【高考一轮复习】2018课标版理数4.8解三角形 夯基提能作业本
2018版高考一轮总复习数学(理)习题第3章 三角函数、解三角形3-1含答案
(时间:40分钟)1.点A(sin2018°,cos2018°)在直角坐标平面上位于()A.第一象限B.第二象限C.第三象限D.第四象限答案 C解析sin2018°=sin218°=-sin38°<0,cos2018°=cos218°=-cos38°<0,∴选C项.2.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A.2 B.4C.6 D.8答案 C解析设扇形所在圆的半径为R,则2=错误!×4×R2,∴R2=1,∴R=1,扇形的弧长为4×1=4,扇形的周长为2+4=6.3.如果角α的终边过点P(2sin30°,-2cos30°),那么sinα=()A.错误!B.-错误!C.-错误!D.-错误!答案 C解析因为P(1,-3),所以r=错误!=2。
所以sinα=-错误!。
4.sin2·cos3·tan4的值()A.小于0 B.大于0C.等于0 D.不存在答案 A解析∵错误!<2<3<π<4<错误!,∴sin2>0,cos3<0,tan4>0。
∴sin2·cos3·tan4<0,∴选A.5.已知α是第二象限角,P(x,5)为其终边上一点,且cosα=错误!x,则x=()A.错误!B.±错误!C.-错误!D.-错误!答案 D解析依题意得cosα=错误!=错误!x<0,由此解得x=-错误!,选D.6.若420°角的终边所在直线上有一点(-4,a),则a的值为________.答案-4错误!解析由三角函数的定义有:tan420°=错误!。
又tan420°=tan(360°+60°)=tan60°=错误!,故错误!=错误!,得a=-4错误!。
7.点P从(-1,0)出发,沿单位圆顺时针方向运动错误!弧长到达点Q,则点Q的坐标为________.答案错误!解析设点A(-1,0),点P从(-1,0)出发,沿单位圆顺时针方向运动错误!弧长到达点Q,则∠AOQ=错误!-2π=错误!(O为坐标原点),所以∠xOQ=错误!,cos错误!=错误!,sin错误!=错误!,点Q的坐标为错误!。
2018届高三数学(理)一轮复习夯基提能作业本:第九章 平面解析几何 第八节 曲线与方程 Word版含解析
第八节曲线与方程A组基础题组1.方程x=所表示的曲线是( )A.双曲线的一部分B.椭圆的一部分C.圆的一部分D.直线的一部分2.已知点P是直线2x-y+3=0上的一个动点,定点M(-1,2),Q是线段PM延长线上的一点,且|PM|=|MQ|,则Q点的轨迹方程是( )A.2x+y+1=0B.2x-y-5=0C.2x-y-1=0D.2x-y+5=03.已知椭圆+=1(a>b>0),M为椭圆上一动点,F1为椭圆的左焦点,则线段MF1的中点P的轨迹是( )A.圆B.椭圆C.双曲线D.抛物线4.已知A(-1,0),B(1,0)两点,过动点M作x轴的垂线,垂足为N,若=λ·,当λ<0时,动点M的轨迹为( )A.圆B.椭圆C.双曲线D.抛物线5.已知点O(0,0),A(1,-2),动点P满足|PA|=3|PO|,则P点的轨迹方程是( )A.8x2+8y2+2x-4y-5=0B.8x2+8y2-2x-4y-5=0C.8x2+8y2+2x+4y-5=0D.8x2+8y2-2x+4y-5=06.已知定点A(4,0)和圆x2+y2=4上的动点B,动点P(x,y)满足+=2,则点P的轨迹方程为.7.已知动圆Q过定点A(2,0)且与y轴截得的弦MN的长为4,则动圆圆心Q的轨迹C的方程为.8.在△ABC中,A为动点,B,C为定点,B,C(a>0),且满足条件sinC-sinB=sinA,则动点A的轨迹方程是.9.已知圆C1的圆心在坐标原点O,且恰好与直线l1:x-y-2=0相切.(1)求圆的标准方程;(2)设点A为圆上一动点,AN⊥x轴于点N,若动点Q满足=m+(1-m)(其中m为非零常数),试求动点Q的轨迹方程.10.已知长为1+的线段AB的两个端点A、B分别在x轴、y轴上滑动,P是AB上一点,且=.求点P的轨迹方程.B组提升题组11.设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点,AQ的垂直平分线与CQ的连线的交点为M,则M点的轨迹方程是( )A.-=1B.+=1C.-=1D.+=112.在△ABC中,已知A(2,0),B(-2,0),G,M为平面上的两点且满足++=0,||=||=||,∥,则顶点C的轨迹为( )A.焦点在x轴上的椭圆(长轴端点除外)B.焦点在y轴上的椭圆(短轴端点除外)C.焦点在x轴上的双曲线(实轴端点除外)D.焦点在x轴上的抛物线(顶点除外)13.在平面直角坐标系中,O为坐标原点,A(1,0),B(2,2),若点C满足=+t(-),其中t∈R,则点C的轨迹方程是.14.△ABC的顶点A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,求顶点C的轨迹方程.15.已知定点F(0,1)和直线l1:y=-1,过定点F与直线l1相切的动圆的圆心为点C.(1)求动点C的轨迹方程;(2)过点F的直线l2交动点C的轨迹于两点P,Q,交直线l1于点R,求·的最小值.答案全解全析A组基础题组1.B x=两边平方,可变为x2+4y2=1(x≥0),表示的曲线为椭圆的一部分.2.D 设Q(x,y),易得P(-2-x,4-y),代入2x-y+3=0,得2x-y+5=0.3.B设椭圆的右焦点是F2,由椭圆的定义可得|MF1|+|MF2|=2a>2c,所以|PF1|+|PO|=(|MF1|+|MF2|)=a>c,所以点P的轨迹是以F1和O为焦点的椭圆.4.C设M(x,y),则N(x,0),所以=y2,λ·=λ(x+1,0)·(1-x,0)=λ(1-x2),所以y2=λ(1-x2),即λx2+y2=λ,当λ<0时,变形为x2+=1,所以当λ<0时,动点M的轨迹为双曲线.5.A 设点P的坐标为(x,y),则=3,整理得8x2+8y2+2x-4y-5=0.6.答案(x-2)2+y2=1解析设B(x0,y0),由+=2,得得代入圆的方程得(2x-4)2+4y2=4,即(x-2)2+y2=1.7.答案y2=4x解析设Q(x,y).因为动圆Q过定点A(2,0)且与y轴截得的弦MN的长为4,所以+|x|2=|AQ|2,所以|x|2+22=(x-2)2+y2,整理得y2=4x.所以动圆圆心Q的轨迹C的方程是y2=4x.8.答案-=1(x>0且y≠0)解析由正弦定理得-=×,即|AB|-|AC|=|BC|,故动点A的轨迹是以B,C为焦点,为实轴长的双曲线右支(除去顶点).即动点A的轨迹方程为-=1(x>0且y≠0).9.解析(1)设圆的半径为r,圆心到直线l1的距离为d,则d==2.因为r=d=2,圆心为坐标原点O,所以圆C1的方程为x2+y2=4.(2)设动点Q(x,y),A(x0,y0),∵AN⊥x轴于点N,∴N(x0,0),由题意知,(x,y)=m(x0,y0)+(1-m)·(x0,0),解得即将点A代入圆C1的方程x2+y2=4,得动点Q的轨迹方程为+=1.10.解析设A(x0,0),B(0,y0),P(x,y),则=(x-x0,y),=(-x,y0-y),又=,所以x-x0=-x,y=(y0-y),得x0=x,y0=(1+)y.因为|AB|=1+,即+=(1+)2,所以+(1+)y]2=(1+)2,化简得+y2=1.所以点P的轨迹方程为+y2=1.B组提升题组11.D 因为|MQ|=|MA|,所以|MC|+|MA|=|MC|+|MQ|=|CQ|=5,因此M点的轨迹是以C(-1,0),A(1,0)为焦点的椭圆,其中a=,c=1,∴b2=,∴M点的轨迹方程是+=1.故选D.12.B 设C(x,y)(y≠0),则由++=0,知G为△ABC的重心,得G.因为||=||=||,所以M为△ABC的外心,所以点M在y轴上,又∥,则有M.所以x2+=4+,化简得+=1,又A(2,0),B(-2,0),C为△ABC的三个顶点,所以y≠0.所以顶点C的轨迹为焦点在y轴上的椭圆(除去短轴端点).13.答案y=2x-2解析设C(x,y),则=(x,y),+t(-)=(1+t,2t),所以消去参数t得点C的轨迹方程为y=2x-2.14.解析如图,|AD|=|AE|=8,|BF|=|BE|=2,|CD|=|CF|,所以|CA|-|CB|=8-2=6.根据双曲线的定义,所求轨迹是以A,B为焦点,实轴长为6的双曲线的右支(除去与x轴的交点),方程为-=1(x>3).15.解析(1)由题设知点C到点F的距离等于它到l1的距离,∴点C的轨迹是以F为焦点,l1为准线的抛物线,∴动点C的轨迹方程为x2=4y.(2)由题意知,直线l2的斜率存在,方程可设为y=kx+1(k≠0),与动点C的轨迹方程x2=4y联立,消去y,得x2-4kx-4=0.设P(x1,y1),Q(x2,y2),则x1+x2=4k,x1x2=-4.又R,∴·=·=·+(kx1+2)·(kx2+2)=(1+k2)x1x2+(x1+x2)++4=-4(1+k2)+4k++4=4+8.∵k2+≥2(当且仅当k2=1时取等号),∴·≥4×2+8=16,即·的最小值为16.。
2018版高考数学(理)一轮复习文档:第四章三角函数、解三角形4.4含解析
1.y=A sin(ωx+φ)的有关概念y=A sin(ωx +φ)(A〉0,ω〉0),x∈R 振幅周期频率相位初相A T=错误!f=错误!=错误!ωx+φφ2.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示:x错误!错误!错误!错误!错误!ωx+φ0π2π错误!2πy=A sin(ωx+φ)0A0-A03.函数y=sin x的图象经变换得到y=A sin(ωx+φ) (A>0,ω>0)的图象的步骤如下:【知识拓展】1.由y=sin ωx到y=sin(ωx+φ)(ω>0,φ〉0)的变换:向左平移φω个单位长度而非φ个单位长度.2.函数y=A sin(ωx+φ)的对称轴由ωx+φ=kπ+错误!,k∈Z确定;对称中心由ωx+φ=kπ,k∈Z确定其横坐标.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×")(1)y=sin错误!的图象是由y=sin错误!的图象向右平移错误!个单位得到的.( √)(2)将函数y=sin ωx的图象向右平移φ(φ>0)个单位长度,得到函数y=sin(ωx-φ)的图象.(×)(3)利用图象变换作图时“先平移,后伸缩"与“先伸缩,后平移”中平移的长度一致.( ×)(4)函数y=A sin(ωx+φ)的最小正周期为T=错误!。
( ×) (5)把y=sin x的图象上各点纵坐标不变,横坐标缩短为原来的错误!,所得图象对应的函数解析式为y=sin 12x。
(×)(6)若函数y=A cos(ωx+φ)的最小正周期为T,则函数图象的两个相邻对称中心之间的距离为错误!.(√)1.(教材改编)y=2sin(错误!x-错误!)的振幅,频率和初相分别为( )A.2,4π,错误!B.2,错误!,错误!C.2,错误!,-错误!D.2,4π,-错误!答案C解析由题意知A=2,f=错误!=错误!=错误!,初相为-错误!. 2.(2015·山东)要得到函数y=sin错误!的图象,只需将函数y=sin 4x 的图象( )A.向左平移π12个单位B.向右平移错误!个单位C.向左平移错误!个单位D.向右平移错误!个单位答案B解析∵y=sin错误!=sin错误!,∴要得到y=sin错误!的图象,只需将函数y=sin 4x的图象向右平移错误!个单位.3.(2016·青岛模拟)将函数y=sin x的图象上所有的点向右平行移动错误!个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )A.y=sin(2x-错误!)B.y=sin(2x-错误!)C.y=sin(错误!x-错误!)D.y=sin(错误!x-错误!)答案C解析y=sin xπ10右移个单位−−−−−→y=sin(x-错误!)错误!y=sin(错误!x-错误!).4.(2016·临沂模拟)已知函数f(x)=A cos(ωx+θ)的图象如图所示,f(错误!)=-错误!,则f(-错误!)=________。
2018届高三数学(理)一轮复习夯基提能作业本:第四章 三角函数 第五节 三角函数的图象与性质
第五节三角函数的图象与性质A组基础题组1.y=|cosx|的一个单调增区间是()A. B.0,π] C. D.2.(2016宜春中学与新余一中联考)设函数f(x)=sin-cos的图象关于原点对称,则角θ=()A.-B.C.-D.3.已知函数f(x)=3cos在上的最大值为M,最小值为m,则M+m等于()A.0B.3+C.3-D.4.已知函数f(x)=sin-1(ω>0)的最小正周期为,则f(x)的图象的一条对称轴方程是()A.x=B.x=C.x=D.x=5.已知f(x)=sin,x∈0,π],则f(x)的单调递增区间为.6.函数y=tan的图象与x轴交点的坐标是.7.(2016聊城模拟)若函数f(x)=2cos的最小正周期为T,T∈(1,3),则正整数ω的最大值为.8.已知函数y=cos.(1)求函数的最小正周期;(2)求函数图象的对称轴及对称中心.9.已知函数f(x)=(sinx+cosx)2+2cos2x-2.(1)求f(x)的单调递增区间;(2)当x∈时,求函数f(x)的最大值和最小值.B组提升题组10.(2016大连模拟)已知函数f(x)=sin(x-φ),且f(x)dx=0,则函数f(x)的图象的一条对称轴是()A.x=B.x=C.x=D.x=11.已知函数y=2cosx的定义域为,值域为a,b],则b-a的值是()A.2B.3C.+2D.2-12.已知ω>0,函数f(x)=sin在上单调递减,则ω的取值范围是()A. B. C. D.(0,2]13.设常数a使方程sinx+cosx=a在闭区间0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.14.(2015重庆,18,13分)已知函数f(x)=sin sinx-cos2x.(1)求f(x)的最小正周期和最大值;(2)讨论f(x)在上的单调性.15.已知f(x)=2sin+a+1.(1)若x∈R,求f(x)的单调递增区间;(2)当x∈时,f(x)的最大值为4,求a的值;(3)在(2)的条件下,求满足f(x)=1且x∈-π,π]的x的取值集合.答案全解全析A组基础题组1.D作出y=|cosx|的图象(如图).易知是y=|cosx|的一个单调增区间.故选D.2.D∵f(x)=2sin,且f(x)的图象关于原点对称,∴f(0)=2sin=0,即sin=0,∴θ-=kπ(k∈Z),即θ=+kπ(k∈Z),又|θ|<,∴θ=.3.C∵x∈,∴2x-∈,∴cos∈,∴f(x)∈,∴M+m=3-.4.A依题意,得=,|ω|=3,又ω>0,所以ω=3,令3x+=kπ+(k∈Z),解得x=+(k∈Z),当k=0时,x=.因此函数f(x)的图象的一条对称轴方程是x=.5.答案解析由-+2kπ≤x+≤+2kπ,k∈Z,得-+2kπ≤x≤+2kπ,k∈Z.又x∈0,π],所以f(x)的单调递增区间为.6.答案,k∈Z解析令2x+=kπ(k∈Z)得,x=-(k∈Z).∴函数y=tan的图象与x轴交点的坐标是,k∈Z.7.答案6解析因为T=,T∈(1,3),所以1<<3,即<ω<2π.所以正整数ω的最大值为6.8.解析(1)由题可知ω=,T==8π,所以函数的最小正周期为8π.(2)由x+=kπ(k∈Z),得x=4kπ-(k∈Z),所以函数图象的对称轴为x=4kπ-(k∈Z).由x+=kπ+(k∈Z),得x=4kπ+(k∈Z),所以函数图象的对称中心为(k∈Z).9.解析(1)f(x)=sin2x+cos2x=sin,令2kπ-≤2x+≤2kπ+,k∈Z,则kπ-≤x≤kπ+,k∈Z.故f(x)的单调递增区间为,k∈Z.(2)∵x∈,∴≤2x+≤,∴-1≤sin≤,∴-≤f(x)≤1,∴当x∈时,函数f(x)的最大值为1,最小值为-.B组提升题组10.A由f(x)dx=sin(x-φ)dx=-cos(x-φ)=-cos+cosφ=0,得cosφ=sinφ,从而有tanφ=,则φ=nπ+,n∈Z,从而有f(x)=sin=(-1)n sin,n∈Z.令x-=kπ+,k∈Z,得x=kπ+,k∈Z,即f(x)的图象的对称轴是x=kπ+,k∈Z,故选A.11.B因为在上,y=2cosx是单调减函数,且当x=时,y=2cos=1,当x=π时,y=2cosπ=-2,所以-2≤y≤1,即函数的值域是-2,1],所以b-a=1-(-2)=3.12.A由题意知=≥π-=(ω>0),∴0<ω≤2,又由<x<π得+<ωx+<ωπ+,∴当x∈时,<ωx+<,又当α∈时,y=sinα仅在上递减,所以解得≤ω≤,故选A.13.答案解析设f(x)=sinx+cosx=2sin,根据原方程在0,2π]上恰有三个解,不妨设x1<x2<x3,结合三角函数图象易得x1=0,x2=,x3=2π,所以x1+x2+x3=.14.解析(1)f(x)=sin sinx-cos2x=cosxsinx-(1+cos2x)=sin2x-·cos2x-=sin-,因此f(x)的最小正周期为π,最大值为.(2)当x∈时,0≤2x-≤π.易知当0≤2x-≤,即≤x≤时,f(x)单调递增,当≤2x-≤π,即≤x≤时,f(x)单调递减.所以f(x)在上单调递增;在上单调递减.15.解析(1)f(x)=2sin+a+1,由2kπ-≤2x+≤2kπ+,k∈Z,可得x∈(k∈Z),所以f(x)的单调递增区间为(k∈Z).(2)易知在上,当x=时,f(x)取最大值,则f=2sin+a+1=a+3=4,所以a=1.(3)由f(x)=2sin+2=1可得sin=-,则2x+=+2kπ或2x+=π+2kπ,k∈Z,即x=+kπ或x=+kπ,k∈Z,又x∈-π,π],所以x=-,-,,,所以x的取值集合为.。
【高考一轮复习】2018课标版理数8.1空间几何体及其三视图、直观图、表面积与体积 夯基提能作业本
第一节空间几何体及其三视图、直观图、表面积与体积A组基础题组1.下列说法正确的是()A.棱柱的两个底面是全等的正多边形B.棱柱的平行于侧棱的截面是矩形C.{直棱柱}⊆{正棱柱}D.{正四面体}⊆{正三棱锥}2.如图所示的是水平放置三角形的直观图,点D是△ABC的BC边的中点,AB,BC分别与y'轴、x'轴平行,则原图形的三条线段AB,AD,AC中()A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AC,最短的是AD3.(2016课标全国Ⅰ,6,5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π4.(2015课标Ⅰ,6,5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛5.(2016北京,6,5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A. B. C. D.16.一个几何体的三视图如图所示,则该几何体的表面积为.7.(2016天津,11,5分)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为m3.8.已知正四棱锥V-ABCD中,底面面积为16,一条侧棱的长为2,则该棱锥的高为.9.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD所在直线旋转一周所形成的几何体的表面积及体积.10.如图的三个图中,上面是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸求该多面体的体积.B组提升题组11.(2016广西质检)高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的()A. B. C. D.12.(2016内蒙古包头九中期中)某几何体的三视图如图所示,则该几何体中面积最大的侧面的面积为()A. B. C. D.313.一个几何体的三视图如图所示,则这个几何体的外接球的表面积为.14.(2015四川,14,5分)在三棱柱ABC-A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形.设点M,N,P分别是棱AB,BC,B1C1的中点,则三棱锥P-A1MN的体积是.15.(2016江苏,17,14分)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P-A1B1C1D1,下部的形状是正四棱柱ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6 m,PO1=2 m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m,则当PO1为多少时,仓库的容积最大?答案全解全析A组基础题组1.D 选项A中棱柱的两个底面全等,但不一定是正多边形;选项B中棱柱的平行于侧棱的截面是平行四边形,但不一定是矩形;选项C中,{正棱柱}⊆{直棱柱},故A、B、C都错.选项D中,正四面体是各条棱均相等的正三棱锥,故正确.2.B 由题意知,原平面图形中AB⊥BC,从而AB<AD<AC.3.A 由三视图可知,该几何体是一个球被截去后剩下的部分,设球的半径为R,则该几何体的体积为×πR3,即π=×πR3,解得R=2.故其表面积为×4π×22+3××π×22=17π.选A.4.B 设圆锥底面的半径为R尺,由×2πR=8得R=,从而米堆的体积V=×πR2×5=(立方尺),因此堆放的米约有≈22(斛).故选B.5.A 由三视图可画出三棱锥的直观图如图所示,其底面是等腰直角三角形ACB,直角边长为1,三棱锥的高为1,故体积为V=××1×1×1=.故选A. 6.答案38解析由三视图可知,该几何体是一个长方体内挖去一个圆柱体所剩余的部分,如图所示.长方体的长、宽、高分别为4,3,1,表面积为4×3×2+3×1×2+4×1×2=38,圆柱的底面圆直径为2,侧面积为2π×1×1=2π,圆柱的两个底面面积和为2×π×12=2π.故该几何体的表面积为38+2π-2π=38.7.答案 2解析四棱锥的底面是平行四边形,由三视图可知其面积为2×1=2m2,四棱锥的高为3 m,所以四棱锥的体积V=×2×3=2 m3.8.答案 6解析如图,取正方形ABCD的中心O,连接VO、AO,则VO就是正四棱锥V-ABCD的高.因为底面面积为16,所以AO=2.因为一条侧棱长为2,所以VO===6.所以正四棱锥V-ABCD的高为6.9.解析如图,过C作CE⊥AD,交AD所在直线于E.由已知得:CE=2,DE=2,CB=5,所得几何体是一个圆台挖去一个圆锥所剩余的部分,S表=S圆台侧+S圆台下底面+S=π(2+5)×5+π×25+π×2×2=(60+4)π,V=V圆台-V圆锥圆锥侧=(π·22+π·52+)×4-π×22×2=π.10.解析(1)如图.(2)所求多面体的体积V=V长方体-V正三棱锥=4×4×6-××2=(cm3).B组提升题组11.A 由俯视图可知三棱柱的底面积为×2×2=2,∴原直三棱柱的体积为2×4=8.由剩余几何体的直观图可知剩余几何体为四棱锥,四棱锥的底面为直角梯形,其面积为×(2+4)×2=6,由俯视图可知四棱锥的高为2,∴四棱锥的体积为×6×2=4.∴该几何体的体积与原三棱柱的体积比为=.故选A.12.B 由三视图可知,几何体的直观图如图(1)所示,四棱锥A-BCDE的高为1,平面AED⊥平面BCDE,四边形BCDE是边长为1的正方形.作AF垂直DE的延长线于点F,FG EB,连接AG,GB,如图(2),则S△AED=×ED×AF=×1×1=,S△ABE=×BE×AE=×1×=,S△ABC=×BC×AG=×1×=,S△ACD=×CD×A D=×1×=.故选B.13.答案解析如图,几何体为三棱锥P-ABC,底面ABC为直角三角形,侧面PAB⊥底面ABC.易知球心O在PO1上(O1为AB中点),设OO1=x,在Rt△AOO1中,x2+12=(-x)2,解得x=,∴r=-x=,∴S表=4πr2=.14.答案解析三棱柱ABC-A1B1C1的直观图如图,由题意知CC1=AB=AC=1,AB⊥AC.∵N,P分别为BC,B1C1的中点,∴NP∥CC1,∵CC1∥AA1,∴NP∥AA1,又AA1⊄平面MNP,NP⊂平面MNP,∴AA1∥平面MNP. ∴A1到平面MNP的距离等于A到平面MNP的距离,由题意知,三棱柱ABC-A1B1C1为直三棱柱,∴AA1⊥平面ABC,∴AA1⊥AM,∴AM⊥NP.∵M,N分别为AB,BC的中点,∴MN∥AC.∵AC⊥AB,∴AM⊥MN.∵MN∩NP=N,∴AM⊥平面MNP,∴A1到平面MNP的距离即为线段AM的长.∴==AM·S△MNP=××××1=.15.解析(1)由PO 1=2 m知O1O=4PO1=8 m.因为A1B1=AB=6 m,所以正四棱锥P-A1B1C1D1的体积为V锥=·A1·PO1=×62×2=24(m3);正四棱柱ABCD-A1B1C1D1的体积为V柱=AB2·O1O=62×8=288(m3).所以仓库的容积V=V锥+V柱=24+288=312(m3).(2)设A1B1=a(m),PO1=h(m),则0<h<6,O1O=4h(m).连接O1B1.因为在Rt△PO1B1中,O1+P=P,所以+h2=36,即a2=2(36-h2).于是仓库的容积(单位:m3)为V=V柱+V锥=a2·4h+a2·h=a2h=(36h-h3),0<h<6,从而V'=(36-3h2)=26(12-h2).令V'=0,得h=2或h=-2(舍).当0<h<2时,V'>0,V是单调增函数; 当2<h<6时,V'<0,V是单调减函数. 故h=2时,V取得极大值,也是最大值. 因此,当PO1=2 m时,仓库的容积最大.。
【高考一轮】2018课标版文科数学一轮复习 夯基提能练习题460页(含答案详解)
2018课标版文科数学一轮复习夯基提能练习题目录2018课标版文科数学一轮复习1.1集合夯基提能作业本(含答案)2018课标版文科数学一轮复习1.2命题及其关系、充分条件与必要条件夯基提能作业本(含答案)2018课标版文科数学一轮复习1.3简单的逻辑联结词、全称量词与存在量词夯基提能作业本(含答案)2018课标版文科数学一轮复习2.1函数及其表示夯基提能作业本(含答案)2018课标版文科数学一轮复习2.2函数的单调性与最值夯基提能作业本(含答案)2018课标版文科数学一轮复习2.3函数的奇偶性与周期性夯基提能作业本(含答案)2018课标版文科数学一轮复习2.4二次函数与幂函数夯基提能作业本(含答案)2018课标版文科数学一轮复习2.5指数与指数函数夯基提能作业本(含答案)2018课标版文科数学一轮复习2.6对数与对数函数夯基提能作业本(含答案)2018课标版文科数学一轮复习2.7函数的图象夯基提能作业本(含答案)2018课标版文科数学一轮复习2.8函数与方程夯基提能作业本(含答案)2018课标版文科数学一轮复习2.9函数模型及其应用夯基提能作业本(含答案)2018课标版文科数学一轮复习3.1变化率与导数、导数的计算夯基提能作业本(含答案) 2018课标版文科数学一轮复习3.2导数与函数的单调性夯基提能作业本(含答案)2018课标版文科数学一轮复习3.3导数与函数的极值、最值夯基提能作业本(含答案) 2018课标版文科数学一轮复习3.4导数与函数的综合问题夯基提能作业本(含答案)2018课标版文科数学一轮复习4.1任意角和弧度制及任意角的三角函数夯基提能作业本(含答案)2018课标版文科数学一轮复习4.2同角三角函数基本(含答案)关系式与诱导公式夯基提能作业本2018课标版文科数学一轮复习4.3三角函数的图象与性质夯基提能作业本(含答案)2018课标版文科数学一轮复习4.4函数y=Asin(ωx+φ)的图象及应用夯基提能作业本(含答案)2018课标版文科数学一轮复习4.5两角和与差的正弦、余弦和正切公式及二倍角公式夯基提能作业本(含答案)2018课标版文科数学一轮复习4.6简单的三角恒等变换夯基提能作业本(含答案)2018课标版文科数学一轮复习4.7正弦定理和余弦定理夯基提能作业本(含答案)2018课标版文科数学一轮复习4.8解三角形夯基提能作业本(含答案)2018课标版文科数学一轮复习5.1平面向量的概念及其线性运算夯基提能作业本(含答案) 2018课标版文科数学一轮复习5.2平面向量基本(含答案)定理及坐标表示夯基提能作业本2018课标版文科数学一轮复习5.2平面向量基本(含答案)定理及坐标表示夯基提能作业本2018课标版文科数学一轮复习5.3平面向量的数量积与平面向量应用举例夯基提能作业本(含答案)2018课标版文科数学一轮复习6.1数列的概念及简单表示法夯基提能作业本(含答案) 2018课标版文科数学一轮复习6.2等差数列及其前n项和夯基提能作业本(含答案)2018课标版文科数学一轮复习6.3等比数列及其前n项和夯基提能作业本(含答案)2018课标版文科数学一轮复习6.4数列求和夯基提能作业本(含答案)2018课标版文科数学一轮复习7.1不等关系与不等式夯基提能作业本(含答案)2018课标版文科数学一轮复习7.2一元二次不等式及其解法夯基提能作业本(含答案) 2018课标版文科数学一轮复习7.3二元一次不等式(组)及简单的线性规划问题夯基提能作业本(含答案)2018课标版文科数学一轮复习7.4基本(含答案)不等式及其应用夯基提能作业本2018课标版文科数学一轮复习8.1空间几何体及其三视图、直观图夯基提能作业本(含答案)2018课标版文科数学一轮复习8.2空间几何体的表面积和体积夯基提能作业本(含答案) 2018课标版文科数学一轮复习8.3空间点、直线、平面之间的位置关系夯基提能作业本(含答案)2018课标版文科数学一轮复习8.4直线、平面平行的判定与性质夯基提能作业本(含答案) 2018课标版文科数学一轮复习8.5直线、平面垂直的判定与性质夯基提能作业本(含答案) 2018课标版文科数学一轮复习9.1直线的倾斜角与斜率、直线的方程夯基提能作业本(含答案)2018课标版文科数学一轮复习9.2直线的交点与距离公式夯基提能作业本(含答案)2018课标版文科数学一轮复习9.3圆的方程夯基提能作业本(含答案)2018课标版文科数学一轮复习9.4直线与圆、圆与圆的位置关系夯基提能作业本(含答案) 2018课标版文科数学一轮复习9.5椭圆夯基提能作业本(含答案)2018课标版文科数学一轮复习9.6双曲线夯基提能作业本(含答案)2018课标版文科数学一轮复习9.7抛物线夯基提能作业本(含答案)2018课标版文科数学一轮复习9.8直线与圆锥曲线夯基提能作业本(含答案)2018课标版文科数学一轮复习9.9圆锥曲线的综合问题夯基提能作业本(含答案)2018课标版文科数学一轮复习10.1随机事件的概率夯基提能作业本(含答案)2018课标版文科数学一轮复习10.2古典概型与几何概型夯基提能作业本(含答案)2018课标版文科数学一轮复习10.3随机抽样夯基提能作业本(含答案)2018课标版文科数学一轮复习10.4用样本(含答案)估计总体夯基提能作业本2018课标版文科数学一轮复习10.5变量的相关关系、统计案例夯基提能作业本(含答案) 2018课标版文科数学一轮复习10.6概率与统计的综合问题夯基提能作业本(含答案) 2018课标版文科数学一轮复习11.1数系的扩充与复数的引入夯基提能作业本(含答案) 2018课标版文科数学一轮复习11.2算法与程序框图夯基提能作业本(含答案)2018课标版文科数学一轮复习11.3合情推理与演绎推理夯基提能作业本(含答案)2018课标版文科数学一轮复习11.4直接证明与间接证明夯基提能作业本(含答案)2018课标版文科数学一轮复习12.1坐标系夯基提能作业本(含答案)2018课标版文科数学一轮复习12.2参数方程夯基提能作业本(含答案)2018课标版文科数学一轮复习13.1绝对值不等式夯基提能作业本(含答案)2018课标版文科数学一轮复习13.2不等式的证明夯基提能作业本(含答案)2018课标版文科数学一轮复习阶段检测卷01(含答案)2018课标版文科数学一轮复习阶段检测卷02(含答案)2018课标版文科数学一轮复习阶段检测卷03(含答案)2018课标版文科数学一轮复习阶段检测卷04(含答案)2018课标版文科数学一轮复习阶段检测卷05(含答案)2018课标版文科数学一轮复习阶段检测卷06(含答案)第一节集合A组基础题组1.已知集合M={x|-1<x<3},N={x|-2<x<1},则M∩N=( )A.(-2,1)B.(-1,1)C.(1,3)D.(-2,3)2.已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=( )A.{1,3}B.{1,2}C.{2,3}D.{1,2,3}3.已知集合A={y|y=|x|-1,x∈R},B={x|x≥2},则下列结论正确的是( )A.-3∈AB.3∉BC.A∩B=BD.A∪B=B4.(2016陕西西安模拟)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=( )A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]5.已知集合A=,则集合A中的元素个数为( )A.2B.3C.4D.56.(2016山东,1,5分)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=( )A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}7.(2017山东临沂期中)设集合M={-1,0,1,2},N={x|lg(x+1)>0},则M∩N=( )A.{0,1}B.{0,1,2}C.{1,2}D.{-1,0,1}8.(2016辽宁沈阳模拟)设集合A=,B={b,a+b,-1},若A∩B={2,-1},则A∪B=( )A.{2,3}B.{-2,2,5}C.{2,3,5}D.{-1,2,3,5}9.已知A={0,m,2},B={x|x3-4x=0},若A=B,则m= .10.已知集合A={x|-1≤x≤1},B={x|x2-2x<0},则A∪(∁R B)= .11.已知集合A={x|1≤x<5},C={x|-a<x≤a+3},若C∩A=C,则a的取值范围为.B组提升题组12.(2017山西大同模拟)已知全集为R,集合M={-1,0,1,5},N={x|x2-x-2≥0},则M∩(∁R N)=( )A.{0,1}B.{-1,0,1}C.{0,1,5}D.{-1,1}13.若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=( )A.4B.2C.0D.0或414.设集合M={x|-1≤x<2},N={y|y<a},若M∩N≠⌀,则实数a的取值范围是( )A.[-1,2)B.(-∞,2]C.[-1,+∞)D.(-1,+∞)15.(2016广西南宁模拟)已知全集U={x∈Z|0<x<8},集合M={2,3,5},N={x|x2-8x+12=0},则集合{1,4,7}为( )A.M∩(∁U N)B.∁U(M∩N)C.∁U(M∪N)D.(∁U M)∩N16.(2016辽宁沈阳模拟)已知集合A={x∈N|x2-2x-3≤0},B={1,3},定义集合A,B之间的运算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B},则A*B中的所有元素之和为( )A.15B.16C.20D.2117.设集合A={x|y=lg(-x2+x+2)},B={x|x-a>0},若A⊆B,则实数a的取值范围是( )A.(-∞,-1)B.(-∞,-1]C.(-∞,-2)D.(-∞,-2]18.(2016辽宁沈阳二中月考)设[x]表示不大于x的最大整数,集合A={x|x2-2[x]=3},B=,则A∩B= .答案全解全析A组基础题组1.B M∩N={x|-1<x<3}∩{x|-2<x<1}={x|-1<x<1}.2.A 由题意可得B={1,3,5},∴A∩B={1,3},故选A.3.C 化简A={y|y≥-1},因此A∩B={x|x≥2}=B.4.A 由题意知M={0,1},N={x|0<x≤1},所以M∪N=[0,1].故选A.5.C ∵∈Z,∴2-x的取值有-3,-1,1,3,又∵x∈Z,∴x的值分别为5,3,1,-1,故集合A中的元素个数为4.6.A 由题意知A∪B={1,3,4,5},又U={1,2,3,4,5,6},∴∁U(A∪B)={2,6},故选A.7.C ∵M={-1,0,1,2},N={x|lg(x+1)>0}=(0,+∞),∴M∩N={1,2}.8.D 由A∩B={2,-1},可得或当时,此时B={2,3,-1},所以A∪B={-1,2,3,5};当时,此时不符合题意,舍去.9.答案-2解析由题意知B={0,-2,2},若A=B,则m=-2.10.答案(-∞,1]∪[2,+∞)解析由题意知B={x|x2-2x<0}={x|0<x<2},∴∁R B=(-∞,0]∪[2,+∞),又A=[-1,1],∴A∪(∁R B)=(-∞,1]∪[2,+∞).11.答案a≤-1解析因为C∩A=C,所以C⊆A.①当C=⌀时,满足C⊆A,此时-a≥a+3,解得a≤-;②当C≠⌀时,要使C⊆A,则有解得-<a≤-1.由①②,得a≤-1.B组提升题组12.A ∵全集为R,N={x|x2-x-2≥0}={x|x≤-1或x≥2},∴∁R N={x|-1<x<2},又集合M={-1,0,1,5},∴M∩(∁R N)={0,1}.故选A.13.A ∵集合A={x∈R|ax2+ax+1=0}中只有一个元素,即ax2+ax+1=0只有一个解,∴当a≠0时,Δ=a2-4a=0,解之得a=0(舍)或a=4.当a=0时,A=⌀,不合题意.∴a=4.14.D 借助数轴可知a>-1,故选D.15.C由已知得U={1,2,3,4,5,6,7},N={2,6},又M={2,3,5},所以∁U N={1,3,4,5,7},∁U M={1,4,6,7},M∪N={2,3,5,6},M∩N={2},所以M∩(∁U N)={3,5},∁U(M∩N)={1,3,4,5,6,7},(∁U M)∩N={6},∁U(M∪N)={1,4,7},故选C.16.D 由x2-2x-3≤0,得(x+1)(x-3)≤0,则-1≤x≤3,又x∈N,故集合A={0,1,2,3}.由题意知A*B 中的元素有0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,∴A*B={1,2,3,4,5,6},∴A*B中的所有元素之和为1+2+3+4+5+6=21.17.B A={x|y=lg(-x2+x+2)}={x|-1<x<2},B={x|x>a}.因为A⊆B,所以a≤-1.18.答案{-1,}解析∵x2-2[x]=3,∴[x]=,又[x]≤x<[x]+1,∴∴-1≤x<1-或1+<x≤3,∴[x]=-1或[x]=2或[x]=3.结合x2=2[x]+3,可得x=-1或x=或x=3.∴A={-1,,3}.由<2x<8得-3<x<3,∴B={x|-3<x<3}.∴A∩B={-1,}.第二节命题及其关系、充分条件与必要条件A组基础题组1.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是( )A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤02.(2016陕西五校三模)已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的( )A.逆命题B.否命题C.逆否命题D.否定3.设a,b是实数,则“a>b”是“a2>b2”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(2015安徽,3,5分)设p:x<3,q:-1<x<3,则p是q成立的( )A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.若p是¬q的充分不必要条件,则¬p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.a<0,b<0的一个必要条件为( )A.a+b<0B.a-b>0C.>1D.<-17.原命题p:“设a,b,c∈R,若a>b,则ac2>bc2”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A.0B.1C.2D.48.直线x-y+m=0与圆x2+y2-2x-1=0有两个不同交点的一个充分不必要条件是( )A.-3<m<1B.-4<m<2C.0<m<1D.m<19.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是.10.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是.11.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是.12.已知函数f(x)=+a(x≠0),则“f(1)=1”是“f(x)为奇函数”的条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)B组提升题组13.给定下列四个命题:①若一个平面内的两条直线都与另一个平面平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( )A.①和②B.②和③C.③和④D.②和④14.(2016山东烟台诊断)若条件p:|x|≤2,条件q:x≤a,且p是q的充分不必要条件,则a的取值范围是( )A.a≥2B.a≤2C.a≥-2D.a≤-215.(2016辽宁大连双基检测)已知函数f(x)的定义域为R,则命题p:“函数f(x)为偶函数”是命题q:“∂x0∈R,f(x0)=f(-x0)”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件16.(2016广东佛山一模)已知a,b都是实数,那么“>”是“ln a>ln b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.(2016江西鹰潭余江一中月考)在下列给出的命题中,正确命题的个数为( )①函数f(x)=2x3-3x+1的图象关于点(0,1)中心对称;②若x+y≠0,则x≠1或y≠-1;③若实数x,y满足x2+y2=1,则的最大值为;④若△ABC为锐角三角形,则sin A<cos B.A.1B.2C.3D.418.下列命题:①若ac2>bc2,则a>b;②若sinα=sinβ,则α=β;③“实数a=0”是“直线x-2ay=1和直线2x-2ay=1平行”的充要条件;④若f(x)=log2x,则f(|x|)是偶函数.其中正确命题的序号是.19.设命题p:实数x满足x2-4ax+3a2<0,其中a<0;命题q:实数x满足x2+2x-8>0,且q是p的必要不充分条件,则实数a的取值范围是.答案全解全析A组基础题组1.D 命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.2.B 命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p 的否命题.3.D a>b不能推出a2>b2,例如a=-1,b=-2;a2>b2也不能推出a>b,例如a=-2,b=1.故“a>b”是“a2>b2”的既不充分也不必要条件.4.C 令A={x|x<3},B={x|-1<x<3}.∵B⫋A,∴p是q的必要不充分条件.故选C.5.B ∵p是¬q的充分不必要条件,∴¬q是p的必要不充分条件.“若¬p,则q”是“若¬q,则p”的等价命题,∴¬p是q的必要不充分条件,故选B.6.A 若a<0,b<0,则一定有a+b<0,故选A.7.C 当c=0时,ac2=bc2,所以原命题是错误的;由于原命题与逆否命题的真假一致,所以逆否命题也是错误的;逆命题为“设a,b,c∈R,若ac2>bc2,则a>b”,它是正确的;由于否命题与逆命题的真假一致,所以逆命题与否命题都为真命题.综上所述,真命题有2个.8.C 若直线x-y+m=0与圆x2+y2-2x-1=0,即(x-1)2+y2=2有两个不同交点,则<,即|m+1|<2,解得-3<m<1,这是直线x-y+m=0与圆x2+y2-2x-1=0有两个不同交点的充要条件,因此直线x-y+m=0与圆x2+y2-2x-1=0有两个不同交点的一个充分不必要条件可以是0<m<1,故选C.9.答案若a+b+c≠3,则a2+b2+c2<3解析根据否命题的定义知否命题为若a+b+c≠3,则a2+b2+c2<3.10.答案②③解析对于①,原命题的否命题为“若a≤b,则a2≤b2”,是假命题.对于②,原命题的逆命题为“若x,y互为相反数,则x+y=0”,是真命题.对于③,原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,是真命题.11.答案m=-2解析∵f(x)=x2+mx+1的对称轴为直线x=-,∴f(x)的图象关于直线x=1对称⇔-=1⇔m=-2.12.答案充要解析若f(x)=+a是奇函数,则f(-x)=-f(x),即f(-x)+f(x)=0,∴+a++a=2a++=0,即2a+=0,∴2a-1=0,即a=,f(1)=+=1.若f(1)=1,即f(1)=+a=1,解得a=,代入得,f(-x)=-f(x),f(x)是奇函数,∴“f(1)=1”是“f(x)为奇函数”的充要条件.B组提升题组13.D 只有一个平面内的两条相交直线都与另一个平面平行时,这两个平面才相互平行,所以①为假命题;②符合两个平面相互垂直的判定定理,所以②为真命题;垂直于同一直线的两条直线可能平行,也可能相交或异面,所以③为假命题;根据两个平面垂直的性质定理易知④为真命题.14.A p:|x|≤2⇔-2≤x≤2.因为p是q的充分不必要条件,所以有[-2,2]⫋(-∞,a],即a≥2.15.A 若f(x)为偶函数,则有f(x)=f(-x),所以p⇒q;若f(x)=x,当x=0时,f(0)=f(-0),而f(x)=x为奇函数,所以q⇒/p,故选A.16.B 由ln a>ln b⇒a>b>0⇒>,故必要性成立;当a=1,b=0时,满足>,但ln b无意义,所以ln a>ln b不成立,故充分性不成立,故选B.17.C 对于①,由f(x)+f(-x)=2x3-3x+1-2x3+3x+1=2,得函数f(x)=2x3-3x+1的图象关于点(0,1)中心对称,∴①正确;对于②,“若x+y≠0,则x≠1或y≠-1”的逆否命题为“若x=1且y=-1,则x+y=0”,该逆否命题正确,∴②正确;对于③,实数x,y满足x2+y2=1,如图,表示过圆O上任一点(x,y)和点(-2,0)的连线的斜率,则的最大值为,∴③正确;对于④,△ABC为锐角三角形,则A+B>,则A>-B,又A<,-B>0,∴sin A>sin=cos B,∴④错误.∴正确命题的个数是3.18.答案①③④解析对于①,ac2>bc2,c2>0,所以a>b正确;对于②,sin30°=sin150°⇒/30°=150°,所以②错误;对于③,l1∥l2⇔A1B2=A2B1,即-2a=-4a⇒a=0且A1C2≠A2C1,所以③正确;④显然正确.19.答案(-∞,-4]解析不等式x2-4ax+3a2<0的解集为A=(3a,a)(a<0),不等式x2+2x-8>0的解集为B={x|x<-4或x>2},因为q是p的必要不充分条件,所以A⫋B,故实数a的取值范围是(-∞,-4].第三节简单的逻辑联结词、全称量词与存在量词A组基础题组1.(2015湖北,3,5分)命题“∂x0∈(0,+∞),ln x0=x0-1”的否定是( )A.∀x∈(0,+∞),ln x≠x-1B.∀x∉(0,+∞),ln x=x-1C.∂x0∈(0,+∞),ln x0≠x0-1D.∂x0∉(0,+∞),ln x0=x0-12.(2015浙江,4,5分)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是( )A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.∂n0∈N*,f(n0)∉N*且f(n0)>n0D.∂n0∈N*,f(n0)∉N*或f(n0)>n03.已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是( )A.p∧(¬q)B.(¬p)∧qC.(¬p)∧(¬q)D.p∧q4.下列命题中的假命题为( )A.∀x∈R,e x>0B.∀x∈N,x2>0C.∂x0∈R,ln x0<1D.∂x0∈N*,sin=15.设非空集合A,B满足A⊆B,则以下表述一定正确的是( )A.∂x0∈A,x0∉BB.∀x∈A,x∈BC.∀x∈B,x∉AD.∀x∈B,x∈A6.(2016湖南四县一模)下列命题中,为真命题的是( )A.∂x0∈R,≤0B.∀x∈R,2x>x2C.a+b=0的充要条件是=-1D.“a>1,b>1”是“ab>1”的充分条件7.(2016云南昆明一中考前强化)已知命题p:∀x∈R,x+≥2;命题q:∂x∈,使sin x+cosx=,则下列命题中,为真命题的是( )A.(¬p)∧qB.p∧(¬q)C.(¬p)∧(¬q)D.p∧q8.已知命题p:∂x0∈R,使sin x0=;命题q:∀x∈R,都有x2+x+1>0,给出下列结论:①命题“p∧q”是真命题;②命题“p∧(¬q)”是假命题;③命题“(¬p)∨q”是真命题;④命题“(¬p)∨(¬q)”是假命题.其中正确的结论是( )A.②③B.②④C.③④D.①②③9.命题p的否定是“对所有正数x,>x+1”,则命题p是.10.已知命题p:a2≥0(a∈R),命题q:函数f(x)=x2-x在区间[0,+∞)上单调递增,则下列命题:①p∨q;②p∧q;③(¬p)∧(¬q);④(¬p)∨q.其中为假命题的序号为.11.若命题p:关于x的不等式ax+b>0的解集是,命题q:关于x的不等式(x-a)(x-b)<0的解集是{x|a<x<b},则在命题“p∧q”“p∨q”“¬p”“¬q”中,是真命题的是.12.若命题“∀x∈R,ax2-ax-2≤0”是真命题,则实数a的取值范围是.B组提升题组13.下列说法中正确的是( )A.命题“∀x∈R,e x>0”的否定是“∂x∈R,e x>0”B.命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题C.“x2+2x≥ax在x∈[1,2]上恒成立”⇔“对于x∈[1,2],有(x2+2x)min≥(ax)max”D.命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题为真命题14.下列说法错误的是( )A.命题“若x2-5x+6=0,则x=2”的逆否命题是“若x≠2,则x2-5x+6≠0”B.若命题p:∂x0∈R,+x0+1<0,则¬p:∀x∈R,x2+x+1≥0C.若x,y∈R,则“x=y”是“xy≥”的充要条件D.已知命题p和q,若“p或q”为假命题,则命题p与q中必一真一假15.若函数f(x),g(x)的定义域和值域都是R,则f(x)>g(x)(x∈R)成立的充要条件是( )A.∂x0∈R,f(x0)>g(x0)B.有无穷多个x∈R,使得f(x)>g(x)C.∀x∈R,f(x)>g(x)+1D.R中不存在x使得f(x)≤g(x)16.已知命题p:∂x0∈R,tan x0=1,命题q:x2-3x+2<0的解集是{x|1<x<2},现有以下结论:①命题“p且q”是真命题;②命题“p且¬q”是假命题;③命题“¬p或q”是真命题;④命题“¬p或¬q”是假命题.其中正确的是( )A.②③B.①②④C.①③④D.①②③④17.(2016湖南邵阳石齐中学月考)下列命题正确的个数是( )①“在三角形ABC中,若sin A>sin B,则A>B”的逆命题是真命题;②若p:x≠2或y≠3,q:x+y≠5,则p是q的必要不充分条件;③“∀x∈R,x3-x2+1≤0”的否定是“∀x∈R,x3-x2+1>0”;④“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”.A.1B.2C.3D.418.已知命题p:“∀x∈[1,2],x2≥a”,命题q:“∂x0∈R,+2ax0+2-a=0成立”,若命题“p∧q”是真命题,则实数a的取值范围为( )A.(-∞,-2]B.(-2,1)C.(-∞,-2]∪{1}D.[1,+∞)19.下列结论:①若命题p:∂x0∈R,tan x0=2;命题q:∀x∈R,x2-x+>0.则命题“p∧(¬q)”是假命题;②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是=-3;③“设a,b∈R,若ab≥2,则a2+b2>4”的否命题为“设a,b∈R,若ab<2,则a2+b2≤4”.其中正确结论的序号为.(把你认为正确结论的序号都填上)20.给定两个命题,命题p:对任意实数x,ax2>-ax-1恒成立,命题q:关于x的方程x2-x+a=0有实数根.若“p∨q”为真命题,“p∧q”为假命题,则实数a的取值范围是.答案全解全析A组基础题组1.A 特称命题的否定为全称命题,所以∂x0∈(0,+∞),ln x0=x0-1的否定是∀x∈(0,+∞),ln x≠x-1,故选A.2.D “f(n)∈N*且f(n)≤n”的否定为“f(n)∉N*或f(n)>n”,全称命题的否定为特称命题,故选D.3.A 由题意知,命题p为真命题,命题q为假命题,故¬q为真命题,所以p∧(¬q)为真命题.4.B 对于选项A,由函数y=e x的图象可知,∀x∈R,e x>0,故选项A为真命题;对于选项B,当x=0时,x2=0,故选项B为假命题;对于选项C,当x0=时,ln=-1<1,故选项C为真命题;对于选项D,当x0=1时,sin=1,故选项D为真命题.综上知选B.5.B 根据集合之间的关系以及全称、特称命题的含义可得B正确.6.D 因为y=e x>0,x∈R恒成立,所以A不正确;因为当x=-5时,2-5<(-5)2,所以B不正确;当a=b=0时,a+b=0,但是没有意义,所以C不正确;“a>1,b>1”是“ab>1”的充分条件,显然正确.故选D.7.A 在命题p中,当x<0时,x+<0,所以命题p为假命题,所以¬p为真命题;在命题q中,sinx+cos x =sin,当x=时,sin x+cos x=,所以q为真命题,故选A.8.A ∵>1,∴命题p是假命题.∵x2+x+1=+≥>0,∴命题q是真命题.由真值表可以判断“p∧q”为假,“p∧(¬q)”为假,“(¬p)∨q”为真,“(¬p)∨(¬q)”为真,所以只有②③正确,故选A.9.答案∂x 0∈(0,+∞),≤x0+1解析因为p是¬p的否定,所以只需将全称量词变为存在量词,再对结论否定即可.10.答案②③④解析显然命题p为真命题,则¬p为假命题.∵f(x)=x2-x=-,∴函数f(x)在区间上单调递增.∴命题q为假命题,则¬q为真命题.∴p∨q为真命题,p∧q为假命题,(¬p)∧(¬q)为假命题,(¬p)∨q为假命题.11.答案¬p、¬q解析依题意可知命题p和q都是假命题,所以“p∧q”为假、“p∨q”为假、“¬p”为真、“¬q”为真.12.答案[-8,0]解析当a=0时,不等式显然成立;当a≠0时,由题意知解得-8≤a<0.综上,a的取值范围是-8≤a≤0.B组提升题组13.B 全称命题“∀x∈M,p(x)”的否定是“∂x∈M,¬p(x)”,故命题“∀x∈R,e x>0”的否定是“∂x∈R,e x≤0”,A错;命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”的逆否命题为“已知x,y∈R,若x=2且y=1,则x+y=3”,是真命题,故原命题是真命题,B正确;“x2+2x≥ax在x∈[1,2]上恒成立”⇔“对于x∈[1,2],有(x+2)min≥a”,由此可知C错;命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题为“若函数f(x)=ax2+2x-1只有一个零点,则a=-1”,而函数f(x)=ax2+2x-1只有一个零点⇔a=0或a=-1,故D错.故选B.14.D 易知A、B正确;由xy≥⇔4xy≥(x+y)2⇔4xy≥x2+y2+2xy⇔(x-y)2≤0⇔x=y知C正确;对于D,命题“p或q”为假命题,则命题p与q均为假命题,所以D不正确.15.D A是f(x)>g(x)(x∈R)成立的必要不充分条件,所以A不符合;对于B,由于在区间(0,1)内也有无穷多个数,因此无穷性是说明不了任意性的,所以B也不符合;对于C,由∀x∈R, f(x)>g(x)+1可以推导出∀x∈R,f(x)>g(x),即充分性成立,但f(x)>g(x)成立时不一定有f(x)>g(x)+1,比如f(x)=x2+0.5,g(x)=x2,因此必要性不成立,所以C不符合;易知D符合,所以选D.16.D ∵命题p:∂x0∈R,tan x0=1为真命题,命题q:x2-3x+2<0的解集是{x|1<x<2}为真命题,∴“p且q”是真命题,“p且¬q”是假命题,“¬p或q”是真命题,“¬p或¬q”是假命题,故①②③④都正确.17.C “在△ABC中,若sin A>sin B,则A>B”的逆命题为“在△ABC中,若A>B,则sin A>sin B”,在△ABC中,若A>B,则a>b,根据正弦定理可知sin A>sin B,∴逆命题是真命题,∴①正确;¬p:x=2且y=3,¬q:x+y=5,显然¬p⇒¬q,则由原命题与逆否命题的等价性知q⇒p,则p是q的必要条件;由x≠2或y≠3,推不出x+y≠5,比如x=1,y=4时,x+y=5,不满足x+y≠5,∴p不是q的充分条件,∴p是q的必要不充分条件,∴②正确;“∀x∈R,x3-x2+1≤0”的否定是“∂x∈R,x3-x2+1>0”,∴③不对;“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”,∴④正确.18.C 若p是真命题,即a≤(x2)min,x∈[1,2],所以a≤1;若q是真命题,即+2ax0+2-a=0有解,则Δ=4a2-4(2-a)≥0,即a≥1或a≤-2.命题“p∧q”是真命题,则p是真命题,q也是真命题,故有a≤-2或a=1.19.答案①③解析在①中,命题p是真命题,命题q也是真命题,故“p∧(¬q)”是假命题是正确的.在②中,由l1⊥l2,得a+3b=0,所以②不正确.在③中“设a,b∈R,若ab≥2,则a2+b2>4”的否命题为“设a,b∈R,若ab<2,则a2+b2≤4”,正确.20.答案(-∞,0)∪解析若p真,则a=0或故0≤a<4.若q真,则(-1)2-4a≥0,即a≤.∵“p∨q”为真命题,“p∧q”为假命题,∴p,q中有且仅有一个为真命题.若p真q假,则<a<4;若p假q真,则a<0.综上,实数a的取值范围为(-∞,0)∪.第一节函数及其表示A组基础题组1.函数g(x)=+log2(6-x)的定义域是( )A.{x|x>6}B.{x|-3<x<6}C.{x|x>-3}D.{x|-3≤x<6}2.设函数f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式是( )A.g(x)=2x+1B.g(x)=2x-1C.g(x)=2x-3D.g(x)=2x+73.若二次函数g(x)满足g(1)=1,g(-1)=5,且图象过原点,则g(x)的解析式为( )A.g(x)=2x2-3xB.g(x)=3x2-2xC.g(x)=3x2+2xD.g(x)=-3x2-2x4.已知f(x)=则f+f的值等于( )A.1B.2C.3D.-25.具有性质:f=-f(x)的函数,我们称为满足“倒负”变换的函数,下列函数:①y=x-;②y=x+;③y=f(x)=中满足“倒负”变换的函数是( )A.①②B.②③C.①③D.只有①6.(2015湖北,7,5分)设x∈R,定义符号函数sgn x=则( )A.|x|=x|sgn x|B.|x|=xsgn|x|C.|x|=|x|sgn xD.|x|=xsgn x7.设函数f(x)=若f=4,则b= .8.如果函数f(x)满足:对任意实数a,b都有f(a+b)=f(a)·f(b),且f(1)=1,则++++…+= .9.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=(a,c为常数).已知此工人组装第4件产品用时30分钟,组装第a件产品用时15分钟,那么c和a 的值分别是, .10.根据如图所示的函数y=f(x)(x∈[-3,2))的图象,写出函数的解析式.11.已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1.(1)求函数f(x)的解析式;(2)求函数y=f(x2-2)的值域.B组提升题组12.(2016陕西西安模拟)已知函数f(x)=若f(4)=2f(a),则实数a的值为( )A.-1或2B.2C.-1D.213.函数y=的定义域为R,则实数k的取值范围为( )A.k<0或k>4B.0≤k<4C.0<k<4D.k≥4或k≤014.设映射f:x→-x2+2x-1是集合A={x|x>2}到集合B=R的映射.若对于实数p∈B,在A中不存在对应的元素,则实数p的取值范围是( )A.(1,+∞)B.[-1,+∞)C.(-∞,-1)D.(-∞,-1]15.已知函数f(x)满足f(x)+2f(3-x)=x2,则f(x)的解析式为( )A.f(x)=x2-12x+18B.f(x)=x2-4x+6C.f(x)=6x+9D.f(x)=2x+316.(2016湖南邵阳石齐中学月考)已知函数f(x)=-1的定义域是[a,b](a,b∈Z),值域是[0,1],那么满足条件的整数数对(a,b)共有( )A.2个B.3个C.5个D.无数个17.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数6.时再增选一名代表.那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为( )A.y=B.y=C.y=D.y=18.已知函数f(x)满足对任意的x∈R都有f+f=2成立,则f+f+…+f= .19.已知实数a≠0,函数f(x)=若f(1-a)=f(1+a),则a的值为.20.已知函数f(x)=2x-1,g(x)=求f(g(x))和g(f(x))的解析式.答案全解全析A组基础题组1.D 由解得-3≤x<6,故函数的定义域为[-3,6).2.B ∵g(x+2)=2x+3=2(x+2)-1,∴g(x)=2x-1.3.B 设g(x)=ax2+bx+c(a≠0),∵g(1)=1,g(-1)=5,且图象过原点,∴解得∴g(x)=3x2-2x.4.C f=-cos=cos=,f=f+1=f+2=-cos+2=+2=,故f+f=3.5.C 易知①满足条件;②不满足条件;对于③,易知f=满足f=-f(x),故③满足“倒负”变换,故选C.6.D 由已知可知xsgn x=而|x|=所以|x|=xsgn x,故选D.7.答案解析f=3×-b=-b,若-b<1,即b>,则3×-b=-4b=4,解得b=,与b>矛盾,舍去;若-b≥1,即b≤,则=4,即-b=2,解得b=.8.答案2016解析已知f(a+b)=f(a)f(b),令b=1,∵f(1)=1,∴f(a+1)=f(a),即=1,由于a是任意实数,所以当a取1,2,3,…,2016时,==…==1.故++++…+=2016.9.答案60;16解析因为组装第a件产品用时15分钟,所以=15,①所以必有4<a,且==30.②联立①②解得c=60,a=16.10.解析由题图易知:当-3≤x<-1时,f(x)=-x-,当-1≤x<1时,f(x)=x-,当1≤x<2时,f(x)=1,综上,f(x)=11.解析(1)设f(x)=ax2+bx+c(a≠0),由题意可知整理得∴解得∴f(x)=x2+x.(2)由(1)知y=f(x2-2)=(x2-2)2+(x2-2)=(x4-3x2+2)=-,当x2=时,y取最小值-,故函数y=f(x2-2)的值域为.B组提升题组12.A f(4)=log24=2,因而2f(a)=2,即f(a)=1,当a>0时,f(a)=log2a=1,因而a=2,当a≤0时, f(a)=a2=1,因而a=-1,故选A.13.B 由题意,知kx2+kx+1≠0对任意实数x恒成立,当k=0时,1≠0恒成立,∴k=0符合题意.当k≠0时,Δ=k2-4k<0,解得0<k<4.综上,0≤k<4.14.B 令y=-x2+2x-1=-(x-1)2,当x>2时,y<-1,而对于实数p∈R,在A={x|x>2}中不存在对应的元素,所以实数p的取值范围是[-1,+∞),故选B.15.B 由f(x)+2f(3-x)=x2可得f(3-x)+2f(x)=(3-x)2,由以上两式解得f(x)=x2-4x+6,故选B.16.C ∵函数f(x)=-1的值域是[0,1],∴1≤≤2,∴0≤|x|≤2,∴-2≤x≤2,∴[a,b]⊆[-2,2].又由于仅当x=0时,f(x)=1,当x=±2时,f(x)=0,故在定义域中一定有0,且2,-2中必有其一,故满足条件的整数数对(a,b)有(-2,0),(-2,1),(-2,2),(-1,2),(0,2),共5个.17.B 根据规定各班每10人推选一名代表,当各班人数除以10的余数大于..6.时再增选一名代表,即当余数分别为7、8、9时可增选一名代表.因此用取整函数可表示为y=.故选B.18.答案7解析由f+f=2,得f+f=2,f+f=2,f+f=2,又f==×2=1,∴f+f+…+f=2×3+1=7.19.答案-解析①当a>0时,1-a<1,1+a>1,此时f(1-a)=2(1-a)+a=2-a,f(1+a)=-(1+a)-2a=-1-3a.由f(1-a)=f(1+a)得2-a=-1-3a,解得a=-.不符合,舍去.②当a<0时,1-a>1,1+a<1,此时f(1-a)=-(1-a)-2a=-1-a,f(1+a)=2(1+a)+a=2+3a,由f(1-a)=f(1+a)得-1-a=2+3a,解得a=-.综上可知,a的值为-.20.解析当x≥0时,g(x)=x2,则f(g(x))=2x2-1,当x<0时,g(x)=-1,则f(g(x))=-3,∴f(g(x))=当2x-1≥0,即x≥时,g(f(x))=(2x-1)2,当2x-1<0,即x<时,g(f(x))=-1,∴g(f(x))=第二节函数的单调性与最值A组基础题组1.(2016北京,4,5分)下列函数中,在区间(-1,1)上为减函数的是( )A.y=B.y=cos xC.y=ln(x+1)D.y=2-x2.下列函数中,满足“∀x1,x2∈(0,+∞),且x1≠x2,(x1-x2)[f(x1)-f(x2)]<0”的是( )A.f(x)=-xB.f(x)=x3C.f(x)=ln xD.f(x)=2x3.函数f(x)=x|x-2|的单调减区间是( )A.[1,2]B.[-1,0]C.[0,2]D.[2,+∞)4.(2015吉林长春质量检测(二))已知函数f(x)=|x+a|在(-∞,-1)上是单调函数,则a的取值范围是( )A.(-∞,1]B.(-∞,-1]C.[-1,+∞)D.[1,+∞)5.定义在R上的函数f(x)的图象关于直线x=2对称,且f(x)在(-∞,2)上是增函数,则( )A.f(-1)<f(3)B.f(0)>f(3)C.f(-1)=f(3)D.f(0)=f(3)6.定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于( )A.-1B.1C.6D.127.已知f(x)=的值域为R,那么a的取值范围是.8.已知函数f(x)=则f(x)的最小值是.9.已知f(x)=(x≠a),若a>0且f(x)在(1,+∞)内单调递减,则a的取值范围为.10.已知函数f(x)=-(a>0,x>0).(1)求证:f(x)在(0,+∞)上是增函数;(2)若f(x)在上的值域是,求a的值.。
2018届高三数学(理)一轮复习夯基提能作业本:第九章 平面解析几何 第十节 圆锥曲线的综合问题
第十节圆锥曲线的综合问题A组基础题组1.(2015课标Ⅱ文,20,12分)已知椭圆C:+=1(a>b>0)的离心率为,点(2,)在C上.(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M,证明:直线OM的斜率与直线l的斜率的乘积为定值.2.已知椭圆的中心是坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.(1)求椭圆的方程;(2)在线段OF上是否存在点M(m,0),使得|MP|=|MQ|?若存在,求出m的取值范围;若不存在,请说明理由.3.(2016云南昆明两区七校调研)已知椭圆C:+=1(a>b>0)的左,右顶点分别为A,B,其离心率e=,点M为椭圆上的一个动点,△MAB面积的最大值是2.(1)求椭圆的方程;(2)若过椭圆C的右顶点B的直线l与椭圆的另一个交点为D,线段BD的垂直平分线与y轴交于点P,当·=0时,求点P的坐标.B组提升题组4.已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形.(1)求C的方程;(2)若直线l1∥l,且l1和C有且只有一个公共点E,证明直线AE过定点,并求出定点坐标.5.(2016甘肃兰州实战考试)已知椭圆+=1(a>b>0)的离心率为,且经过点P,过它的两个焦点F1,F2分别作直线l1与l2,l1交椭圆于A,B两点,l2交椭圆于C,D两点,且l1⊥l2.(1)求椭圆的标准方程;(2)求四边形ACBD的面积S的取值范围.答案全解全析A组基础题组1.解析(1)由题意有=,+=1,解得a2=8,b2=4,所以椭圆C的方程为+=1.(2)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),把y=kx+b代入+=1得(2k2+1)x2+4kbx+2b2-8=0.故x M==,y M=kx M+b=,于是直线OM的斜率k OM==-,即k OM·k=-,所以直线OM的斜率与直线l的斜率的乘积为定值.2.解析(1)椭圆的短轴长2b=2⇒b=1,因为两个焦点和短轴的两个端点恰为一个正方形的顶点,所以b=c⇒a2=b2+c2=2,故椭圆的方程为+y2=1.(2)存在.①若l与x轴重合,显然M与原点重合,m=0;②若直线l的斜率k≠0,则可设l:y=k(x-1),设P(x1,y1),Q(x2,y2),PQ的中点为N,则⇒x2+2k2(x2-2x+1)-2=0,化简得(1+2k2)x2-4k2x+2k2-2=0.x1+x2=⇒PQ的中点的横坐标为,代入l:y=k(x-1)可得:PQ的中点N的坐标为,由|MP|=|MQ|得到MN⊥PQ,则=-,整理得m=,所以m==∈.综合①②得到m∈.3.解析(1)由题意可知e==,×2ab=2,a2=b2+c2,解得a=2,b=,c=1,所以椭圆的方程是+=1.(2)直线l的斜率存在.由(1)知B(2,0),设直线BD的方程为y=k(x-2),D(x1,y1),把y=k(x-2)代入椭圆方程+=1,整理得(3+4k2)x2-16k2x+16k2-12=0,所以2+x1=⇒x1=,则D,所以BD中点的坐标为,则直线BD的垂直平分线的方程为y-=-,令x=0,y=,故P.又·=0,即·=0,整理得=0⇒64k4+28k2-36=0,解得k=±.故P的坐标为或.B组提升题组4.解析(1)由题意知F.设D(t,0)(t>0),则FD的中点坐标为.又|FA|=|FD|,则由抛物线的定义知,当点A的横坐标为3时,有3+=,解得t=3+p或t=-3(舍去).此时,由题意得=3,可得p=2.所以抛物线C的方程为y2=4x.(2)由(1)知F(1,0),设A(x0,y0)(x0y0≠0),D(x D,0)(x D>0),因为|FA|=|FD|,所以|x D-1|=x0+1,结合x D>0,x0>0得x D=x0+2,故D(x0+2,0).故直线AB的斜率k AB=-.因为直线l1和直线AB平行,所以可设直线l1的方程为y=-x+b,与抛物线方程联立,消去x得y2+y-=0,由题意可知Δ=+=0,得b=-.设E(x E,y E),则y E=-,x E=,当≠4时,k AE==-=,可得直线AE的方程为y-y0=(x-x0),结合=4x 0,整理可得y=(x-1),则直线AE恒过点F(1,0).当=4时,直线AE的方程为x=1,过点F(1,0).所以直线AE过定点F(1,0).5.解析(1)由=,得a=2c,∴a2=4c2,b2=3c2,将点P代入椭圆方程得c2=1,故所求椭圆方程为+=1.(2)若l1与l2中有一条直线的斜率不存在,则另一条直线的斜率为0,此时四边形的面积为S=6.若l1与l2的斜率都存在,设l1的斜率为k(k≠0),则l2的斜率为-.则直线l1的方程为y=k(x+1),设A(x1,y1),B(x2,y2),联立消去y整理得,(4k2+3)x2+8k2x+4k2-12=0,Δ=64k4-4(3+4k2)(4k2-12)=144k2+144>0,∴x1+x2=-,x1·x2=,∴|x1-x2|=,∴|AB|=|x1-x2|=,同理可得|CD|=,∴S=|AB|·|CD|=,令k2=t∈(0,+∞),∴S===6-≥6-=,∴S∈.综上可知,四边形ABCD面积的取值范围是.。
2018届高三数学(理)一轮复习夯基提能作业本:第四章
第四节简单的三角恒等变换A组基础题组1.已知sin2α=,则cos2=()A. B.- C. D.-2.(2016河南八市重点高中质检)已知α∈,tan=,那么sin2α+cos2α的值为()A.-B.C.-D.3.化简:=()A.1B.C.D.24.已知cos=-,则cosx+cos=()A.-B.±C.-1D.±15.的值为()A.1B.-1C.D.-6.(2016河北“五校联盟”质量检测)在△ABC中,sin(C-A)=1,sinB=,则sinA=.7.已知-<β<0<α<,cos(α-β)=,sinβ=-,则sinα=.8.已知=,则sin2=.9.已知tanα=-,cosβ=,α∈,β∈,求tan(α+β)的值,并求出α+β的值.10.已知角α的顶点是坐标原点,始边与x轴的正半轴重合,终边经过点P(-3,).(1)求sin2α-tanα的值;(2)若函数f(x)=cos(x-α)cosα-sin(x-α)sinα,求函数g(x)=f-2f2(x)在区间上的值域.B组提升题组11.已知α∈R,sinα+2cosα=,则tan2α=()A. B. C.- D.-12.cos·cos·cos=()A.-B.-C.D.13.=.14.(2016郑州模拟)已知直线l1∥l2,A是l1,l2之间的一定点,并且A点到l1,l2的距离分别为h1,h2,B 是直线l2上一动点,作AC⊥AB,且使AC与直线l1交于点C,则△ABC面积的最小值为.15.(2014广东,16,12分)已知函数f(x)=Asin,x∈R,且f=.(1)求A的值;(2)若f(θ)+f(-θ)=,θ∈,求f.16.(2014江西,16,12分)已知函数f(x)=sin(x+θ)+acos(x+2θ),其中a∈R,θ∈.(1)当a=,θ=时,求f(x)在区间0,π]上的最大值与最小值;(2)若f=0,f(π)=1,求a,θ的值.答案全解全析A组基础题组1.C cos2==,将sin2α=代入,得原式==,故选C.2.A由tan=,知=,∴tan2α=-.∵2α∈,∴sin2α=,cos2α=-.∴sin2α+cos2α=-,故选A.3.C原式====,故选C.4.C cosx+cos=cosx+cosx+sinx=cosx+sinx==cos,将cos=-代入,得原式=-1.5.D原式===-.6.答案解析由题意得0°<C<180°,0°<A<180°,∴-180°<C-A<180°,∵sin(C-A)=1,∴C-A=90°,即C=90°+A,∵sinB=,∴sinB=sin(A+C)=sin(90°+2A)=c os2A=,即1-2sin2A=,∴sinA=.7.答案解析∵-<β<0,0<α<,∴0<α-β<π.由cos(α-β)=,sinβ=-,可得sin(α-β)=,cosβ=,∴sinα=sin(α-β)+β]=sin(α-β)cosβ+cos(α-β)sinβ=×+×=.8.答案解析因为===sin2x,所以sin2x=,则sin2===.9.解析由cosβ=,β∈,得sinβ=,则tanβ=2.∴tan(α+β)===1.∵α∈,β∈,∴<α+β<,∴α+β=.10.解析(1)∵角α的终边经过点P(-3,),∴sinα=,cosα=-,tanα=-.∴sin2α-tanα=2sinαcosα-tanα=-+=-.(2)∵f(x)=cos(x-α)cosα-sin(x-α)sinα=cosx,∴g(x)=cos-2cos2x=sin2x-1-cos2x=2sin-1,∵0≤x≤,∴-≤2x-≤.∴-≤sin≤1,∴-2≤2sin-1≤1,故函数g(x)=f-2f2(x)在区间上的值域是-2,1].B组提升题组11.C因为sinα+2cosα=,所以sin2α+4cos2α+4sinαcosα=(sin2α+cos2α),整理得3sin2α-3cos2α-8sinαcosα=0,两边同时除以cos2α,得3tan2α-8tanα-3=0,解得tanα=3或tanα=-,代入tan2α=,得到tan2α=-.12.A cos·cos·cos=cos20°·cos40°·cos100°=-cos20°·cos40°·cos80°=-=-=-=-=-=-.13.答案-4解析原式======-4.14.答案h1h2解析如图,设∠ABD=α,则∠CAE=α,AB=,AC=.所以S△ABC=·AB·AC=.易得当2α=,即α=时,S△ABC取最小值,且最小值为h1h2.15.解析(1)f=Asin=,∴A·=,A=.(2)f(θ)+f(-θ)=sin+·sin=,∴(sinθ+cosθ)+(-sinθ+cosθ)=,∴cosθ=,cosθ=,又θ∈,∴sinθ==,∴f=sin(π-θ)=sinθ=. 16.解析(1)当a=,θ=时,f(x)=sin+cos=(sinx+cosx)-sinx=cosx-sinx=sin,由x∈0,π],知-x∈.故f(x)在0,π]上的最大值为,最小值为-1.(2)由得由θ∈知cosθ≠0,解得。
2018届高三数学(理)一轮复习夯基提能作业本:第八章
第四节直线、平面垂直的判定与性质A组基础题组1.若平面α⊥平面β,平面α∩平面β=直线l,则()A.垂直于平面β的平面一定平行于平面αB.垂直于直线l的直线一定垂直于平面αC.垂直于平面β的平面一定平行于直线lD.垂直于直线l的平面一定与平面α,β都垂直2.设a,b,c是三条不同的直线,α,β是两个不同的平面,则a⊥b的一个充分条件为()A.a⊥c,b⊥cB.α⊥β,a⊂α,b⊂βC.a⊥α,b∥αD.a⊥α,b⊥α3.已知ABCD为矩形,PA⊥平面ABCD,则下列判断中正确的是()A.AB⊥PCB.AC⊥平面PBDC.BC⊥平面PABD.平面PBC⊥平面PDC4.PD垂直于正方形ABCD所在的平面,连接PB、PC、PA、AC、BD,则一定互相垂直的平面有()A.8对B.7对C.6对D.5对5.如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①·≠0;②∠BAC=60°;③三棱锥D-ABC是正三棱锥;④平面ADC的法向量和平面ABC的法向量互相垂直.其中正确的是()A.①②B.②③C.③④D.①④6.如图,∠BAC=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中,与PC垂直的直线是;与AP垂直的直线是.7.(2016课标全国Ⅱ,14,5分)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)8.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)9.如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.10.(2016四川,17,12分)如图,在四棱锥P-ABCD 中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.(1)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(2)证明:平面PAB⊥平面PBD.B组提升题组11.(2016辽宁大连模拟)已知互不重合的直线a,b,互不重合的平面α,β,给出下列四个命题,其中错误的命题是()A.若a∥α,a∥β,α∩β=b,则a∥bB.若α⊥β,a⊥α,b⊥β,则a⊥bC.若α⊥β,α⊥γ,β∩γ=a,则a⊥αD.若α∥β,a∥α,则a∥β12.如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E,F分别是AB,CD的中点,将四边形ADFE沿直线EF进行翻折.给出四个结论:①DF⊥BC;②BD⊥FC;③平面BDF⊥平面BFC;④平面DCF⊥平面BFC.在翻折过程中,可能成立的结论是()A.①③B.②③C.②④D.③④13.如图所示,在三棱锥D-ABC中,若AB=CB,AD=CD,点E是AC的中点,则下列命题中正确的是(填序号).①平面ABC⊥平面ABD;②平面ABC⊥平面BCD;③平面ABC⊥平面BDE,且平面ACD⊥平面BDE;④平面ABC⊥平面ACD,且平面ACD⊥平面BDE.14.(2016甘肃兰州实战考试)设平面α∩平面β=EF,AB⊥α,CD⊥β,垂足分别为B,D,如果增加一个条件,就能推出BD⊥EF,现有下面四个条件:①AC⊥α;②AC与α,β所成的角相等;③AC与BD在β内的射影在同一条直线上;④AC∥EF.其中能成为增加条件的是.(把你认为正确的条件序号都填上)15.(2016河北石家庄一模)在平面四边形ACBD(图①)中,△ABC与△ABD均为直角三角形且有公共斜边AB,设AB=2,∠BAD=30°,∠BAC=45°,将△ABC沿AB折起,构成如图②所示的三棱锥C'-ABD.(1)当C'D=时,求证:平面C'AB⊥平面DAB;(2)当AC'⊥BD时,求三棱锥C'-ABD的高.答案全解全析A组基础题组1.D对于A,垂直于平面β的平面与平面α平行或相交,故A错;对于B,垂直于直线l的直线与平面α垂直、斜交、平行或在平面α内,故B错;对于C,垂直于平面β的平面与直线l平行或相交,故C错;易知D正确.2.C对于选项A,若a⊥c,b⊥c,则直线a与b可能异面,可能平行,也可能相交,所以A项错误;对于选项B,若α⊥β,a⊂α,b⊂β,则直线a与b可能异面,可能平行,也可能相交,所以B项错误;对于选项C,若a⊥α,b∥α,则a⊥b,所以C项正确;对于选项D,易知a∥b,所以D项错误,故选C.3.C由题意画出几何体的图形,如图.∵AB∥CD,CD不垂直于PC,∴AB⊥PC不正确;设BD交AC于O,连接PO,易知AC不垂直于PO,所以AC⊥平面PBD不正确;因为PA⊥平面ABCD,所以PA⊥BC,因为BC⊥AB,且PA∩AB=A,所以BC⊥平面PAB,C项正确;易知D项不正确,故选C.4.B由于PD⊥平面ABCD,ABCD为正方形,故平面PAD⊥平面ABCD,平面PDB⊥平面ABCD,平面PDC⊥平面ABCD,平面PDA⊥平面PDC,平面PAC⊥平面PDB,平面PAB⊥平面PAD,平面PBC⊥平面PDC,共7对.5.B因为DA,DB,DC两两垂直,所以BD⊥平面DAC,则BD⊥AC,故①错;易知平面ADC与平面ABC不垂直,故④错;因为DA=DB=DC,所以易知△ABC为正三角形,故②③正确,故选B.6.答案AB,BC,AC;AB解析∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC.∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面PAC,∴AB⊥AP,故与AP垂直的直线是AB.7.答案②③④解析由m⊥n,m⊥α,可得n∥α或n在α内,当n∥β时,α与β可能相交,也可能平行,故①错.易知②③④都正确.8.答案DM⊥PC(或BM⊥PC)解析连接AC,∵四边形ABCD为菱形,∴AC⊥BD,又∵PA⊥平面ABCD,∴PA⊥BD,又AC∩PA=A,∴BD⊥平面PAC,∴BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,又PC⊂平面PCD,∴平面MBD⊥平面PCD.9.证明(1)因为D,E分别为棱PC,AC的中点,所以DE∥PA.又因为PA⊄平面DEF,DE⊂平面DEF,所以直线PA∥平面DEF.(2)因为D,E,F分别为棱PC,AC,AB的中点,PA=6,BC=8,所以DE∥PA,DE=PA=3,EF=BC=4.又因为DF=5,所以DF2=DE2+EF2,所以∠DEF=90°,即DE⊥EF.又PA⊥AC,DE∥PA,所以DE⊥AC.因为AC∩EF=E,AC⊂平面ABC,EF⊂平面ABC,所以DE⊥平面ABC.又DE⊂平面BDE,所以平面BDE⊥平面ABC.10.解析(1)取棱AD的中点M(M∈平面PAD),点M即为所求的一个点.理由如下:连接CM.因为AD∥BC,BC=AD,所以BC∥AM,且BC=AM.所以四边形AMCB是平行四边形,从而CM∥AB.又AB⊂平面PAB,CM⊄平面PAB,所以CM∥平面PAB.(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点)(2)证明:由已知,PA⊥AB,PA⊥CD,因为AD∥BC,BC=AD,所以直线AB与CD相交,所以PA⊥平面ABCD.从而PA⊥BD.因为AD∥BC,BC=AD,所以BC∥MD,且BC=MD.连接BM,则四边形BCDM是平行四边形.所以BM=CD=AD,所以BD⊥AB.又AB∩AP=A,所以BD⊥平面PAB.又BD⊂平面PBD,所以平面PAB⊥平面PBD.B组提升题组11.D易知A、B正确;C中,在α内取一点A,过A分别作直线m垂直于α,β的交线,直线n垂直于α,γ的交线,则由线面垂直的性质知m⊥β,n⊥γ,则m⊥a,n⊥a,由线面垂直的判定定理知a⊥α,正确;D中,满足条件的a也可能在β内,故D错,故选D.12.B因为BC∥AD,AD与DF相交但不垂直,所以BC与DF不垂直,则①不成立;设点D在平面BCF上的射影为点P,如图,当BP⊥CF时就有BD⊥FC,又AD∶BC∶AB=2∶3∶4可使BP⊥CF,所以②成立;当点P落在BF上时,DP⊂平面BDF,从而平面BDF⊥平面BFC,所以③成立;因为点D在平面BFC上的射影不可能落在直线FC上,所以④不成立.选B.13.答案③解析由AB=CB,AD=CD,点E为AC的中点,知AC⊥DE,AC⊥BE,又因为DE∩BE=E,所以AC⊥平面BDE,故③正确.由已知条件推不出①②④正确.14.答案①③解析要使BD⊥EF,结合EF⊥CD,EF⊥AB,则需EF⊥平面BCD,EF⊥平面ABD,即需平面BCD 与平面ABD重合,故要使BD⊥EF,只需AB,CD在一个平面内即可,只有①③能保证这一条件.15.解析(1)证明:当C'D=时,取AB的中点O,连接C'O,DO.在Rt△AC'B和Rt△ADB中,AB=2,则C'O=DO=1,又∵C'D=,∴C'O2+DO2=C'D2,即C'O⊥OD.由题可知△ABC'为等腰直角三角形,∴C'O⊥AB,又AB∩OD=O,AB,OD⊂平面DAB,∴C'O⊥平面DAB,∵C'O⊂平面C'AB,∴平面C'AB⊥平面DAB.(2)当AC'⊥BD时,∵AC'⊥BC',BD∩BC'=B,∴AC'⊥平面BDC',又∵C'D⊂平面BDC',∴AC'⊥C'D,∴△AC'D为直角三角形,易得AD=,BC'=AC'=,BD=1,由勾股定理可得,C'D===1.∴C'D2+BD2=C'B2,∴△BDC'为直角三角形,∴S△BDC'=×1×1=.V A-BDC'=×S△BDC'×AC'=××=,S△ABD=×1×=.设三棱锥C'-ABD的高为h,∵V C'-ABD=V A-BDC',∴×h×=,解得h=.∴三棱锥C'-ABD 的高为.。
2018届高三数学(理)一轮复习夯基提能作业本:第七章 不等式第三节 二元一次不等式(组)及简单的线性规
第三节二元一次不等式(组)及简单的线性规划问题A组基础题组1.不等式(x-2y+1)(x+y-3)≤0在坐标平面内表示的区域(用阴影部分表示)应是()2.(2016北京,7,5分)已知A(2,5),B(4,1).若点P(x,y)在线段AB上,则2x-y的最大值为()A.-1B.3C.7D.83.已知实数x,y满足则z=2x-2y-1的取值范围是()A. B.0,5] C. D.4.已知不等式组表示的平面区域的面积为4,则z=2x+y的最大值为()A.4B.6C.8D.125.某旅行社租用A、B两种型号的客车安排900名客人旅行,A、B两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B型客车不多于A型客车7辆.则租金最少为()A.31200元B.36000元C.36800元D.38400元6.(2016云南昆明七校调研)已知实数x,y满足则z=x+3y的最小值为.7.(2016江苏,12,5分)已知实数x,y满足则x2+y2的取值范围是.8.(2016河南中原名校3月联考)设x,y满足不等式组若M=3x+y,N=-,则M-N 的最小值为.9.已知D是以点A(4,1),B(-1,-6),C(-3,2)为顶点的三角形区域(包括边界),如图所示.(1)写出表示区域D的不等式组;(2)设点B(-1,-6),C(-3,2)在直线4x-3y-a=0的异侧,求a的取值范围.10.(2014陕西,18,12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC 三边围成的区域(含边界)上.(1)若++=0,求||;(2)设=m+n(m,n∈R),用x,y表示m-n,并求m-n的最大值.B组提升题组11.设z=x+y,其中实数x,y满足若z的最大值为12,则z的最小值为()A.-3B.-6C.3D.612.(2017黑龙江鸡西一中月考)已知变量x,y满足约束条件若z=x-2y的最大值与最小值分别为a,b,且方程x2-kx+1=0在区间(b,a)上有两个不同实数解,则实数k的取值范围是()A.(-6,-2)B.(-3,2)C.D.13.(2014浙江,13,4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.14.若实数x,y满足不等式组则z=|x+2y-4|的最大值为.15.(2016天津,16,13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y表示计划生产甲、乙两种肥料的车皮数.(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.答案全解全析A组基础题组1.C(x-2y+1)(x+y-3)≤0⇔或画图可知选C.2.C点P(x,y)在线段AB上且A(2,5),B(4,1),如图:设z=2x-y,则y=2x-z,当直线y=2x-z经过点B(4,1)时,z取得最大值,最大值为2×4-1=7.3.D画出不等式组所表示的区域,如图中阴影部分所示,可知2×-2×-1≤z<2×2-2×(-1)-1,即z的取值范围是.4.B如图,a>0,不等式组对应的平面区域为△OBC及其内部,其中B(a,a),C(a,-a),所以|BC|=2a,所以△OBC的面积为·a·2a=a2=4,所以a=2.由z=2x+y得y=-2x+z,平移直线y=-2x,由图象可知当直线y=-2x+z经过点B时,直线的截距最大,此时z也最大,把B(2,2)代入z=2x+y得z=2×2+2=6,∴z max=6.5.C设旅行社租用A型客车x辆,B型客车y辆,租金为z元,则约束条件为目标函数为z=1600x+2400y.可行解为图中阴影部分(包括边界)内的整点.当目标函数z=1600x+2400y对应的直线经过点A(5,12)时,z取得最小值,z min=1600×5+2400×12=36800.故租金最少为36800元,选C.6.答案-8解析依题意,在坐标平面内画出不等式组表示的平面区域(图略),当直线x+3y-z=0经过点(4,-4)时,目标函数z=x+3y取得最小值,为4+3×(-4)=-8.7.答案解析画出不等式组表示的可行域,如图:由x-2y+4=0及3x-y-3=0得A(2,3),由x2+y2表示可行域内的点(x,y)与点(0,0)的距离的平方可得(x2+y2)max=22+32=13,(x2+y2)min=d2==,其中d表示点(0,0)到直线2x+y-2=0的距离,所以x2+y2的取值范围为.8.答案解析作出不等式组所表示的平面区域,如图中阴影部分所示,易求得A(-1,2),B(3,2),当直线3x+y-M=0经过点A(-1,2)时,目标函数M=3x+y取得最小值-1.又由平面区域知-1≤x≤3,所以函数N=-在x=-1处取得最大值-,由此可得M-N的最小值为-1-=.9.解析(1)直线AB,AC,BC的方程分别为7x-5y-23=0,x+7y-11=0,4x+y+10=0.原点(0,0)在区域D内,故表示区域D的不等式组为(2)根据题意有4×(-1)-3×(-6)-a]4×(-3)-3×2-a]<0,即(14-a)(-18-a)<0,解得-18<a<14.故a的取值范围是(-18,14).10.解析(1)解法一:∵++=0,又++=(1-x,1-y)+(2-x,3-y)+(3-x,2-y)=(6-3x,6-3y),∴解得x=2,y=2,即=(2,2),故||=2.解法二:∵++=0,∴(-)+(-)+(-)=0,∴=(++)=(2,2),∴||=2.(2)∵=m+n,∴(x,y)=(m+2n,2m+n),∴两式相减得,m-n=y-x,令y-x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m-n的最大值为1.B组提升题组11.B不等式组表示的可行域如图中阴影部分所示:由得A(k,k),易知目标函数z=x+y在点A处取最大值,则12=k+k,故k=6,所以B(-12,6),又目标函数z=x+y在点B处取最小值,∴z的最小值为-6,故选B.12.C作出可行域,如图中阴影部分所示,则目标函数z=x-2y在点(1,0)处取得最大值1,在点(-1,1)处取得最小值-3,∴a=1,b=-3,从而可知方程x2-kx+1=0在区间(-3,1)上有两个不同实数解.令f(x)=x2-kx+1,则⇒-<k<-2,故选C.13.答案解析不等式组表示的区域为以A(1,0),B,C(2,1)为顶点的三角形区域(包含边界),则1≤x≤2,所以1≤ax+y≤4恒成立可转化为≤-a≤恒成立.易知表示可行域内点(x,y)与定点(0,4)连线的斜率,其最大值为-;表示可行域内点(x,y)与定点(0,1)连线的斜率,其最小值为-1,故有-≤-a≤-1,即1≤a≤.14.答案21解析作出不等式组表示的平面区域,如图中阴影部分所示.z=|x+2y-4|=·的几何意义为阴影区域内的点到直线x+2y-4=0的距离的倍.由得B点坐标为(7,9),显然点B到直线x+2y-4=0的距离最大,易得z max=21.15.解析(1)由已知得,x,y满足的数学关系式为该二元一次不等式组所表示的平面区域为图1中的阴影部分:图1(2)设利润为z万元,则目标函数为z=2x+3y.考虑z=2x+3y,将它变形为y=-x+,这是斜率为-,随z变化的一族平行直线.为直线在y轴上的截距,当取最大值时,z的值最大.又因为x,y满足约束条件,所以由图2可知,当直线z=2x+3y经过可行域上的点M时,截距最大,即z最大.图2解方程组得点M的坐标为(20,24).所以z max=2×20+3×24=112.答:生产甲种肥料20车皮、乙种肥料24车皮时利润最大,且最大利润为112万元.。
2018届高三数学(文)一轮复习夯基提能作业本第四章 三角函数、解三角形 第七节 正弦定理和余弦定理 Word版
第七节正弦定理和余弦定理
组基础题组
.在△中,若,则的值为( )
°°°°
.(广东分)设△的内角的对边分别为.若且<,则( )
.
.在△中,∠,则∠( )
.
.(天津六校联考)在△中,内角所对的边分别为,若(),则△的面积为( )
.已知△中,内角所对边的长分别为,若,则△的面积等于( )
.
.△中,内角所对的边分别为,若,则△的形状为( )
.直角三角形.锐角三角形
.等边三角形.等腰直角三角形
.△中,角的对边分别是.已知().则.
.(安徽分)在△中,∠°,∠°,则.
.在△中,则.
.(课标Ⅰ分)已知分别为△内角的对边.
()若,求;
()设°,且
,求△的面积.
.在△中,内角的对边分别为,且>.已知·.求:
()和的值;
()()的值.
组提升题组
.在△中,内角的对边分别为,面积为,若(),则等于( )
.如图,在△中,∠,点在边上⊥为垂足,若,则∠( )
.
.在△中,角所对的边分别是,若°,则.。
【高考复习】2018年高考数学(理)总复习《解三角形》双基过关检测试卷含解析
“解三角形”双基过关检测一、选择题1.(2017·兰州一模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =7,b =3,c =2,则A =( )A.π6 B.π4C.π3D.π2解析:选C 易知cos A =b 2+c 2-a 22bc =32+22-(7)22×3×2=12,又A ∈(0,π),∴A =π3,故选C.2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc=40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(2016·天津高考)在△ABC 中,若AB =13,BC =3,∠C =120°,则AC =( ) A .1 B .2 C .3D .4解析:选A 由余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos C , 即13=AC 2+9-2AC ×3×cos 120°, 化简得AC 2+3AC -4=0,解得AC =1或AC =-4(舍去).故选A.4.已知△ABC 中,内角A ,B ,C 所对边分别为a ,b ,c ,若A =π3,b =2a cos B ,c =1,则△ABC 的面积等于( )A.32B.34C.36D.38解析:选B 由正弦定理得sin B =2sin A cos B ,故tan B =2sin A =2sin π3=3,又B ∈(0,π),所以B =π3,又A =B =π3,则△ABC 是正三角形,所以S △ABC =12bc sin A =12×1×1×32=34.5.(2017·湖南四校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(a 2+b 2-c 2)tan C =ab ,则角C 的大小为( )A.π6或5π6 B.π3或2π3C.π6D.2π3解析:选A 由题意知,a 2+b 2-c 22ab =12tan C ⇒cos C =cos C2sin C ,sin C =12,又C ∈(0,π),∴C =π6或5π6,故选A.6.已知A ,B 两地间的距离为10 km ,B ,C 两地间的距离为20 km ,现测得∠ABC =120°,则A ,C 两地间的距离为( )A .10 kmB .10 3 kmC .10 5 kmD .107 km解析:选D 如图所示,由余弦定理可得,AC 2=100+400-2×10×20×cos 120°=700, ∴AC =107 km.7.(2017·贵州质检)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3 B.932C.332D .3 3解析:选C ∵c 2=(a -b )2+6, ∴c 2=a 2+b 2-2ab +6.①∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6.∴S △ABC =12ab sin C =12×6×32=332.8.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .10 2 海里B .10 3 海里C .20 3 海里D .20 2 海里解析:选A 如图所示,易知,在△ABC 中,AB =20,∠CAB =30°,∠ACB =45°,根据正弦定理得BC sin 30°=ABsin 45°,解得BC =10 2.故B ,C 两点间的距离是102海里. 二、填空题9.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.解析:由3sin A =2sin B 及正弦定理,得3a =2b ,所以b =32a =3.由余弦定理cos C =a 2+b 2-c 22ab ,得-14=22+32-c22×2×3,解得c =4. 答案:410.在△ABC 中,AB =6,∠A =75°,∠B =45°,则AC =________. 解析:∠C =180°-75°-45°=60°, 由正弦定理得AB sin C =AC sin B ,即6sin 60°=AC sin 45°, 解得AC =2. 答案:211.(2016·南昌二中模拟)在△ABC 中,如果cos(B +A )+2sin A sin B =1,那么△ABC 的形状是________.解析:∵cos(B +A )+2sin A sin B =1, ∴cos A cos B +sin A sin B =1, ∴cos(A -B )=1,在△ABC 中,A -B =0⇒A =B , 所以此三角形是等腰三角形. 答案:等腰三角形12.如图,航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的飞行高度为10 000 m ,速度为50 m/s.某一时刻飞机看山顶的俯角为15°,经过420 s 后看山顶的俯角为45°,则山顶的海拔高度为________m .(取2=1.4,3=1.7)解析:如图,作CD 垂直于AB 的延长线于点D ,由题意知∠A =15°,∠DBC =45°,∴∠ACB =30°,AB =50×420=21 000(m).又在△ABC 中,BC sin A =AB sin ∠ACB,∴BC =21 00012×sin 15°=10 500(6-2).∵CD ⊥AD ,∴CD =BC ·sin ∠DBC =10 500(6-2)×22=10 500(3-1)=7 350. 故山顶的海拔高度h =10 000-7 350=2 650(m). 答案:2 650 三、解答题13.(2017·山西四校联考)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos A =23,sin B =5cos C .(1)求tan C 的值;(2)若a =2,求△ABC 的面积. 解:(1)∵cos A =23,∴sin A =1-cos 2A =53, ∴5cos C =sin B =sin(A +C )=sin A cos C +sin C cos A =53cos C +23sin C . 整理得tan C = 5. (2)由(1)知sin C = 306,cos C = 66, 由a sin A =csin C知,c = 3. ∵sin B =5cos C =5·66=306,∴△ABC 的面积S =12ac sin B =12×2×3×306=52.14.(2016·石家庄二模)△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2b cos C +c =2a .(1)求角B 的大小; (2)若cos A =17,求ca 的值.解:(1)由正弦定理,得2sin B cos C +sin C =2sin A , ∵A +B +C =π,∴sin A =sin(B +C )=sin B cos C +cos B sin C , ∴2sin B cos C +sin C =2(sin B cos C +cos B sin C ), ∴sin C =2cos B sin C , ∵sin C ≠0,∴cos B =12,∵B 为△ABC 的内角,∴B =π3.(2)在△ABC 中,cos A =17,∴sin A =437,又B =π3,∴sin C =sin(A +B )=sin A cos B +cos A sin B =5314,∴c a =sin Csin A=58.。
【推荐精选】2018届高三数学一轮复习 第四章 三角函数、解三角形 第八节 解三角形夯基提能作业本 文
第八节解三角形A组基础题组1.如图,两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站南偏西40°方向上,灯塔B在观察站南偏东60°方向上,则灯塔A在灯塔B的( )A.北偏东10°方向上B.北偏西10°方向上C.南偏东80°方向上D.南偏西80°方向上2.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C 处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是( )A.10海里B.10海里C.20海里D.20海里3.(2016江西联考)某位居民站在离地20 m高的阳台上观测到对面楼房房顶的仰角为60°,楼房底部的俯角为45°,那么这栋楼房的高度为( )A.20mB.20(1+)mC.10(+)mD.20(+)m4.某人向正东方向走x km后,向右转150°,然后朝新方向走3 km,结果他离出发点恰好是 km,那么x 的值为( )A. B.2 C.或2 D.35.如图,一条河的两岸平行,河的宽度d=0.6 k m,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6 min,则客船在静水中的速度为( )A.8 km/hB.6 km/hC.2 km/hD.10 km/h6.如图,为了测量A,C两点间的距离,选取同一平面上的B,D两点,测出四边形ABCD各边的长度(单位:km):AB=5,BC=8,CD=3,DA=5,且∠B与∠D互补,则AC的长为km.7.某同学骑电动车以24 km/h的速度沿正北方向的公路行驶,在点A处测得电视塔S在电动车的北偏东30°方向上,15 min后到点B处,测得电视塔S在电动车的北偏东75°方向上,则点B与电视塔的距离是km.8.如图,在山顶上有一座铁塔BC,在塔顶B处测得地面上一点A的俯角α=60°,在塔底C处测得A处的俯角β=45°,已知铁塔BC的高为24 m,则山高CD= m.9.隔河看两目标A与B,但不能到达,在岸边选取相距千米的C、D两点,测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A、B、C、D在同一平面内),求两目标A、B之间的距离.10.为扑灭某着火点,现场安排了两支水枪,如图,D是着火点,A、B分别是水枪位置,已知AB=15 m,在A 处看着火点的仰角为60°,∠ABC=30°,∠BAC=105°(其中C为D在地面上的射影),求两支水枪的喷射距离至少是多少.B组提升题组11.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方的点A处测得水柱顶端的仰角为45°,从点A向北偏东30°方向前进100 m到达点B,在B点处测得水柱顶端的仰角为30°,则水柱的高度是( )A.50 mB.100 mC.120 mD.150 m12.如图,航空测量组驾驶飞机飞行的航线和山顶在同一铅直平面内,已知飞机的飞行高度为10 000 m,速度为50 m/s,某一时刻飞机看山顶的俯角为15°,经过420 s后看山顶的俯角为45°,则山顶的海拔为m.(取=1.4,=1.7)13.如图,一栋建筑物AB的高为(30-10)m,在该建筑物的正东方向有一个通信塔CD.在它们之间的地面上的点M(B,M,D三点共线)处测得楼顶A,塔顶C的仰角分别是15°和60°,在楼顶A处测得塔顶C的仰角为30°,则通信塔CD的高为m.14.如图,在海岸A处发现北偏东45°方向上,距A处(-1)海里的B处有一艘走私船.在A处北偏西75°方向上,距A处2海里的C处的我方缉私船奉命以10海里/时的速度追截走私船,此时走私船正以10海里/时的速度,从B处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.15.(2016辽宁沈阳二中月考)在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船位于点A的北偏东45°且与点A 相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东45°+θ且与点A相距10海里的位置C.(1)求该船的行驶速度(单位:海里/时);(2)若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由.答案全解全析A组基础题组1.D 由条件及题图可知,∠A=∠ABC=40°,因为∠BCD=60°,所以∠CBD=30°,所以∠DBA=10°,因此灯塔A在灯塔B南偏西80°方向上.2.A 如图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,根据正弦定理得=, 解得BC=10(海里).3.B 如图,设AB为阳台的高度,CD为楼房的高度,AE为水平线.由题意知AB=DE=20 m,∠DAE=45°,∠C AE=60°,故AE=20 m,则CE=20 m.所以CD=20(1+)m.故选B.4.C 由题意作出示意图,如图所示,由余弦定理得()2=x2+32-2x·3·cos 30°,整理得x2-3x+6=0,解得x=或2.故选C.5.B 连接AB,设AB与河岸线所成的锐角为θ,客船在静水中的速度为v km/h,由题意知,sin θ==,从而cos θ=,结合已知及余弦定理可得=+12-2××2×1×,解得v=6.选B.6.答案7解析∵82+52-2×8×5×cos(π-D)=32+52-2×3×5×cos D,∴cos D=-,∴在△ACD中,由余弦定理可计算得AC==7.则AC的长为7 km.7.答案3解析由题意知AB=24×=6 km,在△ABS中,∠BAS=30°,AB=6km,∠ABS=180°-75°=105°,∴∠ASB=45°,由正弦定理知=,∴BS==3(km).8.答案(36+12)解析tan∠BAD=,tan∠CAD=,则tan∠BA C=tan(∠BAD-∠CAD)====,又tan∠BAC=tan(60°-45°)=2-,∴=2-,解得CD=(36+12)m.9.解析在△ACD中,∠ACD=120°,∠CAD=∠ADC=30°,所以AC=CD=千米.在△BCD中,∠BCD=45°,∠BDC=75°,∠CBD=60°,由正弦定理知BC==千米.在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC·cos∠ACB=()2+-2×××cos 75°=3+2+-=5,所以AB=千米,所以两目标A,B之间的距离为千米.10.解析在△ABC中,可知∠ACB=45°,由正弦定理得=,解得AC=15 m.又∵∠CAD=60°,∴AD=30 m,CD=15 m,在△ABC中,由正弦定理得=,解得BC= m.由勾股定理可得BD==15 m.综上可知,两支水枪的喷射距离至少分别为30 m,15 m.B组提升题组11.A 如图,设水柱高度是h m,水柱底端为C,则在△ABC中,∠BAC=60°,AC=h m,AB=100 m,BC=h m,根据余弦定理得(h)2=h2+1002-2·h·100·cos 60°,即h2+50h-5 000=0,即(h-50)(h+100)=0,解得h=50(舍负),故水柱的高度是50 m.12.答案 2 650解析如图,作CD垂直于直线AB于点D,∵∠A=15°,∠DBC=45°,∴∠ACB=30°,又在△ABC中,=,AB=50×420=21 000,∴BC=×sin 15°=10 500(-).∵CD⊥AD,∴CD=BC·sin∠DBC=10 500×(-)×=10 500×(-1)=7 350.故山顶的海拔h=10 000-7 350=2 650(m).13.答案60解析如图,在Rt△ABM中,AM=====20.易知∠MAN=∠AMB=15°,所以∠MAC=30°+15°=45°,又∠AMC=180°-15°-60°=105°,所以∠ACM=30°.在△AMC中,由正弦定理得=,解得MC=40.在Rt△CMD中,CD=40×sin 60°=60,故通信塔CD的高为60 m.14.解析如图,设缉私船应沿CD方向行驶t小时,才能最快截获(在D点)走私船,则CD=10t海里,BD=10t海里,在△ABC中,由余弦定理,有BC2=AB2+AC2-2AB·ACcos∠BAC=(-1)2+22-2(-1)·2·cos 120°=6,解得BC=(海里).∵=,∴sin∠ABC===,可知∠ABC=45°,∴B点在C点的正东方向上,∴∠CBD=90°+30°=120°,在△BCD中,由正弦定理,得=,∴sin∠BCD===.可知∠BCD=30°.∵在△BCD中,∠CBD=120°,∠BCD=30°,∴∠D=30°,∴BD=BC,即10t=.∴t=,易知小时≈15分钟.∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟.15.解析(1)如图,AB=40海里,AC=10海里,∠BAC=θ.由于0°<θ<90°,sin θ=,所以cos θ==.由余弦定理得BC==10(海里).所以该船的行驶速度为=15(海里/时).(2)该船会进入警戒水域.理由如下:如图所示,设直线AE与直线BC相交于点Q.在△ABC中,由余弦定理得,cos∠ABC===.从而sin∠ABC===.在△ABQ中,由正弦定理得,AQ===40(海里).由于AE=55海里>40海里=AQ,所以点Q位于点A和点E之间,且QE=AE-AQ=15(海里).过点E作EP⊥BC于点P,在Rt△QPE中,PE=QE·sin∠PQE,则PE=QE·sin∠AQC=QE·sin(45°-∠ABC)=15×=3(海里),又3海里<7海里,所以该船会进入警戒水域.。
2018届高三数学一轮复习 第四章 三角函数、解三角形 第三节 三角函数的图象与性质夯基提能作业本
第三节三角函数的图象与性质A组基础题组1.函数y=tan的定义域是( )A.B.C.D.2.在函数①y=cos|2x|,②y=|cos x|,③y=cos,④y=tan中,最小正周期为π的函数为( )A.①②③B.①③④C.②④D.①③3.(2016陕西西安模拟)函数y=2sin(0≤x≤9)的最大值与最小值之和为( )A.2-B.0C.-1D.-1-4.函数y=tan x+sin x-|tan x-sin x|在区间内的图象是( )5.若函数f(x)=(x∈R),则f(x)( )A.在区间上是减函数B.在区间上是增函数C.在区间上是增函数D.在区间上是减函数6.已知函数f(x)=sin(ωx+φ)的最小正周期为4π,且∀x∈R,有f(x)≤f成立,则f(x)图象的一个对称中心坐标是( )A. B. C. D.7.已知函数f(x)=2sin(ωx+φ),对于任意x都有f=f,则f的值为.8.若函数f(x)=sin(ωx+φ)在区间上是单调减函数,且函数值从1减小到-1,则f= .9.已知函数f(x)=sin(ωx+φ)的最小正周期为π.(1)求当f(x)为偶函数时φ的值;(2)若f(x)的图象过点,求f(x)的单调递增区间.10.设函数f(x)=sin2ωx+2sin ωx·cos ωx-cos2ωx+λ(x∈R)的图象关于直线x=π对称.其中ω,λ为常数,且ω∈.(1)求函数f(x)的最小正周期;(2)若y=f(x)的图象经过点,求函数f(x)的值域.B组提升题组11.若函数f(x)=sin(ω>0)的图象的相邻两条对称轴之间的距离为,且该函数图象关于点(x0,0)成中心对称,x0∈,则x0=( )A. B. C. D.12.已知函数f(x)=-2sin(2x+φ)(|φ|<π),若是f(x)的一个单调递增区间,则φ的取值范围为( )A. B. C. D.∪13.已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是( )A. f(2)< f(-2)< f(0)B. f(0)< f(2)< f(-2)C. f(-2)< f(0)< f(2)D. f(2)< f(0)< f(-2)14.设函数f(x)=3sin,若存在这样的实数x1,x2,对任意的x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为.15.(2016黑龙江大庆一中月考)已知函数f(x)=cos,其中x∈,若f(x)的值域是,则m的最大值是.16.已知函数f(x)=a+b.(1)若a=-1,求函数f(x)的单调递增区间;(2)若x∈[0,π]时,函数f(x)的值域是[5,8],求a,b的值.答案全解全析A组基础题组1.D y=tan=-tan,∴x-≠+kπ,k∈Z,即x≠π+kπ,k∈Z.2.A ①y=cos|2x|的最小正周期为π;②y=|cos x|的最小正周期为π;③y=cos的最小正周期为π;④y=tan的最小正周期为,所以最小正周期为π的函数为①②③,故选A.3.A ∵0≤x≤9,∴-≤x-≤,∴sin∈,∴y∈[-,2],∴y max+y min=2-.4.D y=tan x+sin x-|tan x-sin x|=故选D.5.B 当≤x≤时,+≤x+≤+,即π≤x+≤,此时函数y=sin单调递减且y≤0,所以f(x)=在区间上是增函数,故选B.6.A 由f(x)=sin(ωx+φ)的最小正周期为4π,得ω=.因为∀x∈R,f(x)≤f恒成立,所以f(x)max=f,即×+φ=+2kπ(k∈Z),φ=2kπ+(k∈Z),由|φ|<,得φ=,故f(x)=sin.令x+=kπ(k∈Z),得x=2kπ-(k∈Z),故f(x)图象的对称中心为(k∈Z),当k=0时, f(x)图象的对称中心为,故选A.7.答案2或-2解析∵f=f,∴直线x=是函数f(x)=2sin(ωx+φ)图象的一条对称轴,∴f=±2.8.答案解析由题意得函数f(x)的周期T=2×=π,所以ω=2,所以f(x)=sin(2x+φ),将点代入上式得sin=1,结合|φ|<,可得φ=,所以f(x)=sin,于是f=sin=cos =.9.解析由f(x)的最小正周期为π,得T==π,∴ω=2,∴f(x)=sin(2x+φ).(1)当f(x)为偶函数时, f(x)=f(-x),即sin(2x+φ)=sin(-2x+φ),展开整理得sin 2xcos φ=0,由已知可知,∀x∈R上式都成立,∴cos φ=0.∵0<φ<,∴φ=.(2)∵f(x)的图象过点,∴sin=,即sin=.又∵0<φ<,∴<+φ<π,∴+φ=,φ=,∴f(x)=sin.令2kπ-≤2x+≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z.∴f(x)的单调递增区间为,k∈Z.10.解析(1)f(x)=sin2ωx-cos2ωx+2sin ωx·cos ωx+λ=-cos 2ωx+sin 2ωx+λ=2sin+λ.由直线x=π是y=f(x)图象的一条对称轴,可得sin=±1,所以2ωπ-=kπ+(k∈Z),即ω=+(k∈Z).又ω∈,所以k=1,ω=.所以f(x)的最小正周期是.(2)由y=f(x)的图象过点,得f=0,即λ=-2sin=-2sin=-,即λ=-.故f(x)=2sin-,函数f(x)的值域为[-2-,2-].B组提升题组11.A 由题意得=,T=π,则ω=2.又由题意得2x0+=kπ(k∈Z),则x0=-(k∈Z),而x0∈,所以x0=.12.C 令2kπ+≤2x+φ≤2kπ+,k∈Z,得kπ+-≤x≤kπ+-,k∈Z,又是f(x)的一个单调递增区间,所以≤kπ+-,且≥kπ+-,k∈Z,解得+2kπ≤φ≤+2kπ,k∈Z,又|φ|<π,所以≤φ≤.13.A ∵ω>0,∴T==π,∴ω=2.又A>0,∴f=-A,即sin=-1,得φ+=2kπ+,k∈Z,即φ=2kπ+,k∈Z,又∵φ>0,∴可取f(x)=Asin,∴f(2)=Asin, f(-2)=Asin, f(0)=Asin.∵π<4+<,∴f(2)<0.∵-<-4+<-π,且y=sin x在上为减函数,∴sin<sin=sin,且sin>sin(-π)=0,从而有0<f(-2)<f(0).故有f(2)<f(-2)<f(0).14.答案 2解析∵对任意的x∈R,都有f(x1)≤f(x)≤f(x2)成立,∴f(x1), f(x2)分别为函数f(x)的最小值和最大值,∴|x1-x2|的最小值为T=×=2.15.答案π解析由x∈,可知≤3x+≤3m+,∵f=cos=-,且f=cos π=-1,∴要使f(x)的值域是,需要π≤3m+≤,即≤m≤,则m的最大值是.16.解析f(x)=a(1+cos x+sin x)+b=asin+a+b.(1)当a=-1时, f(x)=-sin+b-1,由2kπ+≤x+≤2kπ+(k∈Z),得2kπ+≤x≤2kπ+(k∈Z),∴f(x)的单调递增区间为,k∈Z.(2)∵0≤x≤π,∴≤x+≤,∴-≤sin≤1,依题意知a≠0.①当a>0时,∴a=3-3,b=5.②当a<0时,∴a=3-3,b=8.综上所述,a=3-3,b=5或a=3-3,b=8.。
2018届高三数学复习三角函数解三角形第一节任意角和蝗制及任意角的三角函数夯基提能作业本文
第一节任意角和弧度制及任意角的三角函数A组基础题组1.给出下列四个命题:①角-是第二象限角;②角是第三象限角;③角-400°是第四象限角;④角-315°是第一象限角.其中正确的命题有( )A.1个B.2个C.3个D.4个2.若sin αtan α<0,且<0,则角α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角3.设α是第二象限角,P(x,4)为其终边上的一点,且cos α=x,则tan α=( )A. B. C.- D.-4.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A.2B.4C.6D.85.角α的终边与直线y=3x重合,且sin α<0,又P(m,n)是角α终边上一点,且|OP|=,则m-n等于( )A.2B.-2C.4D.-46.设角α是第三象限角,且=-sin,则角是第象限角.7.(2016江苏连云港质检)已知角α的终边上一点的坐标为,则角α的最小正值为.8.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α(0<α<π)的弧度数为.9.已知sin α<0,tan α>0.(1)求角α的集合;(2)求终边所在的象限;(3)试判断tan sin cos的符号.10.已知扇形AOB的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB.B组提升题组11.已知角θ是第四象限角,则sin(sin θ)( )A.大于0B.大于或等于0C.小于0D.小于或等于012.已知角α=2kπ-(k∈Z),若角θ与角α的终边相同,则y=++的值为( )A.1B.-1C.3D.-313.已知sin θ-cos θ>1,则角θ的终边在( )A.第一象限B.第二象限C.第三象限D.第四象限14.一扇形的圆心角为120°,则此扇形的面积与其内切圆的面积之比为.15.角α的终边上的点P与点A(a,b)关于x轴对称(a≠0,b≠0),角β的终边上的点Q与点A关于直线y=x对称,求++的值.16.如图所示,动点P,Q从点A(4,0)出发沿圆周运动,点P按逆时针方向每秒钟转弧度,点Q按顺时针方向每秒钟转弧度,求点P,Q第一次相遇时所用的时间、相遇点的坐标及点P,Q各自走过的弧长.答案全解全析A组基础题组1.C 角-是第三象限角,故①错误;=π+,从而角是第三象限角,故②正确;-400°=-360°-40°,从而③正确;-315°=-360°+45°,从而④正确.故选C.2.C 由sin αtan α<0可知sin α,tan α异号,则α为第二或第三象限角.由<0可知cos α,tan α异号,则α为第三或第四象限角.综上可知,α为第三象限角.3.D ∵α是第二象限角,∴x<0.由题意知=x,解得x=-3.∴tan α==-.4.C 设扇形所在圆的半径为R,则2=×4×R2,∴R2=1,∴R=1,∴扇形的弧长为4×1=4,则扇形的周长为2+4=6.5.A ∵角α的终边与直线y=3x重合,且sin α<0,∴角α的终边在第三象限.又P(m,n)是角α终边上一点,故m<0,n<0.又|OP|=,∴解得m=-1,n=-3,故m-n=2.6.答案四解析由角α是第三象限角,知2kπ+π<α<2kπ+(k∈Z),得kπ+<<kπ+(k∈Z),知角是第二或第四象限角,再由=-sin知sin<0,所以只能是第四象限角.7.答案π解析∵=,∴角α是第四象限角,且sin α=-,cos α=,∴角α的最小正值为.8.答案解析设圆的半径为r,则其内接正三角形的边长为r,所以r=αr,所以α=.9.解析(1)由sin α<0,知α的终边在第三、四象限或y轴的负半轴上;由tan α>0,知α的终边在第一、三象限,故角α的终边在第三象限.其集合为.(2)由2kπ+π<α<2kπ+,k∈Z,得kπ+<<kπ+,k∈Z,故终边在第二、四象限.(3)当终边在第二象限时,tan<0,sin>0,cos<0,所以tan sin cos>0;当终边在第四象限时,tan<0,sin<0,cos>0,所以tan sin cos>0.因此,tan sin cos的符号为正.10.解析设扇形AOB的圆心角为α,半径为r,弧长为l.(1)由题意可得解得或∴α==或α==6.(2)解法一:∵2r+l=8,∴S扇=lr=l·2r≤=×=4,当且仅当2r=l,即α==2时,扇形的面积取得最大值4,∴当这个扇形的面积取得最大值时,圆心角α=2,r=2,弦长AB=2×2sin 1=4sin 1.解法二:∵2r+l=8,∴S扇=lr=r(8-2r)=r(4-r)=-(r-2)2+4≤4,当且仅当r=2,即α==2时,扇形面积取得最大值4.∴当这个扇形的面积取得最大值时,圆心角α=2,弦长AB=2×2sin 1=4sin 1.B组提升题组11.C ∵角θ为第四象限角,∴-1<sin θ<0,令α=sin θ,则-1<α<0,∴角α为第四象限角,∴sin α=sin(sin θ)<0.12.B 由α=2kπ-(k∈Z)知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y=-1+1-1=-1.13.B 由已知得(sin θ-cos θ)2>1,即1-2sin θcos θ>1,sin θcos θ<0,又sin θ>cos θ,所以sin θ>0>cos θ,所以角θ的终边在第二象限.14.答案(7+4)∶9解析设扇形的半径为R,其内切圆的半径为r.则(R-r)sin 60°=r,即R=r.又S扇=|α|R2=××R2=R2=πr2,∴=.15.解析由题意可知点P(a,-b),则sin α=,cos α=,t an α=-,由题意可知点Q(b,a),则sin β=,cos β=,tan β=,∴++=-1-+=0.16.解析设P,Q第一次相遇时所用的时间是t秒,则t·+t·=2π.所以t=4,即第一次相遇时所用的时间为4秒.设第一次相遇时,相遇点为C,则∠COx=·4=,则P点走过的弧长为π·4=π,Q点走过的弧长为π·4=π;x C=-cos ·4=-2,y C=-sin ·4=-2.所以C点的坐标为(-2,-2).。
[推荐学习]2018年高考数学总复习4.8解三角形的综合应用演练提升同步测评文新人教B版
[推荐学习]2018年高考数学总复习4.8解三角形的综合应用演练提升同步测评文新人教B版4.8 解三角形的综合应用A组专项基础训练(时间:40分钟)1.(2017·山西太原五中4月模拟)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若sin A=223,a=2,S△ABC=2,则b的值为( )A. 3B.32 2C.2 2 D.2 3【解析】在锐角△ABC中,sin A=223,S△ABC=2,∴cos A=1-sin2A=13,12bc sin A=12bc·223=2,根据正弦定理得BCsin 30°=ABsin 45°,解得BC=102(海里).【答案】 A3.如图,一条河的两岸平行,河的宽度d =0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6 min,则客船在静水中的速度为( )A.8 km/h B.6 2 km/h C.234 km/h D.10 km/h 【解析】设AB与河岸线所成的角为θ,客船在静水中的速度为v km/h,由题意知,sinθ=0.61=35,从而cos θ=45,所以由余弦定理得⎝ ⎛⎭⎪⎫110v 2=⎝ ⎛⎭⎪⎫110×22+12-2×110×2×1×45,解得v =6 2.选B.【答案】 B4.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60 m ,则河流的宽度BC 等于( )A .240(3+1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m【解析】如图,∠ACD=30°,∠ABD=75°,AD=60 m,在Rt△ACD中,CD=AD tan∠ACD=60tan 30°=60 3 m,在Rt△ABD中,BD=ADtan∠ABD=60tan 75°=602+3=60(2-3)m,∴BC=CD-BD=603-60(2-3)=120(3-1)m.【答案】 C5.如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C 测得塔顶A的仰角为60°,则塔高AB等于( )A.5 6 B.15 3 C.5 2 D.15 6 【解析】在△BCD中,∠CBD=180°-15°-30°=135°.由正弦定理得BCsin 30°=30sin 135°,所以BC=15 2.在Rt△ABC中,AB=BC tan∠ACB=152×3=15 6.【答案】 D6.江岸边有一炮台高30 m,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.【解析】如图,OM=AO tan 45°=30(m),ON=AO tan 30°=33×30=103(m),在△MON中,由余弦定理得,MN=900+300-2×30×103×3 2=300=103(m).【答案】 10 37.在200 m高的山顶上,测得山下一塔顶和塔底的俯角分别是30°,60°,则塔高为________m.【解析】如图,由已知可得∠BAC=30°,∠CAD=30°,∴∠BCA=60°,∠ACD=30°,∠ADC=120°.又AB=200 m,∴AC=40033 m.在△ACD中,由余弦定理得,AC2=2CD2-2CD2·cos 120°=3CD2,∴CD=13AC=4003m.【答案】400 38.(2016·洛阳统考)如图,在△ABC中,sin ∠ABC2=33,AB=2,点D在线段AC上,且AD=2DC,BD=433,则cos∠C=________.【解析】 由条件得cos ∠ABC =13,sin ∠ABC=223.在△ABC 中,设BC =a ,AC =3b , 则由余弦定理得9b 2=a 2+4-43a .①因为∠ADB 与∠CDB 互补, 所以cos ∠ADB =-cos ∠CDB , 所以4b 2+163-41633b =-b 2+163-a2833b ,所以3b 2-a 2=-6,②联合①②解得a =3,b =1,所以AC =3,BC =3.在△ABC 中,cos ∠C =BC 2+AC 2-AB22BC ·AC=32+32-222×3×3=79.【答案】 79 9.(2017·辽宁沈阳二中月考)在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域,点E 正北55海里处有一个雷达观测站A .某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与点A 相距402海里的位置B ,经过40分钟又测得该船已行驶到点A 北偏东45°+θ⎝ ⎛⎭⎪⎫其中sin θ=2626,0°<θ<90°且与点A 相距1013海里的位置C .(1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由.【解析】 (1)如图,AB =402,AC =1013,∠BAC =θ,sin θ=2626. 由于0°<θ<90°,所以cos θ=1-⎝ ⎛⎭⎪⎫26262=52626. 由余弦定理得 BC =AB 2+AC 2-2AB ·AC cos θ=10 5.所以船的行驶速度为10523=155(海里/小时).(2)如图所示,设直线AE 与BC 的延长线相交于点Q .在△ABC 中,由余弦定理得,cos∠ABC=AB2+BC2-AC2 2AB·BC=402×2+102×5-102×132×402×105=31010.从而sin∠ABC=1-cos2∠ABC=1-9 10=1010.在△ABQ中,由正弦定理得,AQ=AB sin∠ABCsin(45°-∠ABC)=402×101022×21010=40,由于AE=55>40=AQ,所以点Q位于点A 和点E之间,且QE=AE-AQ=15.过点E作EP ⊥BC于点P,则EP为点E到直线BC的距离.在Rt△QPE中,PE=QE·sin∠PQE=QE·sin∠AQC=QE ·sin(45°-∠ABC )=15×55=35<7.所以船会进入警戒水域.10.(2016·江苏卷)在△ABC 中,AC =6,cos B =45,C =π4. (1)求AB 的长;(2)求cos ⎝⎛⎭⎪⎫A -π6的值. 【解析】 (1)因为cos B =45,0<B <π,所以sin B =1-cos 2B =1-⎝ ⎛⎭⎪⎫452=35. 由正弦定理知ACsin B =ABsin C ,所以AB =AC ·sin C sin B =6×2235=5 2.(2)在△ABC 中,A +B +C =π,所以A =π-(B +C ),于是cos A =-cos(B +C )=-cos ⎝⎛⎭⎪⎫B +π4 =-cos B cos π4+sin B sin π4, 又cos B =45,sin B =35, 故cos A =-45×22+35×22=-210. 因为0<A <π,所以sin A =1-cos 2A =7210. 因此,cos ⎝ ⎛⎭⎪⎫A -π6=cos A cos π6+sin A sin π6=-210×32+7210×12=72-620. B 组 专项能力提升(时间:15分钟)11.一个大型喷水池的中央有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100 m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是( )A.50 m B.100 m C.120 m D.150 m【解析】设水柱高度是h m,水柱底端为C,在Rt△BCD中,∠CBD=30°,BC=3h.在△ABC中,∠BAC=60°,AC=h,AB=100,根据余弦定理得,(3h)2=h2+1002-2·h·100·cos 60°,即h2+50h-5 000=0,即(h-50)(h+100)=0,即h=50,故水柱的高度是50 m.【答案】 A12.如图,一艘船上午9:30在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距8 2 n mile.此船的航速是________n mile/h.【解析】设航速为v n mile/h在△ABS中,AB=12v,BS=82,∠BSA=45°,由正弦定理得82sin 30°=12vsin 45°,∴v=32.【答案】 3213.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB,C是该小区的一个出入口,且小区里有一条平行于AO的小路CD.已知某人从O 沿OD走到D用了2分钟,从D沿DC走到C用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为________米.【解析】如图,连接OC,在△OCD中,OD =100,CD=150,∠CDO=60°.由余弦定理得OC2=1002+1502-2×100×150×cos 60°=17 500,解得OC=507.【答案】 50714.(2016·杭州二中月考)如图,为了测量A,C两点间的距离,选取同一平面上B,D两点,测出四边形ABCD 各边的长度(单位:km):AB =5,BC =8,CD =3,DA =5,且A ,B ,C ,D 四点共圆,则AC 的长为________km.【解析】 因为A ,B ,C ,D 四点共圆,所以D +B =π.在△ABC 和△ADC 中,由余弦定理可得82+52-2×8×5×cos(π-D )=32+52-2×3×5×cos D ,cos D =-12,代入得AC 2=32+52-2×3×5×⎝ ⎛⎭⎪⎫-12=49,故AC =7. 【答案】 715.(2017·河南六市3月联考)如图,在一条海防警戒线上的点A ,B ,C 处各有一个水声检测点,B ,C 到A 的距离分别为20千米和50千米,某时刻B 收到来自静止目标P 的一个声波信号,8秒后A,C同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A到P的距离为x千米,用x表示B,C到P的距离,并求出x的值;(2)求P到海防警戒线AC的距离.【解析】 (1)依题意,有PA=PC=x,PB=x-1.5×8=x-12.在△PAB中,AB=20,cos∠PAB=PA2+AB2-PB2 2PA·AB =x2+202-(x-12)22x·20=3x+325x,同理,在△PAC中,AC=50,cos∠PAC=PA2+AC2-PC2 2PA·AC =x2+502-x22x·50=25x.∵cos∠PAB=cos∠PAC,∴3x+325x=25x,解得x=31.(2)作PD⊥AC于D,在△ADP中,生活的色彩就是学习K12的学习需要努力专业专心坚持 由cos ∠PAD =2531, 得sin ∠PAD =1-cos 2∠PAD =42131, ∴PD =PA sin ∠PAD =31×42131=421. 故静止目标P 到海防警戒线AC 的距离为421千米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八节解三角形A组基础题组1.(2017武汉三中月考)如图,两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40°方向上,灯塔B在观察站南偏东60°方向上,则灯塔A在灯塔B的()A.北偏东10°方向上B.北偏西10°方向上C.南偏东80°方向上D.南偏西80°方向上2.设A,B两点在河的两岸,一测量者在A的同侧选定一点C,测出A、C的距离为50m,∠ACB=45°,∠CAB=105°,则可以计算出A,B两点间的距离为()A.50 mB.50 mC.25 mD. m3.如图,一条河的两岸平行,河的宽度d=0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6 min,则客船在静水中的速度为()A.8 km/hB.6 km/hC.2 km/hD.10 km/h4.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C 处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是()A.10海里B.10海里C.20海里D.20海里5.(2016东营模拟)如图,在塔底D的正西方A处测得塔顶的仰角为45°,在塔底D的南偏东60°的B处测得塔顶的仰角为30°,A、B的距离是84 m,则塔高CD为()A.24 mB.12 mC.12 mD.36 m6.(2016滨州模拟)已知A,B两个小岛相距10 n mile,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,那么B岛和C岛间的距离是n mile.7.某同学骑电动车以24 km/h的速度沿正北方向的公路行驶,在点A处测得电视塔S在电动车的北偏东30°方向上,15 min后到点B处,测得电视塔S在电动车的北偏东75°方向上,则点B与电视塔的距离是km.8.如图所示,一艘海轮从A处出发,测得灯塔在海轮的北偏东15°方向上,与海轮相距20海里的B处,海轮按北偏西60°的方向匀速航行了30分钟后到达C处,又测得灯塔在海轮的北偏东75°方向上,则海轮的速度为海里/分钟.9.如图,航空测量组驾驶飞机飞行的航线和山顶在同一铅直平面内,已知飞机的飞行高度为10 000 m,速度为50 m/s,某一时刻飞机看山顶的俯角为15°,经过420 s后看山顶的俯角为45°,求山顶的海拔高度.(取=1.4,=1.7)10.(2016黑龙江哈尔滨六中开学考试)某飞船上的返回舱顺利到达地球后,为了及时将航天员救出,地面指挥中心在返回舱预计到达的区域安排了同一条直线上的三个救援中心(记为B,C,D).当返回舱在距地面1万米的P点时(假定以后垂直下落,并在A点着陆),C救援中心测得返回舱位于其南偏东60°方向,仰角为60°,B救援中心测得返回舱位于其南偏西30°方向,仰角为30°,D救援中心测得着陆点A位于其正东方向.(1)求B、C两救援中心间的距离;(2)求D救援中心与着陆点A间的距离.B组提升题组11.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°方向前进100 m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是()A.50 mB.100 mC.120 mD.150 m12.地面上有两座相距120米的塔,在矮塔塔底望高塔塔顶的仰角为α,在高塔塔底望矮塔塔顶的仰角为,且在两塔底连线的中点O处望两塔塔顶的仰角互为余角,则两塔的高度分别为()A.50米,100米B.40米,90米C.40米,50米D.30米,40米13.(2016青岛模拟)如图,在海中一孤岛D的周围有2个观察站A,C,已知观察站A在岛D的正北5 n mile 处,观察站C在岛D的正西方,现在海面上有一船B,在A点测得其在南偏西60°方向4 n mile处,在C 点测得其在北偏西30°方向上,则两观测点A与C的距离为n mile.14.如图所示,长为3.5 m的木棒AB斜靠在石堤旁,木棒的一端A在离堤足C处1.4 m的地面上,另一端B 在离堤足C处2.8 m的石堤上,石堤的倾斜角为α,则tan α=.15.(2016辽宁沈阳二中月考)在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船位于点A的北偏东45°且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东45°+θ且与点A相距10海里的位置C.(1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由.答案全解全析A组基础题组1.D 由条件及题图可知,∠A=∠ABC=40°,因为∠BCD=60°,所以∠CBD=30°,所以∠DBA=10°,因此灯塔A在灯塔B南偏西80°方向上.2.A 由题意,易得B=30°.由正弦定理,得=,∴AB===50(m).3.B 连接AB,设AB与河岸线所成的锐角为θ,客船在静水中的速度为v km/h,由题意知,sin θ==,从而cos θ=,结合已知及余弦定理可得=+12-2××2×1×,解得v=6.选B.4.A如图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,根据正弦定理得=,解得BC=10(海里).5.C 设塔高CD=x m,则AD=x m,DB=x m.又由题意得∠AD B=90°+60°=150°,在△ABD中,利用余弦定理,得842=x2+(x)2-2·x2cos 150°,解得x=12(负值舍去),故塔高为12 m.6.答案5解析如图,在△ABC中,AB=10,A=60°,B=75°,C=45°,由正弦定理,得=,所以BC===5(n mile).7.答案3解析由题意知AB=24×=6,在△ABS中,∠BAS=30°,AB=6,∠ABS=180°-75°=105°,∴∠ASB=45°,由正弦定理知=,∴BS==3(km).8.答案解析由已知可得∠ACB=45°,∠B=60°,由正弦定理得=,所以AC===10,所以海轮航行的速度为=(海里/分钟).9.解析如图,作CD垂直直线AB于点D,∵∠A=15°,∠DBC=45°,∴∠ACB=30°,又在△ABC中,=,AB=50×420=21 000,∴BC=×sin15°=10 500(-).∵CD⊥AD,∴CD=BC·sin∠DBC=10 500(-)×=10 500(-1)=7 350.故山顶的海拔高度为10 000-7 350=2 650(m).10.解析(1)由题意,PA⊥AC,PA⊥AB,∠CAB=30°+60°=90°,则△PAC,△PAB,△ABC均为直角三角形,在Rt△PAC中,PA=1,∠PCA=60°,则AC=,在Rt△PAB中,PA=1,∠PBA=30°,则AB=,又∠CAB=90°,∴BC==.答:B、C两救援中心间的距离为万米.(2)易得sin∠ACD=sin∠ACB=,cos∠ACD=-,又∠CAD=30°,所以sin∠AD C=sin(30°+∠ACD)=,在△ADC中,由正弦定理得,=,AD==.答:D救援中心与着陆点A间的距离为万米.B组提升题组11.A如图,设水柱高度是h m,水柱底端为C,则在△ABC中,∠BAC=60°,AC=h m,AB=100 m,BC=h m,根据余弦定理得(h)2=h2+1002-2·h·100·cos 60°,即h2+50h-5 000=0,即(h-50)(h+100)=0,解得h=50(舍负),故水柱的高度是50 m.12.B 设高塔高H米,矮塔高h米,在O点望高塔塔顶的仰角为β.则tan α=,tan =,根据三角函数的倍角公式有=,①因为在两塔底连线的中点O望两塔塔顶的仰角互为余角,所以在O点望矮塔塔顶的仰角为-β.由tan β=,tan=,得=,②联立①②解得H=90,h=40.即两座塔的高度分别为40米,90米.13.答案2解析如图,延长AB与DC,设交点为E,由题意可得∠E=30°,∠BCE=60°,∴∠EBC=90°,∠ABC=90°,在Rt△ADE中,AE==10 n mile,所以EB=AE-AB=6 n mile.在Rt△EBC中,BC=BE·tan 30°=2 n mile,在Rt△ABC中,AC==2(n mile).14.答案解析由题意可得,在△ABC中,AB=3.5,AC=1.4,BC=2.8,由余弦定理可得,AB2=AC2+BC2-2·AC·BC·cos∠ACB,即3.52=1.42+2.82-2×1.4×2.8×cos(π-α),解得cos α=,所以sin α=,所以tan α==.15.解析(1)如图,AB=40海里,AC=10海里,∠BAC=θ.由于0°<θ<90°,sin θ=,所以cos θ==.由余弦定理得BC==10(海里).所以该船的行驶速度为=15(海里/小时).(2)该船会进入警戒水域.理由如下:如图所示,设直线AE与BC相交于点Q.在△ABC中,由余弦定理得,cos∠ABC===.从而sin∠ABC===.在△ABQ中,由正弦定理得,AQ===40(海里).由于AE=55海里>40海里=AQ,所以点Q位于点A和点E之间,且QE=AE-AQ=15(海里).过点E作EP⊥BC于点P,则EP的长等于点E到直线BC的距离.在Rt△QPE中,PE=QE·sin∠PQE,则PE=QE·sin∠AQC=QE·sin(45°-∠ABC)=15×=3(海里),又3海里<7海里,所以该船会进入警戒水域.。