【好题】七年级数学下期末一模试卷含答案(2)
【好题】七年级数学下期末一模试题附答案(2)
【好题】七年级数学下期末一模试题附答案(2)一、选择题1.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20oB .30oC .40oD .60o2.如图,数轴上表示2、5的对应点分别为点C ,B ,点C 是AB 的中点,则点A 表示的数是( )A .5-B .25-C .45-D .52-3.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°4.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折 5.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( )A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0) 6.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩ 7.51-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请51的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间8.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( ) A .3<x <5 B .-5<x <3 C .-3<x <5 D .-5<x <-39.下列图中∠1和∠2是同位角的是( )A .(1)、(2)、(3)B .(2)、(3)、(4)C .(3)、(4)、(5)D .(1)、(2)、(5)10.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23D .32 11.若x <y ,则下列不等式中不成立的是( )A .x 1y 1-<-B .3x 3y <C .x y 22<D .2x 2y -<-12.如图,直线l 1∥l 2,被直线l 3、l 4所截,并且l 3⊥l 4,∠1=44°,则∠2等于( )A .56°B .36°C .44°D .46°二、填空题13.不等式组有3个整数解,则m 的取值范围是_____.14.27的立方根为 .15.已知,如图,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N (下面是推理过程,请你填空).解:∵∠BAE+∠AED=180°(已知) ∴ AB ∥ ( )∴∠BAE= ( 两直线平行,内错角相等 )又∵∠1=∠2∴∠BAE ﹣∠1= ﹣∠2即∠MAE=∴ ∥NE ( )∴∠M=∠N ( )16.如果点p(3,2)m m +-在x 轴上,那么点P 的坐标为(____,____). 17.一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____cm .18.线段CD 是由线段AB 平移得到的,其中点A (﹣1,4)平移到点C (﹣3,2),点B (5,﹣8)平移到点D ,则D 点的坐标是________.19.如图,将周长为10的三角形ABC 沿BC 方向平移1个单位长度得到三角形DEF ,则四边形ABFD 的周长为__________.20. 5-的绝对值是______.三、解答题21.作图题:如图,在平面直角坐标系xOy 中,(4,1)A -,(1,1)B -,(5,3)C -(1)画出ABC ∆的AB 边上的高CH ;(2)将ABC ∆平移到DEF ∆(点D 和点A 对应,点E 和点B 对应,点F 和点C 对应),若点D 的坐标为(1,0),请画出平移后的DEF ∆;(3)若(3,0)M ,N 为平面内一点,且满足BCH ∆与MND ∆全等,请直接写出点N 的坐标.22.某校八年级举行英语演讲比赛,准备用1200元钱(全部用完)购买A ,B 两种笔记本作为奖品,已知A ,B 两种每本分别为12元和20元,设购入A 种x 本,B 种y 本. (1)求y 关于x 的函数表达式.(2)若购进A 种的数量不少于B 种的数量.①求至少购进A 种多少本?②根据①的购买,发现B 种太多,在费用不变的情况下把一部分B 种调换成另一种C ,调换后C 种的数量多于B 种的数量,已知C 种每本8元,则调换后C 种至少有______本(直接写出答案)23.解方程组:(1)用代入法解34225x y x y +=⎧⎨-=⎩(2)用加减法解52253415x y x y +=⎧⎨+=⎩24.(1)同题情境:如图1,AB ∥CD ,∠P AB =130°,∠PCD =120°.求∠APC 的度数. 小明想到一种方法,但是没有解答完:如图2,过P 作PE ∥AB ,∴∠APE +∠P AB =180°. ∴∠APE =180°-∠P AB =180°-130°=50°. ∵AB ∥C D .∴PE ∥C D .…………请你帮助小明完成剩余的解答.(2)问题迁移:请你依据小明的思路,解答下面的问题:如图3,AD ∥BC ,点P 在射线OM 上运动,∠ADP =∠α,∠BCP =∠β.①当点P 在A 、B 两点之间时,∠CPD ,∠α,∠β之间有何数量关系?请说明理由.②当点P 在A 、B 两点外侧时(点P 与点O 不重合),请直接写出∠CPD ,∠α,∠β之间的数量关系.25.学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,12l l //,点P 在1l 、2l 内部,探究A ∠,APB ∠,B Ð的关系,小明过点P 作1l 的平行线PE ,可推出APB ∠,A ∠,B Ð之间的数量关系,请你补全下面的推理过程,并在括号内填上适当的理由.解:过点P 作1//PE l ,12//l l ∴1////PE l ∴ ∴ A =∠, B =∠( )APB APE BPE ∴∠=∠+∠= +(2)如图2,若//AC BD ,点P 在AC 、BD 外部,探究A ∠,APB ∠,B Ð之间的数量关系,小明过点P 作//PE AC ,请仿照(1)问写出推理过程.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据内错角相等,两直线平行,得AB ∥CE ,再根据性质得∠B=∠3.【详解】因为∠1=∠2,所以AB ∥CE所以∠B=∠3=30o故选B【点睛】熟练运用平行线的判定和性质.解析:C【解析】【分析】首先可以求出线段BC 的长度,然后利用中点的性质即可解答.【详解】∵表示2,5的对应点分别为C ,B ,∴CB=5-2,∵点C 是AB 的中点,则设点A 的坐标是x ,则x=4-5,∴点A 表示的数是4-5.故选C .【点睛】本题主要考查了数轴上两点之间x 1,x 2的中点的计算方法.3.A解析:A【解析】试题分析:如图,过A 点作AB ∥a ,∴∠1=∠2,∵a ∥b ,∴AB ∥b ,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A .考点:平行线的性质.4.B解析:B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征. 6.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.7.B解析:B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴,∴,故选B.【点睛】是解题关键.8.A解析:A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.9.D解析:D【解析】【分析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.10.A解析:A【解析】分析:由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,根据△DA′E∽△DAB知2A DEABDSA DAD S''=VV(),据此求解可得.详解:如图,∵S △ABC =9、S △A′EF =4,且AD 为BC 边的中线,∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',∴A′E ∥AB ,∴△DA′E ∽△DAB , 则2A DE ABD S A D AD S ''=V V (),即22912A D A D '='+(), 解得A′D=2或A′D=-25(舍), 故选A .点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点. 11.D解析:D【解析】【分析】利用不等式的基本性质判断即可.【详解】若x <y ,则x ﹣1<y ﹣1,选项A 成立;若x <y ,则3x <3y ,选项B 成立;若x <y ,则x 2<y 2,选项C 成立; 若x <y ,则﹣2x >﹣2y ,选项D 不成立,故选D .【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.12.D解析:D【解析】解:∵直线l1∥l2,∴∠3=∠1=44°.∵l3⊥l4,∠2=90°-∠3=90°-44°=46°.故选D.二、填空题13.2<m≤3【解析】【分析】根据不等式组x>-1x<m有3个整数解先根据x >-1可确定3个整数解是012所以2<m≤3【详解】根据不等式组x>-1x<m有3个整数解可得:2<m≤3故答案为:2<m≤3解析:2<m≤3【解析】【分析】根据不等式组有3个整数解,先根据可确定3个整数解是0,1,2,所以.【详解】根据不等式组有3个整数解,可得:.故答案为:.【点睛】本题主要考查不等式组整数解问题,解决本题的关键是要熟练掌握不等式组的解法.14.3【解析】找到立方等于27的数即可解:∵33=27∴27的立方根是3故答案为3考查了求一个数的立方根用到的知识点为:开方与乘方互为逆运算解析:3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算15.见解析【解析】【分析】由已知易得AB∥CD则∠BAE=∠AEC又∠1=∠2所以∠MAE=∠AEN则AM∥EN故∠M=∠N【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补两直线解析:见解析【解析】【分析】由已知易得AB ∥CD ,则∠BAE=∠AEC ,又∠1=∠2,所以∠MAE=∠AEN ,则AM ∥EN ,故∠M=∠N .【详解】∵∠BAE +∠AED =180°(已知) ∴AB ∥CD (同旁内角互补,两直线平行)∠BAE =∠AEC (两直线平行,内错角相等)又∵∠1=∠2,∴∠BAE −∠1=∠AEC −∠2,即∠MAE =∠NEA ,∴AM ∥EN ,(内错角相等,两直线平行)∴∠M =∠N (两直线平行,内错角相等)【点睛】考查平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键. 16.0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0即可求得m=2由此求得点P 的坐标【详解】∵点在x 轴上∴m-2=0即m=2∴P (50)故答案为:50【点睛】本题考查了x 轴上的点的坐标的特点熟解析:0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0,即可求得m=2,由此求得点P 的坐标.【详解】∵点p(3,2)m m +-在x 轴上, ∴m-2=0,即m=2, ∴P (5,0).故答案为:5,0.【点睛】本题考查了x 轴上的点的坐标的特点,熟知x 轴上的点的纵坐标为0是解决问题的关键. 17.【解析】【分析】过C 作CD ⊥AB 于D 根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C 作CD ⊥AB 于D ∵AC2+B解析:【解析】【分析】过C 作CD ⊥AB 于D ,根据勾股定理的逆定理可得该三角形为直角三角形,然后再利用三角形的面积公式即可求解.【详解】如图,设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D.∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°.∵S△ACB=12AC×BC=12AB×CD,∴AC×BC=AB×CD,∴15×20=25CD,∴CD=12(cm).故答案为12.【点睛】本题考查了勾股定理的逆定理和三角形的面积公式的应用.根据勾股定理的逆定理判断三角形为直角三角形是解答此题的突破点.18.(3﹣10)【解析】【分析】由于线段CD是由线段AB平移得到的而点A(-14)的对应点为C(-32)比较它们的坐标发现横坐标减小2纵坐标减小2利用此规律即可求出点B(5-8)的对应点D的坐标【详解】解析:(3,﹣10)【解析】【分析】由于线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(-3,2),比较它们的坐标发现横坐标减小2,纵坐标减小2,利用此规律即可求出点B(5,-8)的对应点D的坐标.【详解】∵线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(-3,2),∴由A平移到C点的横坐标减小2,纵坐标减小2,则点B(5,-8)的对应点D的坐标为(3,-10),故答案为:(3,-10).【点睛】本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.19.12【解析】试卷分析:根据平移的基本性质由等量代换即可求出四边形ABFD的周长解:根据题意将周长为10个单位的△ABC沿边BC向右平移1个单位得到△DEF可知AD=1BF=BC+CF=BC+1DF=解析:12【解析】试卷分析:根据平移的基本性质,由等量代换即可求出四边形ABFD的周长.解:根据题意,将周长为10个单位的△ABC沿边BC向右平移1个单位得到△DEF,可知AD=1,BF=BC+CF=BC+1,DF=AC;又因为AB+BC+AC=10,所以,四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=12.故答案为12.点睛:本题主要考查平移的性质.解题的关键在于要利用平移的性质找出相等的线段. 20.【解析】【分析】根据负数的绝对值是它的相反数可得答案【详解】解:-的绝对值是故答案为【点睛】本题考查了实数的性质负数的绝对值是它的相反数非负数的绝对值是它本身【解析】【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.三、解答题21.(1)见详解;(2)见详解;(3)(3,4)或(3,-4)或(1,4)或(1,-4).【解析】【分析】(1)根据三角形高的定义画出图形即可;(2)先算出每个点平移后对应点的坐标,利用平移的性质画出图形即可;∆与(3)根据三角形全等的定义和判断,由DM=CH=2,即可找到N点的坐标使得BCH∆全等;MND【详解】解:(1)过点C作CP⊥AB,交BA的延长线于点P,则CP就是△ABC的AB边上的高;(2)点A (-4,1)平移到点D (1,0),平移前后横坐标加5,纵坐标减1, 因此:点B 、C 平移前后坐标也作相应变化,即:点B (-1,1)平移到点E (4,0),点C (-5,3)平移到点F (0,2),平移后的△DEF 如上图所示;(3) 当(3,0)M ,N 为平面内一点,且满足BCH ∆与MND ∆全等时,此时DM 的长度为2,刚好与CH 的长度相等,又BH 的长度等于4,根据三角形全等的性质(对应边相等), 如下图,可以找到4点N ,故N 点的坐标为:(3,4)或(3,-4)或(1,4)或(1,-4).【点睛】本题主要考查的知识点有平移变换、三角形全等的性质和判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(1)y =30035x -,(2)①至少购进A 种40本,②30. 【解析】【分析】(1)根据A 种的费用+B 种的费用=1200元,可求y 关于x 的函数表达式; (2)①根据购进A 种的数量不少于B 种的数量,列出不等式,可求解;②设B 种的数量m 本,C 种的数量n 本,根据题意找出m ,n 的关系式,再根据调换后C种的数量多于B种的数量,列出不等式,可求解.【详解】解:(1)∵12x+20y=1200,∴y=30035x-,(2)①∵购进A种的数量不少于B种的数量,∴x≥y,∴x≥30035x-,∴x≥752,∵x,y为正整数,∴至少购进A种40本,②设A种的数量为x本,B种的数量y本,C种的数量c本,根据题意得:12x+20y+8c=1200∴y=300235c x--∵C种的数量多于B种的数量∴c>y∴c>300235c x--∴c>30037x-,∵购进A种的数量不少于B种的数量,∴x≥y∴x≥300235c x--∴c≥150﹣4x∴c>30037x-,且x,y,c为正整数,∴C种至少有30本故答案为30本.【点睛】本题考查一次函数的应用,不等式组等知识,解题的关键是学会构建一次函数解决实际问题,属于中考常考题型.23.(1)21xy=⎧⎨=-⎩;(2)5xy=⎧⎨=⎩【解析】【分析】(1)根据代入法解方程组,即可解答;(2)根据加减法解方程组,即可解答.【详解】解:(1)34225x y x y +=⎧⎨-=⎩①② 由②得25y x =- ③把③代入①得34(25)2x x +-=解这个方程得2x =把2x =代入③得1y =-所以这个方程组的解是21x y =⎧⎨=-⎩(2)5225? 3415? x y x y +=⎧⎨+=⎩①② ①×②得10450x y += ③③—②得735x =,5x =把5x =代入①得0y =所以这个方程组的解是50x y =⎧⎨=⎩【点睛】此题考查解二元一次方程组,解题的关键是明确代入法和加减法解方程组.24.(1)110°;(2) 详见解析 【解析】分析:(1)根据平行线的判定与性质补充即可;(2)①过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案;②画出图形(分两种情况(i )点P 在BA 的延长线上,(ii )点P 在AB 的延长线上),根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案.详解:(1)剩余过程:∴∠CPE +∠PCD =1800,∴∠CPE =1800—1200=600,∴∠APC =500+600=1100.(2)①∠CPD =∠α+∠β.理由如下:过P 作PQ ∥AD .∵AD ∥BC ,∴PQ ∥BC ,∴1α∠=∠,同理,2β∠=∠,∴12CPD αβ∠=∠+∠=∠+∠;②(i )当P 在BA 延长线时,如图4,过P 作PE ∥AD 交CD 于E ,同①可知:∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠β﹣∠α;(ii )当P 在AB 延长线时,如图5, 同①可知:∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠α﹣∠β.点睛:本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,难度适中.25.(1)2l ;APE ∠;BPE ∠;两直线平行,内错角相等;A ∠;B Ð;(2)APB B A ∠=∠-∠,推理过程见详解【解析】【分析】(1)过点P 作1//PE l ,根据平行线的性质得,APE A BPE B ∠=∠∠=∠,据此得出APB APE BPE A B ∠=∠+∠=∠+∠;(2)过点P 作//PE AC ,根据平行线的性质得出,EPA A EPB B ∠=∠∠=∠,进而得出APB B A ∠=∠-∠.【详解】解:(1)如图1,过点P 作1//PE l12//l l ∴12////PE l l ∴,APE A BPE B ∴∠=∠∠=∠(两直线平行,内错角相等)APB APE BPE A B ∴∠=∠+∠=∠+∠故答案为:2l ;APE ∠;BPE ∠;两直线平行,内错角相等;A ∠;B Ð;(2)APB B A ∠=∠-∠,理由如下:如图2,过点P 作//PE AC∵//AC BD∴////PE AC BD∴,EPA A EPB B ∠=∠∠=∠∴APB EPB EPA B A ∠=∠-∠=∠-∠∴APB B A ∠=∠-∠.【点睛】本题考查的知识点是平行线的判定与性质,掌握平行线的判定定理以及平行线的性质内容是解此题的关键.。
2021-2022年七年级数学下期末一模试题含答案(2)
一、选择题1.下列事件中必然事件有( )①当x 是非负实数时,≥0;②打开数学课本时刚好翻到第12页;③13个人中至少有2人的生日是同一个月;④在一个只装有白球和绿球的袋中摸球,摸出黑球.A .1个B .2个C .3个D .4个2.在一个不透明的口袋中装有红、黄、蓝三种颜色的球,如果口袋中有 5 个红球,且摸出红球的概率为13,那么袋中总共球的个数为() A .15 个 B .12 个 C .8 个 D .6 个3.如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .16B .13C .12D .234.等腰三角形的两边a ,b 满足7260a b -+-=,则它的周长是( )A .17B .13或17C .13D .19 5.下列每个网格中均有两个图形,其中一个图形可以由另一个进行轴对称变换得到的是( )A .B .C .D . 6.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是( )A .B .C .D . 7.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .①②③C .①②④D .①②③④ 8.如图,点D ,E 在△ABC 的边BC 上,△ABD ≌△ACE ,其中B ,C 为对应顶点,D ,E 为对应顶点,下列结论不.一定成立的是( )A .AC=CDB .BE=CDC .∠ADE=∠AED D .∠BAE=∠CAD 9.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( )A .1个B .2个C .3个D .4个10.下列说法中正确的是 ( )A .变量 x , y 满足 x + 3y = 1 ,则 y 是 x 的函数B .变量 x , y 满足23y x =--,则 y 是 x 的函数C .变量 x , y 满足∣ y ∣= x ,则 y 是 x 的函数D .变量 x , y 满足 y 2 = x ,则 y 是 x 的函数11.如图,AB ∥EF ,设∠C =90°,那么x 、y 和z 的关系是( )A .y =x+zB .x+y ﹣z =90°C .x+y+z =180°D .y+z ﹣x =90° 12.若3a b +=-,10ab =-,则-a b 的值是( )A .0或7B .0或13-C .7-或7D .13-或13 二、填空题13.一个不透明的袋子中装有除颜色外完全相同的三个黄球和两个红球,现从中随机摸出球,则摸出的球是红球的概率等于______.14.在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里摸出1个球,则摸到红球的概率是______.15.如图,将直线y x =-沿y 轴向下平移后的直线恰好经过点()1,2A -,且与y 轴交于点B ,在x 轴上存在一点P 使得PA PB +的值最小,则点P 的坐标为______________.16.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.17.如图,BF 平分∠ABD ,CE 平分∠ACD ,BF 与CE 交于G ,若130,90BDC BGC ∠=︒∠=︒,则∠A 的度数为_________.18.汽车开始行驶时,油箱中有油30升,如果每小时耗油5升,那么油箱中的剩余油量y (升)和工作时间x (时)之间的函数关系式是____,自变量的取值范围____.19.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.20.若多项式225a ka ++是完全平方式,则k 的值是______.三、解答题21.在一个不透明的袋子中装有 4 个红球和 6 个黄球,这些球除颜色外都相同,将袋子中的球充 分摇匀后,随机摸出一球.(1)分别求摸出红球和摸出黄球的概率(2)为了使摸出两种球的概率相同,再放进去 8 个同样的红球或黄球,那么这 8 个球中红球和 黄球的数量分别是多少?22.如图,ABC 和ADE 关于直线l 对称,已知15AB =,10DE =,70D =∠,求B 的度数及BC 、AD 的长度.23.如图,已知点D ,E 分别在等边三角形ABC 的边BC ,CA 上,且BD CE =,连接AD ,BE 相交于点F ,AH BE ⊥于点H ,求FAH ∠的度数.24.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的图象刻画了“龟兔再次赛跑”的故事(x 表示从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程).请你根据图象回答下列问题:(1)这次“龟兔再次赛跑”的路程多少米?(2)兔子和乌龟跑完全程所用时间各是多少?(3)兔子跑完全程的平均速度是多少?(4)请叙述乌龟爬行的全过程.25.如图(1)所示,//AB EF ,说明:(1)BCF B F ∠=∠+∠;(2)当点C 在直线BF 的右侧时,如图()2所示,若//AB EF ,则BCF ∠与B ∠,F ∠的关系如何?请说明理由26.先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(x+2y )﹣2x (2x ﹣y )]÷(-2x ),其中x=-3,y=﹣2020【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据必然事件、不可能事件、随机事件的概念判断即可.【详解】①当x是非负实数时,0,是必然事件;②打开数学课本时刚好翻到第12页,是随机事件;③13个人中至少有2人的生日是同一个月,是必然事件;④在一个只装有白球和绿球的袋中摸球,摸出黑球,是不可能事件.必然事件有①③共2个.故选B.【点睛】本题考查了必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件指在一定条件下一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.A解析:A【解析】【分析】根据红球的概率公式列出方程求解即可.【详解】解:根据题意设袋中共有球m个,则513 m所以m=15.故袋中有15个球.故选:A.【点睛】本题考查了随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.3.C【解析】【分析】利用轴对称图形的定义得出符合题意的图形,再利用概率公式求出答案.【详解】如图所示:当涂黑②④⑤时,与图中阴影部分构成轴对称图形, 则构成轴对称图形的概率为:3162= 故选:C .【点睛】此题主要考查了几何概率以及轴对称图形的定义,正确得出符合题意的图形是解题关键. 4.A解析:A【分析】根据绝对值和二次根式的性质求出a ,b ,再根据等腰三角形的性质判断即可;【详解】∵70a -=,∴70260a b -=⎧⎨-=⎩, 解得73a b =⎧⎨=⎩, ∵a ,b 是等腰三角形的两边,∴当7a =为腰时,三边分别为7,7,3,符合三角形三边关系,此时三角形的周长77317++=;当3b =为腰时,三边为3,3,7,由于33+<7,故不符合三角形的三边关系; ∴三角形的周长为17.故答案选A .【点睛】本题主要考查了等腰三角形的性质、绝对值性质和二次根式的性质,准确计算是解题的关键.5.B解析:B【分析】根据轴对称的性质求解.【详解】观察选项可知,A 中的两个图形可以通过平移,旋转得到,C 中可以通过平移得到,D 中可以通过放大或缩小得到,只有B 可以通过对称得到.故选B .本题考查了轴对称的性质,了解轴对称的性质及定义是解题的关键.6.D解析:D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.C解析:C【分析】直接利用当A,B,C在一条直线上,以及当A,B,C不在一条直线上,分别分析得出答案.【详解】解:∵线段AB=8cm,AC=6cm,∴如图1,A,B,C在一条直线上,∴BC=AB−AC=8−6=2(cm),故①正确;如图2,当A,B,C在一条直线上,∴BC=AB+AC=8+6=14(cm),故②正确;如图3,当A,B,C不在一条直线上,8−6<BC<8+6,故线段BC可能为5或9,故③错误,④正确.故选:C.【点睛】此题主要考查了三角形三边关系,正确分类讨论是解题关键.8.A解析:A【详解】∵△ABD≌△ACE,∴∠ADB=∠AEC,∠BAD=∠CAE,BD=CE,∴180°-∠ADB=180°-∠AEC,∠BAD+∠DAE=∠CAE+∠DAE,BD+DE=CE+DE,即∠ADE=∠AED,∠BAE=∠CAD,BE=CD,故B、C、D选项成立,不符合题意;无法证明AC=CD,故A符合题意,故选A.9.C解析:C【分析】∆≅∆,则可对④进行判断;利用全等三角形的性质可对①根据“SAS”可证明CDE BDF进行判断;由于AE与DE不能确定相等,则根据三角形面积公式可对②进行判断;根据∠=∠,则利用平行线的判定方法可对③进行判断.全等三角形的性质得到ECD FBD【详解】∆的中线,解:AD是ABC∴=,CD BD∠=∠,DE DF=,CDE BDF∴∆≅∆,所以④正确;CDE BDF SAS()∴=,所以①正确;CE BF∵与DE不能确定相等,AE∆面积不一定相等,所以②错误;∴∆和CDEACE∆≅∆,CDE BDF∴∠=∠,ECD FBD∴,所以③正确;BF CE//故选:C.【点睛】本题考查了全等三角形的判定,熟悉全等三角形的5种判定方法是解题的关键.10.A解析:A【解析】A选项中,“若变量x、y满足x+3y=1,则y是x的函数”这种说法是正确的;B选项中,因为无论x取何值,式子y=都无意义;所以“若变量x、y满足y=,则y是x的函数”的说法是错误的;C选项中,因为当x的值为正时,和它对应的y的值有两个,所以“变量 x , y 满足| y ∣= x ,则 y 是 x 的函数”的说法是错误的;D选项中,因为当x的值为正时,和它对应的y的值有两个,所以“变量 x , y 满足 y2 = x ,则 y 是 x 的函数”的说法是错误的.故选A.点睛:判断一个含有两个变量x、y的关系式中,变量y是否是变量x的函数,需注意以下两点:(1)变量x的取值要使式子要有意义;(2)对于变量x每取定的一个值,变量y 都有唯一确定的值与之对应.11.B解析:B【分析】过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.【详解】解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.【点睛】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.12.C解析:C【分析】根据完全平方公式得出( a-b )2=( a + b )2-4ab,进而求出( a-b )2的值,再求出 a-b 的值即可【详解】( a-b )2=( a + b )2-4ab∴()22-(3)4(10)a b=--⨯-∴()249a b-=∴7a b-=±故答案选:C【点睛】考查完全平方公式的应用,掌握完全平方公式的特点和相应的变形,是正确解答的关键.二、填空题13.【解析】【分析】直接根据概率公式求解:摸出的球是红球的概率=【详解】解:摸出的球是红球的概率=故答案为【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结解析:2 5【解析】【分析】直接根据概率公式求解:摸出的球是红球的概率=25.【详解】解:摸出的球是红球的概率=25.故答案为25.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数..14.【解析】试题解析:.【解析】试题∵一个不透明的箱子里有1个白球,2个红球,共有3个球,∴从箱子中随机摸出一个球是红球的概率是.考点:概率.15.【分析】先作点B关于x轴对称的点B连接AB交x轴于P则点P即为所求根据待定系数法求得直线为y=-x-1进而得到点B的坐标以及点B的坐标再根据待定系数法求得直线AB的解析式即可得到点P的坐标【详解】作解析:1,03⎛⎫ ⎪⎝⎭【分析】先作点B 关于x 轴对称的点B',连接AB',交x 轴于P ,则点P 即为所求,根据待定系数法求得直线为y=-x-1,进而得到点B 的坐标以及点B'的坐标,再根据待定系数法求得直线AB'的解析式,即可得到点P 的坐标.【详解】作点B 关于x 轴对称的点B ',连接AB ',交x 轴于P ,则点P 即为所求,设直线y x =-沿y 轴向下平移后的直线解析式为y x a =-+把()1,2A -代入可得,1a =-,则平移后的直线为1y x =--,令0x =,则1y =-,即()01B -,所以()0,1B设直线AB 的解析式为y kx b =+,把()1,2A -,()0,1B 代入可得,3k =-,1b =所以31y x =-+令0y =,则13x =所以P 1,03⎛⎫ ⎪⎝⎭. 故答案为:1,03⎛⎫ ⎪⎝⎭【点睛】本题考查了一次函数图象上点的坐标特征,轴对称-最短路线问题,涉及到待定系数法求解析式,解题的关键是利用轴对称找出所求的点P 的位置.16.80°【分析】由轴对称的性质可得∠B′OG =∠BOG 再结合已知条件即可解答【详解】解:根据轴对称的性质得:∠B′OG =∠BOG 又∠AOB′=20°可得∠B′OG+∠BOG =160°∴∠BOG =×16解析:80°【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=160°∴∠BOG=1×160°=80°.2故答案为80°.【点睛】本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 17.50°【分析】连接BC根据三角形内角和定理可求得∠DBC+∠DCB的度数再利用三角形内角和定理及角平分线的定义可求得∠ABC+∠ACB的度数即可求得∠A的度数【详解】解:连接BC∵∠BDC=130°解析:50°【分析】连接BC,根据三角形内角和定理可求得∠DBC+∠DCB的度数,再利用三角形内角和定理及角平分线的定义可求得∠ABC+∠ACB的度数,即可求得∠A的度数.【详解】解:连接BC,∵∠BDC=130°,∴∠DBC+∠DCB=180°−∠BDC=50°,∵∠BGC=90°,∴∠GBC+∠GCB=180°−∠BGC=90°,∴∠GBD+∠GCD=(∠GBC+∠GCB)−(∠DBC+∠DCB)=40°,∵BF平分∠ABD,CE平分∠ACD,∴∠ABD+∠ACD=2∠GBD+2∠GCD=80°,∴∠ABC+∠ACB=(∠ABD+∠ACD)+(∠DBC+∠DCB)=130°,∴∠A=180°−(∠ABC+∠ACB)=180°−130°=50°.故答案为:50°.【点睛】本题主要考查了与角平分线有关的三角形内角和问题,根据题意作出辅助线,构造出三角形是解答此题的关键.18.y=30-5x0≤x≤6【分析】油箱内剩余油量=原有的油量-x小时消耗的油量可列出函数关系式;根据每小时耗油量可求出可行驶的时间即可得出自变量的取值范围【详解】∵油箱中有油30升每小时耗油5升工作时解析:y=30-5x 0≤x≤6【分析】油箱内剩余油量=原有的油量-x小时消耗的油量,可列出函数关系式;根据每小时耗油量可求出可行驶的时间,即可得出自变量的取值范围.【详解】∵油箱中有油30升,每小时耗油5升,工作时间为x,∴油箱内剩余油量y=30-5x,30÷5=6,∴可行驶6小时,∴自变量的取值范围为0≤x≤6,故答案为:y=30-5x,0≤x≤6【点睛】本题主要考查了由实际问题抽象出一次函数,本题关键是明确油箱内余油量,原有的油量,t小时消耗的油量,三者之间的数量关系,根据数量关系可列出函数关系式.19.40°【分析】本题主要利用两直线平行同旁内角互补两直线平行内错角相等以及角平分线的定义进行做题【详解】∵AD∥BC∴∠BCD=180°-∠D=80°又∵CA 平分∠BCD∴∠ACB=∠BCD=40°∴解析:40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD∥BC,∴∠BCD=180°-∠D=80°,又∵CA平分∠BCD,∠BCD=40°,∴∠ACB=12∴∠DAC=∠ACB=40°.【点睛】本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.20.【分析】利用完全平方公式的结构特征判断即可得到结果【详解】∵是完全平方式∴∴故答案为:【点睛】本题考查了完全平方式熟练掌握完全平方公式的结构特征是解本题的关键解析:10【分析】利用完全平方公式的结构特征判断即可得到结果.【详解】∵225a ka ++是完全平方式,∴2?•510ka a a =±=±,∴10k =±,故答案为:10±.【点睛】本题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.三、解答题21.(1)P (摸到红球)=,P (摸到黄球)=;(2)5 个, 3 个.【解析】分析:(1)直接利用概率公式计算即可求出摸出的球是红球和黄球的概率;(2)设放入红球x 个,则黄球为(8−x )个,由摸出两种球的概率相同建立方程,解方程即可求出8个球中红球和黄球的数量分别是多少.详解:(1)∵袋子中装有4个红球和6个黄球,∴随机摸出一球是红球和黄球的概率分别是:P (摸到红球)=,P (摸到黄球)=;(2)设放入红球x 个,则黄球为(8−x )个, 由题意列方程得:解得:x =5.所以这8个球中红球和黄球的数量分别应是5个和3个.点睛:本题考查的是求随机事件的概率,解决这类题目要注意具体情况具体对待.用到的知识点为:可能性等于所求情况数与总情况数之比.22.70B ∠=,10BC =,15AD =.【分析】根据轴对称的性质,对应边相等,对应角相等即可得出答案.【详解】∵△ABC 和△ADE 关于直线l 对称,∴ABC ∆≌ADE ∆,∴B D ∠=∠,BC DE =,AB AD =.∵70D =∠,15AB =,10DE =,∴70B ∠=,10BC =,15AD =.【点睛】此题考查轴对称的性质,两个图象关于某直线对称,对应边相等,对应角相等. 23.30【分析】根据条件可证明( SAS )ABD BCE ≅,得到BAD CBE ∠=∠,通过三角形的外角等于不相邻的两个内角和可知AFE ABF BAD ∠=∠+∠,最后推出60AFE ABC ︒∠=∠=,求出结果即可.【详解】解:∵ABC 是等边三角形,∴AB BC =,60ABD C ︒∠=∠=在ABD △和BCE 中,,AB BC ABD C BD CE =⎧⎪∠=∠⎨⎪=⎩∴( SAS )ABD BCE ≅.∴BAD CBE ∠=∠.∵AFE ABF BAD ∠=∠+∠.∴60AFE ABF CBE ABC ︒∠=∠+∠=∠=∵AH BE ⊥于点H ,∴90AHF ︒∠=,9030FAH AFH ∴∠=︒-∠=︒.【点睛】本题主要考查全等三角形的判定以及性质,涉及三角形的外角,属于基础题,熟练掌握全等三角形的判定以及性质是解决本题的关键.24.(1)1000m;(2) 兔子和乌龟跑完全程所用时间各是10 min 和60 min;(3) 100(m/min);(4)见解析【解析】试题分析:(1)根据图象可得这次“龟兔再次赛跑”的路程;(2)根据图象可得兔子和乌龟跑完全程所用时间;(3)根据图象和速度的公式计算即可;(4)根据图象可得乌龟爬行的全过程.试题解:(1)根据图象可得这次“龟兔再次赛跑”的路程是1 000 m ;(2)根据图象可得兔子和乌龟跑完全程所用时间各是10 min 和60 min ;(3)根据图象可得兔子跑完全程的平均速度是1 000÷(50-40)=100(m/min);(4)根据图象可得乌龟爬行的全过程是先用30 min 爬了600 m ,然后休息了10 min,再用20 min 爬了400 m .点睛:此题考查函数图象问题,关键是根据图象的信息进行解答和速度公式的计算. 25.(1)见详解;(2)∠B+∠F+∠BCF=360°,理由见详解.【分析】(1)过C 作CD ∥AB ,推出AB ∥CD ∥EF ,根据平行线性质得出∠B=∠BCD ,∠F=∠FCD ,即可得出答案;(2)过C 作CD ∥AB ,推出AB ∥CD ∥EF ,根据平行线性质得出∠B+∠BCD=180°,∠F+∠FCD=180°,即可得出答案.【详解】(1)证明:过C 作CD ∥AB ,∵AB ∥EF ,∴CD ∥AB ∥EF ,∴∠B=∠BCD ,∠F=∠FCD ,∴∠B+∠F=∠BCF .(2)∠B+∠F+∠BCF=360°,理由是:过C 作CD ∥AB ,则∠B+∠BCD=180°,又∵AB ∥EF ,AB ∥CD ,∴CD ∥EF ∥AB ,∴∠F+∠FCD=180°,∴∠B+∠F+∠BCF=360°.【点睛】本题考查了平行线的性质的应用,注意:两直线平行.内错角相等,两直线平行,同旁内角互补.26.x y +;-2023【分析】根据完全平方公式、平方差公式、单项式乘多项式、多项式除以单项式可化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】解:[(x ﹣2y)2+(x ﹣2y)(x+2y)﹣2x(2x ﹣y)]÷(-2x)=22222(44442)(2)x xy y x y x xy x -++--+÷-2(22)(2)x xy x =--÷-x y =+.当x=﹣3,y=﹣2020时,原式=320202023--=-.【点睛】本题考查了整式的混合运算—化简求值,解题的关键是熟练掌握整式的混合运算的法则.。
2021-2022年七年级数学下期末一模试卷附答案(2)
一、选择题1.小华把如图所示的44⨯的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是( )A .316B .516C .716D .9162.下列说法正确的是( )A .要了解我市居民的低碳生活状况,适宜采用抽样调查的方法B .一组数据2,2,3,6的众数和中位数都是2C .“掷一枚硬币正面朝上的概率是12”,表示每抛硬币2次就有1次正面朝上 D .随机抽取甲乙两名同学的5次数学成绩,平均分都是90分,方差分别是S 甲2=5,S 乙2=10,说明乙的成绩较为稳定3.为了估计抛掷同一枚啤酒瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计得到凸面向上的次数为420次,凸面向下的次数为580次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向上的概率约为( ) A .0.42B .0.50C .0.58D .0.724.把一张对边互相平行的纸条按如图所示折叠,EF 是折痕,若∠EFB =34°,则下列结论不正确的是( )A .34C EF '∠︒=B .∠AEC =146° C .∠BGE =68°D .∠BFD =112°5.如图,四边形 ABCD 中,AD //BC ,DC BC ⊥,将四边形沿对角线BD 折叠,点A 恰好落在DC 边上的点A'处,A'BC 20︒∠=,则A D 'B ∠的度数是 ( )A .15°B .25°C .30°D .40°6.如图,点P 是AOB ∠外的一点,点,M N 分别是AOB ∠两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上,若2.5,3,4PM cm PN cm MN cm ===,则线段QR 的长为( )A .4.5B .5.5C .6.5D .77.如图,ABD △与AEC 都是等边三角形,AB AC ≠.下列结论中,①BE CD =;②60BOD ∠=︒;③BDO CEO ∠=∠.其中正确的有( ).A .0个B .1个C .2个D .3个 8.已知三角形的一边长为8,则它的另两边长分别可以是( )A .2,9B .17,29C .3,12D .4,49.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④10.一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如下数据: 支撑物高度h (cm ) 1020304050607080小车下滑时间t (s )4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50下列说法错误的是( ) A .当h =50cm 时,t =1.89s B .随着h 逐渐升高,t 逐渐变小 C .h 每增加10cm ,t 减小1.23sD .随着h 逐渐升高,小车的速度逐渐加快11.如图,有A ,B ,C 三个地点,且AB ⊥BC ,从A 地测得B 地在A 地的北偏东43°的方向上,那么从B 地测得C 地在B 地的( )A .北偏西47B .南偏东47C .北偏东43D .南偏西4312.下列计算中,错误的是( ) A .()()2131319x x x -+=-B .221124a a a ⎛⎫-=-+ ⎪⎝⎭ C .()()x y a b ax ay bx by --=--+D .()m x y m my -+=-+二、填空题13.如图,一个圆形飞镖板被等分为四个圆心角相等的扇形.假设飞镖投中游戏板上的每一个点都是等可能的(若投中圆的边界、图中的分割线或没有投中,则重投1次),则任意投掷一次,飞镖投中阴影部分的概率是_______.14.在甲,乙两个不透明口袋中各装有10个和3个形状大小完全相同的红色小球,则从中摸到红色小球的概率是P 甲_____P 乙(填“>”,“<”或“=”);15.如图,直线AB ∥CD ,直线EF 分别与直线AB 和直线CD 交于点E 和F ,点P 是射线EA 上的一个动点(P 不与E 重合)把△EPF 沿PF 折叠,顶点E 落在点Q 处,若∠PEF=60°,且∠CFQ:∠QFP=2:5,则∠PFE 的度数是_______.16.如图,在Rt ABC 中,ACB 90∠=︒,AC 6=,BC 8=,AD 是BAC ∠的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是____.17.如图,BP 是ABC 中ABC ∠的平分线,CP 是ACB ∠的外角的平分线,如果20,ABP ∠=︒50ACP ∠=︒,则A ∠=____________.18.日常生活中,“老人”是一个模糊概念.可用“老人系数”表示一个人的老年化程度.“老人系数”的计算方法如下表: 人的年龄x (岁) x≤60 60<x <80x≥80 “老人系数”6020x - 1按照这样的规定,“老人系数”为0.6的人的年龄是__岁.19.如图,点A 在直线m 上,点B 在直线l 上,点A 到直线l 的距离为a ,点B 到直线m 的距离为b ,线段AB 的长度为c ,通过测量等方法可以判断在a ,b ,c 三个数据中,最大的是_____________.20.若26x x m ++为完全平方式,则m =____.三、解答题21.小明有3支水笔,分别为红色、蓝色、黑色;有2块橡皮,分别为白色、灰色.小明从中任意取出1支水笔和1块橡皮配套使用.试用树状图或表格列出所有可能的结果,并求取出红色水笔和白色橡皮配套的概率.22.如图,邮递员小王的家在两条公路OM 和ON 相交成的角(MON ∠)的内部A 处,小王每天都要到开往OM 方向的车上取下快件,然后再送到开往ON 方向的车上,这样他就可以回家了,为使小王每天接送快件时的行程最短,请帮助他找出在公路OM 和ON 上的等车地点.(画草图,保留作图痕迹)23.已知:AB BD ⊥,ED BD ⊥,AC CE =,BC DE =.(1)试猜想线段AC 与CE 的位置关系,并证明你的结论.(2)若将CD 沿CB 方向平移至图2情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.(3)若将CD 沿CB 方向平移至图3情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.24.甲、乙两地相距210千米,一辆货车将货物由甲地运至乙地,卸载后返回甲地.若货车距乙地的距离y(千米)与时间t(时)的关系如图所示,根据所提供的信息,回答下列问题: (1)货车在乙地卸货停留了多长时间? (2)货车往返速度,哪个快?返回速度是多少?25.如图,直线AB 和直线BC 相交于点B ,连接AC ,点,,D E H 分别在AB 、AC 、BC 上,连接DE 、DH ,F 是DH 上一点,已知13180︒∠+∠=(1)求证:CEF EAD ∠=∠;(2)若DH 平分BDE ∠,2α∠=∠,求3∠的度数.(用α表示)26.图1是长为2a ,宽为2b 的长方形,按虚线将它分成四个全等的小长方形,然后拼成如图2的一个正方形图案.(1)请用两种不同的方法表示图2中阴影部分的面积(直接用含a ,b 的代数式表示); (2)分别对(1)中的两个代数式进行化简,并写出你发现的相等关系式;(3)根据(2)中的等量关系,解决如下问题:已知5a b +=,4ab =,求2()a b -的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据三角形和正方形的面积公式及概率公式即可得到结论.【详解】解:∵正方形的面积为4×4=16,阴影区域的面积为12×4×1+12×2×3=5,∴飞镖落在阴影区域的概率是516,故选:B.【点睛】此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比,关键是求出阴影部分的面积与总面积的比.2.A解析:A【解析】【分析】根据抽样调查的可靠性和适用情况、众数和中位数的定义、概率的意义及方差的意义逐一判断即可得.【详解】A.要了解我市居民的低碳生活状况,适宜采用抽样调查的方法,此选项正确;B.一组数据2,2,3,6的众数是2,中位数是2.5,此选项错误;C.“掷一枚硬币正面朝上的概率是”,表示每抛硬币2次可能有1次正面朝上,此选项错误;D.随机抽取甲乙两名同学的5次数学成绩,平均分都是90分,方差分别是S甲2=5,S乙2=10,说明甲的成绩较为稳定;故选A.【点睛】本题主要考查概率的意义,解题的关键是掌握抽样调查的可靠性和适用情况、众数和中位数的定义、概率的意义及方差的意义.3.A解析:A【解析】【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【详解】∵抛掷同一枚啤酒瓶盖420+580=1000次.经过统计得“凸面向上”的次数约为420次,∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为420=0.42,1000故选A.【点睛】本题主要考查概率的意义、等可能事件的概率,大量重复试验事件发生的频率约等于概率.4.B解析:B【分析】根据平行线的性质以及翻折不变性,分别求出∠C′EF;∠AEC;∠BGE;∠BFD即可判断.【详解】解:A、∵∠EFB=34°,AC′∥BD′,∴∠EFB=∠FEC′=∠FEG=34°,故正确,不符合题意;B、由折叠可得∠C′EG=68°,则∠AEC=180°﹣∠C′EG=112°,故错误,符合题意;C、∵∠BGE=∠C′EG=68°,故正确,不符合题意;D、∵EC∥DF,∴∠BFD=∠BGC=∠AEC=112°,故正确,不符合题意.故选:B.【点睛】本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.5.B解析:B【分析】由题意利用互余的定义和平行线的性质以及轴对称的性质,进行综合分析求解.【详解】,解:∵∠A′BC=20°,DC BC∴∠BA′C=70°,∴∠DA′B=110°,∴∠DAB=110°,∵AD//BC,∴∠ABC=70°,∴∠ABA′=∠ABC-∠A′BC=70°-20°=50°,∵∠A′BD=∠ABD,∴∠A′BD=1∠ABA′=25°.2故选:B.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变进行分析.6.A解析:A【分析】根据轴对称性质可得出PM=MQ,PN=RN,因此先求出QN的长度,然后根据QR=QN+NR 进一步计算即可.【详解】由轴对称性质可得:PM=MQ=2.5cm,PN=RN=3cm,∴QN=MN−MQ=1.5cm,∴QR=QN+RN=4.5cm,故选:A.【点睛】本题主要考查了轴对称性质,熟练掌握相关概念是解题关键.7.C解析:C【分析】利用SAS证明△DAC≌△BAE,利用三角形内角和定理计算∠BOD的大小即可.【详解】△与AEC都是等边三角形,∵ABD∴AD=AB,AC=AE,∠DAB=∠EAC=60°,∴∠DAB+∠CAB =∠EAC+∠CAB,∴∠DAC =∠BAE,∴△DAC≌△BAE,∴BE=CD,∴结论①正确;∵△DAC≌△BAE,∴∠ADC =∠ABE,∴∠BOD=180°-(∠BDO+∠DBO),∵∠BDO+∠DBO=60°-∠ADC +60°+∠ABE=120°, ∴∠BOD=180°-120°=60°, ∴结论②正确;无法证明BDO CEO ∠=∠, ∴结论③错误; 故选C. 【点睛】本题考查了等边三角形的性质,全等三角形的证明和性质,三角形内角和定理, 熟练运用等边三角形的性质证明三角形的全等是解题的关键.8.A解析:A 【分析】根据三角形三边关系判断即可; 【详解】9211+=>8,927-=<8,故A 正确;172946+=>8,291712-=>8,故B 错误; 12315+=>8,1239-=>8,故C 错误; 448+=,故D 错误; 故答案选A . 【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.9.D解析:D 【分析】易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确; 【详解】∵ BD 为∠ABC 的角平分线, ∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA , ∴△ABD EBC ∆∆≌(SAS),故①正确; ∵ BD 平分∠ABC ,BD=BC ,BE=BA , ∴ ∠BCD=∠BDC=∠BAE=∠BEA , ∵△ABD ≌△EBC , ∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°, 故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE , ∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA ,∴∠DCE=∠DAE,∴△ACE是等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,故③正确;作EG⊥BC,垂足为G,如图所示:∵ E是BD上的点,∴EF=EG,在△BEG和△BEF中BE BE EF EG=⎧⎨=⎩∴△BEG≌△BEF,∴BG=BF,在△CEG和△AFE中EF EG AE CE=⎧⎨=⎩∴△CEG≌△AFE,∴ AF=CG,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF,故④正确;故选:D.【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;10.C解析:C【解析】A.当h=50cm时,t=1.89s,故A正确;B.随着h逐渐升高,t逐渐变小,故B正确;C.h每增加10cm,t减小的值不一定,故C错;D.随着h逐渐升高,小车的时间减少,小车的速度逐渐加快,故D正确;故选:C.11.A解析:A【分析】根据方向角的概念和平行线的性质求解.【详解】解:∵AF ∥DE ,∴∠ABE =∠FAB =43°,∵AB ⊥BC ,∴∠ABC =90°,∴∠CBD =180°-∠ABC -∠ABE =47°,∴C 地在B 地的北偏西47°的方向上.故选:A .【点睛】本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.12.D解析:D【分析】根据平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式依次求出每个式子的值,再判断即可.【详解】A. ()()2131319x x x -+=-,计算正确,不符合题意; B. 221124a a a ⎛⎫-=-+ ⎪⎝⎭,计算正确,不符合题意; C. ()()x y a b ax ay bx by --=--+,计算正确,不符合题意;D. ()m x y mx my -+=--,计算错误,符合题意;故选D .【点睛】本题考查了平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式,能正确求出每个式子的值是解此题的关键. 二、填空题13.【分析】将阴影部分进行平移利用阴影部分的面积占总面积的一半即可解题【详解】解:由题可知图形被四等分各圆心角的度数等于90°所以将阴影部分进行平移可得阴影部分的面积占整个圆的面积的一半∴任意投掷一次飞解析:1 2【分析】将阴影部分进行平移,利用阴影部分的面积占总面积的一半即可解题.【详解】解:由题可知,图形被四等分,各圆心角的度数等于90°,所以将阴影部分进行平移可得,阴影部分的面积占整个圆的面积的一半,∴任意投掷一次,飞镖投中阴影部分的概率是12.【点睛】本题考查了几何概型,属于简单题,对阴影部分进行平移是解题关键.14.=【解析】【分析】根据必然事件的定义及其概率可得答案【详解】由题意知从甲口袋的10个小球中摸出一个小球是红色小球是必然事件概率为1;从乙口袋的3个小球中摸出一个小球是红色小球是必然事件概率为1;∴P解析:=【解析】【分析】根据必然事件的定义及其概率可得答案.【详解】由题意知,从甲口袋的10个小球中摸出一个小球,是红色小球是必然事件,概率为1;从乙口袋的3个小球中摸出一个小球,是红色小球是必然事件,概率为1;∴P甲=P乙,故答案为:=.【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.P(必然事件)=1.P(不可能事件)=0.15.50°【分析】依据平行线的性质即可得到∠EFC的度数再求出∠CFQ即可求出∠PFE的度数【详解】∵AB∥CD∠PEF=60°∴∠PEF+∠EFC=180°∴∠EFC=180°﹣60°=120°∵将△解析:50°【分析】依据平行线的性质,即可得到∠EFC的度数,再求出∠CFQ,即可求出∠PFE的度数.【详解】∵AB∥CD,∠PEF=60°,∴∠PEF+∠EFC=180°,∴∠EFC =180°﹣60°=120°,∵将△EFP 沿PF 折叠,便顶点E 落在点Q 处,∴∠PFE =∠PFQ ,∵∠CFQ:∠QFP=2:5∴∠CFQ =212∠EFC =212×120°=20°, ∴∠PFE =12∠EFQ =12(∠EFC ﹣∠CFQ )=12(120°﹣20°)=50°. 故答案为:50°.【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键.16.【分析】过点C 作CM ⊥AB 交AB 于点M 交AD 于点P 过点P 作PQ ⊥AC 于点Q 由AD 是∠BAC 的平分线得出PQ =PM 这时PC +PQ 有最小值即CM 的长度运用勾股定理求出AB 再运用得出CM 的值即PC +PQ 的解析:24 5【分析】过点C 作CM ⊥AB 交AB 于点M ,交AD 于点P ,过点P 作PQ ⊥AC 于点Q ,由AD 是∠BAC 的平分线.得出PQ =PM ,这时PC +PQ 有最小值,即CM 的长度,运用勾股定理求出AB ,再运用1122ABC S AB CM AC BC =⋅=⋅△,得出CM 的值,即PC +PQ 的最小值. 【详解】如解图,过点C 作CM AB ⊥,交AB 于点M ,交AD 于点P ,过点P 作PQ AC ⊥于点Q ,∵AD 是BAC ∠的平分线,∴PQ PM =,这时PC PQ +有最小值,即CM 的长度,∵6AC =,8BC =,90ACB ∠=︒,∴22226810AB AC BC =+=+=.∵1122ABC S AB CM AC BC =⋅=⋅△, ∴6824105AC BC CM AB ⋅⨯===,即PC PQ +的最小值为245. 故答案为245.【点睛】本题主要考查了轴对称问题,解题的关键是找出满足PC+PQ有最小值时点P和Q的位置.17.60°【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和可求出∠A的度数【详解】∵BP是△ABC中∠ABC的平分线CP是∠ACB的外角的平分线∴∠ABC=2∠ABP∠ACM=2解析:60°【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数.【详解】∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM-∠ABC=60°,故答案为:60°.【点睛】本题考查了角平分线的定义,三角形的外角性质,掌握“一个三角形的外角等于与它不相邻的两个内角之和”是解题的关键.18.72【分析】根据所给的函数关系式所对应的自变量的取值范围发现:当y=06时在60<x<80之间所以将y的值代入对应的函数解析式即可求得函数的值【详解】解:设人的年龄为x岁∵老人系数为06∴由表得60解析:72【分析】根据所给的函数关系式所对应的自变量的取值范围,发现:当y=0.6时,在60<x<80之间,所以将y的值代入对应的函数解析式即可求得函数的值.【详解】解:设人的年龄为x岁,∵“老人系数”为0.6,∴由表得60<x<80,即6020x=0.6,解得,x=72,故“老人系数”为0.6的人的年龄是72岁.故答案为:7219.【分析】过点A作AD垂直于垂足为D过点B作BH垂直于垂足为H连接AB根据点到直线垂线段最短可知AB>ADAB>BH可得最大【详解】过点A作AD垂直于垂足为D过点B作BH垂直于垂足为H连接AB由题意得解析:c【分析】过点A 作AD 垂直于l 垂足为D ,过点B 作BH 垂直于m 垂足为H,连接AB ,根据点到直线垂线段最短,可知AB >AD ,AB >BH ,可得c 最大.【详解】过点A 作AD 垂直于l 垂足为D ,过点B 作BH 垂直于m 垂足为H,连接AB ,由题意得:AD=a , BH=b ,AB=c ;根据点到直线垂线段最短,可知AB >AD ,AB >BH∴c >a ,c >b ;∴c 最大故答案:c【点睛】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.20.9【分析】完全平方式可以写为首末两个数的平方则中间项为x 和积的2倍即可解得m 的值【详解】解:根据题意是完全平方式且6>0可写成则中间项为x 和积的2倍故∴m=9故答案填:9【点睛】本题是完全平方公式的 解析:9【分析】 完全平方式可以写为首末两个数的平方(2x m ,则中间项为x m 2倍,即可解得m 的值.【详解】解:根据题意,26x x m ++是完全平方式,且6>0, 可写成(2x m +,则中间项为x m 2倍, 故62x x m =∴m =9,故答案填:9.本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意中间项的符号,避免漏解.三、解答题21.【解析】试题分析:先画出树状图展示所有可能的6种结果,找出取出红色水笔和白色橡皮占1种,然后根据概率公式求解即可.画树状图如图所示:共有6种等可能的结果,其中取出红色水笔和白色橡皮占1种,∴出红色水笔和白色橡皮配套的概率为.考点:概率的求法点评:解的关键是熟练掌握概率的求法:概率=所求情况数与总情况数的比值.22.图见解析【分析】如图所示,分别作点A 关于射线OM 所在直线的对称点E ,点A 关于射线ON 所在直线的对称点F ,连接EF ,分别交射线OM 、ON 于点B 、C ,则根据轴对称的性质可知B 处、C 处分别为小王在公路OM 和ON 上的的等车地点.【详解】解:如图所示,分别作点A 关于射线OM 所在直线的对称点E ,点A 关于射线ON 所在直线的对称点F ,连接EF ,分别交射线OM 、ON 于点B 、C ,连接AB 、AC . 根据轴对称的性质可得AB EB =、AC FC =,此时ABC 的周长最小,则B 处、C 处分别为小王在公路OM 和ON 上的的等车地点.本题考查了轴对称—路径最短问题,属于常考题型,正确理解题意、掌握解答的方法是解题的关键.23.(1)AC CE ⊥,见解析;(2)成立,理由见解析;(3)成立,理由见解析【分析】(1)先用HL 判断出Rt Rt ABC CDE ≌△△,得出A DCE ∠=∠,进而判断出90DCE ACB ∠+∠=︒,即可得出结论;(2)同(1)的方法,即可得出结论;(3)同(1)的方法,即可得出结论.【详解】解:(1)AC CE ⊥理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒在Rt ABC △和Rt CDE △中AC CE BC DE =⎧⎨=⎩∴()Rt Rt HL ABC CDE △△≌, ∴A DCE ∠=∠∵90B ∠=︒,∴90A ACB ∠+∠=︒,∴()18090ACE DCE ACB ∠=︒-∠+∠=︒,∴AC CE ⊥;(2)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒,在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵90B ∠=︒,∴190B A AC ∠+∠=︒,∴2190DC E AC B ∠+∠=︒,在12C FC 中,()122118090C FC DC E AC B ∠=︒-∠+∠=︒,∴12AC C E ⊥;(3)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴190ABC D ∠=∠=︒在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵190ABC ∠=︒,∴190B A AC ∠+∠=︒,在12C FC 中,()2112180=90C FC DC E AC B ∠=︒-∠+∠︒,∴12AC C E ⊥.【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,判断出12Rt Rt ABC C DE ≌△△是解本题的关键.24.(1)1小时;(2)返回速度快,70千米/时.【解析】【分析】(1)根据函数图象通过是信息可知,4.5-3.5=1,由此得出货车在乙地卸货停留的时间;(2)比较货车往返所需的时间,即可得出货车往返速度的大小关系,根据路程除以时间即可求得速度.【详解】解:(1)∵4.5-3.5=1(小时),∴货车在乙地卸货停留了1小时.(2)∵7.5-4.5=3<3.5,∴货车返回速度快.∵210÷3=70(千米/时),∴返回速度是70千米/时.故答案为:(1)1小时;(2)返回速度快,70千米/时.【点睛】本题主要考查了函数图象,对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.解决问题的关键是从函数图象中获取关键的信息.25.(1)见解析(2)90°+12α 【分析】(1)根据平行线的判定和性质解答即可;(2)根据平行线的性质解答即可.【详解】解:(1)∵∠3+∠DFE =180°,∠1+∠3=180°∴∠DFE =∠1,∴AB ∥EF ,∴∠CEF =∠EAD ;(2)∵AB ∥EF ,∴∠2+∠BDE =180°又∵∠2=α∴∠BDE =180°−α又∵DH 平分∠BDE∴∠1=12∠BDE =12(180°−α) ∴∠3=180°−12(180°−α)=90°+12α. 【点睛】本题考查了角平分线定义,平行线的性质和判定等知识点,注意:①内错角相等,两直线平行,②两直线平行,同旁内角互补.26.(1)方法①:()2a b -,方法②:()24a b ab +-;(2)()()224a b a b ab -=+-;(3)9.【分析】(1)直接利用正方形的面积公式得到图中阴影部分的面积为()2a b -;也可以用大正方形的面积减去4个长方形的面积得到图中阴影部分的面积为()24a b ab +-;(2)分别将()2a b -与()24a b ab +-化简,即可得出()2a b +,2()a b -,ab 之间的等量关系式;(3)利用(2)中得到的公式()()224a b a b ab -=+-并将已知5a b +=,4ab =代入计算,则可得出2()a b -的值.【详解】解:(1)方法①:∵图2中阴影部分的边长为:-a b ,∴图2中阴影部分的面积()2S a b =-, 方法②:利用割补法可得,图2中阴影部分的面积=大正方形的面积-4个长方形的面积, ∴()24S a b ab =+-; (2)∵()2222a b a ab b -=-+, ()222424a b ab a ab b ab +-=++-222a ab b =-+,∴相等关系式为:()()224a b a b ab -=+-;(3)∵()()224a b a b ab -=+-,5a b +=,4ab =,∴2()a b -2544=-⨯9=.【点睛】本题考查了完全平方公式在几何图形中的应用,根据题意,利用代数式表示出图形的面积并根据等面积法得出代数式的关系是解题的关键.。
2021-2022年七年级数学下期末一模试卷含答案(2)
一、选择题1.下列事件中必然事件有()①当x是非负实数时,≥0;②打开数学课本时刚好翻到第12页;③13个人中至少有2人的生日是同一个月;④在一个只装有白球和绿球的袋中摸球,摸出黑球.A.1个B.2个C.3个D.4个2.九年级一班在参加学校4×100米接力赛时,安排了甲,乙,丙,丁四位选手,他们比赛的顺序由抽签随机决定,则丙跑第一棒的概率为()A.14B.18C.112D.1163.下列事件中,属于不确定事件的是()A.抛掷一枚硬币,正面朝上B.在空中抛掷石块,石块终将落下C.小明的跑步速度是100米/秒D.在一个标准大气压下,水到100C就沸腾4.下列选项中的图标,属于轴对称图形的是()A.B.C.D.5.如图,弹性小球从点P出发,沿所示方向运动,每当小球碰到长方形的边时反弹,反弹时人射角等于反射角(即:∠1=∠2,∠3=∠4).小球从P点出发第1次碰到长方形边上的点记为A点,第2次碰到长方形边上的点记为B点,……第2020次碰到长方形边上的点为图中的( )A.A点B.B点C.C点D.D点6.下列图形中是轴对称图形的是()A.B.C.D.7.已知三角形两边的长分别是3和5,则此三角形第三边的长不可能是( ). A .3B .5C .7D .118.如图,ABD △与AEC 都是等边三角形,AB AC ≠.下列结论中,①BE CD =;②60BOD ∠=︒;③BDO CEO ∠=∠.其中正确的有( ).A .0个B .1个C .2个D .3个9.如图,在△ABC 中,已知点D ,E ,F 分别为边AC ,BD ,CE 的中点,且阴影部分图形面积等于4平方厘米,则△ABC 的面积为( )平方厘米A .8B .12C .16D .1810.某工厂去年底积压产品a 件(a >0),今年预计每月销售产品2b 件(b >0),同时每月可生产出产品b 件,则产品积压量y (件)与今年开工时间t (月)的关系的图象应是( )A .B .C .D .11.如图,直线AB ,CD 相交于点O ,EO ⊥AB ,若∠AOC =24°,则∠DOE 的度数是( )A .24°B .54°C .66°D .76°12.下列各式运算正确的是( ) A .235a a a +=B .1025a a a ÷=C .()32626b b = D .2421a aa -⋅=二、填空题13.一个袋中装有m 个红球,10个黄球,n 个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m 与n 的关系是________.14.有5张正面分别写有数字﹣1,-14,0,1,3的卡片,它们除数字不同外全部相同.将它们背面朝上,洗匀后从中随机的抽取一张,记卡片上的数字为a,则使以x为自变量的反比例函数37ayx-=经过二、四象限,且关于x的方程2221111ax x x+=-+-有实数解的概率是_____.15.如图,△ABE和△ADC是△ABC分别沿着AB,AC边对折所形成的,CD与AE交于点P 若∠1:∠2:∠3=13:3:2,则∠α的度数为_____.16.把一张长方形纸条按如图所示折叠后,若∠A OB′=70°,则∠B′OG=_____.17.如图,Rt ABC和Rt EDF中,AE CF=,在不添加任何辅助线和字母的情况下,请你添加一个条件__________使Rt ABC和Rt EDF全等.18.光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并释放出氧的过程,如图是夏季晴朗的白天某种绿色植物叶片光合作用强度的曲线图,分析曲线图回答下列问题:(1)大约从7时到__________时的光合作用的强度不断增强.(2)__________时和__________时的光合作用强度不断下降.19.如图,直线a∥b,直线a、b被直线c所截,若∠2=60°,则∠1的度数为_____.20.若2211392781n n ++⨯÷=,则n =____.三、解答题21.小颖和小红两位同学在做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下: 朝上的点数 1 2 3 4 5 6 出现的次数79682010(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验得出,出现5点朝上的机会最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么? 22.ABC 在直角坐标系中的位置如图所示.(1)写出ABC 各顶点的坐标;(2)画出ABC 关于y 轴、x 轴的对称图形111A B C △,222A B C △; (3)求出111A B C △的面积.23.如图,在△ABC 中,∠BAC 的平分线AD 交BC 于点D ,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,连接EF .写出两个结论(∠BAD =∠CAD 和DE =DF 除外),并选择一个结论进行证明. (1)____________; (2)____________.24.圣诞老人上午8:00从家里出发,骑车去一家超市购物,然后从这家超市回到家中,圣诞老人离家的距离s(千米)和所经过的时间t(分钟)之间的关系如图所示,请根据图象回答问题:(1)圣诞老人去超市途中的速度是多少?回家途中的速度是多少? (2)圣诞老人在超市逗留了多长时间?(3)圣诞老人在来去的途中,离家2千米处的时间是几时几分?25.阅读下列推理过程,在括号中填写理由.已知:如图,点D 、E 分别在线段AB 、BC 上,//AC DE ,//DF AE 交BC 于点F ,AE 平分.BAC ∠求证:DF 平分BDE ∠ 证明:AE ∵平分(BAC ∠已知)12∠∠∴= ( ) //AC DE13(∴∠=∠ )故23∠∠= ( )//DF AE25∴∠=∠ ( )并且34∠=∠ ( )45∴∠=∠ ( )DF ∴平分BDE ∠ ( )26.计算:4a 2·(-b )-8ab ·(b -12a ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.B【解析】【分析】根据必然事件、不可能事件、随机事件的概念判断即可.【详解】①当x是非负实数时,0,是必然事件;②打开数学课本时刚好翻到第12页,是随机事件;③13个人中至少有2人的生日是同一个月,是必然事件;④在一个只装有白球和绿球的袋中摸球,摸出黑球,是不可能事件.必然事件有①③共2个.故选B.【点睛】本题考查了必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件指在一定条件下一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.A解析:A【解析】【分析】根据概率公式直接进行解答即可.【详解】解:∵有甲,乙,丙,丁四位选手,∴丙跑第一棒的概率为1;4故选:A.【点睛】本题考查概率公式.随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.3.A解析:A【解析】【分析】根据不确定事件的定义即可解答.【详解】解:A,抛掷一枚硬币,正面朝上,可能发生,是不确定事件,正确.B,在空中抛掷石块,石块终将落下是确定事件.C,小明的跑步速度是100米/秒是不可能事件.D,在一个标准大气压下,水到100C就沸腾是确定事件.【点睛】本题考查不确定事件的定义,掌握定义是解题关键.4.A解析:A【分析】直接根据轴对称图形的概念进行判断即可;【详解】A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意;故选:A.【点睛】本题考查了轴对称图形的识别,正确掌握知识点是解题的关键;5.D解析:D【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2020除以6,根据商和余数的情况确定所对应的点的坐标即可.【详解】解:如图所示,经过6次反弹后动点回到出发点P,∵2020÷6=336…4,∴当点P第2020次碰到矩形的边时为第337个循环组的第4次反弹,∴第2020次碰到矩形的边时的点为图中的点D;故选:D.【点睛】此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.6.C解析:C【解析】【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案.【详解】A、不是轴对称图形,故A错误;B、不是轴对称图形,故B错误;C、是轴对称图形,故C正确;D、不是轴对称图形,故D错误.故选:C.【点睛】本题考查了轴对称图形的判断问题,掌握轴对称图形的定义以及性质是解题的关键.7.D解析:D【分析】根据三角形的三边关系解答.【详解】设三角形的第三边为x,则5-3<x<5+3,2<x<8,故选:D.【点睛】此题考查三角形三边关系:三角形任意两边的和都大于第三边,熟记关系是解题的关键.8.C解析:C【分析】利用SAS证明△DAC≌△BAE,利用三角形内角和定理计算∠BOD的大小即可.【详解】△与AEC都是等边三角形,∵ABD∴AD=AB,AC=AE,∠DAB=∠EAC=60°,∴∠DAB+∠CAB =∠EAC+∠CAB,∴∠DAC =∠BAE,∴△DAC≌△BAE,∴BE=CD,∴结论①正确;∵△DAC ≌△BAE , ∴∠ADC =∠ABE ,∴∠BOD=180°-(∠BDO+∠DBO),∵∠BDO+∠DBO=60°-∠ADC +60°+∠ABE=120°, ∴∠BOD=180°-120°=60°, ∴结论②正确;无法证明BDO CEO ∠=∠, ∴结论③错误; 故选C. 【点睛】本题考查了等边三角形的性质,全等三角形的证明和性质,三角形内角和定理, 熟练运用等边三角形的性质证明三角形的全等是解题的关键.9.C解析:C 【分析】根据三角形的中线将三角形分成面积相等的两个三角形进行解答即可. 【详解】解:∵F 是EC 的中点, ∴142AEF AFC AEC S S S ∆∆∆===, ∴8AEC S ∆=, ∵ E 是BD 的中点 ,∴ABE AED S S ∆∆=,BEC ECD S S ∆∆=, ∵8AED ECD AEC S S S ∆∆∆+==, ∴8ABE BEC AEC S S S ∆∆∆+==,∴228=16ABC ABE BEC AEC AEC S S S S S ∆∆∆∆∆=++==⨯, 故选:C . 【点睛】本题考查了三角形的中线与三角形的面积关系,熟练掌握三角形的中线将三角形分成面积相等的两个三角形是解答的关键.10.C解析:C 【解析】 【分析】开始生产时产品积压a 件,即t=0时,y=a ,后来由于销售产品的速度大于生产产品的速度,则产品积压量y 随今年开工时间t 的增大而减小,且y 是t 的一次函数,据此进行判断. 【详解】∵开始生产时产品积压a 件,即t=0时,y=a ,∴B 错误;∵今年预计每月销售产品2b 件(b >0),同时每月可生产出产品b 件, ∴销售产品的速度大于生产产品的速度, ∴产品积压量y 随开工时间t 的增大而减小, ∴A 错误;∵产品积压量每月减少b 件,即减小量是均匀的, ∴y 是t 的一次函数, ∴D 错误. 故选C . 【点睛】本题考查的是实际生活中函数的图形变化,属于基础题.解决本题的主要方法是先根据题意判断函数图形的大致走势,再下结论,本题无需计算,通过观察看图,做法比较新颖.11.C解析:C 【分析】根据对顶角相等求∠BOD ,由垂直的性质求∠BOE ,根据∠DOE =∠BOE−∠BOD 求解. 【详解】∵直线AB ,CD 相交于点O ,∠AOC =24°, ∴∠BOD =∠AOC =24°, ∵EO ⊥AB , ∴∠BOE =90°,∴∠DOE =∠BOE−∠BOD =90°−24°=66°. 故选:C . 【点睛】本题考查了对顶角,垂直的定义.解题的关键是采用形数结合的方法得到∠DOE =∠BOE−∠BOD .12.D解析:D 【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;合并同类项的法则,对各选项计算后利用排除法求解. 【详解】解:A 、a 2与3a 不是同类项,不能合并,故本选项错误; B 、1028a a a ÷=,故本选项错误; C 、()32628b b =,故本选项错误;D 、24221a aa a--⋅==,正确. 故选:D .【点睛】本题考查了幂的乘方的性质,同底数幂的乘法,合并同类项的法则,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的不能合并.二、填空题13.m+n=10【分析】直接利用概率相同的频数相同进而得出答案【详解】∵一个袋中装有m个红球10个黄球n个白球摸到黄球的概率与不是黄球的概率相同∴m与n的关系是:m+n=10故答案为m+n=10【点睛】解析:m+n=10.【分析】直接利用概率相同的频数相同进而得出答案.【详解】∵一个袋中装有m个红球,10个黄球,n个白球,摸到黄球的概率与不是黄球的概率相同,∴m与n的关系是:m+n=10.故答案为m+n=10.【点睛】此题主要考查了概率公式,正确理解概率求法是解题关键.14.【解析】【分析】根据反比例函数图象经过第二四象限列出不等式求出a 的取值范围从而确定出a的值再把分式方程两边都乘以最简公分母(x+1)(x-1)化为整式方程并用a表示出x然后根据分式方程有实数解x≠±解析:2 5【解析】【分析】根据反比例函数图象经过第二、四象限列出不等式求出a的取值范围,从而确定出a的值,再把分式方程两边都乘以最简公分母(x+1)(x-1)化为整式方程并用a表示出x,然后根据分式方程有实数解x≠±1求出a不能等于的值,从而最后得到a的值,然后根据概率公式列式计算即可得解.【详解】∵反比例函数图象经过第二、四象限,∴3a-7<0,解得a<73,∴a=-1,−14,0,1,方程两边都乘以(x+1)(x-1)得,2(x+1)+2a(x-1)=1,解得x= 2122a a -+, ∵分式方程有实数解, ∴2122a a -+≠±1, 解得a≠-14, 又∵a=-1时,2a+2=0,分式无意义,∴a≠-1,综上所述,0,1,∴P=25. 故答案是:25. 【点睛】本题考查了概率公式,反比例函数图象的性质,分式方程的解,熟记性质以及方程解的定义求出a 的值是解题的关键.15.100°【分析】由∠1:∠2:∠3=13:3:2和三角形内角和定理求出∠1=130°∠3=20°根据折叠的性质即可求解【详解】解:∵∠1:∠2:∠3=13:3:2∴∠1=130°∠3=20°∴∠DC解析:100°【分析】由∠1:∠2:∠3=13:3:2和三角形内角和定理求出∠1=130°,∠3=20°,根据折叠的性质即可求解.【详解】解:∵∠1:∠2:∠3=13:3:2,∴∠1=130°,∠3=20°,∴∠DCA=20°,∠EAB=130°,∵∠PAC=360°﹣2∠1=100°,∴∠EPD=∠APC=180°﹣∠PAC ﹣∠DCA=60°,由翻折的性质可知:∠E=∠3=20°,∴∠α=180°﹣60°﹣20°=100°.故答案为:100°.【点睛】本题考查了折叠变换的性质、三角形内角和定理;熟练掌握翻折变换的性质和三角形内角和定理是解题的关键.16.55°【分析】由翻折性质得∠BOG =∠B′OG 根据邻补角定义可得【详解】解:由翻折性质得∠BOG =∠B′OG ∵∠AOB′+∠BOG+∠B′OG =180°∴∠B′OG =(180°﹣∠AOB′)=(18解析:55°【分析】由翻折性质得,∠BOG =∠B′OG ,根据邻补角定义可得.【详解】解:由翻折性质得,∠BOG =∠B′OG ,∵∠AOB′+∠BOG+∠B′OG =180°,∴∠B′OG =12(180°﹣∠AOB′)=12(180°﹣70°)=55°. 故答案为55°.【点睛】考核知识点:补角,折叠.17.(答案不唯一)【分析】根据三角形全等判定条件即可得解;【详解】当时满足条件;∵∴∴在和中∴;故答案是:(答案不唯一)【点睛】本题主要考查了全等三角形的判定条件准确分析判断是解题的关键解析:BC DF =(答案不唯一)【分析】根据三角形全等判定条件即可得解;【详解】当BC DF =时满足条件;∵AE CF =,∴AE EC CF EC +=+,∴AC EF =,在Rt ABC 和Rt EDF 中,AC EF BC DF=⎧⎨=⎩, ∴Rt ABC Rt EDF ≅;故答案是:BC DF =(答案不唯一).【点睛】本题主要考查了全等三角形的判定条件,准确分析判断是解题的关键.18.【解析】试题分析:(1)观察图象即可知大约从7时到10时的光合作用的强度不断增强;(2)观察图象即可知在哪个时间段内光合作用的强度不断下降试题解析:10 10~12 14~18【解析】试题分析:(1)观察图象即可知大约从7时到10时的光合作用的强度不断增强; (2)观察图象即可知在哪个时间段内光合作用的强度不断下降.试题(1)观察图象可知大约从7时到10时的光合作用的强度不断增强,故答案为10;(2)观察图象可知在10~12时、14~18时的光合作用强度不断下降,故答案为10~12、14~18.19.120°【分析】根据平行线的性质解答即可【详解】解:∵a ∥b ∠2=60°∴∠1=180°﹣60°=120°故答案为:120°【点睛】本题考查了平行线的性质解题的关键是掌握两直线平行同旁内角互补的知识点解析:120°【分析】根据平行线的性质解答即可.【详解】解:∵a ∥b ,∠2=60°,∴∠1=180°﹣60°=120°.故答案为:120°.【点睛】本题考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补的知识点. 20.3【分析】根据幂的乘方把算式中的各底数变成同底数然后按同底数幂运算法则列方程即可【详解】解:故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方根据题意把底数变成相同是解题关键解析:3【分析】根据幂的乘方把算式中的各底数变成同底数,然后按同底数幂运算法则,列方程即可.【详解】解:2211392781n n ++⨯÷=22213143(3)(3)3n n ++⨯÷=,2423343333n n ++⨯÷=,242(33)433n n ++-+=,1433n +=,14n +=,3n =.故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方,根据题意,把底数变成相同是解题关键.三、解答题21.(1)3点朝上的频率为101;5点朝上的频率为13;(2)小颖和小红说法都错.【解析】解:(1)“3点朝上”的频率是;“5点朝上”的频率是.(2)小颖的说法是错误的,因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大,只有当试验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近;小红的说法也是错误的,因为事件的发生具有随机性,所以“6点朝上”的次数不一定是100次.22.(1)()()()2,33,21,1A B C ---、、;(2)详见解析;(3)32. 【分析】 (1)根据平面直角坐标系写出各点的坐标即可;(2)根据关于坐标轴对称的点的坐标特征,利用网格结构准确找出对应点A 1、B 1、C 1、A 2、B 2、C 2的位置,然后顺次连接即可;(3)用111A B C △所在正方形减去三个直角三角形的面积即可得答案.【详解】(1)根据平面直角坐标系可知:()()()2,33,21,1A B C ---、、.(2)ABC 关于y 轴、x 轴的对称图形是111A B C △,222A B C △,∴A 1(2,3),B 1(3,2),C 1(1,1),A 2(-2,-3),B 2(-3,-2),C 2(-1,-1), ∴111A B C △,222A B C △如图所示,(3)111111322 1 112122222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.(1)∠ADE=∠ADF ;证明见解析;(2)AE=AF ;证明见解析.【分析】(1)∠ADE=∠ADF ,根据DE ⊥AB ,DF ⊥AC 及AD 为∠BAC 的角平分线,即可证得∠ADE=∠ADF ;(2)AE=AF ,根据(1)可知证明△AED ≌△AFD ,即可证得AE=AF .【详解】(1)结论1:∠ADE=∠ADF ,证明如下:∵DE ⊥AB ,DF ⊥AC ,∴∠AED=∠AFD=90︒,∵AD 为∠BAC 的角平分线,∴∠EAD=∠FAD ,∴∠ADE=∠ADF ;(2)结论2:AE=AF ,证明如下:由(1)可知:△AED ≌△AFD ,∴AE=AF .【点睛】本题考查全等三角形的性质和判定,解题的关键是灵活运用全等三角形的判定和性质解决问题.24.(1)25千米/分,15千米/分;(2)30分钟;(3)8:05和8:50. 【解析】【分析】 (1)根据观察横坐标,可得去超市的时间,从超市返回的时间,根据观察纵坐标,可得去超市的路程,根据路程与时间的关系,可得答案;(2)根据观察横坐标,可得答案;(3)根据路程除以速度,可得时间.【详解】解:(1)由横坐标可知,去超市用了10分钟,从超市返回用了20分钟,由纵坐标可知,家到超市的距离是4千米,故去超市的速度是4÷10=25(千米/分),从超市返回的速度是4÷20=15(千米/分). (2)由横坐标可知,在超市逗留的时间是40-10=30(分钟). (3)去超市的过程中,2÷25=5(分钟),返回的过程中,2÷15=10(分钟),40+10=50(分钟). 故圣诞老人在8:05和8:50时离家2千米. 故答案为:(1)2 5千米/分,15千米/分;(2)30分钟;(3)8:05和8:50. 【点睛】本题考查了函数图象,观察函数图象获取信息是解题关键.25.角平分线的定义 ; 两直线平行,内错角相等 ; 等量代换 ; 两直线平行,同位角相等 ; 两直线平行,内错角相等 ; 等量代换 ; 角平分线的定义.【分析】根据角平分线的定义得到12∠=∠,根据平行线的性质得到13∠=∠,等量代换得到23∠∠=,根据平行线的性质得到25∠=∠,等量代换即可得到结论.【详解】证明:AE ∵平分(BAC ∠已知)12(∴∠=∠角平分线的定义)//(AC DE 已知)13(∴∠=∠两直线平行,内错角相等)故23(∠=∠等量代换)//(DF AE 已知)25∴∠=∠,(两直线平行,同位角相等)34(∠=∠两直线平行,内错角相等)45(∴∠=∠等量代换)DF ∴平分(BDE ∠角平分线的定义).故答案为:角平分线的定义,两直线平行,内错角相等,等量代换,两直线平行,同位角相等,等量代换,角平分线的定义.【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解答本题的关键. 26.28ab -【分析】整式的混合运算,先算乘除,然后再算加减,有小括号先算小括号里面的.【详解】解:4a 2·(-b )-8ab ·(b -12a ) =222484--+a b ab a b=28ab -.【点睛】本题考查整式的混合运算,掌握单项式乘单项式以及单项式乘多项式的计算法则正确计算是解题关键.。
2021-2022年七年级数学下期末一模试题带答案(2)
一、选择题1.下列事件为必然事件的是( )A .打开电视,正在播放新闻B .买一张电影票,座位号是奇数号C .任意画一个三角形,其内角和是180°D .掷一枚质地均匀的硬币,正面朝上 2.抛掷一枚质地均匀、六个面上分别刻有点数1~6的正方体骰子2次,则“向上一面的点数之和为10”是( )A .必然事件B .不可能事件C .确定事件D .随机事件 3.一个不透明的袋中有若干个红球,为了估计袋中红球的个数,小林在袋中放入10个与红球形状大小完全相同的白球,每次摇匀后随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复试验后发现,摸到红球的频率稳定在,则袋中的红球个数约为( ) A .6 B .16 C .22 D .24 4.下列图形中,既是轴对称又是中心对称图形的是( )A .B .C .D . 5.如图,将长方形ABCD 沿线段EF 折叠到''EB C F 的位置,若'105EFC ∠=︒,'DFC ∠的度数为( )A .20︒B .30C .40︒D .50︒6.如图,在△ABC 中,∠A =70°,∠B =90°,点A 关于BC 的对称点是A ',点B 关于AC 的对称点是B ',点C 关于AB 的对称点是C ',若△ABC 的面积是1,则△A 'B 'C '的面积是( )A .2B .3C .4D .57.如图,在ABC 中,AB AC =,点D ,E 在BC 上,连接AD ,AE ,若只添加一个条件使DAB EAC ∠=∠,则添加的条件不能为( )A .BD CE =B .AD AE =C .BE CD = D .DA DE = 8.如果a 、b 、c 分别是三角形的三条边,那么化简a c b b c a -+++-的结果是( ) A .2c - B .2b C .22a c - D .b c - 9.如图所示,某同学将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A .带①去B .带②去C .带③去D .带①②去 10.某市大部分地区今年5月中下旬的天气情况是:前5天小雨,后5天暴雨.那么能反映该市主要河流水位变化情况的图象大致是( )A .B .C .D . 11.如图,直线,a b 与直线,c d 相交,已知341100∠=∠∠=︒,,则2∠的度数为( )A .110︒B .100︒C .80︒D .70︒ 12.计算()3222()m m m -÷⋅的结果是( ) A .2m - B .22m C .28m - D .8m -二、填空题13.写出一个你认为的必然事件_________.14.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为______ .15.如图a 是长方形纸带,18DEF ∠=︒,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的CFE ∠的度数是_________.16.如图,∠AOB = 30°,点P 是∠AOB 内任意一点,且OP = 7,点E 和点F 分别是射线OA 和射线OB 上的动点,则△PEF 周长的最小值是______.17.如图,//AB CD ,点M 为CD 上一点,MF 平分∠CME .若∠1=57°,则∠EMD 的大小为_____度.18.梯形的上底长是2,下底长是8,则梯形的面积y 关于高x 之间的关系式是______,自变量是____,因变量是______.19.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC=62°,则∠DFE 的度数为_______.20.如果2(1)(2)x x mx m --+的乘积中不含2x 项,则m 的值为____.三、解答题21.某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明. 22.如图,方格子的边长为1,△ABC 的顶点在格点上.(1)画出△ABC 关于直线l 对称的△A 1B 1C 1;(2)求△ABC 的面积.23.已知:MON α∠=,点P 是MON ∠平分线上一点,点A 在射线OM 上,作180APB α∠=︒-,交直线ON 于点B ,作PC ON ⊥于点C .(1)观察猜想:如图1,当90MON ∠=︒时,PA 和PB 的数量关系是______.(2)探究证明:如图2,当60MON ∠=︒时,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请直接写出PA ,PB 之间另外的数量关系.(3)拓展延伸:如图3,当60MON ∠=︒,点B 在射线ON 的反向延长线上时,请直接写出线段OC ,OA 及BC 之间的数量关系:______.24.科学家研究发现,声音在空气中传播的速度y (米/秒)与气温x (°C )有关,当气温是0°C 时,音速是331米/秒;当气温是5°C 时,音速是334米/秒;当气温是10°C 时,音速是337米/秒;气温是15°C 时,音速是340米/秒;气温是20℃时,音速是343米/秒;气温是25°C 时,音速是346米/秒;气温是30°C 时,音速是349米/秒.(1)请你用表格表示气温与音速之间的关系;(2)表格反映了哪两个变量之间的关系?哪个是自变量?哪一个是对应的值? (3)当气温是35°C 时,估计音速y 可能是多少?(4)能否用一个式子来表示两个变量之间的关系?25.如图,直线CD 经过AOB ∠的顶点O ,OE 平分AOB ∠,OF 平分BOD ∠.(1)若COE ∠=4DOE ∠,求DOE ∠的度数.(2)若BOD ∠=13AOB ∠,且AOB EOF ∠+∠=160︒,求BOD ∠和EOF ∠的度数. 26.(1)填空:①32(2)(5)x xy ⋅-=____________;②3252()(2)a b a b -÷-=_________.(2) 先化简,再求值:2(1)(1)(1)(31)(21)x x x x x x --+----,其中2x =.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A 、打开电视,正在播放新闻,是随机事件,故A 错误;B 、买一张电影票,座位号是奇数号,是随机事件,故B 错误;C 、任意画一个三角形,其内角和是180°,是必然事件,故C 正确;D 、掷一枚质地均匀的硬币,正面朝上,是随机事件,故D 错误;故选:C .【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 2.D解析:D【解析】【分析】根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.【详解】解:因为抛掷2次质地均匀的正方体骰子,正方体骰子的点数和应大于或等于2,而小于或等于12.显然,向上一面的点数之和为10”是随机事件.故选:D.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.A解析:A【解析】【分析】根据口袋中有10个白球,利用红色小球在总数中所占比例得出与实验比例应该相等求出即可.【详解】解:设袋中的红球的个数为x,根据题意,得:解得:x=6,经检验:x=6是原分式方程的解,∴袋中红球的个数为6,故选:A.【点睛】本题考查用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解题关键.4.B解析:B【解析】分析:观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.详解:A是中心对称图形;B既是轴对称图形又是中心对称图形;C是轴对称图形;D既不是轴对称图形又不是中心对称图形.故选B.点睛:本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.5.B解析:B【分析】由轴对称的性质可求出∠EFC的度数,可由式子∠EFC+∠EFC'-180°直接求出∠DFC'的度数.【详解】解:由翻折知∠EFC=∠EFC'=105°,∴∠EFC+∠EFC'=210°,∴∠DFC'=∠EFC+∠EFC'-180°=210°-180°=30°.故选:B.【点睛】本题考查了翻折变化(轴对称)的性质及角的计算,解题关键是熟练掌握并能够灵活运用轴对称变换的性质等.6.B解析:B【分析】BB′的延长线交A′C′于E,如图,根据轴对称的性质得到DB′=DB,BB′⊥AC,BC=BC′,AB=A′B,则可判断△ABC≌△A′BC′,所以∠C=∠A′C′B,AC=A′C′,则AC∥A′C′,所以DE⊥A′C′,且BD=BE,即B′E=3BD,然后利用三角形面积公式可得到S△A′B′C′=3S△ABC.【详解】BB′的延长线交A′C′于E,如图,∵点B关于AC的对称点是B',∴DB′=DB,BB′⊥AC,∵点C关于AB的对称点是C',∴BC=BC′,∵点A关于BC的对称点是A',∴AB=A′B,而∠ABC=∠A′BC′,∴△ABC≌△A′BC′(SAS),∴∠C=∠A′C′B,AC=A′C′,∴AC∥A′C′,∴DE⊥A′C′,而△ABC≌△A′BC′,∴BD =BE ,∴B ′E =3BD ,∴S △A ′B ′C ′=12A ′C ′×B ′E =3×12×BD ×AC =3S △ABC =3×1=3. 故选:B .【点睛】本题考查了轴对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线. 7.D解析:D【分析】根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【详解】解:A 、添加BD =CE ,可以利用“边角边”证明△ABD 和△ACE 全等,再根据全等三角形对应角相等得到∠DAB =∠EAC ,故本选项不符合题意;B 、添加AD =AE ,根据等边对等角可得∠ADE =∠AED ,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB =∠EAC ,故本选项不符合题意;C 、添加BE =CD 可以利用“边角边”证明△ABE 和△ACD 全等,再根据全等三角形对应角相等得到∠BAE=∠CAD ,可得∠DAB =∠EAC ,故本选项不符合题意;D 、添加DA =DE 无法求出∠DAB =∠EAC ,故本选项符合题意.故选:D .【点睛】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.8.B解析:B【分析】根据三角形的三边关系可得a b c +>,b c a +>,从而得出0a c b -+>,0b c a +->,然后根据绝对值的性质化简即可.【详解】解:∵a 、b 、c 分别是三角形的三条边,∴a b c +>,b c a +>,∴0a c b -+>,0b c a +->, ∴a c b b c a -+++-=a c b b c a -+++-=2b故选B .此题考查的是三角形三边关系的应用和化简绝对值,掌握三角形的三边关系和绝对值的性质是解题关键.9.C解析:C【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.【点睛】此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.10.B解析:B【解析】【分析】正确理解函数图象与实际问题的关系.【详解】根据题意:天气情况是:前5天小雨,河流水位较慢上升;后5天暴雨,河流水位较快上升.故选:B.【点睛】本题要求能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢11.B解析:B【分析】根据平行线的性质定理和判定定理即可解答,由∠ 3=∠4可知a与b平行,从而推出∠2=∠1,即可得解;【详解】∵∠3=∠4,∴ a与b平行,∴∠1=∠2∴∠2=∠1=100°,【点睛】本题考查了平行线的性质与判定,解决问题的关键是准确掌握平行线的判定与性质,并熟练运用;12.C解析:C【分析】先分别计算积的乘方运算,再利用单项式除以单项式法则计算即可.【详解】解:()3222()m m m -÷⋅ =()468m m -÷=()468m m -÷ =28m -,故选:C .【点睛】本题考查单项式除以单项式,积的乘方运算.在做本题时需注意运算顺序,先计算积的乘方,再算除法.二、填空题13.瓮中捉鳖(答案不唯一)【分析】此题根据事件的可能性举例即可【详解】必然事件就是一定会发生的例如:瓮中捉鳖等故答案:瓮中捉鳖(答案不唯一)【点睛】此题考查事件的可能性:必然事件的概念解析:瓮中捉鳖(答案不唯一)【分析】此题根据事件的可能性举例即可.【详解】必然事件就是一定会发生的,例如:瓮中捉鳖等,故答案:瓮中捉鳖(答案不唯一).【点睛】此题考查事件的可能性:必然事件的概念.14.4【分析】根据总数计算出第5组的频数用第5组的频数除以数据总数就是第五组的频率【详解】解:第5组的频数:50-2-8-15-5=20频率为:20÷50=04故答案为04【点睛】本题考查频数和频率的求解析:4【分析】根据总数计算出第5组的频数,用第5组的频数除以数据总数就是第五组的频率.【详解】解:第5组的频数:50-2-8-15-5=20,频率为:20÷50=0.4,故答案为0.4.【点睛】本题考查频数和频率的求法,关键知道频数=总数×频率,从而可求出解.15.126°【分析】先由平行线的性质得出∠BFE=∠DEF=18°再根据折叠的性质得出∠CFG=180°-2∠BFE由∠CFE=∠CFG-∠EFG即可得出答案【详解】解:∵四边形ABCD是长方形∴AD∥解析:126°【分析】先由平行线的性质得出∠BFE=∠DEF=18°,再根据折叠的性质得出∠CFG=180°-2∠BFE,由∠CFE=∠CFG-∠EFG即可得出答案.【详解】解:∵四边形ABCD是长方形,∴AD∥BC,∴∠BFE=∠DEF=18°,∴∠CFE=∠CFG-∠EFG=180°-2∠BFE-∠EFG=180°-3×18°=126°,故答案为:126°.【点睛】本题考查了翻折变换的性质、平行线的性质;熟练掌握翻折变换,弄清各个角之间的关系是解决问题的关键.16.7【分析】设点P关于OA的对称点为C关于OB的对称点为D当点EF在CD上时△PEF的周长最小【详解】分别作点P关于OAOB的对称点CD连接CD 分别交OAOB于点EF连接OPOCODPEPF∵点P关于解析:7【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点E、F在CD上时,△PEF的周长最小.【详解】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点E、F,连接OP、OC、OD、PE、PF.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PE=CE,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PF=DF,OP=OD,∠DOB=∠POB,∴OC=OD=OP=7,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=7.∴△PEF的周长的最小值=PE+EF+PF=CE+EF+DF≥CD=7.故答案为7.【点睛】此题主要考查轴对称−−最短路线问题,熟知两点之间线段最短是解答此题的关键.17.【分析】根据AB∥CD求得∠CMF=∠1=57°利用MF平分∠CME求得∠CME=2∠CMF=114°根据∠EMD=180°-∠CME求出结果【详解】∵AB∥CD∴∠CMF=∠1=57°∵MF平分∠解析:66【分析】根据AB∥CD,求得∠CMF=∠1=57°,利用MF平分∠CME,求得∠CME=2∠CMF=114°,根据∠EMD=180°-∠CME求出结果.【详解】∵AB∥CD,∴∠CMF=∠1=57°,∵MF平分∠CME,∴∠CME=2∠CMF=114°,∴∠EMD=180°-∠CME=66°,故答案为:66.【点睛】此题考查平行线的性质,角平分线的有关计算,理解图形中角之间的和差关系是解题的关键.18.y=5x梯形的高梯形的面积【分析】根据梯形的面积公式(上底+下底)×高÷2代入相应数值进行计算即可;在函数中给一个变量x一个值另一个变量y就有对应的值则x是自变量y是因变量据此即可判断;【详解】梯形解析:y=5x 梯形的高梯形的面积【分析】根据梯形的面积公式(上底+下底)×高÷2,代入相应数值,进行计算即可;在函数中,给一个变量x一个值,另一个变量y就有对应的值,则x是自变量,y是因变量,据此即可判断;【详解】梯形的面积y (cm 2)与高x (cm )之间的关系式为:y=(2+8)x×12=5x ;自变量是梯形的高,因变量是梯形的面积;故答案为y=5x ,梯形的高,梯形的面积.【点睛】此题主要考查了列函数关系式,以及求函数值,关键是掌握梯形的面积公式. 19.56°【分析】先利用互余计算出∠FDB=28°再根据平行线的性质得∠CBD=∠FDB=28°接着根据折叠的性质得∠FBD=∠CBD=28°然后利用三角形外角性质计算∠DFE 的度数【详解】∵四边形AB解析:56°【分析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE 的度数.【详解】∵四边形ABCD 为矩形,∴AD ∥BC ,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD ∥BC ,∴∠CBD=∠FDB=28°,∵矩形ABCD 沿对角线BD 折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故答案是:56°.【点睛】考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.20.【分析】按照多项式乘以多项式的法则展开化简合并同类项令项的系数为零即可【详解】解:∵==又∵的乘积中不含项∴-(2m+1)=0解得m=故答案为:【点睛】本题考查了整式的乘法熟练掌握多项式乘以多项式的 解析:12-. 【分析】 按照多项式乘以多项式的法则,展开化简,合并同类项,令2x 项的系数为零即可.【详解】解:∵2(1)(2)x x mx m --+=32222x mx mx x mx m -+-+-=32(21)3x m x mx m -++-,又∵2(1)(2)x x mx m --+的乘积中不含2x 项,∴-(2m+1)=0,解得 m=12-. 故答案为:12-. 【点睛】 本题考查了整式的乘法,熟练掌握多项式乘以多项式的基本法则,并准确理解不含某项的意义是解题的关键.三、解答题21.(1);(2)转动转盘1更优惠.【解析】 试题分析:(1)根据转盘1,利用概率公式求得获得优惠的概率即可;(2)分别求得转动两个转盘所获得的优惠,然后比较即可得到结论. 试题(1)∵整个圆被分成了12个扇形,其中有6个扇形能享受折扣,∴P (得到优惠)==;(2)转盘1能获得的优惠为:=25元,转盘2能获得的优惠为:40×=20元,所以选择转动转盘1更优惠.考点:列表法与树状图法.22.(1)见解析;(2)5.【分析】(1)分别找出A 、B 、C 三点关于直线l 的对称点,再顺次连接即可;(2)利用长方形的面积减去周围多余三角形的面积即可得到△ABC 的面积.【详解】解:(1)△A 1B 1C 1如图所示:(2)△ABC 的面积=3×4−12×2×4−12×1×3−12×1×3=5. 【点睛】 此题主要考查了作图--轴对称变换以及三角形面积的求法,关键是找出对称点的位置以及利用割补法求面积.23.(1)PA=PB ;(2)成立证明见解析;(3)OA=BC+OC【分析】(1)作PD ⊥OM 于点D ,根据角平分线的性质得到PC=PD ,证明△APD ≌△BPC ,根据全等三角形的性质定理证明;(2)作PD ⊥OM 于点D ,根据角平分线的性质得到PC=PD ,证明△APD ≌△BPC ,根据全等三角形的性质定理证明;(3)仿照(2)的解法得出△APD ≌△BPC ,从而得出AD=BC ,再根据HL 得出Rt △OPD ≌△RtOPC ,得出OC=OD ,继而得出结论.【详解】(1)作PD ⊥OM 于点D ,∵点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,∵∠MON=90°,∴∠APB=90°,∠CPD=90°,∴∠APD+∠BPD=90°,∠BPC+∠BPD=90°∴∠APD=∠BPC ,∵∠PDA=∠PCB=90°,在△APD 和△BPC 中,APD BPC PD PCADP BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BPC (ASA ),∴AP=BP .(2)(1)中的结论还成立理由如下:如图2,作PD ⊥OM 于点D ,∵点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,∵∠MON=60°,∴∠APB=120°,在四边形OCPD 中,∠CPD=360°-90°-90°-60°=120°,∴∠APD+∠BPD=120°,∠BPC+∠BPD=120°∴∠APD=∠BPC ,∵∠PDA=∠PCB=90°,在△APD 和△BPC 中,APD BPC PD PCADP BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BPC (ASA ),∴AP=BP .(3)OA=2BC-OB .理由如下:如图3,作PD ⊥OM 于点D ,同(2),可证△APD ≌△BPC ,∴AD=BC ,点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,在Rt △OPD 和RtOPC 中,PC PD OP OP =⎧⎨=⎩∴Rt △OPD ≌△RtOPC ,∴OC=OD ,∴OA-AD=OD=OC ,∴OA-BC=OC ,∴OA=BC+OC .【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理、灵活运用类比思想是解题的关键.24.答案见解析【解析】试题分析:(1)将题干中的数据填写在有关气温和音速的2行8列的表格中即可 (2)根据变量的定义分析即可完成;(3)结合表格数据,根据传播速度与温度的变化规律即可得出答案;(4)结合表格数据,通过分析得出两个变量之间的关系.试题(1)填表如下:(3)当气温是35℃时,估计音速y 可能是:352m/s ;(4)根据表格中数据可得出:温度每升高5℃,传播的速度增加3,当x=0,y=331,故两个变量之间的关系为:y=331+35x . 25.(1)=36DOE ∠︒;(2)=40BOD ∠︒,=40EOF ∠︒ 【分析】(1)设DOE x ∠=,由题意易得4COE x ∠=,然后根据∠COE+∠EOD=180°可求解; (2)由题13BOD AOB =∠∠,则设3AOB y ∠=,则有BOD y ∠=,进而可得1122BOF DOF BOD y ∠=∠=∠=,1322AOE BOE AOB y ∠=∠=∠=,然后可得EOF DOE DOF y ∠=∠+∠=,最后根据角的和差关系可求解.【详解】解:(1)设DOE x ∠=,4COE DOE ∠=∠,4COE x ∴∠=,∵∠COE+∠EOD=180°,即4180x x +=︒,解得36x =︒∴∠DOE=36°;(2)由题13BOD AOB =∠∠,则设3AOB y ∠=,BOD y ∴∠=OF 平分BOD ∠,OE 平分AOB ∠1122BOF DOF BOD y ∴∠=∠=∠=,1322AOE BOE AOB y ∠=∠=∠=, 12DOE BOE BOD y ∴∠=∠-∠=, EOF DOE DOF y ∴∠=∠+∠=∵160AOB EOF ∠+∠=︒,即3160y y +=︒,解得40y =︒,∴40BOD ∠=︒,40EOF ∠=︒.【点睛】本题主要考查角平分线的定义、补角及角的和差关系,熟练掌握角平分线的定义、补角及角的和差关系是解题的关键.26.(1)①4240-x y ;②12a -;(2)253x x -+;-14 【分析】(1)①先计算积的乘方,然后计算单项式乘单项式;②先计算积的乘方,然后计算单项式除以单项式;(2)整式的混合运算,先算乘法,然后再算加减合并同类项化简,最后代入求值.【详解】解:(1)①32(2)(5)x xy ⋅- =328(5)x xy ⋅-4240x y =-;②3252()(2)a b a b -÷-=6252(2)a b a b ÷- =12a -; (2)2(1)(1)(1)(31)(21)x x x x x x --+---- 22222(1)(651)x x x x x =-----+222221651x x x x x =--+-+-253x x =-+当2x =时,原式2523220614=-⨯+⨯=-+=-.【点睛】本题考查整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.。
2021-2022年七年级数学下期末一模试题(含答案)(2)
一、选择题1.“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是()A.必然事件 B.不可能事件 C.随机事件 D.无法确定2.某校开设了文艺、体育、科技和学术四类社团,要求每位学生从中任选一类社团参加.现统计出八年级(1)班40名学生参加社团的情况,如下图:如果从该班随机选出一名学生,那么该生是体育类社团成员的可能性大小是()A.15B.25C.14D.3203.下列命题正确的是().A.任何事件发生的概率为1B.随机事件发生的概率可以是任意实数C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生4.自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()A.B.C.D .5.如图,四边形 ABCD 中,AD //BC ,DC BC ⊥,将四边形沿对角线BD 折叠,点A 恰好落在DC 边上的点A'处,A'BC 20︒∠=,则A D 'B ∠的度数是 ( )A .15°B .25°C .30°D .40° 6.长方形按下图所示折叠,点D 折叠到点D′的位置,已知∠D′FC=60°,则∠EFD 等于( )A .30°B .45°C .50°D .60° 7.已知三角形的一边长为8,则它的另两边长分别可以是( )A .4,4B .17,29C .3,12D .2,9 8.已知图中的两个三角形全等,则∠α等于( )A .50°B .60°C .70°D .80°9.如图,在△ABC 中,已知点D ,E ,F 分别为边AC ,BD ,CE 的中点,且阴影部分图形面积等于4平方厘米,则△ABC 的面积为( )平方厘米A .8B .12C .16D .1810.某地海拔高度h 与温度T 的关系可用T=21-6h 来表示(其中温度单位为℃,海拔高度单位为km),则该地区某海拔高度为2 000 m 的山顶上的温度为 ( )A .9 ℃B .7 ℃C .6 ℃D .3 ℃11.如图,按照上北下南,左西右东的规定画出方向十字线,∠AOE =m °,∠EOF =90°,OM 、ON 分别平分∠AOE 和∠BOF ,下面说法:①点E 位于点O 的北偏西m °;②图中互余的角有4对;③若∠BOF =4∠AOE ,则∠DON =54°;④若MON n AOE BOF ,则n 的倒数是23,其中正确有( )A .3个B .2个C .1个D .0个12.下列运算中正确的是( )A .235x y xy +=B .()3253x y x y =C .826x x x ÷=D .32622x x x ⋅=二、填空题13.图中有四个可以自由转动的转盘,每个转盘被分成若干等分,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是( )A .转盘②与转盘③B .转盘②与转盘④C .转盘③与转盘④D .转盘①与转盘④ 14.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的概率约为30%,估计袋中白球有_____个.15.用一张长方形纸条折成如图所示图形,如果∠1=62°,那么∠2=_____.16.如图,ABC ∆中,∠BAC 75=︒,7BC =,ABC ∆的面积为14,D 为BC 边上一动点(不与B ,C 重合),将ABD ∆和ACD ∆分别沿直线AB ,AC 翻折得到ABE ∆和ACF ∆,那么△AEF 的面积的最小值为____.17.如图,点D 在BC 上,DE ⊥AB 于点E ,DF ⊥BC 交AC 于点F ,BD =CF ,BE =CD .若∠AFD =145°,则∠EDF =_____.18.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是______,因变量是______.19.如图,要把池中的水引到D 处,可过D 点作CD ⊥AB 于C ,然后沿CD 开渠,可使所开渠道最短,试说明设计的依据:______.20.若21202x y ⎛⎫++-= ⎪⎝⎭,则20202021x y 的值为_________. 三、解答题21.在一个不透明的口袋里装有分别标有数字1,2,3,4四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.(1)若从中任取一球,球上的数字为偶数的概率为多少?(2)若设计一种游戏方案:若从中任取一球(不放回),再从中任取一球.两个球上的数字之差的绝对值为1为甲胜,否则为乙胜,请问这种游戏方案设计对甲、乙双方公平吗?请用画树状图或列表格的方法说明理由.22.在棋盘中建立如图①所示的平面直角坐标系,二颗棋子A 、O 、B 的位置如图,它们的坐标分别为()1,1-、()0,0、()1,0.(1)如图②,添加棋子C ,使A 、O 、B 、C 为端点的四条首尾连接的线段围成的图形成为轴对称图形,请在图中画出该图形的对称轴;(2)在其它格点位置添加一颗棋子P ,使A 、O 、B 、P 为端点的首尾连接的四条线段构成一个轴对称图形,请直接写出点P 的坐标。
2021-2022年七年级数学下期末一模试卷(含答案)(2)
一、选择题1.学完《概率初步》这一章后,老师让同学结合实例说一说自己的认识,请你判断以下四位同学说法正确的是()A.小智说,做3次掷图钉试验,发现2次钉尖朝上,因此钉尖朝上的概率是2 3B.小慧说,某彩票的中奖概率是5%,那么如果买100张彩票一定会有5张中奖C.小通说,射击运动员射击一次只有两种结果:中靶与不中靶,所以它们发生的概率都是12D.小达做了20次抛掷均匀硬币的试验,其中有5次正面朝上,15次正面朝下,他认为再做一次,正面朝上的概率是二分之一2.下列事件中,属于必然事件的是()A.任意画一个正五边形,它是中心对称图形B.某课外实践活动小组有13名同学,至少有2名同学的出生月份相同C.不等式的两边同时乘以一个数,结果仍是不等式D.相等的圆心角所对的弧相等3.从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是P1,摸到红球的概率是P2,则()A.P1=1,P2=1B.P1=0,P2=1C.P1=0,P2=1 4D.P1=P2=1 44.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,这两个对应三角形(如图)的对应点所具有的性质是( ).A.对应点所连线段都相等B.对应点所连线段被对称轴平分C.对应点连线与对称轴垂直D.对应点连线互相平行5.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()A .B .C .D . 6.下列图形中,是轴对称图形的有( )A .1个B .2个C .3个D .4个7.如图,ABC A BC '≌,110A '∠=︒,30ABC ∠=︒,则ACB =∠( )A .40︒B .20︒C .30D .45︒ 8.下列各组数中,不可能成为一个三角形三边长的是( ) A .2,3,4B .5,7,7C .5,6,12D .6,8,10 9.已知三角形的三边长分别是3,8,x ,则x 的值可以是( ) A .6B .5C .4D .3 10.学校计划买100个乒乓球,买的乒乓球的总费用w (元)与单价n (元/个)的关系式w =100n 中( ) A .100是常量,w 、n 是变量B .100、w 是常量,n 是变量C .100、n 是常量,w 是变量D .无法确定11.如图,平面内直线////a b c ,点,,A B C 分别在直线,,a b c 上,BD 平分ABC ∠,并且满足a β∠>∠,则,,a βγ∠∠∠关系正确的是( )A . 2a βγ∠=∠+∠B .22a βγ∠=∠-∠C .a βγ∠=∠+∠D . 2a βγ∠=∠-∠12.下列计算正确的是( )A .248a a a •=B .352()a a =C .236()ab ab =D .624a a a ÷=二、填空题13.在-3、-2、-1、0、1、2,3,这七个数中,随机选取一个数,记为a ,那么使得关于x 的反比例函数32a y x+=的图像位于第一、三象限,且使得关于x 的方程11211ax x x+-=--有整数解的概率为_____. 14.小莉抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果她第四次抛硬币,那么硬币正面朝上的概率为________.15.如图,在ABC 中,AB AC =,D 是BC 边的中点,EF 垂直平分AB 边,动点P 在直线EF 上,若12BC =,84ABC S =△,则线段PB PD +的最小值为______.16.如图,四边形ABCD 中,∠B =∠D =90°,∠C =50°,在BC 、CD 边上分别找到点M 、N ,当△AMN 周长最小时,∠AMN +∠ANM 的度数为______.17.如图,点B 、F 、C 、E 在一条直线上(点F ,C 之间不能直接测量),点A ,D 在BE 的异侧,如果测得AB =DE ,AB ∥DE ,AC ∥DF .若BE =14m ,BF =5m ,则FC 的长度为_____m .18.在一个边长为2的正方形中挖去一个边长为x (0<x <2)的小正方形,如果设剩余部分的面积为y ,那么y 关于x 的函数解析式是_____.19.如图,已知直线12l l ,130∠=︒,则23∠+∠=_________.20.如图,两个阴影图形都是正方形,用两种方式表示这两个正方形的面积和,可以得到的等式为______.三、解答题21.在一个不透明的口袋里装有分别标有数字1,2,3,4四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.(1)若从中任取一球,球上的数字为偶数的概率为多少?(2)若设计一种游戏方案:若从中任取一球(不放回),再从中任取一球.两个球上的数字之差的绝对值为1为甲胜,否则为乙胜,请问这种游戏方案设计对甲、乙双方公平吗?请用画树状图或列表格的方法说明理由.22.如图,正方形网格中每个小正方形的边长为1,网格中有一个△AB C .(1)请直接写出△ABC 的面积为__________;(2)利用方格找出点A 、B 、C 关于直线MN 的对称点D 、E 、F ,并顺次连接D 、E 、F 三点;(3)若点P 是直线MN 上的一个动点,则PC +PA 的最小值为_________.23.如图,已知在ABC 中,AB AC =,90BAC ∠=︒,别过B 、C 两点向过A 的直线作垂线,垂足分别为E 、F .求证:EF BE CF =+.24.如图,自行车每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm .(1)观察图形,填写下表:链条的节数/节2 3 4 链条的长度/cm(2)如果x 节链条的长度是y ,那么y 与x 之间的关系式是什么?(3)如果一辆某种型号自行车的链条(安装前)由60节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?25.如图,射线OB 在钝角AOC ∠的内部,且180,AOB AOC OP ∠+∠=︒分AOB ∠,OQ 平分AOC ∠.(1)当OB 与OQ 重合时,求AOC ∠得度数;(2)若100AOC ∠=︒,求POQ ∠的度数;(3)若AOC n ∠=︒,求POQ ∠的度数(用含n 的代数式表示).26.化简:2(3)3(2)m n m m n +-+.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】试验次数足够大时,频率才可以表示概率,A 选项试验次数过少,所以错误;5%是每张均有%的可能中奖,而不是100张彩票一定会有5张中奖,偷换概念;概率题一定要考虑样本空间,然后确定样本,C中还有脱靶的可能,所以错误;抛掷一枚均匀硬币,结果只有两种正面朝上和正面朝下,且每次发生的可能是相等的,每做一次,正面朝上的概率都是二分之一.【详解】小智说,做3次掷图钉试验,发现2次钉尖朝上,但是试验次数少,因此不能确定钉尖朝上的概率,所以A错误;小慧说,某彩票的中奖概率是5%,那么如果买100张彩票不一定会有5张中奖,所以B 错误;小通说,射击运动员射击一次只有两种结果:中靶与不中靶,所以它们发生的概率都是1 2不正确,中靶与不中靶不是等可能事件,一般情况下,还有脱靶的可能,所以C错误;小达做了20次抛掷均匀硬币的试验,其中有5次正面朝上,15次正面朝下,他认为再做一次,正面朝上的概率是二分之一,所以D正确.故选:D.【点睛】本题考察了频率和概率的区别,等可能时间概率的计算;在初中课程中认为当试验次数足够大时,频率可以表示概率;等可能事件中,n件事发生的概率都是相等的,因此每件事发生的概率是1n.2.B解析:B【分析】根据随机事件、必然事件、不可能事件的定义,分别进行判断,即可得到答案.【详解】解:A、正五边形不是中心对称图形,故A是不可能事件;B、某课外实践活动小组有13名同学,至少有2名同学的出生月份相同,是必然事件,故B正确;C、不等式的两边同时乘以一个数,结果不一定是不等式,是随机事件,故C错误;D、在同圆或等圆中,相等的圆心角所对的弧相等,故D是随机事件,故D错误;故选:B.【点睛】本题考查了随机事件、必然事件、不可能事件的定义,解题的关键是熟练掌握定义,正确的进行判断.3.B解析:B【详解】解:由题意可知:摸到红球是必然发生的事件,摸到白球是不可能发生的事件,所以P1=0,P2=1故选B.【点睛】本题考查概率的意义及计算,掌握概念是关键,此题难度不大.4.B解析:B【分析】直接利用轴对称图形的性质得出对应点之间的关系.【详解】轴对称图形是把图形沿着某条直线对折,直线两旁的部分能够完全重合的图形,而这条直线叫做对称轴,由题意知,两图形关于直线对称,则这两图形的对应点连线被对称轴直线垂直平分,当图形平移后,两图形的对应点连线只被对称轴直线平分.故选B.【点睛】本题主要考查轴对称图形的性质,熟悉掌握性质是关键.5.A解析:A【详解】解:由平面图形的折叠及立体图形的表面展开图的特点再结合实际操作,A 符合题 故选:A6.C解析:C【解析】【分析】根据轴对称图形的概念对各个图案进行判断即可得解.【详解】解:第1个是轴对称图形,故本选项正确;第2个是轴对称图形,故本选项正确;第3个是轴对称图形,故本选项正确;第4个不是轴对称图形,故本选项错误.故选:C .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.A解析:A【分析】根据全等三角形对应角相等即可求解;【详解】∵ABC A BC '∆≅∆ ,∴ ∠A=∠A '=110°,∵∠ABC=30°,∴∠ACB=180°-110°-30°=40°,故选:A.【点睛】本题考查了全等三角形的性质,正确掌握全等三角形对应角相等是解题的关键;8.C解析:C【分析】判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】A.∵2+3>4,∴能组成三角形,故A错误;B.∵5+7>7,∴不能组成三角形,故B错误;C.∵5+6<12,∴不能组成三角形,故C正确;D.∵6+8>10,∴能组成三角形,故D错误;故选:C.【点睛】本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.9.A解析:A【分析】根据三角形三边关系:①任意两边之和大于第三边;②任意两边之差小于第三边,即可得出第三边的取值范围.【详解】解:∵三角形的三边长分别为3,8,x,∴8-3<x<8+3,即5<x<11,故选:A.【点睛】本题考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.10.A解析:A【解析】∵买的乒乓球的总费用W(元)与单价n(元/个)的关系式W=100n,∴100是常量,在此式中W、n是变量.故选:A.点睛:此题主要考查了常量与变量,关键是掌握常量和变量的定义.11.A解析:A【分析】由平行线的性质可得∠ABC=a β∠+∠,然后根据1=2ABC βγ∠+∠∠求解即可. 【详解】解:∵////a b c ,∴∠ABE=∠α,∠CBE=∠β,∴∠ABC=a β∠+∠,∵BD 平分ABC ∠,∴∠CBD 1=2ABC ∠, ∴()1=2βγαβ∠+∠∠+∠, ∴2a βγ∠=∠+∠.故选A .【点睛】本题考查了角平分线的定义,以及平行线的性质,熟练掌握平行线的性质是解答本题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.12.D解析:D【分析】分别根据同底数幂的乘法,幂的乘方,积的乘方法则以及同底数幂的除法法则逐一计算判断即可.【详解】解:A 、a 2∙a 4=a 6,故选项A 不合题意;B 、(a 2)3=a 6,故选项不B 符合题意;C 、(ab 2)3=a 3b 6,故选项C 不符合题意;D 、a 6÷a 2=a 4,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.二、填空题13.【解析】【分析】若要使得函数y=的图像位于第一三象限则k=3a+2>0故a>-若要使关于x的方程-2=有整数解x=-找出-为整数的a的取值然后找到符合条件的a的值占所给出数的几分之几即可【详解】若要解析:3 7【解析】【分析】若要使得函数y=32ax+的图像位于第一、三象限,则k=3a+2>0故a>-23,若要使关于x的方程11+-axx-2=11x-有整数解,x=-42a-, 找出-42a-为整数的a的取值.然后找到符合条件的a的值占所给出数的几分之几即可.【详解】若要使得函数y=32ax+的图像位于第一、三象限,则k=3a+2>0,故a>-2 3 .若要使关于x的方程11+-axx-2=11x-由整数解,x=-42a-,且x-1≠0则-42a-为整数且x≠1,故a-2可能为﹣4、﹣2、﹣1、1、2、4,当a-2=﹣4时a=﹣2,x=1(舍去).当a-2=﹣2,a=0,x=2.当a-2=﹣1时,a=1,x=4.当a-2=1时,a=3,x=﹣4,当a-2=2时,a=4,x=﹣2.当a-2=4时,a=6,x=﹣1.a>-23且a=0、1、3、4、6,在-3、-2、-1、0、1、2,3这七个数中随即取一个数记为a,则上述a中符合条件的为0、1、3,所以概率为3 7 .【点睛】本题主要考查一次函数、分式方程.要想使分式方程有意义,则分式方程的分母不能为0,即x-1≠0,容易忽略.14.【分析】本题考查了概率的简单计算能力是一道列举法求概率的问题属于基础题可以直接应用求概率的公式【详解】因为一枚质地均匀的硬币只有正反两面所以不管抛多少次硬币正面朝上的概率都是故答案为【点睛】本题考查解析:1 2【分析】本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.【详解】因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是12.故答案为12.【点睛】本题考查了概率的意义,一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p.明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.15.14【分析】根据三角形的面积公式得到AD=14由EF垂直平分AB得到点AB关于直线EF对称于是得到AD的长度=PB+PD的最小值即可得到结论【详解】解:∵AB=ACD是BC中点∴AD⊥BC又∵BC=解析:14【分析】根据三角形的面积公式得到AD=14,由EF垂直平分AB,得到点A,B关于直线EF对称,于是得到AD的长度=PB+PD的最小值,即可得到结论.【详解】解:∵AB=AC,D是BC中点,∴AD⊥BC,又∵BC=12,S△ABC=84,∴12×12×AD=84,∴AD=14,∵EF垂直平分AB,∴PA=PB,∴PB+PD=PA+PD,∴当A,P,D在同一直线上时,PB+PD=PA+PD=AD,即AD的长度=PB+PD的最小值,∴PB+PD的最小值为14,故答案为:14.【点睛】本题考查了轴对称-最短路线问题,线段的垂直平分线的性质,等腰三角形的性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.16.100°【分析】根据要使△AMN的周长最小即利用点的对称让三角形的三边在同一直线上作出A关于BC和CD的对称点A′A″即可得出∠AA′M+∠A″=180°-∠DAB=∠C=50°进而得出∠AMN+∠解析:100°【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=180°-∠DAB =∠C=50°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【详解】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠B=∠D=90°,∠C=50°,∵∠DAB=130°,∴∠AA′M+∠A″=180°-130°=50°,由对称性可知:∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×50°=100°,故答案为:100°.【点睛】此题主要考查了平面内最短路线问题求法以及三角形的内角和定理及外角的性质和轴对称的性质等知识,根据已知得出M,N的位置是解题关键.17.4【分析】证明△ABC≌△DEF(AAS)得到BC=EF即可得到答案【详解】解:∵AB∥DEAC∥DF∴∠B=∠E∠ACB=∠DFE在△ABC和△DEF中∴△ABC≌△DEF(AAS)∴BC=EF∴解析:4【分析】证明△ABC≌△DEF(AAS),得到BC=EF,即可得到答案.【详解】解:∵AB∥DE,AC∥DF,∴∠B=∠E,∠ACB=∠DFE,在△ABC和△DEF中,B EACB DFE AB DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=CE=5m,∴FC=BE﹣BF﹣CE=14m﹣5m﹣5m=4m;故答案为:4.【点睛】此题考查全等三角形的判定及性质;平行线的性质:两直线平行,内错角相等;正确掌握三角形全等的判定定理是解题的关键.18.y=4-x2【解析】分析:根据剩下部分的面积=大正方形的面积-小正方形的面积得出y与x的函数关系式即可详解:由题意知:剩余面积大正方形面积小正方形面积即y=2²-x²=-x²+4故答案为y=2²-x解析:y=4-x2【解析】分析:根据剩下部分的面积=大正方形的面积-小正方形的面积,得出y与x的函数关系式即可.详解:由题意知:剩余面积大正方形面积小正方形面积,即y=2²-x²=-x²+4.故答案为y=2²-x²=-x²+4(0<x<2).点睛:本题考查了根据实际问题列出二次函数关系式,利用剩下部分的面积=大正方形的面积-小正方形的面积的得出是解答本题的关键.19.【分析】过∠2的顶点作AB∥可由得出AB∥根据平行线的性质即可解答【详解】如图;过∠2的顶点作AB∥∴∠DAB=又∵∴AB∥∴∠BAC+∠3=180°∴∠2+∠3=∠DAB+∠BAC+∠3=故答案为解析:210︒.【分析】过∠2的顶点作AB ∥1l ,可由12l l 得出AB ∥2l ,根据平行线的性质即可解答. 【详解】如图; 过∠2的顶点作AB ∥1l∴∠DAB=130∠=︒又∵12l l∴AB ∥2l∴∠BAC+∠3=180°∴∠2+∠3=∠DAB+∠BAC+∠3=210︒故答案为210︒【点睛】本题考查的是平行线的性质及平行公理的推论,掌握平行线的性质定理及平行公理的推论是解答关键.20.(a+b )2-2ab=a2+b2【分析】利用各图形的面积求解即可【详解】解:两个阴影图形的面积和可表示为:a2+b2或 (a+b )2-2ab 故可得: (a+b )2-2ab=a2+b2故答案为:(a+解析:(a+b )2-2ab = a 2+b 2【分析】利用各图形的面积求解即可.【详解】解:两个阴影图形的面积和可表示为:a 2+b 2或 (a+b )2-2ab ,故可得: (a+b )2-2ab = a 2+b 2故答案为:(a+b )2-2ab = a 2+b 2【点睛】本题主要考查了完全平方公式的几何背景,解题的关键是明确四块图形的面积.三、解答题21.(1)12;(2)这种游戏方案设计对甲、乙双方公平. 【解析】试题分析:(1)由不透明的口袋里装有分别标有数字1,2,3,4四个小球,球上的数字为偶数的是2与4,利用概率公式即可求得答案;(2)首先画出树状图,然后由树状图求得所有等可能的结果与两个球上的数字之和为偶数的情况,利用概率公式说明游戏是否公平;试题解:(1)∵不透明的口袋里装有分别标有数字1,2,3,4四个小球,球上的数字为偶数的是2与4,∴从中任取一球,球上的数字为偶数的概率为:2142=;(2)画树状图得:∵共有12种等可能的结果,两个球上的数字之和为偶数的有(1,3),(2,4),(3,1),(4,2)共4种情况,∴两个球上的数字之和为偶数的概率为:41123=,∴p (甲胜)=,p(乙胜)=,,不公平.考点:1、概率公式;2、游戏公平性的判断.22.(1)4;(2)见解析;(3)6.【分析】(1)直接利用直角三角形面积求法进而得出答案;(2)直接利用关于直线对称点的性质得出对应点位置进而得出答案;(3)利用轴对称求最短路线的方法得出答案.【详解】解:(1)△ABC的面积为:12×2×4=4;故答案为:4;(2)如图所示:△EDF即为所求;(3)PC+PA 的最小值为:PA+PC=DC=6.故答案为:6.【点睛】此题主要考查了应用设计与作图,正确得出对应点位置是解题关键.23.见解析【分析】证明△BEA ≌△AFC ,得到AE=CF ,BE=AF ,即可得到结论.【详解】证明:BE EA ⊥,CF AF ⊥,90BAC BEA AFC ∴∠=∠=∠=︒,90EAB CAF ∴∠+∠=︒,90EBA EAB ∠+∠=︒,CAF EBA ∴∠=∠,在ABE △和AFC △中,BEA AFC EBA CAF AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BEA AFC ∴△≌△.AE CF ∴=,BE AF =.EF AF AE BE CF ∴=+=+..【点睛】此题考查全等三角形的判定及性质,熟记三角形的判定定理是解题的关键.24.(1)4.2;5.9;7.6;(2) 1.70.8y x =+;(3)102cm .【分析】(1)首先根据题意并结合1节链条的图形可得每节链条两个圆之间的距离为(2.5-0.8×2)cm ;接下来再结合图形可得到2节链条的长度为2.5+0.9+0.8,按此规律,自己写出3节链条、4节链条的长度,再进行填表即可;(2)结合(1)中各节链条长度的表达式,则不难得到y与x之间的关系式了;(3)将x=60代入(2)中的关系式中,可求得y值,此时,注意:自行车上的链条为环形,在展直的基础上还要缩短0.8cm.【详解】解:(1)每节链条两个圆之间的距离为:2.5-0.8×2=0.9,观察图形可得,2节链条的长度为2.5+0.9+0.8=4.2;3节链条的长度为4.2+0.9+0.8=5.9;4节链条的长度为5.9+0.9+0.8=7.6;填表如下:链条的节数/节 2 3 4 …链条的长度/cm 4.2 5.9 7.6 …(2)1节链条、2节链条、3节链条、4节链条的长度分别可表示为:2.5=0.8+1.7×1,4.2=0.8+1.7×2,5.9=0.8+1.7×3,7.6=0.8+1.9×4=7.6,故y与x之间的关系为:y=1.7x+0.8;(3)当x=60时,y=1.7×60+0.8=102.8,因为自行车上的链条为环形,在展直的基础上还要缩短0.8cm,故自行车60节链条的长度为102.8-0.8=102(cm),所以这辆自行车上的链条(安装后)总长度是102cm.【点睛】本题主要考查了函数关系式,根据题意得出n节链条的长度与每节长度之间的关系是解决问题的关键.25.(1)120°;(2)10°;(3)n°-90°【分析】(1)根据角平分线的定义得到AOB=∠BOC=12∠AOC,再结合∠AOB+∠AOC=180°,可得∠AOC的度数;(2)根据∠AOC得到∠AOB,再根据角平分线的定义得到∠AOP=40°和∠AOQ=50°,从而求出∠POQ;(3)根据(2)中的方法和过程求解即可.【详解】解:(1)如图(1),∵OQ平分∠AOC,且点Q与点B重合,∴∠AOB=∠BOC=12∠AOC,∵∠AOB+∠AOC=180°,∴12∠AOC+∠AOC=180°,∴∠AOC=120°;(2)如图(2),∵∠AOC=100°,又∵∠AOB+∠AOC=180°,∴∠AOB=80°,∵OP 平分∠AOB ,∴∠AOP=40°,∵OQ 平分∠AOC ,∴∠AOQ=50°,∴∠POQ=∠AOQ-∠AOP=50°-40°=10°;(3)∵∠AOC=n°,∴∠AOB+∠AOC=180°,∴∠AOB=180°-n°,∵OQ 平分∠AOC ,∴∠AOQ=12∠AOC=2n ︒, ∵OP 平分∠AOB ,∴∠AOP=12∠AOB=1802n ︒-︒=902n ︒︒-, ∴∠POQ=∠AOQ-∠AOP =9022n n ︒︒⎛⎫-︒- ⎪⎝⎭=90n ︒-︒.【点睛】本题考查角平分线的定义,角的和差,余角和补角的意义,掌握角平分线的定义以及角的和差关系是正确解答的前提.26.226m n +【分析】先根据完全平方公式及单项式乘以多项式法则去括号,再合并同类项即可.【详解】解:2(3)3(2)m n m m n +-+ 2229636m mn n m mn =++--226m n =+.【点睛】此题考查整式的混合运算,掌握完全平方公式及单项式乘以多项式法则,去括号法则,合并同类项法则是解题的关键.。
2021-2022年七年级数学下期末一模试卷(及答案)(2)
一、选择题1.下列事件中,是必然事件的为()A.明天会下雨B.x是实数,x2<0C.两个奇数之和为偶数D.异号两数相加,和为负数2.下列事件中,属于不确定事件的是()A.抛掷一枚硬币,正面朝上B.在空中抛掷石块,石块终将落下C.小明的跑步速度是100米/秒D.在一个标准大气压下,水到100C就沸腾3.下列命题正确的是().A.任何事件发生的概率为1B.随机事件发生的概率可以是任意实数C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生4.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是()A.1 号袋B.2 号袋C.3 号袋D.4 号袋5.将一张正方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为B′、D′,若∠B′A D′=16°,则∠EAF的度数为().A.40°B.45°C.56°D.37°6.下列图形中是轴对称图形的有()A .1个B .2个C .3个D .4个7.如图,CD AB ⊥,BE AC ⊥,垂足分别为点D ,点E ,BE 、CD 相交于点O ,12∠=∠,则图中全等三角形共有( )A .2对B .3对C .4对D .5对8.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 9.图中的小正方形边长都相等,若MNP MFQ ≌,则点Q 可能是图中的( )A .点DB .点C C .点BD .点A10.已知圆柱的高为3 cm ,当圆柱的底面半径r(cm)由小变大时,圆柱的体积V(cm 3)随之变化,则V 与r 的关系式是 ( )A .V=πr 2B .V=9πr 2C .V=13πr 2D .V=3πr 211.如图,∠1=20º,AO ⊥CO ,点B 、O 、D 在同一条直线上,则∠2的度数为( )A .70ºB .20ºC .110ºD .160º 12.()()()2483212121+++···()32211++的个位数是( )A .4B .5C .6D .8 二、填空题13.一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使不知道密码的人一次就拨对密码的概率小于12018,则密码的位数至少需要__位. 14.一个不透明的盒子中装有4个白球,5个红球,这些球除颜色外无其他区别,从这个盒子中随意摸出一个球,摸到红球的可能性的大小是_____.15.如图a 是长方形纸带,18DEF ∠=︒,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的CFE ∠的度数是_________.16.如图,//AB CD ,点M 为CD 上一点,MF 平分∠CME .若∠1=57°,则∠EMD 的大小为_____度.17.如图,已知△ABC 的周长是15,点F ,G 分别是AC ,BC 上的点,将△CFG 沿着直线FG 折叠,点C 落在点C ′处,且点C ′在三角形的外部,则阴影部分图形的周长是_____.18.烧一壶水,假设冷水的水温为20℃,烧水时每分钟可使水温提高8℃,烧了x 分钟后水壶的水温为y ℃,当水开时就不再烧了.(1)y 与x 的关系式为________,其中自变量是________,它应在________变化.(2)x=1时,y=________,x=5时,y=________.(3)x=________时,y=48.19.一个角的补角比它的余角的3倍少20︒,这个角的度数是_______度.20.若3x y -=,2xy =,则22x y +=__________.三、解答题21.有两个一红一黄大小均匀的小正方体,每个小正方体的各个面上分别标有数字1,2,3,4,5,6.如同时掷出这两个小正方体,将它们朝上的面的数字分别组成一个两位数.(红色数字作为十位,黄色数字作为个位),请回答下列问题.(1)请分别写出一个必然事件和一个不可能事件.(2)得到的两位数可能有多少个?其中个位与十位上数字相同的有几个?(3)任写出一组两个可能性一样大的事件.22.如图,方格图中每个小正方形的边长为1,点,,A B C 都是格点.(1)画出ABC ∆关于直线MN 的对称图形'''A B C ∆;(2)直接写出线段'BB 的长度;(3)直接写出ABC ∆的面积。
2021-2022年七年级数学下期末第一次模拟试题(含答案)(2)
一、选择题1.下列说法正确的是( )A .一枚质地均匀的硬币已连续抛掷了50次,正面朝上的次数较多,那么抛掷第51次时正面朝上的可能性更大;B .天气预报说明天下雨的概率是50%,意思是说明天将有一半时间在下雨;C .相等的圆心角所对的弧相等是必然事件;D .过平面内任意三点可以画一个圆是随机事件.2.下列说法正确的是( )A .“打开电视机,正在播放《新闻联播》”是不可能事件B .“两直线被第三条直线所截,同位角相等”是必然事件C .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨D .“篮球队员在罚球线上投篮一次,投中”为随机事件3.下列说法正确的是( )A .“打开电视机,正在播放《新闻联播》”是必然事件B .“随机抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件C .一组数据的中位数可能有两个D .一组数据的波动越大,方差越小4.如图,将长方形ABCD 沿线段EF 折叠到''EB C F 的位置,若'105EFC ∠=︒,'DFC ∠的度数为( )A .20︒B .30C .40︒D .50︒5.如图,矩形纸片ABCD 沿着BE 折叠,使C 、D 两点分别落在C 1、D 1处,若∠ABC 1=45°,则∠ABE 的度数为( )A .22.5°B .21.5°C .22°D .21°6.如图,点P 是直线l 外一个定点,点A 为直线l 上一个定点,点P 关于直线l 的对称点记为P 1,将直线l 绕点A 顺时针旋转30°得到直线l ′,此时点P 2与点P 关于直线l ′对称,则∠P 1AP 2等于( )A .30°B .45°C .60°D .75°7.下列说法正确的是( )A .两个长方形是全等图形B .形状相同的两个三角形全等C .两个全等图形面积一定相等D .所有的等边三角形都是全等三角形 8.如图,两座建筑物AB ,CD 相距160km ,小月从点B 沿BC 走向点C ,行走ts 后她到达点E ,此时她仰望两座建筑物的顶点A 和D ,两条视线的夹角正好为90︒,且EA ED =.已知建筑物AB 的高为60m ,小月行走的速度为1/m s ,则小月行走的时间t 的值为( )A .100B .80C .60D .50 9.下列各组条件中,不能判定A ABC B C '''≌△△的是( ) A .AC A C BC B C C C '''''==∠=∠ B .A A BC B C AC A C '''''∠=∠== C .AC A C AB A B A A '''''==∠=∠ D .AC A C A A C C ''''=∠=∠∠=∠ 10.某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L 1L 2分别表示步行和骑车的同学前往目的地所走的路程y (千米)与所用时间x (分钟)之间的函数关系,则以下判断错误..的是( )A .骑车的同学比步行的同学晚出发30分钟B .骑车的同学和步行的同学同时到达目的地C .骑车的同学从出发到追上步行的同学用了20分钟D .步行的速度是6千米/小时.11.如图,AB //CD ,AD ⊥AC ,∠BAD =35°,则∠ACD =( )A .35°B .45°C .55°D .70° 12.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( )A .6x ±B .-1或4814xC .29x -D .6x ±或1-或29x -或4814x 二、填空题13.掷一枚均匀的硬币,前20次抛掷的结果都是正面朝上,那么第21次抛掷的结果正面朝上的概率为______.14.如图是一个可以自由转动的转盘,被等分成六个扇形.请在转盘适当的扇形区域内涂上阴影,使自由转动的该转盘停止转动时,指针指向阴影区域的概率是_____.15.如图,把一张长方形的纸片沿着EF 折叠,点C 、D 分别落在M 、N 的位置,且∠AEF =23∠DEF ,则∠NEA =_____.16.如图,长方形OABC 中,8OA =,6AB =,点D 在边BC 上,且3CD DB =,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点'A 恰好落在边OC 上,则OE 的长为____.17.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=______.18.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y(元)与所存月数x之间的关系式为____(不考虑利息税).19.如图,直线a∥b,点A,B位于直线a上,点C,D位于直线b上,且AB:CD=1:2,如果△ABC的面积为10,那么△BCD的面积为_____.20.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出如图,此表揭示了(a+b)n (n为非负整数)展开式的各项系数的规律,例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1;…;根据以上规律,(a+b)5展开式共有六项,系数分别为______,拓展应用:(a﹣b)4=_______.三、解答题21.有两个一红一黄大小均匀的小正方体,每个小正方体的各个面上分别标有数字1,2,3,4,5,6.如同时掷出这两个小正方体,将它们朝上的面的数字分别组成一个两位数.(红色数字作为十位,黄色数字作为个位),请回答下列问题.(1)请分别写出一个必然事件和一个不可能事件.(2)得到的两位数可能有多少个?其中个位与十位上数字相同的有几个?(3)任写出一组两个可能性一样大的事件.22.在如图所示的平面直角坐标系中:(1)画出ABC ∆关于x 轴成轴对称图形的三角形DEF ∆;(2)分别写出(1)中的点D ,E ,F 的坐标;(3)求ABC ∆的面积.23.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在边BC 上(不与点B ,C 重合),过点C 作CE ⊥AD ,垂足为点E ,交AB 于点F ,连接DF .(1)请直接写出∠CAD 与∠BCF 的数量关系;(2)若点D 是BC 中点,在图2中画出图形,猜想线段AD ,CF ,FD 之间的数量关系,并证明你的猜想.24.已知函数y=x 3+2,不画图象,解答下列问题:(1)判断A (0,2)、B (2,0)、C (39, ﹣1)三点是否在该函数图象上,说明理由;(2)若点P (a ,0)、Q (﹣3, b )都在该函数的图象上,试求a 、b 的值. 25.如图,∠AOC 与∠BOC 互余,OD 平分∠BOC ,∠EOC =4∠AOE .(1)若∠AOD =70°,求∠AOE 的度数;(2)若∠DOE =63°,求∠EOC 的度数.26.已知(a+b )2=25,(a ﹣b )2=9.求a 2﹣6ab+b 2.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用概率的意义和必然事件的概念的概念进行分析.【详解】A. 一枚质地均匀的硬币已连续抛掷了50次,正面朝上的次数较多,那么抛掷第51次时正面朝上和反面朝上的可能性相同,故选项A错误;B. 概率是针对数据非常多时,趋近的一个数,所以降水概率为50%,那么明天也不一定会降水,故此选项错误;C. 在同圆或等圆中,相等的圆心角所对的弧相等是必然事件,故选项C错误;D. 过平面内任意三点可以画一个圆是随机事件,此选项正确.故选D.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.2.D解析:D【解析】【分析】根据必然事件、不可能事件、随机事件的概念以及概率定义分别进行分析,即可得出答案.【详解】A、打开电视机,正在播放《新闻联播》,这个事件可能发生,也可能不发生,是不确定事件,故本选项错误;B、两直线被第三条直线所截,同位角相等是不确定事件,故本选项错误;C、天气预报说“明天的降水概率为40%只是反映了事件发生的机会的大小,不是发生的时长,故本项错误;D、“篮球队员在罚球线上投篮一次,投中”为随机事件,故本选项正确.故选D.【点睛】本题考查了随机事件、全面调查与抽样调查、概率定义,解题关键是根据事件包括必然事件和不可能事件以及概率定义进行分析.3.B解析:B【解析】【分析】利用必然事件的定义,中数的定义,方差的定义即可作出判断.【详解】解:A. “打开电视机,正在播放《新闻联播》”是随机事件,错误.B. “随机抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,正确.C. 一组数据的中位数有1个,错误.D. 一组数据的波动越大,方差越大,错误.故选B.【点睛】本题考查了必然事件的定义,中位数的定义,方差的性质,难度适中.4.B解析:B【分析】由轴对称的性质可求出∠EFC 的度数,可由式子∠EFC+∠EFC'-180°直接求出∠DFC'的度数.【详解】解:由翻折知∠EFC=∠EFC'=105°,∴∠EFC+∠EFC'=210°,∴∠DFC'=∠EFC+∠EFC'-180°=210°-180°=30°.故选:B .【点睛】本题考查了翻折变化(轴对称)的性质及角的计算,解题关键是熟练掌握并能够灵活运用轴对称变换的性质等.5.A解析:A【分析】根据折叠前后对应角相等即可得出∠CBE 的度数,再根据∠ABC 为直角即可得到答案.【详解】设∠ABE=x ,根据折叠前后角相等可知,∠C 1BE=∠CBE=45x ︒+,∵∠ABC=90°,∴∠CBE+∠ABE=90°,即4590x x ︒++=︒,解得22.5x =︒.故选:A .【点睛】本题考查了图形的翻折变换,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.6.C解析:C【分析】根据轴对称的性质得到∠P 1AD=∠PAD ,∠PAC=∠P 1AC ,根据平角的定义得到∠DAC=150°,于是得到结论.【详解】如图,∵点P关于直线l的对称点记为P1,点P2与点P关于直线l′对称,∴∠P1AD=∠PAD,∠PAC=∠P1AC,∵∠BAC=30°,∴∠DAC=150°,∴∠DAP1+P2AC=150°,∠DAP1+∠P2AB=150°﹣30°=120°,∴∠P1AP2=180°﹣120°=60°,故选:C.【点睛】本题考查了轴对称的性质,熟练掌握轴对称的性质是解题的关键.7.C解析:C【分析】性质、大小完全相同的两个图形是全等形,根据定义解答.【详解】A、两个长方形的长或宽不一定相等,故不是全等图形;B、由于大小不一定相同,故形状相同的两个三角形不一定全等;C、两个全等图形面积一定相等,故正确;D、所有的等边三角形大小不一定相同,故不一定是全等三角形;故选:C.【点睛】此题考查全等图形的概念及性质,熟记概念是解题的关键.8.A解析:A【分析】首先证明∠A=∠DEC,然后可利用AAS判定△ABE≌△ECD,进而可得EC=AB=60m,再求出BE的长,然后利用路程除以速度可得时间.【详解】解:∵∠AED=90°,∴∠AEB+∠DEC=90°,∵∠ABE=90°,∴∠A+∠AEB=90°,∴∠A=∠DEC ,在△ABE 和△DCE 中B C A DEC AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ECD (AAS ),∴EC=AB=60m ,∵BC=160m ,∴BE=100m ,∴小华走的时间是100÷1=100(s ),故选:A .【点睛】本题主要考查了全等三角形的应用,关键是正确判定△ABE ≌△ECD .9.B解析:B【分析】根据全等三角形的判定逐一分析即可.【详解】解:A 、根据SAS 即可判定全等,该项不符合题意;B 、根据SSA 不能判定全等,该项符合题意;C 、根据SAS 即可判定全等,该项不符合题意;D 、根据ASA 即可判定全等,该项不符合题意;故选:B .【点睛】本题考查全等三角形的判定,掌握三角形全等的判定方法是解题的关键.10.B解析:B【解析】A. 由图知,骑车的同学比步行的同学晚出发30分钟,故A 正确;B. 由图知,骑车的同学比步行的同学先到达目的地,故B 不正确;C. 由图知, 骑车的同学从出发到追上步行的同学用了20分钟,故C 正确;D. 由图知,步行的速度是6千米/小时,故D 正确;故选B11.C解析:C【分析】由平行线的性质可得∠ADC =∠BAD =35°,再由垂线的定义可得△ACD 是直角三角形,进而根据直角三角形两锐角互余的性质即可得出∠ACD 的度数.【详解】∵AB ∥CD ,∠BAD=35°,∴∠ADC =∠BAD =35°,∵AD ⊥AC ,∴∠ADC+∠ACD =90°,∴∠ACD =90°﹣35°=55°,故选:C .【点睛】本题主要考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.12.D解析:D【分析】根据完全平方公式计算解答.【详解】解:添加的方法有5种,分别是:添加6x ,得9x 2+1+6x=(3x+1)2;添加﹣6x ,得9x 2+1﹣6x=(3x ﹣1)2;添加﹣9x 2,得9x 2+1﹣9x 2=12;添加﹣1,得9x 2+1﹣1=(3x )2, 添加4814x ,得242819+91142x x x ⎛⎫+=+ ⎪⎝⎭, 故选:D .【点睛】此题考查添加一个整式得到完全平方式,熟记完全平方式的特点是解题的关键. 二、填空题13.5【分析】根据概率的意义即可求出答案【详解】由于每一次正面朝上的概率相等∴第21次抛掷的结果正面朝上的概率为05故答案为:05【点睛】本题考查概率的意义解题的关键是正确理解概率的意义本题属于基础题型 解析:5【分析】根据概率的意义即可求出答案.【详解】由于每一次正面朝上的概率相等,∴第21次抛掷的结果正面朝上的概率为0.5,故答案为:0.5【点睛】本题考查概率的意义,解题的关键是正确理解概率的意义,本题属于基础题型.14.【解析】【分析】根据几何概率的求法:指针落在阴影区域的概率就是阴影区域的面积与总面积的比值【详解】如图所示:因为整个圆面被平均分成6个部分其中阴影部分占3份时指针落在阴影区域的概率为:【点睛】本题考解析:1 2【解析】【分析】根据几何概率的求法:指针落在阴影区域的概率就是阴影区域的面积与总面积的比值.【详解】如图所示:因为整个圆面被平均分成6个部分,其中阴影部分占3份时,指针落在阴影区域的概率为: 3162,【点睛】本题考查了几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率. 15.36°【分析】由于∠AEF=∠DEF根据平角的定义可求∠DEF由折叠的性质可得∠FEN=∠DEF再根据角的和差即可求得答案【详解】∵∠AEF=∠DEF∠AEF+∠DEF=180°∴∠DEF=108°解析:36°.【分析】由于∠AEF=23∠DEF,根据平角的定义,可求∠DEF,由折叠的性质可得∠FEN=∠DEF,再根据角的和差,即可求得答案.【详解】∵∠AEF=23∠DEF,∠AEF+∠DEF=180°,∴∠DEF=108°,由折叠可得∠FEN=∠DEF=108°,∴∠NEA =108°+108°﹣180°=36°.故答案为:36°.【点睛】此题考查了折叠的性质、矩形的性质及平角的定义,解题的关键是注意数形结合思想的应用,难度一般.16.【分析】根据矩形的性质得到BC=OA=8OC=AB=6∠C=∠B=∠O=90°求得CD=6BD=2根据折叠可知A′D=ADA′E=AE 可证明Rt △A′CD ≌Rt △DBA 根据全等三角形的性质得到A′C解析:【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD ,A′E=AE ,可证明Rt △A′CD ≌Rt △DBA ,根据全等三角形的性质得到A′C=BD=2,A′O=4,然后在Rt △A′OE 中根据勾股定理列出方程求解即可.【详解】解:如图,∵四边形OABC 是矩形,∴BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,∵CD=3DB ,∴CD=6,BD=2,∴CD=AB ,∵将四边形ABDE 沿DE 折叠,若点A 的对称点A′恰好落在边OC 上,∴A′D=AD ,A′E=AE ,在Rt △A′CD 与Rt △DBA 中,CD AB A D AD '=⎧⎨=⎩, ∴Rt △A′CD ≌Rt △DBA (HL ),∴A′C=BD=2,∴A′O=4,∵A′O 2+OE 2=A′E 2,∴42+OE 2=(8-OE )2,∴OE=3,故答案是:3.【点睛】本题考查了轴对称变换(折叠问题),矩形的性质,全等三角形的判定和性质,掌握相关性质是解题的关键.17.60°【分析】由AD ∥BC ∠B=30°根据平行线的性质可得∠ADB=30°又由DB 平分∠ADE 可求得∠ADE 的度数继而求得答案【详解】∵AD ∥BC ∠B=30°∴∠ADB=∠B=30°∵DB 平分∠AD解析:60°【分析】由AD ∥BC ,∠B=30°,根据平行线的性质,可得∠ADB=30°,又由DB 平分∠ADE ,可求得∠ADE 的度数,继而求得答案.【详解】∵AD ∥BC ,∠B=30°,∴∠ADB=∠B=30°,∵DB 平分∠ADE ,∴∠ADE=2∠ADB=60°,∵AD ∥BC ,∴∠DEC=∠ADE=60°.【点睛】此题考查了平行线的性质以及角平分线的定义.此题难度不大,注意掌握数形结合思想的应用.18.【分析】根据题目所给的数据和利息公式即可得答案【详解】解:某种储蓄的月利率是02存入100元本金后则本息和y (元)与所存月数x 之间的关系式为:y=02x+100故答案为:y=100+02x 【点睛】本解析:1000.2y x =+【分析】根据题目所给的数据和利息公式,即可得答案.【详解】解:某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)与所存月数x 之间的关系式为:y=0.2x+100,故答案为:y=100+0.2x .【点睛】本题主要考查了函数关系式,利用利息公式和题目数据列出关系式是解题关键. 19.20【分析】根据条件可得出△ABC 的面积与△BCD 的面积的比再根据已知条件即可得出结论;【详解】解:∵a ∥b ∴△ABC 的面积:△BCD 的面积=AB :CD =1:2∴△BCD 的面积=10×2=20故答案解析:20【分析】根据条件可得出△ABC 的面积与△BCD 的面积的比,再根据已知条件即可得出结论;【详解】解:∵a∥b,∴△ABC的面积:△BCD的面积=AB:CD=1:2,∴△BCD的面积=10×2=20.故答案为:20.【点睛】本题主要考查了平行线之间的距离和三角形面积的知识点,准确分析计算是解题的关键.20.15101051a4﹣4a3b+6a2b2﹣4ab3+b4【分析】经过观察发现这些数字组成的三角形是等腰三角形两腰上的数都是1从第3行开始中间的每一个数都等于它肩上两个数字之和展开式的项数比它的指数解析:1,5,10,10,5,1 a4﹣4a3b+6a2b2﹣4ab3+b4【分析】经过观察发现,这些数字组成的三角形是等腰三角形,两腰上的数都是1,从第3行开始,中间的每一个数都等于它肩上两个数字之和,展开式的项数比它的指数多1.根据上面观察的规律很容易解答问题.【详解】(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4.故答案为:1、5、10、10、5、1,a4﹣4a3b+6a2b2﹣4ab3+b4.【点睛】此题考查完全平方公式,正确观察已知的式子与对应的三角形之间的关系是关键.三、解答题21.解:(1)必然事件:组成的两位数十位与个位上的数字一定是1~6的数字;不可能事件:组成的两位数是10(答案不唯一);(2)得到的两位数可能有36个;个位与十位上数字相同的有6个;(3)11与12出现的可能性一样大.【解析】【分析】(1)组成的数只要是十位与个位上的数字是1~6的就是必然事件,否则是不可能事件;(2)根据十位上出现的数字与个位上出现的数字的可能情况解答,写出十位与个位数字相同的情况即可;(3)根据任意一个数出现的可能性相同解答。
2021-2022年七年级数学下期末一模试卷(带答案)(2)
一、选择题1.下列事件中,为必然事件的是( ) A .明天早晨,大家能看到太阳从东方冉冉升起 B .成绩一直优秀的小华后天的测试成绩也一定优秀C .从能被2整除的数中,随机抽取一个数能被8整除D .从10本图书中随机抽取一本是小说2.下列说法中正确的是( )A .“任意画出一个平行四边形,它是中心对称图形”是必然事件B .“正八边形的每个外角的度数都等于45°”是随机事件C .“200件产品中有8件次品,从中任抽9件,至少有一件是正品”是不可能事件D .任意抛掷一枚质地均匀的硬币100次,则反面向上一定是50次 3.下列事件中,属于必然事件的是( ) A .一个数的相反数等于它本身 B .早上的太阳从北方升起 C .380人中有两人的生日在同一天D .明天上学路上遇到下雨4.下列说法:①三角形的一个外角等于它的任意两个内角和;②内角和等于外角和的多边形只有四边形;③角是轴对称图形,角的对称轴是角平分线.其中正确的有( )个. A .0B .1C .2D .35.如图,在33⨯的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中ABC ∆是一个格点三角形.则图中与ABC ∆成轴对称的格点三角形有( )A .2个B .4个C .6个D .8个6.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是轴对称图形的是( ) A .B .C .D .7.已知三角形的两边长分别为3和8,且周长恰好是5的倍数,那么第三边的长为( ) A .4 B .9C .14D .4或98.如图,AB DE =,A D ∠=∠,要说明ABC DEF △≌△,需添加的条件不能是( )A .//AB DE B .//AC DF C .AC DE ⊥D .AC DF =9.如图,四边形ABCD 是长方形,点F 是DA 长线上一点,G 是CF 上一点,并且ACG AGC ∠=∠,GAF F ∠=∠.若15ECB ∠=︒,则ACF ∠的度数是( )A .15︒B .20︒C .30D .45︒10.早晨小强从家出发,以v 1的速度前往学校,途中在一饮食店吃早点,之后以v 2的速度向学校行进.已知v 1> v 2,如图所示的图象中表示小强从家到学校的时间t (分钟)与路程s (千米)之间的关系的是( )A .AB .BC .CD .D11.如图,AB ∥EF ,设∠C =90°,那么x 、y 和z 的关系是( )A .y =x+zB .x+y ﹣z =90°C .x+y+z =180°D .y+z ﹣x =90°12.计算下列各式,结果为5x 的是( ) A .()32xB .102x x ÷C .23x x ⋅D .6x x -二、填空题13.一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别.从袋子中随机摸出一个小球,则摸出的小球是绿球的概率是_____________. 14.小明掷一枚硬币10次,有9次正面向上,当他掷第10次时,正面向上的概率是_____.15.如图,四边形ABCD 中,∠B =∠D =90°,∠C =50°,在BC 、CD 边上分别找到点M 、N ,当△AMN 周长最小时,∠AMN +∠ANM 的度数为______.16.如图△ABC 中,AB =AC ,∠BAC =58°,∠BAC 的平分线与AB 的垂直平分线交于点O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,使C 与点O 恰好重合,则∠OEB =_______17.如图,ACE DBF ≌,//AE DF ,8AD =,2BC =,则AB =______.18.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)与所存月数x 之间的关系式为____(不考虑利息税).19.如图,直线AB ,CD 相交于点O ,OE ⊥AB ,O 为垂足,∠EOD=26°,则∠AOC=____,∠COB=___.20.计算:32(2)a b -=________.三、解答题21.已知直线1l ∥2l ,点A ,B ,C 在直线1l 上,点E ,F ,G 在直线2l 上,任取三个点连成一个三角形,求: (1)连成△ABE 的概率;(2)连成的三角形的两个顶点在直线2l 上的概率.22.如图,ABC 的顶点A ,B ,C 都在小正方形的顶点上,利用网格线按下列要求画图.(1)画111A B C △,使它与ABC 关于直线l 成轴对称;(2)在直线l 上找一点P ,使点P 到点A ,点B 的距离之和最短; (3)在直线l 上找一点Q ,使点Q 到边AC ,BC 的距离相等.23.作图题(1)如图,已知线段m ,n .求作△ABC ,请在右面的空白处作△ABC ,作∠ACB =90°,AC =m ,AB =n (尺规作图,不写作法,保留作图痕迹).(2)婷婷将(1)中自己画的△ABC 剪下来,放在同桌悦悦所画的△ABC 上,发现两三角形完全重合,这一过程验证了三角形全等的哪一种判定定理: (直接写出答案,不写过程).24.弹簧挂上物体后会伸长,已知一弹簧的长度(cm )与所挂物体的质量(kg )之间的关系如表所示. 所挂物体的质量()kg 0 1 2 3 4 5 6 7 弹簧的长度()cm1212.51313.51414.51515.5(1)上表反映了哪些变量之间的关系?哪个是自变量,哪个是因变量? (2)当物体的质量为2kg 时,弹簧的长度是多少? (3)当物体的质量逐渐增加时,弹簧的长度怎样变化?(4)如果物体的质量为xkg ,弹簧的长度为ycm ,根据上表写出y 与x 的关系式; (5)当物体的质量为2.5kg 时,根据(4)的关系式,求弹簧的长度.25.如图1,直线AB 上任取一点O ,过点O 作射线OC (点C 在直线AB 上方),且∠BOC =2∠AOC ,以O 为顶点作∠MON =90°,点M 在射线OB 上,点N 在直线AB 下方,点D 是射线ON 反向延长线上的一点. (1)求∠COD 的度数;(2)如图2,将∠MON 绕点O 逆时针旋转α度(0°<α<180°),若三条射线OD 、OC 、OA ,当其中一条射线与另外两条射线所夹角的度数之比为1:2时,求∠BON 的度数.26.先化简,再求值:()()()()224171131x x x x +--++-,(其中12x =-)【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】必然发生的事件是必然事件,根据定义解答A . 【详解】A 、明天早晨,大家能看到太阳从东方冉冉升起是必然事件;B 、成绩一直优秀的小华后天的测试成绩也一定优秀是随机事件;C 、从能被2整除的数中,随机抽取一个数能被8整除是随机事件;D 、从10本图书中随机抽取一本是小说是随机事件; 故选:A . 【点睛】此题考查必然事件定义,熟记定义、理解必然事件与随机事件发生的可能性的大小是解题的关键.2.A解析:A 【分析】事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.在一定条件下,可能发生也可能不发生的事件,称为随机事件. 【详解】A.“任意画出一个平行四边形,它是中心对称图形”是必然事件,故本选项正确;B.“正八边形的每个外角的度数都等于45°”是必然事件,故本选项错误;C.“200件产品中有8件次品,从中任抽9件,至少有一件是正品”是随机事件,故本选项错误;D.任意抛掷一枚质地均匀的硬币100次,则反面向上不一定是50次,故本选项错误;故选:A.【点睛】本题主要考查了随机事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.3.C解析:C【分析】根据事件发生的可能性判断相应事件的类型即可.【详解】A. 一个数的相反数等于它本身,0的相反数等于它本身,是不确定事件.B. 早上的太阳从北方升起,是不可能事件.C. 380人中有两个人的生日在同一天是必然事件.D. 明天上学路上遇到下雨,是不确定事件.故选:C.【点睛】此题考查随机事件,解题关键在于判断相应事件的类型.4.B解析:B【分析】根据三角形的外角和定理、三角形的内角和定理、角的性质、对称轴的定义知识点逐个判断即可.【详解】解:①应为三角形的一个外角等于与它不相邻的两个内角的和,故本选项错误;②内角和等于外角和的多边形只有四边形,故正确;③角是轴对称图形,角的对称轴是角的平分线所在的直线,③错误;综上所述,②正确,故选B.【点睛】本题考查了三角形的外角和定理、三角形的内角和定理、角的性质、对称轴的定义相关知识点,能熟记知识点的内容是解此题的关键.5.C解析:C【分析】直接利用轴对称图形的性质分别得出符合题意的答案.【详解】符合题意的三角形如图所示:满足要求的图形有6个故选:C【点睛】本题主要考查利用轴对称来设计轴对称图形,关键是要掌握轴对称的性质和轴对称图形的含义.6.C解析:C【解析】【分析】根据轴对称的概念对各选项分析判断即可得答案.【详解】A.不是轴对称图形,故该选项不符合题意,B.不是轴对称图形,故该选项不符合题意,C.是轴对称图形,故该选项符合题意,D.不是轴对称图形,故该选项不符合题意.故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.B解析:B【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,可得第三边的范围,再找出是5倍数的数即可.【详解】∵三角形的两边长分别为3和8∴5<第三边长<11∴11<周长<22∵周长恰好是5的倍数∴周长是15或20∴第三边长是4或9∵3,4,8不能组成三角形∴第三边是9故选B.【点睛】本题考查知识点是三角形三边关系,记住三边关系式解题关键.8.C解析:C【分析】直接根据三角形证明全等的条件进行判断即可;【详解】A、∵AB∥DE,∴∠ABC=∠DEC,∴根据ASA即可判定三角形全等,故此选项不符合题意;B、∵AC∥DF,∴∠DFE=∠ACB,∴根据AAS即可判定三角形全等,故此选项不符合题意;C、AC⊥DE,不符合三角形全等的证明条件,故此选项符合题意;D、∵AC=DF,∴根据SAS即可判定三角形全等,故此选项不符合题意;故选:C.【点睛】本题考查了三角形证明全等所需添加的条件,正确掌握知识点是解题的关键;9.C解析:C【分析】根据矩形的性质得到AD∥BC,∠DCB=90°,根据平行线的性质得到∠F=∠ECB=15°,根据三角形的外角的性质得到∠ACF=∠AGC=∠GAF+∠F=2∠F,于是得到结论.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∠DCB=90°,∴∠F=∠ECB=15°,∴∠GAF=∠F=15°,∴∠ACF=∠AGC=∠GAF+∠F=2∠F=30°,故选C.【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.10.A解析:A【解析】由题意可知,符合实际情况的是A选项中的图象,而选项B、C、D中的图象都与实际情况不符.故选A.11.B解析:B【分析】过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.【详解】解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.【点睛】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.12.C解析:C【分析】分别计算每个选项然后进行判断即可.【详解】A、()326=,选项错误;x xB、1028÷,选项错误;x x x=C、235x x x,选项正确;D、6x x-不能得到5x,选项错误.故选:C【点睛】此题考查同底数幂的运算,熟练掌握运算法则是解题的关键.二、填空题13.【分析】用绿球的个数除以总球数即可【详解】解:摸出的小球是绿球的概率是故答案为:【点睛】本题考查了概率的求法解题关键是理解等可能事件概率的求法解析:1 3【分析】用绿球的个数除以总球数即可.【详解】解:摸出的小球是绿球的概率是31 93 =,故答案为:13.【点睛】本题考查了概率的求法,解题关键是理解等可能事件概率的求法.14.【分析】根据概率的性质和概率公式即可求出当他掷第10次时正面向上的概率【详解】解:∵掷一枚质地均匀的硬币有两种结果:正面朝上反面朝上每种结果等可能出现∴她第10次掷这枚硬币时正面向上的概率是:故答案解析:12.【分析】根据概率的性质和概率公式即可求出,当他掷第10次时,正面向上的概率.【详解】解:∵掷一枚质地均匀的硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现,∴她第10次掷这枚硬币时,正面向上的概率是:12.故答案为:12.【点睛】本题考查了概率统计的问题,根据概率公式求解即可.15.100°【分析】根据要使△AMN的周长最小即利用点的对称让三角形的三边在同一直线上作出A关于BC和CD的对称点A′A″即可得出∠AA′M+∠A″=180°-∠DAB=∠C=50°进而得出∠AMN+∠解析:100°【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=180°-∠DAB =∠C=50°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【详解】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠B=∠D=90°,∠C=50°,∵∠DAB=130°,∴∠AA′M+∠A″=180°-130°=50°,由对称性可知:∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×50°=100°,故答案为:100°.【点睛】此题主要考查了平面内最短路线问题求法以及三角形的内角和定理及外角的性质和轴对称的性质等知识,根据已知得出M,N的位置是解题关键.16.64°【分析】作辅助线首先求出∠BAO=29°;进而求出∠OBC=37°;求出∠COE=∠OCB=37°问题即可解决【详解】如图:连接OBOC∵∠BAC=58°AO为∠BAC的平分线∴∠BAO=∠B解析:64°【分析】作辅助线,首先求出∠BAO=29°;进而求出∠OBC=37°;求出∠COE=∠OCB=37°问题即可解决.【详解】如图:连接OB、OC,∵∠BAC=58°,AO为∠BAC的平分线,∴∠BAO=12∠BAC=12×58°=29°.又∵AB=AC,∴∠ABC=∠ACB=18058()2o=61o.∵DO是AB的垂直平分线,∴OA=OB;∴∠ABO=∠BAO=29°.∴∠OBC=∠ABC-∠ABO=61°-29°=32°.∵DO是AB的垂直平分线,AO为∠BAC的平分线,∴点O是△ABC的外心,∴OB=OC;∴∠OCB=∠OBC=32°;∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=32°;在△OCE中,∠OEB=∠COE+∠OCB=32°+32°=64°,故答案是:64°.【点睛】考查了翻折变换及其应用问题;解题的关键是根据翻折变换的性质找出图中隐含的等量关系,灵活运用有关性质定理来分析、判断、推理或解答.17.3【分析】根据全等三角形对应边相等可得AC=BD再求出AB=CD然后代入数据进行计算即可得解【详解】解:∵△ACE≌△DBF∴AC=DB∴AC-BC=BD-BC 即AB=CD∵AD=8BC=2∴AB=解析:3【分析】根据全等三角形对应边相等可得AC=BD,再求出AB=CD,然后代入数据进行计算即可得解.【详解】解:∵△ACE≌△DBF,∴AC=DB ,∴AC-BC=BD-BC ,即AB=CD ,∵AD=8,BC=2,∴AB=12(AD-BC )=12×(8-2)=3. 故答案为:3.【点睛】本题考查了全等三角形的性质,根据全等三角形对应顶点的字母写在对应位置上确定出对应边,然后求出AB=CD 是解题的关键.18.【分析】根据题目所给的数据和利息公式即可得答案【详解】解:某种储蓄的月利率是02存入100元本金后则本息和y (元)与所存月数x 之间的关系式为:y=02x+100故答案为:y=100+02x 【点睛】本解析:1000.2y x =+【分析】根据题目所给的数据和利息公式,即可得答案.【详解】解:某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)与所存月数x 之间的关系式为:y=0.2x+100,故答案为:y=100+0.2x .【点睛】本题主要考查了函数关系式,利用利息公式和题目数据列出关系式是解题关键. 19.64°116°【分析】根据垂线的定义进行作答【详解】由OE ⊥AB 得到∠AOE=90°所以∠AOC=180°-∠EOD-∠AOE=64°;因为∠BOD=64°∠COB=180°-∠BOD=116°【点解析:64° 116°.【分析】根据垂线的定义进行作答.【详解】由OE ⊥AB ,得到∠AOE=90°,所以∠AOC=180°-∠EOD-∠AOE=64°;因为∠BOD=64°,∠COB=180°-∠BOD= 116°.【点睛】本题考查了垂线的定义,熟练掌握垂线的定义是本题解题关键.20.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.【详解】32(2)a b -=624a b ,故答案为:624a b .【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.三、解答题21.(1)连成△ABE 的概率为118; (2)连成的三角形的两个顶点在直线l 2上的概率为12. 【解析】试题分析:列举出符合题意的各种情况的个数,再根据概率公式解答即可.试题:由l 1上选一个点,在l 2上选两个点可以得到3×3=9个三角形,由l 1上选两个点,在l 2上选一个点可以得到3×3=9个三角形,即任取三个点连成一个三角形总个数为18个,(1)连成△ABE 的概率为118; (2)连成的三角形的两个顶点在直线l 2上的概率为12.考点:几何概率.22.(1)答案见解析;(2)答案见解析;(3)答案见解析【分析】(1)根据轴对称的性质,在网格上分别找到点A 、点B 、点C 的对称点点1A 、点1B 、点1C ,连接11A B 、11A C 、11B C ,即可得到答案;(2)根据轴对称的性质,得1PB PB =;再根据两点之间线段最短的性质,即可得到答案;(3)结合题意,根据角平分线的性质分析,即可得到答案.【详解】(1)如图所示,在网格上分别找到点A 、点B 、点C 的对称点点1A 、点1B 、点1C ,连接11A B 、11A C 、11B C;(2)根据(1)的结论,点B 、点1B 关于直线l 成轴对称∴1PB PB =∴1PA PB PA PB +=+如下图,连接1AB∴当点P 在直线l 和1AB 的交点处时,11PA PB AB +=,为最小值,∴当点P 在直线l 和1AB 的交点处时,PA PB +取最小值,即点P 到点A 、点B 的距离之和最短;(3)如图所示,连接1CC根据题意的:11ACC BCC ∠=∠∴点Q 在直线l 和1CC 的交点处时, 点Q 到边AC ,BC 的距离相等.【点睛】本题考查了轴对称、两点之间线段最短、角平分线的知识;解题的关键是熟练掌握轴对称、两点之间线段最短、角平分线的性质,从而完成求解.23.(1)见解析;(2)HL【分析】(1)①用直尺任意画一条线,用圆规的两脚量取等于m 长度的线段,交直线与A 、C 两点;②以C 为圆心,任意长半径作圆;③分别以圆与直线的交点为圆心,画两个等圆,连接两个等圆的交点,可作出直线的垂线;④以A 为圆心,线段n 长为半径作圆,交垂线于点B ;⑤连接AB 即可(2)根据两个直角三角形对应的斜边和一条直角边相等即可得到结论【详解】(1)如图,步骤①用直尺任意画一条线,用圆规的两脚量取等于m 长度的线段,交直线与A 、C 两点;②以C 为圆心,任意长半径作圆;③分别以圆与直线的交点为圆心,画两个等圆,连接两个等圆的交点,可作出直线的垂线;④以A 为圆心,线段n 长为半径作圆,交垂线于点B ;⑤连接AB 即可(2)90ACB ∠=︒,在Rt ACB 中,直角边AC m =,斜边AB n =∴在两个直角三角形中,斜边和一条直角边对应相等∴可用HL 证明两个三角形全等【点睛】本题考查了复杂作图,以及全等三角形的判定,解题关键是掌握垂线的画法,以及全等三角形的判定定理.24.(1)反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;(2)13cm ;(3)当物体的质量逐渐增加时弹簧的长度增长;(4)120.5y x =+;(5)13.25cm .【分析】(1)因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量; (2)由表可知,当物体的质量为2kg 时,弹簧的长度是13cm ;(3)由表格中的数据可知,弹簧的长度随所挂物体的重量的增加而增加;(4)由表中的数据可知,x=0时,y=12,并且每增加1千克的重量,长度增加0.5cm ,所以y=0.5x+12;(5)令x=2.5,代入函数解析式,即可求解.【详解】解:(1)反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;(2)当物体的质量为2kg 时,弹簧的长度是13cm ;(3)当物体的质量逐渐增加时,弹簧的长度增长;(4)由上表可知12.5-12=0.5,13-12.5=0.5,13.5-13=0.5,14-13.5=0.5,14.5-14=0.5,15-14.5=0.5,0.5为常量,12也为常量,∴弹簧总长y (cm )与所挂重物x (kg )之间的函数关系式为y=0.5x+12,(5)当x=2.5时,代入函数关系式得:y=12+0.5×2.5=13.25cm .【点睛】本题考查了一次函数的应用,属于基础题,关键在于根据图表信息列出等式,然后变形为函数的形式.25.(1)∠COD=30°;(2)40°或20°或30°【分析】(1)由题意易得∠AOC+∠BOC=180°,则有∠BOC=120°,∠AOC=60°,进而问题可求解; (2)由(1)得:∠COD=30°,∠AOC=60°,然后由题意分①当0α=︒时,∠COD ∶∠AOD=30°∶60°=1∶2,不符合题意,②若射线OD 分另外两条射线所夹角度数之比为1∶2时,③若射线OA 分另外两条射线所夹角度数之比为1∶2时,进而根据角的和差关系进行分类求解即可.【详解】解:(1)∵点O 在直线AB 上,∴∠AOC+∠BOC=180°,∵∠BOC =2∠AOC ,∴∠BOC=120°,∠AOC=60°,∵∠MON=90°,点D 在射线ON 的反向延长线上,∴∠BOD=90°∴∠COD=∠BOC-∠BOD=30°;(2)由(1)得:∠COD=30°,∠AOC=60°,∴当0α=︒时,∠COD ∶∠AOD=30°∶60°=1∶2,而0180α︒<<︒,∴OC 不能分另外两条射线所夹角度数之比为1∶2,∴若射线OD 分另外两条射线所夹角度数之比为1∶2时,如图所示:当∠AOD=2∠COD 时,则有2403AOD AOC ∠=∠=︒,∵∠AOD=∠BON ,∴∠BON=40°;当∠COD=2∠AOD 时,则有1203AOD AOC ∠=∠=︒, ∴∠BON=∠AOD=20°;若射线OA 分另外两条射线所夹角度数之比为1∶2时,如图所示:当∠AOD=2∠AOC 时,则有2120AOD AOC ∠=∠=︒,∴90210AOD α=︒+∠=︒,(不符合题意,舍去), 当∠AOC=2∠AOD 时,则有∠AOD=30°, ∴90120AOD α=︒+∠=︒,∴∠BON=∠AOD=30°;综上所述:若三条射线OA 、OC 、OD ,当其中一条射线分另外两条射线所夹角度数之比为1∶2时,∠BON 的度数为40°或20°或30°.【点睛】本题主要考查角的和差关系及对顶角的定义,熟练掌握角的和差关系及对顶角的定义是解题的关键.26.214x +,13.【分析】利用完全平方公式和平方差公式展开,化简,后代入求值即可.【详解】原式()()()22242171312x x x x x =++--+-+22248477363x x x x x =++-++-+214x =+,当12x =-时, 原式12(-)142=⨯+ 13=.【点睛】本题考查了利用完全平方公式和平方差公式,合并同类项,熟练运用公式,准确合并同类项化简是解题的关键.。
2021-2022年七年级数学下期末第一次模拟试卷附答案(2)
24.将长为40 cm、宽为15 cm的长方形白纸,按如图所示的方法黏合起来,黏合部分宽为5 cm.
…
(1)根据上图,将表格补充完整:
白纸张数
1
2
3
4
5
…
纸条长度
40
110
145
…
(2)设x张白纸黏合后的总长度为y cm,则y与x之间的关系式是什么?
(3)你认为多少张白纸黏合起来总长度可能为2 018 cm吗?为什么?
19.如图,直线a∥b,直线a、b被直线c所截,若∠2=60°,则∠1的度数为_____.
20.已知 , , _____.
三、解答题
21.如图某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:每购买500元商品,就能获得一次转动转盘的机会,如果转盘停止后,指针上对准500、20、100、50、10的区域,顾客就可以分别获得500元、200元、100元、50元、10元的购物券一张。(转盘等分成20份)
A. 是等腰三角形B. 垂直平分
C. 与 面积相等D.直线 , 的交点不一定在 上
5.如图所示的方格纸,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形,那么涂法共有( )种.
A.6B.5C.4D.3
6.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是( )
A.朝上的点数为 B.朝上的点数为
C.朝上的点数为 的倍数D.朝上的点数不小于
3.九年级一班在参加学校4×100米接力赛时,安排了甲,乙,丙,丁四位选手,他们比赛的顺序由抽签随机决定,则丙跑第一棒的概率为( )
A. B. C. D.
2021-2022年七年级数学下期末一模试题及答案(2)
一、选择题1.下列事件中必然事件有( )①当x 是非负实数时,≥0;②打开数学课本时刚好翻到第12页;③13个人中至少有2人的生日是同一个月;④在一个只装有白球和绿球的袋中摸球,摸出黑球.A .1个B .2个C .3个D .4个2.下列事件属于必然事件的是( )A .掷一枚均匀的硬币,正面朝上B .车辆行驶到下一路口,遇到绿灯。
C .若a 2=b 2,则a=bD .若|a|>|b|,则a 2>b 23.从-5,-1,0,83,π这五个数中随机抽取一个数,恰好为负整数的概率为( ) A .15B .25C .35D .454.如图,若ABC ∆与A B C '''∆关于直线MN 对称,BB '交MN 于点O ,则下列说法不一定正确的是 ( )A .AC AC ''=B .BO B O '=C .AA MN '⊥D .AB B C ''=5.如图,若ABC ∆的面积为24,6AC =,现将ABC ∆沿 AB 所在直线翻折,使点 C 落在直线 AD 上的C '处,P 为直线AD 上一点,则线段 BP 的长可能是( )A .3B .5C .6D .106.如图,将长方形纸片进行折叠,ED ,EF 为折痕,A 与A '、B 与B '、C 与C '重合,若25AED ∠=︒,则CFE ∠的度数为( )A .130°B .115°C .65°D .50°7.如图,CD AB ⊥,BE AC ⊥,垂足分别为点D ,点E ,BE 、CD 相交于点O ,12∠=∠,则图中全等三角形共有( )A .2对B .3对C .4对D .5对 8.如图,已知∠ABC =∠DEF ,AB =DE ,添加以下条件,不能判定△ABC ≌△DEF 的是( )A .∠A =∠DB .∠ACB =∠DFEC .AC =DFD .BE =CF 9.如图,两座建筑物AB ,CD 相距160km ,小月从点B 沿BC 走向点C ,行走ts 后她到达点E ,此时她仰望两座建筑物的顶点A 和D ,两条视线的夹角正好为90︒,且EA ED =.已知建筑物AB 的高为60m ,小月行走的速度为1/m s ,则小月行走的时间t 的值为( )A .100B .80C .60D .5010.根据图示的程序计算变量y 的对应值,若输入变量x 的值为-1,则输出的结果为( )A .-2B .2C .-1D .011.如图,若//AB CD ,EF CD ⊥,154∠=,则2∠=( )A .36B .46C .54D .12612.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52- B .52 C .5 D .-5二、填空题13.从﹣3,π,|﹣4|,3,5这五个实数中随机取出一个数,这个数大于2的概率是___.14.如图:同学们在操场的一个圆形区域内玩投掷沙包的游戏,圆形区域由5个过同一点且半径不同的圆组成.经过多次实验,发现沙包如果都能落在区域内时,落在2、4两个阴影内的概率分别是0.36和0.21,设最大的圆的直径是5米,则1、3、5三个区域的面积和是_____.15.,,,A B C D 是长方形纸片的四个顶点,点E F H 、、分别是边AB BC AD 、、上的三点,连结EF FH 、.(1)将长方形纸片ABCD 按图①所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,点'B 在FC '上,则EFH ∠的度数为 ;(2)将长方形纸片ABCD 按图②所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、, 若''18∠=︒B FC , 求EFH ∠的度数;(3)将长方形纸片ABCD 按图③所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,若EFH m ∠=,求''B FC ∠的度数为 .16.如图,将一条两边沿互相平行的纸带折叠,若144∠=︒,则α∠=__________.17.如图,在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别为D ,E ,AD ,CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.添加的条件是:____.(写出一个即可)18.一个三角形的面积始终保持不变,它的一边的长为xcm,这边上的高为ycm,y 与x 的关系如下图,从图像中可以看出:(1)当x 越来越大时,y 越来越________;(2)这个三角形的面积等于________cm 2;-(3)可以想像:当x 非常大非常大时,y 一定非常小非常小,这个三角形显得很“扁”,但无论x 多么的大,y 总是_______零(填“大于”、“小于”、“大于或等于”之一).19.如图是一汽车探照灯纵剖面,从位于O 点的灯泡发出的两束光线OB ,OC 经过灯碗反射以后平行射出,如果62ABO ∠=︒,46DCO ∠=︒,则BOC ∠的度数是________︒.20.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出如图,此表揭示了(a+b )n (n 为非负整数)展开式的各项系数的规律,例如:(a+b )0=1,它只有一项,系数为1;(a+b )1=a+b ,它有两项,系数分别为1,1;(a+b )2=a 2+2ab+b 2,它有三项,系数分别为1,2,1;(a+b )3=a 3+3a 2b+3ab 2+b 3,它有四项,系数分别为1,3,3,1;…;根据以上规律,(a+b )5展开式共有六项,系数分别为______,拓展应用:(a ﹣b )4=_______.三、解答题21.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活的情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)这种树苗成活的频率稳定在___________,成活的概率估计值为___________.(2)该地区已经移植这种树苗5万棵.①估计这种树苗成活___________万棵.②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵? 22.已知,ABC ∆在平面直角坐标系中的位置如图所示.(1)把ABC ∆向下平移2个单位长度得到111A B C ∆,请画出111A B C ∆;(2)请画出111A B C ∆关于y 轴对称的222A B C ∆,并写出2A 的坐标;(3)求ABC ∆的面积.23.如图:已知AD BE =,BC EF =且//BC EF ,求证:ABC DEF ≌△△.24.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)此变化过程中, 是自变量, 是因变量;(2)甲的速度 乙的速度(大于、等于、小于);(3)6时表示 ;(4)路程为150km ,甲行驶了 小时,乙行驶了 小时;(5)9时甲在乙的 (前面、后面、相同位置);(6)乙比甲先走了3小时,对吗? .25.如图,直线AB 与CD 相交于点O ,90AOF ∠=︒,90COE ∠=︒,60DOF ∠=︒,OH 平分∠BOE .求:(1)∠BOE 的度数;(2)AOH ∠的度数.26.先化简,再求值:()()()()()2442225x y x y x y x y x y x ⎡⎤+--+-+-÷⎣⎦,其中x ,y 满足()2320x y ++-=.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据必然事件、不可能事件、随机事件的概念判断即可.【详解】①当x 是非负实数时,0,是必然事件;②打开数学课本时刚好翻到第12页,是随机事件;③13个人中至少有2人的生日是同一个月,是必然事件;④在一个只装有白球和绿球的袋中摸球,摸出黑球,是不可能事件.必然事件有①③共2个.故选B .【点睛】本题考查了必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件指在一定条件下一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.D解析:D【解析】【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.根据定义即可解决.【详解】A. 任意掷一枚均匀的硬币,正面朝上是随机事件,故本选项错误;B. 车辆行驶到下一路口,遇到绿灯是随机事件,故本选项错误;C. 若a 2=b 2,则a=b ,也可能a,b 互为相反数,所以是随机事件,故本选项错误;D. |a|>|b|,则a 2>b 2,是必然事件,故本选项正确。
2021-2022年七年级数学下期末第一次模拟试题附答案(2)
一、选择题1.一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是( )A .16B .13C .12D .232.下列事件中,是必然事件的为( )A .明天会下雨B .x 是实数,x 2<0C .两个奇数之和为偶数D .异号两数相加,和为负数3.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )A .摸出的三个球中至少有一个球是黑球B .摸出的三个球中至少有一个球是白球C .摸出的三个球中至少有两个球是黑球D .摸出的三个球中至少有两个球是白球4.如图,ABC ,点D ,E 在BC 边上,点F 在AC 边上.将ABC 沿AD 折叠,恰好与AED 重合,将CEF △沿EF 折叠,恰好与AEF ∆重合.下列结论:①60B ︒∠=②AB EC =③AD AF =④DE EF =⑤2B C ∠=∠正确的个数有( )A .2个B .3个C .4个D .5个5.下列图形中,既是轴对称又是中心对称图形的是( )A .B .C .D . 6.如图,折叠三角形纸片ABC ,使点B 与点C 重合,折痕为DE ;展平纸片,连接AD .若6AB =cm ,4AC =cm ,则ABD ∆与ACD ∆的周长之差( )A.等于1 cm B.等于2 cm C.等于3 cm D.无法确定7.如图,△ABC的面积为9cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.3cm2B.4.5cm2C.5cm2D.6cm28.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF其中正确的是()A.①②③B.①③④C.①②④D.①②③④9.在自习课上,小红为了检测同学们的学习效果,提出如下四种说法:①三角形有且只有一条中线;②三角形的高一定在三角形内部;③三角形的两边之差大于第三边;④三角形按边分类可分为等腰三角形和不等边三角形.其中错误的说法是()A.①②B.①③C.①②③D.①②③④10.对于关系式y=3x+5,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④这个关系式表示的变量之间的关系不能用图象表示;⑤y与x的关系还可以用表格和图象表示,其中正确的是()A.①②③B.①②④C.①③⑤D.①②⑤11.下面四个图形中,∠1与∠2是对顶角的是()A.B.C .D .12.已知长方形ABCD ,AD AB >,10AD =,将两张边长分别为a 和b (a b >)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S .当213S S b -=时,AB 的值是( )A .7B .8C .9D .10二、填空题13.在一个不透明的口袋中装有4个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球,摸到红球的概率为___________.14.小明把80个除了颜色以外其余都相同的黄、蓝、红三种球放进一个袋内,经多次摸球后,得到它们的概率分别为14、720和25,试估计黄、蓝、红三种球的个数分别是________.15.如图,是4×4正方形网格,其中已有三个小方格涂成黑色,在剩下的13个白色小方格中随意选一个涂成黑色,使得黑色小方格组成的图形为轴对称图形的涂法有_____种16.如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若2DE =,7BC =,12ABC S =△,则AB 的长为______.17.三角形的两条边长分别是2cm ,8cm ,第三边为奇数,则其周长为________. 18.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同时出发t 秒时,△BPQ 的面积为ycm 2 . 已知y 与t 的函数关系图象如图(2)(曲线0M 为抛物线的一部分),则下列结论:①BC=BE=5cm ;②=;③当0<t≤5时,y=t 2;④矩形ABCD 的面积是10cm 2 . 其中正确的结论是________ (填序号).19.如图AB 与CD 相交于O ,OP AB ⊥,若120∠=︒,则2∠=________.20.若0a >,且2x a =,3y a =,则x y a +的值等于________.三、解答题21.永辉超市进行有奖促销活动.活动规则:购买500元商品就可以获得一次转转盘的机会(转盘分为5个扇形区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以获得该区域相应等级奖品一件.商场工作人员在制作转盘时,将获奖扇形区域圆心角分配如下表: 奖次特等奖 一等奖 二等奖 三等奖 圆心角 1︒ 36︒ 53︒ 150︒ 促销公告凡购买我商场商品均有可能获得下列大奖:特等奖:彩电一台 一等奖:自行车一辆 二等奖:圆珠笔一支 三等奖:卡通画一张 (1)获得圆珠笔的概率是多少?(2)不获奖的概率是多少?(3)如果不用转盘,请设计一种等效试验方案.(要求写清楚替代工具和实验规则) 22.如图,在直角坐标系中,()1,5A -,()3,0B -,()4,3C -.(1)在图中作出ABC 关于y 轴对称的图形111A B C △,并写出点1B 的坐标. (2)在y 轴上找一点P ,使PA PB +最小(不要求写做法,请保留作图痕迹).23.如图,AB AC =,AD AE =,BAD CAE ∠=∠,求证:D E ∠=∠.24.小南一家到某度假村度假.小南和妈妈坐公交车先出发,爸爸自驾车沿着相同的道路后出发.爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村(取东西的时间忽略不计).如下图是他们离家的距离s (km )与小南离家的时间t (h )的关系图.请根据图回答下列问题:(1)图中的自变量是_________,因变量是_________,小南家到该度假村的距离是_____km .(2)小南出发___________小时后爸爸驾车出发,爸爸驾车的平均速度为___________km/h ,图中点A 表示 .(3)小南从家到度假村的路途中,当他与爸爸相遇时,离家的距离约是___________km .25.综合与探究问题情境综合实践课上,王老师组织同学们开展了探究三角之间数量关系的数学活动.(1)如图1,//EF MN ,点,A B 分别为直线,EF MN 上的一点,点P 为平行线间一点且130,120PAF PBN ∠=︒∠=︒,求APB ∠度数;问题迁移(2)如图2,射线OM 与射线ON 交于点O ,直线//m n ,直线m 分别交,OM ON 于点,A D ,直线n 分别交,OM ON 于点,B C ,点P 在射线OM 上运动.①当点P 在,A B (不与,A B 重合)两点之间运动时,设,ADP BCP αβ∠=∠∠=∠.则,,CPD αβ∠∠∠之间有何数量关系?请说明理由;②若点P 不在线段AB 上运动时(点P 与点,,A B O 三点都不重合),请你直接写出,,CPD αβ∠∠∠间的数量关系.26.先化简,再求值:()322484(2)(2)ab a b ab a b a b -÷++-,其中a ,b 满足2(2)|1|0a b -+-=.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.【详解】 解:摸到红球的概率为:42423=+. 故选D .【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比. 2.C解析:C【解析】【分析】直接利用随机事件以及必然事件、不可能事件分别分析得出答案.【详解】A、明天会下雨是随机事件,故此选项错误;B、x是实数,x2<0,是不可能事件,故此选项错误;C、两个奇数之和为偶数,是必然事件,正确;D、异号两数相加,和为负数是随机事件,故此选项错误.故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关时间的定义是解题关键.3.A解析:A【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.第II卷(非选择题)请点击修改第II卷的文字说明4.A解析:A【分析】将△ABD沿着AD翻折,可得AB=AE,∠B=∠AEB,将△CEF沿着EF翻折,可得AE=CE,∠C=∠CAE,可得∠B=2∠C.【详解】解:∵将△ABD沿着AD翻折,使点B和点E重合,∴AB=AE,∠B=∠AEB,∵将△CEF沿着EF翻折,点C恰与点A重合,∴AE=CE,∠C=∠CAE,∴AB=EC,∴②正确;∵∠AEB=∠C+∠CAE=2∠C,∴∠B=2∠C,故⑤正确;其余的都无法推导得出,故选:A.【点睛】本题考查翻折变换,三角形外角性质等知识,掌握旋转的性质是本题的关键.5.B解析:B【解析】分析:观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.详解:A 是中心对称图形;B 既是轴对称图形又是中心对称图形;C 是轴对称图形;D 既不是轴对称图形又不是中心对称图形.故选B .点睛:本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.6.B解析:B【分析】根据折叠的性质可得BD=CD ,由此可得ABD ∆与ACD ∆的周长之差等于AB 与AC 的差.【详解】由折叠得,BD=CD ,∵6AB =cm ,4AC =cm ,∴△ABD 的周长-△ACD 的周长=(AB+AD+BD )-(AD+AC+CD)=AB-AC=6-4=2cm .故选:B .【点睛】本题主要考查了三角形的折叠问题,由折叠得到BD=CD 是解题的关键.7.B解析:B【分析】根据已知条件证得△ABP ≌△EBP ,根据全等三角形的性质得到AP=PE ,得出S △ABP =S △EBP ,S △ACP =S △ECP ,推出S △PBC =12S △ABC ,代入求出即可. 【详解】解:延长AP 交BC 于E ,∵BP 平分∠ABC ,∴∠ABP=∠EBP ,∵AP ⊥BP ,∴∠APB=∠EPB=90°,在△ABP 和△EBP 中,ABP EBP PB PBAPB EPB ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABP ≌△EBP (ASA ),∴AP=PE ,∴S △ABP =S △EBP ,S △ACP =S △ECP ,∴S △PBC =12S △ABC =12×9cm 2=4.5cm 2, 故选:B .【点睛】本题考查了全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.8.D解析:D【分析】易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确;【详解】∵ BD 为∠ABC 的角平分线,∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA ,∴△ABD EBC ∆∆≌(SAS),故①正确;∵ BD 平分∠ABC ,BD=BC ,BE=BA ,∴ ∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA ,∴∠DCE=∠DAE ,∴△ACE 是等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,故③正确;作EG ⊥BC ,垂足为G ,如图所示:∵ E 是BD 上的点,∴EF=EG ,在△BEG和△BEF中BE BE EF EG=⎧⎨=⎩∴△BEG≌△BEF,∴BG=BF,在△CEG和△AFE中EF EG AE CE=⎧⎨=⎩∴△CEG≌△AFE,∴ AF=CG,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF,故④正确;故选:D.【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;9.C解析:C【分析】三角形有三条中线对①进行判断;钝角三角形三条高,有两条在三角形外部,对②进行判断;根据三角形三边的关系对③进行判断;根据三角形的分类对④进行判断.【详解】①三角形有三条中线,故①错误;②钝角三角形三条高,有两条在三角形外部,故②错误;③三角形的任意两边之差小于第三边,故③错误;④三角形按边分类可分为等腰三角形、不等边三角形,故④正确;综上,选项①②③错误,故选:C.【点睛】本题考查了三角形的有关概念,属于基础题型.要注意等腰三角形与等边三角形两个概念的区别.10.D解析:D【解析】【分析】根据一次函数的定义可知,x为自变量,y为函数,也叫因变量;x取全体实数;y随x的变化而变化;可以用三种形式来表示函数:解析法、列表法和图象法.【详解】①x是自变量,y是因变量;正确;②x的数值可以任意选择;正确;③y是变量,它的值与x无关;而y随x的变化而变化;错误;④用关系式表示的不能用图象表示;错误;⑤y与x的关系还可以用列表法和图象法表示,正确.故选D.【点睛】本题考查了一次函数的定义,是基础知识,比较简单.11.D解析:D【分析】根据对顶角的定义,可得答案.【详解】解:由对顶角的定义,得D选项是对顶角,故选:D.【点睛】考核知识点:对顶角.理解定义是关键.12.A解析:A【分析】利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差,再由S2-S1=3b,AD=10,列出方程求得AB便可.【详解】解:S1=(AB-a)•a+(CD-b)(AD-a)=(AB-a)•a+(AB-b)(AD-a),S2=AB(AD-a)+(a-b)(AB-a),∴S2-S1=AB(AD-a)+(a-b)(AB-a)-(AB-a)•a-(AB-b)(AD-a)=(AD-a)(AB-AB+b)+(AB-a)(a-b-a)=b•AD-ab-b•AB+ab=b(AD-AB),∵S2-S1=3b,AD=10,∴b(10-AB)=3b,∴AB=7.故选:A.【点睛】本题考查了列代数式,整式的混合运算,整体思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.二、填空题13.【解析】【分析】先求出球的总个数再根据概率公式即可得出摸到红球的概率【详解】解:∵袋中装有4个红球2个绿球∴共有6个球∴摸到红球的概率为故答案为:【点睛】本题考查了概率公式用到的知识点为:概率=所求解析:2 3【解析】【分析】先求出球的总个数,再根据概率公式即可得出摸到红球的概率.【详解】解:∵袋中装有4个红球,2个绿球,∴共有6个球,∴摸到红球的概率为4263故答案为:2 3【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.14.【解析】【分析】根据得到各小球的概率以及小球的总个数分别求出晓求得个数即可【详解】∵小明把个除了颜色以外其余都相同的黄蓝红三种球放进一个袋内经多次摸球后得到它们的概率分别为∴黄蓝红三种球的个数分别是解析:20、28、32【解析】【分析】根据得到各小球的概率以及小球的总个数,分别求出晓求得个数即可.【详解】∵小明把80个除了颜色以外其余都相同的黄、蓝、红三种球放进一个袋内,经多次摸球后,得到它们的概率分别为17240205、、,∴黄、蓝、红三种球的个数分别是:80×12=40(个),80×720=28(个),80×25=32(个).故答案为20、28、32.【点睛】此题主要考查了利用频率估计概率,根据概率的意义求出小球的个数是解题关键. 15.【分析】根据轴对称的概念求解可得【详解】解:如图所示:在剩下的13个白色小方格中随意选一个涂成黑色使得黑色小方格组成的图形为轴对称图形的涂法有3种故答案为:3【点睛】本题主要考查利用轴对称设计图案利解析:【分析】根据轴对称的概念求解可得.【详解】解:如图所示:在剩下的13个白色小方格中随意选一个涂成黑色,使得黑色小方格组成的图形为轴对称图形的涂法有3种,故答案为:3.【点睛】本题主要考查利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.16.5【分析】作DF⊥AB于F根据角平分线的性质得到DE=DF根据三角形的面积公式计算即可;【详解】如图:作DF⊥AB于F∵BD平分∠ABCDE⊥BCDF⊥AB∴DE=DF∴×AB×DF+×BC×DE=解析:5【分析】作DF⊥AB于F,根据角平分线的性质得到DE=DF,根据三角形的面积公式计算即可;【详解】如图:作DF⊥AB于F,∵ BD平分∠ABC,DE⊥BC,DF⊥AB,∴DE=DF,∴12×AB×DF+12×BC×DE=ABCS,即12×AB×2+12×7×2=12,解得:AB=5.故答案为:5.【点睛】本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键;17.17cm或19cm【分析】三角形的三边不等关系为:任意两边之差<第三边<任意两边之和【详解】解:8-2<第三边<8+2⇒6<第三边<10这个范围的奇数是7和9所以三角形的周长是2+8+7=17(cm解析:17cm或19cm【分析】三角形的三边不等关系为:任意两边之差<第三边<任意两边之和.【详解】解:8-2<第三边<8+2⇒6<第三边<10,这个范围的奇数是7和9,所以三角形的周长是2+8+7=17(cm)或2+8+9=19(cm)故答案为:17cm或19cm.【点睛】本题考查了三角形的三边关系,首先根据题意求出第三边,然后再求出周长,难度较小.18.①③【解析】【分析】根据图②可以判断三角形的面积变化分为三段可以判断出当点P到达点E时点Q到达点C从而得到BCBE的长度再根据MN是从5秒到7秒可得ED的长度然后表示出AE的长度根据勾股定理求出AB解析:①③【解析】【分析】根据图②可以判断三角形的面积变化分为三段,可以判断出当点P到达点E时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.【详解】解:①根据图②可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度都是1cm/s,∴BC=BE=5cm,故①正确;②∵从M到N的变化是2秒,∴DE=2,∴AE=5−2=3,∴,∴,故②错误;③如图,过点P作PF⊥BC于点F,根据面积不变时△BPQ的面积为10,可得AB=4,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB=,∴PF=PBsin∠PBF=,∴当0<t≤5时,y =BQ•PF =t•t =,故③正确; ④∵AB =4cm ,BC =5cm ,∴S 矩形ABCD =4×5=,故④错误.故答案为:①③.【点睛】 本题考查的是动点问题的函数图象,能根据题意得出矩形的边长是解答此题的关键. 19.【分析】根据垂线的定义可求解∠AOP=90°再结合平角的定义可求解【详解】解:∵OP ⊥AB ∴∠AOP=90°∵∠1+∠AOP+∠2=180°∠1=20°∴∠2=180°-90°-20°=70°故答案解析:70︒【分析】根据垂线的定义可求解∠AOP=90°,再结合平角的定义可求解.【详解】解:∵OP ⊥AB ,∴∠AOP=90°,∵∠1+∠AOP+∠2=180°,∠1=20°,∴∠2=180°-90°-20°=70°.故答案为70°.【点睛】本题考查了垂线的定义,角的计算,掌握垂线的定义是解题的关键.20.6【分析】根据同底数幂的乘法法则求解【详解】故答案为:6【点睛】本题考查了同底数幂的乘法解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘底数不变指数相加解析:6【分析】根据同底数幂的乘法法则求解.【详解】·236x y x y a a a +==⨯= .故答案为:6.【点睛】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.三、解答题21.(1)53360(2)13(3)可采用“抓阄”或“抽签”等方法替代 【解析】【分析】(1根据圆珠笔所占的圆心角度数计算即可.(2)首先计算三等奖以上包括三等奖的圆心角的和,再计算不获奖圆心角的度数,进而计算不获奖的概率.(3)采用最常规的“抓阄”或“抽签”等方法替代.按住转盘设置数量即可.【详解】(1)获得圆珠笔的概率为:53360. (2)不获奖的圆心角的度数为:36013653150120︒︒︒︒︒︒----= 不获奖的概率为:12013603=. (3)可采用“抓阄”或“抽签”等方法替代.在一个不透明的箱子里放进360个除标号不同外,其他均一样的兵乓球,其中1个标“特”、36个标“1”、53个标“2”、150个标“3”、其余不标数字,摸出标有哪个奖次的乒乓球,则获相应等级的奖品.【点睛】本题主要考查概率的计算,本题的第三问出的特别好,综合性比较高,应当引起注意. 22.(1)图形见解析,()13,0B ;(3)见解析【分析】(1)利用关于y 轴对称的点的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可; (2)找到B 点关于y 轴的对称点B 1,再连接AB 1,与y 轴交点即为所求.【详解】解:(1)A(-1,5),B(-3,0),C(-4,3),关于y 轴对称的点的坐标特征是纵坐标不变,横坐标互为相反数,点A 1、B 1、C 1的坐标为A 1(1,5),B 1(3,0),C 1(4,3),描出A 1,B 1,C 1,顺次连结A 1B 1,B 1C 1,C 1A 1,由题意可知111A B C △即为所求,()13,0B ;(2)由题意作图如下,连结BA 1交y 轴于点P ,A 、A 1关于y 轴对称,AP=A 1P ,由两点距离知BA 1≤BP+A 1P=BP+AP ,点P 即为所求使得PA PB +最小.【点睛】本题考查了作图−对称性变换:在画一个图形的轴对称图形时,先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形,也考查了对称性的应用.23.见解析【分析】直接利用SAS 证明ADC AEB △≌△,再根据全等三角形的性质即可求解;【详解】证明:∵BAD CAE ∠=∠∴BAD BAC CAE BAC ∠+∠=∠+∠即CAD BAE ∠=∠∴在ADC 与AEB △中AD AE CAD BAE AC AB =⎧⎪∠=∠⎨⎪=⎩∴()ADC AEB SAS ≌△△∴D E ∠=∠【点睛】本题考查了全等三角形的证明以及全等三角形的性质,正确掌握知识点是解题的关键; 24.(1)t ,s ,60;(2) 1,60,小南出发2.5小时后,离家的距离为50km ;(3)30或45.【解析】【分析】(1)直接利用常量与变量的定义得出答案;直接利用函数图象结合纵坐标得出答案;(2)利用函数图象求出爸爸晚出发1小时,根据速度=路程÷时间求解即可;根据函数图象的横纵坐标的意义得出A点的意义;(3)利用函数图象得出交点的位置进而得出答案.【详解】(1)自变量是时间或t,因变量是距离或s;小亮家到该度假村的距离是:60;(2)小亮出发1小时后爸爸驾车出发:爸爸驾车的平均速度为60÷1=km/h;图中点A表示:小亮出发2.5小时后,离度假村的距离为10km;(3)当20t=60(t-1),解得:t=1.5则离家20×1.5=30(千米)当20t=120-60(t-1),解得:t=2.25则离家20×2.25=45(千米)小亮从家到度假村的路途中,当他与他爸爸相遇时.离家的距离约是30或45.【点睛】此题主要考查了函数图象以及常量与变量,利用函数图象获取正确信息是解题关键.∠=∠+∠,见解析;②当P在BA延长线时,25.(1)110°;(2)①CPDαβ∠=∠-∠∠=∠-∠;当P在BO之间时,CPDαβCPDβα【分析】(1)过P作PG∥EF∥MN,,由平行线性质可得∠PAF+∠GPA=180°,∠PBN+∠GPB=180°,分别求出∠GPA、∠GPB,两角相加即可求解;PE AD交CD于E,根据平行线传递性可得AD∥PE∥BC,根据平行线(2)①过P作//的性质即可求解;②发两种情况讨论;当P在BA延长线时,当P在BO之间时,根据平行线的性质即可求解.【详解】.解:(1)如答图1,过P作PG∥EF∥MN,∴∠+∠=︒.PAF GPA180∴∠=︒-∠=︒-︒=︒.GPA PAF180********∴∠+∠=︒.PBN GPB180∴∠=︒-∠=︒-︒=︒,GPB PBN180********∴∠=︒+︒=︒.APB5060110(2)①CPD αβ∠=∠+∠,理由如下:如答图2,过P 作//PE AD 交CD 于E ,∵AD ∥BC ,////AD PE BC ∴,,DPE CPE αβ∴∠=∠∠=∠,CPD DPE CPE αβ∴∠=∠+∠=∠+∠;②当P 在BA 延长线时,过P 作//PE AD 交CD 于E ,∵AD ∥BC ,////AD PE BC ∴,,DPE CPE αβ∴∠=∠∠=∠,∴CPD βα∠=∠-∠;当P 在BO 之间时,过P 作//PE AD 交CD 于E ,∵AD ∥BC ,////AD PE BC ∴,,DPE CPE αβ∴∠=∠∠=∠,∴CPD αβ∠=∠-∠.【点睛】本题考查平行线的性质,解题的关键是熟练掌握平行线的性质,且学会做辅助线,同时注意分类思想的应用.26.242a ab -,当21a b ==,时,12.【分析】先计算整式混合运算,利用非负数求出a b ,的值,在代入求值即可.【详解】解:322(48)4(2)(2)ab a b ab a b a b -÷++-,22224b ab a b =-+-,242a ab =-,∵2(2)|1|0a b -+-=,2(2),100||a b --≥≥,∴20,10a b -=-=,当21a b ==,时,原式24222116412=⨯-⨯⨯=-=.【点睛】本题考查了整式的混合运算及化简求值,非负数性质,准确进行整式混合运算是解题关键.。
2021-2022年七年级数学下期末第一次模拟试题带答案(2)
一、选择题1.下列说法正确的是( )A .扔100次硬币,都是国徽面向上,是不可能事件B .小芳在扔图钉游戏中,扔10次,有6次都是钉尖朝下,所以钉尖朝下的可能性大C .王明同学一直是级部第一名,他能考上重点高中是必然事件D .投掷一枚均匀的骰子,投出的点数是10,是一个确定事件2.下列事件中,是必然事件的为( )A .3天内会下雨B .打开电视机,正在播放广告C .367人中至少有2人公历生日相同D .抛掷1个均匀的骰子,出现4点向上3.下列说法中不正确的是( )A .抛掷一枚硬币,硬币落地时正面朝上是随机事件B .把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C .任意打开九年级下册数学教科书,正好是第38页是确定事件D .一个盒子中有白球m 个,红球6个,黑球n 个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m 与n 的和是6 4.如图,点D 在△ABC 的边BC 上,BD CD >.将△ABD 沿AD 翻折,使B 落在点E 处.且DE 与AC 交于点F .设△AEF 的面积为1S ,△CDF 的面积为2S ,则1S 与2S 的大小关系为( )A .12S S >B .12S SC .12S S <D .不确定 5.如图,AC BC =,AD BD =,这个图形叫做“筝形”,数学兴趣小组几名同学探究出关于它的如下结论:①ACD BCD △≌△;②AO BO =;③AB CD ⊥;④AOC BOC ≌△△;⑤“筝形”是轴对称图形.其中正确的结论有( )A .2个B .3个C .4个D .5个6.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是轴对称图形的是( )A .B .C .D .7.如图,若MB ND =,MBA NDC ∠=∠,添加下列条件不能直接判定ABM CDN ≌的是( )A .AM CN =B .A NCD ∠=∠C .AB CD = D .M N ∠=∠8.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF ,CE ,下列说法:①ABD △和ACD △面积相等;②BAD CAD ∠=∠; ③BDF ≌CDE △;④//BF CE ;⑤CE AE =.其中正确的是( )A .①②B .①③C .①③④D .①④⑤9.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒10.一个面积等于3的三角形被平行于一边的直线截成一个小三角形和梯形,若小三角形和梯形的面积分别是y 和x ,则y 关于x 的函数图象大致是图中的( )A .B .C .D .11.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20B .30C .40D .60 12.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( )A .6163m n -B .6323m n -C .383m n -D .6169m n - 二、填空题13.从箱子中摸出红球的概率为14,已知口袋中红球有4个,则袋中共有球__________个.14.如图,假设可以在图中每个小正方形内任意取点(每个小正方形除颜色外完全相同),那么这个点取在阴影部分的概率是______.15.有一条长方形纸带,按如图所示沿AB 折叠,若140︒∠=,则纸带重叠部分中____CAB ︒∠=16.如图,AOB 与COB △关于边OB 所在的直线成轴对称,AO 的延长线交BC 于点D .若46BOD ∠=︒,22C ∠=︒,则ADC ∠=______°.17.用12根等长的火柴棒拼成一个等腰三角形,火柴棒不允许剩余、重叠、折断,则能摆出不同的等腰三角形的个数为________个.18.函数f(x)=+3-2x x 的定义域是________. 19.如图,直线a ∥b ,点A ,B 位于直线a 上,点C ,D 位于直线b 上,且AB :CD =1:2,如果△ABC 的面积为10,那么△BCD 的面积为_____.20.计算:()()13x x -+=________.三、解答题21.一只不透明的袋子中装有1个白球、2个黄球和3个红球,每个球除颜色外都相同,将球摇匀.(1)如果从中任意摸出1个球.①你能够事先确定摸到球的颜色吗?②你认为摸到哪种颜色的球的概率最大?③如何改变袋中白球、红球的个数,就能使摸到这三种颜色的球的概率相等. (2)从中一次性最少摸出 个球,必然会有红色的球.22.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①作△ABC 关于l 1对称的图形△A 1B 1C 1;②作△A 1B 1C 1关于l 2对称的图形△A 2B 2C 2.(2)△A 2B 2C 2中顶点B 2坐标为 .23.如图,,,,AC BC DC EC AC BC DC EC ⊥⊥==,求证:(1)ACE BCD ∆≅∆;(2)AE BD ⊥.24.如图,在Rt △ABC 中,已知∠C=90°,边AC=4cm ,BC=5cm ,点P 为CB 边上一点,当动点P 沿CB 从点C 向点B 运动时,△APC 的面积发生了变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)如果设CP 长为x cm ,△APC 的面积为y cm ,则y 与x 的关系可表示为_____; (3)当点P 从点D (D 为BC 的中点)运动到点B 时,则△APC 的面积从____cm 2变到_____cm 2.25.已知O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图a .①若60AOC ∠=︒,求DOE ∠的度数;②若AOC α∠=,直接写出DOE ∠的度数.(用含α的式子表示)(2)将图a 中的COD ∠绕点O 顺时针旋转至图b 的位置,试探究DOE ∠和AOC ∠之间的数量关系,写出你的结论,并说明理由.26.在数学中,有许多关系都是在不经意间被发现的,当然,没有敏锐的观察力是做不到的.认真观察图形,解答下列问题:()1如图l ,用两种不同方法表示两个阴影图形的面积的和,可以得到的等式为_ ;()2如图2,是由4个长为,a 宽为b 的长方形卡片围成的正方形,试利用面积关系写出一个代数恒等式;()3如图3,是由边长分别为(),a b a b >的两个正方形拼成的图形,已知10a b +=,24,ab =利用()1中得到的等式,求出图3中阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用概率的意义、随机事件的定义及可能性的大小的知识分别判断后即可确定正确的选项.【详解】解:A、扔100次硬币,都是国徽面向上,是随机事件,故错误;B、扔10次,有6次都是钉尖朝下,不能说明钉尖朝下的可能性大,故错误;C、王明同学一直是级部第一名,他能考上重点高中是随机事件,故错误;D、投掷一枚均匀的骰子,投出的点数是10,是一个确定事件,正确,故选D.【点睛】考查了可能性的大小及随机事件的知识,解题的关键是了解概率的意义、随机事件的定义及可能性的大小的知识,难度不大.2.C解析:C【解析】【分析】根据随机事件与必然事件的定义逐一进行判断即可.【详解】A.3天内会下雨是随机事件,故该选项不符合题意,B.打开电视机,正在播放广告是随机事件,故该选项不符合题意,C.367人中至少有2人公历生日相同是必然事件,故该选项符合题意,D.抛掷1个均匀的骰子,出现4点向上是随机事件,故该选项不符合题意,故选C.【点睛】本题考查了随机事件与必然事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件;在一定条件下,必然会发生的事件称为必然事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.3.C解析:C【解析】【分析】直接利用随机事件的定义分别分析得出答案.【详解】A、抛掷一枚硬币,硬币落地时正面朝上是随机事件,正确,不合题意;B、把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,正确,不合题意;C 、任意打开九年级下册数学教科书,正好是第38页是随机事件,故此选项错误,符合题意;D 、一个盒子中有白球m 个,红球6个,黑球n 个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m 与n 的和是6,正确,不合题意.故选:C .【点睛】此题主要考查了随机事件,正确把握随机事件的定义是解题关键.4.A解析:A【分析】依据点D 在△ABC 的边BC 上,BD >CD ,即可得到S △ABD >S △ACD ,再根据折叠的性质,即可得到S 1>S 2.【详解】解:∵点D 在△ABC 的边BC 上,BD >CD ,∴S △ABD >S △ACD ,由折叠可得,S △ABD =S △AED ,∴S △AED >S △ACD ,∴S △AED −S △ADF >S △ACD −S △ADF ,即S 1>S 2,故选:A .【点睛】本题主要考查了折叠的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5.D解析:D【分析】运用“SSS”可证明ACD BCD △≌△,从而可判断①,由ACD BCD △≌△得∠ACO=∠BCO ,从而可判断ACO BCO △≌△,进一步判断②③④;根据轴对称图形的概念可判断⑤.【详解】解:在△ACD 与△BCD 中,AD BD AC BC DC DC =⎧⎪=⎨⎪=⎩,∴△ACD ≌△BCD (SSS ),故①正确;∴∠ACO=∠BCO ,在△ACO 与△BCO 中,AC BC ACO BCO OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△ACO ≌△BCO (SSS ),故④正确;∴AO=BO ,故②正确;∴∠AOC=∠BOC=90°,即AB CD ⊥,故③正确;∴“筝形”是轴对称图形,故⑤正确;所以,正确的是①②③④⑤,故选:D .【点睛】此题考查全等三角形的判定和性质,以及轴对称图形的判断,熟练掌握有关判定是解答此题的关键.6.C解析:C【解析】【分析】根据轴对称的概念对各选项分析判断即可得答案.【详解】A.不是轴对称图形,故该选项不符合题意,B.不是轴对称图形,故该选项不符合题意,C.是轴对称图形,故该选项符合题意,D.不是轴对称图形,故该选项不符合题意.故选:C .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.A解析:A【分析】根据全等三角形的判定方法:SSS 、SAS 、ASA 、AAS 、HL ,结合选项进行判定,然后选择不能判定全等的选项.【详解】A 、添加条件AM=CN ,仅满足SSA ,不能判定两个三角形全等;B 、添加条件AB=CD ,可用SAS 判定△ABM ≌△CDN ;C、添加条件∠M=∠N,可用ASA判定△ABM≌△CDN;D、添加条件∠A=∠NCD,可用AAS判定△ABM≌△CDN.故选:A.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.C解析:C【分析】根据三角形中线的定义可得BD=CD,根据等底等高的三角形的面积相等判断出①正确,然后利用“边角边”证明△BDF和△CDE全等,根据全等三角形对应边相等可得CE=BF,全等三角形对应角相等可得∠F=∠CED,再根据内错角相等,两直线平行可得BF∥CE.【详解】解:∵AD是△ABC的中线,∴BD=CD,∴△ABD和△ACD面积相等,故①正确;∵AD为△ABC的中线,∴BD=CD,∠BAD和∠CAD不一定相等,故②错误;在△BDF和△CDE中,BD CDBDF CDE DF DE=⎧⎪∠=∠⎨⎪=⎩,∴△BDF≌△CDE(SAS),故③正确;∴∠F=∠DEC,∴BF∥CE,故④正确;∵△BDF≌△CDE,∴CE=BF,故⑤错误,正确的结论为:①③④,故选:C.【点睛】本题考查了全等三角形的判定与性质,等底等高的三角形的面积相等,熟练掌握三角形全等的判定方法并准确识图是解题的关键.9.C解析:C【分析】先判定△ABE≌△ACD,再根据全等三角形的性质,得出∠B=∠C=35︒,由三角形外角的性质即可得到答案.【详解】在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠B=∠C ,∵∠C=35︒,∴∠B=35︒,∴∠OEC=∠B+∠A=355590︒+︒=︒,∴∠DOE=∠C+∠OEC=3590125︒+︒=︒,故选:C .【点睛】本题考察全等三角形的判定与性质、三角形外角的性质,熟练掌握全等三角形的判定与性质是解题关键.10.A解析:A【解析】根据题意小三角形的面积减小,梯形的面积增大,而且x 与y 满足一次函数关系. 故选A.11.B解析:B【分析】根据内错角相等,两直线平行,得AB ∥CE ,再根据性质得∠B=∠3.【详解】因为∠1=∠2,所以AB ∥CE所以∠B=∠3=30故选B【点睛】熟练运用平行线的判定和性质.12.B解析:B【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可求出a 和b ,再利用单项式乘以单项式计算结果即可.【详解】解:由题意可得:2328a b a b b -=⎧⎨+=⎩, 解得:72a b ==,,则这两个单项式分别为:3163m n -,316m n ,∴它们的积为:3163166323?3m n m n m n -=-,故选:B .【点睛】本题主要考察同类项的概念、单项式乘以单项式,掌握同类项的概念是解题的关键.二、填空题13.16【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件得情况数;二者的比值就是其发生的概率;【详解】设箱子中共有球x 个则解得x=16即箱子中共有16个球故答案为:16【点睛】此题考查了概率 解析:16【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件得情况数;二者的比值就是其发生的概率;【详解】设箱子中共有球x 个, 则414x =, 解得x=16, 即箱子中共有16个球,故答案为:16.【点睛】此题考查了概率的求法:如果一个事件有n 中可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m P A n=. 14.【分析】根据几何概率的求法:这个点取在阴影部分的概率就是阴影部分的面积与总面面积的比值【详解】共有25个小正方形其中阴影部分的有7个∴其概率为故答案为【点睛】此题考查几何概率解题关键在于掌握计算公式 解析:725【分析】根据几何概率的求法:这个点取在阴影部分的概率就是阴影部分的面积与总面面积的比值.【详解】共有25个小正方形,其中阴影部分的有7个∴其概率为725 故答案为725. 【点睛】此题考查几何概率,解题关键在于掌握计算公式. 15.70【分析】根据两直线平行同位角相等得到再由折叠的性质得到则问题得解【详解】由下图可知//又由折叠的性质得到且故答案为:70【点睛】本题考查平行线的性质折叠问题与角的计算需要计算能力和逻辑推理能力属 解析:70【分析】根据两直线平行同位角相等得到240∠=︒,再由折叠的性质得到34∠=∠,则问题得解.【详解】由下图可知BE //AF1240∴∠=∠=︒又由折叠的性质得到34∠=∠,且234180∠+∠+∠=︒180234702︒-∠∴∠=∠==︒ 故答案为:70.【点睛】本题考查平行线的性质、折叠问题与角的计算,需要计算能力和逻辑推理能力,属中档题. 16.70【分析】根据三角形的外角和定理得和再根据轴对称的性质得和列式求出的值即可得到结果【详解】解:∵是的外角∴∵是的外角∴∵与关于边OB 所在的直线成轴对称∴∴即解得∴故答案是:【点睛】本题考查轴对称的 解析:70【分析】根据三角形的外角和定理,得ADC A ABC ∠=∠+∠和ADC BOD OBD ∠=∠+∠,再根据轴对称的性质得12OBD ABC ∠=∠和22C A ∠=∠=︒,列式求出ABC ∠的值,即可得到结果.【详解】解:∵ADC ∠是ABD △的外角, ∴ADC A ABC ∠=∠+∠, ∵ADC ∠是BOD 的外角, ∴ADC BOD OBD ∠=∠+∠, ∵AOB 与COB △关于边OB 所在的直线成轴对称, ∴12OBD ABC ∠=∠,22C A ∠=∠=︒, ∴12A ABC BOD ABC ∠+∠=∠+∠, 即122462ABC ABC ︒+∠=︒+∠, 解得48ABC ∠=︒, ∴224870ADC A ABC ∠=∠+∠=︒+︒=︒.故答案是:70.【点睛】本题考查轴对称的性质和三角形外角和定理,解题的关键是熟练运用这两个性质定理进行求解.17.2【分析】本题根据三角形的三边关系定理得到不等式组从而求出三边满足的条件再根据三边长是整数进而求解【详解】设摆出的三角形中相等的两边是x 根则第三边是()根根据三角形的三边关系定理得到:则又因为是整数 解析:2【分析】本题根据三角形的三边关系定理,得到不等式组,从而求出三边满足的条件,再根据三边长是整数,进而求解.【详解】设摆出的三角形中相等的两边是x 根,则第三边是(122x -)根,根据三角形的三边关系定理得到:122122x x x x x x+>-⎧⎨-+>⎩, 则3x >, 6x <,又因为x 是整数,∴x 可以取4或5,因而三边的值可能是:4,4,4或5,5,2;共二种情况,则能摆出不同的等腰三角形的个数为2.故答案为:2.【点睛】本题考查了三角形的三边关系:在组合三角形的时候,注意较小的两边之和应大于最大的边,三角形三边之和等于12.18.x≥-3且x≠2【解析】由题意可得x+3≥0且x-2≠0即x≥-3且x≠2解析:x≥-3且x≠2【解析】由题意可得x+3≥0且x-2≠0,即x≥-3且x≠2.19.20【分析】根据条件可得出△ABC的面积与△BCD的面积的比再根据已知条件即可得出结论;【详解】解:∵a∥b∴△ABC的面积:△BCD的面积=AB:CD=1:2∴△BCD的面积=10×2=20故答案解析:20【分析】根据条件可得出△ABC的面积与△BCD的面积的比,再根据已知条件即可得出结论;【详解】解:∵a∥b,∴△ABC的面积:△BCD的面积=AB:CD=1:2,∴△BCD的面积=10×2=20.故答案为:20.【点睛】本题主要考查了平行线之间的距离和三角形面积的知识点,准确分析计算是解题的关键.20.【分析】根据多项式乘以多项式法则进行计算即可得到答案【详解】=故答案为:【点睛】此题考查多项式乘以多项式法则:用一个多项式的每一项乘以另一个多项式中的每一项再将结果合并同类项熟记乘法法则是解题的关键解析:223+-x x【分析】根据多项式乘以多项式法则进行计算即可得到答案.【详解】()()-+=23313x x+--=223x x x+-,x x故答案为:223+-.x x【点睛】此题考查多项式乘以多项式法则:用一个多项式的每一项乘以另一个多项式中的每一项,再将结果合并同类项,熟记乘法法则是解题的关键.三、解答题21.(1)①不能事先确定摸到的球是哪一种颜色;②摸到红球的概率最大;③增1个白球,减1个红球;只要使袋子中的白球、黄球、红球的个数相等即可(2)4【解析】【分析】(1)①根据颜色不同质地相同可以确定不能事先确定摸到球的颜色;②那种球的数量最多,摸到那种球的概率就大;③使得球的数量相同即可得到概率相同;(2)要想摸出红球是必然事件,必须摸出球的总个数多于白球与黄球的和.【详解】解:(1)①不能事先确定摸到的球是哪一种颜色;②摸到红球的概率最大;③增1个白球,减1个红球;只要使袋子中的白球、黄球、红球的个数相等即可.(2)从中一次性最少摸出4个球,必然会有红色的球.故答案为4.【点睛】本题考查了概率公式,随机事件,属于概率基础题,随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数.22.(1)①见解析;②见解析;(2)(-4,2).【分析】(1)①分别作出A,B,C的对应点A1,B1,C1即可.②分别作出A1,B1,C1的对应点A2,B2,C2即可.(2)根据点的位置确定坐标即可.【详解】解:(1)①如图,△A1B1C1即为所求作.②如图,△A2B2C2即为所求作.(2)B2(-4,2),故答案为:(-4,2).【点睛】本题考查作图-轴对称变换,解题的关键是理解题意,灵活运用所学知识解决问题.23.(1)见解析;(2)见解析【分析】(1)根据垂直得到90ACB DCE ∠=∠=︒,求出DCB ECA ∠=∠,即可得到结果; (2)设AC 交BD 于N ,AE 交BD 于O ,根据全等三角形的性质得到A B ∠=∠,再根据已知条件转换即可;【详解】证明:()1AC BC ⊥,DC EC ⊥,90ACB DCE ∴∠=∠=︒,ACB ACD DCE ACD ∴∠+∠=∠+∠,∴∠=∠DCB ECA ,在DCB ∆和ECA ∆中,AC BC DCB ECA CD CE =⎧⎪∠=∠⎨⎪=⎩,()DCB ECA SAS ∴∆≅∆;()2如图,设AC 交BD 于N ,AE 交BD 于O ,∆≅∆DCB ECA ,A B ∴∠=∠,∠=∠AND BNC ,90∠+∠=︒B BNC ,90∴∠+∠=︒A AND ,90∴∠=︒AON ,AE BD ∴⊥.【点睛】本题主要考查了全等三角形的判定与性质,准确证明是解题的关键.24.(1) 自变量是CP 的长,因变量是△APC 的面积;(2) y=2x ;(3)5,10【解析】【分析】(1)根据函数自变量和因变量的概念解答即可;(2)根据三角形的面积公式列出关系式;(3)计算出CD 的长度,求出相应的面积,求差得到答案.【详解】(1)自变量是CP 的长,因变量是△APC 的面积;(2)y=12×4×x=2x 所以y 与x 的关系可表示为y=2x ;(3)当x=52时,y=5;当x=5时,y=10, 所以△APC 的面积从5cm 2变到10cm 2.【点睛】 考查的是函数关系式、自变量和因变量、求函数值的知识,属于基础题,学生认真阅读题意即可作答.25.(1)①30°;②12DOE α∠=;(2)12DOE AOC ∠=∠,见解析 【分析】(1)①首先求得∠COB 的度数,然后根据角平分线的定义求得∠COE 的度数,再根据∠DOE=∠COD-∠COE 即可求解;②解法与①相同,把①中的60°改成α即可;(2)把∠AOC 的度数作为已知量,求得∠BOC 的度数,然后根据角的平分线的定义求得∠COE 的度数,再根据∠DOE=∠COD-∠COE 求得∠DOE ,即可解决.【详解】解:(1)①∵60AOC ∠=︒,∴180BOC AOC ∠=︒-∠ 18060=︒-︒120=︒,∵OE 平分BOC ∠, ∴1602COE BOC ∠=∠=︒, 又∵90COD ∠=︒,∴30DOE COD COE ∠=∠-∠=︒.②同①∠DOE=90°-12(180°-α) =90°-90°+12α =12α. 即:12DOE α∠=. (2)12DOE AOC ∠=∠. 理由如下:∵OE 平分BOC ∠,∴12COE BOC ∠= ()11802AOC =︒-∠ 1902AOC =︒-∠ ∴DOE COD COE ∠=∠-∠90COE =︒-∠190902AOC ⎛=︒⎫ ⎪⎝︒-∠⎭- 12AOC =-∠. 【点睛】本题考查了角度的计算,正确理解角平分线的定义,理解角度之间的和差关系是关键. 26.(1)222(a )2a b b ab +=+-或222()2a b ab a b +-=+;(2)22()()4a b a b ab +=-+或22()()4a b a b ab -=+-或224()()ab a b a b =+--;()314.【分析】(1)和的完全平方公式的变形;(2)两种完全平方公式的恒等关系;(3)根据公式计算即可.【详解】(1)∵外部是一个边长为(a+b )的正方形,∴正方形的面积为2()a b +,∵白色长方形的长为a ,宽为b ,∴两个白色长方形的面积和为2ab ,∴阴影部分的面积为222(a )2a b b ab +=+-或222()2a b ab a b +-=+;(2)∵外部是一个边长为(a+b )的正方形,∴正方形的面积为2()a b +,∵白色长方形的长为a ,宽为b ,∴四个白色长方形的面积和为4ab ,∵内部小正方形的边长为(a-b ),∴正方形的面积为2()a b -,∴22()()4a b a b ab +=-+或22()()4a b a b ab -=+-或224()()ab a b a b =+--; (3)根据图3可得,()222221*********S a b a a b b a b ab =+--+=+-阴影()()22113222212a b ab ab a b ab ⎡⎤+--=+-⎣=⎦, 当10a b +=,24ab =时,原式=213102422⨯-⨯=14. 【点睛】本题考查了以图形面积解释完全平方公式,公式的变形,熟练掌握面积的计算,准确进行公式变形是解题的关键.。
2021-2022年七年级数学下期末一模试题(及答案)(2)
一、选择题1.疫情其间,阳光小区在进行如何避免“新型冠状病毒”感染的宣传活动中,将以下几种注意事项写在条幅上进行张贴,内容分别是:①注意防寒保暖、室内通风和个人卫生;②加强体育锻炼;③保持清淡饮食;④避免到人群密集场所活动;⑤用肥皂和清水或含有酒精的洗手液洗手;⑥出门戴口罩.小雨从以上6张宣传标语中随机抽取一张进行张贴,恰好抽到③或④的概率是( )A .16B .14C .13D .122.下列说法正确的是( ) A .“打开电视机,正在播放《新闻联播》”是不可能事件B .“两直线被第三条直线所截,同位角相等”是必然事件C .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨D .“篮球队员在罚球线上投篮一次,投中”为随机事件3.如图,在3×3的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是( )A .19B .16C .29D .134.等腰三角形的两边a ,b 满足7260a b -+-=,则它的周长是( ) A .17 B .13或17 C .13 D .195.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在D′处,则重叠部分AFC 的面积是( )A .8B .10C .20D .326.下面4个汽车标志图案中,不是轴对称图形的是( )A .B .C .D . 7.下列长度的三条线段,能组成三角形的是( )A .3、1、4B .3、5、9C .5、6、7D .3、6、10 8.如图,AE ∥DF ,AE =DF .添加下列的一个选项后.仍然不能证明△ACE ≌△DBF 的是( )A .AB =CD B .EC =BF C .∠E =∠FD .EC ∥BF 9.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = 10.某人先以v 1的速度由A 地出发去B 地,途中在超市购买了一瓶水之后,又以v 2的速度继续进行至B 地,已知v 1<v 2 , 下面图象中能表示他从A 地到B 地的时间t (分钟)与路程s (千米)之间关系的是( )A .B .C .D .11.如图,已知AD EF BC ,BD GF ∥,且BD 平分ADC ∠,则图中与1∠相等的角(1∠除外)共有( )A .4个B .5个C .6个D .7个12.在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .()()22a b a b a b -=+-B .()2222a b a ab b -=-+C .()2222a b a ab b +=++ D .()()2222a b a b a ab b +-=+- 二、填空题13.写出一个你认为的必然事件_________.14.在某次花样滑冰比赛中,发生裁判受贿事件,竞赛委员会决定将裁判由原来的9名增加到14人,其中任取7名裁判的评分作为有效分,这样做的目的是 ______.15.如图,直线AB ∥CD ,直线EF 分别与直线AB 和直线CD 交于点E 和F ,点P 是射线EA 上的一个动点(P 不与E 重合)把△EPF 沿PF 折叠,顶点E 落在点Q 处,若∠PEF=60°,且∠CFQ:∠QFP=2:5,则∠PFE 的度数是_______.16.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D 、C 两点分别落在'D 、'C 的位置,并利用量角器量得66EFB ∠=︒,则'AED ∠等于__________度.17.已知三角形ABC 的三边长分别是,,a b c ,化简a b c b a c +----的结果是_________________;18.某地1﹣12月大米的平均价格如下表所示,其中自变量是__,因变量是__;当自变量等于__时,因变量的值_____最小.19.两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为____︒.20.计算:3212ab ⎛⎫ ⎪⎝⎭-=________________. 三、解答题21.一个不透明的布袋里装有10个球,其中2个红球,3个白球,5个黄球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸到哪种颜色的球的概率最大?并说明理由;22.如图,在平面直角坐标系xOy 中,A(-1,4),B(-1,1).C(-4,5).(1)在图中做△ABC 关于y 轴对称的△A' B' C'.并写出点A',B’, C'的坐标;(2)在直角坐标系中,找一点P ,使得△ABC 全等于△ABP ,请直接写出点P 坐标.23.如图,点B ,E ,C ,F 在一条直线上,AB DE =,AC DF =,BE CF =.求证:(1)A D ∠=∠;(2)//AB DE .24.已知函数y=中,当x=a 时的函数值为1,试求a 的值.25.如图,在线段MN 上求作一点P ,使∠APM =∠BPM ,(保留作图痕迹,不必写出作法与证明).26.已知2,3x y a a ==,求23x y a +的值【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】小雨同学从6张宣传标语中随机抽取一张,③或④有两种情况,直接利用概率公式求解即可求得答案.【详解】解:∵一共有6张宣传标语,∴小雨同学从6张宣传标语中随机抽取一张进行张贴,恰好抽到③或④的概率是:P(抽到③或④)=21=63故选:C .【点睛】本题考查随机事件概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=n m. 2.D解析:D【解析】【分析】根据必然事件、不可能事件、随机事件的概念以及概率定义分别进行分析,即可得出答案.【详解】A 、打开电视机,正在播放《新闻联播》,这个事件可能发生,也可能不发生,是不确定事件,故本选项错误;B 、两直线被第三条直线所截,同位角相等是不确定事件,故本选项错误;C 、天气预报说“明天的降水概率为40%只是反映了事件发生的机会的大小,不是发生的时长,故本项错误;D 、“篮球队员在罚球线上投篮一次,投中”为随机事件,故本选项正确.故选D .【点睛】本题考查了随机事件、全面调查与抽样调查、概率定义,解题关键是根据事件包括必然事件和不可能事件以及概率定义进行分析.3.D解析:D【分析】直接利用轴对称图形的性质分析得出答案.【详解】如图所示:当1,2两个分别涂成灰色,新构成灰色部分的图形是轴对称图形, 故新构成灰色部分的图形是轴对称图形的概率是:2163=. 故选D .【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键. 4.A解析:A【分析】根据绝对值和二次根式的性质求出a ,b ,再根据等腰三角形的性质判断即可;【详解】 ∵7260a b --=,∴70260a b -=⎧⎨-=⎩,解得73a b =⎧⎨=⎩, ∵a ,b 是等腰三角形的两边,∴当7a =为腰时,三边分别为7,7,3,符合三角形三边关系,此时三角形的周长77317++=;当3b =为腰时,三边为3,3,7,由于33+<7,故不符合三角形的三边关系; ∴三角形的周长为17.故答案选A .【点睛】本题主要考查了等腰三角形的性质、绝对值性质和二次根式的性质,准确计算是解题的关键.5.B解析:B【分析】解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.【详解】解:重叠部分△AFC 的面积是矩形ABCD 的面积减去△FBC 与△AFD’的面积再除以2,矩形的面积是32,∵AB ∥CD ,∴∠ACD =∠CAB ,∵△ACD′由△ACD 翻折而成,∴∠ACD =∠ACD′,∴∠ACD′=∠CAB ,∴AF =CF ,∵BF =AB ﹣AF =8﹣AF ,∴CF 2=BF 2+BC 2∴AF 2=(8﹣AF )2+42∴AF =5,BF =3∴S △AFC =S △ABC ﹣S △BFC =10.故选:B .【点睛】本题通过折叠变换考查学生的逻辑思维能力,解题关键是熟练掌握图形折叠的性质. 6.D解析:D【分析】根据轴对称图形的概念求解.注意找到对称轴可很快的判断是否是轴对称图形.【详解】解:A、是轴对称图形,故不符合题意;B、是轴对称图形,故不符合题意;C、是轴对称图形,故不符合题意;D、不是轴对称图形,故符合题意.故选:D.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.C解析:C【分析】根据三角形的三边关系进行分析判断.【详解】A、1+3=4,不能组成三角形;B、3+5=8<9,不能组成三角形;C、5+6=11>7,能够组成三角形;D、3+6=9<10,不能组成三角形.故选:C.【点睛】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.8.B解析:B【分析】结合题目条件,依据三角形全等的判定定理逐一判断即可.【详解】∵AE∥DF,∴∠A=∠D,A、根据SAS,可以推出△ACE≌△DBF,本选项不符合题意.B、SSA不能判定三角形全等,本选项符合题意.C 、根据ASA ,可以推出△ACE ≌△DBF ,本选项不符合题意.D 、根据AAS ,可以推出△ACE ≌△DBF ,本选项不符合题意.故选:B .【点睛】本题考查了三角形全等的判定,熟记三角形全等的判定定理是解题的关键.9.D解析:D【分析】根据全等三角形的判定,利用ASA 、SAS 、AAS 即可得答案.【详解】解:∵∠B=∠DEF ,AB=DE ,∴添加∠A=∠D ,利用ASA 可得△ABC ≌△DEF ;添加BC=EF ,利用SAS 可得△ABC ≌△DEF ;添加∠ACB=∠F ,利用AAS 可得△ABC ≌△DEF ;添加AC DF =,不符合任何一个全等判定定理,不能证明△ABC ≌△DEF ;故选:D .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS 、ASA 、SAS 、AAS 和HL 是解题的关键.10.C解析:C【解析】∵V 1<V 2,∴题中图象上表示为开始时图象斜率小,后来斜率大,又∵途中买了一瓶水,∴图象有一段平行于x 轴,故选C .11.D解析:D【分析】依据AD EF BC BD GF ∥∥,∥,即可得到1,1ADB DBC FGC EFG EHB ∠=∠=∠=∠=∠∠=∠,再根据BD 平分ADC ∠,即可得到ADB CDB CFG ∠=∠=∠.【详解】解:∵AD EF BC BD GF ∥∥,∥,∴11ADB DBC FGC EFG EHB ∠=∠=∠=∠=∠∠=∠,,又∵BD 平分ADC ∠,∴ADB CDB CFG ∠=∠=∠,∴图中与1∠相等的角(1∠除外)共有7个,故选:D.【点睛】此题主要考查了平行线的性质,此题充分运用平行线的性质以及角的等量代换就可以解决问题.12.A解析:A【分析】分别表示出甲乙图形中阴影部分的面积,根据面积相等可得结论.【详解】甲图中阴影部分的面积为大正方形的面积减去小正方形的面积,即22a b -,乙图中阴影部分长方形的长为()a b +,宽为()-a b ,阴影部分的面积为()()a b a b +-,根据两个图形中阴影部分的面积相等可得22()()a b a b a b -=+-.故选:A.【点睛】本题考查了平方差公式的验证,灵活表示图形的面积是解题的关键. 二、填空题13.瓮中捉鳖(答案不唯一)【分析】此题根据事件的可能性举例即可【详解】必然事件就是一定会发生的例如:瓮中捉鳖等故答案:瓮中捉鳖(答案不唯一)【点睛】此题考查事件的可能性:必然事件的概念解析:瓮中捉鳖(答案不唯一)【分析】此题根据事件的可能性举例即可.【详解】必然事件就是一定会发生的,例如:瓮中捉鳖等,故答案:瓮中捉鳖(答案不唯一).【点睛】此题考查事件的可能性:必然事件的概念.14.减少有效分中有受贿裁判评分的可能性【解析】若有1人受贿则原先有受贿裁判评分的概率是现在有受贿裁判评分的概率为所以这样做的目的是减少有效分中有受贿裁判评分的可能性故答案为减少有效分中有受贿裁判评分的可 解析:减少有效分中有受贿裁判评分的可能性【解析】若有1人受贿,则原先有受贿裁判评分的概率是79,现在有受贿裁判评分的概率为714,所以这样做的目的是减少有效分中有受贿裁判评分的可能性,故答案为减少有效分中有受贿裁判评分的可能性.15.50°【分析】依据平行线的性质即可得到∠EFC的度数再求出∠CFQ即可求出∠PFE的度数【详解】∵AB∥CD∠PEF=60°∴∠PEF+∠EFC=180°∴∠EFC=180°﹣60°=120°∵将△解析:50°【分析】依据平行线的性质,即可得到∠EFC的度数,再求出∠CFQ,即可求出∠PFE的度数.【详解】∵AB∥CD,∠PEF=60°,∴∠PEF+∠EFC=180°,∴∠EFC=180°﹣60°=120°,∵将△EFP沿PF折叠,便顶点E落在点Q处,∴∠PFE=∠PFQ,∵∠CFQ:∠QFP=2:5∴∠CFQ=212∠EFC=212×120°=20°,∴∠PFE=12∠EFQ=12(∠EFC﹣∠CFQ)=12(120°﹣20°)=50°.故答案为:50°.【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键.16.48【解析】【分析】首先由平行线的性质得到∠DEF=∠EFB=66°再由折叠的性质可得∠DEF=∠DEF=66°则∠DED=132°然后再由邻补角的定义求解即可【详解】解:∵AD∥BC∴∠DEF=∠解析:48【解析】【分析】首先由平行线的性质得到∠DEF=∠EFB=66°,再由折叠的性质可得∠D'EF=∠DEF=66°,则∠DED'=132°,然后再由邻补角的定义求解即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFB=66°,由折叠的性质可得∠D'EF=∠DEF=66°,∴∠DED'=132°,∴∠AED'=180°-132°=48°.故答案为48.【点睛】本题考查了折叠的性质,以及平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.17.【分析】先根据三角形的三边关系定理可得再根据绝对值运算整式的加减即可得【详解】由三角形的三边关系定理得:则故答案为:【点睛】本题考查了三角形的三边关系定理绝对值运算整式的加减熟练掌握三角形的三边关系 解析:22b c -【分析】先根据三角形的三边关系定理可得,a b c a c b +>+>,再根据绝对值运算、整式的加减即可得.【详解】由三角形的三边关系定理得:,a b c a c b +>+>,0,0a b c b a c ∴+->--<, 则()a b c b a c a b c a c b +----=+--+-,a b c a c b =+---+,22b c =-,故答案为:22b c -.【点睛】本题考查了三角形的三边关系定理、绝对值运算、整式的加减,熟练掌握三角形的三边关系定理是解题关键.18.月份价格91028【分析】在函数中给一个变量x 一个值另一个变量y 就有对应的值则x 是自变量y 是因变量据此即可判断此题中的因变量和自变量;再根据图表可找出自变量等于910时因变量的值最小【详解】根据图表 解析:月份 价格 9,10 2.8【分析】在函数中,给一个变量x 一个值,另一个变量y 就有对应的值,则x 是自变量,y 是因变量,据此即可判断此题中的因变量和自变量;再根据图表可找出自变量等于9,10时,因变量的值最小.【详解】根据图表可以得到:大米的价格随的时间的改变而改变,自变量是月份,因变量是价格; 当自变量等于9,10时,因变量的值2.8最小.故答案为月份;价格;9,10;2.8.【点睛】考查了自变量和因变量,正确理解自变量与因变量的定义,正确理解图表的意义,从图中找到正确信息.19.72【分析】如果两个角的两边互相平行则这两个角相等或互补根据题意这两个角只能互补然后列方程求解即可【详解】解:设其中一个角是x°则另一个角是(180-x)°根据题意得解得x=72∴180-x=108解析:72【分析】如果两个角的两边互相平行,则这两个角相等或互补.根据题意,这两个角只能互补,然后列方程求解即可.【详解】解:设其中一个角是x°,则另一个角是(180-x)°,根据题意,得11(180)23x x =-, 解得x=72,∴180-x=108°;∴较小角的度数为72°.故答案为:72.【点睛】本题考查了平行线的性质,一元一次方程的应用,运用“若两个角的两边互相平行,则两个角相等或互补”,而此题中显然没有两个角相等这一情况是解决此题的突破点. 20.【分析】根据积的乘方与幂的乘方运算法则进行计算即可得到答案【详解】解:故答案为:【点睛】此题主要考查了积的乘方与幂的乘方的运算熟练掌握积的乘方与幂的乘方运算法则是解答此题的关键 解析:3618a b - 【分析】根据积的乘方与幂的乘方运算法则进行计算即可得到答案.【详解】 解:()33323236111228ab a b a b ⎛⎫⎛⎫-=-⋅=- ⎪ ⎪⎝⎭⎝⎭. 故答案为:3618a b -.【点睛】此题主要考查了积的乘方与幂的乘方的运算,熟练掌握积的乘方与幂的乘方运算法则是解答此题的关键. 三、解答题21.(1)摸出1个球是白球的概率310;(2)袋子中黄色球的个数最多.【解析】【分析】(1)用白色球的个数除以球的总个数即可得;(2)那种球的数量最多,摸到那种球的概率就大.【详解】(1)∵袋子中共有10个球,其中白球有3个,∴摸出1个球是白球的概率310;(2)摸到黄色球的概率最大,因为袋子中黄色球的个数最多.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m n22.(1)图见解析;(2)P(-4,0)或(2,5)或(2,0)【分析】(1)根据轴对称变换的性质作图即可;(2)根据三角形全等的判定确定点P坐标即可.【详解】解:(1)如图所示:(2)如下图所示:共有共有3个P点使得使得△ABC全等于△ABP,分别为:(-4,0)、(2,5)、(2,0)【点睛】本题考查了轴对称变换中的作图问题,解题的关键是要确定关键点的对称点. 23.(1)证明见解析;(2)证明见解析.【分析】(1)利用“边边边”定理证ABC DEF △≌△即可;(2)由全等可得,B DEF ∠=∠,根据平行线的判定证明即可.【详解】证明:(1)BE CF =,BE EC CF EC ∴+=+,BC EF ∴=,在ABC 和DEF 中, BC EF AB DE AC DF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ∴△≌△,A D ∴∠=∠;(2)由(1)得:ABC DEF △≌△,B DEF ∴∠=∠,//AB DE ∴.【点睛】本题考查了全等三角形的判定与性质,平行线的判定,解题关键是依据已知条件证明三角形全等,再根据全等三角形的性质解决问题.24.a=3【解析】【分析】 根据函数值与自变量的关系是一一对应的,代入函数值,可得自变量的值.【详解】解:函数y=中,当x=a 时的函数值为1,=1,两边都乘以(a+2)得2a ﹣1=a+2解得a=3.【点睛】本题考查函数值,代入函数值可得相应自变量的值.25.见解析【分析】作点B 关于直线MN 的对称点B′,作直线AB′交MN 于点P ,连接BP ,点P 即为所求.【详解】解:如图,点P 即为所求.【点睛】本题考查作图−基本作图,解题的关键是理解题意,灵活运用所学知识解决问题. 26.108【分析】首先根据已知条件可得a 2x 、a 3y 的值,然后利用同底数幂的乘法运算法则求出代数式的值.【详解】 解:2,3x y a a ==,∴()()23232323108x y xy a a a +=⨯=⨯=. 【点睛】 本题主要考查了幂的乘方和同底数幂的乘法,利用性质转化为已知条件的形式是解题的关键.。
2021-2022年七年级数学下期末第一次模拟试题含答案(2)
一、选择题1.下列事件为必然事件的是()A.打开电视,正在播放新闻B.买一张电影票,座位号是奇数号C.任意画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上2.下列事件中,不可能事件是()A.今年的除夕夜会下雪B.在只装有红球的袋子里摸出一个黑球C.射击运动员射击一次,命中10环D.任意掷一枚硬币,正面朝上3.下列事件是随机事件的是()A.在一个标准大气压下,水加热到100℃会沸腾 B.购买一张福利彩票就中奖C.有一名运动员奔跑的速度是50米/秒 D.在一个仅装有白球和黑球的袋中摸球,摸出红球4.剪纸是我国传统的民间艺术.将一张纸片按图①,②中的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.5.下列轴对称图形中,对称轴最多的图形是()A.B.C.D.6.一根长为20cm的长方形纸条,将其按照图示的过程折叠,若折叠完成后纸条两端超出点P的长度相等,且PM=PN=5cm,则长方形纸条的宽为()A .1.5cmB .2cmC .2.5cmD .3cm7.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒 8.已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( ) A .13cmB .6cmC .5cmD .4cm9.如图,四边形ABCD 是长方形,点F 是DA 长线上一点,G 是CF 上一点,并且ACG AGC ∠=∠,GAF F ∠=∠.若15ECB ∠=︒,则ACF ∠的度数是( )A .15︒B .20︒C .30D .45︒10.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s 关于时间t 的图象,那么符合小明行驶情况的图象大致是( ) A .B .C .D .11.如图,已知CB ∥DF ,则下列结论成立的是( )A .∠1=∠2B .∠2=∠3C .∠1=∠3D .∠1+∠2=180º 12.若3a b +=-,10ab =-,则-a b 的值是( )A .0或7B .0或13-C .7-或7D .13-或13二、填空题13.同时抛掷两个质地均匀的正方形骰子,骰子的六个面上分别刻有1到6的点数,则两个骰子向上的一面的点数和为6的概率为______.14.如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、等边三角形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于_____.15.将长方形ABCD 纸片按如图所示方式折叠,使得50A EB ''︒∠=,其中EF ,EG 为折痕,则AEF ∠+BEG ∠=____________度.16.如图,在等边ABC 中,D 、E 分别是AB 、AC 上的点,将ADE 沿直线DE 折叠后,点A 落在点A '处,ABC 的边长为4cm ,则图中阴影部分的周长为_____cm .17.如图,在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别为D ,E ,AD ,CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.添加的条件是:____.(写出一个即可)18.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是______,因变量是______.19.如图是“步步高”超市里购物车的侧面示意图,扶手AB 与车底CD 平行,1100∠=︒,24829'∠=︒,则3∠的度数是________.20.2007200820092()(1.5)(1)3⨯÷-=_____.三、解答题21.为从小明和小刚中选出一人去观看元旦文艺汇演,现设计了如下游戏,规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏是否公平. 22.如图1,在锐角△ABC 中,∠ABC=45°,高线AD 、BE 相交于点F . (1)判断BF 与AC 的数量关系并说明理由;(2)如图2,将△ACD 沿线段AD 对折,点C 落在BD 上的点M ,AM 与BE 相交于点N ,当DE ∥AM 时,判断NE 与AC 的数量关系并说明理由.23.△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高. (1)如图1,若∠B =40°,∠C=60°,求∠DAE 的度数;(2)如图2,∠B <∠C ,则DAE 、∠B ,∠C 之间的数量关系为___________; (3)如图3,延长AC 到点F ,∠CAE 和∠BCF 的角平分线交于点G ,求∠G 的度数.24.由于持续高温和连日无雨,水库蓄水量普遍下降,如图是某水库的蓄水量V (万立方米)与干旱持续时间t (天)之间的关系图,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万立方米? (2)若水库的蓄水量小于400万立方米时,将发出严重干旱警报,请问持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?25.(1)解方程:3157146y y ---=; (2)若一个角的余角比这个角的补角的一半还少24°,求这个角的度数. 26.化简:(1)()34322223x y x y z x y -÷; (2)2(4)3(1)(3)x x x x -+-+.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件. 【详解】解:A 、打开电视,正在播放新闻,是随机事件,故A 错误;B、买一张电影票,座位号是奇数号,是随机事件,故B错误;C、任意画一个三角形,其内角和是180°,是必然事件,故C正确;D、掷一枚质地均匀的硬币,正面朝上,是随机事件,故D错误;故选:C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.B解析:B【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A、今年的除夕夜会下雪是随机事件,故A错误;B、在只装有红球的袋子里摸出一个黑球是不可能事件,故B正确;C、射击运动员射击一次,命中10环是随机事件,故C错误;D、任意掷一枚硬币,正面朝上是随机事件,故D错误;故选B.【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.B解析:B【解析】【分析】根据事件的类型特点及性质进行判断.【详解】A、是必然事件,选项错误;B、是随机事件,选项错误;C、是不可能事件,选项错误;D、是不可能事件,选项错误.故选B.【点睛】本题考查的是随机事件的特性,熟练掌握随机事件的特性是本题的解题关键.4.A解析:A【分析】对于此类问题,只要依据翻折变换,知道剪去了什么图形即可判断,也可动手操作,直观的得到答案.【详解】解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得:.故选:A.【点睛】本题主要考查了剪纸问题,解决这类问题要熟知轴对称图形的特点,关键是准确的找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.5.D解析:D【分析】根据对称轴的概念、结合图形分别找出各个图形的对称轴,得到答案.【详解】A中图形有一条对称轴;B中图形有一条对称轴;C中图形有两条对称轴;D中图形有四条对称轴;故选:D.【点睛】此题考查轴对称图形,正确找出各个图形的对称轴是解题的关键.6.B解析:B【解析】【分析】设纸条宽为xcm,观察图形,由折叠的性质可知:PM=PN=5,除了AP和BM的长度中间的长度为5x,将折叠的纸条展开,根据题意列出方程式求出x的值即可.【详解】解:如图:设纸条宽为xcm,观察图形,由折叠的性质可知:PM=PN=5,MN=20由题意可得:5×2+5x=20解得:x=2故选:B.【点睛】本题考查了翻折变换的知识以及学生的动手操作能力,解答本题的关键是仔细观察图形,得到各线段之间存在的关系.7.D解析:D 【分析】根据三角形全等的性质与路程、速度、时间的关系式求解. 【详解】解:设△BPD ≌△CPQ 时运动时间为t ,点Q 的运动速度为v ,则由题意得:BP CPBD CQ =⎧⎨=⎩, 即3634t t vt =-⎧⎨=⎩,解之得:14t v =⎧⎨=⎩,∴点Q 的运动速度为4厘米/秒, 故选D . 【点睛】本题考查三角形全等的综合应用,熟练掌握三角形全等的判定与性质、路程、速度、时间的关系式及方程的思想方法是解题关键.8.B解析:B 【分析】利用三角形的三边关系即可求解. 【详解】解:第三边长x 的范围是:8383x -<<+,即5cm 11cm x <<, 故选:B . 【点睛】本题考查三角形的三边关系,掌握两边之和大于第三边,两边之差小于第三边是解题的关键.9.C解析:C 【分析】根据矩形的性质得到AD ∥BC ,∠DCB =90°,根据平行线的性质得到∠F =∠ECB =15°,根据三角形的外角的性质得到∠ACF =∠AGC =∠GAF +∠F =2∠F ,于是得到结论. 【详解】解:∵四边形ABCD 是矩形, ∴AD ∥BC ,∠DCB =90°, ∴∠F =∠ECB =15°,∴∠GAF=∠F=15°,∴∠ACF=∠AGC=∠GAF+∠F=2∠F=30°,故选C.【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.10.D解析:D【分析】由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.【详解】解:因为开始以正常速度匀速行驶---停下修车---加快速度匀驶,可得S先缓慢减小,再不变,在加速减小.故选D.【点睛】此题主要考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.11.B解析:B【分析】根据两条直线平行,同位角相等,即可判断.【详解】解:∵CB∥DF,∴∠2=∠3(两条直线平行,同位角相等).故选:B.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.12.C解析:C【分析】根据完全平方公式得出( a-b )2=( a + b )2-4ab,进而求出( a-b )2的值,再求出 a-b 的值即可【详解】( a-b )2=( a + b )2-4ab∴()22-(3)4(10)a b=--⨯-∴()249a b-=a b-=±∴7故答案选:C【点睛】考查完全平方公式的应用,掌握完全平方公式的特点和相应的变形,是正确解答的关键.二、填空题13.【解析】【分析】列举出所有情况看两个骰子向上的一面的点数和为6的情况利用概率公式即可得答案【详解】列表得:∴两个骰子向上的一面的点数和为6的概率为故答案为:【点睛】此题考查了列表法或树状图法求概率列解析:5 36【解析】【分析】列举出所有情况,看两个骰子向上的一面的点数和为6的情况,利用概率公式即可得答案.【详解】列表得:∴两个骰子向上的一面的点数和为6的概率为536,故答案为:5 36.【点睛】此题考查了列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率 所求情况数与总情况数之比.熟记概率公式是解题关键.14.【解析】【分析】由五张完全相同的卡片上分别画有平行四边形矩形菱形等边三角形等腰梯形其中既是轴对称图形又是中心对称图形的有矩形菱形然后直接利用概率公式求解即可求得答案【详解】∵五张完全相同的卡片上分别解析:2 5【解析】【分析】由五张完全相同的卡片上分别画有平行四边形、矩形、菱形、等边三角形、等腰梯形,其中既是轴对称图形又是中心对称图形的有矩形、菱形,然后直接利用概率公式求解即可求得答案.【详解】∵五张完全相同的卡片上分别画有平行四边形、矩形、菱形、等边三角形、等腰梯形,其中既是轴对称图形又是中心对称图形的有矩形、菱形,∴现从中任意抽取一张,卡片上所写的图形既是轴对称图形又是中心对称图形的概率为25, 故答案为:25. 【点睛】此题考查了概率公式的应用.注意:概率=所求情况数与总情况数之比. 15.65【解析】【分析】根据翻折的定义可以得到各角之间的关系从而可以得到∠AEF+∠BEG 的度数从而可以解答本题【详解】解:由题意可得∠AEA=2∠AEF ∠BEB=2∠BEG ∴(∠AEA+∠BEB )∵∠解析:65【解析】【分析】根据翻折的定义可以得到各角之间的关系,从而可以得到∠AEF+∠BEG 的度数,从而可以解答本题.【详解】解:由题意可得,∠A’EA=2∠AEF,∠BEB’=2∠BEG.∴AEF ∠+BEG ∠=12(∠A’EA+∠BEB’). ∵∠A’EA+∠BEB’+∠A’EB’=180°,50A EB ''︒∠=∴∠A’EA+∠BEB’=130°,∴AEF ∠+BEG ∠=12⨯130°=65°. 故答案为65.【点睛】本题考查翻折变换、矩形的性质,解题的关键是明确题意,找出所求问题需要的条件. 16.12【分析】由题意得AE=A′EAD=A′D 故阴影部分的周长可以转化为三角形ABC 的周长【详解】解:将△ADE 沿直线DE 折叠点A 落在点A′处所以AD=A′DAE=A′E 则阴影部分图形的周长等于BC+解析:12【分析】由题意得AE=A′E ,AD=A′D ,故阴影部分的周长可以转化为三角形ABC 的周长.【详解】解:将△ADE 沿直线DE 折叠,点A 落在点A′处,所以AD=A′D,AE=A′E.则阴影部分图形的周长等于BC+BD+CE+A′D+A′E,=BC+BD+CE+AD+AE,=BC+AB+AC,=12cm.故答案为:12.【点睛】此题考查翻折问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.17.AF=CB或EF=EB或AE=CE【分析】根据垂直关系可以判断△AEF与△CEB有两对对应角相等就只需要找它们的一对对应边相等就可以了【详解】∵AD⊥BCCE⊥AB垂足分别为DE∴∠BEC=∠AEC解析:AF=CB或EF=EB或AE=CE【分析】根据垂直关系,可以判断△AEF与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【详解】∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=∠ADB=∠ADC=90°,∵∠B+∠BAD=90°,∠B+∠BCE =90°,∴∠BAD=∠BCE,所以根据AAS添加AF=CB或EF=EB;根据ASA添加AE=CE.可证△AEF≌△CEB.故答案为:AF=CB或EF=EB或AE=CE.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.18.时间温度【解析】【分析】早穿皮袄午穿纱围着火炉吃西瓜这句谚语中早午晚是时间早穿皮袄说明早上冷午穿纱说明中午热说明温度随着时间在变化【详解】早穿皮袄午穿纱围着火炉吃西瓜这句谚语反映了我国新疆地区一天中解析:时间温度【解析】【分析】“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语中早、午、晚是时间,早穿皮袄说明早上冷,午穿纱说明中午热,说明温度随着时间在变化.【详解】“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是时间,因变量是温度.故答案为时间、温度.【点睛】本题考查了正比例好反比例的意义,一个量在变化另一个量也在变化,时间好温度都在变化.19.【分析】根据两直线平行内错角相等可得∠1=∠2+∠3据此可求【详解】解:∵AB ∥CD ∴∠1=∠2+∠3∴∠3=∠1-∠2=-=故答案是:【点睛】此题主要考查了平行线的性质关键是正确理解题意掌握两直线解析:5131︒.【分析】根据两直线平行内错角相等可得∠1=∠2+∠3,据此可求.【详解】解:∵AB ∥CD ,∴∠1=∠2+∠3∴∠3=∠1-∠2=100︒-4829︒'=5131︒,故答案是:5131︒.【点睛】此题主要考查了平行线的性质,关键是正确理解题意,掌握两直线平行内错角相等. 20.-15【分析】首先把分解成再根据积的乘方的性质的逆用解答即可【详解】解:原式===﹣15故答案为-15【点睛】本题考查有理数的乘方运算逆用积的乘方法则是解题关键解析:-1.5【分析】首先把20081.5分解成20071.5 1.5⨯,再根据积的乘方的性质的逆用解答即可.【详解】 解:原式=()200720072 1.5 1.513⎛⎫⨯⨯÷- ⎪⎝⎭=()20072 1.5 1.513⎛⎫⨯⨯⨯- ⎪⎝⎭=﹣1.5, 故答案为-1.5 .【点睛】本题考查有理数的乘方运算,逆用积的乘方法则是解题关键.三、解答题21.不公平.【解析】试题分析:先利用树状图法展示所有12种等可能的结果数,再找出两个球上的数字和为奇数和偶数所占的结果数,然后根据概率公式分别计算出小明去和小刚去的概率,再通过比较概率的大小判断游戏的公平性.试题画树状图为:,共有12种等可能的结果数,其中两个球上的数字和为奇数占8种,两个球上的数字和为偶数占4种,所以小明去的概率=82123=,小刚去的概率=41123=,所以这个游戏不公平.考点: 1.游戏公平性;2.列表法与树状图法.22.(1)BF=AC,理由见解析;(2)NE=12AC,理由见解析.【分析】(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=12AC.【详解】(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵DAC DBFADC BDF AD BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=12AC,理由是:如图2,由折叠得:MD=DC,∵DE∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=12AC.23.(1)10°;(2)∠DAE=12(∠C−∠B);(3)45°.【分析】(1)根据三角形的内角和定理可求得∠BAC=80°,由角平分线的定义可得∠CAD的度数,利用三角形的高线可求∠CAE得度数,进而求解即可得出结论;(2)根据(1)的推理方法可求解∠DAE、∠B、∠C的数量关系;(3)设∠ACB=α,根据角平分线的定义得∠CAG=12∠EAC=12(90°−α)=45°−12α,∠FCG=12∠BCF=12(180°−α)=90°−12α,再利用三角形外角的性质即可求得结果.【详解】解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD平分∠BAC,∴∠CAD=∠BAD=12∠BAC=40°,∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°−60°=30°,∴∠DAE=∠CAD−∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°−∠B−∠C,∵AD平分∠BAC,∴∠CAD=∠BAD=12∠BAC,∵AE是△ABC的高,∴∠AEC=90°,∴∠CAE=90°−∠C,∴∠DAE=∠CAD−∠CAE=12∠BAC−(90°−∠C)=12(180°−∠B−∠C)−90°+∠C=1 2∠C−12∠B,即∠DAE=12(∠C−∠B).故答案为:∠DAE=12(∠C−∠B).(3)设∠ACB=α,∵AE⊥BC,∴∠EAC=90°−α,∠BCF=180°−α,∵∠CAE和∠BCF的角平分线交于点G,∴∠CAG=12∠EAC=12(90°−α)=45°−12α,∠FCG=12∠BCF=12(180°−α)=90°−12α,∵∠FCG=∠G+∠CAG,∴∠G=∠FCG −∠CAG=90°−12α−(45°−12α)=45°.【点睛】本题考查了三角形的内角和定理、三角形的高及角平分线等知识,熟练掌握三角形内角和定理并能灵活运用三角形的高、角平分线这些知识解决问题是关键.24.(1)水库原蓄水量为1 000万立方米,持续干旱10天后,蓄水量为800万立方米;(2)当v=400时,t=30,∴持续干旱30天后将发出严重干旱警报;(3)持续干旱50天后水库将干涸.【解析】【分析】(1)原蓄水量即t=0时v的值,t=50时,v=0,得v与t的函数关系,持续干旱10天后的蓄水量即t=10时v的值;(2)即找到v=400时,相对应的t的值;(3)从第10天到第30天,水库下降了800−400=400万立方米,一天下降=20万立方米,第30天的400万立方米还能用=20天,即50天时干涸.【详解】解:(1)当t=0时,v=1000∴水库原蓄水量为1000万米3,干涸的速度为1000÷50=20,所以v=1000-20t,当t=10时,v=800,∴水库原蓄水量为1 000万立方米,持续干旱10天后,蓄水量为800万立方米.(2)当v=400时,t=30,∴持续干旱30天后将发出严重干旱警报.(3)从第10天到第30天,水库下降了(800﹣400)万立方米,一天下降=20万立方米,故根据此规律可求出:30+=50天,那么持续干旱50天后水库将干涸.【点睛】本题考查了函数图象的问题,解题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,得到相应的点的意义.25.(1)y=-1;(2)这个角的度数是48︒【分析】(1)先去分母,再去括号、移项、合并同类项、系数化为1解方程;(2))设这个角的度数为x,根据题意列方程190(180)242x x︒-=︒--︒,求解即可.【详解】解:(1)3157146 y y---=去分母得:3(3y-1)-12=2(5y-7)去括号得:9y-3-12=10y-14移项得:9y-10y=-14+3+12合并同类项得:-y=1系数化为1得:y=-1;(2)设这个角的度数为x,由题意得:190(180)242x x︒-=︒--︒,解得:x=48︒,∴这个角的度数是48︒.【点睛】此题考查解一元一次方程,一元一次方程的应用,正确掌握解一元一次方程的步骤、余角补角的定义是解题的关键.26.(1)223xy xz -;(2)2529x x --【分析】(1)按照多项式除以单项式的法则计算即可;(2)先按整式乘法法则去括号,再合并同类项即可.【详解】解:(1)原式3422322223x y x y x y z x y =÷-÷ 223xy xz =-.(2)原式()2228323x x x x =-++- 2228369x x x x =-++-2529x x =--.【点睛】本题考查了整式的混合运算,准确掌握并运用法则是解题关键.。
2021-2022年七年级数学下期末第一次模拟试题及答案(2)
一、选择题1.下列事件为必然事件的是( ) A .掷一枚硬币,正面朝上 B .打开电视机,正在播放动画片C .三根长度为2cm 、3cm 、5cm 的木棒首尾相接能摆成三角形D .两角及一边对应相等的两个三角形全等2.抛掷一枚质地均匀、六个面上分别刻有点数1~6的正方体骰子2次,则“向上一面的点数之和为10”是( ) A .必然事件B .不可能事件C .确定事件D .随机事件3.下列说法中正确的是( ) A .367人中至少有两人是同月同日生B .某商场抽奖活动的中奖率为1‰,说明每抽1000张奖券,一定有一张能中奖C .“打开电视机,正在播放《动物世界》”是必然事件D .“明天降雨的概率是80%”表示明天有80%的时间降雨4.下列说法:①三角形的一个外角等于它的任意两个内角和;②内角和等于外角和的多边形只有四边形;③角是轴对称图形,角的对称轴是角平分线.其中正确的有( )个. A .0B .1C .2D .35.如图,若ABC ∆的面积为24,6AC =,现将ABC ∆沿 AB 所在直线翻折,使点 C 落在直线 AD 上的C '处,P 为直线AD 上一点,则线段 BP 的长可能是( )A .3B .5C .6D .106.在4×4的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与△ABC 关于某条直线对称的格点三角形,最多能画( )个.A .5B .6C .7D .87.如图,四边形ABCD 是长方形,点F 是DA 长线上一点,G 是CF 上一点,并且ACG AGC ∠=∠,GAF F ∠=∠.若15ECB ∠=︒,则ACF ∠的度数是( )A.15︒B.20︒C.30D.45︒8.如图,AD平分∠BAC,AB=AC,连接BD,CD并延长,分别交AC,AB于点F,E,则图中全等三角形共有()A.2对B.3对C.4对D.5对⊥,在BF上找点9.如图,要测量河两岸相对的两点A、B的距离,先过点B作BF AB⊥,再取BD的中点C,连接AC并延长,与DE交点为E,此时测D,过D作DE BF△全等的依据是()得DE的长度就是AB的长度.这里判定ABC和EDCA.ASA B.SAS C.SSS D.AAS10.百货大楼进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其长度x 与售价y如下表:长度x/m1234…售价y/元8+0.316+0.624+0.932+1.2…下列用长度x表示售价y的关系式中,正确的是()A.y=8x+0.3 B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x11.已知∠1=43°27′,则∠1的余角为()A.136°33′B.136°73′C.46°73′D.46°33′12.在边长为a的正方形中挖去一个边长为b的小正方形(a b>)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A .()()22a b a b a b -=+-B .()2222a b a ab b -=-+ C .()2222a b a ab b +=++D .()()2222a b a b a ab b +-=+-二、填空题13.写出一个你认为的必然事件_________.14.高速公路某收费站出城方向有编号为,,,,A B C D E 的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下: 收费出口编号 ,A B,B C,C D,D E,E A通过小客车数量(辆)260330300360240在五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________.15.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.16.如图,在三角形纸片中,8,5,6AB cm BC cm AC cm ===,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则AED ∆的周长等于_________________cm .17.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.18.某航空公司行李的托运费按行李的质量收取,30 kg 以下免费,30 kg 及以上按图中所示的关系来计算,若某人行李的质量为200 kg,则他需要付托运费____________.19.如图,//,//,62AC ED AB FD A ∠=︒,则EDF ∠度数为___________.20.已知,a b 满足1,2a b ab -==,则a b +=____________三、解答题21.如图,一个四边形纸片ABCD ,90B D ∠=∠=︒,把纸片按如图所示折叠,使点B 落在AD 边上的'B 点,AE 是折痕.(1)判断'B E 与DC 的位置关系,并说明理由; (2)如果130C ∠=︒,求AEB ∠的度数.22.“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题: (1)求这次抽查的家长总人数; (2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是多少?23.如图,在△ABC 中,∠BAC 的平分线AD 交BC 于点D ,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,连接EF .写出两个结论(∠BAD =∠CAD 和DE =DF 除外),并选择一个结论进行证明. (1)____________; (2)____________.24.某公交车每月的支出费用为4000元,每月的乘车人数x (人)与每月利润(利润=收入费用﹣支出费用)y (元)的变化关系如表所示(每位乘客的公交票价是固定不变的). x (人) 500 1000 1500 200025003000…y (元)﹣3000﹣2000﹣10000 1000 2000 …(1)在这个变化过程中,每月的乘车人数x 与每月利润y 分别是 变量和 变量;(2)观察表中数据可知,每月乘客量达到 人以上时,该公交车才不会亏损; (3)当每月乘车人数为4000人时,每月利润为多少元?25.如图,直线AB 与CD 相交于点O ,30AOC ∠=︒,射线OE 从OC 开始绕点O 按顺时针方向旋转到OB .(1)当OE AB ⊥时,求EOD ∠的度数. (2)当OE 平分COB ∠时,求EOD ∠的度数.26.先化简,再求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷(-2x),其中x=-3,y=﹣2020【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A.掷一枚硬币,正面朝上是随机事件,;B.打开电视机,正在播放动画片是随机事件;C.三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形是不可能事件;D.两角及一边对应相等的两个三角形全等是必然事件.故选D.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.D解析:D【解析】【分析】根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.【详解】解:因为抛掷2次质地均匀的正方体骰子,正方体骰子的点数和应大于或等于2,而小于或等于12.显然,向上一面的点数之和为10”是随机事件.故选:D.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.A解析:A【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、367人中至少有两人是同月同日生,正确;B、某商场抽奖活动的中奖率为1‰,是随机事件,不一定每抽1000张奖券,一定有一张能中奖,故本选项错误;C、“打开电视机,正在播放《动物世界》”是随机事件,故本选项错误;D、“明天降雨的概率是80%”表示明天降雨的可能性大,但不一定是明天有80%的时间降雨,故本选项错误;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.B解析:B【分析】根据三角形的外角和定理、三角形的内角和定理、角的性质、对称轴的定义知识点逐个判断即可.【详解】解:①应为三角形的一个外角等于与它不相邻的两个内角的和,故本选项错误;②内角和等于外角和的多边形只有四边形,故正确;③角是轴对称图形,角的对称轴是角的平分线所在的直线,③错误;综上所述,②正确,故选B.【点睛】本题考查了三角形的外角和定理、三角形的内角和定理、角的性质、对称轴的定义相关知识点,能熟记知识点的内容是解此题的关键.5.D解析:D过B 点作BM ⊥AD 于M 点,作BN ⊥AC 于N 点,P 点在AD 上运动,,利用三角形的面积求出BN ,进而得到BM ,BM 的长即为BP 的最小值. 【详解】如图,过B 点作BM ⊥AD 于M 点,作BN ⊥AC 于N 点,△ABC 面积为24,AC 为6,故可得到BN=24×2÷6=8,因为△ABC 翻转得到ABC ∆',故=A B C C B A ,所以有BM=BN=8,所以BP 的最小值为8,选项中只有D 选项大于8,故选D.【点睛】本题考查翻转的性质,解题关键在于能够合理做出辅助线.6.C解析:C 【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解. 【详解】如图,最多能画出7个格点三角形与△ABC 成轴对称.故选:C . 【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题的难点在于确定出不同的对称轴.7.C【分析】根据矩形的性质得到AD ∥BC ,∠DCB =90°,根据平行线的性质得到∠F =∠ECB =15°,根据三角形的外角的性质得到∠ACF =∠AGC =∠GAF +∠F =2∠F ,于是得到结论. 【详解】解:∵四边形ABCD 是矩形, ∴AD ∥BC ,∠DCB =90°, ∴∠F =∠ECB =15°, ∴∠GAF =∠F =15°,∴∠ACF =∠AGC =∠GAF +∠F =2∠F =30°, 故选C . 【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.8.C解析:C 【分析】认真观察图形,确定已知条件在图形上的位置,结合全等三角形的判定方法,由易到难,仔细寻找. 【详解】解:AD 平分BAC ∠, BAD CAD ∴∠=∠,在ABD ∆与ACD ∆中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩, ()ABD ACD SAS ∴∆≅∆,BD CD ∴=,B C ∠=∠,ADB ADC ∠=∠,又EDB FDC ∠=∠,ADE ADF ∴∠=∠,AED AFD ,BDE CDF ∆≅∆,∆≅∆ABF ACE .AEDAFD ,ABD ACD ∆≅∆,BDE CDF ∆≅∆,∆≅∆ABF ACE ,共4对.故选:C . 【点睛】本题考查三角形全等的判定方法和全等三角形的性质,熟悉相关判定定理是解题的关键.9.A解析:A 【分析】根据条件可得到BC=CD ,∠ABD=∠EDC ,∠ACB=∠DCE ,可得出所用的判定方法. 【详解】解:∵C 为BD 中点, ∴BC=CD , ∵AB ⊥BF ,DE ⊥BF ,∴∠ABC=∠CDE=90°,且∠ACB=∠DCE , ∴在△ABC 和△EDC 中,满足ASA 的判定方法, 故选:A . 【点睛】本题主要考查三角形全等的判定方法,掌握全等三角形的五种判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .10.B解析:B 【分析】本题通过观察表格内的x 与y 的关系,可知y 的值相对x=1时是成倍增长的,由此可得出方程. 【详解】解:依题意得y =(8+0.3)x . 故选B . 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.11.D解析:D 【分析】根据余角的定义进行计算即可得答案. 【详解】 ∵∠1=43°27′,∴∠1的余角为90°-43°27′=46°33′, 故选:D . 【点睛】此题考查了余角的定义及角度的计算,如果两个角的和是90°,那么这两个角互余;熟练掌握余角的定义是解题关键.12.A解析:A 【分析】分别表示出甲乙图形中阴影部分的面积,根据面积相等可得结论. 【详解】甲图中阴影部分的面积为大正方形的面积减去小正方形的面积,即22a b ,乙图中阴影部分长方形的长为()a b +,宽为()-a b ,阴影部分的面积为()()a b a b +-,根据两个图形中阴影部分的面积相等可得22()()a b a b a b -=+-.故选:A.【点睛】本题考查了平方差公式的验证,灵活表示图形的面积是解题的关键. 二、填空题13.瓮中捉鳖(答案不唯一)【分析】此题根据事件的可能性举例即可【详解】必然事件就是一定会发生的例如:瓮中捉鳖等故答案:瓮中捉鳖(答案不唯一)【点睛】此题考查事件的可能性:必然事件的概念解析:瓮中捉鳖(答案不唯一)【分析】此题根据事件的可能性举例即可.【详解】必然事件就是一定会发生的,例如:瓮中捉鳖等,故答案:瓮中捉鳖(答案不唯一).【点睛】此题考查事件的可能性:必然事件的概念.14.B 【分析】利用同时开放其中的两个安全出口20分钟所通过的小车的数量分析对比能求出结果【详解】同时开放AE 两个安全出口与同时开放DE 两个安全出口20分钟的通过数量发现得到D 疏散乘客比A 快;同理同时开放 解析:B【分析】利用同时开放其中的两个安全出口,20分钟所通过的小车的数量分析对比,能求出结果.【详解】同时开放A 、E 两个安全出口,与同时开放D 、E 两个安全出口,20分钟的通过数量发现得到D 疏散乘客比A 快;同理同时开放BC 与 CD 进行对比,可知B 疏散乘客比D 快;同理同时开放BC 与 AB 进行对比,可知C 疏散乘客比A 快;同理同时开放DE 与 CD 进行对比,可知E 疏散乘客比C 快;同理同时开放AB 与 AE 进行对比,可知B 疏散乘客比E 快;所以B 口的速度最快故答案为B .【点睛】本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题.15.80°【分析】由轴对称的性质可得∠B′OG =∠BOG 再结合已知条件即可解答【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°可得∠B′OG+∠BOG=160°∴∠BOG=×16解析:80°【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=160°∴∠BOG=1×160°=80°.2故答案为80°.【点睛】本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 16.9【分析】根据翻折变换的性质可得DE=CDBE=BC然后求出AE再根据三角形的周长列式求解即可【详解】∵BC沿BD折叠点C落在AB边上的点E处∴DE=CDBE=BC∵AB=8cmBC=6cm∴AE=解析:9【分析】根据翻折变换的性质可得DE=CD,BE=BC,然后求出AE,再根据三角形的周长列式求解即可.【详解】∵BC沿BD折叠点C落在AB边上的点E处,∴DE=CD,BE=BC,∵AB=8cm,BC=6cm,∴AE=AB−BE=AB−BC=8−5=3cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=6+3,=9cm.故答案为9.【点睛】本题考查了翻折变换的性质,熟记翻折前后两个图形能够完全重合得到相等的线段是解题的关键.17.4cm【分析】由DE⊥AB可得∠BFE=90°由直角三角形两锐角互余可得∠ABC+∠DEB=90°由∠ACB=90°由直角三角形两锐角互余可得∠ABC+∠A=90°根据同角的余角相等可得∠A=∠DE解析:4cm.由DE ⊥AB ,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB ,然后根据AAS 判断△ABC ≌△EDB ,根据全等三角形的对应边相等即可得到BD=BC ,AC=BE ,由E 是BC 的中点,得到BE=12BC=12BD=4. 【详解】解:∵DE ⊥AB ,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB ,在△ABC 和△EDB 中, ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ,AC=BE ,∵E 是BC 的中点,BD=8cm ,∴BE=12BC=12BD=4cm , ∴AC=4cm .故答案为:4cm .【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.18.340元【解析】根据题意可知行李质量的大小为自变量x 托运费为因变量y 结合图形可知当行李质量为200kg 时y=2×200-60=340即他需要付托运费340元故答案为340元解析:340元【解析】根据题意可知,行李质量的大小为自变量x,托运费为因变量y,结合图形可知,当行李质量为200kg 时,y=2×200-60=340即他需要付托运费340元.故答案为340元19.62°【分析】首先根据两直线平行同位角相等求出∠DEB 的度数再根据两直线平行内错角相等求出∠EDF 的度数【详解】解:∵AC//DE ∠A=62°∴∠DEB=∠A=62°(两直线平行同位角相等)∵DF/【分析】首先根据两直线平行,同位角相等求出∠DEB 的度数,再根据两直线平行,内错角相等求出∠EDF 的度数.【详解】解:∵AC//DE ,∠A=62°,∴∠DEB=∠A=62°(两直线平行,同位角相等),∵DF//AB ,∴∠EDF=∠DEB=62°(两直线平行,内错角相等).故答案为:62°.【点睛】本题考查了平行线的性质,解决本题的关键是熟记平行线的性质.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补. 20.【分析】利用完全平方公式的两个关系式得到即可得到答案【详解】∵∴∴故答案为:【点睛】此题考查完全平方公式熟记完全平方公式及两个完全平方公式的关系是解题的关键解析:3±【分析】利用完全平方公式的两个关系式得到22()()41429a b a b ab +=-+=+⨯=,即可得到答案.【详解】∵1,2a b ab -==,∴22()()41429a b a b ab +=-+=+⨯=,∴3a b +=±,故答案为:3±.【点睛】此题考查完全平方公式,熟记完全平方公式及两个完全平方公式的关系是解题的关键. 三、解答题21.(1)B′E ∥DC ,理由见解析;(2)65°【分析】(1)由于AB '是AB 的折叠后形成的,可得90AB E B D ∠'=∠=∠=︒,可得B′E ∥DC ; (2)利用平行线的性质和全等三角形求解.【详解】解:(1)由于AB '是AB 的折叠后形成的,90AB E B D ∠'=∠=∠=︒,//B E DC ∴';(2)折叠,ABE ∴∆≅△AB E ',AEB AEB ∴∠'=∠,即12AEB BEB ∠=∠', //B E DC ',130BEB C ∴∠'=∠=︒,1652AEB BEB ∴∠=∠'=︒. 【点睛】本题考查了三角形全等的判定及性质;把纸片按如图所示折叠,使点B 落在AD 边上的B ′点,则ABE ∆≅△AB E ',利用全等三角形的性质和平行线的性质及判定求解. 22.(1)100;(2)见解析;(3)25 【分析】(1)根据条形图知道无所谓的人数有20人,从扇形图知道无所谓的占20%,从而可求出解;(2)家长的总人数减去赞成的人数和无所谓的人数求出反对的人数,再算出各部分的百分比画出扇形统计图和条形统计图;(3)学生恰好抽到持“无所谓”态度的概率是,是无所谓的学生数除以抽查的学生人数.【详解】解:(1)20÷20%=100,这次抽查的家长总人数为100;(2)条形统计图:100-10-20=70,扇形统计图:赞成:10100×100%=10%,反对:70100×100%=70%;(3)80508070++=25, ∴恰好抽到持“无所谓”态度的概率是25. 【点睛】 本题考查了条形统计图和扇形统计图,条形统计图考查每组里面具体的人数,扇形统计图考查部分占整体的百分比,以及概率概念的考查等.23.(1)∠ADE=∠ADF ;证明见解析;(2)AE=AF ;证明见解析.【分析】(1)∠ADE=∠ADF ,根据DE ⊥AB ,DF ⊥AC 及AD 为∠BAC 的角平分线,即可证得∠ADE=∠ADF ;(2)AE=AF ,根据(1)可知证明△AED ≌△AFD ,即可证得AE=AF .【详解】(1)结论1:∠ADE=∠ADF ,证明如下:∵DE ⊥AB ,DF ⊥AC ,∴∠AED=∠AFD=90︒,∵AD 为∠BAC 的角平分线,∴∠EAD=∠FAD ,∴∠ADE=∠ADF ;(2)结论2:AE=AF ,证明如下:由(1)可知:△AED ≌△AFD ,∴AE=AF .【点睛】本题考查全等三角形的性质和判定,解题的关键是灵活运用全等三角形的判定和性质解决问题.24.(1)每月的乘车人数,每月利润;(2)2000人;(3)4000元【分析】(1)根据函数的定义即可求解;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,即可求解;(3)有表中的数据推理即可求解.【详解】解:(1)在这个变化过程中,每月的乘车人数是自变量,每月利润是因变量; 故答案为:每月的乘车人数,每月利润;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损, 故答案为:2000;(3)有表中的数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元, 当每月的乘车人数为2000人时,利润为0元,故每月乘车人数为4000人时,每月的利润是(4000-2000)÷500×1000=4000元.【点睛】本题考查了根据表格与函数知识,正确读懂表格,理解表格体现变化趋势是解题关键. 25.(1)120°;(2)105°【分析】(1)根据垂直,得出90BOE ∠=︒,再根据对顶角的性质得出30BOD ∠=︒,相加即可;(2)根据角平分线,求出∠BOE 即可.【详解】解:(1)∵OE AB ⊥,∴90BOE ∠=︒.∵30AOC ∠=︒,∴30BOD ∠=︒,∴9030120EOD BOE BOD ∠=∠+∠=︒+︒=︒.(2)∵30AOC ∠=︒,∴150COB ∠=︒.∵OE 平分COB ∠,∴111507522BOE COB ∠=∠==︒⨯︒. ∵30BOD ∠=︒,∴7530105EOD BOE BOD ∠=∠+∠=︒+︒=︒.【点睛】本题考查了垂线的性质,角平分线的性质,对顶角的性质,解题关键是熟练运用这些性质进行推理和计算.26.x y +;-2023【分析】根据完全平方公式、平方差公式、单项式乘多项式、多项式除以单项式可化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】解:[(x ﹣2y)2+(x ﹣2y)(x+2y)﹣2x(2x ﹣y)]÷(-2x)=22222(44442)(2)x xy y x y x xy x -++--+÷- 2(22)(2)x xy x =--÷-x y =+.当x=﹣3,y=﹣2020时,原式=320202023--=-.【点睛】本题考查了整式的混合运算—化简求值,解题的关键是熟练掌握整式的混合运算的法则.。
【好题】七年级数学下期末一模试卷(带答案)
【好题】七年级数学下期末一模试卷(带答案)一、选择题1.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20oB .30oC .40oD .60o2.已知关于x 的不等式组的解中有3个整数解,则m 的取值范围是( ) A .3<m≤4B .4≤m<5C .4<m≤5D .4≤m≤53.2-的相反数是( )A .2-B .2C .12D .12- 4.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个5.已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( ) A .491b a -=B .321a b +=C .491b a -=-D .941a b += 6.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为()A .()8,3--B .()4,2C .()0,1D .()1,87.不等式组1212x x +>⎧⎨-≤⎩的解集是( ) A .1x < B .x ≥3C .1≤x ﹤3D .1﹤x ≤3 8.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-2 9.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( ) A .3 B .5 C .7 D .910.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设( ) A .至少有一个内角是直角B .至少有两个内角是直角C .至多有一个内角是直角D .至多有两个内角是直角11.在平面直角坐标系中,点B 在第四象限,它到x 轴和y 轴的距离分别是2、5,则点B 的坐标为( )A .()5,2-B .()2,5-C .()5,2-D .()2,5--12.如图,直线l 1∥l 2,被直线l 3、l 4所截,并且l 3⊥l 4,∠1=44°,则∠2等于( )A .56°B .36°C .44°D .46°二、填空题13.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为______________.14.不等式71x ->的正整数解为:______________.15.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°16.如果一个数的平方根为a+1和2a-7, 这个数为 ________17.如图,已知直线,AB CD 相交于点O ,如果40BOD ∠=︒,OA 平分COE ∠,那么DOE ∠=________度.18.3的平方根是_________.19.若2(2)9x m x +-+是一个完全平方式,则m 的值是_______.20.在平面直角坐标系xOy 中,若(4,9)P m m --在y 轴上,则线段OP 长度为________.三、解答题21.某运输公司现将一批152吨的货物运往A ,B 两地,若用大小货车15辆,则恰好能一次性运完这批货.已知这两种大小货车的载货能力分别为12吨/辆和8吨/辆,其运往A ,B 两地的运费如下表所示:目的地(车型)A 地(元/辆)B 地(元/辆)大货车800 900 小货车 400 600(1)求这15辆车中大小货车各多少辆.(用二元一次方程组解答)(2)现安排其中的10辆货车前往A 地,其余货车前往B 地,设前往A 地的大货车为x 辆,前往A ,B 两地总费用为w 元,试求w 与x 的函数解析式.22.如图,已知∠A=∠AGE ,∠D=∠DGC .(1)试说明AB ∥CD ;(2)若∠1+∠2=180°,且∠BEC=2∠B+60°,求∠C 的度数.23.已知,如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠1,求证:AD 平分∠BAC .24.解方程组:(1)用代入法解34225x y x y +=⎧⎨-=⎩(2)用加减法解52253415x y x y +=⎧⎨+=⎩25.解不等式组523(1)13222x x x x +>-⎧⎪⎨≤-⎪⎩,并求出它的所有整数解的和.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据内错角相等,两直线平行,得AB∥CE,再根据性质得∠B=∠3.【详解】因为∠1=∠2,所以AB∥CE所以∠B=∠3=30o故选B【点睛】熟练运用平行线的判定和性质.2.C解析:C【解析】【分析】表示出不等式组的解集,由解集中有3个整数解,确定出m的范围即可.【详解】不等式组解集为1<x<m,由不等式组有3个整数解,且为2,3,4,得到4<m≤5,故选C.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.3.B解析:B【解析】【分析】根据相反数的性质可得结果.因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .4.B解析:B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.5.D解析:D【解析】【分析】把3{2xy=-=-,代入1{2ax cycx by+=-=,即可得到关于,,a b c的方程组,从而得到结果.【详解】由题意得,321322a cc b--=⎧⎨-+=⎩①②,3,2⨯⨯①②得,963 644a cc b--=⎧⎨-+=⎩③④-④③得941a b+=,故选:D.6.C解析:C【分析】根据点A (-2,3)的对应点为C (2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D 的对应点的坐标.【详解】点A (-2,3)的对应点为C (2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B (-4,-1)的对应点D 的横坐标为-4+4=0,点D 的纵坐标为-1+2=1,故D (0,1).故选C .【点睛】此题考查了坐标与图形的变化----平移,根据A (-2,3)变为C (2,5)的规律,将点的变化转化为坐标的变化是解题的关键.7.D解析:D【解析】【分析】【详解】解:1212x x +>⎧⎨-≤⎩①②,由①得x>1,由②得x≤3, 所以解集为:1<x≤3;故选D .8.A解析:A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Qx b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.9.B解析:B【解析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.10.B解析:B【解析】【分析】本题只需根据在反证法的步骤中,第一步是假设结论不成立,可据此进行分析,得出答案.【详解】根据反证法的步骤,则可假设为三角形中有两个或三个角是直角.故选B.【点睛】本题考查的知识点是反证法,解此题关键要懂得反证法的意义及步骤,反证法的步骤是:1.假设结论不成立;2.从假设出发推出矛盾;3.假设不成立,则结论成立.11.A解析:A【解析】【分析】先根据点B所在的象限确定横纵坐标的符号,然后根据点B与坐标轴的距离得出点B的坐标.【详解】∵点B在第四象限内,∴点B的横坐标为正数,纵坐标为负数∵点B到x轴和y轴的距离分别是2、5∴横坐标为5,纵坐标为-2故选:A【点睛】本题考查平面直角坐标系中点的特点,在不同象限内,坐标点横纵坐标的正负是不同的:第一象限内,则横坐标为正,纵坐标为正;第二象限内,则横坐标为负,纵坐标为正;第三象限内,则横坐标为负,纵坐标为负;第四象限内,则横坐标为正,纵坐标为负.12.D解析:D【解析】解:∵直线l1∥l2,∴∠3=∠1=44°.∵l3⊥l4,∠2=90°-∠3=90°-44°=46°.故选D.二、填空题13.(13)或(51)【解析】【分析】平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】解:①如图1当A平移到点C时∵C (32)A的坐标为(20)点B的坐标为(01)∴点A的横坐标增大解析:(1,3)或(5,1)【解析】【分析】平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:①如图1,当A平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点A的横坐标增大了1,纵坐标增大了2,平移后的B坐标为(1,3),②如图2,当B平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点B的横坐标增大了3,纵坐标增大2,∴平移后的A坐标为(5,1),故答案为:(1,3)或(5,1)【点睛】本题考查坐标系中点、线段的平移规律,关键要理解在平面直角坐标系中,图形的平移与图形上某点的平移相同,从而通过某点的变化情况来解决问题.14.12345【解析】【分析】【详解】解:由7-x>1-x>-6x<6∴x的正整数解为123456故答案为12345解析:1,2,3,4,5.【解析】【分析】【详解】解:由7-x>1-x>-6,x<6,∴x 的正整数解为1,2,3,4,5,6故答案为1,2,3,4,5.15.57°【解析】【分析】根据平行线的性质和三角形外角的性质即可求解【详解】由平行线性质及外角定理可得∠2=∠1+30°=27°+30°=57°【点睛】本题考查平行线的性质及三角形外角的性质解析:57°.【解析】【分析】根据平行线的性质和三角形外角的性质即可求解.【详解】由平行线性质及外角定理,可得∠2=∠1+30°=27°+30°=57°.【点睛】本题考查平行线的性质及三角形外角的性质.16.9【解析】【分析】根据一个正数的平方根互为相反数可得出a的值代入后即可得出这个正数【详解】由题意得:a+1=﹣(2a﹣7)解得:a=2∴这个正数为:(2+1)2=32=9故答案为:9【点睛】本题考查解析:9【解析】【分析】根据一个正数的平方根互为相反数可得出a的值,代入后即可得出这个正数.【详解】由题意得:a+1=﹣(2a﹣7),解得:a=2,∴这个正数为:(2+1)2=32=9.故答案为:9.【点睛】本题考查了平方根及解一元一次方程的知识,解答本题的关键是掌握正数的两个平方根互为相反数.17.100【解析】【分析】根据对顶角相等求出∠AOC再根据角平分线和邻补角的定义解答【详解】解:∵∠BOD=40°∴∠AOC=∠BOD=40°∵OA 平分∠COE∴∠AOE=∠AOC=40°∴∠COE=8解析:100【解析】【分析】根据对顶角相等求出∠AOC ,再根据角平分线和邻补角的定义解答.【详解】解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA 平分∠COE ,∴∠AOE=∠AOC=40°,∴∠COE=80°.∴∠DOE=180°-80°=100°故答案为:100.【点睛】本题考查了对顶角相等的性质,角平分线、邻补角的定义,是基础题,熟记性质并准确识图是解题的关键.18.【解析】试题解析:∵()2=3∴3的平方根是故答案为:解析:【解析】试题解析:∵(2=3,∴3的平方根是故答案为:19.8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式∴x2+(m-2)x+9=(x±3)2而(x±3)2=x2±6x+9∴m-2=±6∴m=8或m=-4故答案为8或-4 解析:8或﹣4【解析】解:∵x 2+(m -2)x +9是一个完全平方式,∴x 2+(m -2)x +9=(x ±3)2. 而(x ±3)2=x 2±6x +9,∴m -2=±6,∴m =8或m =-4.故答案为8或-4. 20.5【解析】【分析】先根据在轴上计算出m 的值根据纵坐标的绝对值即是线段长度可得到答案【详解】∵在轴上∴横坐标为0即解得:故∴线段长度为故答案为:5【点睛】本题只要考查了再y 轴的点的特征(横坐标为零)在 解析:5【解析】【分析】先根据(4,9)P m m --在y 轴上,计算出m 的值,根据纵坐标的绝对值即是线段OP 长度可得到答案.【详解】∵(4,9)P m m --在y 轴上,∴横坐标为0,即40m -=,解得:4m =,故(0,5)P -,∴线段OP 长度为|5|5-=,故答案为:5.【点睛】本题只要考查了再y 轴的点的特征(横坐标为零),在计算线段的长度时,注意线段长度不为负数.三、解答题21.(1)中大货车用8辆,小货车用7辆;(2)w =100x +9400(3≤x ≤8,且x 为整数).【解析】【分析】(1)根据表格列出二元一次方程,再根据二元一次方程的解法计算即可.(2)根据费用的计算,列出费用和大货车x 的关系即可.【详解】(1)设大货车用x 辆,小货车用y 辆,根据题意得:15128152x y x y +=⎧⎨+=⎩ , 解得:87x y =⎧⎨=⎩. 故这15辆车中大货车用8辆,小货车用7辆.(2)设前往A 地的大货车为x 辆,前往A ,B 两地总费用为w 元,则w 与x 的函数解析式:w =800x +900(8﹣x )+400(10﹣x )+600[7﹣(10﹣x )]=100x +9400(3≤x ≤8,且x 为整数).【点睛】本题主要考查二元一次方程组的应用,关键在于设出合适的未知数,再根据条件列出方程.22.(1)证明见解析;(2)∠C=50°.【解析】【分析】(1)欲证明AB ∥CD ,只需推知∠A=∠D 即可;(2)利用平行线的判定定理推知CE ∥FB ,然后由平行线的性质、等量代换推知∠C=∠BFD=∠B=50°.【详解】(1)∵∠A=∠AGE ,∠D=∠DGC ,又∵∠AGE=∠DGC ,∴∠A=∠D ,∴AB∥CD;(2)∵∠1+∠2=180°,又∵∠CGD+∠2=180°,∴∠CGD=∠1,∴CE∥FB,∴∠C=∠BFD,∠CEB+∠B=180°.又∵∠BEC=2∠B+30°,∴2∠B+30°+∠B=180°,∴∠B=50°.又∵AB∥CD,∴∠B=∠BFD,∴∠C=∠BFD=∠B=50°.【点睛】本题考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.23.见解析【解析】【分析】根据垂直的定义可得∠ADC=∠EGC=90°,即可证得AD∥EG,根据平行线的性质可得∠1=∠2,∠E=∠3,再结合∠E=∠1可得∠2=∠3,从而可以证得结论.【详解】证明:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,∴AD∥EG,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD平分∠BAC.(角平分线的定义)24.(1)21xy=⎧⎨=-⎩;(2)5xy=⎧⎨=⎩【解析】【分析】(1)根据代入法解方程组,即可解答;(2)根据加减法解方程组,即可解答.【详解】解:(1)342 25x yx y+=⎧⎨-=⎩①②由②得25y x =- ③把③代入①得34(25)2x x +-=解这个方程得2x =把2x =代入③得1y =-所以这个方程组的解是21x y =⎧⎨=-⎩(2)5225? 3415? x y x y +=⎧⎨+=⎩①② ①×②得10450x y += ③③—②得735x =,5x =把5x =代入①得0y =所以这个方程组的解是50x y =⎧⎨=⎩【点睛】此题考查解二元一次方程组,解题的关键是明确代入法和加减法解方程组.25.512x -<…,-2 【解析】【分析】 先求出两个不等式的解集,再求其公共解,然后求出整数解的和即可.【详解】 解:523(1)13222x x x x +>-⎧⎪⎨-⎪⎩①②… 解不等式①得52x >-, 解不等式②得1x ≤,∴512x -<…,x 为整数,可取-2,-1,0,1.则所有整数解的和为21012--++=-.【点睛】 此题考查一元一次不等式组解集,解题关键在于掌握简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).。
【好题】初一数学下期末一模试卷(及答案)
【好题】初一数学下期末一模试卷(及答案)一、选择题1.已知二元一次方程组m 2n 42m n 3-=⎧⎨-=⎩,则m+n 的值是( ) A .1 B .0 C .-2 D .-12.在平面直角坐标中,点M(-2,3)在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( )A .22x y =-⎧⎨=-⎩B .00x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .33x y =⎧⎨=⎩4.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°5.下列方程中,是二元一次方程的是( )A .x ﹣y 2=1B .2x ﹣y =1C .11y x +=D .xy ﹣1=06.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折 8.点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4cm ,PB =5cm ,PC =2cm ,则点P 到直线m 的距离为( )A .4cmB .2cm ;C .小于2cmD .不大于2cm9.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是( )A .35°B .45°C .55°D .125°10.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23 D .3211.过一点画已知直线的垂线,可画垂线的条数是( )A .0B .1C .2D .无数 12.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( ) A .③④②① B .③④①② C .①②③④ D .④③①②二、填空题13.某手机店今年1-4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降③音乐手机4月份的销售额比3月份有所下降④今年1-4月中,音乐手机销售额最低的是3月其中正确的结论是________(填写序号).14.不等式组11{2320x x ≥--<的解集为________.15.如果不等式组213(1)x x x m ->-⎧⎨⎩<的解集是x <2,那么m 的取值范围是_____16.若3的整数部分是a ,小数部分是b ,则3a b -=______.17.已知点P (3﹣m ,m )在第二象限,则m 的取值范围是____________________.18.如图,直线//a b ,点B 在直线上b 上,且AB ⊥BC ,∠1=55°,则∠2的度数为______.19.如图,直线1l ∥2l ,αβ∠∠=,1∠=35°,则2∠=____°.20.用不等式表示x 的4倍与2的和大于6,________;此不等式的解集为________.三、解答题21.各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15~65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A .没影响;B .影响不大;C .有影响,建议做无声运动;D .影响很大,建议取缔;E.不关心这个问题,将调查结果统计整理并绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空m =________,态度为C 所对应的圆心角的度数为________;(2)补全条形统计图;(3)若全区15~65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B 的市民人数;22.解方程组:(1)用代入法解34225x y x y +=⎧⎨-=⎩(2)用加减法解52253415x y x y +=⎧⎨+=⎩23.解不等式组523(1) 13222x xx x+>-⎧⎪⎨≤-⎪⎩,并求出它的所有整数解的和.24.如图①,已知AB∥CD,点E、F分别是AB、CD上的点,点P是两平行线之间的一点,设∠AEP=α,∠PFC=β,在图①中,过点E作射线EH交CD于点N,作射线FI,延长PF到G,使得PE、FG分别平分∠AEH、∠DFl,得到图②.(1)在图①中,过点P作PM∥AB,当α=20°,β=50°时,∠EPM=度,∠EPF=度;(2)在(1)的条件下,求图②中∠END与∠CFI的度数;(3)在图②中,当FI∥EH时,请直接写出α与β的数量关系.25.解不等式组533(2)1233x xx x->-⎧⎪⎨-≤-⎪⎩,并把解集表示在数轴上,再找出它的整数解.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解.详解:2423m nm n-=⎧⎨-=⎩①②②-①得m+n=-1.故选:D.点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n这个整体式子的值.2.B解析:B【解析】∵−2<0,3>0,∴(−2,3)在第二象限,故选B.3.C解析:C【解析】【分析】根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案.【详解】解:∵实数x ,y 满足254()0x y x y +-+-=, ∴40x y +-=且2()0x y -=,即400x y x y +-=⎧⎨-=⎩, 解得:22x y =⎧⎨=⎩, 故选C .【点睛】本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.4.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC ,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC ,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.5.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A .x-y 2=1不是二元一次方程;B .2x-y=1是二元一次方程;C .1x+y =1不是二元一次方程; D .xy-1=0不是二元一次方程;故选B .【点睛】 本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.6.D解析:D【解析】【分析】先根据第一象限内的点的坐标特征判断出a 、b 的符号,进而判断点B 所在的象限即可.【详解】∵点A(a ,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a ,b)在第四象限,故选D .【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.7.B解析:B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.8.D解析:D【解析】【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥l时,PC是点P到直线l的距离,即点P到直线l的距离2cm,当PC不垂直直线l时,点P到直线l的距离小于PC的长,即点P到直线l的距离小于2cm,综上所述:点P到直线l的距离不大于2cm,故选:D.【点睛】考查了点到直线的距离,利用了垂线段最短的性质.9.C解析:C【解析】【分析】利用平行线的判定和性质即可解决问题.【详解】如图,∵∠1+∠2=180°,∴a∥b,∴∠4=∠5,∵∠3=∠5,∠3=55°,∴∠4=∠3=55°,故选C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.解析:A 【解析】分析:由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE=1 2 S△A′EF=2,S△ABD=12S△ABC=92,根据△DA′E∽△DAB知2A DEABDSA DAD S''=VV(),据此求解可得.详解:如图,∵S△ABC=9、S△A′EF=4,且AD为BC边的中线,∴S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则2A DEABDSA DAD S''=VV(),即22912A DA D'='+(),解得A′D=2或A′D=-25(舍),故选A.点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.11.B解析:B【解析】【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答.【详解】在平面内,过一点有且只有一条直线与已知直线垂直,故选:B【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.12.B解析:B【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC中,AB=AC,求证:∠B<90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B<90°,原题正确顺序为:③④①②,故选B.【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.二、填空题13.④【解析】【分析】分别求出1-4月音乐手机的销售额再逐项进行判断即可【详解】1月份的音乐手机销售额是8 5×23=1955(万元)2月份的音乐手机销售额是80×15=12(万元)3月份音乐手机的销售额解析:④ .【解析】【分析】分别求出1-4月音乐手机的销售额,再逐项进行判断即可.【详解】1月份的音乐手机销售额是85×23%=19.55(万元)2月份的音乐手机销售额是80×15%=12(万元)3月份音乐手机的销售额是 60×18%=10.8(万元),4月份音乐手机的销售额是 65×17%=11.05(万元).①从1月到4月,手机销售总额3-4月份上升,故①错误;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比没有连续下降,故②错误;③由计算结果得,10.8<11.05,因此4月份音乐手机的销售额比3月份的销售额增多了.故③错误;④今年1-4月中,音乐手机销售额最低的是3月,故④正确.故答案为:④.【点睛】此题主要考查了拆线统计图与条形图的综合应用,利用两图形得出正确信息是解题关键.14.【解析】∵解不等式①得:x ⩾−2解不等式②得:x<∴不等式组的解集为−2⩽x<故答案为−2⩽x< 解析:223x -≤<【解析】 112320x x ⎧≥-⎪⎨⎪-<⎩①②∵解不等式①得:x ⩾−2,解不等式②得:x<23, ∴不等式组的解集为−2⩽x<23, 故答案为−2⩽x<23. 15.m≥2【解析】【分析】先解第一个不等式再根据不等式组的解集是x <2从而得出关于m 的不等式解不等式即可【详解】解:解第一个不等式得x <2∵不等式组的解集是x <2∴m≥2故答案为m≥2【点睛】本题是已知解析:m≥2.【解析】【分析】先解第一个不等式,再根据不等式组()2131x x x m ⎧->-⎨<⎩的解集是x <2,从而得出关于m 的不等式,解不等式即可.【详解】解:解第一个不等式得,x <2,∵不等式组()2131x x x m ⎧->-⎨<⎩的解集是x <2, ∴m ≥2,故答案为m ≥2.【点睛】本题是已知不等式组的解集,求不等式中字母取值范围的问题.可以先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.16.【解析】【详解】若的整数部分为a 小数部分为b∴a=1b=∴a -b==1故答案为1解析:【解析】【详解】若3的整数部分为a,小数部分为b,∴a=1,b=31-,∴3a-b=3(31)--=1.故答案为1.17.m>3【解析】试题分析:因为点P在第二象限所以解得:考点:(1)平面直角坐标;(2)解不等式组解析:m>3.【解析】试题分析:因为点P在第二象限,所以,30{mm-<>,解得:考点:(1)平面直角坐标;(2)解不等式组18.【解析】【分析】先根据∠1=55°AB⊥BC求出∠3的度数再由平行线的性质即可得出结论【详解】解:∵AB⊥BC∠1=55°∴∠3=90°-55°=35°∵a∥b∴∠2=∠3=35°故答案为:35°【解析:【解析】【分析】先根据∠1=55°,AB⊥BC求出∠3的度数,再由平行线的性质即可得出结论【详解】解:∵AB⊥BC,∠1=55°,∴∠3=90°-55°=35°.∵a∥b,∴∠2=∠3=35°.故答案为:35°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等。
【好题】初一数学下期末一模试题及答案
【好题】初一数学下期末一模试题及答案一、选择题1.下列各式中计算正确的是( )A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=2.估计10+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间3.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x 人,买鸡的钱数为y ,依题意可列方程组为( )A .8374x y x y +=⎧⎨+=⎩B .8374x y x y -=⎧⎨-=⎩C .8374x y x y +=⎧⎨-=⎩D .8374x y x y -=⎧⎨+=⎩5.已知方程组276359632713x y x y +=⎧⎨+=-⎩的解满足1x y m -=-,则m 的值为( ) A .-1 B .-2 C .1 D .26.2-的相反数是( )A .2-B .2C .12D .12- 7.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣58.若不等式组20{210x a x b +---><的解集为0<x <1,则a ,b 的值分别为( ) A .a =2,b =1 B .a =2,b =3 C .a =-2,b =3 D .a =-2,b =19.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为()A .()8,3--B .()4,2C .()0,1D .()1,810.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是( )A .35°B .45°C .55°D .125°11.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( ) A .3 B .5C .7D .9 12.若点(),1P a a -在x 轴上,则点()2,1Q a a -+在第( )象限.A .一B .二C .三D .四二、填空题13.如图,在平面直角坐标系中,已如点A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A 处,并按A B C D A →→→→的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是__________.14.如果a 的平方根是3±,则a =_________15.如图5-Z -11是一块长方形ABCD 的场地,长AB =102 m ,宽AD =51 m ,从A ,B 两处入口的中路宽都为1 m ,两小路汇合处路宽为2 m ,其余部分种植草坪,则草坪的面积为________m 2.16.不等式3x 134+>x 3+2的解是__________. 17.已知21x y =⎧⎨=⎩是方程组ax 5{1by bx ay +=+=的解,则a ﹣b 的值是___________ 18.已知a 、b 满足(a ﹣1)22b +,则a+b=_____.19.在开展“课外阅读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了60名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于7小时的人数是_______.20.已知点(0,)A a 和点(5,0)B ,且直线AB 与坐标轴围成的三角形的面积为10,则a 的值为________.三、解答题21.计算:(1﹣3)0+|﹣2|﹣2cos45°+(14)﹣1 22.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 是13的整数部分. (1)求a ,b ,c 的值;(2)求3a b c -+的平方根.23.如图,点,,A O B 在同一条直线上,OE 平分BOC ∠,OD OE ⊥于点O ,如果66COD ∠=︒,求AOE ∠的度数.24.如图,已知AB CD ∥,B D ∠=∠,请用三种不同的方法说明AD BC ∥.25.为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:(1)该班总人数是 ;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A 3=,此选项错误错误,不符合题意;B 3=,此选项错误错误,不符合题意;C 3=-,此选项错误错误,不符合题意;D 3=,此选项正确,符合题意;故选:D .【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.2.B解析:B【解析】解:∵34<<,∴415<<.故选B .的取值范围是解题关键.3.D解析:D【解析】【分析】先根据第一象限内的点的坐标特征判断出a 、b 的符号,进而判断点B 所在的象限即可.【详解】∵点A(a ,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a ,b)在第四象限,故选D .【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.4.D解析:D【解析】【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有x人,买鸡的钱数为y,根据题意,得:8374x y x y-=⎧⎨+=⎩.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.5.A解析:A【解析】【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m的值即可.【详解】解:276359 632713x yx y+=⎧⎨+=-⎩①②②-①得36x-36y=-72则x-y=-2所以m-1=-2所以m=-1.故选:A.【点睛】考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.6.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .7.A解析:A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.8.A解析:A【解析】试题分析:先把a、b当作已知条件求出不等式组的解集,再与已知解集相比较即可求出a、b的值.解:20210x ax b+->⎧⎨--<⎩①②,由①得,x>2﹣a,由②得,x<12b+,故不等式组的解集为;2﹣a<x<12b +,∵原不等式组的解集为0<x<1,∴2﹣a=0,12b+=1,解得a=2,b=1.故选A.9.C解析:C【解析】【分析】根据点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D的对应点的坐标.【详解】点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B(-4,-1)的对应点D的横坐标为-4+4=0,点D的纵坐标为-1+2=1,故D(0,1).故选C.【点睛】此题考查了坐标与图形的变化----平移,根据A(-2,3)变为C(2,5)的规律,将点的变化转化为坐标的变化是解题的关键.10.C解析:C【解析】【分析】利用平行线的判定和性质即可解决问题.【详解】如图,∵∠1+∠2=180°,∴a∥b,∴∠4=∠5,∵∠3=∠5,∠3=55°,∴∠4=∠3=55°,故选C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.11.B解析:B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.12.B解析:B【解析】【分析】由点P在x轴上求出a的值,从而得出点Q的坐标,继而得出答案.【详解】∵点P(a,a-1)在x轴上,∴a-1=0,即a=1,则点Q坐标为(-1,2),∴点Q在第二象限,故选:B.【点睛】此题考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点.二、填空题13.(10)【解析】【分析】根据点的坐标求出四边形ABCD的周长然后求出另一端是绕第几圈后的第几个单位长度从而确定答案【详解】∵A(11)B(-11)C(-1-2)D(1-2)∴AB=1-(-1)=2B解析:(1,0)【解析】【分析】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】∵A(1,1),B(-1,1),C(-1,-2),D(1,-2),∴AB=1-(-1)=2,BC=1-(-2)=3,CD=1-(-1)=2,DA=1-(-2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2019÷10=201…9,∴细线另一端在绕四边形第202圈的第9个单位长度的位置,即在DA上从点D 向上2个单位长度所在的点的坐标即为所求,也就是点(1,0),故答案为:(1,0).【点睛】本题考查了规律型——点的坐标,根据点的坐标求出四边形ABCD一周的长度,从而确定2019个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.14.81【解析】【分析】根据平方根的定义即可求解【详解】∵9的平方根为∴=9所以a=81【点睛】此题主要考查平方根的性质解题的关键是熟知平方根的定义解析:81【解析】【分析】根据平方根的定义即可求解.∵9的平方根为3±,,所以a=81【点睛】此题主要考查平方根的性质,解题的关键是熟知平方根的定义.15.5000【解析】试题解析:由图片可看出剩余部分的草坪正好可以拼成一个长方形且这个长方形的长为102−2=100m 这个长方形的宽为:51−1=50m 因此草坪的面积故答案为:5000解析:5000【解析】试题解析:由图片可看出,剩余部分的草坪正好可以拼成一个长方形,且这个长方形的长为102−2=100m ,这个长方形的宽为:51−1=50m ,因此,草坪的面积2501005000m .=⨯=故答案为:5000.16.x >-3【解析】>+2去分母得:去括号得:移项及合并得:系数化为1得:故答案为x >-3解析:x >-3【解析】3134x +>3x +2, 去分母得:3(313)424,x x +>+ 去括号得:939424,x x +>+ 移项及合并得:515,x >- 系数化为1得:3x >- .故答案为x >-3.17.4;【解析】试题解析:把代入方程组得:①×2-②得:3a=9即a=3把a=3代入②得:b=-1则a-b=3+1=4解析:4;【解析】试题解析:把21x y =⎧⎨=⎩代入方程组得:25{21a b b a ++=①=②, ①×2-②得:3a=9,即a=3, 把a=3代入②得:b=-1,则a-b=3+1=4,18.﹣1【解析】【分析】利用非负数的性质可得a-1=0b+2=0解方程即可求得ab 的值进而得出答案【详解】∵(a ﹣1)2+=0∴a=1b=﹣2∴a+b=﹣1故答案为﹣1【点睛】本题考查了非负数的性质熟知解析:﹣1【分析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a ,b 的值,进而得出答案.【详解】∵(a ﹣1)2=0,∴a=1,b=﹣2,∴a+b=﹣1,故答案为﹣1.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.19.【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×=400(人)故答案为:400【点解析:【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可.【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×15+560=400(人),故答案为:400.【点睛】本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于6小时的人数所占的百分比. 20.±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可【详解】解:假设直角坐标系的原点为O 则直线与坐标轴围成的三角形是以OAOB 为直角边的直角三角形∵和点∴∴∴∴故答案为:±4【点睛 解析:±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可.【详解】解:假设直角坐标系的原点为O ,则直线AB 与坐标轴围成的三角形是以OA 、OB 为直角边的直角三角形,∵(0,)A a 和点(5,0)B ,∴||OA a =,5OB =,∴11||51022OAB S OA OB a ∆=⨯⨯=⨯⨯=, ∴||4=a ,∴4a =±,故答案为:±4. 【点睛】本题主要考查了三角形的面积和直角坐标系的相关知识,需注意坐标轴上到一个点的距离为定值的点有2个.三、解答题21.【解析】【分析】先分别计算0次幂、化简绝对值、特殊角的三角函数值、负指数幂的计算,然后再按运算顺序进行计算即可.【详解】(100112cos454-⎛⎫+-+ ⎪⎝⎭=1242+⨯+=5. 【点睛】本题考查了实数的混合运算,涉及到0次幂、负指数幂的运算,熟练掌握各运算法则是解题的关键.22.(1)a =5,b =2,c =3 ;(2)±4.【解析】【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值.(2)将a 、b 、c 的值代数式求出值后,进一步求得平方根即可.【详解】(1)∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c∴c=3,(2)∵a=5,b=2,c=3,∴3a-b+c=16,3a-b+c 的平方根是±4.【点睛】考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.23.156°【解析】【分析】根据垂直的意义和性质,判断出∠DOE 的度数,根据∠COE 与∠COD 的关系,求出∠COE 的度数,然后利用角平分线的性质得出∠BOE ,再根据互补角的意义,即可求出∠AOE 的度数.【详解】解:∵OD ⊥OE 于O ,∴∠DOE =90°,又∵因为∠COD =66°,∴∠COE =∠DOE -∠COD =90°-66°=24°, ∵OE 平分∠BOC ,∴∠BOE =∠COE =24°,又∵点A ,O ,B 在同一条直线上,∴∠AOB =180°,∴∠AOE =∠AOB -∠BOE =180°-24°=156°.【点睛】本题考查了垂直的意义,角平分线的性质,解决本题关键是正确理解题意,能够根据题意找到角与角之间的关系.24.见解析【解析】【分析】有多种方法可证明:方法一:通过∠C 转化得到180D C ∠+∠=︒,从而证明;方法二:连接BD ,根据平行得ABD CDB ∠=∠,角度转化得到DBC BDA ∠=∠,从而证平行;方法三:延长BC 至E ,根据平行得B DCE ∠=∠,角度转化得DCE D ∠=∠,从而证平行.【详解】方法一:∵AB ∥CD ∴180B C ∠+∠=︒∵B D ∠=∠∴180D C ∠+∠=︒∴AD ∥BC方法二:连接BD∵AB ∥CD ∴ABD CDB ∠=∠又∵ABC CDA ∠=∠∴ABC ABD CDA CDB ∠-∠=∠-∠∴DBC BDA ∠=∠∴AD ∥BC方法三:延长BC 至E∵AB ∥CD ∴B DCE ∠=∠又∵B D ∠=∠∴DCE D ∠=∠∴AD ∥BC【点睛】本题考查平行线的性质和证明,注意,仅当两直线平行时才有:同位角相等、内错角相等、同旁内角互补.25.(1)40;(2)答案见解析;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【解析】【分析】(1)由两个统计图可以发现第一次22名优秀的同学占55%,故该班总人数为2255%=40÷;(2)第四次优秀人数为:4085%=34⨯,第三次优秀率为3240×100%=80%,据此可以补全统计图;(3)根据图像可以写出优秀人数逐渐增多,增大的幅度逐渐减小等信息.【详解】解:(1)由题意可得:该班总人数是:22÷55%=40(人); 故答案为:40;(2)由(1)得,第四次优秀的人数为:40×85%=34(人), 第三次优秀率为:3240×100%=80%; 如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【点睛】此题主要考查了条形统计图以及折线统计图,利用图形获取正确信息是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【好题】七年级数学下期末一模试卷含答案(2)一、选择题1.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=- B .5{1+52x y x y =+= C .5{2-5x y x y =+= D .-5{2+5x y x y == 2.116的平方根是( ) A .±12 B .±14 C .14 D .123.如图,数轴上表示2、5的对应点分别为点C ,B ,点C 是AB 的中点,则点A 表示的数是( )A .5-B .25-C .45-D .52- 4.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°5.已知方程组276359632713x y x y +=⎧⎨+=-⎩的解满足1x y m -=-,则m 的值为( ) A .-1 B .-2 C .1 D .26.如图所示的表格是某次篮球联赛部分球队的积分表,则下列说法不正确的是( ) 队名 比赛场数 胜场 负场 积分前进 1410 4 24 光明 149 5 23 远大 147 a 21 卫星 14 4 10 b钢铁1401414……………A.负一场积1分,胜一场积2分B.卫星队总积分b=18C.远大队负场数a=7D.某队的胜场总积分可以等于它的负场总积分7.如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是( )A.(﹣26,50)B.(﹣25,50)C.(26,50)D.(25,50)8.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.303278x yx y+=⎧⎨+=⎩9.51-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请51的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间10.已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,则a﹣2b的值是()A.﹣2B.2C.3D.﹣3 11.下列说法正确的是()A.两点之间,直线最短;B.过一点有一条直线平行于已知直线;C.和已知直线垂直的直线有且只有一条;D.在平面内过一点有且只有一条直线垂直于已知直线.12.如图,直线l1∥l2,被直线l3、l4所截,并且l3⊥l4,∠1=44°,则∠2等于()A.56°B.36°C.44°D.46°二、填空题13.若关于x、y的二元一次方程组2133x y mx y-=+⎧⎨+=⎩的解满足x+y>0,则m的取值范围是____.14.已21xy=⎧⎨=-⎩是关于x、y的二次元方程39ax y+=的解,则a的值为___________15.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.16.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是_________.17.如图所示第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么(1)第4个图案中有白色六边形地面砖________块,第n个图案中有白色地面砖________块.18.一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是_____ cm.19.已知点P(3﹣m,m)在第二象限,则m的取值范围是____________________.20.关于x的不等式(3a-2)x<2的解为x >,则a的取值范围是________三、解答题21.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.学生家长对孩子使用手机的态度情况统计图根据以上信息回答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为;(2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?22.为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)被抽样调查的学生有______人,并补全条形统计图;(2)每天户外活动时间的中位数是______(小时);(3)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?23.解不等式组523(1)13222x xx x+>-⎧⎪⎨≤-⎪⎩,并求出它的所有整数解的和.24.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.25.某商场计划从厂家购进甲、乙两种不同型号的电视机,已知进价分别为:甲种每台1500元,乙种每台2100元.(1)若商场同时购进这两种不同型号的电视机50台,金额不超过76000元,商场有几种进货方案,并写出具体的进货方案.(2)在(1)的条件下,若商场销售一台甲、乙型号的电视机的销售价分别为1650元、2300元,以上进货方案中,哪种进货方案获利最多?最多为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.2.A解析:A【解析】【分析】根据平方根的性质:一个正数的平方根有两个,它们互为相反数计算即可.【详解】14,14的平方根是12±,12±,故选A.【点睛】本题考查平方根的性质,一个正数的平方根有两个,它们互为相反数,0的平方根还是0,熟练掌握相关知识是解题关键.3.C解析:C【解析】【分析】首先可以求出线段BC的长度,然后利用中点的性质即可解答.【详解】∵表示2C,B,,∵点C是AB的中点,则设点A的坐标是x,则∴点A表示的数是故选C.【点睛】本题主要考查了数轴上两点之间x1,x2的中点的计算方法.4.B解析:B【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.5.A解析:A【解析】【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m的值即可.【详解】解:276359 632713x yx y+=⎧⎨+=-⎩①②②-①得36x-36y=-72则x-y=-2所以m-1=-2所以m=-1.故选:A.【点睛】考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.6.D解析:D【解析】【分析】A、设胜一场积x分,负一场积y分,根据前进和光明队的得分情况,即可得出关于x,y 的二元一次方程组,解之即可得出结论;B、根据总积分=2×得胜的场次数+1×负的场次数,即可求出b值;C、由负的场次数=总场次数-得胜的场次数,即可求出a值;D、设该队胜了z场,则负了(14-z)场,根据胜场总积分等于负场总积分,即可得出关于z的一元一次方程,解之即可得出z值,由该值不为整数即可得出结论.【详解】A、设胜一场积x分,负一场积y分,依题意,得:10424 9523x yx y+⎧⎨+⎩==,解得:21x y ⎧⎨⎩==, ∴选项A 正确;B 、b=2×4+1×10=18,选项B 正确;C 、a=14-7=7,选项C 正确;D 、设该队胜了z 场,则负了(14-z )场,依题意,得:2z=14-z ,解得:z=143, ∵z=143不为整数, ∴不存在该种情况,选项D 错误.故选:D .【点睛】本题考查了一元一次方程的应用以及二元一次方程组的应用,找准等量关系,正确列出一元一次方程(或二元一次方程组)是解题的关键.7.C解析:C【解析】【分析】解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100250÷=,其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到100P 的横坐标.【详解】解:经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100250÷=;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到:n P 的横坐标为41n ÷+(n 是4的倍数). 故点100P 的横坐标为:1004126÷+=,纵坐标为:100250÷=,点P 第100次跳动至点100P 的坐标为()26,50.故选:C .【点睛】本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.8.A解析:A 【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.9.B解析:B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴,∴,故选B.【点睛】是解题关键.10.B解析:B【解析】【详解】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.11.D解析:D【解析】解:A.应为两点之间线段最短,故本选项错误;B.应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C.应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D.在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确.故选D.12.D解析:D【解析】解:∵直线l1∥l2,∴∠3=∠1=44°.∵l3⊥l4,∠2=90°-∠3=90°-44°=46°.故选D.二、填空题13.m>-2【解析】【分析】首先解关于x和y的方程组利用m表示出x+y代入x+y>0即可得到关于m的不等式求得m的范围【详解】解:①+②得2x+2y=2m+4则x+y=m+2根据题意得m+2>0解得m>解析:m>-2【解析】【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【详解】解:2133x y mx y-=+⎧⎨+=⎩①②,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>﹣2.故答案是:m>﹣2.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.14.6【解析】【分析】把x与y的值代入方程组求出a的值代入原式计算即可求出值【详解】解:把代入得解得:故答案为:6【点睛】此题考查了解二元一次方程掌握方程的解是解答本题的关键解析:6【解析】【分析】把x与y的值代入方程组求出a的值,代入原式计算即可求出值.【详解】解:把21xy=⎧⎨=-⎩,代入得239a-=,解得:6a=故答案为:6【点睛】此题考查了解二元一次方程,掌握方程的解是解答本题的关键.15.55【解析】【分析】利用长与高的比为8:11进而利用携带行李箱的长宽高三者之和不超过115cm得出不等式求出即可【详解】设长为8x高为11x由题意得:19x+20≤115解得:x≤5故行李箱的高的最解析:55【解析】【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.【详解】设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.【点睛】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.16.a<﹣1【解析】不等式(a+1)x>a+1两边都除以a+1得其解集为x<1∴a+1<0解得:a<−1故答案为a<−1点睛:本题主要考查解一元一次不等式解答此题的关键是掌握不等式的性质再不等式两边同加解析:a<﹣1【解析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.17.18;4n+2【解析】【分析】根据所给的图案发现:第一个图案中有6块白色地砖后边依次多4块由此规律解决问题【详解】解:第1个图案中有白色六边形地面砖有6块;第2个图案中有白色六边形地面砖有6+4=1解析:18;4n+2【解析】【分析】根据所给的图案,发现:第一个图案中,有6块白色地砖,后边依次多4块,由此规律解决问题.【详解】解:第1个图案中有白色六边形地面砖有6块;第2个图案中有白色六边形地面砖有6+4=10(块);第3个图案中有白色六边形地面砖有6+2×4=14(块);第4个图案中有白色六边形地面砖有6+3×4=18(块);第n个图案中有白色地面砖6+4(n-1)=4n+2(块).故答案为18,4n+2.【点睛】此题考查图形的变化规律,结合图案发现白色地砖的规律是解题的关键.18.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C作CD⊥AB于D∵AC2+B解析:【解析】【分析】过C作CD⊥AB于D,根据勾股定理的逆定理可得该三角形为直角三角形,然后再利用三角形的面积公式即可求解.【详解】如图,设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D.∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°.∵S△ACB=12AC×BC=12AB×CD,∴AC×BC=AB×CD,∴15×20=25CD,∴CD=12(cm).故答案为12.【点睛】本题考查了勾股定理的逆定理和三角形的面积公式的应用.根据勾股定理的逆定理判断三角形为直角三角形是解答此题的突破点.19.m>3【解析】试题分析:因为点P在第二象限所以解得:考点:(1)平面直角坐标;(2)解不等式组解析:m>3.【解析】试题分析:因为点P在第二象限,所以,30{mm-<>,解得:考点:(1)平面直角坐标;(2)解不等式组20.x<23【解析】【分析】根据已知不等式的解集确定出a的范围即可【详解】∵关于x的不等式(3a-2)x<2的解为x>23a-2∴3a-2<0解得:a<23故答案为:a<23【点睛】此题考查了解一元一次解析:x<【解析】【分析】根据已知不等式的解集确定出a的范围即可.【详解】∵关于x的不等式(3a-2)x<2的解为x>,∴3a-2<0,解得:a<,故答案为:a<【点睛】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.三、解答题21.(1)120,30°;(2)答案见解析;(3)1375人.【解析】【分析】(1)根据“从来不管”的人数和百分比求出总份数,根据总份数和严加干涉的分数求出百分比,然后计算圆心角的度数;(2)根据总分数求出稍加询问的人数,然后补全统计图;(3)根据题意求出“从来不管”和“稍加询问”的百分比求出全校的人数.【详解】解:(1)30÷25%=120(人)10÷120×360°=30°故答案为:120,30°(2)如图所示:(3)1500×3080120+=1375(人)则估计该校对孩子使用手机“管理不严”的家长大约有1375人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.22.(1)500;(2)1;(3)该校每天户外活动时间超过1小时的学生有800人.【解析】【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数,从而可以将条形统计图补充完整;(2)根据条形统计图可以得到这组数据的中位数;(3)根据条形统计图可以求得校共有1850名学生,该校每天户外活动时间超过1小时的学生有多少人.【详解】(1)0.5小时的有100人占被调查总人数的20%,∴被调查的人数有:10020%500÷=,23.512x-<„,-2【解析】【分析】先求出两个不等式的解集,再求其公共解,然后求出整数解的和即可.【详解】解:523(1) 13222x xx x+>-⎧⎪⎨-⎪⎩①②„解不等式①得52 x>-,解不等式②得1x ≤,∴512x -<…,x 为整数,可取-2,-1,0,1.则所有整数解的和为21012--++=-.【点睛】 此题考查一元一次不等式组解集,解题关键在于掌握简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).24.(1)CPD αβ∠=∠+∠,理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.【解析】【分析】(1)过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案;(2)分两种情况:①点P 在A 、M 两点之间,②点P 在B 、O 两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出结论.【详解】解:(1)∠CPD =∠α+∠β,理由如下:如图,过P 作PE ∥AD 交CD 于E .∵AD ∥BC ,∴AD ∥PE ∥BC ,∴∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠DPE +∠CPE =∠α+∠β.(2)当点P 在A 、M 两点之间时,∠CPD =∠β-∠α.理由:如图,过P 作PE ∥AD 交CD 于E .∵AD ∥BC ,∴AD ∥PE ∥BC ,∴∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠CPE -∠DPE =∠β-∠α;当点P 在B 、O 两点之间时,∠CPD =∠α-∠β.理由:如图,过P 作PE ∥AD 交CD 于E .∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.25.(1)有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机50台,乙种型号的电视机0台;(2)方案一的利润大,最多为7550元.【解析】【分析】(1)设购进甲种型号的电视机x台,则乙种型号的电视机y台.数量关系为:两种不同型号的电视机50台,金额不超过76000元;(2)根据利润=数量×(售价-进价),列出式子进行计算,即可得到答案.【详解】解:(1)设购进甲种型号的电视机x台,则乙种型号的电视机(50-x)台.则1500x+2100(50-x)≤76000,解得:x≥4813.则50≥x≥4813.∵x是整数,∴x=49或x=50.故有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机50台,乙种型号的电视机0台;(2)方案一的利润为:49×(1650-1500)+(2300-2100)=7550(元)方案二的利润为:50×(1650-1500)=7500(元).∵7550>7500∴方案一的利润大,最多为7550元.【点睛】本题考查了一元一次不等式的应用.解决问题的关键是读懂题意,依题意列出不等式进行求解.。