烟气脱硝技术
烟气脱硫脱硝工艺技术包括
烟气脱硫脱硝工艺技术包括烟气脱硫脱硝是一种重要的环保工艺,用于降低燃煤电厂等工业设施排放的二氧化硫(SO2)和氮氧化物(NOx)的浓度,减少大气污染物的排放。
以下将介绍烟气脱硫脱硝的一些常见工艺技术。
烟气脱硫技术主要有湿法脱硫和干法脱硫两种方法。
湿法脱硫是指采用碱性溶液或氧化物溶液来吸收烟气中的SO2。
常见的湿法脱硫工艺包括石灰石-石膏法、海水碱法、氨法、盐酸法等。
其中,石灰石-石膏法是应用最广泛的湿法脱硫工艺,其原理是利用石灰石和水反应生成石膏,从而吸收SO2。
湿法脱硫工艺的优点是脱硫效率高,缺点是设备复杂、运行成本高,对处理后的废水处理也需要考虑。
干法脱硫是指在低温和正常大气压下,利用吸收剂吸附或反应吸收烟气中的SO2。
常见的干法脱硫工艺包括固体吸收剂法、熔融浸渍法、压缩空气脱硫法等。
干法脱硫工艺的优点是设备简单、运行成本相对较低,缺点是脱硫效率相对较低。
烟气脱硝技术主要包括选择性催化还原(SCR)和选择性非催化还原(SNCR)两种方法。
SCR是指在特定催化剂(如钒钛催化剂)的作用下,将烟气中的NOx与氨(NH3)发生催化还原反应生成无害的氮气和水。
SCR工艺的优点是脱硝效率高,可以达到90%以上,缺点是需要使用和处理大量的氨溶液。
SNCR是指在高温和足够的还原剂(如尿素或氨水)存在的条件下,通过非催化反应将烟气中的NOx还原为氮气。
SNCR工艺的优点是设备简单,运行成本较低,缺点是脱硝效率相对较低。
此外,还有一些新型的烟气脱硫脱硝技术得到了研发和应用。
例如,湿法脱硫和SCR脱硝的联合工艺可以同时达到脱硫和脱硝的目的;脱硝除了SCR和SNCR之外,还可以使用低温等离子体脱硝、催化剂脱硝、吸收剂脱硝等技术。
这些新技术有助于提高脱硫脱硝的效率和降低运行成本。
综上所述,烟气脱硫脱硝是一项重要的环境保护技术,通过使用不同的工艺和技术,可以有效地降低燃煤电厂等工业设施的SO2和NOx排放,减少大气污染,保护环境。
烟气脱硝技术的研究与发展
烟气脱硝技术的研究与发展随着各种工业生产的快速发展,工业废气排放的问题逐渐引起人们的关注。
特别是硫化物和氮氧化物等有害气体的排放,严重危害着环境和人们的身体健康。
其中,氮氧化物是化学污染物中的一种主要来源,这类有害气体会产生酸雨和光化学烟雾等环境问题,还会对公众的健康造成重大威胁。
针对这一问题,烟气脱硝技术的研究与发展在近年来越来越受到关注。
一、烟气脱硝技术的定义烟气脱硝技术是指对工业废气中的氮氧化物进行处理,使其转化为氮气和水,并将废气排入大气中,对环境造成的影响降至最低程度。
这项技术是解决氮氧化物污染问题的主要方法之一,可以广泛应用于电力、冶金、化工等行业。
目前,烟气脱硝技术已经成为工业污染治理领域的一个热点。
二、烟气脱硝技术的发展历程烟气脱硝技术的发展历程可以追溯到上世纪七十年代末。
当时,以美国、日本、德国为代表的发达国家开始研究氮氧化物排放控制技术。
最早应用的是选择性催化还原(SCR)技术,这种技术利用催化剂将氮氧化物转化为氮和水。
随着技术的不断完善,烟气脱硝技术也逐渐取得了重要的进展。
目前,烟气脱硝技术主要分为非催化脱硝和催化脱硝两类。
非催化脱硝是指利用适当的还原剂或氨水将氮氧化物转化为氮和水的方法。
这种方法的优点是投资和运行成本较低,适用于小型和中型锅炉。
但相对的,它有不稳定、运行受环境温度、氧含量等条件影响大等缺点。
而催化脱硝则是通过催化剂将氮氧化物转化为氮和水,具有高效、稳定等特点,是目前比较主流的技术。
三、烟气脱硝技术的研究现状随着环保意识的普及和烟气脱硝技术的不断发展,目前烟气脱硝技术的研究也正在不断深入。
一方面,科研人员对脱硝技术的催化剂进行了不断优化和改良,使其具有更高效、更稳定的特性。
例如,将V2O5–WO3/TiO2催化剂改进后能够更好地抑制SO2对NOx的影响;将Mn-Mo-Al催化剂改良后,可以提高催化剂对NO 的选择性。
这些改进和优化可以让烟气脱硝技术适用于更多的工业场景,解决更为复杂的污染问题。
SNCR烟气脱硝工艺简介
SNCR烟气脱硝工艺简介1、工艺比较目前,烟气脱硝工艺技术主要有三类:SNCR、SCR和SNCR-SCR,三种技术性能比较见表1。
表1选择性还原脱硝技术性能比较2、SNCR工艺简介选择性非催化还原法(SNCR)烟气脱硝技术是目前主要的烟气脱硝技术之一。
在炉膛850〜1000℃这一狭窄的温度范围内、在无催化剂作用下,NH3或尿素等氨基还原剂可选择性地还原烟气中的NOx,基本上不与烟气中的02作用,据此发展了SNCR法。
在800〜1250℃范围内,NH3或尿素还原NOx的主要反应为:氨为还原剂4NH3 + 4NO + O2 - 4 N2 + 6H2O尿素为还原剂CO (NH2)2- 2 HN2 + CONH2 + NO - N2 + H2ONO + CO - N2 + CO2当温度过高时,部分氨还原剂就会被氧化而生成NO X, 发生副反应:4NH3+ 5O2- 4NO + 6H2OSNCR工艺是一种成熟的脱硝技术,在国内外均有广泛的应用。
尤其在小型的燃煤、燃油、垃圾焚烧、燃气机组或工业锅炉上,SNCR 具有其一定的优越性。
SNCR系统较为简单,可以根据机组运行状况灵活处理,不受机组燃料和负荷的变化而受影响,施工周期短,SNCR 对其他系统的运行(如空气预热器和除尘器)都不产生干扰及增加阻力。
同SCR 烟气脱硝技术相比,SNCR的投资与运行成本相对较低,没有额外的SO2/SO3转化率,非常适和老厂的脱硝改造。
若需进一步降低氮氧化物的浓度,可在尾部加设SCR反应器,形成SNCR-SCR 混合技术,只需加装少量的催化剂就可满足进一步的排放要求。
3、SNCR 的优点与其它脱硝技术相比,SNCR技术具有以下优点:1)脱硝效果令人满意:SNCR技术应用在大型煤粉锅炉上,长期现场应用一般能够达到30〜50%的脱硝率,在循环流化床锅炉上增设SNCR装置通常可达到60%以上的脱硝效率。
2)还原剂多样易得:SNCR技术中常用的还原剂,包括液氨、氨水、尿素等。
烟气脱硝技术解析
国内主流烟气脱硝技术解析氮氧化物(NO )是污染大气的主要污染物之一,主要来自化石燃料的燃烧和硝酸、电镀等工业废气以及汽车排放的尾气,其特点是量大面广。
难以治理。
含有氮氧化物的废气排放,会给生态环境和人类生活、生产带来严重的危害。
根据国家环境保护总局有关研究的初步估算,2000年中国NO 的排放量约为1500万t,其中近7O%来自于煤炭的直接燃烧,固定源是NO 的主要来源。
鉴于中国今后的能源消耗量将随着经济的发展而不断增长,因此,NO 的排放量也将持续增加。
据估算,到2010年,中国NO 排放量将达到2194万t。
如果不加强控制,NO 将会对大气环境造成更为严重的污染。
目前,处理氮氧化物废气的方法主要有液体吸收法、固体吸附法、等离子活化法、催化还原法、催化分解法、生物法等,近年来随着世界环境问题的日益突出工业释放的废气所造成的空气污染受到广泛的关注。
本文介绍几种比较有价值的烟气脱硝技术。
1、干法烟气脱硝技术干法脱硝技术主要有:选择性催化还原法、选择性非催化还原法、联合脱硝法、电子束照射法和活性炭联合脱硫脱硝法。
选择性催化还原法是目前商业应用最为广泛的烟气脱硝技术。
其原理是在催化剂存在的情况下,通过向反应器内喷入氨或者尿素等脱硝反应剂,将一氧化氮还原为氮气,脱硝效率可达90%以上,主要由脱硝反应剂制备系统、反应器本体和还原剂喷淋装置组成。
选择性非催化还原法工艺原理是在高温条件下,由氨或其他还原剂与氮氧化物反应生成氮气和水。
该工艺存在的问题是:由于温度随锅炉负荷和运行周期变化及锅炉中氮氧化物浓度的不规则性,使该工艺应用时变得较复杂。
联合烟气脱硝技术结合了选择性和非选择性还原法的优势,但是使用的氨存在潜在分布不均,目前没有好的解决办法。
活性炭法是利用活性炭特有的大表面积、多空隙进行脱硝。
烟气经除尘器后在90~150℃下进入炭床(热烟气需喷水冷却)进行吸附。
优点是吸附容量大,吸附和催化过程动力学过程快,可再生,机械稳定性高。
烟气脱硝方案范文
烟气脱硝方案范文烟气脱硝是指通过吸收剂将烟气中的二氧化硫(SO2)转化为硫酸及硫酸盐的过程,从而达到减少大气污染物排放的目的。
烟气脱硝方案主要包括湿法脱硫和干法脱硫两种方法。
1.湿法脱硫方案:湿法脱硫是指通过将烟气与吸收剂接触,利用化学反应及物理吸附来达到脱除烟气中SO2的目的。
常见的湿法脱硫方法有石灰石法、海水法和氨法。
-石灰石法:石灰石法是一种较为常用的湿法脱硫方法。
其原理是将石灰石(CaCO3)与烟气中的SO2反应生成硫酸盐,并通过过滤器、沉淀器等设备将产生的硫酸盐分离出来。
该方法具有处理效率高、工艺简单等优点,但同时也存在对设备腐蚀、排放废水等问题。
-海水法:海水法是将海水中的钙离子与烟气中的SO2反应生成硫酸盐的方法。
该方法处理过程中会产生大量的氯化物废水,所以需要进行后续的处理。
相比于石灰石法,海水法具有处理效率高、经济性好等优点。
-氨法:氨法即利用氨气将烟气中的SO2转化为硫酸盐。
其原理是将烟气与氨气混合,在反应器中发生反应生成顶转硝酸和硝酸铵,然后再通过进一步反应生成硫酸盐。
氨法具有脱硫效率高、废水量小等优点,但同时也存在氨气泄露、产生的废水处理问题。
2.干法脱硫方案:干法脱硫是指将含硫燃料燃烧产生的SO2转化为其他化合物,或通过吸附剂去除烟气中的SO2、干法脱硫方法可根据工艺不同分为焙烧法、催化氧化法和吸附法等。
-焙烧法:这种方法是通过高温焙烧含硫燃料,使SO2转化为SO3,然后与吸收剂反应生成硫酸盐。
焙烧法处理过程简单,但对设备要求高,同时还存在二次污染及高能耗问题。
-催化氧化法:这种方法是利用催化剂催化烟气中的SO2氧化成SO3,然后与吸附剂进行反应。
催化氧化法具有高效、可重复使用催化剂、投资和运营成本低等优点。
-吸附法:吸附法主要使用活性炭、沸石等材料对烟气中的SO2进行吸附。
吸附法具有处理效率高、对设备要求低等优点,但同时也存在吸附剂再生与废物处理难题。
总结起来,烟气脱硝方案有湿法脱硫和干法脱硫两种主要方法。
烟气脱硫脱硝技术
Ca 4 2 S H 2 O O Ca 42 H S 2 O O
2 H S 4 2 O C2 a H 2 O C C O 4 2 a H 2 O S C 2 O O
.
31
化学反应方程式
吸收反应
S2O Ca 3 C CO a 3 S C2 O O 2 S 2 O H 2 O C2 a C C ( H a 3 O ) 2 S C O 2 O
.
27
化学反应机理
1. SO2、SO3和HCl的吸收
S2O H 2O H3 SH O H H3 S O 2H S3 2 O S3 O H 2O H 2S4 O
烟气中的SO2和SO3溶于石 灰石浆液的液滴中,SO2 被水吸收后生成亚硫酸,
亚硫酸电离成H+和HSO3, 一部分HSO3被烟气中的氧 氧化成H2SO4 ;SO3溶于 水生成H2SO4 ;HCl也极 容易溶于水。
.
7
FGD发展现状
石灰/石灰石湿法工艺为主,占82% 喷雾干燥法,占11%,其余为氧化镁法、氨法、CFB以及LIFAC 美国:石灰/石灰石湿法工艺,抛弃法占85%左右; 日本:石灰/石灰石湿法工艺,回收法占95%以上; 德国、瑞典、芬兰等国,喷雾干燥法、LIFAC、CFB法应用较广 中国:技术引进和自主开发。基本掌握300MW以上的石灰石-石
消石灰容易吸收空气中的CO2,还原成活性低的CaCO3。 在温度较低时具有很高的与SO2及SO3反应活性,在脱
除SO2的同时,几乎能够脱除烟气中全部的SO3。 消石灰一般应用在旋转喷雾干燥、炉内喷钙加尾部增
湿活化、烟气循环流化床脱硫等工艺,也可作为管道 喷射脱硫工艺的吸收剂。
.
13
氨基脱硫剂
.
15
18个SCR烟气脱硝技术详解(解答)
18个SCR烟气脱硝技术详解(解答)1、什么是SCR烟气脱硝技术?答:SCR烟气脱硝技术即选择性催化还原技术(SelectiveCatalyticReduction,简称SCR),是向催化剂上游的烟气中喷入氨气或其它合适的还原剂,利用催化剂(铁、钒、铬、钴或钼等碱金属)在温度为200-450℃时将烟气中的NOx 转化为氮气和水。
由于NH3具有选择性,只与NOx发生反应,基本不与O2反应,故称为选择性催化还原脱硝。
在通常的设计中,使用液态纯氨或氨水(氨的水溶液),无论以何种形式使用氨,首先使氨蒸发,然后氨和稀释空气或烟气混合,最后利用喷氨格栅将其喷入SCR反应器上游的烟气中。
2、SCR法的优点有哪些?答:SCR法是应用最多、技术最成熟的一种烟气脱硝技术。
该法的优点是:由于使用了催化剂,故反应温度较低;净化率高,可高达85%以上;工艺设备紧凑,运行可靠;还原后的氮气放空,无二次污染。
3、SCR法的缺点有哪些?答:SCR法存在一些明显的缺点:烟气成分复杂,某些污染物可使催化剂中毒;高分散度的粉尘微粒可覆盖催化剂的表面,使其活性下降;系统中存在一些未反应的NH3和烟气中的SO2作用,生成易腐蚀和堵塞设备的硫酸氨(NH4)2SO4和硫酸氢氨NH4HSO4,同时还会降低氨的利用率;投资与运行费用较高。
4、SCR系统里的NOx是如何被反应的?在SCR反应器内,NO通过以下反应被还原:4NO+4NH3+O2→4N2+6H2O6NO+4NH3→5N2+6H2O。
当烟气中有氧气时,反应第一式优先进行,因此,氨消耗量与NO还原量有一对一的关系。
在锅炉的烟气中,NO2一般约占总的NOx浓度的5%,NO2参与的反应如下:2NO2+4NH3+O2→3N2+6H2O6NO2+8NH3→7N2+12H2O。
上面两个反应表明还原NO2比还原NO需要更多的氨。
在绝大多数锅炉的烟气中,NO2仅占NOx总量的一小部分,因此NO2的影响并不显著。
scr脱硝技术 工艺
SCR脱硝技术工艺及应用SCR脱硝技术是目前应用最广泛的烟气脱硝技术之一。
其原理是在催化剂的作用下,还原剂(液氨)与烟气中的氮氧化物反应生成无害的氮和水。
SCR脱硝工艺流程主要包括还原剂的准备、烟气预处理、催化剂床层和烟气净化四个步骤。
SCR脱硝技术具有脱硝效率高、运行可靠、便于维护等优点,但也存在催化剂失活和尾气中残留等缺点。
SCR脱硝技术的应用范围广泛,包括火电厂、钢铁厂、化工厂等。
1. SCR脱硝技术原理SCR脱硝技术的原理是在催化剂的作用下,还原剂(液氨)与烟气中的氮氧化物(NOx)反应生成无害的氮和水。
还原剂与NOx的反应原理还原剂与NOx的反应可以表示为以下化学方程式:4NH3 + 4NO + O2 → 6H2O + 4N2该反应是可逆反应,需要在一定的温度和压力下进行。
在催化剂的作用下,该反应可以向右进行,生成无害的氮和水。
催化剂的作用催化剂是SCR脱硝技术的关键。
催化剂可以降低反应的活化能,从而提高反应的速率。
目前,SCR脱硝技术中常用的催化剂有三元催化剂和二元催化剂。
三元催化剂由钒(V)、钼(Mo)和铌(Nb)等金属组成。
二元催化剂由钒(V)和钼(Mo)等金属组成。
反应温度和压力的影响反应温度和压力对SCR脱硝技术的影响较大。
反应温度越高,反应速率越快,但催化剂的活性越低。
反应压力越高,反应速率越快,但催化剂的寿命越短。
一般来说,SCR脱硝技术的反应温度范围为300-400℃,压力范围为1-2MPa。
2. SCR脱硝工艺流程SCR脱硝工艺流程主要包括还原剂的准备、烟气预处理、催化剂床层和烟气净化四个步骤。
还原剂的准备还原剂通常为液氨。
液氨由氨罐储存,在进入SCR系统之前需要进行蒸发。
烟气预处理烟气预处理的目的是去除烟气中的杂质,以提高催化剂的活性和使用寿命。
烟气预处理通常包括以下步骤:酸碱洗涤:去除烟气中的酸性和碱性物质。
干燥:去除烟气中的水分。
除尘:去除烟气中的粉尘。
催化剂床层催化剂床层是SCR脱硝技术的核心部分。
常见烟气脱硫脱硝技术介绍
常见烟气脱硫脱硝技术介绍1、磷铵肥法(PAFP)烟气脱硫技术磷铵肥法(Phosphate Ammoniate Fertilizer Process,简称PAFP),此技术的特点是将烟气中的SO2脱除并针对我国硫资源短缺的现状,回收SO2取代硫酸生产肥料,在解决污染的同时,又综合利用硫资源,是一项化害为利的烟气脱硫新方法。
2、活性炭纤维法(ACFP)烟气脱硫技术活性炭纤维法(Activated Carbon Fiber Process,简称ACFP)烟气脱硫技术是采用新材料脱硫活性炭纤维催化剂(DSACF)脱除烟气中SO2并回收利用硫资源生产硫酸或硫酸盐的一项新型脱硫技术。
该技术脱硫率可达95%以上,单位脱硫剂处理能力会高于活性炭脱硫一个数量级以上(一般GAC处理能力为102Nm3/h.t,而ACF可达104Nm3/h.t)。
由于工艺过程简单,设备少,操作简单。
投资和运行成本低,且能在消除SO2污染同时回收利用硫资源,因而可在电厂锅炉烟气、有色冶炼烟气、钢铁厂烧结烟气及各种大中型工业锅炉的烟气SO2污染控制中采用,改善目前烟气脱硫技术装置“勉强上得起,但运行不起”的状况。
该烟气脱硫技术按10万KW机组锅炉机组烟气计,装置投资费用3500万,年产硫酸3万~4万吨。
仅用于全国高硫煤电厂脱硫每年约可减少SO2排放240万吨,副产硫酸360万吨,产值可达数十亿元。
3、软锰矿法烟气脱硫资源化技术MnO2是一种良好的脱硫剂。
在水溶液中,MnO2与SO2发生氧化还原发应,生成了MnSO4。
软锰矿法烟气脱硫正是利用这一原理,采用软锰矿浆作为吸收剂,气液固湍动剧烈,矿浆与含SO2烟气充分接触吸收,生成副产品工业硫酸锰。
该工艺的脱硫率可达90%,锰矿浸出率为80%,产品硫酸锰达到工业硫酸锰要求(GB1622-86)。
常规生产工业硫酸锰方法是:软锰矿粉与硫酸和硫精沙混合反应,产品净化得到工业硫酸锰。
由于我国软锰矿品位不高,硫酸耗量增大,成本上升。
天然气燃烧的烟气脱硫脱硝技术
天然气燃烧的烟气脱硫脱硝技术在当前环境保护和空气质量改善的背景下,天然气燃烧的烟气脱硫脱硝技术的研究和应用日益受到关注。
天然气燃烧产生的烟能源烟气中的氮氧化物(NOx)和二氧化硫(SO2)是对环境和人体健康危害最大的污染物之一,因此有效地脱除烟气中的NOx和SO2成为了急需解决的问题。
本文将从脱硫、脱硝两个方面介绍天然气燃烧的烟气脱硫脱硝技术的研究进展和应用情况。
一、天然气燃烧烟气脱硫技术1.湿法脱硫技术湿法脱硫技术是目前应用最为广泛的烟气脱硫技术之一,其原理是利用含有碱性氧化剂的溶液与烟气中的SO2进行反应,生成易于去除的硫酸盐。
常用的湿法脱硫工艺包括石膏法、氧化吸收法和氨法等。
(1)石膏法石膏法是一种成熟的湿法脱硫技术,其核心是利用石膏颗粒与烟气中的SO2进行反应,生成硫酸钙,最终生成石膏。
该技术具有投资和操作成本较低的优势,广泛应用于燃煤电厂中,但其对高温烟气中的SO2去除效果有限。
(2)氧化吸收法氧化吸收法是一种高效的湿法脱硫技术,其核心是通过将烟气中的SO2氧化为亚硫酸氢钠,再与氢氧化钠溶液反应生成硫代硫酸钠,并最终沉淀为硫酸钠。
该技术对烟气中的SO2去除效果较好,但操作复杂且投资成本较高。
(3)氨法氨法是一种新兴的湿法脱硫技术,其核心是将氨气引入烟气中,与SO2反应生成亚硫酸氨盐,再通过氧化反应生成硫酸铵。
该技术对烟气中的SO2去除效果较好,且适用于高温和高硫煤气的脱硫,但对运行和维护要求较高。
2.干法脱硫技术干法脱硫技术是一种较为成熟的烟气脱硫技术,其核心是利用固体吸收剂吸附烟气中的SO2,达到脱硫的目的。
常用的干法脱硫工艺包括固体氧化物法、活性炭法和氧化剂法等。
(1)固体氧化物法固体氧化物法是一种常用的干法脱硫技术,其主要原理是将固体吸附剂喷入烟气中,与SO2发生化学反应生成易于去除的硫酸盐。
常用的固体吸附剂包括石灰石和活性系煤灰等。
该技术具有较高的脱硫效率和成本效益,但对烟气颗粒物的去除效果较差。
脱硝的方法
脱硝的方法脱硝技术指的是去除烟气中NOx的一种技术,可分为氧化法、选择性催化还原(SCR)、选择性非催化还原(SNCR)和低温脱硝等多种方式,下面我们来介绍这些方法。
1.氧化法氧化法又称为催化氧化脱硝法,其基本原理为:将异丙醇或氨等还原性化合物通过反应转化为NOx,再将其催化氧化形成NO2,最后在烟气中与NH3或还原性有机化合物反应,使氮氧化物转化为N2和H2O。
氧化法能够回收SO2或HCl等污染物,但操作难度较大,成本较高。
2.SCR技术SCR即选择性催化还原脱硝技术,是通过在一定温度下催化剂的作用下,将NOx转化为N2和H2O的技术。
该技术可以利用各种金属氧化物、碱金属等作为催化剂,通常选择的金属有铜铬(Cu-Cr)和钒钨(V-W)催化剂。
催化剂具有反应速率高、反应效率高和使用寿命长等优点。
SCR技术还可以是排放N2O等温室气体的同时削减NOx的排放。
3.SNCR技术SNCR即选择性非催化还原脱硝技术,是在较高温度下使用还原剂与NOx反应,进行脱硝的方法。
其原理是在一定温度下,将NH3、尿素等还原剂喷入烟道中与NOx反应,生成N2和H2O,该技术的优点是具有成本低、安装方便及适用范围广等特点。
然而该技术的缺点在于在高温烟气中会产生N2O、CO和SO2等副产物。
4.低温脱硝低温脱硝技术通常使用包括一氧化碳、乙醇、丙烷、甲基丙烷、二甲基酮等有机还原剂,通过在低温下与NOx反应,形成N2和H2O,可达到脱硝效果。
这种技术也可以使用活性炭、活性氢化硅等固体还原剂进行反应,在NOx脱除效率方面与SCR技术相似。
不过该技术对还原剂和催化剂的选择有一定限制,并且还需要进行较为严格的控制。
总的来说,脱硝技术可以有效地降低燃煤和燃油等燃料产生的NOx 排放,其中氧化法、SCR技术和SNCR技术普遍被应用于不同的场合。
低温脱硝技术相对较为新颖,效率和应用范围也在不断扩大,未来有望在大规模应用中发挥重要作用。
脱硝的原理与工艺是什么
脱硝的原理与工艺是什么脱硝是指将烟气中的氮氧化物(NOx)按一定的方式和条件转化为无害物质的过程。
脱硝的原理一般分为催化法和非催化法两种方式,工艺主要有选择性催化还原法、非选择性催化还原法、吸收法、灭火加膨胀法等。
下面我将详细介绍这些原理和工艺。
1. 选择性催化还原法(SCR)选择性催化还原法是目前应用最广泛的脱硝技术之一。
其原理是通过加入氨气等还原剂,在SCR催化剂的作用下,将烟气中的NOx还原为氮(N2)和水(H2O),从而达到脱硝目的。
SCR技术有高温SCR和低温SCR两种情况。
高温SCR适用于烟气温度大约在350-400,低温SCR适用于烟气温度大约在200-300之间。
SCR工艺简单可靠,脱硝效率高,但对催化剂要求较高,操作条件复杂。
2. 非选择性催化还原法(SNCR)非选择性催化还原法是通过加入氨水、尿素等还原剂,在高温下,将烟气中的NOx与还原剂在SNCR催化剂的作用下发生化学反应,从而将NOx还原为氮(N2)和水(H2O)。
SNCR技术适用于烟气温度高于850的情况。
非选择性催化还原法工艺相对简单,对催化剂的要求较低,但其脱硝效率受到多种因素影响,如温度、还原剂的投入量、混合时间等。
3. 吸收法吸收法是通过将烟气通过吸收剂(如氨水、氨碱溶液)中,NOx会与吸收剂中的氨在催化助剂的作用下发生反应,生成沉淀物(氮化物)和水,从而实现脱硝。
吸收法适用于低浓度、高温、大气流量的烟气处理。
吸收法工艺相对简单、操作灵活,但对吸收剂和催化助剂的选择和控制要求较高。
4. 灭火加膨胀法灭火加膨胀法是通过在燃烧炉中加入含有无机物的还原剂,在高温下发生还原反应,并产生大量的气体,通过产生的气体将燃烧室内的氧气稀释,达到降低温度和减少NOx生成的目的。
灭火加膨胀法工艺操作简单,对设备要求不高,但脱硝效果不稳定,易受燃烧条件和氧化剂浓度等因素影响。
总的来说,不同的脱硝原理和工艺适用于不同的烟气温度、浓度和条件。
脱硫脱硝工作原理
脱硫脱硝工作原理
脱硫脱硝是一种常用的大气污染物治理技术,主要用于去除烟气中的二氧化硫(SO2)和氮氧化物(NOx)。
其工作原理如下:
脱硫工作原理:
1. 湿法脱硫:将烟气与液体吸收剂(通常为石灰石浆或氨水)反应,在反应过程中,SO2与吸收剂中的氢氧根离子结合生成硫酸根离子,实现SO2的去除。
2. 干法脱硫:将烟气与干法脱硫剂(如石灰石或活性炭)接触,在高温下进行反应,SO2被吸附在脱硫剂表面或内部,从而去除SO2。
脱硝工作原理:
1. 选择性催化还原(SCR):将烟气中的NOx与氨(NH3)
或尿素(CO(NH2)2)在催化剂的作用下进行反应。
在SCR反
应器中,NOx与NH3发生催化还原反应生成氮气和水,从而
将NOx去除。
2. 选择性非催化还原(SNCR):在高温烟气中喷射氨水、尿
素水或氨气,NH3与NOx进行非催化还原反应,生成氮气和水,从而实现NOx的去除。
以上是脱硫脱硝工作原理的简要描述,具体的技术细节和工艺参数会基于具体的设备和工作要求而有所不同。
烟气脱硫脱硝原理
烟气脱硫脱硝原理
烟气脱硫脱硝是一种环保技术,它的原理是通过化学反应将烟气中的二氧化硫和氮氧化物转化为无害的物质,从而减少对环境的污染。
烟气脱硫的原理是利用一种叫做石灰石的物质,将其喷入烟气中,石灰石与二氧化硫反应生成硫酸钙,从而将二氧化硫转化为无害的物质。
这个过程中,石灰石会被消耗掉,需要不断地添加新的石灰石。
烟气脱硝的原理是利用一种叫做氨水的物质,将其喷入烟气中,氨水与氮氧化物反应生成氮和水,从而将氮氧化物转化为无害的物质。
这个过程中,氨水也会被消耗掉,需要不断地添加新的氨水。
烟气脱硫脱硝技术的应用可以有效地减少烟气对环境的污染,特别是对大气的污染。
在一些工业生产过程中,烟气中含有大量的二氧化硫和氮氧化物,如果不进行处理,这些物质会直接排放到大气中,对环境造成严重的污染。
而通过烟气脱硫脱硝技术的应用,可以将这些有害物质转化为无害物质,从而减少对环境的污染。
烟气脱硫脱硝技术是一种非常重要的环保技术,它可以有效地减少烟气对环境的污染,保护我们的环境和健康。
随着环保意识的不断提高,烟气脱硫脱硝技术的应用将会越来越广泛。
脱硝技术介绍
6.4 影响脱硝性能的因素
• (1)温度。当温度高于1200℃时,NH3会被氧化成NO,反而造成NOx排放浓度增大; 当温度低于800℃时,反应不完全,会造成“氨穿透”,氨逃逸率高,造成新的污染。 因此,最佳的温度区间是两种趋势对立统一的结果,一般控制在850-1100℃。
2)燃料型NOx,指燃料中含氮化合物在燃烧过程中进行热分解,继而进 一步氧化而生成NOx。其生成量主要取决于空气燃料的混合比。燃料 型NOx约占NOx总生成量的75%~90%。过量空气系数越高, NOx的 生成和转化率也越高。
3)快速型NOx,指燃烧时空气中的氮和燃料中的碳氢离子团如CH等反 应生成NOx。主要是指燃料中碳氢化合物在燃料浓度较高的区域燃烧 时所产生的烃,与燃烧空气中的N2 发生反应,形成的CN和HCN继续氧 化而生成的NOx。在燃煤锅炉中,其生成量很小,一般在燃用不含氮 的碳氢燃料时才予以考虑。
故一R工艺还原剂的选择
对于SCR工艺,选择的还原剂有尿素、氨水和纯氨。 ✓ 尿素法是先将尿素固体颗粒在容器中完全溶解,然后将溶液送 到水解槽中,通过热交换器将溶液加热至反应温度后与水反应生 成氨气; ✓ 氨水法,是将25%的含氨水溶液通过加热装置使其蒸发,形成
氨气和水蒸汽; ✓ 纯氨法是将液氨在蒸发槽中加热成氨气,然后与稀释风机的空 气混合成氨气体积含量为5%的混合气体后送入烟气系统。
基于控制Nox生成的措施,有以下3种低Nox燃烧技术: ➢ 1)空气分级燃烧 ➢ 2)燃料分级燃烧 ➢ 3)烟气再循环
3.3 空气分级燃烧
把供给燃烧区的空气量减少到 全部燃烧所需用空气量的70% 左右,从而即降低了燃烧区的 氧浓度也降低了燃烧区的温度 水平。因此,第一级燃烧区的 主要作用就是抑制NOx的生成 并将燃烧过程推迟。燃烧所需 的其余空气则通过燃烧器上面 的燃尽风喷口送入炉膛与第一 级所产生的烟气混合,完成整 个燃烧过程。
烟气脱硝技术-选择性催化还原法(SCR)技术
垃圾焚烧电站
1980
1982
1984
1986
1988
1990
精品课件
1992
1994
1996
1998
2003
7
德国安装SCR脱硝设备容量发展情况
安装SCR脱硝设备容量
30 000 MW el 25 000
20 000
15 000
li褐gn煤ite
oil油 bi烟tu煤minous coal
100 % 93 %
精品课件
热力型NOx的生成浓度与温度的关系
NO浓度(ppm)
800
700
600
500
400
系列1
300
200
100
0 1600
1650
1700 1750 1800 温度(摄氏度)
1850
1900
精品课件
B. 燃料型 NOX
燃料中的有机氮化合物在燃烧过程中氧化生成的氮氧化物 在煤粉燃烧中,约80%的NOx为燃料型
煤的燃烧方式对排放的影响
NO的生成及破坏与以下因素有关:
(a).煤种特性,如煤的含氮量,挥发份含量,燃料比FC/V以及V-H/V-N等。
(b).燃烧温度。
(c).炉膛内反应区烟气的气氛,即烟气内氧气,氮气,NO和CHi的含量。
(d).燃料及燃烧产物在火焰高温区和炉膛内的停留时间。
• 控制原理
精品课件
SCR设备容量在德国的发展情况
联邦污染物防治
法第13条例排放
标准(CO, NOx, SOx,HCI, HF, 粉 尘)
环境部长会议确定 控制NOx
安装脱硫设备容量:45 000MW 安装SCR脱硝设备容量:30 000MW
烟气脱硝(SCR)技术及相关计算
2021/3/27
CHENLI
10
脱硝反应器的总括图 (垂直流型)
NH3 喷嘴 (AIG) 催化剂框架结构
导叶片 整流器(缓冲层) 催化剂层
预留层
吹灰器 2021/3/27
催化剂载卸设备
CHENLI
烟气
11
2、液氨存储及供应系统
液氨存储及供应系统包括氨压缩机、液氨储罐、 液氨蒸发器、气氨罐废水箱、废水泵、废水坑 等。此套系统提供氨气供脱硝反应使用。液氨 的供应由液氨槽车运送,利用液氨卸料压缩机 将液氨由槽车输入液氨储罐内,储槽输出的液 氨在液氨蒸发器内蒸发为气氨,气氨经稀释后 供入脱硝系统。
烟气脱硝(SCR)技术及相关计算
2021/3/27
CHENLI
1
内容目录
1. 火电厂烟气脱硝基本概念 2. 氮氧化物生成机理 3. 减少氮氧化物排放的方法 4. 烟气脱硝SCR工艺 5. 运行注意事项 6. 氨消耗量的粗略计算
2021/3/27
CHENLI
2
1. 火电厂烟气脱硝基本概念
烟气脱硝是NOx生成后的控制措施,即对燃烧后产生 的含NOx的烟气进行脱氮处理的技术方法。
2021/3/27
CHENLI
16
催化剂堵塞和失效
反应器布置在高含尘烟气段,这里的烟气
未经过除尘,飞灰颗粒对催化剂的冲蚀和 沉积比较严重,会引起催化剂空隙堵塞现 象,甚至可能引起催化剂中毒,使催化剂 活性降低。为保证理想的脱除效率,催化 剂表面必须保持清洁,在反应器内安装吹 灰器对催化剂层进行定期清洁。
害,当要将氨系统管路打开时,需要用氮气冲 管置换后再进行作业。
2021/3/27
CHENLI
15
氨逃逸率
烟气脱硝原理
烟气脱硝原理
烟气脱硝是一种常用的大气污染物治理技术,它的原理是通过吸收剂与烟气中的氮氧化物(NOx)发生反应,将其转化为相对无害的氮气(N2)和水蒸气(H2O)。
烟气脱硝通常采用的主要装置是脱硝塔,也称作脱硝吸收塔。
脱硝塔内加入了脱硝剂,常用的脱硝剂包括氨(NH3)和尿素(CO(NH2)2)。
当烟气通过脱硝塔时,脱硝剂与烟气中的氮
氧化物发生反应,生成硝酸铵(NH4NO3)和水(H2O)。
硝酸铵会被吸附在脱硝塔内的填料上,随后周期性地通过水洗或者其他方法进行清除。
在脱硝过程中,脱硝剂的选择非常重要。
氨和尿素是常用的脱硝剂,其中氨是一种较为常见的选择。
氨可以与氮氧化物发生氧化还原反应,将其转化为氮气和水蒸气。
氨可以直接添加到烟气中,也可以通过再生脱硝法中的氨水溶液添加。
除了脱硝剂的选择,脱硝塔的设计和操作也非常关键。
脱硝塔内的气体流速、温度和湿度等参数需要被精确控制,以保证脱硝效果的稳定和可靠。
此外,脱硝塔的填料也会影响脱硝效率,常见的填料包括陶粒、泡沫塑料球和塔状填料等。
总的来说,烟气脱硝通过将烟气中的氮氧化物转化为无害的氮气和水蒸气,有效降低了大气污染物的排放。
正确选择脱硝剂,合理设计和操作脱硝塔,对于高效脱硝是非常重要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
德国ERC公司烟气脱硝技术
在烟气净化系统领域中,ERC公司是烟气脱硝方面的专家。
他们采用了选择性非催化还原法(SNCR)降低NOx,。
ERC公司力求提供技术可靠、成本低廉、脱硝率高的解决方案。
选用工艺流程时,必须考虑NOx的脱除程度、允许二次排放的最大浓度、燃烧炉的结构和燃料特性等诸多因素。
美国于70年代研制出SNCR脱硝工艺。
ERC对此工艺进行了改进,并应用在燃烧系统,可以很好地达到NOx排放限度,开发的特殊添加剂和还原剂可以有效防止硫酸氢氨盐所引起的腐蚀问题。
对于各种脱氮工艺,ERC公司都有专门的脱硝添加剂。
德国ERC公司有丰富的工程经验和大量的工程业绩。
德国ERC公司脱硝系统SNCR脱硝率最高可达80%。
德国ERC公司SNCR系统可以直接加入城市自来水进行稀释,降低了运行成本。
具有最好的添加剂,能使硬水软化,提高脱硝率。
开发的特殊添加剂和还原剂可以有效防止硫酸氢氨盐所引起的腐蚀问题。
SNCR脱硝技术
SNCR脱硝技术是将NH3、尿素等还原剂喷入锅炉炉内与NOx进行选择性反应,不用催化剂,因此必须在高温区加入还原剂。
还原剂喷入炉膛温度为850~1100℃的区域,迅速热分解成NH3,与烟气中的NOx反应生成N2和水,该技术以炉膛为反应器。
SNCR烟气脱硝技术的脱硝效率一般为30%~80%,受锅炉结构尺寸影响很大。
采用SNCR技术,目前的趋势是用尿素代替氨作为还原剂。
1、SNCR技术原理
在850~1100℃范围内,NH3或尿素还原NOx的主要反应为:
NH3为还原剂
4 NH3 + 4NO +O2 →4N2 + 6H2O
尿素为还原剂
NO+CO(NH2)2 +1/2O2 →2N2 + CO2 + H2O?
2、SNCR系统组成
SNCR系统烟气脱硝过程是由下面四个基本过程完成:
接收和储存还原剂;在锅炉合适位置注入稀释后的还原剂;
还原剂的计量输出、与水混合稀释;还原剂与烟气混合进行脱硝反应。
3、SNCR 技术特点
技术成熟可靠,还原剂有效利用率高
系统运行稳定
设备模块化,占地小,无副产品,无二次污染
ERC烟气脱硝系统构成
ERC脱硝系统基本流程和添加剂效果
基于纯氨、氨水和尿素的溶液(比如satamin和carbamin二次添加剂)目前在很大程度上比较流行。
通过选择性非催化还原法,氨基在800℃-1050℃时NO生成氮气和水蒸气:NH2+NO <=> H2O+N2
当使用含氨化合物的水溶液时,化合物分解就会释放出氨气。
换言之,只有在雾
化流体蒸发后氨气才可以从含氨化合物中挥发出来。
自由基之间的反应选择性并不是很强。
因此充足的脱除添加剂还是必要的。
图1显示了烟气温度950℃时化学配比因子NSR与NOx脱除量的关系。
图1 化学配比因子NSR与NOx脱除量的关系
流程设计和装置描述
·燃料添加剂贮存加料装置
Satamin添加剂是一种专利产品。
根据锅炉大小和每年的燃料消耗量,Satamin 添加剂一般以每桶200,500和1000公升桶装形式供给。
对于大型装置,一般设置一个较大的储罐和加料控制器,如图3
图3 大型储罐和加料控制器
Satamin和Carbamin是低氨水溶液。
因而,在贮料箱的充料过程中,或万一贮料箱遭到破坏,在储存位置附近将不会有有毒气体逸出。
储罐中放置一个夹层箱或贮存箱足够使用。
如果设备放在室外,贮料箱要考虑伴热或保温,放液区要作防水处理。
在充料过程中必须关闭雨水排水阀。
罐车利用压缩气来卸液。
当往NOx脱除车间输送脱除添加剂时,需要使用磁耦合泵和潜液泵。
·混合和分配系统
还原剂用水稀释。
可以使用自来水或井水来稀释Satamin和Carbamin还原剂。
下图箱体上安装有用来测量调节流量和监控压力的设备。
如果燃料中没有加入防止高低温腐蚀的添加剂,可以通过混合和分配系统加入。
·注入系统
稀释后还原剂的加料系统依赖于燃烧室的几何尺寸。
带有单相喷嘴的水冷喷枪在锅炉的应用中非常成功。
双相喷嘴使用压缩空气的喷枪适合于层燃锅炉。
·二次排放
燃烧富硫燃料(>0.5%的S),温度小于350℃时,烟气中高的NH3浓度能够形成硫酸氨。
和硫酸氢氨不一样,硫酸氨是一种无污染的副产物。
在温度小于160℃时,硫酸氢氨的形成与烟气中SO3量和NH3量有关。
硫酸氢氨容易导致
换热器表面结垢腐蚀。
但是,通过使用配制合理的脱除添加剂(Satamin和Carbamin产品),就可以避免硫酸氢氨的形成。
改进后的SNCR装置氨排放允许值依赖于锅炉大小,为5—30mg/m3。
NOx脱除装置的设计是根据使用添加剂satamin和carbamin,该系统不影响锅炉效率。
反应热量与稀释水蒸发热量相当。
ERC图片
相关技术——SCR(选择性催化还原)脱硝技术
SCR(选择性催化还原)脱硝技术是指在催化剂的存在下,还原剂(无水氨、氨水或尿素)与烟气中的NOx反应生成无害的氮和水,从而去除烟气中的NOx。
选择性是指还原剂NH3和烟气中的NOx发生还原反应,而不与烟气中的氧气发生反应。
SCR脱硝技术与其它技术相比,脱硝效率高,技术成熟,是工程上应用最多的烟气脱硝技术。
SCR系统的脱硝效率约为80~90%。
1、化学反应原理
4NO + 4NH3 + O2 →4N2+6H2O
6NO + 4NH3 →5N2+6H2O
2、SCR系统组成
SCR脱硝系统由三个子系统组成:SCR反应器及辅助系统,氨储存及处理系统,氨注入系统。
SCR工艺流程:还原剂(氨) 用罐装卡车运输,以液体形态储存于氨罐中;液态氨在注入SCR 系统烟气之前经由蒸发器蒸发气化;气化的氨和稀释空气混合,通过喷氨格栅喷入SCR反应器上游的烟气中;充分混合后的还原剂和烟气在SCR 反应器中反应,去除NOx。
相关技术——SNCR/SCR脱硝技术
SNCR/SCR系统的前端是SNCR系统,还原剂在锅炉炉膛内与NOx反应,后端的SCR系统对烟气进一步脱硝,使还原剂得到充分利用。
SNCR/SCR利用了SNCR 和SCR工艺各自的优点,将它们的负面影响降到最低程度。
SNCR/SCR系统的SCR采用一层催化剂布置方式。
一层催化剂布置的SCR是对SNCR技术的重要补充、克服了SNCR的氨逃逸率高、氨/氮摩尔比高的缺点,避免空气预热器结垢堵塞、提高了系统脱硝效率。
SNCR/SCR工艺因锅炉内已装有SNCR系统,大幅度降低了SCR装置入口的NOx 浓度,从而大幅度减少了所需要的SCR反应容积,降低了SCR系统昂贵的装置成本。
当所需的NOx 去除率不高时,锅炉的引风机可能不需要改造就能满足少量催化剂产生的压降要求。
SNCR/SCR工艺降低了对催化剂的依赖,使用少量的催化剂降低了由于硫中毒、颗粒污染和其它类型老化而更换催化剂的成本。
在一些工程中,催化剂可以装入锅炉烟道、扩展烟道、省煤器或空气预热器中。
SNCR/SCR脱硝工艺特点
在保证SNCR 的NOx 还原率最大化的同时,获得与SCR同样高的NOx 还原率不使用危险的氨作为反应剂,因此保证了安全
降低与SCR相关的催化剂中毒、受热面沾污和系统压力损失
不需要大的空间。