山东省淄博市八年级上学期数学10月月考试卷

合集下载

山东省八年级上学期数学10月月考试卷

山东省八年级上学期数学10月月考试卷

山东省八年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、填空题: (每题3分,共36分) (共12题;共36分)1. (3分) (2017八下·宝坻期中) 的整数部分是x,小数部分是y,则y(x+ )的值为________.2. (3分)分解因式:x2-4x=________ .3. (3分)比较大小 ________.(填“>”,“=”,“<”号)4. (3分)已知3 =16,m=4 ,则m的取值范围是________.5. (3分)把的根号外的因式移到根号内等于________。

6. (3分)若a是关于方程x2﹣2006x+1=0的一个根,则a+ =________.7. (3分) (2019八上·嘉定月考) 若关于的一元二次方程有两个实数根,则实数m的取值范围是________8. (3分) (2018七下·浦东期中) 计算: =________9. (3分)若最简二次根式与是同类二次根式,则m=________;n=________.10. (3分)(2018·哈尔滨模拟) 把多项式因式分解的结果为________.11. (3分)(2019·通辽模拟) 分解因式:a3b﹣ab3=________.12. (3分) (2020九上·无锡月考) 若m,n是方程x2+x-1=0的两个实数根,则m2+2m+n的值为________.二、选择题: (共4题;共8分)13. (2分) (2019八下·秀洲月考) 化简后的结果是()A .B . -5C .D . 514. (2分)已知x+=,则x-的值为()A .B . ±2C . ±D .15. (2分)下列一元二次方程中,没有实数根的方程是()A . x2﹣3x+1=0B . x2+2x﹣1=0C . x2﹣2x+1=0D . x2+2x+3=016. (2分) (2019八上·重庆期中) 代数式的最小值是()A . 10B . 9C . 19D . 11三、化简与计算 (共5题;共25分)17. (5分) (2019八下·余杭期中) 计算或求值:(1)计算: (1- )-(2)已知a=+,b=-,求a2-ab+b2的值.18. (5分)已知a+b=﹣4,ab=2.求 + 的值.19. (5分) (2019八下·北京期末) 解下列方程(1)(2)20. (5分) (2019九上·江津期中) 解下列方程:(1) x2=3x;(2) x2+2x﹣4=0.21. (5分)解下列方程:(1) 2x2﹣4x﹣5=0(2) x2﹣4x=1(3) x2﹣3x﹣4=0.四、解答题 (共5题;共25分)22. (5分) (2019八上·长春月考) 先化简或先因式分解,再求值:(1),其中.(2),其中.23. (5分) (2019九上·永定期中) 现将进货为40元的商品按50元售出时,就能卖出500件.已知这批商品每件涨价1元,其销售量将减少10个.问为了赚取8000元利润,同时尽量照顾到顾客的利益,售价应定为多少?这时应进货多少件?24. (5分)(2017·湖州竞赛) 如图,已知在△ABC中,AB=AC=10cm,BC=8cm,D为AB中点,设点P在线段BC上以3cm/秒的速度由B点向C点运动,点Q在线段CA上由C点向A点运动.(1)若Q点运动的速度与P点相同,且点P,Q同时出发,经过1秒钟后△BPD与△CQP是否全等,并说明理由;(2)若点P,Q同时出发,但运动的速度不相同,当Q点的运动速度为多少时,能在运动过程中有△BPD与△CQP 全等?(3)若点Q以(2)中的速度从点C出发,点P以原来的速度从点B同时出发,都是逆时针沿△ABC的三边上运动,经过多少时间点P与点Q第一次在△ABC的哪条边上相遇?25. (5分) (2019七下·海安期中) 已知(2a﹣1)的平方根是±3,(3a+b﹣1)的平方根是±4,求a+2b的平方根.26. (5分) (2020八上·林西期末) 四边形ABCD中,AD=CD,AB=CB,我们把这种两组邻边分别相等的四边形叫做“筝形”.“筝形”是一种特殊的四边形,它除了具有两组邻边分别相等的性质外,猜想它还有哪些性质?然后证明你的猜想.(以所给图形为例,至少写出三种猜想结果,用文字和字母表示均可,并选择猜想中的其中一个结论进行证明)五、第二卷 (共6题;共14分)27. (1分)若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=________.28. (1分)(2018·扬州) 关于的方程有两个不相等的实数根,那么的取值范围是________.29. (1分) (2019七下·江苏期中) 已知9x=4,3y=2,则(1) =________;(2) =________.30. (1分) (2017九上·罗湖期末) 若关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的一个根是0,则m的值是________.31. (5分) (2016九上·玄武期末) 已知关于x的一元二次方程(a+1)x2﹣x+a2﹣2a﹣2=0有一根是1,求a的值.32. (5分)向阳中学数学兴趣小组对关于x的方程(m+1)+(m﹣2)x﹣1=0提出了下列问题:(1)是否存在m的值,使方程为一元二次方程?若存在,求出m的值,并解此方程;(2)是否存在m的值,使方程为一元一次方程?若存在,求出m的值,并解此方程.参考答案一、填空题: (每题3分,共36分) (共12题;共36分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、选择题: (共4题;共8分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、化简与计算 (共5题;共25分)答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:四、解答题 (共5题;共25分)答案:22-1、答案:22-2、考点:解析:答案:23-1、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:答案:25-1、考点:解析:答案:26-1、考点:解析:五、第二卷 (共6题;共14分)答案:27-1、考点:解析:答案:28-1、考点:解析:答案:29-1、考点:解析:答案:30-1、考点:解析:答案:31-1、考点:解析:答案:32-1、考点:解析:。

山东省淄博市八年级上学期数学10月月考试卷

山东省淄博市八年级上学期数学10月月考试卷

山东省淄博市八年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七下·大庆期末) 在给出的一组数据0,π,,3.14,中,无理数有()A . 1个B . 2个C . 3个D . 5个2. (2分) (2020八下·曲阜期末) 以下列各组数为边长,能构成直角三角形的是()A . 5,12,13B . 1,2,C . ,,2D . 4,5,63. (2分)(2020·昆明) 某款国产手机上有科学计算器,依次按键:,显示的结果在哪两个相邻整数之间()A . 2~3B . 3~4C . 4~5D . 5~64. (2分) (2019八下·北京期末) 下列根式中,是最简二次根式的是()A .B .C .5. (2分) (2016八上·射洪期中) 下列各式中,正确的是()A .B . =2C . =﹣4D .6. (2分)如果不等式组只有一个整数解,那么a的范围是()A . 3<a≤4B . 3≤a<4C . 4≤a<5D . 4<a≤57. (2分) (2020八上·浦东月考) 下列二次根式中能与合并的是()A .B .C .D . .8. (2分)若在实数范围内有意义,则实数x的取值范围是()A .B . x>3C .D . x<39. (2分) (2017九下·萧山开学考) 如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()B .C .D . 210. (2分) (2020九上·椒江月考) 如图,在△ABC中,∠C=64°,将△ABC绕着点A顺时针旋转后,得到△AB′C′,且点C′在BC上,则∠B′C′B的度数为()A . 42°B . 48°C . 52°D . 58°二、填空题 (共6题;共6分)11. (1分) (2017八下·嵊州期中) 当=-2时,则二次根式的值为________.12. (1分) (2019七下·厦门期末) 计算下列各题:⑴2﹣7=________;⑵(﹣3)×(﹣2)=________;⑶ =________;⑷ =________;⑸2 ﹣=________;⑹|1﹣ |=________;13. (1分) (2017七下·邵东期中) 若|a﹣2|+(b+0.5)2=0,则a11b11=________.14. (1分) (2020七上·双台子期末) 如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB的方位角是________.15. (1分) (2018九上·老河口期中) 已知的直径为10cm,AB,CD是的两条弦,,,,则弦AB和CD之间的距离是________cm.16. (1分) (2020八上·临河月考) 如图,在中,D , E分别是BC , AD的中点,,则的值是________.三、解答题 (共8题;共80分)17. (15分) (2020八下·延平月考) 计算:(1);(2).18. (10分) (2016九上·洪山期中) 如图,AB为⊙O的直径,弦CD⊥AB于E,∠CDB=15°,OE=2 .(1)求⊙O的半径;(2)将△OBD绕O点旋转,使弦BD的一个端点与弦AC的一个端点重合,则弦BD与弦AC的夹角为________.19. (5分) (2019八下·高阳期中) 问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时.先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处).如图①所示.这样不需求△ABC的高.而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上________;思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为,,,请利用图②的正方形网格(每个小正方形的边长为1)画出相应的△ABC .并求出它的面积探索创新:(3)若△ABC三边的长分别为 a、2 a、 a(a>0),请利用图(2)的正方形网格(每个小正方形的边长为a)画出相应的△ABC .并求出它的面积.(4)若△ABC三边的长分别为、,2 (m>0,n>0,且m≠n),试运用构图法求出这个三角形的面积.20. (5分) (2020·凉山模拟) 如图,已知在⊙O中,直径MN=10,正方形ABCD的四个顶点分别在⊙O及半径OM、OP上,并且∠POM=45°,求正方形的边长.21. (10分) (2018八上·殷都期中) 如图,把长方形ABCD沿对角线BD折叠,重合部分为△EBD.(1)求证:△EBD为等腰三角形.(2)图中有哪些全等三角形?(3)若AB=3,BC=5,求△DC′E的周长.22. (5分)如图,每个小方格的边长均为1,△ABC在图中,求证:△ABC是直角三角形.23. (15分)计算:(1)-(2)24. (15分) (2020八上·锦江月考) 如图,将长方形沿直线折叠.顶点恰好落在边上点处,已知,.(1)求图中阴影部分的面积.(2)求的值.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共8题;共80分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、答案:19-3、答案:19-4、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、考点:解析:答案:23-1、考点:解析:答案:24-1、答案:24-2、考点:解析:第21 页共21 页。

八年级上第一次月考数学试卷(含解析)

八年级上第一次月考数学试卷(含解析)

2014-2015学年山东省淄博市博山六中八年级(上)第一次月考数学试卷一、精心选一选12小题(每小题3分,共36分)1.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A. 60° B. 70° C. 80° D. 90°2.在一个三角形中,一个外角是其相邻内角的3倍,那么这个外角是()A. 150° B. 135° C. 120° D. 100°3.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A. 59° B. 60° C. 56° D. 22°4.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A. 90°B. 120° C. 160° D. 180°5.已知,如图,AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=()A. 150° B. 30° C. 120° D. 60°6.小芳画一个有两边长分别为5和6的等腰三角形,则这个等腰三角形的周长是() A. 16 B. 17 C. 11 D. 16或177.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C. DB=DC D. AB=AC8.如图,AB=CD,AD=BC,O为BD中点,过O点作直线与DA、BC延长线交于E、F,若∠ADB=60°,EO=10,则∠DBC=()A. 90° B. 80° C. 60° D. 50°9.如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.以其中三个作为已知条件,不能判断△ABC与△DEF全等的是()A.(1)(5)(2) B.(1)(2)(3) C.(4)(6)(1) D.(2)(3)(4)10.下列说法中不正确的是()A.全等三角形一定能重合 B.全等三角形的面积相等C.全等三角形的周长相等 D.周长相等的两个三角形全等11.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去 B.带②去 C.带③去 D.①②③都带去12.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,∠CMD=35°,则∠MAB的度数是()A. 35° B. 45° C. 55° D. 65°二、细心填一填10小题(每小题4分,共40分)13.在△ABC中,如果∠B﹣∠A﹣∠C=50°,∠B= .14.一个多边形的内角和是1980°,则它的边数是,它的外角和是.15.如图,如果∠1=∠2=∠3,则AM为△的角平分线,AN为△的角平分线.16.如图△ABC中,AD是BC上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是.17.如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=34°.则∠DAE的大小是度.18.如图所示,AC,BD相交于点O,△AOB≌△COD,∠A=∠C,则其它对应角分别为,对应边分别为.19.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有对全等三角形.20.△ABC中,∠B=60°,∠C=80°,O是三条角平分线的交点,则∠OAC= ,∠BOC= .21.将一张长方形纸片按如图所示的方式进行折叠,其中BC,BD为折痕,则∠BCD的度数为.22.如图,已知AC=BD,∠A=∠D,请你添一个直接条件,,使△AFC≌△DEB.三、用心做一做7小题(13、14题各6分,15至19题各8分,共44分,)23.求出下列图中x的值.24.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD .25.已知:如图,在直线MN上求作一点P,使点P到∠AOB两边的距离相等(要求写出作法,并保留作图痕迹,写出结论)26.已知:如图,AB=DC,AE=BF,CE=DF,∠A=60°.(1)求∠FBD的度数.(2)求证:AE∥BF.27.已知:如图,AB=AC,BD⊥AC,CE⊥AB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD.28.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.29.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是28cm2,AB=16cm,AC=12cm,求DE的长.30.如图,在六边形ABCDEF中,AF∥CD,AB∥ED,∠A=140°,∠B=100°,∠E=90°.求∠C、∠D、∠F的度数.2014-2015学年山东省淄博市博山六中八年级(上)第一次月考数学试卷参考答案与试题解析一、精心选一选12小题(每小题3分,共36分)1.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A. 60° B. 70° C. 80° D. 90°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和,知∠ACD=∠A+∠B,从而求出∠A的度数.解答:解:∵∠ACD=∠A+∠B,∴∠A=∠ACD﹣∠B=120°﹣40°=80°.故选:C.点评:本题主要考查三角形外角的性质,解答的关键是沟通外角和内角的关系.2.在一个三角形中,一个外角是其相邻内角的3倍,那么这个外角是()A. 150° B. 135° C. 120° D. 100°考点:对顶角、邻补角.分析:设这个内角为α,则与其相邻的外角为3α,根据邻补角的和等于180°列式进行计算即可得解.解答:解:设这个内角为α,则与其相邻的外角为3α,所以,α+3α=180°,解得α=45°,3α=3×45°=135°.故选B.点评:本题考查了邻补角的和等于180°的性质,列出方程是解题的关键.3.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A. 59° B. 60° C. 56° D. 22°考点:三角形内角和定理.分析:根据高线的定义可得∠AEC=90°,然后根据∠C=70°,∠ABC=48°求出∠CAB,再根据角平分线的定义求出∠1,然后利用三角形的内角和等于180°列式计算即可得解.解答:解:∵BE为△ABC的高,∴∠AEB=90°∵∠C=70°,∠ABC=48°,∴∠CAB=62°,∵AF是角平分线,∴∠1=∠CAB=31°,在△AEF中,∠EFA=180°﹣31°﹣90°=59°.∴∠3=∠EFA=59°,故选:A.点评:本题考查了三角形的内角和定理,角平分线的定义,高线的定义,熟记概念与定理并准确识图是解题的关键.4.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A. 90° B. 120° C. 160° D.180°考点:角的计算.分析:因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.解答:解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故选D.点评:本题考查了角度的计算问题,在本题中要注意∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.5.已知,如图,AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=()A. 150° B. 30° C. 120°D. 60°考点:等腰三角形的判定与性质;平行线的性质.专题:计算题.分析:先根据平行线及角平分线的性质求出∠CDB=∠CBD,再根据平角的性质求出∠CDB的度数,再根据平行线的性质求出∠C的度数即可.解答:解:∵直线AB∥CD,∴∠CDB=∠ABD,∵∠CDB=180°﹣∠CDE=30°,∴∠ABD=30°,∵BE平分∠ABC,∴∠ABD=∠CBD,∴∠ABC=∠CBD+∠ABD=60°,∵AB∥CD,∴∠C=180°﹣∠ABC=180°﹣60°=120°.故选C.点评:本题考查的是平行线、平角的定义以及角平分线的性质,比较简单.6.小芳画一个有两边长分别为5和6的等腰三角形,则这个等腰三角形的周长是() A. 16 B. 17 C. 11 D. 16或17考点:等腰三角形的性质.专题:计算题.分析:根据等腰三角形的性质,分两种情况:①当腰长为5时,②当腰长为6时,解答出即可;解答:解:根据题意,①当腰长为5时,周长=5+5+6=16;②当腰长为6时,周长=6+6+5=17;故选D.点评:本题主要考查了等腰三角形的性质,注意本题要分两种情况解答.7.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C. DB=DC D. AB=AC考点:全等三角形的判定.分析:先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.本题中C、AB=AC与∠1=∠2、AD=AD组成了SSA是不能由此判定三角形全等的.解答:解:A、加∠ADB=∠ADC,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD≌△ACD(ASA),是正确选法;B、加∠B=∠C∵∠1=∠2,AD=AD,∠B=∠C,∴△ABD≌△ACD(AAS),是正确选法;C、加DB=DC,满足SSA,不能得出△ABD≌△ACD,是错误选法;D、加AB=AC,∵∠1=∠2,AD=AD,AB=AC,∴△ABD≌△ACD(SAS),是正确选法.故选C.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但SSA无法证明三角形全等.8.如图,AB=CD,AD=BC,O为BD中点,过O点作直线与DA、BC延长线交于E、F,若∠ADB=60°,EO=10,则∠DBC=()A. 90° B. 80° C. 60° D. 50°考点:全等三角形的判定与性质.分析:利用“边边边”证明△ABD和△CDB全等,根据全等三角形对应角相等可得∠DBC=∠ADB.解答:解:在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠DBC=∠ADB=60°.故选C.点评:本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法是解题的关键.9.如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.以其中三个作为已知条件,不能判断△ABC与△DEF全等的是()A.(1)(5)(2) B.(1)(2)(3) C.(4)(6)(1) D.(2)(3)(4)考点:全等三角形的判定.分析:根据已知及全等三角形的判定方法进行分析,从而得到答案,而具备SSA的不能作为判定三角形全等的依据.解答:解:A、正确,符合判定方法SAS;B、正确,符合判定方法SSS;C、正确,符合判定方法AAS;D、不正确,不符合全等三角形的判定方法.故选D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.下列说法中不正确的是()A.全等三角形一定能重合 B.全等三角形的面积相等C.全等三角形的周长相等 D.周长相等的两个三角形全等考点:全等图形.分析:根据能够完全重合的两个三角形叫做全等三角形进行分析即可.解答:解:根据全等三角形的定义可得A、B、C正确,但是周长相等的两个三角形不一定全等,故选:D.点评:此题主要考查了全等三角形的定义,题目比较简单.11.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去 B.带②去 C.带③去 D.①②③都带去考点:全等三角形的应用.分析:本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.解答:解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.点评:此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.12.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,∠CMD=35°,则∠MAB的度数是()A. 35° B. 45° C. 55° D. 65°考点:角平分线的性质.分析:过点M作MN⊥AD于N,根据角平分线上的点到角的两边的距离相等可得MC=MN,然后求出MB=MN,再根据到角的两边距离相等的点在角的平分线上判断出AM是∠BAD的平分线,然后求出∠AMB,再根据直角三角形两锐角互余求解即可.解答:解:如图,过点M作MN⊥AD于N,∵∠C=90°,DM平分∠ADC,∴MC=MN,∴∠CMD=∠NMD,∵M是BC的中点,∴MB=MC,∴MB=MN,又∵∠B=90°,∴AM是∠BAD的平分线,∠AMB=∠AMN,∵∠CMD=35°,∴∠AMB=(180°﹣35°×2)=55°,∴∠MAB=90°﹣∠AMB=90°﹣55°=35°.故选A.点评:本题考查了角平分线上的点到角的两边的距离相等的性质以及到角的两边距离相等的点在角的平分线上,直角三角形两锐角互余的性质,熟记性质并作出辅助线是解题的关键.二、细心填一填10小题(每小题4分,共40分)13.在△ABC中,如果∠B﹣∠A﹣∠C=50°,∠B= 115°.考点:三角形内角和定理.分析:证明∠A+∠C=180°﹣∠B,运用∠B﹣∠A﹣∠C=50°,得到2∠B﹣180°=50°,即可解决问题.解答:解:∵∠A+∠B+∠C=180°,∴∠A+∠C=180°﹣∠B;∵∠B﹣∠A﹣∠C=50°,∴2∠B﹣180°=50°,∴∠B=115°,故答案为115°.点评:该题主要考查了三角形的内角和定理及其应用问题;灵活运用三角形的内角和定理是解题的关键.14.一个多边形的内角和是1980°,则它的边数是13 ,它的外角和是360°.考点:多边形内角与外角.分析:根据多边形内角和定理:(n﹣2)×180°,列方程解答出即可求得边数,然后根据多边形的外角和定理求得外角和.解答:解:根据多边形内角和定理得,(n﹣2)×180°=1980°,解得,n=13.外角和是360°.故答案是:13,360°.点评:本题考查了多边形的内角和定理和外角和定理,熟记公式是正确解答的基础.15.如图,如果∠1=∠2=∠3,则AM为△ABN 的角平分线,AN为△AMC 的角平分线.考点:三角形的角平分线、中线和高.分析:根据三角形角平分线的定义判断即可.解答:解:∵∠1=∠2,∴AM为△ABN的角平分线,∵∠2=∠3,∴AN为△AMC的角平分线.故答案为:ABN;AMC.点评:此题考查了三角形的角平分线,注意:三角形的角平分线是一条线段.16.如图△ABC中,AD是BC上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是 6 .考点:三角形的面积.专题:计算题.分析:根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可解答.解答:解:∵AD是BC上的中线,∴S△ABD=S△ACD=S△ABC,∵BE是△ABD中AD边上的中线,∴S△ABE=S△BED=S△ABD,∴S△ABE=S△ABC,∵△ABC的面积是24,∴S△ABE=×24=6.故答案为:6.点评:本题主要考查了三角形面积的求法,掌握三角形的中线将三角形分成面积相等的两部分,是解答本题的关键.17.如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=34°.则∠DAE的大小是18 度.考点:三角形内角和定理.专题:计算题.分析:根据三角形内角和定理求得∠BAC的度数,再根据角平分线的定义可求得∠BAE的度数,由三角形内角和定理可求得∠BAD的度数,从而不难求得∠DAE的度数.解答:解:∵△ABC中,∠B=70°,∠C=34°.∴∠BAC=180°﹣(70°+34°)=76°.∵AE平分∠BAC,∴∠BAE=38°.∵Rt△ABD中,∠B=70°,∴∠BAD=20°.∴∠DAE=∠BAE﹣∠BAD=38°﹣20°=18°点评:此题主要考查学生对三角形内角和定理的理解及运用能力.18.如图所示,AC,BD相交于点O,△AOB≌△COD,∠A=∠C,则其它对应角分别为∠B 和∠D,∠AOB和∠COD ,对应边分别为OA和OC,OB和OD,AB和CD .考点:全等三角形的性质.分析:由全等且点A和点C对应,可得出答案.解答:解:∵△AOB≌△COD,∠A=∠C,∴A和C、B和D、O和O,分别为对应点,∴对应角为∠B和∠D,∠AOB和∠COD,对应边分别为:OA和OC,OB和OD,AB和CD,故答案为:∠B和∠D,∠AOB和∠COD;OA和OC,OB和OD,AB和CD.点评:本题主要考查全等三角形的对应关系,掌握相等的角为对应角,相等的边为对应边是解题的关键.19.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有 3 对全等三角形.考点:全等三角形的判定.分析:由已知条件,结合图形可得△ADB≌△ACB,△ACO≌△ADO,△CBO≌△DBO共3对.找寻时要由易到难,逐个验证.解答:解:∵AD=AC,BD=BC,AB=AB,∴△ADB≌△ACB;∴∠CAO=∠DAO,∠CBO=∠DBO,∵AD=AC,BD=BC,OA=OA,OB=OB∴△ACO≌△ADO,△CBO≌△DBO.∴图中共有3对全等三角形.故答案为:3.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20.△ABC中,∠B=60°,∠C=80°,O是三条角平分线的交点,则∠OAC= 20°,∠BOC= 110°.考点:三角形内角和定理.专题:计算题.分析:根据角平分线的性质可得∠OAC=∠A,∠BOC=180°﹣(∠B+∠C),从而可得出答案.解答:解:根据图形及角平分线的性质可得:∠OAC=∠A=(180°﹣∠B﹣∠C)=20°,∠BOC=180°﹣(∠B+∠C)=110°.故答案为:20°,110°点评:本题考查三角形的内角和定理及角平分线的性质,难度不大,关键是画出草图,便于观察.21.将一张长方形纸片按如图所示的方式进行折叠,其中BC,BD为折痕,则∠BCD的度数为90°.考点:角的计算;翻折变换(折叠问题).分析:根据折叠的性质得到∠1=∠2,∠3=∠4,再由平角的定义得∠1+∠2+∠3+∠4=180°,即可得到∠BCD的度数.解答:解:∵由折叠的性质得到∠1=∠2,∠3=∠4,由平角的定义得∠1+∠2+∠3+∠4=180°,∴∠BCD=∠2+∠3=90°.故答案为:90°.点评:本题考查了折叠的性质:折叠前后两图形全等,即对应线段相等,对应角相等.也考查了平角的定义.22.如图,已知AC=BD,∠A=∠D,请你添一个直接条件,∠ACF=∠DBE ,使△AFC≌△DEB.考点:全等三角形的判定.分析:证明△AFC≌△DEB,已知AC=BD,∠A=∠D,一边一角对应相等,故添加一组角∠ACF=∠DBE可利用ASA证明全等.解答:解:在△AFC和△DEB中,,∴△AFC≌△DEB(ASA).故答案为:∠ACF=∠DBE.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、用心做一做7小题(13、14题各6分,15至19题各8分,共44分,)23.求出下列图中x的值.考点:多边形内角与外角.分析:根据四边形的内角和是360°,即可列方程求解.解答:解:根据题意得:3x+3x+4x+2x=360,解得:x=30.点评:本题考查了多边形的内角和,根据多边形的内角和的关系来寻求等量关系,构建方程求解.24.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠BAD =∠CAD (角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD SAS .考点:全等三角形的判定;等腰三角形的性质.专题:推理填空题.分析:根据角平分线的定义及全等三角形的判定定理,填空即可.解答:解:∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义),在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).点评:本题考查了全等三角形的判定,解答本题的关键是掌握全等三角形的判定定理及角平分线的定义.25.已知:如图,在直线MN上求作一点P,使点P到∠AOB两边的距离相等(要求写出作法,并保留作图痕迹,写出结论)考点:作图—复杂作图;角平分线的性质.分析:利用角平分线的作法作∠AOB的平分线,∠AOB的平分线与直线MN交于一点,这一点就是P点.解答:解:作∠AOB的平分线,∠AOB的平分线与直线MN交于一点,如图所示:点P即为所求.点评:此题主要考查了作角平分线,关键是掌握角平分线的性质:角的平分线上的点到角的两边的距离相等.26.已知:如图,AB=DC,AE=BF,CE=DF,∠A=60°.(1)求∠FBD的度数.(2)求证:AE∥BF.考点:全等三角形的判定与性质.分析:(1)求出AC=BD,根据SSS推出△AEC≌△BFD,根据全等三角形的性质得出∠A=∠FBD即可;(2)因为∠A=∠FBD,根据平行线的判定推出即可.解答:解:(1)∵AB=CD,∴AB+BC=CD+BC,∴AC=BD,在△AEC和△BFD中∵△AEC≌△BFD,∴∠A=∠FBD,∴∠A=∠FBD,∵∠A=60°,∴∠FBD=60°;(2)证明:∵∠A=∠FBD,∴AE∥BF.点评:本题考查了全等三角形的性质和判定,平行线的判定的应用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的对应边相等,对应角相等.27.已知:如图,AB=AC,BD⊥AC,CE⊥AB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD.考点:全等三角形的判定与性质.专题:证明题.分析:先根据BD⊥AC,CE⊥AB可得出△ACE与△ABD是直角三角形,再由∠A=∠A,可得出∠C=∠B,由AB=AC可知△ACE≌△ABD,由全等三角形的性质可知,AE=AD,结合AB=AC即可得出结论.解答:证明:∵BD⊥AC,CE⊥AB,∴△ACE与△ABD是直角三角形,∵∠A=∠A,∴∠C=∠B,在△ACE与△ABD中,∵,∴△ACE≌△ABD,∴AD=AE,∵AB=AC,∴BE=CD.点评:本题考查的是全等三角形的判定与性质,根据题意判断出△ACE≌△ABD,再根据全等三角形的对应相等进行解答是解答此题的关键.28.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.考点:三角形的外角性质;三角形内角和定理.分析:根据三角形外角与内角的关系及三角形内角和定理解答.解答:解:∵∠AFE=90°,∴∠AEF=90°﹣∠A=90°﹣35°=55°,∴∠CED=∠AEF=55°,∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°.答:∠ACD的度数为83°.点评:三角形外角与内角的关系:三角形的一个外角等于和它不相邻的两个内角的和.三角形内角和定理:三角形的三个内角和为180°.29.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是28cm2,AB=16cm,AC=12cm,求DE的长.考点:角平分线的性质.分析:利用角平分线的性质,得出DE=DF,再利用△ABC面积是28cm2可求DE.解答:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵S△ABC=S△ABD+S△ACD=AB×DE+AC×DF∴S△ABC=(AB+AC)×DE即×(16+12)×DE=28,故DE=2(cm).点评:此题考查了角平分线的性质与三角形面积的求解方法.此题难度不大,解题的关键是注意数形结合思想的应用.30.如图,在六边形ABCDEF中,AF∥CD,AB∥ED,∠A=140°,∠B=100°,∠E=90°.求∠C、∠D、∠F的度数.考点:平行线的性质.分析:过点B作BG∥AF∥CD,过点C作CH作CH∥AB∥DE,根据平行线的性质可得∠A+∠B+∠C=360°,然后根据已知可求出∠B的度数,同理也可求出∠D和∠F的度数.解答:解:过点BG∥AF,作过点C作CH作CH∥AB,∵AF∥CD,AB∥ED,∴BG∥AF∥CD,CH∥AB∥DE,∴∠A+∠ABG=180°,∠BCD+∠CBG=180°,即∠A+∠ABC+∠BCD=360°,∵∠A=140°,∠ABC=100°,∴∠BCD=120°,同理可得,∠ABC+∠BCD+∠D=360°,则∠D=140°,∠A+∠F+∠E=360°,则∠F=360°﹣140°﹣90°=130°.点评:本题考查了平行线的性质,关键是作出辅助线,注意掌握平行线的性质:两直线平行,同旁内角互补.。

山东省淄博市八年级上学期数学10月月考试卷

山东省淄博市八年级上学期数学10月月考试卷

山东省淄博市八年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2018九下·市中区模拟) 下列所示的图形中既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)如图,已知△ABC≌△CDA,A和C,D和B分别是对应点,如果AB=7cm,AD=6cm,AC=4cm,则DC 的长为()A . 6cmB . 7cmC . 4cmD . 不确定3. (2分)利用尺规进行作图,根据下列条件作三角形,画出的三角形不是唯一的是()A . 已知三条边B . 已知三个角C . 已知两角和夹边D . 已知两边和夹角4. (2分)如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有()A . 2种B . 3种C . 4种D . 5种5. (2分)如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于()A . 6cmB . 8cmC . 10cmD . 12cm6. (2分)如图,⊙O的半径为2,点A的坐标为(2,),直线AB为⊙O的切线,B为切点。

则B点的坐标为()A . (-,)B . (-,1)C . (-,)D . (-1,)7. (2分)给出下列命题,其中错误命题的个数是()①四条边相等的四边形是正方形;②两组邻边分别相等的四边形是平行四边形③有一个角是直角的平行四边形是矩形;④矩形、线段都是轴对称图形A . 1B . 2C . 3D . 48. (2分)如图,已知AC⊥BC,DE⊥AB,AD平分∠BAC,下面结论错误的是()A . BD+ED=BCB . DE平分∠ADBC . AD平分∠EDCD . ED+AC>AD二、填空题 (共8题;共8分)9. (1分)已知以下四个汽车标志图案:其中是轴对称图形的图案有________.(只需填入图案代号).10. (1分) (2019八上·朝阳期中) 如图,将两根钢条,的中点连在一起,使,可以绕点自由转动,就做成一个测量工件,则的长等于内槽宽,则的判定方法是________.(用字母表示)11. (1分) (2015八上·潮南期中) 如图,∠B=∠D=90°,BC=DC,∠1=40°,则∠2=________°.12. (1分)如图,∠AOB=30°,点M,N分别是射线OA,OB上的动点,OP平分∠AOB,且OP=6,△PMN的周长最小值为________.13. (1分)命题“角平分线上的点到这个角的两边的距离相等”的逆命题是________14. (1分) (2016八上·湖州期中) 如图,△ABC中,∠BAC=100°,EF,MN分别为AB,AC的垂直平分线,则∠FAN=________.15. (1分)如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,若BD=4cm,CE=3cm,则DE=________cm.16. (1分) (2017八下·垫江期末) 如图,在边长为4的正方形ABCD中,对角线AC,BD相交于点O,点E 是AD边上一点,连接CE,把△CDE沿CE翻折,得到△CPE,EP交AC于点F,CP交BD于点G,连接PO,若PO∥BC,则四边形OFPG的面积是________.三、解答题 (共10题;共74分)17. (5分) (2019七下·大埔期末) 如图,已知AC=FE,BC=DE,点A,D,B,F在一条直线上,AB=FD,证明△ABC≌△FDE.18. (10分) (2017七下·惠山期中) 在△ABC中,∠C=90°,BD是△ABC的角平分线,P是射线AC上任意一点(不与A、D、C三点重合),过点P作PQ⊥AB,垂足为Q,交直线BD于E.(1)如图,当点P在线段AC上时,说明∠PDE=∠PED.(2)作∠CPQ的角平分线交直线AB于点F,则PF与BD有怎样的位置关系?画出图形并说明理由.19. (6分) (2018八上·婺城期末) 定义:如果经过三角形一个顶点的线段把这个三角形分成两个小三角形,其中一个三角形是等腰三角形,另外一个三角形和原三角形的三个内角分别相等,那么这条线段称为原三角形的“和谐分割线”,例如:如图1,等腰直角三角形斜边上的中线就是一条“和谐分割线”(1)判断下列两个命题是真命题还是假命题填“真”或“假”等边三角形必存在“和谐分割线”如果三角形中有一个角是另一个角的两倍,则这个三角形必存在“和谐分割线”.命题是________命题,命题是________命题;(2)如图2,,,,,试探索是否存在“和谐分割线”?若存在,求出“和谐分割线”的长度;若不存在,请说明理由.(3)如图3,中,,若线段CD是的“和谐分割线”,且是等腰三角形,求出所有符合条件的的度数.20. (5分)如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).在图中作出△ABC关于x轴对称的△A1B1C1 .21. (6分)(2020·南通模拟) 如图,方格纸中有三个点,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.(注:图甲、图乙、图丙在答题纸上)22. (1分) (2020九上·玉环期末) 如图,内接于半径为的半,为直径,点是弧的中点,连结交于点,平分交于点,则 ________.若点恰好为的中点时,的长为________.23. (10分)长方形OABC绕顶点C(0,5)逆时针方向旋转,当旋转到CO′A′B′位置时,边O′A′交边AB于D,且A′D=2,AD=4.(1)求BC长;(2)求阴影部分的面积.24. (10分)问题:如图①,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,试判断BE,EF,FD之间的数量关系.(1)【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG的位置,从而发现EF=BE+FD,请你利用图①证明上述结论.(2)【类比引申】如图②,在四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E,F分别在边BC,CD上,则当∠EAF与∠BAD 满足________关系时,仍有EF=BE+FD.请说明理由.________(3)【探究应用】如图③,在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80 m,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC,CD上分别有景点E,F,且AE⊥AD,DF=40( -1)m,现要在E,F之间修一条笔直的道路,求这条道路EF的长(结果精确到1 m,参考数据:≈1.41,≈1.73).25. (6分)如图,△ABC的高BD与CE相交于点O,OD=OE,AO的延长线交BC于点M,请你从图中找出几对全等的直角三角形,并说明理由.26. (15分) (2019九上·偃师期中) 在△ABC中,D、E分别是AB,AC的中点,作∠B的角平分线(1)如图1,若∠B的平分线恰好经过点E,猜想△ABC是怎样的特殊三角形,并说明理由;(2)如图2,若∠B的平分线交线段DE于点F,已知AB=8,BC=10,求EF的长度;(3)若∠B的平分线交直线DE于点F,直接写出AB、BC、EF三者之间的数量关系。

2023年10月北师大版八年级数学上月考数学试题(1)

2023年10月北师大版八年级数学上月考数学试题(1)

八年级数学第一次月考试卷(满分120分120分钟)一、选择题(每题3分,共36分)1.在下列各数0,0.2,3π,227,6.1010010001…(1之间逐次增加一个0),13111,2中,无理数的个数是()A.1B.2C.3D.42.ABC ∆中,A ∠,B ∠,C ∠的对边分别记为a ,b ,c ,由下列不能判定ABC ∆为直角三角形的是()A.A B C ∠∠=∠+B.::3:4:5A B C ∠∠∠=C.()()2c b c b a +-= D.111345a b c ==3.下列运算中正确的是()A.5=B.5=±C.2=D.122=4.下列二次根式是最简二次根式的是()A.B.C.D.5.若(m -1)2=0,则m +n 的值是()A.-1B.0C.1D.26.x 是9的平方根,y 是64的立方根,则x +y 的值为()A .3B.7C.3,7D.1,77.最接近的数是A.2B.3C.4D.58.若x <0等于()A .xB.2xC.0D.﹣2x9.如图,从一个大正方形中裁去面积为30cm 2和48cm 2的两个小正方形,则余下部分的面积为()9题10题11题12题A.78cm 2B.(330+cm 2C.10cm 2D.10cm 210.如图所示,1,90CD BCD =∠=︒,若数轴上点A 所表示的数为a ,则a 的值为()A.5- B.15C.15- D.15-+11.如图,在2×2的网格中,有一个格点△ABC ,若每个小正方形的边长为1,则△ABC 的边AB 上的高为()A.55B.22C.510D.112.如图,一只蚂蚁从长、宽都是3cm ,高是8cm 的长方体纸盒的A 点沿纸盒面爬到B 点,那么它所行的最短路线的长是()A.2+8)cmB.10cmC.14cmD.无法确定二、填空题(每题4分,共24分)13.5-______,倒数是______14的算术平方根是______.14.已知ABC 中,13AB =,20AC =,BC 边上的高12AD =,则BC 的长为______.15.比较大小:512______12.16.如图是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A ,B 是这个台阶上两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿台阶面爬行到B 点最短路程是_____米.17题18题17.在直线l 上依次摆放着七个正方形(如图).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是1S ,2S ,3S ,4S ,则14S S +=______.18.我们赋予“※”一个实际含义,规定a b =※,试求54=※______.三、简答题(共60分)19.计算:(1)⎛ ⎝(2))()20111123π-⎛⎫-+--+-+ ⎪⎝⎭20.解方程(1)291028x -=(2)()32180x --=.21.如图是一块地,已知8cm AD =,6cm CD =,90D Ð=°,26cm AB =,24cm BC =,求这块地的面积.22.如图,某住宅社区在相邻两楼之间修建一个上方是以AB 为直径的半圆,下方是长方形的仿古通道,已知AD =2.3米,CD =2米;现有一辆卡车装满家具后,高2.5米,宽1.6米,请问这辆送家具的卡车能否通过这个通道?请说出你的理由.23.如图,在长方形ABCD 中,AB CD ∥,AD BC ∥,3AB =,4BC =,将矩形纸片沿BD 折叠,使点A 落在点E 处,设DE 与BC 相交于点F .(1)判断BDF ∆的形状,并说明理由;(2)求DF 的长.24.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2=(1)2,善于思考的小明进行了以下探索:设a +=(m +)2(其中a 、b 、m 、n 均为整数),则有a +=m 2+2n 2+2.∴a =m 2+2n 2,b =2mn .这样小明就找到了一种把部分a +的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若a +(m +2,用含m 、n 的式子分别表示a 、b ,得a =________,b =________;(2)试着把化成一个完全平方式.(3。

八年级(上)月考数学试卷(2022年10月)

八年级(上)月考数学试卷(2022年10月)

2022-2023学年度月考试卷(10月)八年级(上)数学时间:90分钟满分120分一.选择题(10题共30分)1.两根长度分别为5cm,9cm的钢条,下面为第三根的长,则可组成一个三角形框架的是()A.3cm B.4cm C.9cm D.14cm2.在下列各图的△ABC中,正确画出AC边上的高的图形是()A.B.C.D.3.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去4.一个多边形的每一个外角都等于36°,则该多边形的内角和等于()A.1440°B.1080°C.900°D.720°5.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°3题5题6题7题6.如图,点A,E,F,D在同一直线上,若AB∥CD,AB=CD,AE=FD,则图中的全等三角形有()A.1对B.2对C.3对D.4对7.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB8.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,试着找一找这个规律,你发现的规律是()A.∠1+∠2=2∠A B.∠1+∠2=∠A C.∠A=2(∠1+∠2)D.∠1+∠2=∠A9.适合条件∠A =∠B =∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形10.如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF 的共有()A.1组B.2组C.3组D.4组题号12345678910选项二.填空题(共3小题24分)11.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.8题10题11题12.到线段AB两个端点距离相等的点的轨迹是13题14题15题13.如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是.(只填一个即可)14.如图所示的方格中,∠1+∠2+∠3=度.15.如图是汽车牌照在水中的倒影,则该车牌照上的数字是.16.如图,将一张三角形纸片折叠,使得点A、点C都与点B重合,折痕分别为DE、FG,此时测得∠EBG=36°,则∠ABC=°.16题17题18题17.如图所示,在△ABC中,∠A=50°,点D在△ABC的内部,并且∠DBA=∠ABC,∠DCA=∠ACB,则∠D的度数是.18.如图所示,Rt△ABE≌Rt△ECD,点B、E、C在同一直线上,则结论:①AE=ED;②AE⊥DE;③BC=AB+CD;④AB∥DC中成立的是(填序号)三.解答题(共66分)19、(6分)如图所示方格纸中,每个小正方形的边长均为1,点A,点B,点C在小正方形的顶点上.(1)画出△ABC中边BC上的高AD;(2)画出△ABC中边AC上的中线BE;(3)直接写出△ABE的面积为.20.(10分)已知△ABC的周长为33cm,AD是BC边上的中线,.(1)如图,当AC=10cm时,求BD的长.(2)若AC=12cm,能否求出DC的长?为什么?21.(8分)如图,AD⊥AE,AB⊥AC,AD=AE,AB=AC.求证:△ABD≌△ACE.22.(8分)如图,在△ABC中,点D是BC的中点,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.求证:△BDE≌△CDF.23.(9分)生活中到处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,如图两幅图都是由同一副三角板拼凑得到的:(1)图1中的∠ABC的度数为.(2)图2中已知AE∥BC,求∠AFD的度数.24、(9分)如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?25、(12分)如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC于E,BF⊥AC于F.(1)若AB=CD,求证:GE=GF.(2)将△DEC的边EC沿AC方向移动到如图②,(1)中其余条件不变,上述结论是否成立?请说明理由.参考答案及评分标准一.选择题(10题共30分)二.填空题(共3小题24分)11、120°12、线段AB的垂直平分线13、AD=AC或∠D=∠C或∠ABD=∠ABC 14、13515、2167816、10817、76°18、①②③④三.解答题(共66分)19、(6分)如图所示方格纸中,每个小正方形的边长均为1,点A ,点B ,点C 在小正方形的顶点上.(1)画出△ABC 中边BC 上的高AD ;.....2分(2)画出△ABC 中边AC 上的中线BE ;.....4分(3)直接写出△ABE 的面积为4.........6分20、(10分)已知△ABC 的周长为33cm ,AD 是BC 边上的中线,.(1)如图,当AC =10cm 时,求BD 的长.(2)若AC =12cm ,能否求出DC 的长?为什么?解:(1)∵AC=10∴AB=1023⨯=15∴BC=33-10-15=8cm 又∵AD 是BC 边上的中线∴4BC 21BD ==cm .....5分(2)∵AC=12∴AB=1223⨯=18∴BC=33-12-18=3cm ∵3+12<18此时三条线段不能构成三角形故不能求出DC 的长。

山东省淄博市八年级上学期数学10月月考试卷

山东省淄博市八年级上学期数学10月月考试卷

山东省淄博市八年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共4题;共8分)1. (2分) (2019九上·灌阳期中) 下列方程是一元二次方程的是()A .B .C .D .2. (2分)实数a在数轴上的位置如图所示,则化简后为()A . 7B . ﹣7C . 2a﹣15D . 无法确定3. (2分)(2018·鄂州) 下列计算正确的是()A .B .C .D . 若,则x=14. (2分)下列关于x的一元二次方程中,有两个不相等的实数根的方程是()A . x2+4=0B . x2-4x+6=0C . x2+x+3=0D . x2+2x-1=0二、填空题 (共12题;共13分)5. (2分)(2017·西乡塘模拟) 函数y= 的自变量的取值范围是________.6. (1分) (2019八上·嘉定月考) 化简: =________.7. (1分) (2019九上·湖北月考) 若最简二次根式与是同类二次根式,则=________.8. (1分) (2017八下·福州期中) 关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根为0,则a的值为________.9. (1分) (2019九上·宜春月考) 写出一个以和2为根的一元二次方程:________.10. (1分)(2019·长沙模拟) 如果关于的一元二次方程有两个不相等的实数根,那么的取值范围是________.11. (1分) (2015九上·揭西期末) 方程(x﹣2)2=9的解是________.12. (1分) (2016九上·大悟期中) 把方程x2+6x+3=0变形为(x+h)2=k的形式后,h=________,k=________.13. (1分)(2019·高台模拟) 有七张正面分别标有数字﹣1、﹣2、0、1、2、3、4的卡片,除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为m,则使关于x的方程x2﹣2(m ﹣1)x+m2﹣3m=0有实数根,且不等式组无解的概率是________.14. (1分)在实数范围内分解因式:x3-3x=________.15. (1分)(2018·本溪) 由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为,则根据题意可列方程为________.16. (1分)(2020·高新模拟) 关于x的一元二次方程ax2+3ax+2=0有两个相等的实数根,则a的取值为________。

山东省淄博市八年级上学期数学10月月考试卷

山东省淄博市八年级上学期数学10月月考试卷

山东省淄博市八年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)如图1,木工师傅做门框时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的依据是()A . 三角形的稳定性B . 四边形的不稳定性C . 两点之间线段最短D . 矩形的四个角都是直角2. (2分) (2018八上·腾冲期中) 图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A . l1B . l2C . l3D . l44. (2分)如图所示,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC,∠ACB,AD、CE相交于点O,下列结论不一定正确的是()A . ∠AOC=120°B . OE=ODC . BE=BDD . S△AEO+S△CDO=S△ACO5. (2分) (2019八上·荣昌期中) 装修工人在搬运中发现有一块三角形的陶瓷片不慎摔成了四块(如图),他要拿哪一块回公司才能更换到相匹配的陶瓷片()A . ①B . ②C . ③D . ④6. (2分)如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列条件后,不能判定△ABE≌△ACD的是()A . AD=AEB . BE=CDC . ∠AEB=∠ADCD . AB=AC7. (2分)(2016八上·绍兴期中) 用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A . (SSS)B . (SAS)C . (ASA)D . (AAS)8. (2分)如图,∠1、∠2、∠3、∠4是五边形ABCD的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A . 110°B . 108°C . 105°D . 100°9. (2分)下列长度的三条线段,能组成三角形的是()A . 1,2,3B . 2,3,4C . 3,6,9D . 4,4,1010. (2分)如图,∠AOB是直角,∠AOC=38°,OD平分∠BOC,则∠AOD的度数为()A . 52°B . 38°C . 64°D . 26°11. (2分) (2016八上·中堂期中) 将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A . 60°B . 75°C . 90°D . 95°12. (2分)正方形ABCD中,E、F分别为AB、BC的中点,AF与DE相交于点O,则=()A .B .C .D .二、填空题 (共3题;共3分)13. (1分)如图,共有________个三角形.14. (1分)如图,在△ABC中,DE∥BC,EF∥AB,∠A=60°,∠C=70°,则∠DEF=________°.三、解答题 (共9题;共67分)16. (1分)已知△ABC中,AC边上的高BE与BC边上的高AD交于点H,且BH=AC,则∠ABC=________.17. (5分) (2016八上·靖江期末) 计算: +|1+ |.18. (5分)如图,已知∠1=∠2,∠C=∠D,求证:∠A=∠F.19. (5分)已知实数a,b满足(2a+1)2+|a+b+1|=0,且关于x,y的方程组的解x<0,y >0,求m的取值范围.20. (10分)在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.21. (10分) (2019八上·天台月考)(1)【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图①,在△ABC中,AD是△ABC的中线,若AB=10,AC=8,求AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:Ⅰ.由已知和作图能得到△ADC≌△EDB,依据是________.A.SSS B.SAS C.AAS D.ASAⅡ.由“三角形的三边关系”可求得AD的取值范围是________.解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.(2)【学会运用】如图②,AD是△ABC的中线,点E在BC的延长线上,CE=AB, ∠BAC=∠BCA, 求证:AE=2AD.22. (10分)(2018·仙桃) 图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.⑴在图①中,画出∠MON的平分线OP;⑵在图②中,画一个Rt△ABC,使点C在格点上.23. (10分) (2019八上·浦东期中) 如图:在△ABC中,∠ACB=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.(1)求证:MN=AM+BN.(2)若过点C在△ABC内作直线MN,AM⊥MN于M,BN⊥MN于N,则AM、BN与MN之间有什么关系?请说明理由.24. (11分)(2017·河南模拟) 如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c 经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共3题;共3分)13-1、14-1、三、解答题 (共9题;共67分)16-1、17-1、18-1、19-1、20-1、20-2、21-1、21-2、22-1、23-1、23-2、24-1、24-2、24-3、。

山东省淄博市八年级上学期数学第一次月考试卷

山东省淄博市八年级上学期数学第一次月考试卷

山东省淄博市八年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2019·安次模拟) 如图,将正五边形ABCDE绕其顶点A沿逆时针方向旋转,若使点B落在AE边所在的直线上,则旋转的角度可以是()A . 72°B . 54°C . 45°D . 36°2. (2分)已知三角形三边的长分别为4,9,则这个等腰三角形的周长为()A . 13B . 17C . 22D . 17或223. (2分)如图,△ABD≌△ACE,AB=9,AD=7,BD=8,则BE的长是()A . 1B . 2C . 4D . 64. (2分) (2019七下·苏州期末) 画△ABC中AC边上的高,下列四个画法中正确的是()A .B .C .D .5. (2分) (2019八上·下陆月考) 如果正多边形的一个内角是,则这个多边形是()A . 正十边形B . 正九边形C . 正八边形D . 正七边形6. (2分)如图,中,,,直接使用“SSS”可判定()A . ≌B . ≌C . ≌D . ≌7. (2分) (2019八上·阳泉期中) 如图,若△MNP≌△MEQ,则点Q应是图中的()A . 点AB . 点BC . 点CD . 点D8. (2分) (2019八上·开福月考) 如图,已知 AD 为△ABC 的高线,AD=BC,以 AB 为底边作等腰Rt△ABE,连接 ED, EC,延长CE 交AD 于F 点,下列结论:①△ADE≌△BCE;②CE⊥DE;③BD=AF;④S△BDE=S△ACE ,其中正确的有()A . ①③B . ①②④C . ①②③④D . ②③④二、填空题 (共6题;共6分)9. (1分) (2019八上·西城期中) 如图,要测量池塘两岸相对的两点A、B的距离,可以在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使A、C、E三点在一条直线上,这时测得________的长就等于AB 的长.10. (1分) (2020七下·槐荫期末) 如图,在Rt△ABC中,∠C=90°,以项点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是________;11. (1分) (2020七下·天府新期末) 如图,边长为5的正方形ABCD与直角三角板如图放置,延长CB与三角板的直角边相交于点E,则四边形AECF的面积为________.12. (1分) (2020八下·汉阳期中) 如图,在菱形中,,分别在,上,且,与交于点,连接 .若,则的大小为________.13. (1分) (2018八上·临河期中) 如图,AC与BD相交于点O,且AB=CD,请添加一个条件________,使得△ABO≌△CDO.14. (1分) (2019八上·滨海月考) 如图,中,,,DE是BC边上的垂直平分线,的周长为14cm,则的面积是________ .三、解答题 (共6题;共41分)15. (5分) (2017八上·重庆期中) 如图,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80°,∠B=60°,求∠AEC的度数.16. (5分) (2019八上·合肥月考) 如图,AB=AC , AD=AG ,AE⊥BG交BG的延长线于E ,AF⊥CD交CD 的延长线于F .求证:AE=AF .17. (10分) (2017八上·东台期末) 如图,△ABC中,AB=AC,AB的垂直平分线DE分别交AC、AB于点D、E.(1)若∠A=50°,求∠CBD的度数;(2)若AB=8,△CBD周长为13,求BC的长.18. (10分) (2019八上·扬州月考) 如图1,在△A BC中,∠A<90°,P是BC边上的一点,P1 , P2是点P关于AB、AC的对称点,连结P1P2 ,分别交AB、AC于点D、E.(1)若∠A=52°,求∠DPE的度数;(2)如图2,在△ABC中,若∠BAC=90°,用三角板作出点P关于AB、AC的对称点P1、P2 ,(不写作法,保留作图痕迹),试判断点P1 , P2与点A是否在同一直线上,并说明理由.19. (5分) (2018八上·南昌月考) 如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.20. (6分) (2016八上·南开期中) 阅读(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共6题;共41分)15-1、16-1、17-1、17-2、18-1、18-2、19-1、20-1、20-2、20-3、。

山东省淄博市八年级上学期数学第一次月考试卷

山东省淄博市八年级上学期数学第一次月考试卷

山东省淄博市八年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·凌源月考) 下列图形中,不是轴对称图形的是()A .B .C .D .2. (2分) (2016八上·埇桥期中) 若点A(x,3)与点B(2,y)关于x轴对称,则()A . x=﹣2,y=﹣3B . x=2,y=3C . x=﹣2,y=3D . x=2,y=﹣33. (2分) (2017八上·双台子期末) 如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC 还需()A . AB=DCB . OB=OCC . ∠C=∠DD . ∠AOB=∠DOC4. (2分) (2018八上·东台期中) 如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B。

下列结论中不一定成立的是()A . PA=PBB . PO平分∠AOBC . OA=OBD . AB垂直平分OP5. (2分)如图,小牛利用全等三角形的知识测量池塘两端A、B的距离,如图△CDO≌△BAO,则只需测出其长度的线段是()A . AOB . CBC . BOD . CD6. (2分) (2019九下·温州竞赛) 如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()B . BD=CDC . ∠B=∠CD . ∠BDA=∠CDA7. (2分) (2019八下·桂林期末) 如图,正方形ABCD的对角线AC与BD相交于点O.将∠COB绕点O顺时针旋转,设旋转角为α(0<α<90°),角的两边分别与BC,AB交于点M,N,连接DM,CN,MN,下列四个结论:①∠CDM=∠COM;②CN⊥DM;③△CNB≌△DMC;④AN2+CM2=MN2;其中正确结论的个数是()A . 1B . 2C . 3D . 48. (2分)如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n ,…,请你探究出前n行的点数和所满足的规律.若前n行点数和为930,则n =().A . 29B . 30C . 31D . 329. (2分) (2017八下·宁德期末) 如图,等腰三角形ABC中,AB=AC,BD是AC边上的高,若∠A=36°,则∠DBC的大小是()B . 36°C . 54°D . 72°10. (2分) (2017八上·余杭期中) 下列条件中,三角形不是直角三角形的是()A . 三个角的比B . 三条边满足关系C . 三条边的比为D . 三个角满足关系二、填空题 (共8题;共8分)11. (1分) (2019八上·东台期中) 已知△ABC≌△DEF,若∠B=40°,∠D=60°,则∠F=________°.12. (1分) (2017八上·崆峒期末) 如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是________.13. (1分) (2016八上·河西期末) 如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组相等的线段________.14. (1分) (2016七上·乳山期末) 如图,AB∥EF,∠C=∠D=85°,CF=BD,若∠A=40°,则∠EFD=________.15. (1分) (2019八上·灌云期末) 在等腰三角形ABC中,∠A=110°,则∠B=________.16. (1分)在△ABC中,点D为BC的中点,BD=3,AD=4,AB=5,则AC=________。

山东省淄博市八年级上学期数学第一次月考试卷

山东省淄博市八年级上学期数学第一次月考试卷

山东省淄博市八年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共30分) (共10题;共30分)1. (3分) (2017九上·夏津开学考) 如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则等于()A . 270°B . 180°C . 135°D . 90°2. (3分) (2016八上·永城期中) 已知三角形的两条边长分别为7和3,则第三边的长不能是()A . 7B . 6C . 5D . 43. (3分) (2018八上·海曙期末) 下列语句是命题的是()A . 延长线段ABB . 过点A作直线a的垂线C . 对顶角相等D . x与y相等吗?4. (3分) (2018八上·宜兴月考) 如图,请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的图形的全等这一章的知识,说明画出的依据是()A .B .C .D .5. (3分)已知△ABC≌△DEF,且∠A=100°,∠E=35°,则∠F=()A . 35°B . 45°C . 55°D . 70°6. (3分) (2019八上·荔湾期末) 若等腰三角形的两边长分别是3、5,则第三边长是()A . 3或5B . 5C . 3D . 4或67. (3分)如图,平放在正立镜子前的桌面上的数码“21085”在镜子中的像是()A .B .C .D .8. (3分)(2018·丹江口模拟) 如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE,将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①点G是BC中点;②FG=FC;③与∠AGB相等的角有5个;④S△FGC= .其中正确的是()A . ①③B . ②③C . ①④D . ②④9. (3分) (2018九上·丰台期末) 如图,在Rt△ABC中,∠C = 90°,AB = 5,BC = 3,则tanA的值为()A .B .C .D .10. (3分)如图所示,⊙M与x轴相切于原点,平行于y轴的直线交圆于P,Q两点,P点在Q点的下方,若P点坐标是(2,1),则圆心M的坐标是()A . (0,3)B . (0,2)C . (0,)D . (0,)二、填空题(每小题4分,共24分) (共6题;共24分)11. (4分) (2018八上·大同月考) 已知△ABC≌△DEF,∠A=52°,∠B=57°,则∠F=________.12. (4分)(2018·松滋模拟) 已知点A、B、C、D均在圆上,AD∥BC,AC 平分∠BCD,∠ADC=120°,则∠ABC 的度数为________.13. (4分) (2017八下·安岳期中) 如图,在平面直角坐标系xOy中,分别平行x、y轴的两直线a、b相交于点A(3,4).连接OA,线段OA长________;若在直线a上存在点P,使△AOP是以OA为腰的等腰三角形.那么所有满足条件的点P的坐标是________.14. (4分) (2018八上·如皋期中) 如图,在中,AB=AC,∠BAC=90 ,直角∠EPF的顶点是BC的中点,两边PE,PF分别交AB,AC于点E,F.给出以下五个结论:(1)AE=CF;(2)∠APE=∠CPF;(3)△EPF是等腰直角三角形;(4) = (5)EF=AP其中一定成立的有________个.15. (4分)(2020·绍兴模拟) 中,,,,如果以点为圆心,为半径,且与斜边仅有一个公共点,那么半径的取值范围是________.16. (4分)(2019·天门模拟) 如图,中,,,,绕顶点O逆时针旋转到处,此时线段与BO的交点E为BO的中点,则线段的长度为________.三、解答题(本大题有7小题,共66分) (共7题;共105分)17. (15分)两个大小不同的圆可以组成如图中的五种图形,它们仍旧是轴对称图形,请找出每个图形的对称轴,并说一说它们的对称轴有什么特点。

山东省淄博市八年级上学期数学10月月考试卷

山东省淄博市八年级上学期数学10月月考试卷

山东省淄博市八年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共30分) (共10题;共30分)1. (3分) (2019八上·邯郸月考) 在如图所示的四个图形中,属于全等形的是()A . ①和③B . ①和④C . ②和③D . ②和④2. (3分)下列长度的线段能组成三角形的是()A . 3,4,7B . 3,3,6C . 2,5,8D . 6,7,83. (3分)已知如图,两个三角形全等,则∠1等于()A . 73°B . 57°C . 50°D . 60°4. (3分)如图,△ABC≌△DCB,若∠A=80°,∠ACB=40°,则∠BCD等于()A . 80°B . 60°C . 40°D . 20°5. (3分)(2019·南平模拟) 如图,在Rt△ABC中,AC=BC=2,将△ABC绕点A逆时针旋转60°,连接BD ,则图中阴影部分的面积是()A . 2 ﹣2B . 2C . ﹣1D . 46. (3分)(2012·梧州) 如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE 的度数是()A . 10°B . 12°C . 15°D . 18°7. (3分) (2019八上·瑞安期中) 下列命题为假命题的是().A . 三条边分别对应相等的两个三角形全等B . 三角形的一个外角大于与它相邻的内角C . 角平分线上的点到角两边的距离相等D . 等边三角形的三条角平分线、三条中线、三条高分别交于一点8. (3分)如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A . 3 cmB . cmC . 6 cmD . cm9. (3分)(2020·丰台模拟) 如图,在中,,,如果平分,那么的度数是()A .B .C .D .10. (3分)如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则当x=7时,点E应运动到A . 点C处B . 点D处C . 点B处D . 点A处二、填空题(每小题3分,共18分) (共8题;共24分)11. (3分)三角形木架的形状不会改变,这说明三角形具有________ .12. (3分)(2017·惠山模拟) 写出命题“两直线平行,同位角相等”的结论部分:________.13. (3分) (2019八上·长兴月考) "9的倍数都能被6整除"是假命题,请举一个反例:________ 。

淄博市八年级上学期数学10月月考试卷

淄博市八年级上学期数学10月月考试卷

淄博市八年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·德州) 下列图形中,既是轴对称又是中心对称图形的是()A .B .C .D .2. (2分)在平面直角坐标系中,点P(﹣1,1)关于x轴的对称点在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分) (2018八上·北京期中) 在数学活动课上,小明提出这样一个问题:如图,∠B=∠C=90°,E 是BC的中点,DE平分∠ADC ,∠CED=35°,则∠EAB的度数是()A . 65°B . 55°C . 45°D . 35°4. (2分)如图,在△ABC中,AB=AC,AB=8,BC=12,分别以AB、AC为直径作半圆,则图中阴影部分的面积是()A .B . 16π﹣32C .D .5. (2分) (2019八上·常州期末) 如图,在中,AB、AC的垂直平分线分别交BC于点E、F,若,则为A .B .C .D .6. (2分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于点D,若AB=6,则AE的值是()A . 3B . 2C . 3D . 27. (2分) (2018八上·汉滨期中) 如图,在△ABC中,AD是∠B AC的平分线,为AD上一点,且EF⊥BC 于点F.若∠C=35°,∠DEF=15°,则∠B的度数为()A . 65°B . 70°C . 75°D . 85°8. (2分)如图,已知AB∥CD,直线EF分别交AB,CD于点E、F,EG平分∠AEF,若∠2=50°,则∠1的度数是()A . 70°B . 65°C . 60°D . 50°9. (2分)已知等腰三角形的一边长为6,一个内角为60°,则它的周长是()A . 12B . 51C . 18D . 2010. (2分) (2019八上·鄂州期末) 如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线OD交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC度数为().A . 108°B . 135°C . 144°D . 160°11. (2分) (2019八下·靖远期中) 如果一个等腰三角形的两边长为4、9,则它的周长为()A . 17B . 22C . 17或22D . 无法计算12. (2分)如右图,△ABC≌△FDE,∠C=40°,∠F=110°,则∠B等于()A . 20°B . 30°C . 40°D . 150°二、填空题 (共6题;共6分)13. (1分) (2019八下·永康期末) 如图,正方形ABCD中,BE平分∠ABD交AD于E,EF⊥BD于F,FP⊥AB 于P,已知正方形ABCD的边长BC=2,则AP的长是________.14. (1分)如图,等边△ABC中,D是边BC上的一点,且BD:DC=1:3,把△ABC折叠,使点A落在边BC 上的点D处,那么的值为________15. (1分) (2018八上·大连期末) 如图,△ABC中,AB=14,AC=12,沿过B点的直线折叠这个三角形,使点A落在BC边上的点E处,△CDE的周长为15,则BC长为________.16. (1分) (2017七下·靖江期中) 如图,把一张长方形纸片ABCD沿EF折叠,C点落在C'处,D点落在D'处,ED'交BC于点G.已知∠EFG=50°.则∠BGD'的度数为________.17. (1分)(2020·湘西州) 观察下列结论:⑴如图①,在正三角形中,点M,N是上的点,且,则,;⑵如图②,在正方形中,点M,N是上的点,且,则,;⑶如图③,在正五边形中,点M,N是上的点,且,则,;……根据以上规律,在正n边形中,对相邻的三边实施同样的操作过程,即点M,N是上的点,且,与相交于O.也会有类似的结论.你的结论是________.18. (1分) (2017八上·金堂期末) 如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为________ .三、解答题 (共8题;共56分)19. (10分) (2019八上·湛江期中) 已知:如图,在直线MN上求作一点P,使点P到∠AOB两边的距离相等.(不用写作法,但要保留作图痕迹)20. (15分)如图,利用关于坐标轴对称的点的坐标的特点,分别作出与△ABC关于x轴对称的△A′B′C′和关于y轴对称的△A″B″C″.21. (5分)如图,已知∠ABO=∠DCO,OB=OC,求证:△ABC≌△DCB.22. (10分) (2019八下·长沙期中) 如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.(1)求证:DABE@DDAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.23. (2分) (2019八上·天津月考) 如图,在△ABC中,∠B=70°,∠ACB= 60°,AD 是BC边上的高,CE 平分∠ACB,交AD于点O.求图中∠1,∠AEC的度数.24. (2分)如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD分别相交于点E、F,求证:AE=CF.25. (10分)如图①,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;(2)如图②,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC=∠AOC,∠PCE =∠ACE,求∠P的大小;(3)如图③,在(2)中,若射线OP、CP满足∠POC=∠AOC,∠PCE=∠ACE,猜想∠OPC的大小,并证明你的结论(用含n的式子表示).26. (2分) (2020七下·文登期中) 如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共56分)19-1、20-1、21-1、22-1、22-2、23-1、24-1、25-1、25-2、25-3、26-1、26-2、第11 页共11 页。

山东省淄博市张店区柳泉中学2022-2023学年八年级上学期10月份月考数学试题

山东省淄博市张店区柳泉中学2022-2023学年八年级上学期10月份月考数学试题

山东省淄博市张店区柳泉中学2022-2023学年八年级上学期10月份月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各式,从左到右变形是因式分解的是( )A .a (a+2b )=a 2+2abB .x ﹣1=x (1﹣1x )C .x 2+5x+4=x (x+5)+4D .4﹣m 2=(2+m )(2﹣m ) 2.若分式3x x -有意义,则x 的取值范围是( ) A .x ≠3 B .x <3 C .x >3 D .x ≠3且x ≠0 3.把()()233b x b x -+-因式分解的结果应为( )A .()()23x b b -+B .()()31b x b -+C .()()31b x b --D .()()23x b b -- 4.若()()2105x mx x x n +-=-+,则m +n 的值为( )A .5B .1C .﹣5D .﹣1 5.把分式23a b ab-中的a 和b 分别扩大为原来的3倍,则分式的值( ) A .扩大为原来的3倍B .缩小为原来的13C .扩大为原来的9倍D .不变 6.计算()()9910022-+-的结果为( ) A .992- B .992 C .2- D .27.已知a 、b 、c 是三角形的边长,那么代数式-+-222a 2ab b c 的值是( ) A .小于零 B .等于零 C .大于零 D .大小不确定 8.如图,在边长为a 的正方形中,减去一个边长为b 的小正方形(a b >),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式( )A .222()2a b a ab b -=-+B .222()2a b a ab b +=++C .()()22a b a b a b -=+-D .2()a ab a a b +=+9.若关于x 的分式方程3111m x x -=--有增根,则m 的值为( ) A .1 B .3 C .1或3 D .210.一条山路的长度为s 千米,某人上山和下山都走这同一条路.若他上山的速度为a 千米/时,下山的速度为b 千米/时,则上山和下山的平均速度为( )A .2a b +B .2ab a b +C .ab a b+ D .2s a b+ 11.已知0x >,0y >且112x y x y -+=-,则x y y x +的值为( ) A .14 B .12 C .14或1 D .412.若关于x 的不等式组321840x x x a +⎧<+⎪⎨⎪-<⎩的解集为x a <,且关于y 的分式方程2122y a y -=-的解为非负数,则符合条件的所有整数a 的值之和是( )A .21B .17C .15D .11二、填空题13.因式分解2242ab a b +=.14.下列各式中,最简分式有 个. ①11x -;②422y x+;③3x π;④10452a a ++;⑤241025y y y ++ 15.当x =时,分式2122x x -+的值为0. 16.若12a a-=,则441a a +=. 17.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9,9x y ==时,则各个因式的值是:()()()220,18,162x y x y x y -=+=+=,于是就可以把“018162”作为一个六位数的密码,对于多项式324x xy -,取x=11,y=12时,用上述方法产生的密码是(写出一个即可).三、解答题18.因式分解:(1)39a a -;(2)22()4()4+-++m n m m n m .19.解下列方程. (1)71x -=24x + (2)54x x --+14x-=1 20.化简求值:22441111x x x x x x ⎛⎫-+-+÷ ⎪--⎝⎭,再从-12x ≤<中选一个整数值,对式子进行代入求值.21.某服装加工厂计划加工5000套运动服,在加工完2000套后,采用了新技术,工作效率比原计划提高20%,结果共用了15天完成全部任务,求原计划每天加工多少套运动服.22.某零售商店第一次用1000元购进一批雪绒绒挂件若干个,第二次用1800购进冰墩墩挂件是购进雪绒绒挂件数量的32,而冰墩墩挂件的进货单价比雪绒绒挂件的进货单价多1元.(1)求该商店购进的雪绒绒和冰墩墩数量各多少个?(2)该商店两种挂件的零售价都是10元/个,雪绒绒挂件中有10个因为损坏不能售出,其余都已售出,则冰墩墩挂件要至少售出多少个,才能使这两次的总利润不低于2020元?23.常用的分解因式的方法有提取公因式法、公式法及十字相乘法.但有更多的多项式只用上述方法就无法分解,如22424x y x y --+,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:()()()()()224242222222x y x y x y x y x y x y x y --+=+---=-+-.这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式22216x xy y -+-;(2)已知:7x y +=,5x y -=.求:2222x y y x --+的值.(3)ABC V 三边a ,b ,c 满足20a ab ac bc --+=,判断ABC V 的形状.24.结合图,观察下列式子:()()2x p x q x px qx pq ++=+++()2x p q x pq =+++于是有:()()()2x p q x pq x p x q +++=++.(1)填空:因式分解256x x ++=(x +)(x +);(2)化简:2222264462x x x x x x x x x ⎛⎫--+-÷ ⎪-++--⎝⎭; (3)化简:222211113256712x x x x x x x x ++++++++++.。

山东省淄博市八年级上学期数学第一次月考试卷

山东省淄博市八年级上学期数学第一次月考试卷

山东省淄博市八年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列图案既是轴对称图形,又是中心对称图形的是A . 4个B . 3个C . 2个D . 1个2. (2分)如图,若△ABE≌△ACF ,且AB=5,AE=2,则EC的长为()A . 2B . 3C . 5D . 2.53. (2分) (2016八上·无锡期末) 下列说法:①有理数和数轴上的点一一对应;②成轴对称的两个图形是全等图形;③- 是17的平方根;④等腰三角形的高线、中线及角平分线重合.其中正确的有()A . 0个B . 1C . 2个D . 3个4. (2分) (2019八上·绍兴月考) 如右图,△ABC≌△CDA,AB=4,BC=5,AC=6,则AD的长为()A . 4B . 5C . 6D . 不能确定5. (2分)下列各条件中,不能作出惟一三角形的是()A . 已知两边和夹角B . 已知两角和夹边C . 已知两边和其中一边的对角D . 已知三边6. (2分) (2018八上·广东期中) 如图,AC=BC,AD=BD,下列结论不正确的是()A . CO=DOB . AO=BOC . AB⊥CDD . △ACO≌△BCO7. (2分) (2016八上·余姚期中) 如图,在Rt△ABC中,∠C=90°,AC=BC,AB=8,点D为AB的中点,若直角MDN绕点D旋转,分别交AC于点E,交BC于点F,则下列说法正确的有()①AE=CF;②EC+CF=4 ;③DE=DF;④若△ECF的面积为一个定值,则EF的长也是一个定值.A . ①②B . ①③C . ①②③D . ①②③④8. (2分) (2017七下·东营期末) 如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线一点,当PA=CQ时,连结PQ交AC于D,则DE的长为()A .B .C .D .二、填空题 (共9题;共13分)9. (1分) (2019八下·青原期中) 在RtABC中,∠C=90°,AC=BC=(如图),若将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,联结C′B ,则C′B的长为________.10. (1分) (2017八下·新野期中) 已知A、B、C、D是平面直角坐标系中坐标轴上的点,且△AOB≌△COD.设直线AB表达式为,直线CD的表达式为,则 =________.11. (1分)如果两个图形的大小、形状完全一样,放在一起能够完全重合,那么这两个图形一定关于某条直线对称.这种说法________(填正确或不正确)12. (1分)如图所示,BA∥DC,∠A=90°,AB=CE,BC=ED,则△CED≌△________ ,AC= ________ ,∠B=∠________.13. (5分) (2017八上·黄梅期中) 如图,已知AC⊥BD,BC=CE,AC=DC,则∠B+∠D=________度.14. (1分)判定两个直角三角形全等的方法有________.15. (1分)有________和一条________对应相等的两个直角三角形全等,简写成“斜边直角边”或用字母表示为“________”.16. (1分)如图,是边长为25cm的活动四边形衣帽架,它应用了四边形的________.17. (1分) (2019八下·海淀期中) 如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F ,与CB延长线交于点E ,四边形AECF的面积是________.三、解答题 (共10题;共75分)18. (5分) (2019八上·重庆期末) 如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.19. (5分) (2019八上·铁西期末) 如图,直线AB、CD交直线MN于点E、F,过AB上的点H作HG⊥MN于点G,若∠EHG=27°,∠CFN=117°,判断直线AB、CD是否平行?并说明理由.20. (5分) (2016八上·常州期中) 如图,已知∠BAC=∠DCA,∠B=∠D.求证:AB=CD.21. (5分)如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于点D,DE⊥AB于点E,若AB=6 cm,求△DEB 的周长.22. (10分)(2016·山西模拟) 发现与探究:如图,△ABC和△DCE中,AC=BC,DC=EC,∠ACB=∠DCE=45°,点B,C,E三点共线,且BC:CE=2:1,连接AE,BD.(1)在不添加辅助线和字母的情况下,请在图中找出一对全等三角形(用“≌”表示),并加以证明;(2)求tan∠BDC的值.23. (10分)如图,四边形ABCD是平行四边形,DE平分∠ADC交AB于点E,BF平分∠ABC交CD于点F(1)求证:DE=BF;(2)连接EF,写出图中所有的全等三角形.24. (6分) (2018九上·翁牛特旗期末) 如图,AB是⊙O的直径,AM、BN分别与⊙O相切于点A、B,CD交AM、BN于点D、C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)设AD=4,AB=x (x >0),BC=y (y >0). 求y关于x的函数解析式.25. (15分)如图,已知a和∠α,用尺规作一个三角形ABC,使AB=AC=2a,∠BAC=180°-∠α。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省淄博市八年级上学期数学10月月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共4题;共8分)
1. (2分) (2019八下·静安期末) 从、、、这四个代数式中任意抽取一个,下列事件中为确定事件的是()
A . 抽到的是单项式
B . 抽到的是整式
C . 抽到的是分式
D . 抽到的是二次根式
2. (2分)实数a、b在数轴上位置如图,则化简为()
A . -a
B . -3a
C . 2b+a
D . 2b-a
3. (2分)把﹣3 根号外的因式移到根号内,所得的结果正确的是()
A . ﹣
B . ﹣
C . ﹣
D .
4. (2分)﹣6的绝对值是()
A . 6
B . -6
C .
D . -
二、填空题 (共12题;共12分)
5. (1分) (2018九上·哈尔滨月考) 计算的结果是________.
6. (1分)计算:-2=________.
7. (1分) (2020九上·香坊月考) 计算: =________。

8. (1分) (2018九上·西峡期中) 计算:=________.
9. (1分) (2018八上·长春月考) 计算:| - |+|2﹣ |=________.
10. (1分)在实数中,绝对值最小的实数是________,最大的负整数是________,最小的正整数是________.
11. (1分) (2020七下·顺义期中) 若,当 ________时,;
12. (1分)一元二次方程2x2﹣3x+1=0的解为________.
13. (1分)方程2x2+4x+1=0的解是x1= ________ ;x2=________
14. (1分) (2018九上·武威月考) 已知关于的方程 -4=0有一个根是0,则另一个根为________.
15. (1分) (2019九上·天台月考) 若α,β为方程2x2-5x-1=0的两实数根,则2α2+3αβ+5β的值为________.
16. (1分)已知关于x的方程x2+bx+a=0有一根是﹣a(a≠0),则a﹣b的值为________.
三、解答题 (共9题;共45分)
17. (5分) (2019八上·锦州期末) 计算:
(1)﹣3 ﹣;
(2)(﹣)2•(5+2 )
18. (5分) (2019八上·水城月考) 计算
(1)
(2)
(3)
(4)
19. (5分)计算:
(1)
(2)
20. (5分)(2020·泰州模拟)
(1)计算:
(2)化简求值:,其中x=﹣2.
21. (5分) (2019九上·赵县期中) 用恰当的方法解下列方程.
(1) 3(2x+1)2=27
(2) 2x2﹣3x﹣1=0
(3) 3(x﹣1)2=2(x﹣1)
(4) x2﹣(2x+1)2=0
22. (5分)解方程:
(1)(4x﹣1)2=25(直接开平方法)
(2) 2x2+5x+3=0(公式法)
(3) x2﹣6x+1=0(配方法)
(4) x(x﹣7)=8(x﹣7)(因式分解法)
23. (5分)用适当的方法解下列方程.
(1) x2﹣x﹣1=0;
(2) x2﹣2x=2x+1;
(3) x(x﹣2)﹣3x2=﹣1;
(4)(x+3)2=(1﹣2x)2 .
24. (5分) (2018九上·海口月考) 解方程:
(1) 2x2-x-2=0(配方法)
(2) 5 -4x-12=0(用求根公式)
(3)
(4) 2(x-3)2 =x(x-3)
25. (5分) (2020九上·硚口月考) 若x1、x2是一元二次方程x2-2x+k+2=0的两个实数根,满足
,求k的值.
参考答案一、单选题 (共4题;共8分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、
考点:
解析:
二、填空题 (共12题;共12分)答案:5-1、
考点:
解析:
答案:6-1、
考点:
解析:
答案:7-1、
考点:
解析:
答案:8-1、
考点:
解析:
答案:9-1、
考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、考点:
解析:
答案:12-1、考点:
解析:
答案:13-1、考点:
解析:
答案:14-1、考点:
解析:
答案:15-1、考点:
解析:
答案:16-1、考点:
解析:
三、解答题 (共9题;共45分)答案:17-1、
答案:17-2、
考点:
解析:
答案:18-1、
答案:18-2、
答案:18-3、
答案:18-4、考点:
解析:
答案:19-1、答案:19-2、考点:
解析:
答案:20-1、
答案:20-2、考点:
解析:
答案:21-1、
答案:21-2、答案:21-3、
答案:21-4、考点:
解析:
答案:22-1、答案:22-2、答案:22-3、答案:22-4、
考点:
解析:
答案:23-1、答案:23-2、
答案:23-3、
答案:23-4、考点:
解析:
答案:24-1、答案:24-2、答案:24-3、
答案:24-4、考点:
解析:
答案:25-1、考点:
解析:。

相关文档
最新文档