八年级数学试卷参考答案与评分标准

合集下载

江苏省南京市秦淮区重点中学2023-2024学年八年级上学期期末数学试题(含答案)

江苏省南京市秦淮区重点中学2023-2024学年八年级上学期期末数学试题(含答案)

20232024学年度第一学期第二阶段学业质量监测试卷八年级数学注意事项:1.本试卷共6页.全卷满分100分.考试时间为100分钟.2.答选择题必须用铅笔将答题卷上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.3.作图必须用铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.下列手机应用的图标是轴对称图形的是( )A B C D2.下列长度的三条线段首尾相连能组成直角三角形的是()A .B .C .D .3.点关于轴对称的点的坐标为()A .B .C .D .4.如图,,垂足为,是上一点,且,.若,,则的长为( )(第4题)A .2B .2.5C .3D .5.55.如图,一次函数的图像与的图像相交于点,则关于,的方程组的解是()-2B 2B 4,5,61,2,32,3,45,12,13()2,1-x ()2,1()2,1-()2,1-()2,1--EC BD ⊥C A EC AC CD =AB DE = 3.5AC =9BD =AE 3942y x =+y kx b =+()2,P n -x y 34180,0x y kx y b -+=⎧⎨-+=⎩(第5题)A .B .C .D .6.如图,用7个棱长为1的正方体搭成一个几何体,沿着该几何体的表面从点到点的所有路径中,最短路径的长是() (第6题)A .5BC .D.二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卷相应位置上)7______.8.在实数,中,无理数有______个.9.(填“”“”或“”)10.如图,已知,要使,可以添加的条件为______.(写出一个即可)(第10题)11.已知,是一次函数图像上的两点,若,则______.(填“”“”或“”)12.在等腰三角形中,.若为底角,则______.13.已知一次函数(为常数)的图像与轴的交点在轴的上方,则的取值范围为______.14.如图,在中,,,平分,交于点,为的中点,连接,则的周长为______.2,2x y =-⎧⎨=⎩2,3x y =-⎧⎨=⎩3,2x y =⎧⎨=-⎩2,2x y =⎧⎨=-⎩M N 1+2=3211 3.1415π31-><=12∠=∠ABC ADC △△≌()111,P x y ()222,P x y 21y x =-+12x x >1y 2y ><=ABC 2A B ∠=∠A ∠C ∠=︒3y x m =-+m y x m ABC △10AB AC ==8BC =AD BAC ∠BC D E AC DE CDE △(第14题)15.在课本上的“数学活动 折纸与证明”中,我们曾经两次折叠正方形纸片(如图).若正方形纸片的边长为,则的长为______.第1次折 第2次折(第15题)16.如图,一次函数的图像与轴交于点.将该函数图像绕点逆时针旋转,则得到的新图像的函数表达式为______.(第16题)三、解答题(本大题共10小题,共68分,请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算:(1;(2).18.(6分)求下列各式中的:(1);(2).19.(6分)已知:如图,,,,且.求证:(1);(2).2cm EA 'cm 122y x =+x A A 45︒-2-x 2312x =()3164x -=-AB AC =AB AC ⊥AD AE ⊥ABD ACE ∠=∠ABD ACE △△≌ADE AED ∠=∠(第19题)20.(7分)一次函数(,为常数)的图像经过点,.(1)求该函数的表达式;(2)画出该函数的图像;(3)不等式的解集为______.21.(8分)如图,在中,,,的垂直平分线交于点,连接.(第21题)(1)若,求的度数;(2)若,求的长.22.(6分)已知一次函数(为常数,).(1)若该函数的图像经过原点,求的值;(2)当时,该函数图像经过第______象限.23.(6分)如图,在平面直角坐标系中,的三个顶点坐标分别为,,.将点,分别向下平移3个单位长度得到点,.(第23题)(1)点,的坐标分别为______,______;(2)求证:点,,在一条直线上.24.(6分)如图,已知线段,,.求作,使,,且分别满足下列条件:(1)上的中线为.(2)上的高为.(说明:①尺规作图,保留作图痕迹;②可以有必要的作图说明;③每小题作出满足条件的一个三角形即可.)y kx b =+k b ()2,2-()0,20kx b +<ABC △90C ∠=︒8AC =AB MN AC D BD 25A ∠=︒DBC ∠4BC =BD 22y mx m =+-m 0m ≠m 01m <<ABC △()1,1A ()5,2B ()2,2C A C A 'C 'A 'C 'A 'C 'B a b c ABC △AB a =BC b =AB c AB c(第24题)25.(9分)甲、乙两家快递公司都要将货物从地派送至地.甲公司运输车要先在地的集货中心拣货,然后直接发往地.乙公司运输车从地出发后,先到达位于、两地之间的地休息,再以原速驶往地.两车离地的距离与乙公司运输车所用时间的关系如图所示.已知两车均沿同一道路匀速行驶,且同时到达地.(1)地与地之间的距离为______.(2)求线段对应的函数表达式.(3)已知地距离地,当为何值时,甲、乙两公司运输车相距?(第25题)26.(8分)回顾旧知(1)如图①,已知点,和直线,如何在直线上确定一点,使最小?将下面解决问题的思路补充完整.解决问题的思路可以构造全等三角形,将两条线段集中到一个三角形中!据此,在上任取一点,作点关于的对称点,与直线相交于点.连接,易知______,从而有.这样,在中,根据“______”可知与的交点即为所求.①A B A B A A B C B B ()km s ()h t B A B km MN C A 160km t 80km A B l l P PA PB +l P 'A l A 'AA 'l C P A ''AP C '△≌P A P A '=''A P B ''△A B 'l P解决问题(2)如图②,在中,,,,为上的两个动点,且,求的最小值.②变式研究(3)如图③,在中,,,,点,分别为,上的动点,且,请直接写出的最小值.③20232024学年度第一学期第二阶段学业质量监测试卷八年级数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共12分)题号123456答案二、填空题(每小题2分,共20分)7.58.29.10.答案不唯一,如11.12.7213.14.1415.16.三、解答题(本大题共10小题,共68分)17.(本题6分)解:(1.(2).ABC Rt △90ACB ∠=︒8AB =E F AB AE BF =CE CF +ABC △60ABC ∠=︒5AC =4BC=D E AB AC AD CE =CD BE +-C D A AB A>AB AD =<3m <2-312y x =+323=+-2=22=-2=-18.(本题6分)解(1)两边同除以3,得.开平方,得.(2)开立方,得.移项,合并同类项,得.19.(本题6分)证明:(1),,.,即.在和中,.(2),..20.(本题7分)解:(1)因为一次函数(,为常数)的图像经过点,,所以解得所以一次函数的表达式为.(2)图像正确.(3).21.(本题8分)解:(1)是的垂直平分线,点在上,..又,.,...(2)设,则,.在中,,..解得,即的长为5.22.(本题6分)解:(1)因为一次函数的图像经过原点,所以.解得.(2)一、三、四.(说明:每个答案1分,答案中有“二”不给分.)23.(本题6分)24x =2x =±14x -=-3x =-AB AC ⊥ AD AE ⊥90BAC DAE ∴∠=∠=︒BAC DAC DAE DAC ∴∠-∠=∠-∠BAD CAE ∠=∠ABD △ACE △,,,BAD CAE AB AC ABD ACE ∠=∠⎧⎪=⎨⎪∠=∠⎩ABD ACE ∴△△≌ABD ACE △△≌AD AE ∴=ADE AED ∴∠=∠y kx b =+k b ()2,2-()0,222,2.k b b -=+⎧⎨=⎩2,2.k b =-⎧⎨=⎩22y x =-+1x >MN AB D MN AD BD ∴=DAB DBA ∴∠=∠25A ∠=︒ 25DBA ∴∠=︒90C ︒∠= 90A ABC ∴∠+∠=︒90902565ABC A ∴∠=-∠=-︒=︒︒︒652540DBC ABC DBA ∴∠=∠--︒∠=︒=︒BD x =AD x =8DC AC AD x =-=-Rt CBD △90C ∠=︒222BC CD BD ∴+=()22248x x ∴+-=5x =BD 22y mx m =+-220m -=1m =解:(1),.(2)设经过点与点的直线对应的函数表达式为.所以解得所以直线对应的函数表达式为.把代入,得.因为点的坐标是,所以点在一条直线上.24.(本题6分)解:(1)如图①,即为所求.① ②③ ④(2)如图②或③或④,即为所求.25.(本题9分)解:(1)360.(2)设经过点与点的线段对应的函数表达式为.所以解得所以线段对应的函数表达式为.(3)方法一 由题意得,乙车的速度为.如图,线段对应的函数表达式为.当,即时,.()1,2A '-()2,1C '-()1,2A '-()2,1C '-y kx b =+2,2 1.k b k b +=-⎧⎨+=-⎩1,3.k b =⎧⎨=-⎩A C '3y x =-5x =3y x =-532y =-=B ()5,2,,A C B ''ABC △ABC △()2,360M ()8,0N s kt b =+2360,80.k b k b +=⎧⎨+=⎩60,480.k b =-⎧⎨=⎩MN 60480s t =-+()160280km /h ÷=PQ 80360s t =+'-36080s '-=()3608036080t --+=1t =当,即时,.所以当为或时,甲、乙两公司运输车相距.方法二 由题意得,乙车的速度为.因为甲车在地集货中心拣货2小时,乙车先出发,所以(h ).因为甲车的速度为,所以.所以.所以当为或时,甲、乙两公司运输车相距.26.(本题8分)解:(1).三角形两边之和大于第三边.(说明:写“两点之间线段最短”也可.)(2)如图,取中点,连接并延长至点,使,连接.是中点,.,,即.又,,...当点运动到点时,的值最小,此时.,为中点,.,即的最小值为8.(3.()36016080s --=()6048020080t -+-=103t =t 1h 10h 380km ()160280km /h ÷=A 80801t =÷=()()3608260km /h ÷-=()()41608060h 3-÷=()4102h 33t =+=t 1h 10h 380km A P C ''△AB D CD G DG CD =EG D AB AD BD ∴=AE BF = AD AE BD BF ∴-=-DE DF =EDG FDC ∠=∠ DG CD =EDG FDC ∴△△≌GE CF ∴=CE CF CE EG ∴+=+∴E D CE EG +CE EG CG +=90BCA =︒∠ D AB 142CD AB ∴==28CG CD ∴==CE CF +。

初中数学八年级试卷参考答案与评分标准

初中数学八年级试卷参考答案与评分标准

八年级数学试卷参考答案与评分标准说明:1.如果考生的解答正确,思路与本参考答案不同,可参照本评分说明制定相应的评分细则评分.2.每题都要评阅完毕,不要因为考生的解答中出现错误而中断对该题的评阅. 当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这道题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,解答题的解题步骤写得较为详细;但允许考生在解答过程中,合理地省略非关键性的步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数.一.选择题(共30分,每小题3分)1.C.2.C.3.D.4.D.5.B.6.C.7.C.8.D.9.B.10.A.二.填空题(共18分,每小题3分)11.9,9.5×10﹣7,1.12.22 .13.13.14.90或60. 15.m<7且m≠﹣2.16.①②④.三.解答题(共10小题,共72分)17.(10分)解:(1)原式=m9+m9﹣m9=m9.(2)原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣518.(10分)解:(1)原式=﹣3(x2﹣2xy+y2)=﹣3(x﹣y)2;(2)原式=(x﹣y)(a2﹣16)=(x﹣y)(a+4)(a﹣4).19.(6分)证明:∵D是BC边上的中点,∴BD=CD,.........1分∵CF∥BE,∴∠DBE=∠DCF,.........2分在△BDE和△CDF中,∴△BDE≌△CDF,.........5分∴BE=CF..........6分20.(6分)解:原式=[﹣}×.......1分=()×..............3分=×=﹣,..........5分当x=3时,原式=﹣1..........6分21.(6分)解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)由图知,B2坐标为(3,﹣4).22(6分)解:由题意得:∠ADC=∠ACB=∠BEC=90°,AC=BC,........1分∵∠ACB=90° ,∴∠ACD+∠BCE=90°,......2分∵∠BEC=90°,∴∠BCE+∠CBE=90°,∴∠ACD=∠CBE,..........3分在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),..........4分∴AD=CE,DC=BE,∵AD=80cm,∴CE=80cm,..........5分∵DE=140cm,∴DC=60cm,∴BE=60cm..........6分23.(8分)解:设足球单价为x元,则篮球单价为(x+40)元,由题意得:=,...........1分解得:x=60,...........2分经检验:x=60是原分式方程的解,则x+40=100,.........3分答:篮球和足球的单价各是100元,60元;.........4分(2)设恰好用完800元,可购买篮球m个和购买足球n个,由题意得:100m+60n=800,..........5分整理得:m=8﹣n,∵m、n都是正整数∴①n=5时,m=5,②n=10时,m=2;........7分∴有两种方案:①购买篮球5个,购买足球5个;②购买篮球2个,购买足球10个........8分24.(9分)解:(1)∵a+=﹣5,∴=3a+5+..........2分=3(a+)+5 ...........3分=﹣15+5=﹣10;........4分(2)∵x+=9,∴x+1≠0,即x≠﹣1,∴x+1+=10,............5分∵=. ........8分=x+1++3=10+3=13,∴=.........9分25(11分)解:(1)在四边形ABCD中,∵∠ABC+∠ADC=180°,∴∠BAD+∠BCD=180°,.............1分∵BC⊥CD,∴∠BCD=90°,∴∠BAD=90°,∴∠BAC+∠CAD=90°.............2分∵∠BAC+∠ABO=90°,∴∠ABO=∠CAD;.............3分(2)过点A作AF⊥BC于点F,作AE⊥CD的延长线于点E,作DG⊥x轴于点G,∵B(0,7),C(7,0),∴OB=OC,∴∠BCO=45°,∵BC⊥CD,∴∠BCO=∠DCO=45°,∵AF⊥BC,AE⊥CD,∴AF=AE,∠F AE=90°,∴∠BAF=∠DAE,.............4分在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AB=AD,同理,△ABO≌△DAG,∴DG=AO,BO=AG,.............6分∵A(﹣3,0)B(0,7),∴D(4,﹣3),S四ABCD=AC•(BO+DG)=50;.............7分(3)过点E作EH⊥BC于点H,作EG⊥x轴于点G,∵E点在∠BCO的邻补角的平分线上,∴EH=EG,∵∠BCO=∠BEO=45°,∴∠EBC=∠EOC,............8分在△EBH和△EOG中,,∴△EBH≌△EOG(AAS),∴EB=EO,.............9分∵∠BEO=45°,∴∠EBO=∠EOB=67.5°,.............10分又∠OBC=45°,∴∠BOE=∠BFO=67.5°,∴BF=BO=7..............11分。

初二数学参考答案及评分标准

初二数学参考答案及评分标准

初二数学参考答案及评分标准一、 选择题(每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案BDACCDBCAA二、 填空题(每小题3分)11、(3,2) 12、4cm 13、2.67×10414、 y=3x-215、3 16、(9,4) 17 x=-2 18、25 三、画图题19、每画对一个得2分。

(答案不唯一)20、(1)坐标系建立正确………………………………………………2分(2)C 点的坐标(1,-1),△ABC 的周长是210+22……6分 (3)四边形AB A 1B 1是矩形四边形……………………………7分 说明理由…………………………………………………………10分 四、解答题21、略:每小题4分(1)………………………………………………………………4分 (2)………………………………………………………………8分 22、略解:(1)OE=OF ……………………………………………………1分通过△AOF ≌△BOE 得到……………………………………4分(2)OE=OF 还成立……………………………………………… 5分 通过△AOF ≌△BOE 得到……………………………………8分 23、略解:(1)由AB=AC=10,可得C (-4,0)……………………3分 (2)设M (0,b ),则CM=BM=8-b 由OMCO CM222+=可得到b=3…………………5分 直线AM 的解析式为: y=-21x+3………………………8分24、略解:(1)用列表法(用树状图法同样给分)……………4分1 2 3 4 -2 -2+1=-1 -2+2=0 -2+3=1 -2+4=2 -1 -1+1=0 -1+2=1 -1+3=2 -1+4=3 11+1=21+2=31+3=41+4=5(2)P s )0(==61………………………………………………7分 P s )2(∠=125……………………………………………10分25、(1)5 …………………………………………………………2分 (2)3小时两船相距240km ………………………………………4分 (3)y =120x -600(6x 5≤≤)………………………………………7分 (4)设巡逻艇速度为xkm/h ,货轮速度为ykm/h ,则两港距离为(3y +240)km 根据题意得: ()52(3240)120x y y x y +=+⎧⎪⎨+=⎪⎩……………………10分求得:巡逻艇速度为100km/h ,货轮速度为20km/h ,两港距离300km ………………………………。

江苏省盐城市盐都区2023-2024第一学期期中考试八年级数学试卷参考答案

江苏省盐城市盐都区2023-2024第一学期期中考试八年级数学试卷参考答案

2023/2024学年度第一学期阶段性发展评价八年级数学参考答案及评分标准(阅卷前请认真校对,以防答案有误!)一、选择题(每小题3分,共24分)二、填空题(每小题3分,共24分)9.-210.5011.312.-513.4514.1.615.4816.三、解答题(共10题,共72分)17.(本题满分6分)解:(1)1;……………………………3分(2)-1.…………………………6分18.(本题满分6分)(1)如图所示,△A 1B 1C 1即为所求;………………2分(2)如图所示,点P 即为所求.C P ﹣P 1A 的值最大,最大值为线段A 1C 的长,A 1C =5,故答案为5;…4分(3)如图,在正方形网格中存在4个格点、C 两点构成以BC 为底边的等腰三角形,故答案为4.……6分19.(本题满分6分)解:∵x 的算术平方根是3,∴x=9………………2分∵x +y 的立方根是2,∴x +y=8,∴y=-1,………………4分∴x +5y =4,∴x +5y 的平方根为±2.………………6分20.(本题满分6分)证明:(1)∵EA ∥FB ,∴∠EAC =∠FBD ,∵EC ∥FD ,∴∠ECA =∠FDB ,…………………………2分题号12345678答案DBBAABCC217在△EAC和△FBD中,∠EAC=∠FBD∠ECA=∠FDBEA=FB,∴△EAC≌△FBD(AAS);…………………………4分(2)∵△EAC≌△FBD,∴AC=BD,∴AC﹣BC=BD﹣BC,即AB=CD.…………………………6分21.(本题满分6分)解:∠BQM=60°…………………………1分∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠BCA=∠BAC=60°,在△ABM和△BCN中BM=CN∠ABM=∠BCNAB=BC∴△ABM≌△BCN(SAS),∴∠M=∠N,又∠NAQ=∠MAC,∴∠BQM=∠N+∠NAQ=∠M+∠MAC=∠ACB=60°.……………………6分22.(本题满分6分)(1)证明:连接AE,∵AD⊥BC于点D,且D为线段CE的中点,∴AD垂直平分CE,∴AC=AE,∵EF垂直平分AB,∴AE=BE,∴BE=AC;……………3分(2)∵EF垂直平分AB,∴EF⊥AB,∴∠BFE=90°∵∠BEF=55°,∴∠B=35°∵AE=BE,∠B=35°,∴∠BAE=∠B=35°,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣35°=55°,∴∠EAD=55°﹣35°=20°,∵AC=AE,AD⊥BC,∴∠EAD=∠CAD=20°,∴∠BAC=∠BAE+∠EAD+∠CAD=75°.……………………………6分23.(本题满分6分)(1)解:AE=BD,……………………………1分∵AC⊥BC,DC⊥EC,∴∠ACB=∠DCE=90°,∴∠ACE=∠BCD,∵AC=BC,EC=DC,在△ACE和△BCD中,AC =BC ∠ACE =∠BCD EC =DC∴△ACE ≌△BCD (SAS )∴AE =BD .……………………4分(2)解:50.……………………6分如图,AE 、BD 相交于点O ,AC 、BD 相交于点H ,∵AC ⊥BC ,DC ⊥EC ,∴∠ACB =∠DCE =90°,∵AC =3,CE =4,∴DE 2=2CE 2=2×42=32,AB 2=2AC 2=2×32=18,由(1)得△ACE ≌△BCD (SAS ),∴∠CAE =∠CBD ,∵∠AHO =∠BHC ,∴∠CBD +∠CHB =∠CAE +∠AHO =90°,∴AE ⊥BD ,∴AD 2=OA 2+OD 2,BE 2=OB 2+OE 2,∴AD 2+BE 2=OA 2+OD 2+OB 2+OE 2=DE 2+AB 2=32+18=50.24.(本题满分8分)解:(1)如图2中,∵AB =AC ,∠BAD =∠CAD ,∴BD =DC =3,∴BC =6,∴h (BC )=BC ﹣AD =6﹣5=1.故答案为1.…2分(2)如图3中,作BH ⊥AC 于H .∵∠ABC =90°,AB =5,BC =12,∴AC 2=AB 2+BC 2=169,∴AC=13∵21•AC •BH =21•AB •BC ,∴BH =1360∴h (AC )=AC ﹣BH =13﹣1360=13109.故答案为13109.……………4分(3)如图4所示,∵AD ⊥BC ,∴∠ADB =∠ADC =90°,在Rt △ABD 中,AB =25,AD =15,根据勾股定理得:BD =AB 2﹣AD 2=400,∴BD =20,在Rt △ADC 中,AC =17,AD =15,根据勾股定理得:DC =AC 2﹣AD 2=64,∴BD =8,∴BC =BD +DC =20+8=28,∴h (BC )=BC ﹣AD =28﹣15=13;………………6分如图5所示,BC =BD ﹣DC =20﹣8=12,∴h (BC )=BC ﹣AD =12﹣15=﹣3.综上所述,h (BC )为13或﹣3,……………………8分29292121(1)如图所示,过点M 作MD ⊥AB 于点D ,∵B C=9cm ,AC =12cm ,AB =15cm ∴∠C =90°∵BM 平分∠A BC ,∠C =90°∴MD =MC .在Rt △BMD 与Rt △BMC 中,MD =MC BM =BM∴Rt △BMD ≌Rt △BMC (HL ),∴BD =BC =9cm ,∴AD =15—9=6cm .设MC =x cm ,则MA =(12—x )cm在Rt △AMD 中,MD 2+AD 2=MA 2,即x 2+62=(12—x )2,解得:x =,∴当t =秒时,AM 平分∠CAB ;…………………………………………4分(2)10若M 在边AC 上时,BC =CM =9cm ,此时用的时间为9s ,△BCM 为等腰三角形;20若M 在AB 边上时,有三种情况:①若使BM =CB =9cm ,此时AM =6cm ,M 运动的路程为18cm ,所以用的时间为18s ,故t=18s 时△BCM 为等腰三角形;②若CM =BC =9cm ,过C 作斜边AB 的高,根据面积法求得高为7.2cm ,根据勾股定理求得BM =10.8cm ,所以M 运动的路程为27﹣10.8=16.2cm ,∴t 的时间为16.2s ,△BCM 为等腰三角形;③若BM =CM 时,则∠MCB =∠MBC ,∵∠ACM +∠BCM =90°,∠MBC +∠CAM =90°,∴∠ACM =∠CAM ,∴MA =MC ∴MA =MB =7.5cm ∴M 的路程为19.5cm ,所以时间为19.5s 时,△BCM 为等腰三角形.∴t=9s 或16.2s 或18s 或19.5s 时△BCM 为等腰三角形………………8分(3)6s 或18s …………………………………………………………………………10分1°相遇前当M 点在AC 上,N 在AB 上,则AM =12﹣t ,AN =24﹣2t ,12﹣t +24﹣2t =×36,∴t =6;2°相遇后当M 点在AB 上,N 在AC 上,则AM =t ﹣12,AN =2t ﹣24,t ﹣12+2t ﹣24=×36,∴t =18,∴t =6s 或18s 时,直线MN 把△ABC 的周长分成相等的两部分.21【背景问题】解:(1)在△ADC 和△EDB 中,BD =CD∠BDE =∠CDA AD =DE∴△ADC ≌△EDB (SAS ),故答案选:B ;…………………………………………2分(2)AE ﹣AB <BE <AB +AE ,∴2<AC <18,故答案为:2<AC <18;…………4分【感悟方法】证明:延长AD 到M ,使AD =DM ,连接BM ,如图2,∵AD 是△ABC 中线,∴BD =DC ,在△ADC 和△MDB 中,BD =DC∠ADC =∠BDM AD =DM∴△ADC ≌△MDB (SAS ),∴BM =AC ,∠CAD =∠M ,∵AC =BF ∴BF =BM ,∴∠BFD =∠M ,∴∠BFD =∠CAD =∠M ,∵∠AFE =∠BFD ,∴∠CAD =∠AFE ,∴AE =EF .…………………………8分【深入探究】(3)8…………………………………………………………………………10分理由如下:如图3,延长CQ 到R ,使得QR =CQ ,连AR ∵△ABC 和△CDE 都是等腰直角三角形,∴∠ACB =∠DCE =90°,AC =BC ,CE =CD ,∴∠BCE +∠ACD =180°,在△AQR 和△DQC 中,AQ =DQ ∠AQR =∠CQD QR =QC∴△AQR ≌△DQC (SAS ),∴AR =CD =CE ,∠ARQ =∠DCQ ,∴AR ∥CD ,∴∠CAR +∠ACD =180°,∴∠CAR =∠BCE ,在△ACR 和△CBE 中,CA =CB ∠CAR =∠BCE AR =CE∴△ACR ≌△CBE (SAS ),∴∠ACR =∠CBE ,CR =BE ,∵∠ACR +∠BCK =90°,∴∠CBE +∠BCK =90°,∴∠CKB =90°,∴BE ⊥QC .∵CQ=4,CK=2,∴BE=8∴ BCE S △BE •CK=821(4)2……………………………………………………………………12分解:如图4,过点B 作BM ∥AC 交GE 于点M ,∴∠C =∠MBC ,∵点E 为BC 边的中点∴BE=CE在△BEM 和△CEF 中∠MBC =∠C BE=CE ∠BEM =∠CEF∴△BEM ≌△CEF (ASA ),∴∠M =∠MFC =∠AFG ,BM =FC ,∵AD 平分∠BAC ,BM ∥AC ,则∠BAD =∠DAC =45°=∠G =∠AFG ,∠M =∠AFG =45°,∴∠G =∠M ,∴BM =BG ,∵∠G =45°,∴△AFG 为等腰直角三角形,∵CF =6,设AF =AG =x ,∴AC =AF +FC =x +6,AB =BG -AG =6-x ∵ABC S △=21AB ×AC ∴(x +6)(6-x )=16,∴x=2,∴AG =2。

北京市密云区2022~2023学年第一学期初二数学期末参考答案

北京市密云区2022~2023学年第一学期初二数学期末参考答案

北京市密云区2022-2023学年第一学期期末考试八年级数学试卷参考答案及评分标准 2023.01一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.1; 10.4a 2-2a +1; 11.AC=AD ;(答案不唯一) 12.9;13. a 2-b 2=(a+b )(a -b ) 或 (a+b )(a -b )=a 2-b 2; 14.10; 15.4; 16.(0,2).三、解答题(本题共68分.其中17题6分,18~23题每题5分,24~26题每题6分,27、28题每题7分)说明:与参考答案不同,但解答正确相应给分.17. (1)原式=m (m 2-n 2) ………………………………1分 =m (m+n )(m -n ) ………………………………3分(2)原式=2(x 2-4xy +4y 2) ………………………………4分 =2(x -2y )2 ………………………………6分18. 原式=5+1-2 ………………………………3分 =4 ………………………………5分19. 原式=2211(1)(1)(1)x x x x x -÷++--………………………………2分 221(1)1(1)(1)x x x x x -=-⋅++- 211(1)x x x x -=-++ ………………………………3分21(1)(1)x x x x x x -=-++ ………………………………4分1(1)x x x +=+1x =………………………………5分20.解:10-x=x+3+5………………………………2分-x-x=3+5-10-2x= -2x=1 ………………………………4分检验:当x=1时,x+3 0∴原分式方程的解为x=1 ………………………………5分21.解:由题意可知,∠BAD=45°,∠DAC=25°∴∠BAC=70°………………………………2分∵BE∥AD∴∠ABE=∠BAD=45°…………………………………3分∵∠EBC=75°∴∠ABC=75°-45°=30°…………………………………4分在△ABC中,∠ACB=180°-70°-30°=80°………………………………5分22.(1)……………………………2分(2)证明:∵DB=DF,∴∠B=∠DFB .(等边对等角)…………………………………4分∵DE是∠ADF的角平分线,∴∠ADF=2∠ADE.∵∠ADF=∠B+∠DFB,(三角形外角性质)…………………………………5分即∠ADF=2∠B,∴∠ADE=∠B.∴DE//BC.23.原式=6a2+3a-(4a2-1)…………………………………1分=6a2+3a-4a2+1…………………………………2分 =2a2+3a+1…………………………………3分∵2a2+3a-6=0∴2a2+3a=6 …………………………………4分∴原式=6+1=7.…………………………………5分24.(1)证明:∵在Rt △ABC 中,∠ACB =90°,∠A =30°∴∠ABC= 60° ………………………………1分 ∵DE 是AB 边的垂直平分线∴AD=DB∴∠A=∠ABD=30° ………………………………2分∴∠CBD= 60°-30°=30°∴BD 平分∠ABC∵DE ⊥AB ,AC ⊥BC∴DE=DC ………………………………3分(2)解:∵在Rt △ABC 中,∠ACB =90°,∠A =30° ,AB =6∴132BC AB == ………………………………4分 ∵DE 是AB 边的垂直平分线∴132BE AB == ∴BC=BE∵∠ABC= 60°∴△EBC 是等边三角形 ………………………………5分∴△EBC 的周长为9. ………………………………6分25.解:设普通列车的平均速度为x km /h ,则高铁列车的平均速度为2.5x km /h ……………1分80080042.5x x=- ………………………………3分 解得:x =120 ………………………………4分经检验:x =120是原分式方程的解,且符合实际意义 ………………………………5分∴2.5x=2.5×120=300km /h ………………………………6分 答:高铁列车的平均速度为300km /h .26.(1)2021 ………………………………1分(2)①10a +c ; ………………………………2分 ② 证明:=(10a +b )(10a +c ) ………………………………3分 =100a 2+10ac +10ab +bc ………………………………4分 =100a 2+10a (b +c )+bc ………………………………5分 ∵b+c =10∴原式=100a 2+100a +bc=100a (a +1)+bc ………………………………6分 即: =100a (a +1)+bc 成立,该速算方法正确. ab ac ⨯ab ac⨯27 .(1)证明:在△ABC中,∠BAC=60°,∠C=40°∴∠ABC=80°………………………………1分∵BE平分∠ABC∴∠EBC= 40°∴∠EBC=∠C ………………………………2分∴EB=EC∴△BEC是等腰三角形.………………………………3分(2)AB+BD=AC ………………………………4分证明:延长AB至F,使BF=BD,连接DF∴∠F=∠BDF∵∠ABC=∠F+∠BDF=80°∴2∠F=80°∠F=40°∵∠C=40°∴∠F=∠C ………………………………5分∵AD平分∠BAC∴∠BAD=∠CAD∵AD=AD∴△AFD≅△ACD ………………………………6分∴AF=AC∴AB+BF=AC即:AB+BD=AC ………………………………7分28.(1)P(2,0)………………………………1分(2)①连接BD,取BD中点E1∵B(-2,3),D(-2,0)∴E1点的横坐标x E=-2 ………………………………2分连接CD,取CD中点E2过点C作CF⊥x轴交x轴于点F,则F(1,0)∴CF=3,DF=3∴△DCF是等腰直角三角形∵E2是CD中点,连接E2F∴E2F⊥CD,∠E2FD=45°∴△DE2F也是等腰直角三角形过点E2作E2H⊥x轴交x轴于点H,∴点H是DF的中点,DH=32∴OH=31222-=∴E2点的横坐标x E=12-………………………………4分∴-2≤x E≤12-………………………………5分② -3≤x F≤4 ………………………………7分。

八年级数学参考答案与评分标准

八年级数学参考答案与评分标准

2023-2024学年下学期期末学业水平调研测试八年级数学 参考答案与评分标准一、选择题(本大题共10小题,每小题3分,共30分。

每小题有四个选项,其中只有一项是正确的)题号 1 2 3 4 5 6 7 8 9 10 答案BACDBADBCC二、填空题(本大题共5小题,每小题3分,共15分) 11.()2-x x 12.213.23->x14.︒2015.241 三、解答题(本大题共7小题,共55分) 16.()()5232312x x x x⎧++⎪⎨-<⎪⎩≤ 解:解不等式①,可得2≤x ················································ 2分解不等式②,可得3<x ···································································· 4分 在同一数轴上表示不等式①②的解集······················································ 5分所以,原不等式的解集是2≤x ···························································· 6分17.22122x x x x ⎛⎫-+÷ ⎪++⎝⎭. 解:原式=222222x x xx x x ⎛⎫+-+÷⎪+++⎝⎭ ······························································ 2分 =()122x x x x x++⋅+ ·········································································· 4分 =1x + ························································································ 5分当1=x 时,原式=211=+. ························································· 7分 (代入求值时,代入正确给1分,结果正确给1分)2341① ②18.31144x x x-=--- 解:341x x -=-+, ·············································································· 2分26x -=-, ······················································································ 4分3=x . ··························································································· 6分 经检验,3=x 是原方程的解 ······························································· 7分 19.(共8分)解:(1)证明:∵//CF BE∵CFD BEF =∠∠ ····························································· 1分∵DE 垂直平分BC ,∵BD CD = ······································································ 2分 在中和△△BDE CDF∵CFD BEF =∠∠,CDF BDE =∠∠,BD CD = ∵BDE CDF ≌△△∵CF BE = ········································································ 3分 ∵//CF BE∵四边形BFCE 是平行四边形. ············································· 4分 (其他证法酌情给分)(2)∵BDE CDF ≌△△∵ED FD = ∵142DE EF ==············································································ 5分 ∵BD CD = ∵122CD BC == ············································································· 6分 ∵DE BC ⊥∵CDE △是直角三角形∵22222425CE CD DE =+=+= ················································· 7分ABFCED∵4225AE AC CE =-=- ····························································· 8分 (其他解法酌情给分)20.解:(1)设光明乳鸽每份售价x 元,公明烧鹅每份售价()20+x 元 ··············· 1分1600120020x x=+ ············································································ 2分 解得:60=x ············································································· 3分 经检验,60=x 是所列方程的根.()8020=+x答:光明乳鸽每份售价60元,公明烧鹅每份售价80元. ························ 4分 (其他解法酌情给分)(2)设可购买m 份公明烧鹅 ······································································ 5分 ()0.98060201320m m ⨯+-≤. ······················································ 6分 解得:10m ≤. ··········································································· 7分 答:最多可购买10份公明烧鹅. ······················································ 8分(①本小题若直接设“最多可购买m 份公明烧鹅 ”,仍列不等式解酌情减1分;但直接设“最多可购买m份公明烧鹅 ”,列方程解,又不说明最多的原因,只给解设1分;②第1问和第2问未知数相同,扣1分)21.【数学建模】PB ' ; ① ; AB ' ··················································· 3分 【问题拓展】(平移B 到B '给1分,连接CB '确定N 的位置给1分,作出MN 的位置给1分.) ····································································································· 6分 【迁移应用】40540+ ····································································· 9分仓库C NMB ′村庄B河流22.(共10分)解:(1)证明:∵ABC △和ECD △是等边三角形,∵︒=∠=∠==60ECD BCA CE CD BC AC ,, ············································· 1分 ∵ACE BCA ACE ECD ∠+∠=∠+∠,即BCE ACD ∠=∠············································································································ 2分在中和△△BCE ACD∵⎪⎩⎪⎨⎧=∠=∠=CE CD BCE ACD BC AC ∵)SAS (BCE ACD ≌△△············································································································ 3分 (2)①60°; ···················································································· 5分 ②BF CF AF =+,理由如下: ∵)SAS (BCE ACD ≌△△, ∵CBE CAD ∠=∠.∵在中,和△△BGC AGF BGC AGF ∠=∠, ∵︒=∠=∠60ACB AFG ,在BF 上截取FM ,使得FM AF =,连接AM . ∵AFM △是等边三角形,∵︒=∠=60MAF AF AM ,, ······························································· 6分 ∵ABC △是等边三角形, ∵︒=∠=60BAC AC AB ,, ∵BAC MAF ∠=∠∵MAG BAC MAG MAF ∠-∠=∠-∠,即CAF BAM ∠=∠. 在中和△△ACF ABM∵⎪⎩⎪⎨⎧=∠=∠=AF AM CAF BAM ACAB ∵)SAS (ACF ABM ≌△△ ···································································· 7分 ∵,CF BM =∵BF BM MF CF AF =+=+ ······························································· 8分 (直接使用第(2)①中的结论︒=∠60AFB 或︒=∠120BFD 不扣分,其他解法酌情给分)ABEDCGF图1图2ABEDCGFM6;·························································································10分(3)10。

八年级数学试卷及评分标准

八年级数学试卷及评分标准

2008—2009学年度第二学期期末教学质量检测八年级数学试卷注意事项:1.本次考试试卷满分100分,考试时间90分钟;一、相信你的选择(本题共10个小题,每题2分,共20分,在每个小题给出的四个选项中,只有一个是符合题目要求的,把正确选项的代码填在最后的括号内。

)1.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是()(08年云南省的中考题)A B C D2.函数y=中,自变量x的取值范围是()(原创)A.x≠-3B.x>-3C.x<-3D.x≥-33.如图,把Rt△ABC绕直角顶点顺时针方向旋转900后到达△ABC的位置,延长AB交AB于D,则∠ADA的度数为()(原创)A.300B.600C.750D.9004.一次函数y=2x-1的图像大致是()(原创)A B C D第3题图5.若分式方程xxxa--=+-2132有增根,那么a的值为()(根据冀教八年级数学下册P1082题改编)A.-1B.2C.1D.06.如图,在△ABC中,已知∠ABC和∠ACB的角平分线相交于点F,过点F作DE∥BC,交AB于点D,交AC于点E,若BD+CE=9,则DE的长为()(冀教八年级数学下册学习点睛)A.9B.8C.7D.67.如图,O是菱形ABCD的对角线AC,BD的交点,E,F分别是OA,OC的中点.下列结论:①ADE EODS S=△△;②四边形BFDE是中心对称图形;③DEF△是轴对称图形;④ADE EDO∠=∠.其中错误..的结论有.(08年中考题)A.1个B.2个C.3个D.4个第7题图8已知一次函数y=kx+b,y随x的增大而增大,且kb<0,则在平面直角坐标系内,它的大致图像是()(原创)A B C D9. “五一”期间,几名同学租一辆面包前去旅游,面包车的租价为80元,出发时,又增加了两名同学,结果每名同学比原来少分摊了3元车费,若设参加旅游的学生总数共有x人,则依题意所列方程为()(冀教八年级数学下册P78)A、32180180=+-xxB、31802180=-+xxC、32180180=--xxD、31802180=--xx10.如图,已知函数y=kx+b和y=kx的图像交于点P,则根据图像可得关于x,y的二元一次方程组的解是()(原创)第6题图A. x=-2 B .x=-4y=-4 y=-2C . x=2 D. x=-4 y=-4 y=2第10题图 二、准确填空(本大题共8个小题,每小题3分,共20分) 11. “平行四边形的对角线互相平分”的逆命题是_______________________(原创) 12.如图,直线AB 、CD 被直线EF 所截,如果AB ∥CD ,∠1=550,那么∠2=_______(根据冀教八年级下册P129改编)13.已知点(-4,y 1),(2, y 2)都在直线y=-x+2上,则y 1, y 2的大小关系为_________ (根据冀教八年级下册P160改编) 第12题图 14.一个多边形的内角和是它外角和的倍,那么这个多边形是______边形。

初二数学参考答案与评分标准doc初中数学

初二数学参考答案与评分标准doc初中数学

初二数学参考答案与评分标准doc 初中数学讲明:1、本解答给出了一种解法供参考,假如考生的解法与本解答不同,各学校可依照试题的要紧考查内容比照评分标准制订相应的评分细那么.2、对运算题当考生的解答在某一步显现错误时,假如后续部分的解答未改变该题的内容和难度,可视阻碍的程度决定给分,但不得超过该部分正确解承诺得分数的一半;假如后续部分的解答有较严峻的错误,就不再给分.3、解答右端所注分数,表示考生正确做到这一步应得的累加分数.4、只给整数分数,选择题和填空题不给中间分数. 题号 1 2 3 4 5 6 7 8 9 10 答案ABDDCADBCC题号 11 12 13 14 15 16答案 -3x x +-22)2(-x xAB=BC 等12或77+10三、解答题〔此题有9个小题, 共102分。

解承诺写出文字讲明、证明过程或演算步骤〕 17、解:〔1〕原式=223)2(-x …………2分 =)32)(32(+-x x …………5分 〔2〕原式=)2(222y xy x +- …………2分 2)(2y x -= ……………5分18、解:因此四边形////D C B A 为所求的与四边形ABCD 关于点O 成中心对称讲明:〔画对一个点各给2分,连对图形再给1分,文字表达给1分。

即有完整的作图痕迹得9分,用文字表达结论得1分〕19、解:〔1〕原式=)3)(1(22+-+-x x x x …………2分 32222-++-=x x x x …………4分 34-=x …………6分 〔2〕原式=)21()21(220072007-⋅-⋅ ……1分=)21()]21(2[2007-⨯-⨯ ……3分=)21()1(2007-⨯- ……4分=21……6分20、解:∵四边形ABCD 是菱形∴AB=BC=CD=AD=5 …………1分 AC ⊥BD 于O ,AC=2AO ,BD=2BO …………3分 ∵AC=6∴OA=3 …………4分 ∴OB=4352222=-=-OA AB …………6分 ∴BD=2BO=8 ………………7分∴菱形ABCD 的周长=4×AB=20cm ………………8分 菱形ABCD 的面积=224862121cm BD AC =⨯⨯=⋅ …………10分 21、解:22223344y x y xy x +-++= …………4分〔展开对一个能够给2分〕 2244y xy x ++= ……………………5分 =〔x+2y 〕2.....................6分因为21,1=-=y x 因此,原式=(-1+212⨯ ) 2……8分=-1+1=0 ………………………………10分22、解: E A ∠=∠ ……………………2分BCE E BE BC ∠=∠∴=, ………………4分又AB //DE ABC BCE ∠=∠∴ ………………6分 那么ABC E ∠=∠ ………………8分 又 ABCD 是等腰梯形 ,ABC A ∠=∠∴ …………10分 因此 E A ∠=∠ ……………………12分23、解:〔1〕图略…………………………5分 〔2〕连接PP ’,那么BP=B P ’,∠PB P ’=090 ………8分 因为BP=B P ’=a ,因此PP ’=a a a 222=+ ………………10分24、解:〔1〕 222b ab a ++ ……………………3分 〔2〕 ab 4 ……………………6分 〔3〕 m 、n 互为倒数,1=∴mn ……7分又3-=+n m ,且ab b a b a 4)()(22--=+4)()3(22+-=-∴n m …………9分 那么 5)(2=-n m ………………10分 因此5)(±=-n m ………………11分 由))((22n m n m n m -+=- …………12分 =〔-3〕⨯〔5±〕=53± …………………………14分〔讲明:漏一个答案扣2分〕25、解:〔1〕因为关于任何时刻t ,AP =2t ,DQ =t ,……1分因此AQ =6-t , PB=12-2t ………………3分(2) 当QA =AP 时,△QAP 为等腰直角三角形,…………4分 即:6-t =2t ,解得:t =2〔秒〕, ………………5分因此,当t =2秒时,△QAP 为等腰直角三角形.………………6分 〔3〕【方法一】在△QAC 中,QA =6-t ,QA 边上的高DC =12,∴ S △QAC =21QA ·DC ………………7分 =21〔6-t 〕·12=36-6t . ………………8分在△APC 中,AP =2t ,BC =6,∴ S △APC =21AP ·BC ………………9分 =21·2t ·6=6t . ………………10分∴ S QAPC =S △QAC +S △APC =〔36-6t 〕+6t =36〔厘米2〕.…………12分由运算结果发觉:在P 、Q 两点移动的过程中,四边形QAPC 的面积始终保持不变或不随t 的改变而改变〔只要能写出与运算结果相关而又成立的结论即可给2分。

八年级数学参考答案及评分标准(新)

八年级数学参考答案及评分标准(新)

八年级期末供题考试测考试数学参考答案 第一部分 选择题(本题共12小题,每小题3分,共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ADCBCABBADBC第二部分 非选择题填空题(本题共4小题,每小题3分,共12分)13.4 14. 12 15.±2 16.12(此题无论正误都给分)解答题(本题共7小题,其中第17小题3分,第18小题9分,第19小题7分,第20小题7分, 第21小题8分,第22小题9分,第23小题9分,共52分) 17.解:方程组整理得⎩⎨⎧=+=-)2(53)1(12y x y x ,由(1)+(2)得 5 x =6解得x =56, ………………………1分 把x =56代入(1)得:y=57. ………………………2分所以原 方程组的解为:⎪⎪⎩⎪⎪⎨⎧==5756y x ………………………3分18.解:(1)原式=272 ………………………1分36= ………………………2分6= ………………………3分(2)原式=3333632+⨯- ………………………1分 =333232+- ………………………2分 33= ………………………3分(3)原式=116- ………………………1分 =14- ………………………2分 3= ………………………3分19.解(1)D 错误,理由为:20×10%=2≠3(人).………………………2分 (2)众数为5棵,中位数为5棵 ………………………4分 (3)==5.3(棵).………………………5分估计260名学生共植树5.3×260=1378(棵).………………………7分 20.(1)证明:∵D 是AB 的中点, ∴AD=BD . ∵AG ∥BC , ∴∠GAD=∠FBD . ∵∠ADG=∠BDF ,∴△ADG ≌△BDF .………………………2分 ∴AG=BF .………………………3分 (2)解:连接EG , ∵△ADG ≌△BDF ,∴GD=FD . ………………………4分 ∵DE ⊥DF ,∴EG=EF . ………………………5分 ∵AG ∥BC ,∠ACB=90°,∴∠EAG=90°.………………………6分 在Rt △EAG 中, ∵EG 2=AE 2+AG 2=AE 2+BF 2 ∴EF 2=AE 2+BF 2且AE=4,BF=8. ∴EF=4.………………………7分(学生先证明△EDG ≌△EDF ,然后说明EG=EF 也可以)21.解:(1)设每吨水的基础价为a 元,调节价为b 元,………………………1分 根据题意得:⎩⎨⎧=+=+2310108.17610b a b a , ………………………2分解得:3.1,1==b a , ………………………3分 则每吨水的基础价和调节价分别为1元和1.3元; ………………………4分 (2)当0<x ≤10时,y=x ; ………………………5分当x >10时,y=10+1.3×(x ﹣10)=1.3x ﹣3; ………………………6分 (3)根据题意得:1.3×12﹣3=12.6(元), ………………………7分则应交水费为12.6元 ………………………8分说明:1,若(1)中的设元仍然用x ,y 原则上是不可以的(因为后面第(2)小题中有x ,y ),但考虑实际情况可以不扣分,2,(2)的解答中若设y kx b =+求关系式不能得分。

2024年春学期宜兴市八年级数学期中考试参考答案与评分标准

2024年春学期宜兴市八年级数学期中考试参考答案与评分标准

第1页 共3页2024年春学期宜兴市八年级数学期中考试参考答案与评分标准一、选择题(本大题共10小题,,每小题3分,共30分.)1.B 2.C 3.A 4.C 5.D 6.B 7.D 8.D 9.D 10.C二、填空题(本大题共8小题,每小题3分,共24分.)11.65. 12.2. 13.0.24. 14. 9322m m <≠且.15.73. 16.50︒. 17.83. 18.3.245三、解答题(本大题共8小题,共66分.)19. (本题满分8分) 解:(1)原式 ()()()()a b a b a b a b a b a-++-=⋅+⋅- ·························································································· 2分 2()()a a b a b a b a-=⋅+⋅-2a b =+. ···································································································· 4分 (2)两边同乘(24)x -得:561424x x x -=--+, ····························································· 1分整理得:35x =,得:53x =, ·································································································· 2分 经检验:53x =是原方程的根,所以,原方程的根是53x =. ················································ 4分 20. (本题满分8分)解:原式2213(1)1(2)x x x x x --+=++(2)2x x x -=+ ··················································································· 6分 当1x =时,原式13=-. ············································································································· 8分 21.(本题满分8分)解:(1)40; ······························································································································· 2分喜欢足球4030%12⨯=人,喜欢跑步401015123---=人(图略) ······················· 4分(2)1536013540︒⨯=︒ ··········································································································· 6分 (3)估计全校最喜爱篮球的人数比最喜爱足球的人数多1512160012040-⨯=人. ······ 8分 22.(本题满分8分)解:(1)249、0.4 ······················································································································ 4分(2)0.4 (3)18 ················································································································ 8分23.(本题满分8分)(1)证明:∵四边形ABCD 是平行四边形,O 是BD 的中点,∴AB ∥DC ,OB =OD , ················································································································ 2分 ∴∠OBE =∠ODF . ····················································································································· 3分 在△BOE 和△DOF 中,OBE ODF OB OD BOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BOE ≌△DOF (ASA ); ········································ 4分(2)证明:∵△BOE ≌△DOF ,∴EO=FO , ········································································ 5分∵OB =OD ,∴四边形BEDF 是平行四边形. ···················································· 7分 ∴DE =BF . ············································································································· 8分第2页 共3页24.(本题满分8分)(1)证明:四边形ABCD 是菱形,CD CB ∴=,ACD ACB ∠=∠, ······························· 2分在DCE ∆和BCE ∆中DC CBDCE BCE EC EC =⎧⎪∠=∠⎨⎪=⎩, ()DCE BCE SAS ∴∆∆≌,CDE CBE ∴∠=∠,3分//CD AB ,CDE AFD ∴∠=∠,EBC AFD ∴∠=∠; ·························································· 4分 (2)分两种情况:①如图1,当F 在AB 延长线上时,EBF ∠为钝角,∴只能是BE BF =,设BEF BFE x ∠=∠=︒,可通过三角形内角和为180︒得:90180x x x +++=,解得:30x =,30EFB ∴∠=︒; ································································································ 6分 ②如图2,当F 在线段AB 上时,EFB ∠为钝角,∴只能是FE FB =,设BEF EBF x ∠=∠=︒,则有2AFD x ∠=︒,可证得:AFD FDC CBE ∠=∠=∠,得290x x +=,解得:30x =,120EFB ∴∠=︒. ·································································· 8分 综上:30EFB ∠=︒或120︒.25.(本题满分8分)(1)设购买一副A 品牌球拍需要x 元,则购买一副B 品牌球拍需要(5)x +元, 由题意得:180037005x x ⨯=+,解得:30x =, ··········································································· 2分 经检验:30x =是原方程的解,535x +=, ··········································································· 4分 答:购买一副A 品牌球拍需要30元,购买一副B 品牌球拍需要35元;(2)调整价格后,购买一副A 型球拍需:30(15%)31.5+=(元), 购买一副B 型球拍需:350.621⨯=(元),设此次购买m 副A 型球拍和n 副B 型球拍,则:31.521903m n +=,则86233m n =-, 由862163316n n ⎧-⎪⎨⎪⎩,解得:1619n , ····························································································· 6分16n ∴=或17,18,19,当16n =时,31.52116903m +⨯=,此时18m =;当17n =时,31.52117903m +⨯=,此时m 不是整数,不合题意;当18n =时,31.52118903m +⨯=,此时m 不是整数,不合题意;当19n =时,31.52119903m +⨯=,此时16m =;∴方案一:购买18副A 型球拍和16副B 型球拍;方案二:购买16副A 型球拍和19副B 型球拍. ······························································· 8分第3页 共3页 26.(本题满分10分)解:(1)过点A '作A Q AB '⊥于点Q ,∵矩形OABC 中,A (83,0),C (0,2), ∴OA =83,AB =2得:103OB , ········································································ 1分 由对称得83OA OA ==',AP A P '=,则23A B OB OA ''=-=, ··················································· 2分 设AP A P x '==,则2BP AB x x =-=-,由勾股定理得:222A B A P BP ''+=, 即()2222()23x x +=-,解得:89x =,∴810299BP AB AP =-=-=, ······································ 3分 ∵90PA B '∠=︒,∴1122A BP S AB AP BP A Q '''=⋅=⋅, 即2810399A Q '⨯=,解得:815A Q '=, ·························································································· 4分 ∴点A '的横坐标为883231515-=, ···································································································· 5分 设OB 的函数表达式为y kx =,将8,23B ⎛⎫ ⎪⎝⎭代入得:34k =, ∴OB 的函数表达式为34y x =, 将3215x =代入得:33284155y =⨯=,∴328,155A ⎛⎫' ⎪⎝⎭;······································································· 6分 (2)解:①连接OM ,∵45POM ∠=︒,=90AOC ∠︒,∴1445∠+∠=︒,2345∠+∠=︒, ∵△P AO 和PA O '△对称,∴3=4∠∠,∴12∠=∠ 可得OMC OMA '≌, ∴OC OA OA '==,则四边形OABC 为正方形,∴83C (0,) ·························································· 8分 ②(Ⅰ)当823t ≤<时,∵OMC OMA '≌,OAP OA P '≌, ∴11145222POM AOA COA AOC ''∠=∠+∠=∠=︒, ··············································································· 9分 (Ⅱ)当83t >时,()Rt Rt HL OMA OMC '≌,∴12∠=∠,∵OC AP ∥,∴3OPA ∠=∠, 由折叠的性质可得:4OPA ∠=∠,90A OAP '∠=∠=︒,∴3=4∠∠,∵123490∠+∠+∠+∠=︒,12∠=∠,3=4∠∠,∴2345∠+∠=︒,即45POM ∠=︒.综上:不会改变. ····························································· 10分。

八年级数学参考答案及评分标准

八年级数学参考答案及评分标准

八年级数学参考答案及评分标准(阅卷前请认真校对,以防答案有误!)一、选择题(每小题3分,共24分)二、填空题(每小题2分,共20分)9.3.10.<. 11.100°. 12.5. 13.4.14.(−3,−2). 15.答案不唯一,如y =1x --等. 16.20. 17.4. 18.①②④⑤.三、解答题(共76分)19.(1)24x =9, ························································································ 1分2x =94, ······················································································ 2分 x =±32. ··················································································· 4分 (2)原式=1+2+2 ················································································· 3分=5. ······················································································· 4分说明:第(1)题答案写成x =32扣1分; 第(2)题0(1)-的计算分别给1分.20.作出线段垂直平分线, ············································································ 3分 作出角平分线.······················································································ 6分21.设木杆断裂处离地面x 米,由题意得 ··························································· 1分228x +=2(16)x -. ················································································ 3分 解得x =6······························································································ 5分 答:木杆断裂处离地面6米. ··································································· 6分22.(1)(1,−5);(4,−2);(1,0). ····························································· 3分(2)S △A ′B ′C ′=15(41)2⨯⨯-=152. ········································ 6分 23.(1)∵AD ∥BC ,∴∠ADB =∠EBC .∵CE ⊥BD ,∴∠BEC =90°.∵∠A =90°,∴∠A =∠BEC . ···················································································· 1分 在△ABD 和△ECB 中,A BEC ADB EBC BD CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ················································································· 2分∴△ABD≌△ECB(AAS). ····································································· 3分(2)∵BD=CB,∠DBC=50°,∴∠BDC=1(180)2DBC︒-∠=1(18050)2︒-︒=65°. ······································ 4分∴在Rt△CDE中,∠DCE=90°-∠BDC=90°-65°=25°. ···························· 6分24.(1)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴ED=EC.·························································································· 3分∴∠EDC=∠ECD. ··············································································· 4分(2)∵EC⊥OA,ED⊥OB,∴∠EDO=∠ECO=90°. ········································································ 5分由(1)知∠EDC=∠ECD,∴∠EDO-∠EDC=∠ECO-∠ECD,即∠ODC=∠OCD.···························· 6分∴OC=OD. ························································································· 7分(3)∵OC=OD,∠EOC=∠EOD,∴OE⊥CD,OE平分CD,即OE是线段CD的垂直平分线. ························· 10分25.(1)AB························································· 3分(2)AB=5(1)--=6. ··········································································· 6分(3)△ABC是直角三角形. ······································································ 7分理由:∵AB,BC5,AC=∴AB2+AC2=22+=25,BC2=52=25.∴AB2+AC2=BC2. ················································································ 9分∴△ABC是直角三角形. ········································································ 10分26.(1)3600,20.······················································································ 2分(2)当50≤x≤80时,设y与x的函数关系式为y=kx b+,根据题意得··········· 3分当x=50时,y=1950;当x=80时,y=3600. ········································ 4分∴501950 803600k bk b+=⎧⎨+=⎩.解得55800kb=⎧⎨=-⎩. ···················································································· 6分∴y与x的函数关系式为y=55800x-. ····················································· 7分(3)缆车到山顶的路线长为3600÷2=1800(m). ········································ 8分缆车到达终点所需时间为1800÷180=10(min).········································· 9分爸爸到达缆车终点时,小华行走的时间为10+50=60(min). ······················· 10分把x=60代入y=55800x-,得y=55×60-800=2500. ···························· 11分∴当爸爸到达缆车终点时,小华离缆车终点的路程是3600-2500=1100(m) ··· 12分27.(1)∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC-∠CAD=∠DAE-∠CAD,即∠BAD=∠CAE.······························ 1分在△ABD和△ACE中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ). ······································································ 3分 ∴BD =CE . ·························································································· 4分 ∵BC =BD +CD ,AC =BC ,∴AC =CE +CD . ··················································································· 5分(2)AC =CE +CD 不成立,AC 、CE 、CD 之间存在的数量关系是:AC =CE -CD . ·································· 6分 理由:∵AB =AC =BC ,AD =AE ,∠BAC =∠DAE =60°.∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE . ····························· 7分 在△ABD 和△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ). ······································································ 8分 ∴BD =CE . ·························································································· 9分 ∴CE -CD =BD -CD =BC =AC ,即AC =CE -CD . ···································· 10分(3)补全图形(如图). ·········································································· 11分 AC 、CE 、CD 之间存在的数量关系是:AC =CD -CE . ································· 12分说明:解答题中,考生若使用其它解法,请参考评分标准酌情给分. A B CD。

八年级数学试卷参考答案及评分标准

八年级数学试卷参考答案及评分标准

八年级数学评估抽测试卷参考答案及评分标准一、选择题(每小题5分,共25分) 1.D ; 2.B ; 3.B ; 4.A ; 5.D . 二、填空题(每小题5分,共25分)6.n m 4-; 7.15; 8.16y ; 9.5; 10.231<<m . 三、解答题(50分) 11.解:①、②结合,有:1212-+x x+13212++x x(2分)=x x 42+ (5分) =)(4+x x (8分) 或①、③结合,有:1212-+x x+x x-221 (2分)=12-x (5分) =))((11-+x x (8分)或②、③结合,有13212++x x+x x-221 (2分)=122++x x (5分) =21)(+x (8分) (答案不唯一,写出一种即可) 12.解:⑴小明两天读书的页数为:)(m m m 315131-+(2分)=m 157 (4分)⑵当m =120时, 原式=56120157=⨯(页) (7分)答:当m =120时,小明两天读的页数为56页. (8分)13.解:原式=(2x 3y -2x 2y 2+x 2y 2-x 3y )÷x 2y(3分)=(x 3y -x 2y 2)÷x 2y (5分) =x -y (7分)当x =2009,y =2008时,原式=2009-2008=1 (8分) 14.解:⑴设xk y =(1分)因为当x =3时,y =4,所以有34k = (3分)解得:12=k (5分) 因此 x y 12= (6分)⑵把x =23代入xy 12=,得 83212=⨯=y . (8分)15.解:方程两边同乘))((11-+x x x ,得x x x 6117=++-)( (4分)解得 3=x (6分) 检验:3=x 时,))((11-+x x x ≠0, (7分) 所以3是原分式方程的解 (8分)16.解:设抢修车的速度为x 千米/时,则吉普车的速度为1.5x 千米/时 (1分)根据题意,得6015511515=-xx . (4分)解得 20=x (6分) 检验:20=x 时,60x ≠0, (7分) 所以20是原分式方程的解 (8分) 故1.5x =1.5×20=30(千米/时) (9分)答:两种车的速度分别为20千米/时、30千米/时 (10分)。

八年级数学参考答案及评分标准

八年级数学参考答案及评分标准

八年级数学参考答案及评分标准一、选择题ADDBB CBACA DC 二、填空题13.()()22-+y y x 14.1 15.37 16.332-三、解答题17.解:解不等式①得:x ≥–1 …………………………………………………1分 解不等式②得:x < 3 ……………………………………………………3分 在同一数轴上分别表示出它们的解集得∴该不等式组的解集为–1≤x <3 …………………………………………5分18.解:原式 = ()()()22331311--+⨯--+x x x x x …………………………………………2分= ()()()223332--+⨯--xxxx x=23-+x x ……………………………………………………………3分由已知得x 不能取–3,2,3 ∴当x =0时,原式 =2030-+ …………………………………………………………4分= 23-……………………………………………………………5分19.解:方程两边同乘以()x -2,约去分母得()222x x x -=-+……………………………………………………………2分解得:x =–1 ………………………………………………………………4分 经检验:x = –1是原方程的解 ………………………………………… 5分20.(1)图形如右图;…………………2分 (2)(1,–3)…………………………4分(4,–1)…………………………6分 (3)(0,–1)…………………………7分90º…………………………………8分0 –1 –2 –3 –4 1 2 3 4 x y OAB CA 2B 2C 2A 1B 1C 121.(1)解:设该公司实际每天投放x 辆共享单车,依题意得 ………1分xx 6003000503000+=-………………………………………………… 3分解得x = 300………………………………………………………………4分 经检验,x =300是原方程的解 …………………………………………5分 答:该公司实际每天投放300辆共享单车.……………………………6分 (2)解:设购进票桂味xkg 时,所获总利润为y 元,由题意得 ……………1分 ()x x -≥3002 ………………………………………………………2分 解得x ≥200 ……………………………………………………………3分 ()()()x x y --+-=30030442030=–4x +4200 …………………4分∵–4<0,∴当x 的值增大时,y 的值减小∴当x =200时,y 有最大值为3400,此时300–x =100 ……………5分答:该商场购进“桂味”200kg 、“妃子笑”100kg 时,可使全部售出后所获得的总利润最大.…………………………………………6分22.(1)①是轴对称图形;…………………………………………………………1分②一条对角线垂直平分另一条对角线.………………………………………2分 (2)AC 垂直平分BD .……………………………………………………………3分 证明:∵AD =AB ∴点A 在线段BD 的垂直平分线上………………………4分 同理点C 也在线段BD 的垂直平分上∴AC 垂直平分BD .………………………………………5分 (注:用其他方法证明的,请参照此标准酌情给分) (3)解:连接AC 、BD ,AC 与BD 交于点O∵四边形ABCD 是筝形, ∴AC ⊥BD ,OD =OB =BD 21∵∠BAD =90º, ∴S △ABD =8442121=⨯⨯=⨯AD AB24442222=+=+=AB AD BD …………………6分∵∠BCD =60º,CB =CD ∴△BCD 为等边三角形 ∴CD =BD =24 ∴()()622224CDOC 2222=-=-=ODS △BCD =38622421OC D 21=⨯⨯=⨯B …………………7分∴S 筝形ABCD = S △ABD + S △BCD =388+……………………………8分AB CD图8-2ABCD图8-3O(注:用其他方法解答的,请参照此标准酌情给分)23.(1)证明:过点P 作PQ ⊥OM 于Q ,作PR ⊥ON 于R ∵OC 为∠MON 的角平分线∴PQ =PR …………………………………………1分 ∵∠APQ +∠QPB =90º, ∠BPR +∠QPB =90º∴∠APQ =∠BPR …………………………………2分 ∵∠PQA =∠PRB =90º ∴△PQA ≌△PRB∴PA =PB ……………………………………………3分 (2)解:图形如右图(图9-2)所示 ………………………………4分(1)中的结论仍然成立,理由如下: 过点P 作PQ ⊥OM 于Q ,作PR ⊥ON 于R∵OC 为∠MON 的角平分线∴PQ =PR …………………………………………5分∵∠APQ +∠QPB =90º, ∠BPR +∠QPB =90º∴∠APQ =∠BPR ∵∠PQA =∠PRB =90º∴△PQA ≌△PRB∴PA =PB ……………………………………………6分 (3)解:过点P 作PQ ⊥OM 于Q ,作PR ⊥ON 于R 同理可得△PQA ≌△PRB ∴QA =RB ,PQ =PR设QA =RB =x ,则PR =OQ =OA –QA =6–x ,PQ =OR =OB +BR =2+x ∴6–x =2+x ,x =2∴P (4,4)………………………………7分 设直线PA 为y =kx +b ,则⎩⎨⎧=+=446b k b ,解得⎪⎩⎪⎨⎧=-=621b k∴直线PA 为621+-=x y ……………………8分由y =0得,x =12,∴D (12,0) 同理E (0,–4) ∴直线DE 为:431-=x y ……………………9分(注:用其它解法的请参照此评分标准酌情给分)M N OCP A B 图9-1 QR N 图9-2 MCO PAB QROP AD图9-3xyC B EQR。

八年级数学学科参考答案及评分标准

八年级数学学科参考答案及评分标准

( 2) AC=BD(1分 ), α (1 分 )
23.( 1) A(-2,0) (1 分 ),B(0,1) (1 分 ),C(-3,2) (2 分 )
( 2)△ ABC平移的距离为 5, (2 分 ) B
′( 5,1 ) (2 分 )
23.( 1)设 y kx b ,由题意得 1000k b 2050,解得 k=2 , y 2x 50( x 0)( 2 分)
BD
BC 2 CD 2
6002 450 2 750
当 x 750时, y 2 750 50 1550元
答:从 B 市直接飞到 D市的机票价格应定为 1550 元 .
( 2 分)
1
25. ( 1)无数( 2 分)
( 2) 90° (2 分 )
( 3) P(0,4),(0,
7
) (4
4
分,2 分一个 )
八年级数学学科试卷参考答案及评分标准
一、填空题 ( 每小题 2 分,共 24 分 )
1.4
2.
(5,4 ) 3.70 ° 4.5
5.-26Βιβλιοθήκη k7.y=-3x-5 8.4
9.3 10.x
< 2 11.78 12.(2,2)
>2 或(3,-3 )
二、选择题 ( 每小题 3 分,共 15 分 ) 13.A 14.C 15.B 16.D 17.B
800k b 1650
b=50
( 2)1250 ( 1 分) 1250 (1 分) ( 3)∵ AC+CD=800+450=1250=AD ( 1 分)
∴ A、 C、 D 三个城市在同一条直线上 ( 1 分)
( 4) AC 2 BC 2 8002 6002 1000 2 AB2

八年级数学试卷参考答案与评分标准

八年级数学试卷参考答案与评分标准

八年级数学试卷参考答案与评分标准一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9. (课本第29页第1题改编) 3; 10. 9.5×1012; 11.(课本第2212. (课本第22页第3题改编) 8; 13.答案不唯一,y=kx (只要k <0即可); 14. 5;15.(课本第207页例题改编)(2,0); 16.(课本第162页第4题改编)(5,-3);17. (课本第33页例2改编) 6; 18.(课本第71页第14题改编) 2. 三、解答题(下列答案仅供参考,学生如有其它答案或解法,请参照标准给分............................) 19.(本题满分8分) (1)249x=(2分)23x =或23x =-(4分,答对一解给1分) (2)原式=5-3+1 (3分,化简一个正确给1分)= 3 (4分)20.(本题满分8分)(课本第13页、第78页第3题) (1)如图1,画图正确(3分);在图中标出点A 1、B 1、C 1、D 1(4分) (2)如图2,画图正确(3分);在图中标出点A 1、B 1、C 1(4分)21.(本题满分8分)(课本P158页原题) (1)y=3×3+0.45x ………………………………………………………………………2分=0.45x+9 ………………………………………………………………………4分 (2)当y=49.5时,得0.45x+9=49.5 …………………………………………………6分解得x=90……………………………………………………………………………7分 答:冲洗胶卷后还可以加印照片90张.………………………………………………8分 22.(本题满分8分) (课本166页第8题改编)(1)因为一次函数的图象与直线y=2x平行,所以k=2; ……………………………2分 过点A (3,2),有2=2×3+b ,得b=-4,这个一次函数的关系式为y =2x-4. ……………………………………………………4分 (2)当y=0时,2x-4=0,得x=2,所以B (2,0)BO=2, ………………………………6分 S=2×2÷2=2. …………………………………………………………………………8分 23.(本题满分10分)(课本第110页第17题改编)(1)四边形ABD ’C ’是平行四边形.…………………………………………………………1分理由:先说明△ABC ≌△D ’C ’B ’,得AB=C ’D ’,∠ABC=∠D ’C ’B ’=60°,得AB ∥C ’D ’.得四边形ABD 1C 1是平行四边形.………………………………………………………………………5分(2)四边形ABD ’C ’是矩形. ……………………………………………………………6分理由:由等边△D ’B ’C ’得∠C ’CD ’=∠C D ’C ’ =60°,又∠C ’CD ’=∠CBD ’+∠CD ’B ,由BC=CD ’得∠CBD ’=∠CD ’B=30°,所以∠C D ’C ’+∠CD ’B=90°即∠C ’D ’B=90°,又由(1)得四边形AB D ′C ′是平行四边形,所以四边形ABD ’C ’是矩形. ………………………………………………………………………10分24.(本题满分10分)(课本第130第5题改编)(1)略;……………………………………………………………………………………………4分 (2)△ABC 是直角三角形.…………………………………………………………………………6分理由:由AB 2=8,BC 2=18,AC 2=26,得AB 2+BC 2=AC 2所以△ABC 是直角三角形.……………………………………………………………………10分 25.(本题满分10分)(课本第177页练习、第172例题改编)(1)平均数、中位数和众数分别为86.6(分)、89(分)、89(分); 平均数、中位数和众数分别为84.2(分)、89(分)、92(分). ……………………3分小明是从成绩的平均数考虑的;小红是从成绩的众数考虑的.只要说得有道理便可.…………………………………………………………………………5分 (2)小明的得分=(89×1+67×2+89×2+92×2+96×3)÷10=87.3(分)…………………………………………………………………7分小红的得分=(86×1+62×2+89×2+92×2+92×3)÷10=84.8(分)…………………………………………………………………9分 所以,小明的成绩更好些. …………………………………………………………………10分 26.(本题满分10分)(课本第144页例2、第145页第4题改编)(1)从横坐标看,路上共花了60 min (1小时);………………………………………………3分(2)横坐标从20变化到30时,纵坐标没有变化,都是900,说明小亮的爸爸在途中滞留了1012min;…………………………………………………………………………………………………6分(3)先求得右边直线的解析式为y=-30x+1800;………………………………………………8分当x=40时,y=600. ………………………………………………………………………9分答:出发后40 min时,小亮的爸爸离甲地600m.………………………………………10分27.(本题满分12分)(课本109页第14题、111页20题改编)(1)由题意.A B∥DC.A D∥BC.四边形ABCD是平行四边形.………………………………1分设点C至AB的距离为d1到AD的距离为d2,由平行四边形的面积公式,知AB·d1=AD·d2,而d l=d2,所以AB=AD,所以四边形ABCD是菱形;……………4分(2)设AB=x,由勾股定理得,92+(12-x)2=x2,解得x=75/8,……………………………7分菱形ABCD的面积为675/8;………………………………………………………………8分(3)方法一:连接BD,由勾股定理求得BD=15,………………………………………………10分再有菱形面积公式求得AC=45/4. …………………………………………………………12分方法二:过点A作AM⊥BC于M,得CM=27/4,……………………………………………10分再由勾股定理得AC=45/4. …………………………………………………………………12分28 .(本题满分12分)(课本第165页第2题、第38页第9题改编与拓展)(1)m=-2,…………………………………………………………………………………………2分n=1;…………………………………………………………………………………………4分(2)作点B关于y轴的对称点B’(-1,0), ……………………………………………………5分求得直线AB’关系式为y=x+1,……………………………………………………………7分当x=0时,得y=1,所以P点的坐标为(0,1);…………………………………………8分(3)存在点Q,其坐标为(6,0)或(5,0)或(-5,0)或(25/6,0).…………………………………………12分(答对一个得1分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学试卷参考答案与评分标准
一、选择题(本大题共有8小题,每小题3分,共24分)
二、填空题(本大题共有10小题,每小题3分,共30分)
9. (课本第29页第1题改编) 3; 10. 9.5×1012
; 11.(课本第2212. (课本第22页第3题改编) 8; 13.答案不唯一,y=kx (只要k <0即可); 14. 5;15.(课本第207页例题改编)(2,0); 16.(课本第162页第4题改编)(5,-3);
17. (课本第33页例2改编) 6; 18.(课本第71页第14题改编) 2. 三、解答题(下列答案仅供参考,学生如有其它答案或解法,请参照标准给分............................) 19.(本题满分8分) (1)2
49x
=
(2分)23x =或2
3
x =-(4分,答对一解给1分) (2)原式=5-3+1 (3分,化简一个正确给1分)= 3 (4
分)
20.(本题满分8分)(课本第13页、第78页第3题) (1)如图1,画图正确(3分);在图中标出点A 1、B 1、C 1、D 1(4分) (2)如图2,画图正确(3分);在图中标出点A 1、B 1、C 1(4分)
21.(本题满分8分)(课本P158页原题) (
1

y=3
×
3+0.45x ………………………………………………………………………2分
=0.45x+9 ………………………………………………………………………4分 (2)当y=49.5时,得0.45x+9=49.5 …………………………………………………6分
解得x=90……………………………………………………………………………7分 答:冲洗胶卷后还可以加印照片90张.………………………………………………8分 22.(本题满分8分) (课本166页第8题改编)
(1)因为一次函数的图象与直线y=2x平行,所以k=2; ……………………………2分 过点A (3,2),有2=2×3+b ,得b=-4,
这个一次函数的关系式为y =2x-4. ……………………………………………………4分 (2)当y=0时,2x-4=0,得x=2,所以B (2,0)BO=2, ………………………………6分 S=2×2÷2=2. …………………………………………………………………………8分 23.(本题满分10分)(课本第110页第17题改编)
(1)四边形ABD ’C ’是平行四边形.…………………………………………………………1分
理由:先说明△ABC ≌△D ’C ’B ’,得AB=C ’D ’,∠ABC=∠D ’C ’B ’=60°,得AB ∥C ’D ’.得四边形ABD 1C 1是平行四边形.………………………………………………………………………5分
(2)四边形ABD ’C ’是矩形. ……………………………………………………………6分
理由:由等边△D ’B ’C ’得∠C ’CD ’=∠C D ’C ’ =60°,又∠C ’CD ’=∠CBD ’+∠CD ’B ,由BC=CD ’得∠CBD ’=∠CD ’B=30°,所以∠C D ’C ’+∠CD ’B=90°即∠C ’D ’B=90°,又由(1)得四边形AB D ′C ′是平行四边形,所以四边形ABD ’C ’是矩形. ………………………………………………………………………10分
24.(本题满分10分)(课本第130第5题改编)
(1)略;……………………………………………………………………………………………4分 (2)△ABC 是直角三角形.…………………………………………………………………………6分
理由:由AB 2
=8,BC 2
=18,AC 2
=26,得AB 2
+BC 2
=AC 2
所以△ABC 是直角三角形.……………………………………………………………………10分 25.(本题满分10分)(课本第177页练习、第172例题改编)
(1)平均数、中位数和众数分别为86.6(分)、89(分)、89(分); 平均数、中位数和众数分别为84.2(分)、89(分)
、92(分). ……………………3分
小明是从成绩的平均数考虑的;小红是从成绩的众数考虑的.
只要说得有道理便可.…………………………………………………………………………5分 (2)小明的得分=(89×1+67×2+89×2+92×2+96
×3)÷10
=87.3(分)…………………………………………………………………7分
小红的得分=(86×1+62×2+89×2+92×2+92×3)÷10
=84.8(分)…………………………………………………………………9分 1
2
所以,小明的成绩更好些. …………………………………………………………………10分
26.(本题满分10分)(课本第144页例2、第145页第4题改编)
(1)从横坐标看,路上共花了60 min(1小时);………………………………………………3分
(2)横坐标从20变化到30时,纵坐标没有变化,都是900,说明小亮的爸爸在途中滞留了10 min;…………………………………………………………………………………………………6分
(3)先求得右边直线的解析式为y=-30x+1800;………………………………………………8分
当x=40时,y=600. ………………………………………………………………………9分
答:出发后40 min时,小亮的爸爸离甲地600m.………………………………………10分
27.(本题满分12分)(课本109页第14题、111页20题改编)
(1)由题意.A B∥DC.A D∥BC.四边形ABCD是平行四边形.………………………………1分
设点C至AB的距离为d1到AD的距离为d2,由平行四边形的面积公式,知AB·d1=AD·d2,而d l=d2,所以AB=AD,所以四边形ABCD是菱形;……………4分
(2)设AB=x,由勾股定理得,92+(12-x)2=x2,解得x=75/8,……………………………7分
菱形ABCD的面积为675/8;………………………………………………………………8分
(3)方法一:连接BD,由勾股定理求得BD=15,………………………………………………10分
再有菱形面积公式求得AC=45/4. …………………………………………………………12分
方法二:过点A作AM⊥BC于M,得CM=27/4,……………………………………………10分
再由勾股定理得AC=45/4. …………………………………………………………………12分
28 .(本题满分12分)(课本第165页第2题、第38页第9题改编与拓展)
(1)m=-2,…………………………………………………………………………………………2分
n=1;…………………………………………………………………………………………4分
(2)作点B关于y轴的对称点B’(-1,0), ……………………………………………………5分
求得直线AB’关系式为y=x+1,……………………………………………………………7分
当x=0时,得y=1,所以P点的坐标为(0,1);…………………………………………8分
(3)存在点Q,其坐标为(6,0)或(5,0)或(-5,0)或(25/6,0).
…………………………………………12分(答对一个得1分)。

相关文档
最新文档