2020年北京高考数学专项复习 排列组合与二项式
【精品解析】北京市2020年高考数学最新联考试题分类大汇编(11)排列组合、二项式定理
精品解析:北京市2020年高考数学最新联考试题分类大汇编(11)
排列组合、二项式定理试题解析
一、选择题:
(6)(2020年4月北京市海淀区高三一模理科)从甲、乙等5个人中选出3人排成一列,则甲不在排头的排法种数是
(A )12 (B )24
(C )36 (D )48
【答案】D
8.(北京市西城区2012年4月高三第一次模拟文)已知集合230123{|222}A x x a a a a ==+⨯+⨯+⨯,其中{0,1}k a ∈(0,1,2,3)k =,且 30a ≠.则A 中所有元素之和是( C )
(A )120 (B )112 (C )92 (D )84
【答案】C
二、填空题:
(用数字作答)
【答案】256,672
【解析】显然card()10M =表示集合M 中有10个元素,card()2A =表示集合A 中有2个元素,而A X M ⊆⊆,故集合X 中可以只含A 中的2个元素,也可以除了A 中的2个元
素外,在剩下的8个元素中任取1个,2个,3个,。
8个,共有01788888256
C C C C ++⋅⋅⋅++=种情况,即符合要求所求的集合M 有256个;满足条件Y M ⊆的集合Y 的个数为102,其中
的集合Y的个数为82,不满足条件不满足条件A Y。
2020届全国各地高考试题分类汇编15 排列组合 二项式定理
2020届全国各地高考试题分类汇编15 排列组合 二项式定理1.(2020•北京卷)在52)-的展开式中,2x 的系数为( ). A. 5- B. 5C. 10-D. 10【答案】C【解析】)52展开式的通项公式为:()()55215522r rrrrr r T CC x--+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-.故选:C.2.(2020•全国1卷)25()()x x y xy ++的展开式中x 3y 3的系数为( )A. 5B. 10C. 15D. 20【答案】C【解析】5()x y +展开式的通项公式为515r r rr T C x y -+=(r N ∈且5r ≤)所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为:56155r rrr rrr xT xC xy C xy --+==和22542155r r rr r r r T C x y xC y y y x x --++==在615rrr r xT C xy -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x x y y -++=中,令1r =,可得:521332T C y x xy =,该项中33x y 的系数为5所以33x y 的系数为10515+=.故选:C3.(2020•全国2卷)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A. 10名 B. 18名C. 24名D. 32名【答案】B【解析】由题意,第二天新增订单数为50016001200900+-=,设需要志愿者x 名,500.95900x≥,17.1x ≥,故需要志愿者18名.故选:B4.(2020•全国2卷)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种. 【答案】36 【解析】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学∴先取2名同学看作一组,选法有:246C =现在可看成是3组同学分配到3个小区,分法有:336A =根据分步乘法原理,可得不同的安排方法6636⨯=种 故答案为:36.5.(2020•全国3卷)262()x x+的展开式中常数项是__________(用数字作答).【答案】240 【解析】622x x ⎛⎫+ ⎪⎝⎭ 其二项式展开通项:()62612rrrr C x x T -+⎛⎫⋅⋅ ⎪⎝⎭=1226(2)r rr r xC x --⋅=⋅1236(2)r r r C x -=⋅ 当1230r -=,解得4r =∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.6.(2020•新全国1山东)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( ) A. 120种B. 90种C. 60种D. 30种【答案】C【解析】首先从6名同学中选1名去甲场馆,方法数有16C ;然后从其余5名同学中选2名去乙场馆,方法数有25C ;最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.故选:C7.(2020•天津卷)在522x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是_________. 【答案】10【解析】因为522x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为()5531552220,1,2,3,4,5rr r r r r r T C x C x r x --+⎛⎫==⋅⋅= ⎪⎝⎭,令532r -=,解得1r =.所以2x 的系数为15210C ⨯=.故答案为:10.8.(2020•浙江卷)设()2345125345612 x a a x a x a x a x a x +=+++++,则a 5=________;a 1+a 2 + a 3=________. 【答案】 (1). 80 (2). 122【解析】5(12)x +的通项为155(2)2r r r r rr T C x C x +==,令4r =,则444455280T C x x ==,故580a =;113355135555222122a a a C C C ++=++=.故答案为:80;1229.(2020•上海卷)从6人中挑选4人去值班,每人值班1天,第一天需要1人,第二天需要1人,第三天需要2人,则有种排法。
2020年高考数学(理)二轮复习命题考点串讲系列-专题19 排列、组合、二项式定理(含答案解析)
2020年高考数学(理)二轮复习命题考点串讲系列-专题19 排列、组合、二项式定理1、考情解读1.排列、组合与二项式定理每年交替考查,主要以选择、填空的形式出现,试题难度中等或偏易.2.排列、组合试题具有一定的灵活性和综合性,常与实际相结合,转化为基本的排列组合模型解决问题,需用到分类讨论思想,转化思想.3.与二项式定理有关的问题比较简单,但非二项问题也是今后高考的一个热点,解决此类问题的策略是转化思想.2、重点知识梳理 1.两个重要公式 (1)排列数公式 A m n =n !n -m !=n (n -1)(n -2)…(n -m +1)(n ,m ∈N *,且m ≤n ).(2)组合数公式 C m n =n !m !n -m !=nn -1n -2…n -m +1m !(n ,m ∈N *,且m ≤n ).2.三个重要性质和定理 (1)组合数性质①C m n =C n -m n (n ,m ∈N *,且m ≤n );②C m n +1=C m n +C m -1n (n ,m ∈N *,且m ≤n );③C 0n =1. (2)二项式定理(a +b )n =C 0n a n +C 1n a n -1b 1+C 2n a n -2b 2+…+C k n a n -k ·b k +…+C n n b n ,其中通项T r +1=C r n an -r b r . (3)二项式系数的性质①C 0n =C n n ,C 1n =C n -1n ,…,C r n =C n -r n ;②C 0n +C 1n +C 2n +…+C n n =2n;③C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1. 3、高频考点突破 考点1 排列与组合例1.【2017课标II ,理6】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种 【答案】D【变式探究】【2016年高考四川理数】用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(A )24 (B )48 (C )60 (D )72 【答案】D【解析】由题意,要组成没有重复数字的五位奇数,则个位数应该为1或3或5,其他位置共有44A 种排法,所以奇数的个数为443A 72 ,故选D.【变式探究】(2015·四川,6)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A .144个B .120个C .96个D .72个解析 由题意,首位数字只能是4,5,若万位是5,则有3×A 34=72个;若万位是4,则有2×A 34个=48个,故40 000大的偶数共有72+48=120个.选B.答案 B考点二 排列组合中的创新问题例2.用a 代表红球,b 代表蓝球,c 代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a )(1+b )的展开式1+a +b +ab 表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球、而“ab ”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( )A .(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5B .(1+a 5)(1+b +b 2+b 3+b 4+b 5)(1+c )5C .(1+a )5(1+b +b 2+b 3+b 4+b 5)(1+c 5)D .(1+a 5)(1+b )5(1+c +c 2+c 3+c 4+c 5)解析 分三步:第一步,5个无区别的红球可能取出0个,1个,…,5个,则有(1+a +a 2+a 3+a 4+a 5)种不同的取法;第二步,5个无区别的蓝球都取出或都不取出,则有(1+b 5)种不同取法;第三步,5个有区别的黑球看作5个不同色,从5个不同色的黑球中任取0个,1个,…,5个,有(1+c )5种不同的取法,所以所求的取法种数为(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5,故选A.答案 A【变式探究】设集合A ={(x 1,x 2,x 3,x 4,x 5)|x i ∈{-1,0,1},i =1,2,3,4,5},那么集合A 中满足条件“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”的元素个数为( )A .60B .90C .120D .130答案 D考点三 二项展开式中项的系数例3.【2016年高考北京理数】在6(12)x 的展开式中,2x 的系数为__________.(用数字作答)【答案】60.【解析】根据二项展开的通项公式16(2)r r r r T C x +=-可知,2x 的系数为226(2)60C -=。
专题 排列组合二项式定理-2020年高考数学(理)二轮专项复习
专题 排列组合二项式定理排列、组合与二项式定理是高中数学中内容相对独立的一个部分,排列、组合的知识为概率与统计中的计数问题提供了一定的方法.这部分内容的试题有一定的综合性与灵活性,要注意与其他数学知识的联系,注意与实际生活的联系.通过对典型例题的分析,总结思维规律,提高解题能力.§10-1 排列组合【知识要点】1.分类计数原理与分步计数原理.2.排列与组合.3.组合数的性质:(1);(2).【复习要求】理解和掌握分类计数与分步计数两个原理.在应用分类计数原理时,要注意“类”与“类”之间的独立性和等效性,在应用分步计数原理时,要注意“步”与“步”之间的相关性和连⋅=-=-=m n mn mn m nA A m n m n C m n n A )!(!!,)!(!mn n m n C C -=11-++=m n m n m n C C C续性.熟练掌握排列数公式和组合数公式,注意题目的结构特征和联系;掌握组合数的两个性质,并应用于化简、计算和论证.正确区别排列与组合的异同,体会解计数问题的基本方法,正确处理附加的限制条件.【例题分析】例1 有3封信,4个信筒.(1)把3封信都寄出,有多少种寄信方法?(2)把3封信都寄出,且每个信筒中最多一封信,有多少种寄信方法?【分析】(1)分3步完成寄出3封信的任务:第一步,寄出1封信,有4种方法;第二步,再寄出1封信,有4种方法;第三步,寄出最后1封信,有4种方法,完成任务.根据分步计数原理,共有4×4×4=43=64种寄信方法.(2)典型的排列问题,共有=24种寄信方法.例2 在一块并排10垄的田地中,选择2垄分别种植A ,B 两种作物,每种作物种植1垄,为有利于作物生长,要求A ,B 两种作物的间隔不小于6垄,则不同的种植方法共有______种.解:设这10垄田地分别为第1垄,第2垄,…,第10垄,要求A ,B 两垄作物的间隔不少于6垄,所以第一步选垄的方式共有(1,8),(1,9),(1,10),(2,9),(2,10),(3,10)这6种选法,第二步种植两种作物共有=2种种植法,所以共有6×2=12种选垄种植方法.34A 22A【评述】排列组合是解决计数问题的一种重要方法.但要注意,计数问题的基本原理是分步计数原理和分类计数原理,是最普遍使用的,不要把计数问题等同于排列组合问题.对某些计数问题,当运用公式很难进行时,适时采取原始的分类枚举方法往往是最好的.如例2.在具体的计数问题的解决过程中,需要决策的是,这个计数问题需要“分步”还是“分类”完成,再考虑这个计数问题是排列问题、组合问题还是一般的计数问题.如例1的两个问题.例3 某电子表以6个数字显示时间,例如09:20:18表示9点20分18秒.则在0点到10点之间,此电子表出现6个各不相同数字来表示时间的有______次.【分析】分步来确定电子表中的六个数字如下:第一步:确定第一个数字,只能为0,只有1种方法;第二步:确定第三位数字,只能为0至5中的一个数(又不能与首位相同),所以只有5种方法;第三步:确定第五位数字,也只能为0至5中的一个数(又不能与首位,第三位相同),所以只有4种方法;第四步:确定剩下三位数字,0至9共10个数字已用了3个,剩下的7个数字排列在2,4,6位共有种排法.由分步计数原理得:1×5×4×=4200种.【评述】做一件事情分多步完成时,我们一般先做限制条件较大的一步,如本题中,首37A 37A位受限条件最大,其次为三、五位,所以我们先排首位,再排三、五位,最后排其他位.例4 7个同学站成一排,分别求出符合下列要求的不同排法的种数.(1)甲站在中间;(2)甲、乙必须相邻;(3)甲在乙的左边(但不一定相邻);(4)甲、乙、丙相邻;(5)甲、乙、丙两两不相邻;解:(1)甲站在中间,其余6名同学任意排列,故不同排法有=720.(2)第一步:先把甲、乙捆绑,视为一个元素,连同其余5个人全排列,共有种排法;第二步:给甲、乙松绑,有种排法,此题共有=1440种不同排法.(3)在7名同学站成一排的种排法中,“甲左乙右”与“甲右乙左”的站法是一一对应的,各占一半,因此甲站在乙的左边(不要求相邻)的不同排法共有÷2=2520种.(4)先把甲、乙、丙视为一个元素,连同其余4名同学共5个元素的全部排列数有种,再结合甲、乙、丙3个人之间的不同排列有种,此题的解为:=720. (5)先让除甲、乙、丙外的4个人站好,共有种站法,让甲、乙、丙3人插空,由于4个人形成5个空位,所以甲、乙、丙共有种站法,此题答案.【评述】当要求某几个元素排在一起时,我们常将这几个元素捆绑在一起作为一个元素与其他元素进行排列如例4(2),(4).66A 66A 22A 66A 22A 77A 77A 55A 33A 55A 33A 44A 35A 14403544 A A当要求某几个元素不相邻时,我们常常先排其他元素,然后再将这几个元素排在已排好的其他元素的空中如例4(5).例5 4个不同的球,4个不同的大盒子,把球全部放入盒内,恰有一个盒不放球,共几种放法?【分析】先将4个球分成3组,共有种分组方法;再将3组球放在4个盒子里,是排列问题,有24种方法,所以,共有种不同的放球方法.【评述】类似这种装球问题采取先分组后装球的方法比较好.例6某班组有10名工人,其中4名是女工.从这10个人中选3名代表,其中至少有一名女工的选法有多少种?解法1:至少有一名女工的情形有三类:1名女工和2名男工;2名女工和1名男工;3名女工,把这3类选法加在一起,共有种不同的选法.解法2:与“至少有一名女工”选法相对立的是“没有女工”的选法,从所有的选法中除去“没有女工”的选法,剩下的即为所求,共有.【评述】当涉及“至少”或“至多”的问题时,从大的方向看我们常常是对其分类讨论,运用分类计数原理解决问题,当然,也可以考虑问题的对立面再用减法进行计算.例7 如图,用六种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且两端的格子的颜色也不同,则不同的涂色方法共有多少种?624=C =34A 1443424=A C 1003416242614=++C C C C C 10036310=-CC【分析】如果按从左至右的顺序去涂色,当涂到第4个格子时会发现,第三个格子的颜色与第一个格子的颜色是否相同决定着第4个格子有几种涂色方法,即如果第三个格子的颜色与第一个格子的颜色是否相同是不确定的,则第四个格子的涂色情况不定.于是,我们要按照1、3两个格子颜色相同和不相同两种情况分类来处理这个计数问题.解:1、3两个格子颜色相同时,按分步计数原理,有6×5×1×5=150种方法;1、3两个格子颜色不相同时,按分步计数原理,有6×5×4×4=480种方法.所以,共有不同的涂色方法630种.例8 四面体的顶点和各棱中点共10个点,取4个不共面的点,不同取法有多少种?【分析】没有限制地从10个点中选出4个点,共有种不同选法,除去4点共面的选法即可.4点共面的选法有3类.(1)4个点在四面体A -BCD 的某一个面上,共有种共面的情况.(2)过四面体的一条棱上的3个点及对棱的中点,如图中点A ,E ,B ,G 平面,共计有6种共面的情况.410C 464C(3)过四面体的四条棱的中点,而且与一组对棱平行的平面,如图E ,F ,G ,H 平面,此类选法共有3种.综上,符合要求的选法共有种.例9 在给出的下图中,用水平或垂直的线段连结相邻的字母,按这些线段行走时,正好拼出“竞赛”即“CONTEST ”的路线共有多少条?【分析】“CONTEST ”的路线的条数与“TSETNOC ”路线的条数相同,如下右图,从左下角的T 走到边上的C 共有6步,每一步都有2种选择,由分步计数原理,所以下图中,“TSETNOC ”路线共有26=64条.所以本题的答案为64×2-1=127.【评述】例9的这种计数的方法常称之为对应法计数,它的理论基础为:如果两个集合之间可以建立一对一的对应关系,那么这两个集合的元素的个数相同.借助这个原理,如果一个集合元素的个数不好计算时,我们将其转化为求另一个集合元素的个数不失为一种较好的方法.例10 (1)计算的值; (2)计算的值;141)364(46410=++⨯-CC 59694858A A A A -+nn nnC C 321383+-+(3)证明:.(1)解:. (2)解:注意到中的隐含条件:n ≥m ,m ∈N ,n ∈N *,有解得,所以n =10. 所以,.(3)证明:.【评述】对于含排列组合式的恒等式证明及计算问题常用的方法有两种,一种是运用排列组合数的计算公式转化为代数恒等式的证明及代数式求值问题,另一种是运用组合数的一些性质进行计算及证明.常用的组合数的性质有:(1); (2);(3);(4).练习10-1mn m n m n A mA A 11+-=+275!93!85!9!94!8!84!4!9!3!9!4!8!3!859694858=⨯⨯=-⨯+⨯=-+=-+A A A A mn C ⎪⎪⎩⎪⎪⎨⎧≥+≥->-≥,321,038,03,383n n n n n n 221219≤≤n 46613123030312830=+=+C C C C )!1(!)!1(!)1()!1(!)!(!1+-++-+-=+-+-=+⋅⋅-m n n m m n n m n m n n m m n n mA A m nm n m n A m n n m n n m n n m m n n m n 1]!)1[()!1()!1()!1()!1(!)!1(!)1(+=-++=+-+=+-++-+-=⋅⋅m n n m n C C -=11-++=m n m n m n C C C nn n n n n C C C C 2210=++++ΛΛΛ++=++3120n n n n C C C C一、选择题1.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( )(A)10种 (B)20种 (C)25种 (D)32种2.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( )(A)42 (B)30 (C)20 (D)123.四面体的一个顶点为A ,从其他顶点与棱的中点中取3个点,使它们和点A 在同一平面上,不同的取法有( )(A)30种 (B)33种 (C)36种 (D)39种4.某电脑用户计划用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式有( )(A)5种 (B)6种 (C)7种 (D)8种5.下列等式中正确的是( )(1);(2); (3); (4). (A)(1)(2)(B)(1)(2)(3)(C)(1)(3)(D)(2)(3)(4)11--=k n k n nC kC 111111+++=+k n k n C n C k kn k nC k k n C 11+-=+kn k n C n k C 1111++=++6.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不.能坐,并且这2人不左右相邻,那么不同排法的种数是( )(A)234种(B)346种(C)350种(D)363种二、填空题7.从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点的直线有______条.(结果用数值表示)8.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有______.9.马路上有12盏灯,为了节约用电,可以熄灭其中3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,那么熄灯方法共有______种.10.将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内,每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入方法共有______种.(以数字作答)11.从集合{O,P,Q,R,S}与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复),每排中字母O,Q和数字0至多只能出现一个的不同排法种数是______.(用数字作答)12.8个相同的球放进编号为1、2、3的盒子里,则放法种数为______.(以数值作答)§10-2 二项式定理【知识要点】1.二项式定理:.2.通项公式:,3.,,,…,,…,称为二项式系数,4.二项展开式的系数的性质:;.【复习要求】会求二项展开式中适合某种特殊条件的项;了解利用二项式定理进行近似计算,证明与组合数有关的等式或整数(整式)的整除性的方法.【例题分析】例1 在二项式的展开式中,含x 4的项的系数是______. 解:, 令10-3r =4,得r =2,所以x 4项的系数是.例2 (1)若(1+x )n 的展开式中,x 3的系数是x 系数的7倍,求n 的值;(2)在(2+lg x )8的展开式中,二项式系数最大的项的值等于1120,求x 的值.解:(1)由已知,即,整理得n 2-3n -40=0, 解得n =8或n =-5(舍).所以n =8.n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+---ΛΛ222110)(r r n r n r b a C T -+=10n C 1n C 2n C r n C n n C n n n n n n C C C C 2210=++++ΛΛΛ++=++3120n n n n C C C C 52)1(xx -r r r r r r r x C xx C T 31055251)1()1()(--+-=-=10)1(225=-C 137n n C C =n n n n 76)2)(1(=--(2)(2+lg x )8的展开式中共有9项,二项式系数最大的项为第5项.由已知,,整理得(lg x )4=1,所以lg x =±1,解得x =10或 例3 求的展开式中x 的系数为有理数的项的个数.解:, 若系数为有理数,则都必须是整数,即r 应为6的倍数. 又0≤r ≤100,所以r 的不同值有17个.所以x 的系数为有理数的项共有17项.例4 已知的展开式中,第3项与第6项的系数互为相反数,求展开式中系数最小的项.解: 由已知,所以n =7.所以第4项系数最小, 【评述】通项公式是二项式定理中常用的一个公式,要熟练掌握,同时注意系数、上标、下标之间的关系;注意系数、二项式系数的区别,如例2;注意运用通项公式求第3项时,r =2.如例4.1120)(lg 244485=⋅=⋅x C T ⋅=101x 1003)23(+x r rr rr r rr x C x C T ---+==1003210010*********·2·3·)2()3(3,2100r r -n n x )1(-,)1(,)1(1055556422223-----=-==-=n n n n n n n n x C xx C T x C x x C T 25n n C C =.35)1(37337374x x C xx C T -=-=-=-r r n r n r b a C T -+=1例5 已知(a 2+1)n 的展开式中的各项系数之和等于的展开式的常数项,而(a 2+1)n 的展开式中的系数最大项等于54,求a 的值,解:的展开式的第r +1项令T r +1为常数项,则20-5r =0,r =4,所以常数项 又(a 2+1)n 的展开式中的各项系数之和等于2n ,由题意得2n =16,所以n =4. 由二项式系数的性质知,(a 2+1)n 的展开式中的系数最大的项即为二项式系数最大的项,是中间项T 3,所以,解得. 例6 已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7.求:(1)a 1+a 2+…+a 7;(2)a 1+a 3+a 5+a 7;(3)a 0+a 2+a 4+a 6;(4)|a 0|+|a 1|+|a 2|+…+|a 7|.解:令x =1,则a 0+a 1+a 2+…+a 7=-1. ①令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37. ②(1)易知a 0=1,所以a 1+a 2+…+a 7=a 0+a 1+a 2+…+a 7-a 0=-2;52)1516(xx +52)1516(xx +.)516()1()516(2520555251rr r r r rr x C x x C T ---+==.16516455=⨯=C T 54424=a C 3±=a(2)(①-②)÷2,得a 1+a 3+a 5+a 7==-1094; (3)(①+②)÷2,得a 0+a 2+a 4+a 6==1093; (4)方法1:因为(1-2x )7的展开式中a 1,a 3,a 5,a 7是负数,a 0,a 2,a 4,a 6是正数, 所以|a 0|+|a 1|+|a 2|+…+|a 7|=a 0+a 2+a 4+a 6-(a 1+a 3+a 5+a 7)=2187.方法2:因为|a 0|+|a 1|+|a 2|+…+|a 7|表示(1+2x )7的展开式中各项系数的和,令x =1,可得|a 0|+|a 1|+|a 2|+…+|a 7|=37=2187.【评述】通过给二项式定理中的字母赋值(根据式子的特点,常令字母为1或-1)的方式可以解决二项展开式系数整体求值的问题.例7 若多项式x 2+x 10=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9+a 10(x +1)10,则a 9=______.【分析】方法1:由于a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9+a 10(x +1)10=x 2+x 10[-1+(x +1)2]+[-1+(x +1)10]=,则.方法2:由于等式左边x 10的系数为1,所以a 10=1,2317--2317+-10101091910)1()1()1(+++-+x C x C Λ10)1(9109-=-=C a又,等式左边x 9的系数为0,所以,所以a 9=-10.例8 除以100的余数为______.解: 前面各项均能被100整除,只有末尾两项不能被100整除,,所以9192除以100的余数为81.例9求(0.998)5精确到0.001的近似值.解:. 【评述】利用二项式定理求余数、求近似值是二项式定理的应用之一.例10 设a >1,n ∈N *且n ≥2,求证. 证明:设,则(x +1)n =a .欲证原不等式,即证nx <(x +1)n -1,其中x >0.,即有(x +1)n >nx +1,得证.例11 的展开式中常数项为______.(用数字作答) 解:求的常数项,即求展开式中的常数项及含x -2的项. 对于,. 令8-2r =0,即有r =4,.0109109=+a C a 9291190909090)190(9191922909291192920929292+++++=+=⋅⋅⋅⋅C C C C Λ81820082811909192+==+⋅C =-=55)002.01((0.998)990.0)002.0()002.0(2251505÷+-+-+ΛC C C na a n 11-<-x a n =-1)2(111)1(11110≥+=+>++++=+---n nx x C x C x C x C x n n n n n n n n n Λ82)1)(21(x x x -+82)1)(21(x x x -+8)1(xx -8)1(x x -r r r r r r r x C xx C T 288881)1()1(--+-=-=70)1(4845=-=C T令8-2r =-2,即有r =5,.所以常数项为70+2×(-56)=-42.练习10-2一、选择题1.若的展开式中的所有二项式系数和为512,则该展开式中的常数项为 (A)-84 (B)84 (C)-36 (D)362.已知的展开式中x 3的系数为,常数a 的值为( ) (A)1(B)2 (C)4 (D)8 3.在(1+x )5(1-x )4的展开式中,x 3的系数是( )(A)4 (B)-4 (C)8 (D)-84.若与同时有最大值,则m 的值是( ) (A)5 (B)4或5 (C)5或6 (D)6或7二、填空题5.(x 2+)6的展开式中常数项是______.(用数字作答) 6.若(x +1)n =x n +…+ax 3+bx 2+…+1,(n ∈N *),且a ∶b =3∶1,那么n =______.7.(n +1)n +1除以n 2(n >1)的余数为______.22585656)1(---=-=x x C T nx x )1(2-9)2(x x a -49nC 21m n C x18.观察下列等式:,,,,……由以上等式推测到一个一般的结论:对于___________.三、解答题9.在(3x +1)n 的展开式中,如果各项系数的和比各项二项式系数的和大992,求n 的值.10.若f (x )=(1+2x )m +(1+3x )n 展开式中x 的系数为13,则x 2的系数为( )11.当n ∈N *时,求证:2235515-=+C C 3799591922+=++C C C 511131391351311322-=+++C C C C 7151717131791751711722+=++++C C C C C =++++∈+++++1414914514114*,n n n n n C C C C n ΛN .3)11(2<+≤n n习题10一、选择题1.某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有( )(A)35种 (B)25种 (C)20种 (D)16种2.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( )(A)18 (B)24 (C)30 (D)363.从单词“equation ”中选取5个不同的字母排成一排,含有“qu ”(其中“qu ”相连且顺序不变)的不同排列共有( )(A)120种 (B)480种 (C)720种 (D)840种4.若=,则(a 0+a 2)2-(a 1+a 3)2的值为( )(A)-1(B)1 (C)0 (D)2 5.若的展开式中含有非零常数项,则正整数n 的最小值为( ) (A)10(B)6 (C)5 (D)3 6.若,则的值为( ) (A)2(B)0 (C)-1 (D)-23)32(+x 332210x a x a x a a +++n x x )23(32-)()21(20092009102009R ∈+++=-x x a x a a x Λ200920092122a a a a +++Λ二、填空题7.在(3-x )7的展开式中,x 5的系数是______.(用数字作答)8.从6名男生和4名女生中,选出3名代表,要求至少有一名女生,则不同的选法有______种.9.有6个座位连成一排,现有3人就座,则恰有两个空座位相邻的不同坐法有______种.10.(x -y )10的展开式中,x 7y 3的系数与x 3y 7的系数之和等于______.11.数列a 1,a 2,…,a 7,其中恰好有5个2和2个4,调换a 1至a 7各数的位置,一共可以组成不同的数列(含原数列)______个.12.2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有______种.三、解答题13.已知(1+x )+(1+x )2+…+(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,若a 1+a 2+a 3+…+a n -1=509-n ,求n .14.已知n 是等差数列4,7,10,13,…中的一项.求证的展开式中不含常数项.n xx )1(专题10 排列组合二项式定理参考答案练习10-1一、选择题1.D 2.A 3.B 4.C 5.B 6.B二、填空题7.30; 8.240; 9.56; 10.240; 11.8424; 12.45.练习10-2一、选择题1.B 2.C 3.B 4.C二、填空题5.15; 6.11; 7.n +1; 8.24n -1+(-1)n 22n -1.三、解答题9.解:令x =1,得各项系数和为4n ,又各项二项式系数和为2n ,所以4n -2n =992.22n -2n -992=0,解得n =5.10.解:f (x )=(1+2x )m +(1+3x )n 展开式中含x 的项,由2m +3n =13,m ,n 为正整数,得m =2,n =3或m =5,n =1,当m =2,n =3时,求得x 2的系数为31;当m =5,n =1时求得x 2的系数为40,故x 2的系数为31或40.x n m x C x C n m )32(3211+=+11.证明:, 因为, 所以 所以习题10一、选择题1.B 2.C 3.B 4.A 5.C 6.C二、填空题7.-189; 8.100; 9.72; 10.-240; 11.21; 12.36.三、解答题13.解:令x =1,得2+22+23+…+2n =a 0+a 1+a 2+…+a n -1+a n .令x =0,则a 0=n . 又由已知可得a n =1.∴,化简得2n =256,∴n =8. 14.解:用反证法,假设第r +1项为常数,即为常数项.又等差数列4,7,10,13,…的第k 项为a k =4+(k -1)×3=3k +1(k ∈N *).2111111)11(1221=+≥++++=+⋅⋅⋅⋅nC n C n C n C n n n n n n n nΛ121!1)11()21)(11(!1)!(!!1-≤≤----==-=⋅k k k knk n k n n k n k n k n n C ΛΛn n n n n n n n n n n C n C n C n C n C n 1·121111)11(22221+++≤++++=+⋅⋅⋅⋅ΛΛ.32132121212112<-=++++≤--n n Λ.3)11(2<+≤nn1)509(12)12(2+-+=--n n n 2321r n r nr rn r nr xC xxC T ---+==⋅令n =3k +1,T r +1为常数项,则 即,∵k ∈N *,这与,且r ∈N 矛盾,所以它没有常数项..02313,023=-+=-r k r n 322+=k r。
2020高考数学最后冲刺 排列、组合、二项式定理
最后冲刺【高考预测】1.正确运用两个基本原理2.排列组合3.二项式定理4.在等可能性事件的概率中考查排列、组合5.利用二项式定理解决三项以上的展开式问题6.利用二项式定理证明不等式易错点1 正确运用两个基本原理1.(2020精选模拟)已知集合A=B={1,2,3,4,5,6,7},映射f:A→B满足f(1)<f(2)<f(3)<f(4),则这样的映射f的个数为()A.C47A33 B.C47 C.77 D.C7473【错误解答】∵f(1)<f(2)<f(3) <f(4),且f(1)<f(2)<f(3)<f(4)的值为{1,2,3,4,5,6,7}中的某4个,∴这样的映射有C47个,∴选B【错解分析】C47中的任何一种方法都没有完成组成映射这件事情,因为只找到1、2、3、4的象,而5、6、7的象还没有确定。
误是没有选出水平最高的两人,错误地认为这种淘汰赛最后的两人就是水平最高的两人,实际上第二名有可能在第一轮或第二轮就被第一名淘汰了。
【正确解答】先将8人分成4对进行比赛,胜者进入第二轮,需要4场比赛,将进入第二轮的四人分成2对进行比赛,胜者进入第三桦,需要2场比赛,进入第三轮的2人进行比赛,胜者为第一名,需一场比赛;将第一轮、第二轮、第三轮被第一名淘汰的选手共3人决出第一名,需2场比赛。
∴至少需要4+2+1+2=9场比赛。
3.(2020精选模拟)设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动质点落在点(3,0)(允许重复过此点)处,则质点不同的运动方法共有_________种(用数字作答)。
【错误解答】因为每一步都有两种可能,所以共有25=32种方法,又由于这32种方法中质点落在(3,0)与不在(3,0)的可能相同,∴质点不同的运动方法共有16种,填16。
【错解分析】质点落在(3,0)与不在(3,0)的可能相同是错误的,错误的原因是分析问题的能力较差,没有转化的思想,也没有分类讨论的思想。
2020北京新高考数学高三二模汇编 04复数排列组合二项式定理
2020北京新高考数学高三二模汇编04复数排列组合二项式定理1.(海淀11)若复数(2i)(i)a -+为纯虚数,则实数a =_______.答案 12-2. (昌平2)在复平面内,复数i(i )a -对应的点的坐标为(12)-,,则实数a = (A )1 (B )1- (C )2 (D )2- 答案 D3. (东城11) 复数1iiz -=的共轭复数z 为_________. 答案 1i -+4.(丰台11)已知复数2i z =-,则z = .答案5.(西城2)设复数 z =1+i,则 2z =( A)-2i ( B)2i ( C)2-2i ( D)2+2i 答案 A6.(房山11)若(i)(1i)13i m ++=+(m ∈R ),则m = . 答案 27.(朝阳1)在复平面内,复数i(1+i)对应的点位于 (A )第一象限(B )第二象限 (C )第三象限(D )第四象限 答案B8. (顺义2)在复平面内,复数()i 1i z =+对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限答案B9.(西城11).在6(15)x +(展开式中, x 的系数为 . 答案 3010.(昌平3)在()52x -的展开式中,2x 的系数为(A )40- (B ) 40 (C )80- (D )80 答案 C11.(丰台14)天干地支纪年法(简称干支纪年法)是中国历法上自古以来就一直使用的纪年方法.天干有十,即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;地支有十二,即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.干支纪年法中,天干地支对应的规律如下表:2049年是新中国成立100周年.这一百年,中国逐步实现中华民族的伟大复兴.使用干支纪年法,2049年是己巳年,则2059年是_____年;使用干支纪年法可以得到______种不同的干支纪年. 答案 己卯;6012.(密云12)在61()x x+的展开式中,常数项为_______.(用数字作答).答案 2013. (朝阳12)在61)x的展开式中,常数项为________.(用数字作答) 答案 15。
高中数学高考专题26 排列组合、二项式定理(解析版)
专题26 排列组合二项式定理命题规律内 容典 型1 求两个二项式相乘展开式中的指定项问题 2020年高考全国Ⅰ卷理数8 2 求二项式展开式的指定项或指定项系数 2020年高考全国Ⅲ卷理数14 3 求二项式展开式中奇数项系数 2020年高考浙江卷12 4 利用计数原理计算组合问题2020年高考山东卷3 5利用计数原理计算排列组合的综合问题2020年高考全国Ⅱ卷理数14命题规律一 求两个二项式相乘展开式中的指定项问题【解决之道】利用二项式定理展开式的通项,列出关于所求项的指定项指数的方程,通过解不定方程,即可确定指定项,利用通项公式即可求出指定项系数,注意分类讨论. 【三年高考】1.【2020年高考全国Ⅰ卷理数8】()25y x x x y ⎛⎫ ⎪⎭+⎝+的展开式中33x y 的系数为( )A .5B .10C .15D .20 【答案】C【解析】5()x y +展开式的通项公式为515rrrr T C xy -+=(r N ∈且5r ≤),∴2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积可表示为:56155rrrr rr r xT xC xy C xy --+==或22542155r r rr r r r T C x y xC y y y x x --++==,在615r r rr xT C x y -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x xy y -++=中,令1r =,可得:521332T C y x xy =,该项中33x y 的系数为5,∴33x y 的系数为10515+=,故选C . 2.【2019年高考全国Ⅲ卷理数】(1+2x 2 )(1+x )4的展开式中x 3的系数为( )A .12B .16C .20D .24【答案】A【解析】由题意得x 3的系数为3144C 2C 4812+=+=,故选A .命题规律二 求二项式展开式的指定项或指定项系数【解决之道】解决此类问题,设指定项为二项式展开式的第r 项,利用通项公式,列出关于r 的方程,解出r ,即可求出指定的系数.【三年高考】1.【2020年高考北京卷3】在)52的展开式中,2x 的系数为( )A .5-B .5C .10-D .10 【答案】C【解析】由题意展开式的通项为T r+1=C 5r(x 12)5−r(−2)r ==C 5r (−2)r x5−r2,令r=1得x 2的系数为-10,故选C .2.【2020年高考全国Ⅲ卷理数14】622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是 (用数字作答). 【答案】240【解析】622x x ⎛⎫+ ⎪⎝⎭,其二项式展开通项:()62612rr rr C x x T -+⎛⎫⋅⋅ ⎪⎝⎭=1226(2)r r r r xC x --⋅=⋅1236(2)r r r C x -=⋅,当1230r -=,解得4r =,∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.3.【2020年高考天津卷11】在522x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是_________.【答案】10【解析】因为522x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为()5531552220,1,2,3,4,5rr r r r r r T C x C x r x --+⎛⎫==⋅⋅= ⎪⎝⎭,令532r -=,解得1r =.所以2x 的系数为15210C ⨯=.4.【2018年高考全国Ⅲ卷理数】522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .80【答案】C【解析】由题可得522x x ⎛⎫+ ⎪⎝⎭的展开式的通式为()521031552C C 2rr r r r rr T x x x --+⎛⎫⋅⋅== ⎪⎝⎭,令1034r -=,得2r =,所以展开式中4x 的系数为225C 240⨯=.故选C .5.【2019年高考浙江卷理数】在二项式9)x 的展开式中,常数项是__________;系数为有理数的项的个数是__________.【答案】 5【解析】由题意,9)x的通项为919C (0,1,29)r r r r T x r -+==,当0r =时,可得常数项为919C T ==;若展开式的系数为有理数,则1,3,5,7,9r =,有246810T , T , T , T , T 共5个项.6.【2018年高考浙江卷】二项式81)2x的展开式的常数项是__________. 【答案】7【解析】二项式812x ⎫⎪⎭的展开式的通项公式为848318811C C 22rr rrrr r T xx --+⎛⎫==⋅⋅ ⎪⎝⎭, 令8403r -=得2r =,故所求的常数项为2821C =72⋅.故答案为:7. 7.【2018年高考天津卷理数】在5(x 的展开式中,2x 的系数为__________.【答案】52【解析】二项式5(x -的展开式的通项公式为35521551C C 2r rr r r r r T x x --+⎛⎛⎫==- ⎪ ⎝⎭⎝,令3522r -=可得:2r =,则2x 的系数为:225115C 10242⎛⎫-=⨯= ⎪⎝⎭.故答案为:52.命题规律三 求二项式展开式中奇数项系数【解决之道】解决此类问题,要熟记二项式展开式的系数性质,利用赋值法,即可列出二项式系数的方程(组),系数和即赋值1x =,偶数项系数和减去奇数项系数和即赋值1x =-,通过解方程即可求出偶数项(奇数项)系数和.【三年高考】1.【2020年高考浙江卷12】设()2345123455612x a a x a x a x a x a x +=+++++,则5a = ;123a a a ++= .【答案】80;51【解析】由题意可知5a 表示4x 的系数,即4455280a C =⋅=,11a =,125210a C =⋅=,2235240a C =⋅=,∴12351a a a ++=.命题规律四 利用计数原理计算组合问题【解决之道】排列组合问题常见解法:(1)元素分析法:在解有限定元素的排列问题时,首先考虑特殊元素的安排方法,再考虑其他元素的排法。
2020高考数学二轮复习专题讲练4 排列、组合与二项式定理(最新,超经典)
2020高考数学二轮复习专题讲练4 排列、组合与二项式定理(最新,超经典)考情考向分析1.排列、组合在高中数学中占有特殊的位置,是高考的必考内容,很少单独命题,主要考查利用排列、组合知识计算古典概型。
2.二项式定理仍以求二项展开式的特定项、特定项的系数及二项式系数为主,题目难度一般。
考点一排列与组合1.山城农业科学研究所将5种不同型号的种子分别试种在5块并成一排的试验田里,其中A,B两型号的种子要求试种在相邻的两块试验田里,且均不能试种在两端的试验田里,则不同的试种方法数为()A.12B.24 C.36D.48解析因为A,B两型号的种子试种方法数为2×2=4,所以一共有4A33=24(种)试种方法。
答案B2.若从6名志愿者中选4人去“鸟巢”和“水立方”实地培训,每处2人,其中乙不能去“水立方”,则选派方法有() A.60种B.70种C.80种D.90种解析若乙被选上,则乙不能去水立方,只能去鸟巢,共有C35·C13=30(种)选派方法,若乙不被选上,共有C45·C24=30(种)选派方法,所以共有30+30=60(种)选派方法。
答案A3.若用红、黄、蓝、绿四种颜色填涂如图方格,要求有公共顶点的两个格子颜色不同,则不同的涂色方案有()A.48种B.72种C.96种D.216种解析按照以下顺序涂色,A:C14→B:C13→D:C12→C:C12→E:C11→F:C12,所以由分步乘法计数原理得总的方案数为C14·C13·C12·C12·C12=96。
答案C4.中国古代中的“礼、乐、射、御、书、数”合称“六艺”。
“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学。
某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有()A.120种B.156种C.188种D.240种解析当“数”排在第一节时有A22·A44=48(种)排法,当“数”排在第二节时有A13·A22·A33=36(种)排法,当“数”排在第三节时,若“射”和“御”两门课程排在第一、二节时有A22·A33=12(种)排法;若“射”和“御”两门课程排在后三节时有A12·A22·A33=24(种)排法,所以满足条件的共有48+36+12+24=120(种)排法。
2020版高考数学大二轮复习专题四概率与统计第一讲排列、组合与二项式定理课件理
互不相邻的停放方法有( )
A.1 880 种
B.1 440 种
C.720 种
D.360 种
解析:由题意可知,白颜色汽车按 3 辆,2 辆分为 2 组,先从 5 辆白色汽车选 3 辆全排列共有 A35种, 再将剩余的 2 辆白色汽车全排列共有 A22种,再将这两个整体全 排列,共有 A22种,排完后有 3 个空, 3 辆不同的红颜色汽车插空共有 A33种, 由分步计数原理得共有 A35A22A22A33=1 440 种, 故选 B.
排列、组合数公式 (1)排列数公式 Amn =n(n-1)…(n-m+1)=n-n!m!. (2)组合数公式 Cmn =AAmnmm=nn-1·…m·!n-m+1=m!nn! -m!.
(1)已知 5 辆不同的白颜色汽车和 3 辆不同的红颜色汽
车停成一排,则白颜色汽车至少 2 辆停在一起且红颜色的汽车
3.二项式系数的性质
(1)Crn=Cnn-r,Cnr +Crn-1=Crn+1. (2)二项式系数最值问题
当
n
为偶数时,中间一项即第n2+1项的二项式系数
n C2n
最大;
当
n
为奇数时,中间两项即第n+2 1,n+2 3项的二项式系数
n-1 C2
n,Cn+2 1n 相等且最大.
(1)(2018·高考全国卷Ⅲ)x2+2x5 的展开式中 x4 的系数
答案:1 080
3.(2017·高考浙江卷)从 6 男 2 女共 8 名学生中选出队长 1 人, 副队长 1 人,普通队员 2 人组成 4 人服务队,要求服务队中至 少有 1 名女生,共有________种不同的选法.(用数字作答)
解析:法一:分两步,第一步,选出 4 人,由于至少 1 名女生, 故有 C48-C46=55 种不同的选法;第二步,从 4 人中选出队长、 副队长各 1 人,有 A24=12 种不同的选法.根据分步乘法计数 原理知共有 55×12=660 种不同的选法. 法二:不考虑限制条件,共有 A28C26种不同的选法, 而没有女生的选法有 A26C24种, 故至少有 1 名女生的选法有 A28C26-A26C24=840-180=660(种).
2020年高考数学试题分类汇编 专题排列组合、二项式定
2020年高考试题数学(理科)排列组合、二项式定理一、选择题:1.(2020年高考全国卷理科7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有 (A)4种 (B)10种 (C)18种 (D)20种(A )-40 (B )-20 (C )20 (D )40解析 1.令x=1得a=1.故原式=511()(2)x x x x +-。
511()(2)x x x x+-的通项521552155(2)()(1)2r r r r r r r r T C x x C x ----+=-=-,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40 ,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x ,选3个提出1x ;若第1个括号提出1x ,从余下的括号中选2个提出1x,选3个提出x.故常数项=223322335353111(2)()()(2)X C X C C C X X X X⋅⋅-+⋅-⋅=-40+80=40 3.(2020年高考天津卷理科5)在6x x ⎫⎝的二项展开式中,2x 的系数为( ) A .154-B .154C .38-D .38【答案】C【解析】因为1r T +=666((rr x C x-⋅⋅,所以容易得C 正确. 4.(2020年高考陕西卷理科4)6(42)()xx x R --∈的展开式中的常数项是(A )20- (B )15- (C )15 (D )20【分析】根据二项展开式的通项公式写出通项,再进行整理化简,由x 的指数为0,确定常数项是第几项,最后计算出常数项. 【答案】C【解】62(6)1231666(4)(2)222r x r x r r x r xr rx xr r T C C C -----+==⋅⋅=⋅, 令1230x xr -=,则4r =,所以45615T C ==,故选C .5.(2020年高考重庆卷理科4) ()13nx +(其中n N ∈且6a ≥)的展开式中5x 与6x 的系数相等,则n =(A )6 (B)7 (C) 8 (D)9 答案:B解析: ()13n x +的通项为()13rrr n T C x +=,故5x 与6x 的系数分别为553n C 和663n C ,令他们相等,得:()()56!!335!5!6!6!n n n n =--,解得n =712.在集合{}1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则mn= (A )415 (B )13 (C )25 (D )23答案:D解析:基本事件:26(2,1),(2,3),(2,5),(4,1),(4,5),(4,3)23515n C ==⨯=从选取个,.其中面积为2的平行四边形的个数(2,3)(4,5);(2,1)(4,3);(2,1)(4,1);其中面积为4的平行四边形的为(2,3)(2,5);(2,1)(2,3); m=3+2=5故51153m n ==. 7.(2020年高考福建卷理科6)(1+2x )3的展开式中,x 2的系数等于A .80B .40C .20D .10【答案】B 二、填空题:1. (2020年高考山东卷理科14)若6(x 展开式的常数项为60,则常数a 的值为 . 【答案】4【解析】因为6162(rrr r a T C xx-+=⋅⋅-,所以r=2, 常数项为26a C ⨯=60,解得4a =.2. (2020年高考浙江卷理科13)(13)设二项式)0()(6>-a xa x 的展开式中3x 的系数为A,常数项为B ,若B=4A ,则a 的值是 。
押第4题 排列组合与二项式定理(新高考)(解析版)--2023年新高考数学临考题号押题
押新高考卷4题排列组合与二项式定理考点3年考题考情分析排列组合与二项式定理2022年新高考Ⅰ卷第13题2022年新高考Ⅱ卷第5题2020年新高考Ⅰ卷第3题2020年新高考Ⅱ卷第6题排列组合与二项式定理均是以小题的形式进行考查,难度较易或一般,新高考冲刺复习中,分类加法原理、分步乘法原理,排列数及组合数,二项式定理、二项展开式系数都是重点复习内容,可以预测2023年新高考命题方向将继续对排列组合和二项式定理选其一展开命题.1.分类计数原理(加法原理)12n N m m m =+++ .2.分步计数原理(乘法原理12n N m m m =⨯⨯⨯ .3.排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=.4.组合数公式m n C=m n m m A A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).5.排列数与组合数的关系m mn n A m C =⋅!.6.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列.(1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n mn A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m mn A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n kk A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有kk k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有kh hh A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +.7.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn n n n n mn n n mn n mn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- .(2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--.8.二项式定理nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)(;二项展开式的通项公式rr n r n r b a C T -+=1)210(n r ,,, =.【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式,故选:B3.(2020·新高考Ⅰ卷高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种【答案】C【分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解.【详解】首先从6名同学中选1名去甲场馆,方法数有16C;然后从其余5名同学中选2名去乙场馆,方法数有25C;最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C⋅=⨯=种.故选:C【点睛】本小题主要考查分步计数原理和组合数的计算,属于基础题.4.(2020·新高考Ⅱ卷高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种B.3种C.6种D.8种【答案】C【分析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.【详解】第一步,将3名学生分成两个组,有12323C C=种分法第二步,将2组学生安排到2个村,有222A=种安排方法所以,不同的安排方法共有326⨯=种故选:C【点睛】解答本类问题时一般采取先组后排的策略.1.(2023·辽宁朝阳·校联考一模)6名老师被安排到甲、乙、丙三所学校支教,每名老师只去1所学校,甲校安排1名老师,乙校安排2名老师,丙校安排3名老师,则不同的安排方法共有()A .30种B .60种C .90种D .120种【答案】B【分析】按照分步计数原理求解.【详解】依题意,第一步,从6名老师中随机抽取1名去甲校,有16C 种方法;第二步,从剩下的5名老师中抽取2名取乙校,有25C 种方法;第三部,将剩余的3名老师给丙校,有33C 种方法;总共有123653C C C 60=种方法;故选:B.2.(2023·湖南湘潭·统考二模)2022年男足世界杯于2022年11月21日至2022年12月17日在卡塔尔举行.现要安排甲、乙等5名志愿者去A ,B ,C 三个足球场服务,要求每个足球场都有人去,每人都只能去一个足球场,则甲、乙两人被分在同一个足球场的安排方法种数为()A .12B .18C .36D .48【答案】C【分析】先按3,1,1或2,2,1分组,再安排到球场.【详解】将5人按3,1,1分成三组,且甲、乙在同一组的安排方法有13C 种,将5人按2,2,1分成三组,且甲、乙在同一组的安排方法有23C 种,则甲、乙两人被分在同一个足球场的安排方法种数为()123333C C A 36+=.故选:C3.(2023·广东佛山·统考二模)“基础学科拔尖学生培养试验计划”简称“珠峰计划”,是国家为回应“钱学森之问”而推出的一项人才培养计划,旨在培养中国自己的学术大师.已知浙江大学、复旦大学、武汉大学、中山大学均有开设数学学科拔尖学生培养基地,某班级有5位同学从中任选一所学校作为奋斗目标,则每所学校至少有一位同学选择的不同方法数共有()A .96种B .64种C .32种D .16种【答案】B【分析】分3步完成,每步中用排列求出排法数,再利用分步计数原理即可求出结果.【详解】根据题意,分3步进行,第一步,要求“只有中间一列两个数字之和为5”,则中间的数字只能为两组数1,4或2,3中的一组,共有222A 4=种排法;第二步,排第一步中剩余的一组数,共有1142A A 8=种排法;第三步,排数字5和6,共有22A 2=种排法;由分步计数原理知,共有不同的排法种数为48264⨯⨯=.故选:B.12.(2023·浙江嘉兴·统考模拟预测)若一个三位数M 的各个数位上的数字之和为8,则我们称M 是一个“叔同数”,例如“125,710”都是“叔同数”.那么“叔同数”的个数共有()A .34个B .35个C .36个D .37个【答案】C【分析】利用列举法求出所有组合,再计算能排列出多少个“叔同数”.【详解】三位数各位数的和为8可能的组合有116,125,134,224,233,017,026,035,044,008,其中三个数不同且都不为0可排出33A 6=个“叔同数”,没有0的3个数中有2个数相同,则排出13A 3=个“叔同数”,有1个0其余2个数为不同的非零数字可排出1222A A 4=个“叔同数”,008只能排出800一个“叔同数”,所以它们排出的“叔同数”的个数共有366334442136+++++++++=,故选:C13.(2023·江苏连云港·统考模拟预测)现要从A ,B ,C ,D ,E 这5人中选出4人,安排在甲、乙、丙、丁4个岗位上,如果A 不能安排在甲岗位上,则安排的方法有()A .56种B .64种C .72种D .96种【答案】D【分析】根据A 是否入选进行分类讨论即可求解.【详解】由题意可知:根据A 是否入选进行分类:若A 入选:则先给A 从乙、丙、丁3个岗位上安排一个岗位有13C 3=种,再给剩下三个岗位安排人有34A 43224=⨯⨯=种,共有32472⨯=种方法;若A 不入选:则4个人4个岗位全排有44A 432124=⨯⨯⨯=种方法,所以共有722496+=种不同的安排方法,故选:D .14.(2023·重庆万州·重庆市万州第二高级中学校考模拟预测)某社区活动需要连续六天有志愿者参加服务,每天只需要一名志愿者,现有甲、乙、丙、丁、戊、己6名志愿者,计划依次安排到该社区参加服务,要求甲不安排第一天,乙和丙在相邻两天参加服务,则不同的安排方案共有()A .72种B .81种C .144种D .192种【答案】D【分析】先计算乙和丙在相邻两天参加服务的排法,排除乙和丙在相邻两天且甲安排在第一天参加服务的排法,即可得出答案.【详解】解:若乙和丙在相邻两天参加服务,不同的排法种数为2525A A 240=,若乙和丙在相邻两天且甲安排在第一天参加服务,不同的排法种数为2424A A 48=,由间接法可知,满足条件的排法种数为24048192-=种.故选:D.15.(2023·重庆九龙坡·统考二模)《数术记遗》是《算经十书》中的一部,相传是汉末徐岳所著,该书记述了我国古代14种算法,分别是:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算和计数.某学习小组有甲、乙、丙、丁四人,该小组要收集九宫算、运筹算、了知算、成数算、把头算、珠算6种算法的相关资料,要求每种算法只能一人收集,每人至少收集其中一种,则不同的分配方案种数有()A .1560种B .2160种C .2640种D .4140种【答案】A【分析】先分组,再分配,注意部分平均分组需要除以组数(平均的组数)的全排列.【详解】依题意分两种情况讨论:①将6种算法分成1、1、1、3四组,再分配给4人,则有3464C A 480=种;。
2020高考数学总复习 10.1排列、组合和二项式定理课件
对于某些复杂的问题,有时既要用分类计数原理,又要用分步计数 原理,重视两个原理的灵活运用,并注意以下几点:
(1)认真审题,分析题目的条件、结论,特别要理解题目中所讲的“事 情”是什么,完成这件事情的含义和标准是什么.
(2)明确完成这件事情需要“分类”还是“分步”,还是既要“分类” 又要“分步”,并搞清“分类”或“分步”的具体标准是什么.
答案: 100
5.若x、y∈N*,且x+y≤6,则有序自然数对(x,y)共有________个. 解析: 当x=1,2,3,4,5时,y值依次有5,4,3,2,1个,由分类计数原理,不 同的数据对(x,y)共有5+4+3+2+1=15(个). 答案: 15
1.分类计数原理是对涉及完成某一件事的不同方法采取的计数方 法,每一类的各种方法都是相互独立的,每一类中的每一种方法都可 以独立完成这件事.
(1)P可表示平面上多少个不同的点? (2)P可表示平面上多少个第二象限的点? (3)P可表示多少个不在直线y=x上的点? 解析: (1)确定平面上的点P(a,b)可分两步完成:第一步确定a的值, 共有6种确定方法;第二步确定b的值,也有6种确定方法.根据分步乘法 计数原理,得到平面上的点数是6×6=36.
[变式训练] 2.某体育彩票规定:从01到36共36个号中抽出7个号为一注 ,每注2元.某人想先选定吉利号18,然后从01至17中选3个连续的号,从 19至29中选2个连续的号,从30至36中选1个号组成一注.若这个人要把符 合这种要求的号全买下,至少要花多少元钱?
解析: 第一步:从01到17中选3个连续号有15种选法; 第二步:从19到29中选2个连续号有10种选法: 第三步:从30到36中选1个号有7种选法. 由分步乘法计数原理可知:满足要求的注数共有15×10×7=1 050注, 故至少要花1 050×2=2 100元.
2020高考数学复习排列组合、二项式定理
2020 高考数学复习大纲领求1.掌握加法原理及乘法原理,并能用这两个原理剖析解决一些简单的问题 .2.理解摆列、组合的意义,掌握摆列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题 .3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题 .二、知识构造加法原理、乘法原理摆列数摆列摆列数应用组合数组合组合数应用摆列组合综合应用二项式定理三、知识点、能力点提示( 一) 加法原理、乘法原理说明加法原理、乘法原理是学习摆列组合的基础,掌握此两原理为办理排列、组合中相关问题供给了理论依据 .例 1 5 位高中毕业生,准备报考 3 所高等院校,每人报且只报一所,不一样的报名方法共有多少种 ?解: 5 个学生中每人都能够在 3 所高等院校中任选一所报名,因此每个学生都有 3 种不一样的报名方法,依据乘法原理,获得不一样报名方法总合有3×3×3×3×3=35( 种)( 二) 摆列、摆列数公式说明摆列、摆列数公式及解摆列的应用题,在中学代数中较为独到,它研究的对象以及研究问题的方法都和前方掌握的知识不一样,内容抽象,解题方法比较灵巧,历届高考主要考察摆列的应用题,都是选择题或填空题考察 .例 2 由数字 1、2、3、4、5 构成没有重复数字的五位数,此中小于50000 的偶数共有( )A.60个B.48 个C.36个 D.24个 解 因为要求是偶数,个位数只好是2 或 1504 的排法有 P 2;小于 000 的五位数,万位只好是1、3 或2、4 中剩下的一个的排法有1 在P ;3首末两位数排定后,中间31 31个)3 个位数的排法有 P 3,得 P 3P 3P 2=36(由此可知本题应选 C.例 3 将数字 1、2、3、4 填入标号为 1、2、3、4 的四个方格里,每格填一个 数字,则每个方格的标号与所填的数字均不一样的填法有多少种 ?解: 将数字 1 填入第 2 方格,则每个方格的标号与所填的数字均不相同的填法有 3 种,即 214 3,3142,4123;相同将数字 1 填入第 3 方格,也对应着 3 种填法;将数字 1 填入第 4 方格,也对应 3 种填法,所以共有填法为3P 1 3种).=9( ( 三) 组合、组合数公式、组合数的两个性质说明 历届高考均有这方面的题目出现,主要考察摆列组合的应用题,且基本上都是由选择题或填空题考察 .例 4 从 4 台甲型和 5 台乙型电视机中随意拿出 3 台,此中起码有甲型与乙型电 视机各 1 台,则不一样的取法共有 ( )A.140 种B.84种C.70 种D.35 种解: 抽出的 3 台电视机中甲型12种;1 台乙型2 台的取法有 C ·C45甲型 2 台乙型 1 台的取法有 C 2 4·C 1 5 种依据加法原理可得总的取法有C22214·C 5+C 4·C 5=40+30=70(种 ) 可知本题应选 C.例 5 甲、乙、丙、丁四个企业承包 8 项工程,甲企业承包 3 项,乙企业承包 1 项,丙、丁企业各承包 2 项,问共有多少种承包方式 ?解: 甲企业从 8 项工程中选出 3 项工程的方式 C 38 种; C 1 乙企业从甲企业精选后余下的 5 项工程中选出 1 项工程的方式有5 种;丙企业从甲乙两企业精选后余下的 4 项工程中选出 2 项工程的方 式有 C 2 4 种;丁企业从甲、乙、丙三个企业精选后余下的 2 项工程中选出 2 项2工程的方式有 C 2 种.C 312根 据乘法原理可得承包方式的种数有8×C 5×C 4×8 7 654 3C 2 2= 32 12 1 × 1=1680(种).(四) 二项式定理、二项睁开式的性质说明 二项式定理揭露了二项式的正整数次幂的睁开法例,在数 学中它是常用的基础知识 ,从 1985 年至 1998 年历届高考均有这方面 的题目出现,主要考察二项睁开式中通项公式等,题型主要为选择题 或填空题 .例 6 在(x- 3 ) 10 的睁开式中, x 6 的系数是 ()A.-27C6B.27C4C.-9C6D.9C410101010解设(x-3 )10 的睁开式中第γ+1项含 x6 ,γ+1γ 10- γ(-3)γ,10- γ=6, γ=4因 T =C 10x于是睁开式中第6,第 5 项系数是4 (-3445 项含 xC) =9C1010故本题应选 D. 2+(x-1) 3-(x-1) 4+(x-1) 5 的睁开式中的 x 2例 7 (x-1)-(x-1) 的 系数等于解:本题可视为首项为 x-1 ,公比为 -(x-1) 的等比数列的前 5 项的 和,则其和为( x 1)[1 ( x 1) 5 ]( x 1) (x 1)61 ( x 1)x在(x-1) 633 333,所以睁开式中2的系数中含 x 的项是 C 6x (-1) =-20x x 是-2 0.( 五) 综合例题赏析例 8 若(2x+ 3 ) 4=a 0+a 1x+a 2x 2+a 3 x 3+a 4 x 4,则 (a 0 +a 2+a 4) 2-(a 1+a 3) 2 的值为( )A.1B.-1C.0D.2解:A.例 9 2 名医生和 4 名护士被分派到 2 所学校为学生体检,每校分派 1 名医生和 2 名护士,不一样的分派方法共有 ( )A.6 种B.12 种C.18 种D.24种解分医生的方法有2种,分护士方法有2种,所以共有P 2=2C4=66×2=12 种不一样的分派方法。
2020版高考数学二轮复习第1部分主题3排列、组合、二项式定理教案理
主题3 排列、组合、二项式定理1.排列与组合解决排列与组合问题应注意3点(1)“分类”与“分步”要明确,保证分类要不重不漏,分步要环环相扣,如T1,T4.(2)分组分配中提防“均分”问题,避免重复计数,如T2.(3)关注限制条件,采用特殊元素(位置)优先安置的策略,如:相邻问题捆绑法;间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法等等.如T3,T4,T5.1.(2019·沈阳市东北育才学校第五次模拟)某地区高考改革,实行“3+2+1”模式,即“3”指语文、数学、外语三门必考科目,“1”指在物理、历史两门科目中必选一门,“2”指在化学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有 ( )A.8种B.12种C.16种D.20种C[若一名学生只选物理和历史中的一门,则有C12C24=12种组合;若一名学生物理和历史都选,则有C14=4种组合.因此共有12+4=16种组合.故选C.]2.(2019·长春市高三质量监测一)要将甲、乙、丙、丁4名同学分到A,B,C三个班级中,要求每个班级至少分到一人,则甲被分到A班的分法种数为( )A.6 B.12C.24 D.36B[甲和另一个人一起分到A班有C13A22=6种分法;甲一个人分到A班的方法有:C23A22=6种分法,共有12种分法,故选B.]3.5位同学站成一排照相,其中甲与乙必须相邻,且甲不能站在两端的排法总数是( ) A.40 B.36C.32 D.24B[由题意得,甲与乙必须相邻的情况种数为:A44A22=48种,甲分别站在两端且与乙相邻的种数为:C12A33=12种,所以满足题意的排法总数是A44A22-C12A33=48-12=36种.故选B.] 4.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成________个没有重复数字的四位数.(用数字作答)1 260 [若取的4个数字不包括0,则可以组成的四位数的个数为C25C23A44;若取的4个数字包括0,则可以组成的四位数的个数为C25C13C13A33.综上,一共可以组成的没有重复数字的四位数的个数为C25C23A44+C25C13C13A33=720+540=1 260.]5.如图所示,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数为________.96 [按区域1与3是否同色分类,分两类.(正确分类是解决本题的关键)第一类,区域1与3同色:先涂区域1与3,有4种方法,再涂区域2,4,5(还有3种颜色),有A33种方法.此时涂色方法共有4A33=24(种).第二类,区域1与3不同色:第一步,涂区域1与3,有A24种方法;第二步,涂区域2,有2种涂色方法;第三步,涂区域4,只有1种涂色方法;第四步,涂区域5,有3种涂色方法.此时涂色方法共有A24×2×1×3=72(种).故由分类加法计数原理知,不同的涂色种数为24+72=96(种).(先涂区域1和3是化解本题难点和避开易错点的关键)]2.二项式定理解决二项式定理问题应注意3点(1)二项展开式(a+b)n的通项公式T r+1=C r n a n-r b r为第r+1项,利用它可求展开式中的特定项,如T1.(2)二项式系数与二项展开式中项的系数不同,前者指的是C r n,而后者指的是除字母外的系数,二项展开式中项的系数问题常与特殊化思想联系在一起,注意赋值法求值的应用,如T2,T4.(3)需熟知二项式定理的原理及推导过程,对于一些非二项式展开式中项的系数问题,可转化为二项式定理问题,如T3,T4.1.-x10x2的展开式中的常数项为( )A.-45 B.1 C.45 D.90C[-x10x2的展开式的通项为T r+1=C r10-x rx2=(-1)r C r10x r-2,令r-2=0,可得r=2,所以-x10x2的展开式中的常数项为(-1)2C210=45.故选C.]2.已知(2x-1)10=a0+a1x+a2x2+…+a9x9+a10x10,则a2+a3+…+a9+a10的值为( )A .-20B .0C .1D .20D [令x =1,得a 0+a 1+a 2+…+a 9+a 10=1,再令x =0,得a 0=1,所以a 1+a 2+…+a 9+a 10=0,又易知a 1=C 910×21×(-1)9=-20,所以a 2+a 3+…+a 9+a 10=20.]3.(2019·全国卷Ⅲ)(1+2x 2)(1+x )4的展开式中x 3的系数为( ) A .12 B .16 C .20D .24A [展开式中含x 3的项可以由“1与x 3”和“2x 2与x ”的乘积组成,则x 3的系数为C 34+2C 14=4+8=12.]4.设二项式⎝ ⎛⎭⎪⎫x -12n(n ∈N *)展开式的二项式系数和与各项系数和分别为a n ,b n ,则a 1+a 2+…+a nb 1+b 2+…+b n=( )A .2n -1+3 B .2(2n -1+1)C .2n +1D .1C [二项式⎝ ⎛⎭⎪⎫x -12n (n ∈N *)展开式的二项式系数和为2n,各项系数和为⎝ ⎛⎭⎪⎫1-12n=12n ,则a n =2n,b n =12n ,a 1+a 2+…+a nb 1+b 2+…+b n=n-1-12n=2n +1,故选C.]5.(2019·晋冀鲁豫名校联考)⎝ ⎛⎭⎪⎫1x -x +26的展开式中的常数项为________. -76 [三项式(a +b +c )n展开式的通项公式为C x n Cy n -xa xb y cn -x -y,所以⎝ ⎛⎭⎪⎫1x -x +26的展开式中的常数项为:26+C 16C 15⎝ ⎛⎭⎪⎫1x 1·(-x )1·24+C 26C 24⎝ ⎛⎭⎪⎫1x 2·(-x )2·22+C 36⎝ ⎛⎭⎪⎫1x 3·(-x )3=64-480+360-20=-76.]。
2020届高三数学总复习第十章 排列、组合、二项式定理和概率、统计
十年高考分类解析与应试策略数学第十章 排列、组合、二项式定理和概率、统计●考点阐释本章从内容到方法都是比较独特的,是进一步学习概率论的基础知识.其中分类计数原理和分步计数原理是本章的基础,它是学习排列、组合、二项式定理和计算事件的概率的预备知识.在对应用题的考查中,经常要运用分类计数原理或分步计数原理对问题进行分类或分步分析求解,如何灵活利用这两个原理对问题进行分类或分步往往是解应用题的关键.从两个原理上,完成一件事的“分类”和“分步”是有区别的,因此在应用上,要注意将两个原理区分开.排列、组合也是本章的两个主要概念.定义中从n 个不同元素中,任取M (M ≤n )个元素“按一定的顺序排成一列”与不管怎样的顺序“并成一组”是有本质区别的.只有准确、全面把握这两个概念,才能正确区分是排列问题,还是组合问题.具体解决手段:只要取出2个元素交换看结果是否有变化.二项式定理中,公式一般都能记住,但与其相关的概念如:二项式系数、系数、常数项、项数等,学生易混,须在平常加以对比分析,对通项公式重点训练.应用上要注意:①它表示二项展开式中的任意项,只要n 与r 确定,该项随之确定.②公式表示的是第r +1项.③公式中a 、b 的位置不能颠倒,它们的指数和为n .④r 的取值从0到n ,共n +1个.古典概型是学习概率与统计的起点,而掌握古典概型的前提是能熟练掌握排列组合的基本知识.熟练掌握五种事件的概率以及抽样方法、总体分布的估计、期望和方差. ●试题类编 一、选择题1.(2003京春理,9)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( )A.42B.30C.20D.122.(2003京春文,10)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为( )A.6B.12C.15D.303.(2002京皖春理,6)从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作.若其中甲、乙两名志愿者都不能从事翻译工作,则选派方案共有( )A.280种B.240种C.180种D.96种4.(2002京皖春文,6)若从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作,则选派方案共有( )A.180种B.360种C.15种D.30种5.(2002京皖春理,10)对于二项式(x1+x 3)n(n ∈N *),四位同学作出了四种判断:①存在n ∈N *,展开式中有常数项 ②对任意n ∈N *,展开式中没有常数项 ③对任意n ∈N *,展开式中没有x 的一次项 ④存在n ∈N *,展开式中有x 的一次项上述判断中正确的是( )A.①③B.②③C.②④D.①④6.(2002京皖春文,10)在(x1+x 2)6的展开式中,x 3的系数和常数项依次是( ) A.20,20 B.15,20 C.20,15 D.15,157.(2002全国文,12、理,11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( )A.8种B.12种C.16种D.20种8.(2002北京文,9)5本不同的书,全部分给四个学生,每个学生至少1本,不同分法的种数为( )A.480B.240C.120D.969.(2002北京理,9)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( )A.4448412C C C 种B.34448412C C C 种C.3348412AC C种D.334448412A C C C 种 10.(2001京皖春,3)1222C C lim ++∞→n n n nn 等于( )A.0B.2C.21D.41 11.(2001天津理,9)某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分,一球队打完15场,积33分,若不考虑顺序,该队胜、负、平的情况共有( )A.3种B.4种C.5种D.6种12.(2000京皖春,8)从单词“equation ”中选取5个不同的字母排成一排,含有“qu ”(其中“qu ”相连且顺序不变)的不同排列共有( )A.120个B.480个C.720个D.840个13.(1999全国理,8)若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+ax 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为( ) A.1 B.-1 C.0 D.214.(1999全国,14)某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( )A.5种B.6种C.7种D.8种15.(1998全国理,11)3名医生和6名护士被分配到3所学校为学生体检,每校分配1 名医生和2名护士.不同的分配方法共有( ) A.90种 B.180种 C.270种 D.540种 16.(1997全国理,15)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有( )A.150种B.147种C.144种D.141种17.(1997全国文)四面体的一个顶点为A ,从其他顶点与棱的中点中取3个点,使它们和点A 在同一平面上,不同的取法有( )A.30种B.33种C.36种D.39种 18.(1996全国文)6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有( ) A.720种 B.360种 C.240种 D.120种19.(1995全国文15,理13)用1、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有( )A.24个B.30个C.40个D.60个 20.(1995全国,6)在(1-x 3)(1+x )10的展开式中,x 5的系数是( ) A.-297 B.-252 C.297 D.20721.(1994全国,10)有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法共有( )A.1260种B.2025种C.2520种D.5040种22.(1994上海,18)计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有( )A.5544A A 种 B.554435A A A 种 C.554413A A A 种D.554422A A A 种二、填空题23.(2003上海春,9)8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3、4名,大师赛共有_____场比赛.24.(2002上海7)在某次花样滑冰比赛中,发生裁判受贿事件,竞赛委员会决定将裁判由原来的9名增至14名,但只任取其中7名裁判的评分作为有效分.若14名裁判中有2人受贿,则有效分中没有受贿裁判的评分的概率是_____.(结果用数值表示)25.(2002上海春,7)六位身高全不相同的同学拍照留念,摄影师要求前后两排各三人,则后排每人均比前排同学高的概率是_____.26.(2002上海春,5)若在(xx 15)n的展开式中,第4项是常数项,则n = . 27.(2002全国理,16)(x 2+1)(x -2)7的展开式中x 3项的系数是 . 28.(2002上海文,9)某工程由下列工序组成,则工程总时数为 天.29.(2002天津文,15)甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:t/hm 2):其中产量比较稳定的小麦品种是_____.30.(2001上海,7)某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需准备不同的素菜品种 种.(结果用数值表示)31.(2001全国,16)圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为 .32.(2001上海理,8)在代数式(4x 2-2x -5)(1+21x)5的展开式中,常数项为 . 33.(2001全国文,13)(21x +1)10的二项展开式中x 3的系数为 . 34.(2001上海春)在大小相同的6个球中,2个红球,4个白球.若从中任意选取3个,则所选的3个球中至少有1个红球的概率是_____.(结果用分数表示)35.(2001广东河南,13)已知甲、乙两组各有8人,现从每组抽取4人进行计算机知识竞赛,比赛人员的组成共有 种可能(用数字作答).36.(2001江西、山西、天津理)一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,则其中含红球个数的数学期望是_____.(用数字作答)37.(2001上海文)利用下列盈利表中的数据进行决策,应选择的方案是_____.38.(2000上海春,4)若(x +a )5的展开式中的第四项是10a 2(a 为大于零的常数),则x =_____.39.(2000上海春,10)有n (n ∈N *)件不同的产品排成一排,若其中A 、B 两件产品排在一起的不同排法有48种,则n =_____.40.(2000京皖春理,17)103)1(xx 展开式中的常数项是_____.41.(2000全国文、理,3)乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_____种(用数字作答).42.(2000年上海,9)在二项式(x -1)11的展开式中,系数最小的项的系数为 .(结果用数值表示)43.(2000上海,10)有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1、2和3.现任取3面,它们的颜色与号码均不相同的概率是 .44.(2000两省一市理,13)某厂生产电子元件,其产品的次品率为5%,现从一批产品中任意地连续取出2件,其中次品数以ξ的概率分布是45.(1999全国,16)在一块并排10垄的田地中,选择2垄分别种植A 、B 两种作物,每种作物种植一垄.为有利于作物生长,要求A 、B 两种作物的间隔不小于6垄,则不同的选垄方法共有_____种(用数字作答).46.(1999上海理,3)在(x 3+22x)5展开式中,x 5项的系数为 . 47.(1999上海理,11)若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=16内的概率是 .48.(1998全国理,17)(x +2)10(x 2-1)的展开式中x 10的系数为_____(用数字作答).49.(1998上海,9)设n 是一个自然数,(1+n x )n的展开式中x 3的系数为161,则n =_____.50.(1997全国,16)已知(2x x a)9的展开式中x 3的系数为49,常数a 的值为_____. 51.(1997上海,11)若(3x +1)n (n ∈N *)的展开式中各项系数的和是256,则展开式中x 2的系数是_____.52.(1997上海,16)从集合{0、1、2、3、5、7、11}中任取3个元素分别作为直线方程Ax +By +C =0中的A 、B 、C ,所得经过坐标原点的直线有_____条(结果用数值表示).53.(1996全国,17)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有_____个(用数字作答).54.(1996上海,17)有8本互不相同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有_____种(结果用数字表示).55.(1996上海理,14)在(1+x )6(1-x )4的展开式中,x 3的系数是_____(结果用数值表示).56.(1995上海,13)若(x +1)n =x n +…+ax 3+bx 2+…+1(n ∈N *),且a ∶b =3∶1,那么n =_____.57.(1995上海,19)从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装与组装计算机各2台,则不同的选取法有_____种.(结果用数值表示).58.(1995全国,20)四个不同小球放入编号为1、2、3、4的四个盒中,则恰有一个空盒的放法共有_____种.(用数字作答)59.(1994全国,16)在(3-x )7的展开式中,x 5的系数是_____(用数字作答). 三、解答题60.(2002天津文20,理19)某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立).(Ⅰ)求至少3人同时上网的概率;(Ⅱ)至少几人同时上网的概率小于0.3?61.(2001江西、山西、天津)如图10—1,用A 、B 、C 三类不同的元件连接成两个系统N 1,N 2.当元件A 、B 、C 都正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作.已知元件A 、B 、C 正常工作的概率依次为0.80、0.90、0.90.分别求系统N 1、N 2正常工作的概率P 1、P 2.62.(2001上海理)对任意一个非零复数z ,m z ={ω|ω=z 2n -1,n ∈N }(1)设α是方程x +21=x的一个根,试用列举法表示集合M α.若在M α中任取两个数,求其和为零的概率P .(2)设复数ω∈M z ,求证:M ω⊆M z .63.(2001全国理,20)已知i ,m ,n 是正整数,且1<i ≤m <n . (1)证明n i i m A <m i i n A ;(2)证明(1+m )n >(1+n )m .64.(2000江西、山西、天津理,17)甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题.(1)甲抽到选择题、乙抽到判断题的概率是多少?(2)甲、乙二人中至少有一人抽到选择题的概率是多少?65.(2000上海,22)规定!)1()1(C m m x x x mx+-⋅⋅-⋅=Λ,其中x ∈R ,m 是正整数,且0C x =1,这是组合数mn C (n 、m 是正整数,且m ≤n 的一种推广).(1)(文)求315C -的值; (理)求515C -的值;(2)(文)设x >0,当x 为何值时,213)C (C x x 取最小值?(理,文2)组合数的两个性质: ①m n nmn-=C C . ②mn m n m n 11C C C +-=+. 是否都能推广到mx C (x ∈R ,m 是正整数)的情形?若能推广,请写出推广的形式,并图10—1给出证明;若不能,则说明理由.(3)(理)已知组合数mn C 是正整数,证明:当x ∈Z ,m 是正整数时,mn C ∈Z . 66.(1996全国文24,理23)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%,如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?●答案解析 1.答案:A解析:这是一个插空问题,应分两类:第一类,新增的两个节目连在一起;第二类,两个新增节目不连在一起,而原来的5个节目可看做分出6个空位.第一类则有2×16A 种不同的插法,第二类则有26A 种不同的插法.应用分类计数原理,共有12+30=42种不同的插法. 评述:该题是应用问题,内容贴近学生,有一定的综合性、灵活性、考查分析,解决问题及逻辑思维的能力.同时应有周密的思维习惯.2.答案:D解析:见第1题. 3.答案:B解析:因为甲、乙两名志愿者都不能从事翻译工作.因此,翻译工作从余下的四名志愿者选一人有14A 种,再从余下的5人中选3人从事导游、导购、保洁有35A 种.因此3514A A =240.4.答案:B 解析:46A =360. 5.答案:D 解析:二项式(x 1+x 3)n 展开式的通项为T r +1=r n C (x1)n -r (x 3)r =r n C x r -n ·x 3r =r n C x 4r -n 当展开式中有常数项时,有4-n =0,即存在n 、r 使方程有解.当展开式中有x 的一次项时,有4r -n =1,即存在n 、r 使方程有解. 即分别存在n ,使展开式有常数项和一次项. 6.答案:C 解析:二项式(x1+x 2)6展开式的通项为: T r +1=636266C )()1(C --=r r r r rx x x∴当T r +1为x 3项时,r =3,∴T r +1=36C ·x 3=20·x 3 当T r +1为常数项时,r =2,∴T r +1=26C =157.答案:B解析:联想以空间模型,注意到“有2个面不相邻”,既可从相对平行的平面入手正面构造,即16C ·12C ;也可从反面入手剔除8个角上3个相邻平面,即:1836C C -. 8.答案:B解析:先把5本书中的两本捆起来(25C ),再分成四份(44A ),∴分法种数为25C ·44A =240(种).9.答案:A解析:先分配4个人到第一个路口,再分配4个人到第二个路口,最后分配4个人到第三个路口,即:412C ·48C ·44C .10.答案:D解析:原式=n n n n n n n n n n n n n n n n n n n n n n n n 2411)12(21)12)(22()1)(1(A A A A A A A A 122112111222++=++=++++=⋅⋅=++++++++ ∴41C C lim 1222=++∞→n n n nn 11.答案:A 解析:设该队胜x 场,平y 场,则负(15-x -y )场,由题意得3x +y =33, ∴y =33-3x ≥0∴x ≤11,且x +y ≤15,(x ,y ∈N ) 因此,有以下三种情况:⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==69310011y x y x y x 或或 评述:本题利用不定方程及穷举法解决排列、组合问题. 12.答案:B解析:4436A C =480.13.答案:A 14.答案:C解法一:由题意知,按买磁盘盒数多少可分三类:买4盒磁盘时,只有1种;买3盒磁盘时,有买3片或4片软件两种;买2盒磁盘时,可买3片、4片、5片或6片软件,有4种,故共有1+2+4=7种不同的选购方式,答案为C.解法二:先买软件3片,磁盘2盒,共需320元,还有180元可用,按不再买磁盘、再买1盒磁盘、再买两盒磁盘三类,仿解法一可知选C.评述:本题主要考查分类计数原理、分类讨论思想.背景简单,但无现成模式可用,对分析解决问题的能力有较高要求.15.答案:D解析:设计让3所学校依次挑选,先由学校甲挑选,有2613C C 种,再由学校乙挑选,有2412C C 种,余下的到学校丙只有一种,于是不同的方法数共有13C ·26C ·2412C C =540种,答案为D.评述:设计一个程序是解答排列组合应用题的常见解法. 16.答案:D解法一:10个点任取4个点取法有410C 种,其中面ABC 内的6个点中任意4点都共面,从这6点中任取4点有46C 种,同理在其余3个面内也有46C 种,又每条棱与相对棱中点共面有6种,各棱中点中4点共面的有3种,故10个点中取4点,不共面的取法共有36C 4C 46410---=141种.解法二:四面体记之为A —BCD ,设平面BCD 为α,那么从10个点中取4个不共面的点的情况共有四类:(1)恰有3个点在α上,有4(3C 36-)=68种取法;(2)恰有2个点在α上,可分两种情况:该2个点在四面体的同一条棱上时有3)3C (C 2423-=27种,该2个点不在同一条棱上,有(2326C 3C -)·(24C -1)=30种;(3)恰有1个点在α上,可分两种情况,该点是棱的中点时有3×3=9种,该点是棱的端点时有3×2=6种;(4)4个点全不在α上,只有1种取法.根据分类计数原理得,不同的取法共有68+27+30+9+6+1=141种.评述:本题对空间想象能力要求较高,对观察能力和思维能力要求也高.在应用背景及其限制条件下合理分类是解题的关键.17.答案:B解析:四面体有4个顶点,6条棱有6个中点,每个面上的6个点共面,点A 所在的每个面中含A 的4点组合有35C 个,点A 在3个面内,共有335C 个组合,点A 在6条棱的三条棱上,每条棱上有3个点,这3点与对棱的中点共面,所以与点A 共面的四点组合共有335C +3=33(个)评述:本题考查组合的知识和空间想象能力.对考生的观察能力和思维能力有较高要求,考生失误的主要原因是没有把每条棱上的3点与它对棱上的中点共面的情况计算入内.18.答案:C解析:把甲、乙两人看作1个人,这样6个人看作5个人,5个人的全排列有55A 种,甲、乙两个人还有顺序问题,所以排法总数为55A ·22A =240(种)评述:这是一道有限制条件的排列题,考查排列的概念和排列数公式.“相邻问题”是一个常见的典型问题.19.答案:A解法一:其中2在个位的三位数有24A 个,4在个位的三位数有24A 个,故没有重复数字的三位偶数共有224A =24个,故选A.解法二:先排个位有12A 种,再排十位、百位有24A 种,于是合乎要求的三位偶数共有2412A A =24个.故选A. 评述:本题为有特殊要求的排列问题,考查排列基础知识和逻辑推理能力. 20.答案:D解析:∵原式=(1+x )10-x 3(1+x )10.∴欲求原展开式中x 5的系数,只需求出(1+x )10展开式中x 5和x 2的系数.而(1+x )10=1+…+210C x 2+…+510C x 5+….故(1-x 3)(1+x )10展开式中,x 5的系数为510C -210C =207.21.答案:C解法一:从10人中选派4人有410C 种,进而对选出的4人具体分派任务,有1224C C 种,由分步计数原理得不同的选派方法为1224410C C C =2520种,答案为C.解法二:据分步计数原理,不同选法种数为210C ·18C ·17C =2520种.评述:本题主要考查组合和分步计数原理,答数较大,对组合数的计算要求较高.方法一用的是先选后派方法是处理排列组合应用题的基本方法.22.答案:D解析:先各看成整体,但水彩画不在两端,则为22A ,然后水彩画与国画各全排列,所以共有554422A A A .23.答案:16解析:分两组比赛,每组有24C 场,每组的第一名与另一组的第二名比赛有2场,三、四名比赛,冠亚军比赛,共有224C +2+2=16(场)24.答案:133 解析:有效分应该是由没有受贿裁判的评分,因此,7名裁判应从12人中选712C ,则有效分中没有受贿裁判的评分的概率是133C C 714712 .25.答案:201 解析:因为后排每人均比前排人高,因此应将6人中最高的3个人放在后排,其余3人站前排.故所有排法有33A ·33A =36种.故后排每人均比前排同学高的概率为201A A A 663333=⋅ 26.答案:18 解析:∵5183333534)1(C )1()(C ---=-=n n n nx xx T 为常数项. ∴518-n =0,即n =18. 27.答案:1008解析:系数为:17C (-2)6+37C (-2)4=1008.28.答案:11解析:要完成某项工序,必须先完成它的紧前工序且在紧前工序完成的条件下,若干件工序可同时进行,因而工程总时数为:3+2+5+1=11(天).29.答案:甲解析:根据题意,需要比较2*甲S 和2*乙S由于2*甲S =0.158,2*乙S =0.552 因此甲产量比较稳定. 30.答案:7解析:在5种不同的荤菜中取出2种的选择方式应有245C 25⨯==10(种) 选择方式至少为200种,设素菜为x 种,∴252C C x ≥2002)1(-x x ≥20,x (x -1)≥40,x ≥7 ∴至少应为7种素菜. 31.答案:2n (n -1)解析:先在圆上找一点,2n 个点因为是等分点,所以过圆心的直径应有n ,减去过这点的直径,剩下的直径n -1个都可以与这个点形成直角三角形,∴一个点可以形成n -1个直角三角形,这样的点有2n 个.∴一共为2n (n -1). 32.答案:15解析:15205)1(1C )4()1(1C 512415202505=+-=+-xx x . 33.答案:15解析:15816891081C )21(C 3103310=⨯⨯⨯=⨯=34.答案:54 解析:所选3球中至少有一个红球的选法有12C ·2224C C +·14C =16(种) 从6个球中任选3个球的选法有36C =20(种). 故概率p =542016=. 评述:本题主要考查对可能事件的概率计算,以及考生分析问题解决问题的能力.古典概率是学习概率与统计的起点,而掌握古典概型的前提是能熟练地掌握排列组合的基本知识.35.答案:4900解析:完成这件事可分为两步:第一步:从甲组8人中抽取4个,有48C 种方法; 第二步:从乙组8人中抽取4人,有48C 种方法. 因此,比赛人员的组成共有48C ·48C =4900种可能.评述:本题考查分步计数原理、组合的概念以及组合数的运算,考查分析问题、解决问题的能力.36.答案:1.2解析:设其中含红球个数为x ,则x =1或 x =2.而含一个红球的概率A 1=106C C C 251213=⋅含两个红球的概率为A 2=103C C 2523=∴含红球个数的数学期望为1×106+2×103=1.2 评述:本题考查数学期望的概念、概率的概念及它们的计算.37.答案:A 3解析:A 1的数学期望:1x E =0.25×50+0.30×65+0.45×26=43.7 A 2的数学期望:2x E =0.25×70+0.30×26+0.45×16=32.5 A 3的数学期望:3x E =0.25×(-20)+0.30×52+0.45×78=45.7A 4的数学期望:4x E =0.25×98+0.30×82+0.45×(-10)=44.6评述:本题考查概率与数学期望,考查学生识表的能力.对图表的识别能力,是近年高考突出考查的热点.图表语言与其数学语言的相互转换,应成为数学学习的一个重点,应引起高度重视.38.答案:a1 解析:∵x a a x T 33352135410)(C ==-,∴x =a1.39.答案:5解析:由11A 2--n n =48,得11A --n n =24,∵44A =24,∴n =5. 40.答案:210 解析:T r +1=65301031102110)1(C )()(Cr rr rrr xx x ----=-⋅,令30-5r =0,得r =6.∴常数项T 7=610C ·(-1)6=210.41.答案:252解析:222733A C A =252.42.答案:-462解法一:因为在(x -1)11的展开式中,各项的二项式系数与系数相等或互为相反数,又展开式中二项式系数最大的项有两项,分别为第六项511C x 6(-1)5.第七项611C x 5(-1)6,所以得系数最小的项的系数为462C 511-=-. 解法二:展开式中第r +1项为r rrx)1(C 1111--,要使项的系数最小,则r 为奇数,且使r11C 为最大,由此得r =5,所以项的最小系数为462)1(C 5511-=-.43.答案:141解析:从9面旗帜中任取3面,共有39C (种)取法. 现取3面,颜色与号码均不相同共有13C ·12C ·11C =6(种) 因此,所求概率为141846C 639==. 44.答案:解析:设次品数为ξ,则ξ~(2,0.05),其中p =0.05为次品率,则q =0.95为正品率,于是由二项分布公式(列成表格):即得所求结果.45.答案:12解析:先考虑A 种植在左边的情况,有三类:A 种植在最左边一垄上时,B 有三种不同的种植方法;A 种植在左边第二垄上时,B 有两种不同的种植方法;A 种植在左边第三垄上时,B 只有一种种植方法.又B 在左边种植的情况与A 时的相同,故共有2×(3+2+1)=12种不同的选垄方法.评述:本题主要考查两个基本原理、分类讨论思想,对分析解决问题的能力有较高要求. 46.答案:40解析:由通项公式T r +1=r5C (x 3)5-r ·(22x )r =r 5C ·2r ·x 15-5r由题意,令15-5r =5.得r =2. ∴含x 5项的系数为25C ·22=40. 47.答案:92 解析:掷两次骰子分别得到的总数m 、n 作为P 点的坐标共有16A ·16A =36(种)可能结果,其中落在圆内的点有8个:(1,1)、(2,2)、(1,2)、(2,1)、(1,3)、(3,1)、(2,3)、(3,2),则所求的概率为92368=. 评述:本题考查点与圆的位置关系,概率概念等基础知识以及运用数形结合的思想和分类讨论的思想解决实际问题的能力.48.答案: 179解析:展开式中x 10的系数与(x +2)10的展开式中x 10的系数和x 8的系数有关,由多项式运算法则知所求系数为010C ·(-1)+210C ·22·1=179.评述:本题考查在逻辑思维能力上的要求,兼考查分类讨论的思想.49. 答案:4 解析:T r +1=r rn n x )(C ,令r =3得x 3的系数1611C 33=n n ,解得n =4. 50.答案: 4解析:T r +1=929299292C )1()()2()1(C -+---⋅⋅⋅-=-r rr r r r r r rr x a xa x当392=-+r r ,即r =8时,492C )1(28898=⋅⋅--a ,解得a =4.评述:本题考查二项式定理的基础知识,重点考查通项公式和项的系数的概念,兼考运算能力.51.答案: 54解析:令x =1得展开式各项系数之和4n =256解得n =4,所以x 2的系数是24C ·32=54. 52.答案:30解析:因过原点的直线常数项为0知c =0,从集合中任取两个非零元素作系数A 、B 有26A 种,所以适合条件的直线有26A =30条.53.答案: 32解析:7个点任取3点的组合数37C =35,其中三点在一线上不能组成三角形的有3个,故组成三角形的个数为35-3=32个. 评述:本题是有限制条件的组合应用题,背景采用几何图形,对逻辑思维能力要求较高.易出现不排除不构成三角形的情况的错误.54.答案: 1440解析:将数学书与外文书分别捆在一起与其他3本书一起排,有55A =120种排法,再将3本数学书之间交换有33A =6种,2本外文书之间交换有22A =2种,故共有223355A A A =1440种排法.55.答案: -8解析:原式=(1+x )2(1-x 2)4=(1+2x +x 2)(1-x 2)4含x 3的项为2x ·14C ·(-x 2)=-8x 3,故x 3的系数为-8.56.答案:11解析:2233C C ,C C nn n n n nb a ====--, 由已知有113)1(62)2)(1(13C C 23=⇒=-⋅--⇒=n n n n n n nn . 57. 答案:350解析:选法是原装取2台组装取3台,原装取3台组装取2台.故不同的选取法有25363526C C C C +=350种.58. 答案:144解法一:考虑用分配的数学模型来解.若1号盒空,2号盒放2个球,3号盒和4号盒各放一个球有111224C C C =12种放法. 若1号盒空,3号盒放2个球,4号盒和2号盒各放一个球时仍有111224C C C =12种放法.若1号盒空,4号盒放2个球,2号盒和3号盒各放一个球同样有111224C C C =12种放法. 即1号盒空共有3×12=36种放法.同理2号盒空有36种放法,3号盒空有36种放法,4号盒空有36种放法. 故按题中要求恰有一个空盒的放法共有4×36=144种放法.解法二:先将4个球分成3组每组至少1个,分法有6种.然后再将这3组球放入4个盒子中每盒最多装一组.则恰有一个空盒的放法种数为634A =144种.评述:本题是一道排列组合综合题,运用先分组,后排列的方法较好. 59.答案: -189 解析:r r r r x T )()3(C 771-=-+,所以r =5,x 5的系数为57C 32(-1)5=-189.评述:本题考查二项式定理,重点考查通项公式,兼考计算能力.60.解:(Ⅰ)至少3人同时上网的概率等于1减去至多2人同时上网的概率,即32216415611)5.0(C )5.0(C )5.0(C 1626616606=++-=---.(Ⅱ)至少4人同时上网的概率为3.03211)5.0(C )5.0(C )5.0(C 666656646>=++ 至少5人同时上网的概率为:3.0647)5.0)(C C (66656<=+. 因此,至少5人同时上网的概率小于0.3.61.解:分别记元件A 、B 、C 正常工作为事件A 、B 、C ,由已知条件 P (A )=0.80,P (B )=0.90,P (C )=0.90.(Ⅰ)因为事件A 、B 、C 是相互独立的,系统N 1正常工作的概率 P 1=P (A ·B ·C )=P (A )·P (B )·P (C )=0.80×0.90×0.90=0.648. 故系统N 1正常工作的概率为0.648. (Ⅱ)系统N 2正常工作的概率)]()(1[)()](1[)(2C P B P A P C B P A P P ⋅-⋅=⋅-⋅=.∵P (B )=1-P (B )=1-0.90=0.10. P (C )=1-P (C )=1-0.90=0.10.∴P 2=0.80×[1-0.10×0.10]=0.80×0.99=0.792. 故系统N 2正常工作的概率为0.792. 62.解:(1)解方程x +21=x得x =i 2222±当α1=i 2222+时ω=α12n -1=112121])2222[()(ααααn nni i =+=由i n 的周期性知:ω有四个值. n =1时,ω=i i i 22222222+=+ n =2时,ω=i i 222222221+-=+- n =3时,ω=i i i 22222222--=+- n =4时,ω=i i 222222221-=+ 当α2=2222-i 时,ω=α22n -1=2222)()(αααnn i -= n =1时,ω=i i i 22222222-=-- n =2时,ω=i i 222222221--=-- n =3时,ω=i i i 22222222+-=- n =4时,ω=i i 222222221+=- ∴不管α=i 2222+还是α=i 2222-M α={i i i i 2222,2222,2222,2222--+--+ } P =3162C 224== (2)∵ω∈M z ,则ω=z 2m -1,m ∈N任取x ∈M ω,则x =ω2n -1,n ∈N而ω=z 2m -1 ∴x =(z 2m -1)2n -1=z (2m -1)(2n -1) ∵(2m -1)(2n -1)为正奇数 ∴x ∈M z ∴M ω⊆M z评述:复数的运算是复数的基础,本题考查复数的奇数次幂,由于i n 的周期性,因而 α2n -1只有四个值,题目以集合的形式给出复数ω,使复数与集合有机的结合在一起,不仅考查复数还考查集合的表示方法.而证明一个集合是另一个集合的子集在对集合的考查上又高了一个层次.证明尽管不繁,但思维层次较高.63.证明:(1)方法一:i i i m m i m m m m )1()1(A +-⋅⋅-⋅=Λi i i n ni n n n n )1()1(A +-⋅⋅-⋅=Λ 对于m <n ,∴k =1,2,…,i -1有mkm n k n ->- ∴ii m i i n mn A A >即m i i n A >n ii m A 方法二:n i in A =43421Λ个n n n n ⋅⋅·m ·(m -1)·(m -2)·…·(m -i +1) =mn ·(mn -n )·(mn -2n )·…·[mn -n (i -1)]①同理m i im A =mn ·(mn -m )·(mn -2m )·…·[mn -m (i -1)] ② ∵1<i ≤m <n ,∴mn -n <mn -m ,mn -2n <mn -2m ,…, mn -n (i -1)<mn -m (i -1) ③∴联系①、②、③可得n i im A <m i A i n . (2)由二项式定理:nn nn n nm m m m C C C )1(1100+++=+Λ mm m m m m n n n n C C C )1(1100+++=+Λ 又∵!A C i m m ii ni i n =。
北京市2020〖人教版〗高三数学复习试卷排列组合、二项式定理1
创作人:百里严守 创作日期:202B.03.31
创作人:百里严守 创作日期:202B.03.31 北京市2020年〖人教版〗高三数学复习试卷排列
组合、二项式定理 创作人:百里严守 创作日期:202B.03.31 审核人: 北堂本一 创作单位: 雅礼明智德学校
一.基础题组
1. 【四川成都七中高数学(理科)10月阶段考试(一)2】二项式(x+1)n (n ∈N*)的展开式中x 2的系数为15,则n=( )
A . 5
B . 6
C . 8
D . 10
2. 【西藏日喀则地区一高第一学期10月检测8】若61n
x x x ⎛⎫+ ⎪⎝
⎭的展开式中含有常数项,则n 的最小值等于( )
A .3
B .4
C .5
D .6 3. 【长春外国语学校上学期高三第一次质量检测13】二项式531()x x
-的展开式中常数项为.
二.能力题组
1.【西藏日喀则地区一高第一学期10月检测6】有5名优秀毕业生到母校的3个班去作学习经验交流,则每个班至少去一名的不同分派方法种数为( )
A .150
B .180
C .200
D .280 2. 【抚顺市第一高三10月月考14】 在6()(0)a x a x
+>的展开式中含常数项的系数是60,则0sin a xdx ⎰
的值为.
创作人:百里严守 创作日期:202B.03.31
审核人: 北堂本一
创作单位: 雅礼明智德学校。
2020高考数学一轮复习讲座十——排列、组合、二项式定理和概率
2020高考数学一轮复习讲座十——排列、组合、二项式定理和概率复习要求1、排列数、组合数的计算、化简、证明等;会解排列、组合应用题,掌握常见应用题的处理思路。
2、掌握二项式定理,会用展开式通项求有关展开式的问题。
3、理解随机事件的概率,会求等可能事件的概率,能用加法公式和乘法公式求互斥事件和相互独立事件同时发生的概率。
复习指导1、分类计数原理和分步计数原理是排列组合的基础和核心,既可用来推导排列数、组合数公式,也可用来直接解题。
它们的共同点都是把一个事件分成若干个分事件来进行计算。
只不过利用分类计算原理时,每一种方法都可能独立完成事件;如需连续若干步才能完成的则是分步。
利用分类计数原理,重在分“类”,类与类之间具有独立性和并列性;利用分步计数原理,重在分步;步与步之间具有相依性和连续性。
比较复杂的问题,常先分类再分步。
2、排列数与组合数都是计算完成事件方法个数的公式,排列数是研究排列(既取又排)个数的公式,组合数是研究组合(只取不排)个数的公式,是否有序是它们之间的本质区别。
排列数公式:)!m n (!n )]1m (n [)2n )(1n (n A m n -=----=Λ,当m=n 时,!n 12)1n (n A m n =⋅-=Λ,其中m ,n ∈N +,m ≤n ,规定0!=1组合数公式:)!m n (!m !n !m )]1m (n [)2n )(1n (n A A C m mm n m n-=----==Λ组合数性质:m 1n 1m n m n m n n m n C C C ,C C +--=+=,规定1C 0n =,其中m ,n ∈N +,m ≤n3、处理排列组合应用题的规律 (1)两种思路:直接法,间接法 (2)两种途径:元素分析法,位置分析法(3)对排列组合的混合题,一般先选再排,即先组合再排列。
弄清要完成什么样的事件是前提(4)基本题型及方法:捆绑法,插空法,错位法,分组分配法,均匀分组法,逆向思考法等4、二项式定理nn n r r n r n 1n 1n n 0n n b C b a C b a C a C )b a (+++++=+--ΛΛ通项公式r1n r n 1r b aC T -+=,r=0,1,2,…,n 二项式系数的性质:(1)对称性,在展开式中,与首末两端“等距离”的两个二项式系数相等,即nn 0n C C =,r n n r n 2n n 2n 1n n 1n C C ,,C C ,C C ---===Λ;(2)增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值,当n是偶数时,中间一项2nn C 最大;当n是奇数时,中间两项21n n C -,21n n C +相等,且为最大值;(3)ΛΛΛ+++=+++=++++5n 3n 1n 4n 2n 0n n n n 2n 1n 0n C C C C C C ,2C C C C5、概率(1)概率是频率的近似值,两者是不同概念 (2)等可能事件中概率nm)A (P =,P(A)∈[0,1] (3)互斥事件A ,B 中有一个发生的概率:加法公式P(A+B)=P(A)+P(B) 特例:A B =时,1)A (P )A (P =+,即对立事件的概率和为1 (4)相互独立事件A ,B 同时发生的概率P(A ·B)=P(A)P(B)(5)事件A 在n 次独立重复试验中恰好发生k 次的概率P n (k)=C n k P k(1-P)n-k,其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n展开的第k+1项典型例题例1、用n 种不同颜色为下列两块广告牌着色(如图),要求在①,②,③,④个区域中相邻(有公共边界)的区域不用同一种颜色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年11月02日金博高数20的高中数学组卷一.选择题(共16小题)1.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()A.1440种B.960种C.720种D.480种2.某城市的汽车牌照号码由2个英文字母(字母可重复)后接4个数字组成,其中4个数字互不相同的牌照号码共有()A.(C261)2A104个B.A262A104个C.(C261)2104个D.A262104个3.北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为()A.C1214C412C48B.C1412A124A84C.D.C1412A124C84A334.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为()A.6 B.12 C.15 D.305.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有()A.C124C84C44种 B.3C124C84C44种C.C124C84A33种 D.种6.5本不同的书,全部分给四个学生,每个学生至少1本,不同分法的种数为()A.480 B.240 C.120 D.967.从单词“equation”选取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)的不同排列共有()A.120个B.480个C.720个D.840个8.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有()A.36个B.24个C.18个D.6个9.五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有()A.C41C44种B.C41A44种C.C44种D.A44种10.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植.不同的种植方法共有()A.24种B.18种C.12种D.6种11.从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数.其中奇数的个数为()A.24 B.18 C.12 D.612.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.328 C.360 D.64813.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为()A.8 B.24 C.48 D.12014.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是()A.C61C942B.C61C992C.C1003﹣C943D.P1003﹣P94315.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为()A.A88A92B.A88C92C.A88A72D.A88C7216.若(1+)5=a+b(a,b为有理数),则a+b=()A.45 B.55 C.70 D.80二.填空题(共10小题)17.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是.18.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.19.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有个.(用数字作答)20.的展开式中常数项为;各项系数之和为.(用数字作答)21.在的展开式中,x2的系数为(用数字作答).22.若展开式的各项系数之和为32,则n=,其展开式中的常数项为.(用数字作答)23.展开式中的常数项是.24.在(1﹣2x)6的展开式中,x2的系数为.(用数字作答)25.在(2+x)5的展开式中,x3的系数为(用数字作答)26.在的展开式中,x3的系数是.(用数字作答)2017年11月02日金博高数20的高中数学组卷参考答案与试题解析一.选择题(共16小题)1.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()A.1440种B.960种C.720种D.480种【分析】因为2位老人不排在两端,所以从5名志愿者中选2名排在两端,因为2位老人相邻,所以把2位老人看成一个整体,与其他元素进行排列,注意整体之间的排列.【解答】解:可分3步.第一步,排两端,∵从5名志愿者中选2名有A52=20种排法,第二步,∵2位老人相邻,把2个老人看成整体,与剩下的3名志愿者全排列,有A44=24种排法第三步,2名老人之间的排列,有A22=2种排法最后,三步方法数相乘,共有20×24×2=960种排法故选B【点评】本题主要考查了有限制的排列问题的解决,掌握这些常用方法.2.某城市的汽车牌照号码由2个英文字母(字母可重复)后接4个数字组成,其中4个数字互不相同的牌照号码共有()A.(C261)2A104个B.A262A104个C.(C261)2104个D.A262104个【分析】由题意知本题是一个分步计数问题,先选两个字母,第一个有26种选法,由于字母可以重复,第二个也有26种选法,字母后面的4个数字,可以从10个数字中选4个排列,根据分步计数原理得到结果.【解答】解:本题是一个分步计数原理,先选两个字母,第一个有26种选法,由于字母可以重复,第二个也有26种选法,字母后面的4个数字,可以从10个数字中选4个排列,共有A104种结果,根据分步计数原理知共有26×26×A104,故选A.【点评】数字问题是排列中的一大类问题,条件变换多样,把排列问题包含在数字问题中,解题的关键是看清题目的实质,很多题目要分类讨论,要做到不重不漏.3.北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为()A.C1214C412C48B.C1412A124A84C.D.C1412A124C84A33【分析】先从14人中选12人,有C1412种选法,早班从12人中选取4人,中班从剩余的8人中选4人,剩余的4人是晚班;开幕式当天不同的排班种数为C1412C124C84,即可得答案.【解答】解:先从14人中选12人,有C1412种选法,早班从12人中选取4人,有C124种选法,中班从剩余的8人中选4人,有C84种选法,剩余的4人是晚班.∴开幕式当天不同的排班种数为C1412C124C84.故选A.【点评】本题考查组合的基本知识,解题时要认真审题,仔细解答.4.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为()A.6 B.12 C.15 D.30【分析】增加两个新节目,将这两个新节目插入原节目单中,原节目单不变,两个新节目不相邻,可以应用插空法来解,原来的5个节目形成6个空,新增的两个节目插到6个空中,得到结果.【解答】解:∵增加两个新节目,将这两个新节目插入原节目单中,且两个新节目不相邻,∴可以应用插空法来解,原来的5个节目形成6个空,新增的两个节目插到6个空中,共有A62=30故选D.【点评】本题考查排列、组合及简单计数问题,是一个不相邻问题,这种问题一般采用插空法,本题原来的元素顺序不变不用排列,有的题目需要先排原来的,再在形成的空中排列新元素,再根据分步计数原理得到结果.5.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有()A.C124C84C44种 B.3C124C84C44种C.C124C84A33种 D.种【分析】首先把12个人平均分成3组,这是一个平均分组,从12个中选4个,从8个中选4个,最后余下4个,这些数相乘再除以3个元素的全排列,再把这三个小组作为三个元素分到三个路口,这样就有一个全排列,根据分步计数原理得到结果.【解答】解:首先把12个人平均分成3组,共有个小组,再把这三个小组作为三个元素分到三个路口,这样就有一个全排列,共有A33种结果,根据分步计数原理知共有A33=C124C84C44故选A.【点评】本题考查的是排列问题,把排列问题包含在实际问题中,解题的关键是看清题目的实质,把实际问题转化为数学问题,解出结果以后再还原为实际问题.6.5本不同的书,全部分给四个学生,每个学生至少1本,不同分法的种数为()A.480 B.240 C.120 D.96【分析】由题意知先把5本书中的两本捆起来看做一个元素,这一个元素和其他的三个元素在四个位置全排列,根据分步计数原理两个过程的结果数相乘得到结果.【解答】解:由题意知先把5本书中的两本捆起来看做一个元素共有C52,这一个元素和其他的三个元素在四个位置全排列共有A44,∴分法种数为C52•A44=240.故选B.【点评】排列组合问题在几何中的应用,在计算时要求做到,兼顾所有的条件,先排约束条件多的元素,做的不重不漏,注意实际问题本身的限制条件.7.从单词“equation”选取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)的不同排列共有()A.120个B.480个C.720个D.840个【分析】由题意知本题所给的单词除去要求的两个之外还有6个,因为要取5个字母,所以好要从6个字母中选三个,把要求的两个字母看成一个元素,这样有四个元素进行排列.【解答】解:要选取5个字母时首先从其它6个字母中选3个有C63种结果,再与“qu“组成的一个元素进行全排列共有C63A44=480,故选B.【点评】排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.8.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有()A.36个B.24个C.18个D.6个【分析】各位数字之和为奇数的有两类:一是两个偶数一个奇数:有C31A33种结果,所取得三个都是奇数:有A33种结果,根据分类计数原理得到结果.【解答】解:由题意知本题是一个分类计数问题,各位数字之和为奇数的有两类:①两个偶数一个奇数:有C31A33=18个;②三个都是奇数:有A33=6个.∴根据分类计数原理知共有18+6=24个.故选B.【点评】本题考查分类计数问题,是一个数字之和是奇数还是偶数的问题,数字问题是排列组合与计数原理的主角,经常出现,并且常出常新.9.五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有()A.C41C44种B.C41A44种C.C44种D.A44种【分析】依题意,优先分析甲甲工程队,除1号子项目外有4种方法,其他4个工程队分别对应4个子项目,由排列公式可得其情况数目,根据乘法原理,分析可得答案.【解答】解:根据题意,甲工程队不能承建1号子项目,则有4种方法,其他4个工程队分别对应4个子项目,有A44种情况,根据乘法原理,分析可得有C41A44种情况;故选B.【点评】本题考查排列、组合的应用,注意优先分析受到限制的元素.10.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植.不同的种植方法共有()A.24种B.18种C.12种D.6种【分析】根据题意,由于黄瓜必选,故需要再选2种蔬菜,其方法数是C32种,进而由排列的意义,进行全排列,计算可得答案.【解答】解:∵黄瓜必选,故再选2种蔬菜的方法数是C32种,在不同土质的三块土地上种植的方法是A33,∴种法共有C32•A33=18种,故选B.【点评】本题考查排列、组合的综合运用,要注意排列、组合的不同意义,进而分析求解.11.从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数.其中奇数的个数为()A.24 B.18 C.12 D.6【分析】分类讨论:从0、2中选一个数字0,则0只能排在十位;从0、2中选一个数字2,则2排在十位或百位,由此可得结论.【解答】解:从0、2中选一个数字0,则0只能排在十位,从1、3、5中选两个数字排在个位与百位,共有=6种;从0、2中选一个数字2,则2排在十位,从1、3、5中选两个数字排在个位与百位,共有=6种;2排在百位,从1、3、5中选两个数字排在个位与十位,共有=6种;故共有3=18种故选B.【点评】本题考查计数原理的运用,考查分类讨论的数学思想,正确分类是关键.12.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.328 C.360 D.648【分析】本题要分类来解,当尾数为2、4、6、8时,个位有4种选法,因百位不能为0,所以百位有8种,个位有8种,写出结果数,当尾数为0时,百位有9种选法,十位有8种结果,写出结果,根据分类计数原理得到共有的结果数.【解答】解:由题意知本题要分类来解,当尾数为2、4、6、8时,个位有4种选法,因百位不能为0,所以百位有8种,十位有8种,共有8×8×4=256当尾数为0时,百位有9种选法,十位有8种结果,共有9×8×1=72根据分类计数原理知共有256+72=328故选B【点评】数字问题是排列中的一大类问题,条件变换多样,把排列问题包含在数字问题中,解题的关键是看清题目的实质,很多题目要分类讨论,要做到不重不漏.13.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为()A.8 B.24 C.48 D.120【分析】本题需要分步计数,首先选择2和4排在末位时,共有A21种结果,再从余下的其余三位数从余下的四个数中任取三个有A43种结果,根据由分步计数原理得到符合题意的偶数.【解答】解:由题意知本题需要分步计数,2和4排在末位时,共有A21=2种排法,其余三位数从余下的四个数中任取三个有A43=4×3×2=24种排法,根据由分步计数原理得到符合题意的偶数共有2×24=48(个).故选C.【点评】本题考查分步计数原理,是一个数字问题,这种问题是最典型的排列组合问题,经常出现限制条件,并且限制条件变化多样,是一个易错题.14.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是()A.C61C942B.C61C992C.C1003﹣C943D.P1003﹣P943【分析】在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的对立事件是没有次品,没有次品的事件有C943,得到至少有1件次品的不同取法用所有减去不合题意的.【解答】解:在100件产品中有6件次品,现从中任取3件产品,共有C1003种结果,至少有1件次品的对立事件是没有次品,没有次品的事件有C943,∴至少有1件次品的不同取法有C1003﹣C943,故选C.【点评】本题考查分步计数原理,是一个基础题,解题时可以从正面来考虑,至少有一件次品包括有一件次品,有两件次品,有三件次品,分别写出结果再相加.15.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为()A.A88A92B.A88C92C.A88A72D.A88C72【分析】本题要求两个教师不相邻,用插空法来解决问题,将所有学生先排列,有A88种排法,再将两位老师插入9个空中,共有A92种排法,根据分步计数原理得到结果.【解答】解:用插空法解决的排列组合问题,将所有学生先排列,有A88种排法,然后将两位老师插入9个空中,共有A92种排法,∴一共有A88A92种排法.故选A.【点评】本题考查排列组合的实际应用,考查分步计数原理,是一个典型的排列组合问题,对于不相邻的问题,一般采用插空法来解.16.若(1+)5=a+b(a,b为有理数),则a+b=()A.45 B.55 C.70 D.80【分析】利用二项式定理求出展开式,利用组合数公式求出各二项式系数,化简展开式求出a,b,求出a+b【解答】解析:由二项式定理得:(1+)5=1+C51+C52()2+C53()3+C54()4+C55•()5=1+5+20+20+20+4=41+29,∴a=41,b=29,a+b=70.故选C【点评】本题考查二项式定理求二项展开式、组合数公式求二项式系数.二.填空题(共10小题)17.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是96.【分析】求出5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号的组数,然后分给4人排列即可.【解答】解:5张参观券全部分给4人,分给同一人的2张参观券连号,方法数为:1和2,2和3,3和4,4和5,四种连号,其它号码各为一组,分给4人,共有4×=96种.故答案为:96.【点评】本题考查排列组合以及简单的计数原理的应用,正确分组是解题的关键,考查分析问题解决问题的能力.18.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有36种.【分析】分3步进行分析:①用捆绑法分析A、B,②计算其中A、B相邻又满足B、C相邻的情况,即将ABC看成一个元素,与其他产品全排列,③在全部数目中将A、B相邻又满足A、C相邻的情况排除即可得答案.【解答】解:先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有2=48种摆法,又当A、B相邻又满足A、C相邻,有2=12种摆法,故满足条件的摆法有48﹣12=36种.故答案为:36.【点评】本题考查分步计数原理的应用,要优先分析受到限制的元素,如本题的A、B、C.19.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有14个.(用数字作答)【分析】本题是一个分类计数问题,首先确定数字中2和3 的个数,当数字中有1个2,3个3时,当数字中有2个2,2个3时,当数字中有3个2,1个3时,写出每种情况的结果数,最后相加.【解答】解:由题意知本题是一个分类计数问题,首先确定数字中2和3 的个数,当数字中有1个2,3个3时,共有C41=4种结果,当数字中有2个2,2个3时,共有C42=6种结果,当数字中有3个2,1个3时,共有有C41=4种结果,根据分类加法原理知共有4+6+4=14种结果,故答案为:14【点评】本题考查分类计数原理,是一个数字问题,这种问题一般容易出错,注意分类时要做到不重不漏,本题是一个基础题,也是一个易错题,易错点在数字中重复出现的数字不好处理.20.的展开式中常数项为10;各项系数之和为32.(用数字作答)【分析】利用二项展开式的通项公式求出展开式的通项;令x的指数为0求出展开式的常数项;令二项式中的x等于1求出各项系数和.【解答】解:,由10﹣5r=0得r=2,故展开式中常数项为C52=10;取x=1即得各项系数之和为(1+1)5=32.故答案为10,32.【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题、考查求展开式的系数和问题常用的方法是赋值法.21.在的展开式中,x2的系数为﹣14(用数字作答).【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为2,求出r,代入通项求出展开式中x2的系数.【解答】解:展开式的通项令得r=1故x2的系数为(﹣2)×C71=﹣14故答案为﹣14【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.22.若展开式的各项系数之和为32,则n=5,其展开式中的常数项为10.(用数字作答)【分析】显然展开式的各项系数之和就是二项式系数之和,也即n=5;将5拆分成“前3后2”恰好出现常数项,C52=10.【解答】解:∵展开式的各项系数之和为32∴2n=32解得n=5=C5r x10﹣5r展开式的通项为T r+1当r=2时,常数项为C52=10.故答案为5,10.【点评】本题主要考查了二项式定理的应用,课本中的典型题目,套用公式解题时,易出现计算错误,二项式的考题难度相对较小,注意三基训练.23.展开式中的常数项是210.【分析】写出通项公式,令x的系数为0,求出k的值,即可写出常数项.【解答】解:令,得k=6,所以展开式中的常数项是T7=C106(﹣1)6=210故答案为:210【点评】本题考查二项式定理的通项的应用,属基本题型、基本方法的考查.24.在(1﹣2x)6的展开式中,x2的系数为60.(用数字作答)【分析】利用二项式定理展开式的通项公式即可得出.【解答】解:(1﹣2x)6的展开式中,通项公式T r=(﹣2x)r=(﹣2)r x r,+1令r=2,则x2的系数==60.故答案为:60.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.25.在(2+x)5的展开式中,x3的系数为40(用数字作答)【分析】写出二项式定理展开式的通项公式,利用x的指数为3,求出r,然后求解所求数值.=25﹣r x r,【解答】解:(2+x)5的展开式的通项公式为:T r+1所求x3的系数为:=40.故答案为:40.【点评】本题考查二项式定理的应用,二项式系数的求法,考查计算能力.26.在的展开式中,x3的系数是84.(用数字作答)【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为3得到x3的系数.【解答】解:,令7﹣2r=3,解得r=2,故所求的系数为(﹣2)2C72=84故答案为84【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题.。