有关数据统计整理并绘制成尚未完成的频率分布表和频数分布直方图.请你根据图表中所提供的信息,解答下列问题.组别 分组 频数 频率 1 15 - 25 7 0.14 2 25 - 35 a 0.24 3 35 - 45 20 0.40 4 45 - 55 6 b 5 55 - 6550.1注:这里的25~15表示大于等于15同时小于25. (1)求被调查的学生人数;(2)直接写出频率分布表中的a 和b 的值,并补全频数分布直方图;(3)若该校共有学生500名,则平均每天课外阅读的时间不少于35分钟的学生大约有多少名? 思路分析:(1)7÷0.14=50(2)由样本容量和对应频率计算出相应数值,画出图形(3)估算解:(1)7÷0.14=50(人)(2)a =50×0.24=12(人),b =6÷50=0.12 ,图形自行补全正确(a =12) (3)50人中 不少于35分钟阅读的人数为:20+6+5=31(人),∴500名学生,平均每天课外阅读时间不少于35分钟的学生大约是:500×(31÷50)=310(人)24.(2017黑龙江大庆,24, 7分)如图,以BC 为底边的等腰ABC ∆,点G E D ,,分别在AC AB BC ,,上,且BC EG //,AC DE //,延长GE 至点F ,使得BF BE =.(1)求证:四边形BDEF 为平行四边形;(2)当045=∠C ,2=BD 时,求F D ,两点间的距离.思路分析:(1)证明两组对比分别平行(2)构造直角△DHF ,利用勾股定理求解解:(1)∵EG ∥BC ,∴EF ∥BD ,∴∠AEG =∠ABC ,AB =AC ,∴∠ABC =∠ACB =∠AGF ,又BE =BF ,∴∠F =∠FEB =∠AEG =∠AGE ,∴BF ∥AC ,∵ED ∥AC ,∴BF ∥DE ,∴四边形BDEF 为平行四边形. (2)如图,作FH ⊥DE ,交DE 延长线于点H ,则四边形FBEH 为正方形,FH =EH =EB .∵∠ACB=45°,∴△ABC 和△EDB 都是等腰直角三角形,∵BD =2,∴BE =2×sin45°=2,∴FH =2,HD =22,在Rt △FHD 中,DF =22FH HD +=82+=1025.(2017黑龙江大庆,25,7分)如图,反比例函数xky =的图象与一次函数b x y +=的图象交于B A ,两点,点A 和点B 的横坐标分别为1和2-,这两点的纵坐标之和为1. (1)求反比例函数的表达式与一次函数的表达式;(2)当点C 的坐标为)1,0(-时,求ABC ∆的面积.思路分析:(1)根据两个点的坐标关系,建立方程关系求解(2)得出△ABC 三个顶点的坐标,利用面积公式直接计算解:(1)设A (1,m ),B (-2,n ),又m +n =1,∴B (-2,1-m ),∵A 、B 两点都在反比例函数上,所以,1×m = -2×(1-m ),解得:m =2,∴A (1,2),B (-2,-1).将A 坐标分别代入反比例函数xky =和一次函数b x y +=得,k =1×2=2,b =1,∴反比例函数解析式为:xy 2=,一次函数解析式为:1+=x y(2)连接BC 和AC ,∵B 和C 的纵坐标相等,所以BC ∥x 轴,∴S △ABC =)21C A y y BC -⨯⨯(=21×2×(1+2)=3,∴△ABC 的面积为326.(2017黑龙江大庆,26,8分) 已知二次函数的表达式为n mx x y ++=2. (1)若这个二次函数的图象与x 轴交于点)0,1(A ,点)0,3(B ,求实数n m ,的值;(2)若ABC ∆是有一个内角为030的直角三角形,C ∠为直角,B A cos ,sin 是方程02=++n mx x 的两个根,求实数n m ,的值.思路分析:(1)待定系数法,(2)利用特殊角三角函数值和判别式计算 解:(1)y=x 2+m x+n 过点A (1,0),点B (3,0)∴⎩⎨⎧=++=++03901n m n m ,解得:⎩⎨⎧=-=34n m(2)当A =30°,B =60°时,sin A =sin30°=21,cos B =cos60°=21,∴sin A =cos B 则⎪⎩⎪⎨⎧-==++n m n m 4021412△,解得⎪⎩⎪⎨⎧=-=411n m当A =60°,B =30°,sin A =sin60°=23,cos B =cos30°=23,∴sin A =cos B 则⎪⎩⎪⎨⎧=-==++04023432n m n m △解得⎪⎩⎪⎨⎧=-=433n m 故m ,n 取值为⎪⎩⎪⎨⎧=-=411n m 或⎪⎩⎪⎨⎧=-=433n m 27.(2017黑龙江大庆,27,9分)27.如图,四边形ABCD 内接于圆O ,090=∠BAD ,AC 为直径,过点A 作圆O 的切线交CB 的延长线于点E ,过AC 的三等分点F (靠近点C )作CE 的平行线交AB 于点G ,连结CG .(1)求证:CD AB =; (2)求证:BC BE CD ⋅=2; (3)当3=CG ,29=BE 时,求CD 的长.思路分析:(1)等角对等边(2)相似导比例即可得出答案(3)抓住三等分点,列方程组消元求解解:(1)证明:∵AC 为直径∴∠ABC =90°, ∴∠ABC +∠BAD =180° ∴BC ∥AD ∴∠BCA =∠CAD ∴AB =CD(2)∵AE 为圆O 的切线且O 为圆心,∴OA ⊥AE 即CA ⊥AE ,∴∠EAB +∠BAC =90°, 而∠BAC +∠BCA =90° ∴∠EAB =∠BCA 而∠EAB =∠ABC ∴△EBA ∽△ABC ∴BCBABA EB =∴BA 2=BE ·BC , 由(1)知:AB =CD ∴BC BE CD ⋅=2(3)由(2)知BC BE CD ⋅=2,即BC CD 292=① ∵FG ∥BC ,且F 为三等分点, ∴G 为三等分点,即CD =AB =3BG , 在Rt △CBG 中有222BC BG CG +=, 即3 = 2231BC CD +⎪⎭⎫⎝⎛②把①代入②,消去CD 得:06212=-+BC BC ,解得BC =23或BC =-2(舍)③ 将③式代入①式得CD =23328.(2017黑龙江大庆,28,9分)如图,直角ABC ∆中,A ∠为直角,8,6==AC AB .点R Q P ,,分别在CA BC AB ,,边上同时开始作匀速运动,2秒后三个点同时停止运动,点P 由点A 出发以每秒3个单位的速度向点B 运动,点Q 由点B 出发以每秒5个单位的速度向点C 运动,点R 由点C 出发以每秒4个单位的速度向点A 运动,在运动过程中: (1)求证:APR ∆,BPQ ∆,CQR ∆的面积相等; (2)求PQR ∆面积的最小值;(3)用t (秒)(20≤≤t )表示运动时间,是否存在t ,使090=∠PQR ,若存在,请直接写出t 的值;若不存在,请说明理由.思路分析:(1)求出相应边长,利用t 表示出各线段,找到等量关系,列方程组求解.(2)割补法用t 表示出面积(3)分类讨论直角的位置.解:(1)证明:∠A =90°,AB =6,AC =8,由勾股定理得BC =10.设运动时间为t ,则AP =3t ,AR =8-4t ,S △APR =21AP ·AR =21·3t (8-4t )=-6t 2+12 作QM ⊥AB ,垂足为M ,则QM =BQ ·sin B =5t ×54=4t BP =6-3t∴S △APR =S △BPQ =S △CQR(2)由(1)知,S △PQR =S △ABC -S △APR -S △BPQ -S △CQR =)612(368212t t --⨯⨯=18t 2-26t +24=18(t -1)2+6当t =1,△PQR 的面积取得最小值为618(3)存在t=1或者t=,使得∠PQR为直角.25。
黑龙江省大庆市中考数学3月模拟试卷(含解析)
2017年黑龙江省大庆市中考数学模拟试卷(3月份)一、选择题(本题共10个小题,每小题3分,共30分)1.5的倒数为()A.B.5 C.D.﹣52.下列各式运算正确的是()A.2﹣1=﹣2 B.23=6 C.22•23=26D.(23)2=263.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm4.如图,在△ABC中,AC=DC=DB,∠ACD=100°,则∠B等于()A.50° B.40° C.25° D.20°5.甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差S甲2=0.006,乙10次立定跳远成绩的方差S2=0.035,则()乙A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人成绩的稳定性不能比较6.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是()A.B.C.D.7.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是()A.B.C.D.8.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠59.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)10.反比例函数y=(k>0)的部分图象如图所示,A,B是图象上两点,AC⊥x轴于点C,BD⊥x轴于点D,若△AOC的面积为S1,△BOD的面积为S2,则S1和S2的大小关系为()A.S1>S2B.S1=S2 C.S1<S2D.无法确定二、填空题(本题共8小题,每小题3分,共24分)11.2008年5月18日晚,中央电视台举办了“爱的奉献”大型募捐活动.据了解,本次活动社会各界共向四川灾区捐款大约1510000000元人民币,这个数字用科学记数法可表示为元人民币.12.已知|x|=5,y=3,则x﹣y= .13.计算: = .14.函数y=中自变量x的取值范围是.15.如图,直线AB、CD相交于点O,OE⊥AB,垂足为O,如果∠EOD=42°,则∠AOC= 度.16.如图,已知矩形ABCD,P、R分别是BC和DC上的点,E、F分别是PA,PR的中点.如果DR=3,AD=4,则EF的长为.17.观察下面两行数:2,4,8,16,32,64,…①5,7,11,19,35,67,…②根据你发现的规律,取每行数的第10个数,求得它们的和是(要求写出最后的计算结果).18.如图,菱形AB1C1D1的边长为1,∠B1=60°;作AD2⊥B1C1于点D2,以AD2为一边,做第二个菱形AB2C2D2,使∠B2=60°;作AD3⊥B2C2于点D3,以AD3为一边做第三个菱形AB3C3D3,使∠B3=60°…依此类推,这样做的第n个菱形AB n C n D n的边AD n的长是.三、解答题(本题共3小题,每小题5分,共15分)19.计算:(﹣1)﹣2+2sin245°﹣(1﹣)020.先化简,再求值:÷x,其中x=.21.解方程组:.四、应用题(本大题2小题,共12分)22.在同一条件下,对同一型号的汽车进行耗油1升所行驶路程的实验,将收集到的数据作为一个样本进行分析,绘制出部分频数分布直方图和部分扇形统计图.如下图所示(路程单位:km)结合统计图完成下列问题:(1)扇形统计图中,表示12.5≤x<13部分的百分数是;(2)请把频数分布直方图补充完整,这个样本数据的中位数落在第组;(3)哪一个图能更好地说明一半以上的汽车行驶的路程在13≤x<14之间?哪一个图能更好地说明行驶路程在12.5≤x<13的汽车多于在14≤x<14.5的汽车?23.海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.五、推理与计算(本大题3小题,共21分)24.已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x 轴对称,若△OAB的面积为6,求m的值.25.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.(1)求证:△ABF≌△EDF;(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.26.已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=.(1)求证:AM•MB=EM•MC;(2)求EM的长;(3)求sin∠EOB的值.六、综合应用与探究(本大题2小题,共18分)27.夏季来临,商场准备购进甲、乙两种空调,已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题:(1)求甲、乙两种空调每台的进价;(2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场计划用不超过36000元购进空调共20台,且全部售出,请写出所获利润y(元)与甲种空调x(台)之间的函数关系式,并求出所能获得的最大利润.28.已知抛物线y=﹣ax2+2ax+b与x轴的一个交点为A(﹣1,0),与y轴的正半轴交于点C.(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;(2)当点C在以AB为直径的⊙P上时,求抛物线的解析式;(3)坐标平面内是否存在点M,使得以点M和(2)中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.2017年黑龙江省大庆市杜尔伯特二中中考数学模拟试卷(3月份)参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.5的倒数为()A.B.5 C.D.﹣5【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:5的倒数是,故选:A.2.下列各式运算正确的是()A.2﹣1=﹣2 B.23=6 C.22•23=26D.(23)2=26【考点】负整数指数幂;有理数的乘方;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别根据负整数指数幂、有理数的乘方、同底数幂的乘法、幂的乘方与积的乘方的法则计算即可.【解答】解:A、错误,应等于;B、错误,应等于8;C、错误,应等于25;D、正确.故选D.3.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm【考点】两点间的距离.【分析】先根据CB=4cm,DB=7cm求出CD的长,再根据D是AC的中点求出AC的长即可.【解答】解:∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3cm,∵D是AC的中点,∴AC=2CD=2×3=6cm.故选B.4.如图,在△ABC中,AC=DC=DB,∠ACD=100°,则∠B等于()A.50° B.40° C.25° D.20°【考点】三角形的外角性质;三角形内角和定理.【分析】根据等边对等角和三角形的内角和定理,可先求得∠CAD的度数;再根据外角的性质,求∠B的度数.【解答】解:∵AC=DC=DB,∠ACD=100°,∴∠CAD==40°,∵∠CDB是△ACD的外角,∴∠CDB=∠A+∠ACD=100°=40°+100°=140°,∵DC=DB,∴∠B==20°.故选D.5.甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差S甲2=0.035,则()2=0.006,乙10次立定跳远成绩的方差S乙A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人成绩的稳定性不能比较【考点】方差;算术平均数.【分析】本题考查了如何判定一组数据的稳定性,数据的方差越小,数据就越稳定.【解答】解:因为甲乙平均数相同,而S甲2=0.006,S乙2=0.035,很显然S甲2<S乙2,所以甲的成绩更稳定一些.故选A.6.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看两辆汽车经过这个十字路口全部继续直行的情况占总情况的多少即可.【解答】解:列表得:∴一共有9种情况,两辆汽车经过这个十字路口全部继续直行的有一种,∴两辆汽车经过这个十字路口全部继续直行的概率是,故选A.7.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到几个上下相邻的长方形上面有一个小长方形.故选D.8.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠5【考点】平行线的判定.【分析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【解答】解:∵∠1=∠2,∴BC∥AD(内错角相等,两直线平行).故选C.9.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由题意可知此题规律是(x+2,y﹣3),照此规律计算可知顶点P(﹣4,﹣1)平移后的坐标是(﹣2,﹣4).故选A.10.反比例函数y=(k>0)的部分图象如图所示,A,B是图象上两点,AC⊥x轴于点C,BD⊥x轴于点D,若△AOC的面积为S1,△BOD的面积为S2,则S1和S2的大小关系为()A.S1>S2B.S1=S2 C.S1<S2D.无法确定【考点】反比例函数系数k的几何意义.【分析】根据反比例函数的性质可以得到△AOC和△DBO的面积等于|k|的一半,由此可以得到它们的关系.【解答】解:依据比例系数k的几何意义可得两个三角形的面积都等于|k|,故S1=S2.故选B.二、填空题(本题共8小题,每小题3分,共24分)11.2008年5月18日晚,中央电视台举办了“爱的奉献”大型募捐活动.据了解,本次活动社会各界共向四川灾区捐款大约1510000000元人民币,这个数字用科学记数法可表示为1.51×109元人民币.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1510000000元人民币,这个数字用科学记数法可表示为 1.51×109元人民币,故答案为:1.51×109.12.已知|x|=5,y=3,则x﹣y= 2或﹣8 .【考点】有理数的减法;绝对值.【分析】绝对值等于一个正数的数有两个,且它们互为相反数.熟练运用有理数的运算法则.【解答】解:∵|x|=5,∴x=±5,又y=3,则x﹣y=2或﹣8.13.计算: = .【考点】分式的加减法.【分析】本题考查了分式的加减运算.解决本题首先应通分,最后要注意将结果化为最简分式.【解答】解:原式=.故答案为.14.函数y=中自变量x的取值范围是x≥﹣且x≠1 .【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故答案为:x≥﹣且x≠1.15.如图,直线AB、CD相交于点O,OE⊥AB,垂足为O,如果∠EOD=42°,则∠AOC= 48 度.【考点】垂线;对顶角、邻补角.【分析】由OE⊥AB,∠EOD=42°,利用互余关系求∠BOD,再利用对顶角相等求∠AOC.【解答】解:∵OE⊥AB,∠EOD=42°,∴∠BOD=90°﹣∠EOD90°﹣42°=48°,∵∠BOD与∠AOC是对顶角,∴∠BOD=∠AOC=48°.16.如图,已知矩形ABCD,P、R分别是BC和DC上的点,E、F分别是PA,PR的中点.如果DR=3,AD=4,则EF的长为 2.5 .【考点】三角形中位线定理;矩形的性质.【分析】根据勾股定理求AR;再运用中位线定理求EF.【解答】解:∵四边形ABCD是矩形,∴△ADR是直角三角形,∵DR=3,AD=4,∴AR===5,∵E、F分别是PA,PR的中点,∴EF=AR=×5=2.5.故答案为:2.5.17.观察下面两行数:2,4,8,16,32,64,…①5,7,11,19,35,67,…②根据你发现的规律,取每行数的第10个数,求得它们的和是2051 (要求写出最后的计算结果).【考点】规律型:数字的变化类.【分析】观察①中各数都符合2n的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第10个数的值,从而求和.【解答】解:根据题意可知,①中第10个数为210=1024;②第10个数为210+3=1027,故它们的和为1024+1027=2051.18.如图,菱形AB1C1D1的边长为1,∠B1=60°;作AD2⊥B1C1于点D2,以AD2为一边,做第二个菱形AB2C2D2,使∠B2=60°;作AD3⊥B2C2于点D3,以AD3为一边做第三个菱形AB3C3D3,使∠B3=60°…依此类推,这样做的第n个菱形AB n C n D n的边AD n的长是.【考点】菱形的性质.【分析】本题要找出规律方能解答.第一个菱形边长为1,∠B1=60°,可求出AD2,即第二个菱形的边长…按照此规律解答即可.【解答】解:第1个菱形的边长是1,易得第2个菱形的边长是;第3个菱形的边长是()2;…每作一次,其边长为上一次边长的;故第n个菱形的边长是()n﹣1.故答案为:()n﹣1.三、解答题(本题共3小题,每小题5分,共15分)19.计算:(﹣1)﹣2+2sin245°﹣(1﹣)0【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式==1.20.先化简,再求值:÷x,其中x=.【考点】分式的化简求值.【分析】本题的关键是正确进行分式的通分、约分,并准确代值计算.【解答】解:原式==+1=,当x=时,原式==﹣4.21.解方程组:.【考点】解二元一次方程组.【分析】此题先采用加减消元法再用代入消元法最简单,将(1)+(2)即可达到消元的目的.【解答】解:①+②,得3x=9,∴x=3.把x=3代入②,得3﹣y=5,∴y=﹣2.∴原方程组的解是.四、应用题(本大题2小题,共12分)22.在同一条件下,对同一型号的汽车进行耗油1升所行驶路程的实验,将收集到的数据作为一个样本进行分析,绘制出部分频数分布直方图和部分扇形统计图.如下图所示(路程单位:km)结合统计图完成下列问题:(1)扇形统计图中,表示12.5≤x<13部分的百分数是;(2)请把频数分布直方图补充完整,这个样本数据的中位数落在第组;(3)哪一个图能更好地说明一半以上的汽车行驶的路程在13≤x<14之间?哪一个图能更好地说明行驶路程在12.5≤x<13的汽车多于在14≤x<14.5的汽车?【考点】频数(率)分布直方图;扇形统计图;中位数.【分析】(1)用单位1减去其他所占的百分比即可;(2)以第3组为基准算出总数:9÷0.3=30,那么中位数应是第15个和第16个的平均数,前两个小组的人数之和为:2+30×0.3=11,那么中位数就落在第3小组;(3)直方图能反映数据集中的趋势,扇形统计图能更好的显示出相应的百分比.【解答】解:(1)1﹣13.3%﹣6.7%﹣30%﹣30%=20%;(2)第2组的频数=30×20%=6,如图:样本数据的中位数落在第3组;(3)扇形统计图能很好地说明一半以上的汽车行驶的路程在13≤x<14之间;条形统计图(或直方统计图)能更好地说明行驶路程在12.5≤x<13的汽车多于在14≤x<14.5的汽车.23.海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.【考点】解直角三角形的应用﹣方向角问题.【分析】过点P作PD⊥AC于D,在Rt△PBD和Rt△PAD中,根据三角函数AD,BD就可以PD 表示出来,根据AB=12海里,就得到一个关于PD的方程,求得PD.从而可以判断如果渔船不改变航线继续向东航行,有没有触礁危险.【解答】解:有触礁危险.理由:过点P作PD⊥AC于D.设PD为x,在Rt△PBD中,∠PBD=90°﹣45°=45度.∴BD=PD=x.在Rt△PAD中,∵∠PAD=90°﹣60°=30°∴AD=x∵AD=AB+BD∴x=12+x∴x=∵6(+1)<18∴渔船不改变航线继续向东航行,有触礁危险.五、推理与计算(本大题3小题,共21分)24.已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x 轴对称,若△OAB的面积为6,求m的值.【考点】反比例函数的性质;反比例函数的图象;反比例函数图象上点的坐标特征;关于x 轴、y轴对称的点的坐标.【分析】(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为3.设A(x、),则利用三角形的面积公式得到关于m的方程,借助于方程来求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣7>0,则m>7;(2)∵点B与点A关于x轴对称,若△OAB的面积为6,∴△OAC的面积为3.设A(x,),则x•=3,解得m=13.25.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.(1)求证:△ABF≌△EDF;(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.【考点】翻折变换(折叠问题);全等三角形的判定;菱形的判定.【分析】(1)因为△BCD关于BD折叠得到△BED,显然△BCD≌△BED,得出CD=DE=AB,∠E=∠C=∠A=90°.再加上一对对顶角相等,可证出△ABF≌△EDF;(2)利用折叠知识及菱形的判定可得出四边形BMDF是菱形.【解答】(1)证明:由折叠可知,CD=ED,∠E=∠C.在矩形ABCD中,AB=CD,∠A=∠C.∴AB=ED,∠A=∠E.∵∠AFB=∠EFD,∴△AFB≌△EFD.(2)解:四边形BMDF是菱形.理由:由折叠可知:BF=BM,DF=DM.由(1)知△AFB≌△EFD,∴BF=DF.∴BM=BF=DF=DM.∴四边形BMDF是菱形.26.已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=.(1)求证:AM•MB=EM•MC;(2)求EM的长;(3)求sin∠EOB的值.【考点】相似三角形的判定与性质;勾股定理;圆周角定理;锐角三角函数的定义.【分析】(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;(3)过点E作EF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.【解答】(1)证明:连接AC、EB,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB,∴,∴AM•BM=EM•CM;(2)解:∵DC是⊙O的直径,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC为正数,∴EC=7,∵M为OB的中点,∴BM=2,AM=6,∵AM•BM=EM•CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:过点E作EF⊥AB,垂足为点F,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.六、综合应用与探究(本大题2小题,共18分)27.夏季来临,商场准备购进甲、乙两种空调,已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题:(1)求甲、乙两种空调每台的进价;(2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场计划用不超过36000元购进空调共20台,且全部售出,请写出所获利润y(元)与甲种空调x(台)之间的函数关系式,并求出所能获得的最大利润.【考点】二次函数的应用;分式方程的应用.【分析】(1)根据题意可以列出相应的方程,从而可以分别求得甲、乙两种空调每台的进价,注意分式方程要检验;(2)根据题意和(1)中的答案可以得到所获利润y(元)与甲种空调x(台)之间的函数关系式,然后根据商场计划用不超过36000元购进空调共20台,可以求得x的取值范围,从而可以求得所能获得的最大利润.【解答】解:(1)设乙种空调每台进价为x元,,解得,x=1500经检验x=1500是原分式方程的解,∴x+500=2000,答:甲种空调每台2000元,乙种空调每台1500元;(2)由题意可得,所获利润y(元)与甲种空调x(台)之间的函数关系式是:y=x+(20﹣x)=200x+6000,∵2000x+1500(20﹣x)≤36000,解得,x≤12,∴当x=12时,y取得最大值,此时y=200x+6000=8400,答:所获利润y(元)与甲种空调x(台)之间的函数关系式是y=200x+6000,所获的最大利润是8400元.28.已知抛物线y=﹣ax2+2ax+b与x轴的一个交点为A(﹣1,0),与y轴的正半轴交于点C.(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;(2)当点C在以AB为直径的⊙P上时,求抛物线的解析式;(3)坐标平面内是否存在点M,使得以点M和(2)中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)抛物线y=﹣ax2+2ax+b的对称轴,可以根据公式直接求出,抛物线与x轴的另一交点与A关于对称轴对称,因而交点就可以求出.(2)AB的长度可以求出,连接PC,在直角三角形OCP中,根据勾股定理就可以求出C点的坐标,把这点的坐标代入抛物线的解析式,就可以求出解析式.(3)本题应分AC或BC为对角线和以AB为对角线三种情况进行讨论,当以AC或BC为对角线时,点M在x轴上方,此时CM∥AB,且CM=AB.就可以求出点M的坐标.当以AB为对角线时,点M在x轴下方易证△AOC≌△BNM,可以求出点M的坐标.【解答】解:(1)对称轴是直线:x=1,点B的坐标是(3,0).说明:每写对1个给,“直线”两字没写不扣分.(2)如图,连接PC,∵点A、B的坐标分别是A(﹣1,0)、B(3,0),∴AB=4.∴PC=AB=×4=2在Rt△POC中,∵OP=PA﹣OA=2﹣1=1,∴OC=,∴b=当x=﹣1,y=0时,﹣a﹣2a+=0∴a=∴y=﹣x2+x+.(3)存在.理由:如图,连接AC、BC.设点M的坐标为M(x,y).①当以AC或BC为对角线时,点M在x轴上方,此时CM∥AB,且CM=AB.由(2)知,AB=4,∴|x|=4,y=OC=.∴x=±4.∴点M的坐标为M(4,)或(﹣4,).说明:少求一个点的坐标扣.②当以AB为对角线时,点M在x轴下方.过M作MN⊥AB于N,则∠MNB=∠AOC=90度.∵四边形AMBC是平行四边形,∴AC=MB,且AC∥MB.∴∠CAO=∠MBN.∴△AOC≌△BNM.∴BN=AO=1,MN=CO=.∵OB=3,∴0N=3﹣1=2.∴点M的坐标为M(2,﹣).综上所述,坐标平面内存在点M,使得以点A、B、C、M为顶点的四边形是平行四边形.其坐标为M1(4,),M2(﹣4,),M3(2,﹣).说明:①综上所述不写不扣分;②如果开头“存在”二字没写,但最后解答全部正确,不扣分。
2017年黑龙江省大庆市中考数学模拟试卷(二)
2017年黑龙江省大庆市中考数学模拟试卷(二)一、选择题(共10小题,每小题3分,满分30分)1.(3分)据统计,2013年我国用义务教育经费支持了13940000名农民工随迁子女在城市里接受义务教育,这个数字用科学记数法可表示为()A.1.394×107B.13.94×107C.1.394×106D.13.94×1052.(3分)如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.﹣2﹣B.﹣1﹣C.﹣2+D.1+3.(3分)关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD是平行四边形的有()A.1个 B.2个 C.3个 D.4个4.(3分)实数a,b,c满足a<b<0<c,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c5.(3分)已知一个样本1,3,2,x,4的平均数是3,则这个样本的方差是()A.2 B.2.5 C.10 D.6.(3分)如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S1,S2,S3,则S1,S2,S3的大小关系是()A.S1>S2>S3B.S3>S2>S1C.S2>S3>S1D.S1>S3>S27.(3分)下列图中:①线段;②正方形;③圆;④等腰梯形;⑤平行四边形是轴对称图形,但不是中心对称图形有()A.1个 B.2个 C.3个 D.4个8.(3分)如图,已知AD∥EG∥BC,AC∥EF,则图中与∠1相等的角(不含∠1)的个数有()A.4个 B.5个 C.6个 D.7个9.(3分)已知反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是()A.m<0 B.m>0 C.m<D.m>10.(3分)关于x的一元二次方程ax2+bx+c=0(a≠0)给出下列说法:①若a+c=0,则方程必有两个实数根;②若a+b+c=0,则方程必有两个实数根;③若b=2a+3c,则方程有两个不等的实数根;④若b2﹣5ac<0,则方程一定没有实数根,其中说法正确的序号是()A.①②③B.①②④C.①③④D.②③④二、填空题(共8小题,每小题3分,满分24分)11.(3分)在函数中,自变量x的取值范围是.12.(3分)已知x+y=﹣5,xy=6,则x2+y2=.13.(3分)在某批次的100件产品中,有98件是合格品,从中任意抽取一件检验,则抽到不合格品的概率是.14.(3分)如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=.15.(3分)用棋子按下列方式摆图形,依照此规律,第n个图形有枚棋子.16.(3分)“石油之光”是大庆市市标,如图,某兴趣小组利用课余时间研究市标的高度,在市标底部点A处沿着AC方向走到点B处,在点B处观察市标顶部,测得仰角为60°,继续沿AC方向走13米到点C处,在点C处测得仰角为45°,则市标AD的高度为米(图中AD⊥AC,,,,结果保留一位小数)17.(3分)如图是圆内接正方形ABCD,分别将,,,,沿边长AB,BC,CD,DA向内翻折,已知BD=2,则阴影部分的面积为.18.(3分)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)三、解答题(共10小题,满分66分)19.(4分)计算:()﹣2﹣()0+|3﹣4|.20.(4分)先化简,再求值:,其中x为方程x2+4x﹣3=0的根.21.(5分)关于x的一元二次方程x(x﹣2)=﹣x﹣2①与一元一次方程2x+1=2a ﹣x②.(1)若方程①的一个根是方程②的根,求a的值;(2)若方程②的根不小于方程①两根中的较小根且不大于方程①两根中的较大根,求a的取值范围.22.(6分)为了营造人与自然和谐共处的生态环境,某市近年加快实施城乡绿化一体化工程,创建国家城市绿化一体化城市.某校甲、乙两班师生前往效区参加植树活动.已知甲班每天比乙班少种10棵树,甲班种150棵树所用的天数比乙班种120棵树所用的天数多2天.求甲、乙两班每天各植树多少棵?23.(7分)为鼓励创业,大庆市政府制定了小型企业的优惠政策,许多小型企业应运而生,萨尔图区统计了新村开发区内去年1~6月新注册小型企业的数量,并将结果绘制成如下两幅不完整的统计图.(1)萨尔图区新村开发区内去年前6个月新注册小型企业一共有家,请将折线统计图补充完整;(2)萨尔图区新村开发区内去年4月份新注册的小型企业中,有3家是信息技术服务企业,现从4月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或树状图的方法求所抽取的2家企业恰好都是信息技术服务企业的概率.24.(7分)如图,矩形ABCD中,E是BC上一点,AE=AD,DF⊥AE于点F,延长DF交BC于点G,连接DE.(1)求证:DF=DC;(2)求证:CD2=AF•CG.25.(7分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.(1)求直线DE的解析式和点M的坐标;(2)若反比例函数(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;(3)若反比例函数(x>0)的图象与△MNB有公共点,请直接写出m的取值范围.26.(8分)因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少,为缓解旱情,北方甲水库立即以管道运输的方式给予支援,如图是乙水库的蓄水量y1(单位:万立方米)关于时间x(单位:天)的函数图象和甲水库输水量y1(单位:万立方米)关于时间x(0≤x≤5)的函数图象,在单位时间内、甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计),通过分析图象解答下列问题:(1)求甲水库输水量y1关于时间x(0≤x≤5)的函数解析式;(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米?(3)求乙水库蓄水量(线段AB)的函数解析式.27.(9分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB 的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是的中点,CM交AB于点N,若AB=4,求MN•MC的值.28.(9分)如图,二次函数y=ax2﹣2ax+3的图象与x轴交于点A,B,与y轴交于点C,∠CBO的正切值是3.(1)求二次函数的解析式;(2)在抛物线的对称轴l上有两点E,F(点E在点F上方),且EF=1,记四边形BCEF的周长为M,求M的最小值,并求M取得最小值时点F的坐标;(3)在(2)的条件下,当M取得的最小值时,连接AF,将直线AF绕点F顺时针旋转45°,求旋转后的直线的解析式.2017年黑龙江省大庆市中考数学模拟试卷(二)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)据统计,2013年我国用义务教育经费支持了13940000名农民工随迁子女在城市里接受义务教育,这个数字用科学记数法可表示为()A.1.394×107B.13.94×107C.1.394×106D.13.94×105【解答】解:13 940 000=1.394×107,故选:A.2.(3分)如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.﹣2﹣B.﹣1﹣C.﹣2+D.1+【解答】解:∵对称的两点到对称中心的距离相等,∴CA=AB,|﹣1|+||=1+,∴OC=2+,而C点在原点左侧,∴C表示的数为:﹣2﹣.故选A.3.(3分)关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD是平行四边形的有()A.1个 B.2个 C.3个 D.4个【解答】解:①符合平行四边形的定义,故①正确;②两组对边分别相等,符合平行四边形的判定条件,故②正确;③由一组对边平行且相等,符合平行四边形的判定条件,故③正确;④对角线互相平分的四边形是平行四边形,故④错误;所以正确的结论有三个:①②③,故选:C.4.(3分)实数a,b,c满足a<b<0<c,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c【解答】A、两边都乘以正数,不等号的方向不变,故A不符合题意;B、差的绝对值是大数减小数,故B不符合题意;C、两边都乘以同一个负数,不等号的方向改变,故C不符合题意;D、两边都乘以同一个负数,不等号的方向改变,故D符合题意;故选:D.5.(3分)已知一个样本1,3,2,x,4的平均数是3,则这个样本的方差是()A.2 B.2.5 C.10 D.【解答】解:∵样本1,3,2,x,4的平均数是3,∴(1+2+3+4+x)÷5=3,解得:x=5,则这个样本方差s2=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.故选A.6.(3分)如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S1,S2,S3,则S1,S2,S3的大小关系是()A.S1>S2>S3B.S3>S2>S1C.S2>S3>S1D.S1>S3>S2【解答】解:主视图的面积是三个正方形的面积,左视图是两个正方形的面积,俯视图是一个正方形的面积,故S1>S3>S2,故选:D.7.(3分)下列图中:①线段;②正方形;③圆;④等腰梯形;⑤平行四边形是轴对称图形,但不是中心对称图形有()A.1个 B.2个 C.3个 D.4个【解答】解:①,②,③既是轴对称图形又是中心对称的图形;④只是轴对称图形,但不是中心对称图形;⑤只是中心对称图形.故选A.8.(3分)如图,已知AD∥EG∥BC,AC∥EF,则图中与∠1相等的角(不含∠1)的个数有()A.4个 B.5个 C.6个 D.7个【解答】解:∵AD∥EG∥BC,AC∥EF,∴∠1=∠3,∠3=∠4,∠4=∠5,∠5=∠6,∠5=∠2.故∠1相等的角(不含∠1)有∠3,∠4,∠2,∠5,∠6,共5个.故选:B.9.(3分)已知反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是()A.m<0 B.m>0 C.m<D.m>【解答】解:∵反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,∴反比例函数的图象在一三象限,∴1﹣2m>0,解得m<.故选C.10.(3分)关于x的一元二次方程ax2+bx+c=0(a≠0)给出下列说法:①若a+c=0,则方程必有两个实数根;②若a+b+c=0,则方程必有两个实数根;③若b=2a+3c,则方程有两个不等的实数根;④若b2﹣5ac<0,则方程一定没有实数根,其中说法正确的序号是()A.①②③B.①②④C.①③④D.②③④【解答】解:当a+c=0,即c=﹣a,则△=b2﹣4ac=b2+4a2>0,方程必有两个不相等的实数根,所以①正确;当a+b+c=0,即c=﹣(a+b),则△=b2﹣4ac=b2+4a(a+b)=(2a+b)2≥0,方程必有两个实数根,所以②正确;当b=2a+3c,则△=b2﹣4ac=(2a+3c)2﹣4ac=4(a+c)2+5c2>0,方程必有两个不相等的实数根,所以③正确;当b2﹣5ac<0,△=b2﹣4ac=b2﹣5ac+ac可能大于0,所以不能判断方程根的情况,所以④错误.故选A.二、填空题(共8小题,每小题3分,满分24分)11.(3分)在函数中,自变量x的取值范围是x≤1且x≠﹣2.【解答】解:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.故答案为:x≤1且x≠﹣2.12.(3分)已知x+y=﹣5,xy=6,则x2+y2=13.【解答】解:∵x+y=﹣5,∴(x+y)2=25,∴x2+2xy+y2=25,∵xy=6,∴x2+y2=25﹣2xy=25﹣12=13.故答案为:13.13.(3分)在某批次的100件产品中,有98件是合格品,从中任意抽取一件检验,则抽到不合格品的概率是.【解答】解:∵100件产品中,有2件是不合格产品,∴从中任意抽取一件检验,则抽到不合格产品的概率是=.故答案为.14.(3分)如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD= 18°.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵BD⊥AC于点D,∴∠CBD=90°﹣72°=18°.故答案为:18°.15.(3分)用棋子按下列方式摆图形,依照此规律,第n个图形有枚棋子.【解答】解:设第n个图形的棋子数为Sn.第1个图形,S1=1;第2个图形,S2=1+4;第3个图形,S3=1+4+7;…第n个图形,S n=1+4+7+…+(3n﹣2)=.故答案为:;16.(3分)“石油之光”是大庆市市标,如图,某兴趣小组利用课余时间研究市标的高度,在市标底部点A处沿着AC方向走到点B处,在点B处观察市标顶部,测得仰角为60°,继续沿AC方向走13米到点C处,在点C处测得仰角为45°,则市标AD的高度为30.7米(图中AD⊥AC,,,,结果保留一位小数)【解答】解:∵∠C=45°,设AD=AC=x米,则AB=(x﹣13)米,在Rt△ABD中,=tan60°,∴=,解得x≈30.7,即市标AD的高度为30.7.故答案为:30.7.17.(3分)如图是圆内接正方形ABCD,分别将,,,,沿边长AB,BC,CD,DA向内翻折,已知BD=2,则阴影部分的面积为4﹣π.【解答】解:由圆内接正方形的性质知,正方形的边长等于半径的倍,∴阴影部分的面积=()2﹣[π﹣()2]=4﹣π.故答案为:4﹣π.18.(3分)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值t=2或3≤t≤7或t=8(单位:秒)【解答】解:∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接PA,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=3cm,即t=3,当⊙P于AC切于C点时,连接P′C,则∠CP′N=∠A CP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图3,当⊙P切BC于N′时,连接PN′则PN′=cm,∠PN′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;注意:由于对称性可知,当P点运动到AB右侧时也存在⊙P切AB,此时PM也是为2,即P点为N点,同理可得P点在M点时,⊙P切BC.这两点都在第二种情况运动时间内.故答案为:t=2或3≤t≤7或t=8.三、解答题(共10小题,满分66分)19.(4分)计算:()﹣2﹣()0+|3﹣4|.【解答】解:()﹣2﹣()0+|3﹣4|=4﹣1+3﹣4=3﹣120.(4分)先化简,再求值:,其中x为方程x2+4x ﹣3=0的根.【解答】解:=====,∵x2+4x﹣3=0,∴x2+4x=3,∴原式=.21.(5分)关于x的一元二次方程x(x﹣2)=﹣x﹣2①与一元一次方程2x+1=2a ﹣x②.(1)若方程①的一个根是方程②的根,求a的值;(2)若方程②的根不小于方程①两根中的较小根且不大于方程①两根中的较大根,求a的取值范围.【解答】解:解方程①,得x1=1,x2=2,解方程②,得x=.当=1时,a=2;当=2时,a=.综上所述,a的值是2或;(2)由题可知,1≤≤2,解得2≤a≤.22.(6分)为了营造人与自然和谐共处的生态环境,某市近年加快实施城乡绿化一体化工程,创建国家城市绿化一体化城市.某校甲、乙两班师生前往效区参加植树活动.已知甲班每天比乙班少种10棵树,甲班种150棵树所用的天数比乙班种120棵树所用的天数多2天.求甲、乙两班每天各植树多少棵?【解答】解:设甲班每天植树x棵,那么乙班每天植树(x+10)棵依题意,得(5分)解之得x1=30,x2=﹣25(8分)经检验,x1=30,x2=﹣25都是原方程的解但x2=﹣25不符合题意舍去∴当x=30时,x+10=40答:甲班每天植树30棵,乙班每天植树40棵.(10分)23.(7分)为鼓励创业,大庆市政府制定了小型企业的优惠政策,许多小型企业应运而生,萨尔图区统计了新村开发区内去年1~6月新注册小型企业的数量,并将结果绘制成如下两幅不完整的统计图.(1)萨尔图区新村开发区内去年前6个月新注册小型企业一共有20家,请将折线统计图补充完整;(2)萨尔图区新村开发区内去年4月份新注册的小型企业中,有3家是信息技术服务企业,现从4月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或树状图的方法求所抽取的2家企业恰好都是信息技术服务企业的概率.【解答】解:(1)由题意可得,萨尔图区新村开发区内去年前6个月新注册小型企业一共有:(3+2+4+4+2)÷(1﹣25%)=20(家),故答案为:20,4月份的注册企业有:20×25%=5(家),补全的折线统计图如右图所示;(2)设4月份新注册的小型企业中3家信息技术服务企业都为x,另外两家为y、z,则树状图如下:∴所抽取的2家企业恰好都是信息技术服务企业的概率是p=.24.(7分)如图,矩形ABCD中,E是BC上一点,AE=AD,DF⊥AE于点F,延长DF交BC于点G,连接DE.(1)求证:DF=DC;(2)求证:CD2=AF•CG.【解答】证明:(1)∵四边形ABCD是矩形,∴∠C=90°、AD∥BC,∴∠ADE=∠DEC,∵AD=AE,∴∠ADE=∠AED,∴∠DEF=∠DEC,∵DF⊥AE,∴∠DFE=∠C=90°,在△DEF和△DEC中,∵,∴△DEF≌△DEC(AAS)∴DF=DC;(2)∵AD∥BC,∴∠ADF=∠DGC,∵∠AFD=∠DCG=90°,∴△ADF∽△DGC,∴=,∵DF=DC,∴=,即CD2=AF•CG.25.(7分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.(1)求直线DE的解析式和点M的坐标;(2)若反比例函数(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;(3)若反比例函数(x>0)的图象与△MNB有公共点,请直接写出m的取值范围.【解答】解:(1)设直线DE的解析式为y=kx+b,∵点D,E的坐标为(0,3)、(6,0),∴,解得k=﹣,b=3;∴;∵点M在AB边上,B(4,2),而四边形OABC是矩形,∴点M的纵坐标为2;又∵点M在直线上,∴2=;∴x=2;∴M(2,2);(2)∵(x>0)经过点M(2,2),∴m=4;∴;又∵点N在BC边上,B(4,2),∴点N的横坐标为4;∵点N在直线上,∴y=1;∴N(4,1);∵当x=4时,y==1,∴点N在函数的图象上;(3)当反比例函数(x>0)的图象通过点M(2,2),N(4,1)时m的值最小,当反比例函数(x>0)的图象通过点B(4,2)时m的值最大,∴2=,有m的值最小为4,2=,有m的值最大为8,∴4≤m≤8.26.(8分)因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少,为缓解旱情,北方甲水库立即以管道运输的方式给予支援,如图是乙水库的蓄水量y1(单位:万立方米)关于时间x(单位:天)的函数图象和甲水库输水量y1(单位:万立方米)关于时间x(0≤x≤5)的函数图象,在单位时间内、甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计),通过分析图象解答下列问题:(1)求甲水库输水量y1关于时间x(0≤x≤5)的函数解析式;(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米?(3)求乙水库蓄水量(线段AB)的函数解析式.【解答】解:(1)设y1=k′x(0≤x≤5),把点(5,2000)代入得:k′=400,∴设y1=400x(0≤x≤5);(2)由函数图象可知:甲水库输出的水第10天时开始注入乙水库,设直线A′B的解析式为:y=kx+b,∵B(0,800),C(5,550)∴,解得,∴直线AB′的解析式为:y AB′=﹣50x+800(0≤x≤10),当x=10时,y=300∴此时乙水库的蓄水量为300(万米3).答:在第10天时甲水库输出的水开始注入乙水库,此时乙水库的蓄水量为300万立方米.(3)∵甲水库单位时间的放水量与乙水库单位时间的进水量相同且损耗不计,∴乙水库的进水时间为5天,∵乙水库15天后的蓄水量为:300+2000﹣5×50=2050(万米3),∵过点A的直线解析式为y AB′=﹣50x+800,∴当x=10时,y=﹣500+800=300,∴A(10,300),B(15,2050)设直线AD的解析式为:y=k1x+b1,∴,∴,∴直线AB的解析式为:y AB=350x﹣3200(10≤x≤15).27.(9分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB 的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是的中点,CM交AB于点N,若AB=4,求MN•MC的值.【解答】(1)证明:∵OA=OC,∴∠A=∠ACO.又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB.又∵AB是⊙O的直径,∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°.即OC⊥CP,∵OC是⊙O的半径.∴PC是⊙O的切线.(2)证明:∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC.∴BC=AB.(3)解:连接MA,MB,∵点M是的中点,∴,∴∠ACM=∠BCM.∵∠ACM=∠ABM,∴∠BCM=∠ABM.∵∠BMN=∠BMC,∴△MBN∽△MCB.∴.∴BM2=M N•MC.又∵AB是⊙O的直径,,∴∠AMB=90°,AM=BM.∵AB=4,∴BM=2.∴MN•MC=BM2=8.28.(9分)如图,二次函数y=ax2﹣2ax+3的图象与x轴交于点A,B,与y轴交于点C,∠CBO的正切值是3.(1)求二次函数的解析式;(2)在抛物线的对称轴l上有两点E,F(点E在点F上方),且EF=1,记四边形BCEF的周长为M,求M的最小值,并求M取得最小值时点F的坐标;(3)在(2)的条件下,当M取得的最小值时,连接AF,将直线AF绕点F顺时针旋转45°,求旋转后的直线的解析式.【解答】解:(1)二次函数y=ax2﹣2ax+3,∴点C(0,3),∴OC=3,∵tan∠CBO==3,∴OB=1,∴B(﹣1,0),∴a+2a+3=0,∴a=﹣1,∴二次函数解析式为y=﹣x2+2x+3;(2)如图1,由(1)知,A(3,0),B(﹣1,0),C(0,3),∵EF=1是定值,∴将点C向下平移一个单位长度为点C1(0,2),)再作点C1关于直线l的对称点C2(2,2),连接BC2,交直线l于点F,则设直线BC2的解析式为y=kx+2,∴,∴,∴直线BC2的解析式为y=x+,∴点F(1,),∴BC2==,∵B(﹣1,0),C(0,3),∴BC=,∴M=++1;最小(3)如图2,过点F作FH⊥x轴于H,∴FH=,AH=2,由勾股定理得,AF=,设旋转后的直线AF与x轴交于点P,作PQ⊥AF于点Q,∴∠PFQ=45°,∴∠FPQ=∠PFQ=45°,∴FQ=PQ,∵∠FHA=90°,∴tan∠FAH==,设PQ=FQ=a,则AQ=﹣a,在Rt△APQ中,tan∠FAH=,∴a=,∴AQ=,由勾股定理得,AP==,∴OP=OA﹣AP=,∴P(,0),设直线PF的解析式为y=mx+n,∴,∴∴直线PF的解析式为y=﹣5x+.。
2017年大庆市中考数学仿真试卷(一)
2017年大庆市中考数学仿真试卷(一)一.选择题(共10小题)1.﹣5的相反数是()A.5 B.﹣5 C.D.2.数轴上点A、B表示的数分别是a,b,则点A,B之间的距离为()A.a+b B.a﹣b C.|a+b|D.|a﹣b|3.用科学记数法表示0.0000210,结果是()A.2.10×10﹣4B.2.10×10﹣5C.2.1×10﹣4D.2.1×10﹣54.把式子m中根号外的m移到根号内,得()A.﹣B. C.﹣D.﹣5.下列图形:等边三角形、平行四边形、菱形、矩形、圆,其中既是轴对称图形又是中心对称图形的个数是()A.1 B.2 C.3 D.46.如图是农村常搭建横截面为半圆形的全封闭塑料薄膜蔬菜大棚.如果不考虑塑料薄膜埋在土里的部分,那么搭建一个这样的蔬菜大棚需用塑料薄膜的面积是()A.64π m2B.72π m2C.78π m2D.80π m27.化简﹣(a+1)的结果是()A. B.﹣C.D.﹣8.下列命题中,真命题是()A.垂直于同一条直线的两条直线互相平行B.平分弦的直径垂直弦C.有两边及一角对应相等的两个三角形全等D.八边形的内角和是外角和的3倍9.一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得是白球的概率与不是白球的概率相同,那么m与n的关系是()A.m+n=4 B.m+n=8 C.m=n=4 D.m=3,n=510.已知M、N两点关于y轴对称,且点M在双曲线y=上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=﹣abx2+(a+b)x()A.有最大值﹣4.5 B.有最大值4.5 C.有最小值4.5 D.有最小值﹣4.5二.填空题(共9小题)11.函数中自变量x的取值范围是.12.不等式组:的解集是.13.分解因式:y2﹣4﹣2xy+x2=.14.桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看如图所示,这个几何体最多由个这样的正方体组成.15.如图,一根5m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是平方米.16.设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n=.17.如图,有一颗棋子放在图中的1号位置上,现按顺时针方向,第一次跳一步到2号位置上第二次跳两步跳到4号位置上,第三次跳三步又跳到了1号位置上,第四次跳四步…一直进行下去,那么第2017次跳2017步就跳到了号位置上.18.如图,点A在双曲线y=的第一象限的那一支上,AB⊥y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为,则k的值为.三.解答题(共9小题)19.计算:(﹣1.414)0+()﹣1﹣+2cos30°20.在不透明的布袋中装有1个白球,2个红球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个红球的概率;(2)若在布袋中再添加x个白球,充分搅匀,从中摸出一个球,使摸到白球的概率为,求添加的白球个数x.21.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.(1)求证:DE=CF;(2)若AB=4,AD=6,∠B=60°,求DE的长.22.小明想利用所学数学知识测量学校旗杆高度,如图,旗杆的顶端垂下一绳子,将绳子拉直钉在地上,末端恰好在C处且与地面成60°角,小明拿起绳子末端,后退至E处,并拉直绳子,此时绳子末端D距离地面1.6m且绳子与水平方向成45°角.求旗杆AB的高度和小明后退的距离EC.(参考数据:≈1.41,≈1.73,结果精确到0.1m)23.某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图(注:每组含最小值,不含最大值).甲同学计算出第二组的频率是0.06,乙同学计算出从左至右第一、二、三、四组的频数比为2:4:17:15.结合统计图回答下列问题:(1)这次共抽调了多少人?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)若该校九年级有800名学生,请估计该校九年级达到优秀的人数是多少.24.如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;=10,求点E的坐标.(2)点E为y轴上一个动点,若S△AEB25.某酒厂生产A、B两种品牌的酒,每天两种酒共生产600瓶,每种酒每瓶的成本和利润如下表所示.设每天共获利y元,每天生产A种品牌的酒x瓶.(1)请写出y关于x的函数关系式;(2)如果该厂每天至少投入成本25000元,且生产B种品牌的酒不少于全天产量的55%,那么共有几种生产方案?并求出每天至少获利多少元?26.如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P 的对应点为P1(a+6,b﹣2 ).(1)直接写出点A1,B1,C1的坐标.(2)在图中画出△A1B1C1.(3)连接A A1,求△AOA1的面积.27.如图,⊙O是等边△ABC的外接圆,M是BC延长线上一点,连接AM交⊙O 于点D,延长BD至点N,使得BN=AM,连接CN,MN.(1)判断△CMN的形状,并证明你的结论;(2)求证:CN是⊙O的切线;(3)若等边△ABC的边长是2,求AD•AM的值.28.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1.tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c 经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.2017年大庆市中考数学仿真试卷(一)参考答案与试题解析一.选择题(共10小题)1.(2017•钦州一模)﹣5的相反数是()A.5 B.﹣5 C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣5的相反数是5,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(2017•邯郸一模)数轴上点A、B表示的数分别是a,b,则点A,B之间的距离为()A.a+b B.a﹣b C.|a+b|D.|a﹣b|【分析】根据数轴上两点间的距离是大数减小数,可得答案.【解答】解:∵点A、B在数轴上分别表示有理数a、b,∴A、B两点之间的距离可以表示为:|a﹣b|.故选:D.【点评】本题考查了数轴,熟记数轴上两点间的距离公式是解题关键.3.(2017•磴口县一模)用科学记数法表示0.0000210,结果是()A.2.10×10﹣4B.2.10×10﹣5C.2.1×10﹣4D.2.1×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000210=2.10×10﹣5,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(2017春•黄冈期中)把式子m中根号外的m移到根号内,得()A.﹣B. C.﹣D.﹣【分析】直接利用二次根式的性质化简求出答案.【解答】解:∵有意义,∴m<0,∴m=﹣=﹣.故选:C.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.5.(2016•无棣县模拟)下列图形:等边三角形、平行四边形、菱形、矩形、圆,其中既是轴对称图形又是中心对称图形的个数是()A.1 B.2 C.3 D.4【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:等边三角形是轴对称图形不是中心对称图形,平行四边形不是轴对称图形是中心对称图形,菱形既是轴对称图形又是中心对称图形,矩形既是轴对称图形又是中心对称图形,圆既是轴对称图形又是中心对称图形,故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(2014•商南县模拟)如图是农村常搭建横截面为半圆形的全封闭塑料薄膜蔬菜大棚.如果不考虑塑料薄膜埋在土里的部分,那么搭建一个这样的蔬菜大棚需用塑料薄膜的面积是()A.64π m2B.72π m2C.78π m2D.80π m2【分析】由图可知,需要的塑料膜的面积应该是以大棚长为长,以半圆形截面的弧长为宽的矩形的面积,半圆形截面弧长为:2π,进而得出塑料膜的面积.【解答】解:塑料膜的面积=2π×32=64π(平方米).故选:A.【点评】此题主要考查了圆柱的有关计算,本题中半圆形截面的弧长就是塑料薄膜的一边,弄清了这点,计算薄膜的面积就容易多了.7.(2016•绥化)化简﹣(a+1)的结果是()A. B.﹣C.D.﹣【分析】先根据通分法则把原式变形,再根据平方差公式、合并同类项法则计算即可.【解答】解:原式=﹣=,故选:A.【点评】本题考查的是分式的加减法,掌握分式的加减法法则、平方差公式是解题的关键.8.(2017•杭州一模)下列命题中,真命题是()A.垂直于同一条直线的两条直线互相平行B.平分弦的直径垂直弦C.有两边及一角对应相等的两个三角形全等D.八边形的内角和是外角和的3倍【分析】根据平行线的判定,垂径定理,全等三角形的判定以及多边形的内角与外角和对各选项分析判断即可得解.【解答】解:A、垂直于同一条直线的两条直线互相平行是假命题,应为在同一平面内,垂直于同一条直线的两条直线互相平行,故本选项错误;B、平分弦的直径垂直弦是假命题,被平分的弦是直径不一定成立,故本选项错误;C、有两边及一角对应相等的两个三角形全等是假命题,一角必须是两边的夹角,故本选项错误;D、八边形的内角和是外角和的3倍是真命题,内角和是1080°,外角和是360°,故本选项正确.故选D.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.(2017•涿州市一模)一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得是白球的概率与不是白球的概率相同,那么m与n的关系是()A.m+n=4 B.m+n=8 C.m=n=4 D.m=3,n=5【分析】由于每个球都有被摸到的可能性,故可利用概率公式求出摸到白球的概率与摸到的球不是白球的概率,列出等式,求出m、n的关系.【解答】解:根据概率公式,摸出白球的概率为:,摸出不是白球的概率为:,由于二者相同,故有=,整理得,m+n=8.故选:B.【点评】此题考查概率公式,掌握概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题的关键.10.(2016•滕州市校级模拟)已知M、N两点关于y轴对称,且点M在双曲线y=上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=﹣abx2+(a+b)x()A.有最大值﹣4.5 B.有最大值4.5 C.有最小值4.5 D.有最小值﹣4.5【分析】可先求得N点坐标,再把M和N的坐标分别代入所满足的函数解析式,整理可求得ab和a+b的值,代入可求得二次函数解析式,可求得其最值.【解答】解:∵M、N两点关于y轴对称,点M的坐标为(a,b),∴N点坐标为(﹣a,b),∵点M在双曲线y=上,∴2ab=1,解得ab=,∵点N在直线y=x+3上,∴b=﹣a+3,解得a+b=3,∴二次函数解析式为y=﹣x2+3x,∴当x=﹣=3时,函数有最大值,y max=﹣×9+9=4.5.故选B.【点评】本题主要考查二次函数的最值,根据点的对称及点的坐标与函数解析式的关系求得ab和a+b的值是解题的关键.二.填空题(共9小题)11.(2017•东明县一模)函数中自变量x的取值范围是x≤且x≠﹣1.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,1﹣2x≥0且x+1≠0,解得x≤且x≠﹣1.故答案为:x≤且x≠﹣1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.(2017•绍兴模拟)不等式组:的解集是x>5.【分析】分别解两个不等式得到x>1和x>5,然后根据同大取大确定不等式组的解集.【解答】解:,解①得x>1,解②得x>5,所以不等式组的解集为x>5.故答案为x>5.【点评】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.13.(2016•黄冈模拟)分解因式:y2﹣4﹣2xy+x2=(x﹣y+2)(x﹣y﹣2).【分析】原式结合后,分解即可得到结果.【解答】解:原式=(y2﹣2xy+x2)﹣4=(x﹣y)2﹣4=(x﹣y+2)(x﹣y﹣2),故答案为:(x﹣y+2)(x﹣y﹣2).【点评】此题考查了因式分解﹣分组分解法,熟练掌握因式分解的方法是解本题的关键.14.(2016秋•简阳市期末)桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看如图所示,这个几何体最多由8个这样的正方体组成.【分析】由主视图可得组合几何体有3列,由左视图可得组合几何体有2行,可得最底层几何体最多正方体的个数;由主视图和左视图可得第二层2个角各有一个正方体,相加可得所求.【解答】解:∵由主视图可得组合几何体有3列,由左视图可得组合几何体有2行,∴最底层几何体最多正方体的个数为:3×2=6,∵由主视图和左视图可得第二层2个角各有一个正方体,∴第二层共有2个正方体,∴该组合几何体最多共有6+2=8个正方体.故答案为:8.【点评】此题考查由视图判断几何体;得到最底层正方体的最多的个数是解决本题的突破点;用到的知识点为:最底层正方体的最多的个数=行数×列数.15.(2017•市北区一模)如图,一根5m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是π平方米.【分析】小羊的最大活动区域是一个半径为5、圆心角为90°和一个半径为1、圆心角为60°的小扇形的面积和.所以根据扇形的面积公式即可求得小羊的最大活动范围.【解答】解:如图.小羊的活动范围是:S=+=π(平方米).【点评】本题结合实际问题考查了扇形面积的计算方法,解题关键是弄清小羊活动的范围是哪些图形.16.(2016•达州)设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n=2016.【分析】先利用一元二次方程根的定义得到m2=﹣2m+2018,则m2+3m+n可化简为2018+m+n,再根据根与系数的关系得到m+n=﹣2,然后利用整体代入的方法计算.【解答】解:∵m为一元二次方程x2+2x﹣2018=0的实数根,∴m2+2m﹣2018=0,即m2=﹣2m+2018,∴m2+3m+n=﹣2m+2018+3m+n=2018+m+n,∵m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,∴m+n=﹣2,∴m2+3m+n=2018﹣2=2016.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程根的定义.17.(2017•岱岳区模拟)如图,有一颗棋子放在图中的1号位置上,现按顺时针方向,第一次跳一步到2号位置上第二次跳两步跳到4号位置上,第三次跳三步又跳到了1号位置上,第四次跳四步…一直进行下去,那么第2017次跳2017步就跳到了2号位置上.【分析】棋子的跳法是有规律的,第一次跳1,第二次跳2,第三次跳3,…第N次跳N,则跳第N次后,棋子跳过的路程公式为:S=,棋子一个周期为6,设K=,用K即可知道最后棋子的落位,若K为整数,则棋子落在1位;若K 余1,则落2位,余2则落3位,余3则落4位,余4则落5位,余5则落6位.【解答】解:∵第一次跳一步,第二次跳两步,第三次跳三步,第四次跳四步…第2014次跳2014步,∴2014次总共跳:1+2+3+4+…+2017=×2017×(2017+1)=2035153,2035153÷6=339192…1,∵1步所对应的位置是2号位置,∴第2017次跳2017步,所跳到的位置号是2号,故答案为:2.【点评】此题考查图形的变化规律,找出数字之间的循环规律,利用规律解决问题.18.(2017•章丘市二模)如图,点A在双曲线y=的第一象限的那一支上,AB ⊥y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为,则k的值为.【分析】连接CD,由AE=3EC,△ADE的面积为,得到△CDE的面积为,则△ADC的面积为2,设A点坐标为(a,b),则k=ab,AB=a,OC=2AB=2a,BD=OD=b,=S△ABD+S△ADC+S△ODC即可得出ab的值进而得出结论.利用S梯形OBAC【解答】解:连CD,如图,∵AE=3EC,△ADE的面积为,∴△CDE的面积为,∴△ADC的面积为2,设A点坐标为(a,b),则AB=a,OC=2AB=2a,∵点D为OB的中点,∴BD=OD=b,=S△ABD+S△ADC+S△ODC,∵S梯形OBAC∴(a+2a)×b=a×b+2+×2a×b,∴ab=,把A(a,b)代入双曲线y=得,∴k=ab=.故答案为:.【点评】本题考查了反比例函数综合题,熟知若点在反比例函数图象上,则点的横纵坐标满足其解析式;利用三角形的面积公式和梯形的面积公式建立等量关系等知识是解答此题的关键.19.(2017•本溪二模)(﹣1.414)0+()﹣1﹣+2cos30°=4﹣2.【分析】原式零指数幂、负整数指数幂法则,算术平方根性质,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=1+3﹣3+2×=4﹣2,故答案为:4﹣2【点评】此题考查了整式的混合运算,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.三.解答题(共9小题)20.(2017•石家庄模拟)在不透明的布袋中装有1个白球,2个红球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个红球的概率;(2)若在布袋中再添加x个白球,充分搅匀,从中摸出一个球,使摸到白球的概率为,求添加的白球个数x.【分析】(1)列表得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率;(2)根据概率公式列出关于x的方程,求出方程的解即可得到结果.【解答】解:(1)列表如下:所有等可能的情况有6种,其中恰好为两个红球的情况有2种,则P(两个红球)=;(2)根据题意得:=,解得:x=2,经检验是分式方程的解,则添加白球的个数x=2.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(2017•赤壁市一模)如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.(1)求证:DE=CF;(2)若AB=4,AD=6,∠B=60°,求DE的长.【分析】(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),得出四边形CEDF是平行四边形,即可得出结论;(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.又∵F是AD的中点,∴FD=AD.∵CE=BC,∴FD=CE.又∵FD∥CE,∴四边形CEDF是平行四边形.∴DE=CF.(2)解:过D作DG⊥CE于点G.如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,CD=AB=4,BC=AD=6.∴∠DCE=∠B=60°.在Rt△CDG中,∠DGC=90°,∴∠CDG=30°,∴CG=CD=2.由勾股定理,得DG==2.∵CE=BC=3,∴GE=1.在Rt△DEG中,∠DGE=90°,∴DE==.【点评】本题考查了平行四边形的判定与性质、勾股定理、直角三角形的性质.熟练掌握平行四边形的判定与性质是解决问题的关键.22.(2017•潮阳区模拟)小明想利用所学数学知识测量学校旗杆高度,如图,旗杆的顶端垂下一绳子,将绳子拉直钉在地上,末端恰好在C处且与地面成60°角,小明拿起绳子末端,后退至E处,并拉直绳子,此时绳子末端D距离地面1.6m 且绳子与水平方向成45°角.求旗杆AB的高度和小明后退的距离EC.(参考数据:≈1.41,≈1.73,结果精确到0.1m)【分析】设绳子AC的长为x米;由三角函数得出AB,过D作DF⊥AB于F,根据△ADF是等腰直角三角形,得出方程,解方程即可.【解答】解:设绳子AC的长为x米;在△ABC中,AB=AC•sin60°,过D作DF⊥AB于F,如图:∵∠ADF=45°,∴△ADF是等腰直角三角形,∴AF=DF=x•sin45°,∵AB﹣AF=BF=1.6,则x•sin60°﹣x•sin45°=1.6,解得:x=10,∴AB=10×sin60°≈8.7(m),EC=EB﹣CB=x•cos45°﹣x•cos60°=10×﹣10×≈2.1(m)答:旗杆AB的高度为8.7m,小明后退的距离为2.1m.【点评】本题考查了解直角三角形的应用﹣仰角、等腰直角三角形的判定与性质;熟练掌握三角函数,根据题意得出方程是解决问题的关键,本题难度适中.23.(2017•江阴市一模)某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图(注:每组含最小值,不含最大值).甲同学计算出第二组的频率是0.06,乙同学计算出从左至右第一、二、三、四组的频数比为2:4:17:15.结合统计图回答下列问题:(1)这次共抽调了多少人?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)若该校九年级有800名学生,请估计该校九年级达到优秀的人数是多少.【分析】(1)利用频数=总数×频率可得抽调的总人数;(2)首先计算出前四个小组的人数,再用总数减去前四个小组的人数可得后两个小组的人数和,再计算出优秀率即可;(3)利用样本估计总体的方法即可算出答案.【解答】解:(1)12÷0.06=200(人);(2)第一、二、三、四组的总人数为:12÷4×(2+4+17+15)=114(人);∴这次测试成绩的优秀率为:×100%%=43%;(3)800×43%=344(人).【点评】此题主要考查了读频数分布直方图的能力和利用统计图获取信息的能力,以及样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.各小组频数之和等于数据总和,各小组频率之和等于1.24.(2017•铁西区模拟)如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S=10,求点E的坐标.△AEB【分析】(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,得出点B的坐标,再把A、B的坐标代入直线y=kx+b,求出k、b的值,从而得出一次函数的解析式;(2)设点E的坐标为(0,m),连接AE,BE,先求出点P的坐标(0,7),得出PE=|m﹣7|,根据S△AEB=S△BEP﹣S△AEP=10,求出m的值,从而得出点E的坐标.【解答】解:(1)把点A(2,6)代入y=,得m=12,则y=.把点B(n,1)代入y=,得n=12,则点B的坐标为(12,1).由直线y=kx+b过点A(2,6),点B(12,1)得,解得,则所求一次函数的表达式为y=﹣x+7.(2)如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,则点P的坐标为(0,7).∴PE=|m﹣7|.=S△BEP﹣S△AEP=10,∵S△AEB∴×|m﹣7|×(12﹣2)=10.∴|m﹣7|=2.∴m1=5,m2=9.∴点E的坐标为(0,5)或(0,9).【点评】此题考查了反比例函数和一次函数的交点问题,用待定系数法求一次函数和反比例函数的解析式,三角形的面积,解一元一次方程,解二元一次方程组等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.25.(2017•无锡一模)某酒厂生产A、B两种品牌的酒,每天两种酒共生产600瓶,每种酒每瓶的成本和利润如下表所示.设每天共获利y元,每天生产A种品牌的酒x瓶.(1)请写出y关于x的函数关系式;(2)如果该厂每天至少投入成本25000元,且生产B种品牌的酒不少于全天产量的55%,那么共有几种生产方案?并求出每天至少获利多少元?【分析】(1)根据获利y=A种品牌的酒的获利+B种品牌的酒的获利,即可解答.(2)根据生产B种品牌的酒不少于全天产量的55%,A种品牌的酒的成本+B种品牌的酒的成本≥25000,列出方程组,求出x的取值范围,根据x为正整数,即可得到生产方案;再根据一次函数的性质,即可求出每天至少获利多少元.【解答】解:(1)由题意,每天生产A种品牌的酒x瓶,则每天生产B种品牌的酒(600﹣x)瓶,∴y=20x+15(600﹣x)=9000+5x.(2)根据题意得:,解得:266≤x≤270,∵x为整数,∴x=267、268、269、270,该酒厂共有4种生产方案:①生产A种品牌的酒267瓶,B种品牌的酒333瓶;②生产A种品牌的酒268瓶,B种品牌的酒332瓶;③生产A种品牌的酒269瓶,B种品牌的酒331瓶;④生产A种品牌的酒270瓶,B种品牌的酒330瓶;∵每天获利y=9000+5x,y是关于x的一次函数,且随x的增大而增大,=9000+5×267=10335元.∴当x=267时,y有最小值,y最小【点评】本题考查了一次函数的应用,关键从表格种获得成本价和利润,然后根据利润这个等量关系列解析式,根据第二问中的利润和成本做为不等量关系列不等式组分别求出解,然后根据一次函数的性质求出哪种方案获利最小.26.(2017春•滨州期中)如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b﹣2 ).(1)直接写出点A1,B1,C1的坐标.(2)在图中画出△A1B1C1.(3)连接A A1,求△AOA1的面积.【分析】(1)根据点P、P1的坐标确定出平移规律,再求出C1的坐标即可;(2)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(3)利用△AOA1所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【解答】解:(1)∵点P(a,b)的对应点为P1(a+6,b﹣2),∴平移规律为向右6个单位,向下2个单位,∴A(﹣3,3),B(﹣5,1),C(﹣2,0)的对应点的坐标为A1(3,1),B1(1,﹣1),C1(4,﹣2);(2)△A1B1C1如图所示;(3)△AOA1的面积=6×3﹣×3×3﹣×3×1﹣×6×2,=18﹣﹣﹣6,=18﹣12,=6.【点评】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.27.(2017春•梁子湖区期中)如图,⊙O是等边△ABC的外接圆,M是BC延长线上一点,连接AM交⊙O于点D,延长BD至点N,使得BN=AM,连接CN,MN.(1)判断△CMN的形状,并证明你的结论;(2)求证:CN是⊙O的切线;(3)若等边△ABC的边长是2,求AD•AM的值.【分析】(1)利用等边三角形的性质得到CB=CA,∠ABC=∠ACB=60°,再证明△BCN≌△ACM得到CN=CM,∠BCN=∠ACM,则∠MCN=∠ACB=60°,于是可判断△CMN为等边三角形;(2)连接OC,如图,利用CA=CB得到=,则根据垂径定理的推论得到OC ⊥AB,再证明AB∥CN,则OC⊥CN,然后根据切线的判定方法可判断CN是⊙O 的切线;。
2017年大庆市中考数学模拟试题
2017年大庆市中考数学模拟试题一.选择题(共10小题)1.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是()A.6.75×103吨 B.67.5×103吨 C.6.75×104吨 D.6.75×105吨2.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙B.丙丁C.甲丙D.乙丁3.下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形4.关于x的不等式x﹣b≥0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2 5.一个不透明的袋中装有除颜色外其余都相同的1个白球和2个黑球.先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黑球的概率是()A.B.C.D.6.下面所给几何体的俯视图是()A.B.C.D.7.下列图标中是轴对称图形的是()A.B.C.D.8.下列命题:①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若x=0,则x2﹣2x=0它们的逆命题一定成立的有()A.①②③④B.①④C.②④D.②9.已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0 B.1 C.2 D.与m有关二.填空题(共8小题)11.函数y=的自变量x的取值范围是.12.已知a+b=8,a2b2=4,则﹣ab=.13.甲乙两位运动员在一次射击训练中各打五发,成绩的平均环数相同,甲的方差为1.6;乙的成绩(环)为:7,8,10,6,9,那么这两位运动员中的成绩较稳定.14.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD=度.15.如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a,较长的直角边长为b,那么(a+b)2的值为.16.如图,在△ABC中,∠C=90°,AC=3,BC=2,边AB的垂直平分线交AC边于点D,交AB边于点E,联结DB,那么tan∠DBC的值是.17.如图,△ABC是等边三角形,AB=2,分别以A,B,C为圆心,以2为半径作弧,则图中阴影部分的面积是.18.如图,四边形OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为.三.解答题(共10小题)19.计算:|﹣2|+(﹣1)2017×(π﹣3)0﹣+()﹣2.20.如果单项式5mx a y与﹣5nx2a﹣3y是关于x、y的单项式,且它们是同类项.求(1)(7a﹣22)2013的值;(2)若5mx a y﹣5nx2a﹣3y=0,且xy≠0,求(5m﹣5n)2014的值.21.解不等式组,并写出该不等式组的最大整数解.22.2016年“母亲节”前夕,宜宾某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?23.为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?24.已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F 在边AB上,连接CF交线段BE于点G,CG2=GE•GD.(1)求证:∠ACF=∠ABD;(2)连接EF,求证:EF•CG=EG•CB.25.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求PA+PB的最小值.26.某厂家在甲、乙两家商场销售同一商品所获利润分别为y甲,y乙(单位:元),y甲,y乙与销售数量x(单位:件)的函数关系如图所示,请根据图象解决下列问题;(1)分别求出y甲,y乙与x的函数关系式;(2)现厂家分配该商品800件给甲商场,400件给乙商场,当甲、乙商场售完这批商品,厂家可获得总利润是多少元?27.如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB交CD于N.(1)求证:MN是⊙O的切线;(2)当OB=6cm,OC=8cm时,求⊙O的半径及MN的长.28.如图,二次函数y=ax2﹣x+2(a≠0)的图象与x轴交于A、B两点,与y 轴交于点C,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.2017年大庆市中考数学模拟试题参考答案与试题解析一.选择题(共10小题)1.(2016•眉山)我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是()A.6.75×103吨 B.67.5×103吨 C.6.75×104吨 D.6.75×105吨【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67500有5位,所以可以确定n=5﹣1=4.【解答】解:67 500=6.75×104.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.2.(2016•河北)点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙B.丙丁C.甲丙D.乙丁【分析】根据有理数的加法法则判断两数的和、差及积的符号,用两个负数比较大小的方法判断.【解答】解:甲:由数轴有,0<a<3,b<﹣3,∴b﹣a<0,甲的说法正确,乙:∵0<a<3,b<﹣3,∴a+b<0乙的说法错误,丙:∵0<a<3,b<﹣3,∴|a|<|b|,丙的说法正确,丁:∵0<a<3,b<﹣3,∴<0,丁的说法错误.故选C【点评】此题考查了绝对值意义,比较两个负数大小的方法,有理数的运算,解本题的关键是掌握有理数的运算.3.(2016•大庆)下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形【分析】直接利用菱形的判定定理、矩形的性质与平行四边形的判定定理求解即可求得答案.【解答】解:A、对角线互相垂直且平分的四边形是菱形;故本选项错误;B、矩形的对角线相等,菱形的对角线互相垂直;故本选项错误;C、两组对边分别平行的四边形是平行四边形;故本选项错误;D、四边相等的四边形是菱形;故本选项正确.故选D.【点评】此题考查了矩形的性质、菱形的判定以及平行四边形的判定.注意掌握各特殊平行四边形对角线的性质是解此题的关键.4.(2017•兴化市校级一模)关于x的不等式x﹣b≥0恰有两个负整数解,则b 的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2【分析】解不等式可得x≥b,根据不等式的两个负整数解为﹣1、﹣2即可得b 的范围.【解答】解:解不等式x﹣b≥0得x≥b,∵不等式x﹣b≥0恰有两个负整数解,∴不等式的两个负整数解为﹣1、﹣2,∴﹣3<b≤﹣2,故选:B.【点评】本题考查了不等式的正整数解,解题的关键是注意能根据整数解的具体数值,找出不等式解集的具体取值范围.5.(2017•莒县模拟)一个不透明的袋中装有除颜色外其余都相同的1个白球和2个黑球.先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黑球的概率是()A.B.C.D.【分析】根据题意列出树状图,看两次都摸到黑球的情况数占总情况数的多少即可.【解答】解:根据题意画图如下:因为一共有6种情况,两次都摸到黑球的有2种情况,所以两次都摸到黑球的概率是=.故选B.【点评】主要考查了事件的分类和概率的求法.用到的知识点为:可能发生,也可能不发生的事件叫做随机事件;概率=所求情况数与总情况数之比.6.(2016•昆明)下面所给几何体的俯视图是()A.B.C.D.【分析】直接利用俯视图的观察角度从上往下观察得出答案.【解答】解:由几何体可得:圆锥的俯视图是圆,且有圆心.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.7.(2016•恩施州)下列图标中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确;故选D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.(2016•梧州)下列命题:①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若x=0,则x2﹣2x=0它们的逆命题一定成立的有()A.①②③④B.①④C.②④D.②【分析】把一个命题的条件和结论互换就得到它的逆命题,再根据课本中的性质定理进行判断,即可得出答案.【解答】解:①对顶角相等的逆命题是相等的角是对顶角,错误;②同位角相等,两直线平行的逆命题是两直线平行,同位角相等,成立;③若a=b,则|a|=|b|的逆命题是如果|a|=|b,|则a=b,错误;④若x=0,则x2﹣2x=0的逆命题是如果x2﹣2x=0,则x=0或x=2,错误;故选D.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.9.(2016•新疆)已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】首先根据x1<x2<0时,y1>y2,确定反比例函数y=(k≠0)中k的符号,然后再确定一次函数y=kx﹣k的图象所在象限.【解答】解:∵当x1<x2<0时,y1>y2,∴k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过第一、三、四象限,∴不经过第二象限,故选:B.【点评】此题主要考查了反比例函数图象上点的坐标特征以及一次函数图象与系数的关系,解决此题的关键是确定k的符号.10.(2016•广州)定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0 B.1 C.2 D.与m有关【分析】(方法一)由根与系数的关系可找出a+b=1,根据新运算找出b⋆b﹣a⋆a=b (1﹣b)﹣a(1﹣a),将其中的1替换成a+b,即可得出结论.(方法二)由根与系数的关系可找出a+b=1,根据新运算找出b⋆b﹣a⋆a=(a﹣b)(a+b﹣1),代入a+b=1即可得出结论.(方法三)由一元二次方程的解可得出a2﹣a=﹣m、b2﹣b=﹣m,根据新运算找出b⋆b﹣a⋆a=﹣(b2﹣b)+(a2﹣a),代入后即可得出结论.【解答】解:(方法一)∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1,∴b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=b(a+b﹣b)﹣a(a+b﹣a)=ab﹣ab=0.(方法二)∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1.∵b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=b﹣b2﹣a+a2=(a2﹣b2)+(b﹣a)=(a+b)(a﹣b)﹣(a﹣b)=(a﹣b)(a+b﹣1),a+b=1,∴b⋆b﹣a⋆a=(a﹣b)(a+b﹣1)=0.(方法三)∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a2﹣a=﹣m,b2﹣b=﹣m,∴b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=﹣(b2﹣b)+(a2﹣a)=m﹣m=0.故选A.【点评】本题考查了根与系数的关系,解题的关键是找出a+b=1.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之积与两根之和是关键.二.填空题(共8小题)11.(2017•河北一模)函数y=的自变量x的取值范围是x≤0.5且x≠﹣1.【分析】根据二次根式的性质和分式的意义,让被开方数大于等于0,分母不等于0,就可以求解.【解答】解:由题意得:1﹣2x≥0,1+x≠0,解得:x≤0.5且x≠﹣1.故答案为:x≤0.5且x≠﹣1.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.(2016•雅安)已知a+b=8,a2b2=4,则﹣ab=28或36.【分析】根据条件求出ab,然后化简﹣ab=﹣2ab,最后代值即可.【解答】解:﹣ab=﹣ab=﹣ab﹣ab=﹣2ab ∵a2b2=4,∴ab=±2,①当a+b=8,ab=2时,﹣ab=﹣2ab=﹣2×2=28,②当a+b=8,ab=﹣2时,﹣ab=﹣2ab=﹣2×(﹣2)=36,故答案为28或36.【点评】此题是完全平方公式,主要考查了完全平方公式的计算,平方根的意义,解本题的关键是化简原式,难点是求出ab.13.(2016•静安区二模)甲乙两位运动员在一次射击训练中各打五发,成绩的平均环数相同,甲的方差为1.6;乙的成绩(环)为:7,8,10,6,9,那么这两位运动员中甲的成绩较稳定.【分析】利用方差的公式求得乙的方差,与甲的方差比较,方差较小的成绩稳定.【解答】解:乙的平均成绩为(7+8+10+6+9)÷5=8,方差为:[(7﹣8)2+(8﹣8)2+(10﹣8)2+(6﹣8)2+(9﹣8)2]=2,∵甲的方差为1.6,∴甲的方差较小,∴成绩较稳定的是甲,故答案为:甲.【点评】本题考查了方差的知识,解题的关键是了解方程的意义并牢记方差的计算公式,难度不大.14.(2016•遵义)如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD=35度.【分析】由已知条件和等腰三角形的性质可得∠A=∠C=35°,再由线段垂直平分线的性质可求出∠ABD=∠A,问题得解.【解答】解:∵在△ABC中,AB=BC,∠ABC=110°,∴∠A=∠C=35°,∵AB的垂直平分线DE交AC于点D,∴AD=BD,∴∠ABD=∠A=35°,故答案为:35.【点评】此题主要考查了线段垂直平分线的性质以及等腰三角形的性质,熟记垂直平分线的性质是解题关键.15.(2016•黄冈校级自主招生)如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a,较长的直角边长为b,那么(a+b)2的值为25.【分析】根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a+b)2=a2+2ab+b2即可求解.【解答】解:根据勾股定理可得a2+b2=13,四个直角三角形的面积是:ab×4=13﹣1=12,即:2ab=12则(a+b)2=a2+2ab+b2=13+12=25.故答案是:25.【点评】本题考查勾股定理,以及完全平方式,正确根据图形的关系求得a2+b2和ab的值是关键.16.(2017•青浦区一模)如图,在△ABC中,∠C=90°,AC=3,BC=2,边AB的垂直平分线交AC边于点D,交AB边于点E,联结DB,那么tan∠DBC的值是.【分析】由DE垂直平分AB,得到AD=BD,设CD=x,则有BD=AD=3﹣x,在直角三角形BCD中,利用勾股定理求出x的值,确定出CD的长,利用锐角三角函数定义求出所求即可.【解答】解:∵边AB的垂直平分线交AC边于点D,交AB边于点E,∴AD=BD,设CD=x,则有BD=AD=AC﹣CD=3﹣x,在Rt△BCD中,根据勾股定理得:(3﹣x)2=x2+22,解得:x=,则tan∠DBC==,故答案为:【点评】此题考查了解直角三角形,以及线段垂直平分线性质,熟练掌握性质及定理是解本题的关键.17.(2016•滨州)如图,△ABC是等边三角形,AB=2,分别以A,B,C为圆心,以2为半径作弧,则图中阴影部分的面积是2π﹣3.【分析】根据等边三角形的面积公式求出正△ABC的面积,根据扇形的面积公式S=求出扇形的面积,求差得到答案.【解答】解:∵正△ABC的边长为2,∴△ABC的面积为×2×=,扇形ABC的面积为=π,则图中阴影部分的面积=3×(π﹣)=2π﹣3,故答案为:2π﹣3.【点评】本题考查的是等边三角形的性质和扇形的面积计算,掌握扇形的面积公式S=是解题的关键.18.(2016•余干县三模)如图,四边形OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为﹣.【分析】连接OB,根据正方形的对角线平分一组对角线可得∠BOC=45°,过点B 作BD⊥x轴于D,然后求出∠BOD=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得BD=OB,再利用勾股定理列式求出OD,从而得到点B的坐标,再把点B的坐标代入抛物线解析式求解即可.【解答】解:如图,连接OB,∵四边形OABC是边长为1的正方形,∴∠BOC=45°,OB=1×=,过点B作BD⊥x轴于D,∵OC与x轴正半轴的夹角为15°,∴∠BOD=45°﹣15°=30°,∴BD=OB=,OD==,∴点B的坐标为(,﹣),∵点B在抛物线y=ax2(a<0)的图象上,∴a()2=﹣,解得a=﹣.故答案为:﹣.【点评】本题是二次函数综合题型,主要利用了正方形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,二次函数图象上点的坐标特征,熟记正方形性质并求出OB与x轴的夹角为30°,然后求出点B的坐标是解题的关键.三.解答题(共10小题)19.(2017•曲靖一模)计算:|﹣2|+(﹣1)2017×(π﹣3)0﹣+()﹣2.【分析】先计算|﹣2|、(﹣1)2017、(π﹣3)0、()﹣2的值,再计算最后的结果.【解答】解:|﹣2|+(﹣1)2017×(π﹣3)0﹣+()﹣2=2+(﹣1)×1﹣2+4=2﹣1﹣2+4=5﹣2.【点评】本题考查了0指数幂、负整数指数幂及实数的运算.实数的运算顺序是先乘方,再乘除最后加减.20.(2016•邯山区一模)如果单项式5mx a y与﹣5nx2a﹣3y是关于x、y的单项式,且它们是同类项.求(1)(7a﹣22)2013的值;(2)若5mx a y﹣5nx2a﹣3y=0,且xy≠0,求(5m﹣5n)2014的值.【分析】(1)根据同类项是字母相同且相同字母的指数也相同,可得关于a的方程,解方程,可得答案;(2)根据合并同类项,系数相加字母部分不变,可得m、n的关系,根据0的任何整数次幂都得零,可得答案.【解答】解:(1)由单项式5mx a y与﹣5nx2a﹣3y是关于x、y的单项式,且它们是同类项,得a=2a﹣3,解得a=3,(7a﹣22)2013=(7×3﹣22)2013=(﹣1)2013=﹣1;(2)由5mx a y﹣5nx2a﹣3y=0,且xy≠0,得5m﹣5n=0,解得m=n,(5m﹣5n)2014=02014=0.【点评】本题考查了同类项,利用了同类项的定义,负数的奇数次幂是负数,零的任何正数次幂都得零.21.(2016•扬州)解不等式组,并写出该不等式组的最大整数解.【分析】先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.【解答】解:解不等式①得,x≥﹣2,解不等式②得,x<1,∴不等式组的解集为﹣2≤x<1.∴不等式组的最大整数解为x=0,【点评】此题是一元一次不等式组的整数解题,主要考查了不等式得解法和不等式组的解集的确定及整数解的确定,解本题的关键是不等式的解法运用.22.(2016•宜宾)2016年“母亲节”前夕,宜宾某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?【分析】设第一批花每束的进价是x元/束,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程.【解答】解:设第一批花每束的进价是x元/束,依题意得:×1.5=,解得x=20.经检验x=20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束.【点评】本题考查了分式方程的应用.关键是根据等量关系:第二批进的数量=第一批进的数量×1.5列方程.23.(2017•海宁市校级模拟)为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?【分析】(1)根据C等级的人数和所占的百分比求出这次随机抽取的学生数;(2)用抽取的总人数乘以B等级所占的百分比,从而补全统计图;(3)用该校九年级的总人数乘以优秀的人数所占的百分比,即可得出答案.【解答】解:(1)这次随机抽取的学生共有:20÷50%=40(人);(2)B等级的人数是:40×27.5%=11人,如图:(3)根据题意得:×1200=480(人),答:这次九年级学生期末数学考试成绩为优秀的学生人数大约有480人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.24.(2017•青浦区一模)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GE•GD.(1)求证:∠ACF=∠ABD;(2)连接EF,求证:EF•CG=EG•CB.【分析】(1)先根据CG2=GE•GD得出,再由∠CGD=∠EGC可知△GCD∽△GEC,∠GDC=∠GCE.根据AB∥CD得出∠ABD=∠BDC,故可得出结论;(2)先根据∠ABD=∠ACF,∠BGF=∠CGE得出△BGF∽△CGE,故.再由∠FGE=∠BGC得出△FGE∽△BGC,进而可得出结论.【解答】证明:(1)∵CG2=GE•GD,∴.又∵∠CGD=∠EGC,∴△GCD∽△GEC.∴∠GDC=∠GCE.∵AB∥CD,∴∠ABD=∠BDC.∴∠ACF=∠ABD.(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE.∴.又∵∠FGE=∠BGC,∴△FGE∽△BGC.∴.∴FE•CG=EG•CB.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.25.(2017•禹州市一模)如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求PA+PB的最小值.【分析】(1)把点A(1,a)代入一次函数y=﹣x+4,即可得出a,再把点A坐标代入反比例函数y=,即可得出k,两个函数解析式联立求得点B坐标;(2)作点B作关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB=PA+PD=AD 的值最小,然后根据勾股定理即可求得.【解答】解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=,得k=3,∴反比例函数的表达式y=,两个函数解析式联立列方程组得,解得x1=1,x2=3,∴点B坐标(3,1);(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB=PA+PD=AD的值最小,∴D(3,﹣1),∵A(1,3),∴AD==2,∴PA+PB的最小值为2.【点评】本题考查了一次函数和反比例函数相交的有关问题;轴对称﹣最短路线问题;解题关键在于点的坐标的灵活运用.26.(2016•龙岩)某厂家在甲、乙两家商场销售同一商品所获利润分别为y 甲,y 乙(单位:元),y 甲,y 乙与销售数量x (单位:件)的函数关系如图所示,请根据图象解决下列问题;(1)分别求出y 甲,y 乙与x 的函数关系式;(2)现厂家分配该商品800件给甲商场,400件给乙商场,当甲、乙商场售完这批商品,厂家可获得总利润是多少元?【分析】(1)设y 甲=k 1x (k 1≠0),把x=600,y 甲=480代入即可;当0≤x ≤200时,设y 乙=k 2x (k 2≠0),把x=200,y 乙=400代入即可;当x >200时,设y 乙=k 3x +b (k 3≠0),把x=200,y 乙=400和x=600,y 乙=480代入即可;(2)当x=800时求出y 甲,当x=400时求出y 乙,即可求出答案.【解答】解:(1)设y 甲=k 1x (k 1≠0),由图象可知:当x=600时,y 甲=480,代入得:480=600k 1,解得:k 1=0.8,所以y 甲=0.8x ;当0≤x ≤200时,设y 乙=k 2x (k 2≠0),由图象可知:当x=200时,y 乙=400,代入得:400=200k 2,解得:k 2=2,所以y 乙=2x ;当x >200时,设y 乙=k 3x +b (k 3≠0),由图象可知:由图象可知:当x=200时,y=400,乙=480,当x=600时,y乙代入得:,解得:k3=0.2,b=360,所以y=0.2x+360;乙即y=;乙=0.8×800=640;(2)∵当x=800时,y甲=0.2×400+360=440,当x=400时,y乙∴640+440=1080,答:厂家可获得总利润是1080元.【点评】本题考查了一次函数图象和性质,用待定系数法求一次函数的解析式的应用,能正确用待定系数法求出函数解析式是解此题的关键.27.(2016•天水)如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB交CD于N.(1)求证:MN是⊙O的切线;(2)当OB=6cm,OC=8cm时,求⊙O的半径及MN的长.【分析】(1)求证:MN是⊙O的切线,就可以证明∠NMC=90°(2)连接OF,则OF⊥BC,根据勾股定理就可以求出BC的长,然后根据△BOC 的面积就可以求出⊙O的半径,根据△NMC∽△BOC就可以求出MN的长.【解答】(1)证明:∵AB、BC、CD分别与⊙O切于点E、F、G∴∠OBC=∠ABC,∠DCB=2∠DCM(1分)∵AB∥CD∴∠ABC+∠DCB=180°∴∠OBC+∠OCB=(∠ABC+∠DCB)=×180°=90°∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣90°=90°(2分)∵MN∥OB∴∠NMC=∠BOC=90°即MN⊥MC 且MO是⊙O的半径∴MN是⊙O的切线(4分)(2)解:连接OF,则OF⊥BC(5分)由(1)知,△BOC是直角三角形,∴BC===10,∵S=•OB•OC=•BC•OF△BOC∴6×8=10×OF∴0F=4.8cm∴⊙O的半径为4.8cm(6分)由(1)知,∠NCM=∠BCO,∠NMC=∠BOC=90°∴△NMC∽△BOC(7分)∴,即=,∴MN=9.6(cm).(8分)【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.28.(2017•宝山区一模)如图,二次函数y=ax2﹣x+2(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.【分析】(1)把点A的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A,C两点的坐标,可求得直线AC的函数解析式;(2)先过点D作DH⊥x轴于点H,运用割补法即可得到:四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,据此列式计算化简就可求得S关于m的函数关系;(3)由于AC确定,可分AC是平行四边形的边和对角线两种情况讨论,得到点E与点C的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E的坐标.【解答】解:(1)∵A(﹣4,0)在二次函数y=ax2﹣x+2(a≠0)的图象上,∴0=16a+6+2,解得a=﹣,∴抛物线的函数解析式为y=﹣x2﹣x+2;∴点C的坐标为(0,2),设直线AC的解析式为y=kx+b,则,解得,∴直线AC的函数解析式为:;(2)∵点D(m,n)是抛物线在第二象限的部分上的一动点,∴D(m,﹣m2﹣m+2),过点D作DH⊥x轴于点H,则DH=﹣m2﹣m+2,AH=m+4,HO=﹣m,∵四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,∴S=(m+4)×(﹣m2﹣m+2)+(﹣m2﹣m+2+2)×(﹣m),化简,得S=﹣m2﹣4m+4(﹣4<m<0);(3)①若AC为平行四边形的一边,则C、E到AF的距离相等,∴|y E|=|y C|=2,∴y E=±2.当y E=2时,解方程﹣x2﹣x+2=2得,x1=0,x2=﹣3,∴点E的坐标为(﹣3,2);当y E=﹣2时,解方程﹣x2﹣x+2=﹣2得,x1=,x2=,∴点E的坐标为(,﹣2)或(,﹣2);②若AC为平行四边形的一条对角线,则CE∥AF,∴y E=y C=2,∴点E的坐标为(﹣3,2).综上所述,满足条件的点E的坐标为(﹣3,2)、(,﹣2)、(,﹣2).【点评】本题属于二次函数综合题,主要考查了运用待定系数法求出直线及抛物线的解析式、抛物线上点的坐标特征、解一元二次方程、平行四边形的性质、抛物线的性质等知识的综合应用,运用割补法及配方法是解决问题的关键,解题时注意运用分类讨论的思想.。
2017年大庆市中考数学试卷
2017年大庆市初中升学统一考试数学试题一、选择题:1.若a的相反数是-3,则a的值为()A.1B.2C.3D.42.数字150000用科学记数法表示为()A.1.5⨯104B.0.15⨯106C.15⨯104D.1.5⨯105 3.下列说法中,正确的是()A.若a≠b,则a2≠b2B.若a>|b|,则a>bC.若|a|=|b|,则a=b D.若|a|>|b|,则a>b4.对于函数y=2x-1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>05.在∆ABC中,∠A,∠B,∠C的度数之比为2:3:4,则∠B的度数为()A.1200B.800C.600D.4006.将一枚质地均匀的硬币先后抛掷两次,则至少出现一次正面向上的概率为()A.1132B. C.D.42437.由若干个相同的正方体组成的几何体,如图(1)所示,其左视图如图(2)所示,则这个几何体的俯视图为()8.如图,∆ABD是以BD为斜边的等腰直角三角形,∆BCD中,∠DBC=900,∠BCD=600,DC中A.2点为E,AD与BE的延长线交于点F,则∠AFB的度数为()A.300B.150C.450D.2509.若实数3是不等式2x-a-2<0的一个解,则a可取的最小正整数为()A.2B.3 C.4D.510.如图,AD//BC,AD⊥AB,点A,B在y轴上,CD与x轴交于点E(2,0),且AD=DE,BC=2CE,则BD与x轴交点F的横坐标为()345B. C.D.3456二、填空题11.2sin600=.12.分解因式:x3-4x=.13.已知一组数据:3,5,x,7,9的平均数为6,则x=.14.∆ABC中,∠C为直角,AB=2,则这个三角形的外接圆半径为.15.若点M(3,a-2),N(b,a)关于原点对称,则a+b=.16.如图,点M,N在半圆的直径AB上,点P,Q在AB上,四边形MNPQ为正方形,若半圆的半径为5,则正方形的边长为.17.圆锥的底面半径为1,它的侧面展开图的圆心角为1800,则这个圆锥的侧面积为.18.如图,已知一条东西走向的河流,在河流对岸有一点A,小明在岸边点B处测得点A在点B的北偏东300方向上,小明沿河岸向东走80m后到达点C,测得点A在点C的北偏西600方向上,则点A到河岸BC 的距离为.三、解答题19.计算:(-1)2017+tan450+327+|3-π|.20.解方程:x1+=1x+2x21.已知非零实数a,b满足a+b=3,113+=,求代数式a2b+ab2的值.a b222.某快递公司的每位“快递小哥”日收入与每日的派送量成一次函数关系,如图所示.(1)求每位“快递小哥”的日收入y(元)与日派送量x(件)之间的函数关系式;(2)已知某“快递小哥”的日收入不少于110元,则他至少要派送多少件?23.某校为了解学生平均每天课外阅读的时间,随机调查了该校部分学生一周内平均每天课外阅读的时间(以分钟为单位,并取整数),将有关数据统计整理并绘制成尚未完成的频率分布表和频数分布直方图.请你根据图表中所提供的信息,解答下列问题.注:这里的15~25表示大于等于15同时小于25.(1)求被调查的学生人数;(2)直接写出频率分布表中的a和b的值,并补全频数分布直方图;(3)若该校共有学生500名,则平均每天课外阅读的时间不少于35分钟的学生大约有多少名?24.如图,以BC为底边的等腰∆ABC,点D,E,G分别在BC,AB,AC上,且EG//BC,DE//AC,延长GE至点F,使得BE=BF.AE GB D C(1)求证:四边形BDEF为平行四边形;(2)当∠C=450,BD=2时,求D,F两点间的距离.25.如图,反比例函数y=k的图象与一次函数y=x+b的图象交于A,B两点,点A和点B的横坐标分别x为1和-2,这两点的纵坐标之和为1.(1)求反比例函数的表达式与一次函数的表达式;(2)当点C的坐标为(0,-1)时,求∆ABC的面积.26.已知二次函数的表达式为y=x2+mx+n.(1)若这个二次函数的图象与x轴交于点A(1,0),点B(3,0),求实数m,n的值;(2)若∆ABC是有一个内角为300的直角三角形,∠C为直角,s in A,cos B是方程x2+mx+n=0的两个根,求实数m,n的值.27.如图,四边形ABCD内接于圆O,∠BAD=900,AC为直径,过点A作圆O的切线交CB的延长线于点E,过AC的三等分点F(靠近点C)作CE的平行线交AB于点G,连结CG.(1)求证:AB=CD;(2)求证:C D2=BE⋅BC;(3)当C G=3,BE=92时,求CD的长.28.如图,直角∆ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,C A边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,在运动过程中:(1)求证:∆APR,∆BPQ,∆CQR的面积相等;(2)求∆PQR面积的最小值;(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=900,若存在,请直接写出t的值;若不存在,请说明理由.。
2017年大庆市中考数学模拟试卷(一)
2017年大庆市中考数学模拟试卷(一)一.选择题(共10小题)1.2cos30°的值等于()A.1 B.C.D.22.用科学记数法表示0.0000210,结果是()A.2.10×10﹣4B.2.10×10﹣5C.2.1×10﹣4D.2.1×10﹣53.已知a=,b=,则=()A.2a B.ab C.a2b D.ab24.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.5.某商场对某品牌A、B两个型号的冰箱销售价格进行调整,A型号冰箱现在的售价为1100元,降价a%;B型冰箱现在的售价为900元,提价a%,调整后A、B两种型号的冰箱价格相等,则a等于()A.﹣10 B.10 C.D.6.已知⊙O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧的中点,若△POC为直角三角形,则PB的长度()A.1 B.5 C.1或5 D.2或47.下列图形不是轴对称图形的是()A.正方形B.等腰三角形C.圆D.平行四边形8.某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是()A.样本中位数是200元B.样本容量是20C.该企业员工捐款金额的平均数是180元D.该企业员工最大捐款金额是500元9.如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB交于点E.若OD=2,则△OCE的面积为()A.2 B.4 C.2 D.410.如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE ∽△QBP;其中正确的结论是()A.①②③B.②③C.①③④D.②④二.填空题(共8小题)11.函数中自变量x的取值范围是.12.若,则=.13.底面直径和高都是1的圆柱侧面积为.14.直角三角形两直角边为3,4,则其外接圆和内切圆半径之和为.15.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要个小立方体.16.已知锐角A满足关系式2sin2A﹣3sinA+1=0,则sinA的值为.17.已知:52n=a,4n=b,则102n=.18.如图,点E是正方形ABCD外一点,连接AE,BE和DE,过点A作AE的垂线交DE于P,若AE=AP=1,PB=3,下列结论:=8+,①△ADP≌△ABE;②BE⊥DE;③点B到直线AE的距离为;④S正方形ABCD其中正确结论的序号是.三.解答题(共10小题)19.计算:.20.已知关于x、y的方程组的解满足不等式3﹣x<2y,求实数a的取值范围.21.若关于x的一元二次方程x2+4x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)若该方程的两个实数根的积为2,求k的值.22.为了从甲、乙两名同学中选拔一个参加比赛,对他们的射击水平进行了测验,两个在相同条件下各射靶10次,命中的环数如下(单位:环)甲:7,8,6,8,6,5,9,10,7,4乙:9,5,7,8,6,8,7,6,7,7(1)求甲,乙,S甲2,S乙2;(2)你认为该选拔哪名同学参加射击比赛?为什么?23.超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会.摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、40元.一次性购物满300元者,如果不摇奖可返还现金15元.(1)摇奖一次,获一等奖的概率是多少?(2)老李一次性购物满了300元,他是参与摇奖划算还是领15元现金划算,请你帮他算算.24.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道L上确定点D,使CD与L垂直,测得CD的长等于24米,在L上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(结果保留根号);(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.(参考数据:≈1.73,≈1.41)25.在△ABC中,∠C=90°,D是AC的中点,E是AB的中点,作EF⊥BC于F,延长BC至G,使CG=BF,连接CE、DE、DG.(1)如图1,求证:四边形CEDG是平行四边形;(2)如图2,连接EG交AC于点H,若EG⊥AB,请直接写出图2中所有长度等于GH的线段.26.如图所示,直线AB与反比例函数的图象相交于A,B两点,已知A(1,4).(1)求反比例函数的解析式;(2)直线AB交x轴于点C,连接OA,当△AOC的面积为6时,求直线AB的解析式.27.如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当点B于点O重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当B点和E点重合时,AC与半圆相切于点F,连接EF,如图2所示.①求证:EF平分∠AEC;②求EF的长.28.已知抛物线y=3ax2+2bx+c(1)若a=b=1,c=﹣1求该抛物线与x轴的交点坐标;(2)若a=,c=2+b且抛物线在﹣2≤x≤2区间上的最小值是﹣3,求b的值;(3)若a+b+c=1,是否存在实数x,使得相应的y的值为1,请说明理由.2017年大庆市中考数学模拟试卷(一)参考答案与试题解析一.选择题(共10小题)1.(2017•天津一模)2cos30°的值等于()A.1 B.C.D.2【分析】根据特殊角的三角函数值直接解答即可.【解答】解:2cos30°=2×=.故选C.【点评】此题考查了特殊角的三角函数值,是需要识记的内容.2.(2017•磴口县一模)用科学记数法表示0.0000210,结果是()A.2.10×10﹣4B.2.10×10﹣5C.2.1×10﹣4D.2.1×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000210=2.10×10﹣5,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(2017•河北一模)已知a=,b=,则=()A.2a B.ab C.a2b D.ab2【分析】将18写成2×3×3,然后根据算术平方根的定义解答即可.【解答】解:==××=a•b•b=ab2.故选D.【点评】本题考查了算术平方根的定义,是基础题,难点在于对18的分解因数.4.(2017•南开区一模)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.【分析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.【解答】解:如图1,∵OC=2,∴OD=2×sin30°=1;如图2,∵OB=2,∴OE=2×sin45°=;如图3,∵OA=2,∴OD=2×cos30°=,则该三角形的三边分别为:1,,,∵(1)2+()2=()2,∴该三角形是直角边,∴该三角形的面积是×1××=,故选:D.【点评】本题主要考查多边形与圆,解答此题要明确:多边形的半径、边心距、中心角等概念,根据解直角三角形的知识解答是解题的关键.5.(2016•新华区一模)某商场对某品牌A、B两个型号的冰箱销售价格进行调整,A型号冰箱现在的售价为1100元,降价a%;B型冰箱现在的售价为900元,提价a%,调整后A、B两种型号的冰箱价格相等,则a等于()A.﹣10 B.10 C.D.【分析】本题可根据:A型号冰箱现在的售价×(1﹣a%)=B型冰箱现在的售价×(1+a%),然后列出方程求解即可.【解答】解:由题意得:1100(1﹣a%)=900(1+a%),解得:a=10故选:B.【点评】本题考查百分率的问题,解题关键是根据A型号冰箱现在的售价×(1﹣a%)=B型冰箱现在的售价×(1+a%),列出方程,难度一般.6.(2017•安徽模拟)已知⊙O的半径为5,弦AB=6,P是AB上任意一点,点C 是劣弧的中点,若△POC为直角三角形,则PB的长度()A.1 B.5 C.1或5 D.2或4【分析】由点C是劣弧的中点,得到OC垂直平分AB,求得DA=DB=3,根据勾股定理得到OD==1,若△POC为直角三角形,只能是∠OPC=90°,则根据相似三角形的性质得到PD=2,于是得到结论.【解答】解:∵点C是劣弧的中点,∴OC垂直平分AB,∴DA=DB=3,∴OD==4,若△POC为直角三角形,只能是∠OPC=90°,则△POD∽△CPD,∴,∴PD2=4×1=4,∴PD=2,∴PB=3﹣2=1,根据对称性得,当P在OC的左侧时,PB=3+2=5,∴PB的长度为1或5,故选C.【点评】本题考查了圆周角,弧,弦的关系,勾股定理,垂径定理,正确左侧图形是解题的关键.7.(2016•泉州模拟)下列图形不是轴对称图形的是()A.正方形B.等腰三角形C.圆D.平行四边形【分析】根据轴对称图形的概念求解.【解答】解:A、正方形是轴对称图形,故此选项错误;B、等腰三角形是轴对称图形,故此选项错误;C、圆是轴对称图形,故此选项错误;D、平行四边形不是轴对称图形,故此选项正确.故选:D.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.(2017•阜康市一模)某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是()A.样本中位数是200元B.样本容量是20C.该企业员工捐款金额的平均数是180元D.该企业员工最大捐款金额是500元【分析】根据中位数、样本容量、平均数定义结合图标可得答案.【解答】解:由直方图可知,共有2+8+5+4+1=20个数据,其中位数为=150元,故A选项错误;样本容量为20,故B正确;捐款的平均数为=180(元),故C正确;该企业员工最大捐款金额是500元,故D正确;故选:A.【点评】本题考查的是频数分布直方图、平均数、样本容量、和极差的知识,掌握题目的概念并从频数分布直方图获取正确的信息是解题的关键.9.(2016•德州模拟)如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB交于点E.若OD=2,则△OCE的面积为()A.2 B.4 C.2 D.4【分析】连接AC,已知OD=2,CD⊥x轴,根据OD×CD=xy=4求CD,根据勾股=S△OAC=OA×CD求解.定理求OC,根据菱形的性质,S△OCE【解答】解:连接AC,∵OD=2,CD⊥x轴,∴OD×CD=xy=4,解得CD=2,由勾股定理,得OC==2,由菱形的性质,可知OA=OC,∵OC∥AB,∵△OCE与△OAC同底等高,∴S=S△OAC=×OA×CD=×2×2=2.△OCE故选C.【点评】本题考查了反比例函数的综合运用.关键是求菱形的边长,讲所求三角形的面积进行转化.10.(2017•保定一模)如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ 的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是()A.①②③B.②③C.①③④D.②④【分析】据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P到达点E时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.【解答】解:根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故①小题正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,在Rt△ABE中,AB===4,∴cos∠ABE==,故②小题错误;过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB==,∴PF=PBsin∠PBF=t,∴当0<t≤5时,y=BQ•PF=t•t=t2,故③小题正确;当t=秒时,点P在CD上,此时,PD=﹣BE﹣ED=﹣5﹣2=,PQ=CD﹣PD=4﹣=,∵=,==,∴=,又∵∠A=∠Q=90°,∴△ABE∽△QBP,故④小题正确.综上所述,正确的有①③④.故选C.【点评】本题考查了二次函数的综合应用及动点问题的函数图象,根据图(2)判断出点P到达点E时,点Q到达点C是解题的关键,也是本题的突破口,难度较大.二.填空题(共8小题)11.(2017•威海一模)函数中自变量x的取值范围是x≥4.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,x﹣4≥0且x≠0,解得x≥4.故答案为:x≥4.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.12.(2017•高台县模拟)若,则=.【分析】设a=3k,b=4k,则代入计算即可.【解答】解:∵,∴设a=3k,b=4k,∴==.故答案为:.【点评】本题是基础题,考查了比例的性质,比较简单.设出a=3k,b=4k是解此题的关键.13.(2015•大庆)底面直径和高都是1的圆柱侧面积为π.【分析】圆柱的侧面积=底面周长×高.【解答】解:圆柱的底面周长=π×1=π.圆柱的侧面积=底面周长×高=π×1=π.故答案是:π.【点评】本题考查了圆柱的计算,熟记公式即可解答该题.14.(2017•宜兴市二模)直角三角形两直角边为3,4,则其外接圆和内切圆半径之和为 3.5.【分析】首先根据勾股定理求得该直角三角形的斜边是5,再根据其外接圆的半径等于斜边的一半和内切圆的半径等于两条直角边的和与斜边的差的一半进行计算.【解答】解:∵直角三角形两直角边为3,4,∴斜边长==5,∴外接圆半径==2.5,内切圆半径==1,∴外接圆和内切圆半径之和=2.5+1=3.5.故答案为:3.5.【点评】本题考查的是三角形的内切圆与内心,此题要熟记直角三角形外接圆的半径和内切圆的半径公式:外接圆的半径等于斜边的一半;内切圆的半径等于两条直角边的和与斜边的差的一半.15.(2017•永修县一模)如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要8个小立方体.【分析】由主视图求出这个几何体共有3层,再求出第二层、第三层最少的个数,由俯视图可得第一层正方体的个数,相加即可.【解答】解:由俯视图可以看出组成这个几何体的底面小正方体有5个,由主视图可知第二层最少有2个,第三层最少有1个,故组成这个几何体的小正方体的个数最少为:5+2+1=8(个).故答案为:8.【点评】本题主要考查学生由三视图判断几何体,同时也体现了对空间想象能力方面的考查.做题要掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”.16.(2017•蒙阴县一模)已知锐角A满足关系式2sin2A﹣3sinA+1=0,则sinA的值为.【分析】设sinA=x,利用换元法即可求出x的值.【解答】解:设sinA=x,∴2x2﹣3x+1=0,∴(2x﹣1)(x﹣1)=0,∴x=,x=1(舍去)∴sinA=x=,故答案为:【点评】本题考查一元二次方程的综合问题,解题的关键是利用换元法设sinA=x,本题属于中等题型.17.(2017春•巨野县期中)已知:52n=a,4n=b,则102n=ab.【分析】直接利用幂的乘方运算法则将原式变形求出答案.【解答】解:∵52n=a,4n=b,∴52n=a,22n=b,∴102n=52n×22n=ab.故答案为:ab.【点评】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.18.(2016•安徽模拟)如图,点E是正方形ABCD外一点,连接AE,BE和DE,过点A作AE的垂线交DE于P,若AE=AP=1,PB=3,下列结论:①△ADP≌△ABE;②BE⊥DE;③点B到直线AE的距离为;=8+,④S正方形ABCD其中正确结论的序号是①,②,④.【分析】①首先利用已知条件根据边角边可以证明△APD≌△AEB;②利用全等三角形的性质和对顶角相等即可解答;③由(1)可得∠BEP=90°,故BE不垂直于AE过点B作BM⊥AE延长线于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直线AE距离为BF=;④根据勾股定理得到BF,得到AF的长,再利用勾股定理解答即可.【解答】解:在正方形ABCD中,AB=AD,∵AP⊥AE,∴∠BAE+∠BAP=90°,又∵∠DAP+∠BAP=∠BAD=90°,∴∠BAE=∠DAP,在△APD和△AEB中,,∴△APD≌△AEB(SAS),故①正确;∵AE=AP,AP⊥AE,∴△AEP是等腰直角三角形,∴∠AEP=∠APE=45°,∴∠AEB=∠APD=180°﹣45°=135°,∴∠BEP=135°﹣45°=90°,∴EB⊥ED,故②正确;过点B作BF⊥AE交AE的延长线于F,∵∠BEF=180°﹣135°=45°,∴△BEF是等腰直角三角形,∴BF=×=,即点B到直线AE的距离为,故③错误,∵BF=EF=,AF=EF+AE=+1,在Rt△ABF中,AB2=AF2+BF2=8+.∴S=8+,故④正确,正方形ABCD综上所述,正确的结论有①②④.故答案为:①②④.【点评】此题分别考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.三.解答题(共10小题)19.(2017•邵阳县模拟)计算:.【分析】根据零指数幂、cos45°=得到原式=4×﹣2+1+1,然后进行乘法运算后合并即可.【解答】解:原式=4×﹣2+1+1=2﹣2+1+1=2.【点评】本题考查了实数的运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.也考查了零指数幂和特殊角的三角函数值.20.(2016春•长春校级期末)已知关于x、y的方程组的解满足不等式3﹣x<2y,求实数a的取值范围.【分析】先求出二元一次方程组的解,再带入不等式,即可解答.【解答】解:方程组的解为:∵3﹣x<2y,∴3﹣解得:a>1.【点评】本题考查了二元一次方程组的解,解决本题的关键是解二元一次方程组.21.(2017•黄冈模拟)若关于x的一元二次方程x2+4x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)若该方程的两个实数根的积为2,求k的值.【分析】(1)由方程有两个不相等的实数根,结合根的判别式即可得出△=20﹣4k>0,解之即可得出k的取值范围;(2)由根与系数的关系结合该方程的两个实数根的积为2,即可得出k﹣1=2,解之即可求出k值.【解答】解:(1)∵方程x2+4x+k﹣1=0有两个不相等的实数根,∴△=42﹣4(k﹣1)=20﹣4k>0,解得:k<5.(2)设方程的两个根分别为m、n,根据题意得:mn=k﹣1=2,解得:k=3.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)熟练掌握“当△>0时,方程有两个不相等的实数根”;(2)牢记两根之积等于.22.(2016春•秦皇岛期末)为了从甲、乙两名同学中选拔一个参加比赛,对他们的射击水平进行了测验,两个在相同条件下各射靶10次,命中的环数如下(单位:环)甲:7,8,6,8,6,5,9,10,7,4乙:9,5,7,8,6,8,7,6,7,7(1)求甲,乙,S甲2,S乙2;(2)你认为该选拔哪名同学参加射击比赛?为什么?【分析】(1)根据平均数的计算公式先求出平均数,再根据方差公式进行计算即可;(2)根据方差的意义,方差越小越稳定,即可得出答案.【解答】解:(1)甲=(7+8+6+8+6+5+9+10+7+4)÷10=7;乙=(9+5+7+8+6+8+7+6+7+7)÷10=7;S甲2=[2(7﹣7)2+2(8﹣7)2+2(6﹣7)2+(5﹣7)2+(9﹣7)2+(10﹣7)2+(4﹣7)2]=3;S 乙2=[4(7﹣7)2+2(8﹣7)2+2(6﹣7)2+(5﹣7)2+(9﹣7)2]=1.2;(2)∵甲=乙,S 甲2>S 乙2,∴乙较稳定,∴该选拔乙同学参加射击比赛.【点评】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.23.(2014春•通川区期末)超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会.摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、40元.一次性购物满300元者,如果不摇奖可返还现金15元.(1)摇奖一次,获一等奖的概率是多少?(2)老李一次性购物满了300元,他是参与摇奖划算还是领15元现金划算,请你帮他算算.【分析】(1)找到红色区域的份数占总份数的多少即为获得一等奖的概率,(2)游戏是否合算,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:(1)整个圆周被分成了16份,红色为1份,∴获得一等奖的概率为:,(2)转转盘:60×+50×+40×=20元,∵20元>15元,∴转转盘划算.【点评】本题主要考查了古典型概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.24.(2017•威海模拟)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道L上确定点D,使CD与L垂直,测得CD的长等于24米,在L上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(结果保留根号);(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.(参考数据:≈1.73,≈1.41)【分析】(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【解答】解:(1)由題意得,在Rt△ADC中,AD===24≈36.33(米),在Rt△BDC中,BD===8,则AB=AD﹣BD=16;(2)不超速.理由:∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1×3600=43560(米/时),∴该车速度为43.56千米/小时,∵小于45千米/小时,∴此校车在AB路段不超速.【点评】此题考查了解直角三角形的应用问题.此题难度适中,解题的关键是把实际问题转化为数学问题求解,注意数形结合思想的应用.25.(2017•香坊区一模)在△ABC中,∠C=90°,D是AC的中点,E是AB的中点,作EF⊥BC于F,延长BC至G,使CG=BF,连接CE、DE、DG.(1)如图1,求证:四边形CEDG是平行四边形;(2)如图2,连接EG交AC于点H,若EG⊥AB,请直接写出图2中所有长度等于GH的线段.【分析】(1)欲证明四边形CEDG是平行四边形,只要证明DE∥CG,DE=CG即可.(2)由四边形四边形CEDG是平行四边形,推出DH=CH,GH=HE,设DH=CH=a,则AD=CD=2a,由∠A=∠A,∠AEH=∠ADE=90°,推出△ADE∽△AEH,推出AE2=AD•AH=2a•3a=6a2,推出AE=a,在Rt△AEH中,HE===a,推出AE=HE,因为GH=HE,AE=EB=CE=CD,即可推出线段AE、EB、EC、GD都是线段GH的倍.【解答】(1)证明:如图1中,∵∠ACB=90°,AE=EB,∴EC=EA=EB,∵EF⊥BC,∴CF=FB,∵AD=DC,AE=EB,∴DE∥BC,DE=BC=BF,∵CG=BF,∴DE=CG,DE∥CG,∴四边形四边形CEDG是平行四边形;(2)解:如图2中,∵四边形四边形CEDG是平行四边形,∴DH=CH,GH=HE,设DH=CH=a,则AD=CD=2a,∵∠A=∠A,∠AEH=∠ADE=90°,∴△ADE∽△AEH,∴AE2=AD•AH=2a•3a=6a2,∴AE=a,在Rt△AEH中,HE===a,∴AE=HE,∵GH=HE,AE=EB=CE=CD,∴线段AE、EB、EC、GD都是线段GH的倍.【点评】本题考查平行四边形的性质、三角形的中位线定理、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.26.(2017•龙湖区模拟)如图所示,直线AB与反比例函数的图象相交于A,B两点,已知A(1,4).(1)求反比例函数的解析式;(2)直线AB交x轴于点C,连接OA,当△AOC的面积为6时,求直线AB的解析式.【分析】(1)根据点A的坐标代入即可得出解析式;(2)设出点C的坐标,利用三角形AOC的面积即可得出点C的坐标,再结合点A的坐标,即可得出直线AB的解析式.【解答】解:(1)由已知得反比例函数解析式为y=,∵点A(1,4)在反比例函数的图象上,∴4=,∴k=4,∴反比例函数的解析式为y=.(2)设C的坐标为(﹣a,0)(a>0)=6,∴,∵S△AOC解得:a=3,∴C(﹣3,0),设直线AB的解析式为:y=kx+b∵C(﹣3,0),A(1,4)在直线AB上,∴,解得:k=1,b=3,∴直线AB的解析式为:y=x+3.【点评】本题主要考查了反比例函数、一次函数的图象和性质等基础知识,考查函数与方程思想,以及运算求解能力等.27.(2017•宝应县一模)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当点B于点O重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当B点和E点重合时,AC与半圆相切于点F,连接EF,如图2所示.①求证:EF平分∠AEC;②求EF的长.【分析】(1)由当点B于点O重合的时候,BO=OD+BD=4cm,又由三角板以2cm/s 的速度向右移动,即可求得三角板运动的时间;(2)①连接OF,由AC与半圆相切于点F,易得OF⊥AC,然后由∠ACB=90°,易得OF∥CE,继而证得EF平分∠AEC;②由△AFO是直角三角形,∠BAC=30°,OF=OD=3cm,可求得AF的长,由EF平分∠AEC,易证得△AFE是等腰三角形,且AF=EF,则可求得答案.【解答】解:(1)∵当点B于点O重合的时候,BO=OD+BD=4cm,∴t==2(s);∴三角板运动的时间为:2s;(2)①证明:连接O与切点F,则OF⊥AC,∵∠ACE=90°,∴EC⊥AC,∴OF∥CE,∴∠OFE=∠CEF,∵OF=OE,∴∠OFE=∠OEF,∴∠OEF=∠CEF,即EF平分∠AEC;②解:由①知:OF⊥AC,∴△AFO是直角三角形,∵∠BAC=30°,OF=OD=3cm,∴tan30°=,∴AF=3cm,由①知:EF平分∠AEC,∴∠AEF=∠CEF=∠AEC=30°,∴∠AEF=∠EAF,∴△AFE是等腰三角形,且AF=EF,∴EF=3cm.【点评】此题属于圆的综合题.考查了切线的性质、等腰三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.28.(2017•萧山区模拟)已知抛物线y=3ax2+2bx+c(1)若a=b=1,c=﹣1求该抛物线与x轴的交点坐标;(2)若a=,c=2+b且抛物线在﹣2≤x≤2区间上的最小值是﹣3,求b的值;(3)若a+b+c=1,是否存在实数x,使得相应的y的值为1,请说明理由.【分析】(1)直接将a=b=1,c=﹣1代入求出即可;(2)利用当x=﹣b<﹣2时,即b>2,此时﹣3=(﹣2)2+2×(﹣2)b+b+2;当x=﹣b>2时,即b<﹣2,则有抛物线在x=2时取最小值为﹣3,此时﹣3=22+2×2b+b+2;当﹣2≤﹣b≤2时,即﹣2≤b≤2,则有抛物线在x=﹣b时,取最小值为﹣3,分别求出符合题意的答案即可;(3)由y=1得3ax2+2bx+c=1,则△=4b2﹣12a(c﹣1),求出△的符号得出答案即可.【解答】解:(1)当a=b=1,c=﹣1时,抛物线为:y=3x2+2x﹣1,∵方程3x2+2x﹣1=0的两个根为:x1=﹣1,x2=.∴该抛物线与x轴公共点的坐标是:(﹣1,0)和(,0);(2)a=,c﹣b=2,则抛物线可化为:y=x2+2bx+b+2,其对称轴为:x=﹣b,当x=﹣b<﹣2时,即b>2,则有抛物线在x=﹣2时取最小值为﹣3,此时﹣3=(﹣2)2+2×(﹣2)b+b+2,解得:b=3,符合题意,当x=﹣b>2时,即b<﹣2,则有抛物线在x=2时取最小值为﹣3,此时﹣3=22+2×2b+b+2,解得:b=﹣,不合题意,舍去.当﹣2≤﹣b≤2时,即﹣2≤b≤2,则有抛物线在x=﹣b时,取最小值为﹣3,此时﹣3=(﹣b)2+2×(﹣b)b+b+2,化简得:b2﹣b﹣5=0,解得:b1=(不合题意,舍去),b2=.综上:b=3或b=.(3)由y=1得3ax2+2bx+c=1,△=4b2﹣12a(c﹣1),=4b2﹣12a(﹣a﹣b),=4b2+12ab+12a2,=4(b2+3ab+3a2),=4[(b +a)2+a2],∵a≠0,△>0,所以方程3ax2+2bx+c=1有两个不相等实数根,即存在两个不同实数x0,使得相应y=1.【点评】此题主要考查了二次函数综合以及根的判别式和一元二次方程的解法等知识,利用分类讨论得出是解题关键.第31页(共31页)。
黑龙江省大庆市数学中考一模试卷(5月)
黑龙江省大庆市数学中考一模试卷(5月)姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·黑龙江模拟) 2017的绝对值是()A . ﹣2017B . 2017C .D . ﹣2. (2分)房间窗户的边框形状是矩形,在阳光的照射下边框在房间地面上形成了投影,则投影的形状可能是()A . 三角形B . 平行四边形C . 圆D . 梯形3. (2分)(2020·中山模拟) 港珠澳大桥全长55千米,工程项目总投资额1269亿元,用科学记数法表示1269亿为()A .B .C .D .4. (2分)(2020·哈尔滨模拟) 下列图形中,是中心对称图形,但不是轴对称图形的是()A .B .C .D .5. (2分)已知一个等腰三角形的两边长分别是5cm与6cm,则这个等腰三角形的周长为()A . 16cmB . 17cmC . 16cm或17cmD . 无法确定6. (2分) (2018九上·宝应月考) 下列问题中,错误的个数是()( 1 )三点确定一个圆;(2)平分弦的直径垂直于弦;(3)相等的圆心角所对的弧相等;(4)正五边形是轴对称图形.A . 1个B . 2个C . 3个D . 4个7. (2分) (2019九上·辽源期末) 如图,矩形ABOC的面积为3,反比例函数y=的图象过点A ,则k =()A . 3B . ﹣1.5C . ﹣3D . ﹣68. (2分)某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x,可列方程为()A . 120(1-x)2=100B . 100(1-x)2=120C . 100(1+x)2=120D . 120(1+x)2=1009. (2分)对于函数y= ,下列说法错误的是()。
A . 这个函数的图象位于第一、第三象限B . 这个函数的图象既是轴对称图形又是中心对称图形C . 当x>0时,y随x的增大而增大D . 当x<0时,y随x的增大而减小10. (2分)(2020·瑶海模拟) 如图所示,在△ABC中,AB=AC,动点D在折线段BAC上沿B→A→C方向以每秒1个单位的速度运动,过D垂直于BC的直线交BC边于点E.如果AB=5,BC=8,点D运动的时间为t秒,△BDE 的面积为S,则S关于t的函数图象的大致形状是()A .B .C .D .二、填空题 (共6题;共16分)11. (1分)分解因式:x﹣3x+4=________ .12. (11分) (2017七上·深圳期中) 如图:将1到 n+1 (n≥1 ,且 n 为正整数)一共 n+1 个连续正整数按从小到大的顺序排成一排,每相邻的两个数之间放置一个方格.(1)一共需要放置________个方格;(2)如果第一个方格填入加号“+”,第二个方格填入减号“-”,第三个方格填入加号“+”,第四个方格填入减号“-”,…,按此规律轮流将加、减号从左向右依次填入方格中,问最后一个方格应填入什么符号?(3)按照(2)中的方法我们用加、减号将1到 n+1 一共 n+1 个连续正整数连接成一个算式,问这个算式的值等于多少?13. (1分)(2018·哈尔滨模拟) 不等式组的解集是________.14. (1分) (2020八上·温岭期末) 如图,在△ABC和△DEF中,∠B=40°,∠E=140°,AB=EF=5,BC =DE=8,则两个三角形面积的大小关系为:S△ABC________S△DEF.(填“>”或“=”或“<”).15. (1分)(2020·北京模拟) 如图,抛物线与直线交于,两点,则不等式的解集是________.16. (1分)在平面直角坐标系xOy中,点A1 , A2 , A3 ,…和B1 , B2 , B3 ,…分别在直线y=kx+b 和x轴上.△OA1B1 ,△B1A2B2 ,△B2A3B3 ,…都是等腰直角三角形,如果A1(1,1),A2(),那么点An的纵坐标是________.三、解答题 (共9题;共85分)17. (5分)(2012·钦州) 计算:2﹣1+|﹣3|﹣ +(π﹣3)0 .18. (5分)(2018·永定模拟) 先化简,再求值: ,其中.19. (6分) (2017八下·宝安期中) 如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1) AB的长等于________;(结果保留根号)(2)①把△ABC向下平移5个单位后得到对应的△A1B1C1 ,画出△A1B1C1 ,求点A1的坐标。
黑龙江省大庆市杜尔伯特县2017届中考一模数学试卷(含解析)
2017年黑龙江省大庆市杜尔伯特县中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.2.实数a,b,c在数轴上的对应点的位置如图所示,下列各项成立的是()A.c﹣b>a B.b+a>c C.ac>b D.ab>c3.下列四个命题:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.其中正确的命题个数有()A.4个B.3个C.2个D.1个4.当x<a<0时,x2与ax的大小关系是()A.x2>ax B.x2≥ax C.x2<ax D.x2≤ax5.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则tanA 的值是()A.B.C.2 D.6.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.4 B.5 C.6 D.77.小明因流感在医院观察,要掌握他在一周内的体温是否稳定,则医生需了解小明7天体温的()A.众数 B.方差 C.平均数D.频数8.如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个B.1个C.2个D.3个9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c ﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有()A.1 B.2 C.3 D.410.如图,边长为4的正方形ABCD内接于点O,点E是上的一动点(不与A,B重合),点F是上的一点,连接OE,OF,分别与AB,BC交于点G,H,且∠EOF=90°,有以下结论:①=;②△OGH是等腰三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+.其中正确的是()。
黑龙江省大庆市数学中考一模试卷
黑龙江省大庆市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·三明模拟) 的值为()A .B . -C . 9D . -92. (2分) (2017七上·揭西月考) 小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是()A .B .C .D .3. (2分)若(x﹣3)(x+5)=x2+ax+b,则a+b的值是()A . ﹣13B . 13C . 2D . ﹣154. (2分)下列式子中,表示y是x的正比例函数的是()A . y=B . y=x+25. (2分)如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A . 1个B . 2个C . 3个D . 4个6. (2分)(2017·莒县模拟) 将直线y=2x+1变成y=2x﹣1经过的变化是()A . 向上平移2个单位B . 向下平移2个单位C . 向右平移2个单位D . 向左平移2个单位7. (2分)如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A . 35°B . 45°C . 50°D . 55°8. (2分)如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长是()C . 8cmD . 10cm9. (2分) (2017九上·南山月考) 如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD 于点F,垂足为点G,连接CG,下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值﹣1.其中正确的说法有()个.A . 4B . 3C . 2D . 110. (2分)如图是某个二次函数的图象,根据图象可知,该二次函数的表达式是()A . y=x2﹣x﹣2B . y=﹣ x2﹣ x+2C . y=﹣ x2﹣ x+1D . y=﹣x2+x+2二、填空题 (共4题;共5分)11. (1分) (2019七下·韶关期末) 比较大小: __ .12. (1分)(2016·德州) 正六边形的每个外角是________度.13. (2分) (2019八下·吉林期末) 如图,菱形中,垂直平分,垂足为,.那么菱形的对角线的长是________ .14. (1分)如图:AB为⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于E点,已知AB=2DE,∠E=16°,则∠AOC的大小是________三、解答题 (共11题;共77分)15. (5分)计算(1)(2)16. (5分) (2019八上·黔南期末) 先化简,再求值:,其中a=17. (5分) (2019八下·抚州期末) 在正方形网格中,点A、B、C都是格点,仅用无刻度的直尺按下列要求作图.(1)在图1中,作线段AB的垂直平分线;(2)在图2中,作∠ABC的角平分线.18. (5分) (2019八上·灵宝月考) 如图,在四边形ABCD中,AB//CD,∠BAD和∠ADC的平分线恰好交于BC 边上的点E处。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大庆市中考数学模拟试卷(一)
一、选择题(本大题共10小题,每小题3分,共30分)
1.(3分)数据显示,2015年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数法表示应为()
A.5.166×107B.5.166×108C.51.66×106D.0.5166×108
2.(3分)实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()
A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a 3.(3分)下列说法正确的是()
A.对角线相等的四边形是矩形
B.一组对边相等一组对边平行的四边形是平行四边形
C.对角线垂直且相等的四边形是正方形
D.一组对边平行一组对角相等的四边形是平行四边形
4.(3分)下列实数最小的是()
A.B.C.﹣1 D.2﹣
5.(3分)甲、乙两箱内分别装有除颜色外其他均相同的2个小球,甲箱球的颜色分别为红、黄;乙箱球的颜色分别为红、黑;小明同时从甲、乙两个箱子中各取出一个小球(同一箱中每球被取出的机会相等),则小明取出的两个小球颜色相同的概率为()
A.B.C.D.
6.(3分)由若干个相同的小正方体搭成的几何体的主视图、左视图如图所示,则搭成这个几何体的小正方体的个数最少有()
A.4个 B.6个 C.8个 D.10个
7.(3分)下列图形有4条对称轴的是()
A.矩形B.菱形C.正三角形D.正方形
8.(3分)如图,点P为正方形ABCD内一点,从①PA=PB;②∠PAB=15°;③∠ADP=30°三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,命题正确的个数为()
A.0个 B.1个 C.2个 D.3个
9.(3分)点(x1,y1)、(x2,y2)、(x3,y3)在反比例函数的图象上,且x1<0<x2<x3,则有()
A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y2<y1
10.(3分)设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=kx+b(k≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()
A.a(x1﹣x2)=k B.a(x2﹣x1)=k C.a(x1﹣x2)2=k D.a(x1+x2)2=k 二、填空题(本大题共8小题,每小题3分,共24分)
11.(3分)在函数中,自变量x的取值范围为.
12.(3分)若x2+4x+m=(x﹣2)(x+n),则m+n=.
13.(3分)将一副三角尺按如图所示的方式叠放(两条直角边重合),则∠α的度数是.
14.(3分)若一组数据2,3,x的方差与另一组数据12,13,14的方差相等,则x的值为.
15.(3分)下列图案是用长度相同的火柴棒按一定规律拼搭而成的,第1个图案需4根火柴棒,第2个图案需10根火柴棒,第3个图案需16根图案…按此规律,第n个图案需根火柴棒.
16.(3分)如图,九年级某班数学兴趣小组利用数学活动课时间测量位于铁人纪念馆台阶顶部铁人雕像的高度,已知台阶坡面与水平面的夹角∠BDC=30°,台阶总高BC=5m,组员从台阶底部D处沿台阶前行8m到达E点,在点E处测得雕像顶端A的仰角为60°,则雕像AB的高度为m.
17.(3分)如图,在Rt△ABC中,∠A=60°,AB=2,以点B为圆心,BC为半径的弧交AB于点D,以点A为圆心,AC为半径的弧交AB于点E,则图中阴影部分的面积为.
18.(3分)二次函数y=ax2﹣2ax﹣1+a(a≠0)恒过一定点,该定点坐标为.
三、解答题(本大题共10小题,共66分)
19.(4分)计算:(﹣)﹣1﹣|1﹣|+(π﹣3.14)0+2sin45°.
20.(4分)已知x﹣y=,z﹣y=﹣,求x2+y2+z2﹣xy﹣yz﹣xz的值.21.(5分)解不等式组,并求其最大整数解.
22.(6分)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?
23.(7分)某中学为了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,绘制成如下两幅尚不完整的统计图,请根据图中提供的信息,解答下列问题:
(1)补全条形统计图;
(2)求作业完成时间在1.5﹣2h的部分对应扇形的圆心角的度数;
(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5h内完成家庭作业?
24.(7分)如图,在四边形ABCD中,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,若AD=3,BC=5.
(1)求证:AE=BE;
(2)求EF的长.
25.(7分)如图,矩形OABC的顶点A,C分别在x,y轴的正半轴上,D为对角线OB的中点,反比例函数y=在第一象限内的图象经过点D,且与AB、BC分别交于点E,F,点B的坐标为(2,2).
(1)求反比例函数的解析式;
(2)连接DE,求△BDE的面积;
(3)直接写出在第一象限内当x满足什么条件时,直线FD的函数值大于反比例
函数y=的函数值.
26.(8分)甲、乙两车从A地出发匀速行驶至B地,在整个行驶过程中,甲、乙两车离开A地的距离y1(单位:km),y2(单位:km)关于甲车行驶的时间t (单位:h)的函数关系如图所示,根据图象解答下列问题:
(1)求乙车的速度;
(2)乙车出发多长时间追上甲车?
(3)当甲、乙两车相距50km时,求t的值.
27.(9分)如图,△ABC中,∠C=90°,AC=3,AB=5,点O在BC边的中线AD 上,⊙O与BC相切于点E,且∠OBA=∠OBC.
(1)求证:AB为⊙O的切线;
(2)求⊙O的半径;
(3)求tan∠BAD.
28.(9分)如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是﹣2.
(1)求这条直线的函数关系式及点B的坐标.
(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.
(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?
2017年黑龙江省大庆市中考数学模拟试卷(一)
一、选择题(本大题共10小题,每小题3分,共30分)
1.A;2.C;3.D;4.C;5.C;6.A;7.D;8.D;9.B;10.B;
二、填空题(本大题共8小题,每小题3分,共24分)
11.x≥0且x≠2;12.﹣6;13.75°;14.1或4;15.(6n﹣2);16.2;17.;18.(1,﹣1);
三、解答题(本大题共10小题,共66分)
19.;20.;21.;22.;23.;24.;25.;26.;27.;28.;。