直流斩波电路的性能研究(六种典型线路)
直流斩波电路的性能研究(六种典型线路)
直流斩波电路是一种常用于电力电子器件中的控制电路,用于将直流电源转换成可控的脉冲电压输出,常用于调节、变换和逆变等应用中。
以下是六种典型的直流斩波电路及其性能研究:1. 单元斩波电路:单元斩波电路是最基本的斩波电路,通过单个开关器件(如晶闸管或晶体管)控制输出电压的开关,简单实用。
2. 双元斩波电路:双元斩波电路采用两个开关器件进行控制,可以提高输出电压的精度和稳定性,适用于一定功率范围内的应用。
3. 三元斩波电路:三元斩波电路引入第三个开关器件,通常用于中功率的直流斩波调节电路中,提高了输出波形的质量和稳定性。
4. 逆变斩波电路:逆变斩波电路是将直流输入转换为交流输出的电路,通过斩波技术实现对输出波形的调节和控制,适用于各种逆变器应用。
5. 多电平斩波电路:多电平斩波电路通过控制多个开关器件的状态,实现输出波形的多级调节,提高了输出波形的谐波失真程度和效率。
6. 多电压级斩波电路:多电压级斩波电路结构复杂,但能够实现更高精度的输出电压控制和更低的谐波失真,适用于高要求的功率电子应用。
性能研究包括但不限于以下几个方面:-效率和功率因数:研究直流斩波电路的效率和功率因数,评估其能量转换效率和功率因数对系统整体性能的影响。
-波形质量:分析输出波形的谐波含量、波形失真度等指标,评估直流斩波电路对输出波形的调节和控制能力。
-动态响应特性:研究直流斩波电路的动态响应特性,包括开关速度、响应时间等参数,评估其对系统动态性能的影响。
-稳定性和可靠性:考察直流斩波电路在不同工况下的稳定性和可靠性,包括温度变化、负载变化等条件下的性能表现。
-成本和复杂度:综合考虑直流斩波电路的成本和复杂度,评估其在实际应用中的经济性和可行性。
通过对六种典型直流斩波电路的性能研究,可以全面了解各种电路结构的优缺点,为选择合适的直流斩波电路结构和优化设计提供参考和指导。
直流斩波电路基础与分析报告
I1 ton
I2
t o ff
由上式得:
I2
toff ton
I1
1
I1
EI1 Uo I2
其输出功率和输入功率相等,可看作直流变压器。
电力电子技术
3-20
3.1.3升降压斩波电路和Cuk斩波电路
2) Cuk斩波电路
V通时,E—L1—V回路和R—L2—C—V回路有电流。 V断时,E—L1—C—VD回路和R—L2—VD回路有电流。 输出电压的极性与电源电压极性相反。 电路相当于开关S在A、B两点之间交替切换。
电力电子技术
3-26
3.2.1 电流可逆斩波电路
电路结构
V1和VD1构成降压斩波电路,电动 机为电动运行,工作于第1象限。
V2和VD2构成升压斩波电路,电动 机作再生制动运行,工作于第2象限。
必须防止V1和V2同时导通而导致的 电源短路。
工作过程(三种工作方式) 图3-7 电流可逆斩波电路及波形
第3种工作方式:一个周期内交替地作为降压斩波电路和升压 斩波电路工作。
Ri1
EM
当V处于断态时,设电动机电枢电流为i2,得下式:
L
d i2 dt
Ri2
EM
E
当电流连续时,考虑到初始条件,近似L无穷大时电
枢电流的平均值Io,即
Io
m
b
E R
EM
R
bE
该式表明,以电动机一侧为基准看,可将直流电源电
压看作是被降低到了bE。
电力电子技术
3-15
3.1.2 升压斩波电路
如图3-3c,当电枢电流断续时:
动画演示
电力电子技术
图3-4 升降压斩波电路及其波形
a)电路图
第3章 直流斩波电路
3.1 全控型电力电子器件——IGBT 全控型电力电子器件——IGBT
GTR和GTO的特点——双极型,电流驱动,有电导调制效应, 通流能力很强,开关速度较低,所需驱动功率大,驱动电路复杂。 MOSFET的优点——单极型,电压驱动,开关速度快,输入阻 抗高,热稳定性好,所需驱动功率小而且驱动电路简单。
绝缘栅双极晶体管(IGBT)
GTR和MOSFET复合,结合二者的优点。 1986年投入市场,目前已取代GTO、GTR的市场,成为中、 大功率电力电子设备的主导器件
3.1 全控型电力电子器件——IGBT 全控型电力电子器件——IGBT
IGBT的原理 的原理
场控器件,通断由栅射极电压uGE决定。 导 通 : uGE 大 于 开 启 电 压 UGE(th) 时 , MOSFET内形成沟道,为晶体管提供基极 电流,IGBT导通。 通态压降:很小。 通态压降 关断:栅射极间施加反压或不加信号时, 关断 MOSFET内的沟道消失,晶体管的基极电 流被切断,IGBT关断。
a) 电路图
c) 电流断续时的波形
3.1.1
降压斩波电路
此种方式应用 最多
斩波电路三种控制方式
T不变,变ton —脉冲宽度调制(PWM)。 ton不变,变T —频率调制。 ton和T都可调,改变占空比—混合型。
基于“分段线性”的思想,对降压斩波电路进 行解析。
分V处于通态和处于断态 初始条件分电流连续和断续
三端器件: 栅极G、 集电极C 发射极E
3.2 降压斩波电路
降压斩波电路 (Buck Chopper)
电路结构
全控型器件 如IGBT 负载 出现 的反 电动 势
续流二极管
典型用途之一是拖动直流电动机,也可带蓄电池负载。
直流斩波电路
工作情况:
(1)当V通时,设电枢电流为i1,EM对 L储能,uo=0, i1增加。 (2)当V截至时,EM和L经VD将制动能量回馈给E, 此时uo=E, i2减小。 当负载及L足够大时,电流连续时,波形如图b 。
电枢电流为:
EM U O EM bE EM (1 ) E Io R R R
直流-直流变换电路
直流斩波电路(DC Chopper):
通过电力电子器件的开关作用,将一种直流电压变为另 一固定或可调的直流电压的电路。
也称为直流--直流变换器(DC/DC Converter)。
电路种类:分为隔离型和非隔离型。 非隔离型有 6种:降压斩波电路、升压斩波电路、 升降 压斩波电路、Cuk斩波电路、Sepic斩波电路和Zeta斩波 电路。 隔离型有:正激变换电路,反激变换电路,推挽电路, 半桥变换电路,全桥变换电路等。
3.2 基本直流斩波电路
3.2.1 降压斩波电路(Buck Chopper)
电路结构
全控型器件 若为晶闸管,须 有辅助关断电路。 负载 出现 的反 电动 势
续流二极管
典型用途之一是拖动直流电动机,也可带蓄电池负载。
3-4
一、 工作原理:
1、电流连续(设电感L比较大) t=0 时刻驱动 V 导通,电源 E 向 负载供电,负载电压uo=E,负 载电流io按指数曲线上升。 t=t1 时控制 V 关断,二极管 VD 续流,负载电压 uo 近似为零, 负载电流呈指数曲线下降。 通常串接较大电感 L 使负载电 流连续且脉动小,如图b)。 动画演示。
3-1
3.1 斩波电路的工作原理
工作原理:
S是理想开关,开关S的工作周期为T 。R为纯阻性负载。S在ton接通,电流经 负载R流过, R两端有电压E;S在toff断 开, R中电流为零,电压也变为零。 输出电压平均值为:
第3章----直流斩波电路
3.1.2 升压斩波电路
升压斩波电路 (Boost Chopper)
1) 升压斩波电路旳基本原理
电路构造
储存电能
保持输 出电压
10
3.1.2 升压斩波电路
工作原理
假设L和C值很大。
V处于通态时,电源E向电感 L充电,电流恒定I1,电容C 向负载R供电,输出电压Uo 恒定。
V处于断态时,电源E和电感 L同步向电容C充电,并向负 载提供能量。
当上述电路电源公用而负载为3个独立负载时,则 为3相1重斩波电路。 而当电源为3个独立电源,向一种负载供电时,则 为1相3重斩波电路。 多相多重斩波电路还具有备用功能,各斩波电路单 元可互为备用。
23
本章小结
本章简介了6种基本斩波电路、2种复合斩波电 路及多相多重斩波电路。
本章旳要点是,了解降压斩波电路和升压斩波 电路旳工作原理,掌握这两种电路旳输入输出 关系、电路解析措施、工作特点
复合斩波电路——降压斩波电路和升压斩波电路组合构成 多相多重斩波电路——相同构造旳基本斩波电路组合构成
电流可逆斩波电路
斩波电路用于拖动直流电动机时,常要使电动机既可 电动运营,又可再生制动。
降压斩波电路能使电动机工作于第1象限。
升压斩波电路能使电动机工作于第2象限。
电流可逆斩波电路:降压斩波电路与升压斩波电路组 合。此电路电动机旳电枢电流可正可负,但电压只能 是一种极性,故其可工作于第1象限和第2象限。
直流传动是斩波电路应用旳老式领域,而开关 电源则是斩波电路应用旳新领域,前者旳应用 在逐渐萎缩,而后者旳应用是电力电子领域旳 一大热点。
24
第3章 直流斩波电路
3.1 基本斩波电路 3.2 复合斩波电路和多相多重斩波电路
实验三 直流斩波电路
示波器使用注意:如两个波形不共地,不能同时测量,根据波形幅值大小,有的波形需要选择*10档。
实验三直流斩波电路(设计性)的性能研究一.实验目的熟悉六种斩波电路(buck chopper 、boost chopper 、buck-boost chopper、cuk chopper、sepic chopper、zeta chopper)的工作原理,掌握这六种斩波电路的工作状态及波形情况。
二.实验内容1 SG3525芯片的调试2 斩波电路的连接3 斩波电路的波形观察及电压测试三.实验设备及仪器1 电力电子教学试验台主控制屏2 MMCL-22组件3 示波器4 万用表四.实验方法按照面板上各种斩波器的电路图,取用相应的元件,搭成相应的斩波电路即可.1. SG3525性能测试先按下开关s1(1)锯齿波周期与幅值测量(分开关s2、s3、s4合上与断开多种情况)。
测量“1”端。
记录不同频率时锯齿波的周期及幅值。
(2)输出最大与最小占空比测量。
测量“2”端。
2.buck chopper(1)连接电路。
将UPW(脉宽调制器)的输出端2端接到斩波电路中IGBT管VT的G端, 4端接到斩波电路中IGBT管VT的E端。
分别将斩波电路的1与3,4与12,12与5,6与14,15与13,13与2相连,照面板上的电路图接成buck chopper斩波器。
(2)观察负载电压波形。
经检查电路无误后,按下开关s1、s8,用示波器观察VD1两端12、13孔之间电压,调节upw的电位器rp,即改变触发脉冲的占空比,观察负载电压的变化,并记录电压波形(3)观察负载电流波形。
用示波器观察并记录负载电阻R4两端波形(4)改变脉冲信号周期。
在S2、S3、S4合上与断开多种情况下,重复步骤(2)、(3)(5)改变电阻、电感参数。
可将几个电感串联或并联以达到改变电感值的目的,也可改变电阻,观察并记录改变电路参数后的负载电压波形与电流波形,并分析电路工作状态。
直流斩波电路的性能研究_2
实验2 直流斩波电路的性能研究1 实验目的熟悉降压斩波电路和升压斩波电路的工作原理,掌握这两种基本斩波电路的工作状态及波形情况。
2 实验内容(1)熟悉实验装置的电路结构和主要元器件,检查实验装置输入和输出的线路连接是否正确,检查输入保险丝是否完好,以及控制电路和主电路的电源开关是否在“关”的位置。
电路原理图见实验图2。
斩波电路的直流输入电压ui由交流电经整流得到,如实验图2a所示。
实验图2b和c分别为降压斩波主电路和升压斩波主电路。
实验图2d为控制和驱动电路的原理图,控制电路以专用PWM控制芯片SG3525为核心构成,控制电路输出占空比可调的矩形波,其占空比受uco控制。
实验图2 降压斩波和升压斩波主电路及控制电路a)直流供电电源b)降压斩波主电路c)升压斩波主电路d)控制和驱动电路(2)接通控制电路电源,用示波器分别观察锯齿波和PWM信号的波形(实验装置应给出测量端,位置在图中已标出),记录其波形、频率和幅值。
调节Ur的大小,观察PWM信号的变化情况。
(3)斩波电路的输入直流电压ui由低压单相交流电源经单相桥式二极管整流及电感电容滤波后得到。
接通交流电源,观察ui波形,记录其平均值。
(4)斩波电路的主电路包括降压斩波电路和升压斩波电路两种,分别如实验图2b、c所示,电路中使用的器件为电力MOSFET,注意观察其型号、外形等。
(7)切断各处电源,将直流电源ui与升压斩波主电路连接,断开降压斩波主电路。
检查接线正确后,接通主电路和控制电路的电源。
改变ur值,每改变一次ur,分别观测PWM信号的波形、电力MOSFET V的栅源电压波形、输出电压uo的波形、输出电流io的波形,记录的PWM信号占空比a,ui、uo的平均值Ui和Uo。
(8)改变负载R的值,重复上述内容7。
直流斩波电路研究实验报告
直流斩波电路研究实验报告直流斩波电路研究实验报告引言直流斩波电路是一种常见的电子电路,它可以将直流电转换为可变的脉冲电流。
在本次实验中,我们将研究直流斩波电路的原理和性能,并通过实验验证其工作效果。
一、实验目的本次实验旨在通过搭建直流斩波电路,研究其工作原理和性能,并通过实验结果验证理论分析的正确性。
二、实验原理直流斩波电路由三个主要部分组成:输入直流电源、可变电阻和输出负载。
当输入直流电压经过可变电阻调节后,通过开关控制,形成一系列脉冲电流,最后通过输出负载得到所需的电压波形。
三、实验步骤1. 搭建直流斩波电路:将输入直流电源与可变电阻相连,并接入开关和输出负载。
2. 调节可变电阻:通过调节可变电阻的阻值,控制输出电压的大小。
3. 控制开关:通过控制开关的开关频率和占空比,调节输出脉冲的频率和宽度。
4. 观察输出波形:使用示波器观察输出波形,并记录实验数据。
四、实验结果与分析通过实验观察和数据记录,我们得到了直流斩波电路的输出波形。
根据理论分析,我们可以得出以下结论:1. 输出波形的频率和宽度与开关的开关频率和占空比有关。
当开关频率较高且占空比较大时,输出波形的频率较高且宽度较宽。
2. 输出波形的幅值与输入直流电压和可变电阻的阻值有关。
当输入直流电压较高且可变电阻的阻值较小时,输出波形的幅值较大。
五、实验结论通过本次实验,我们验证了直流斩波电路的工作原理和性能。
我们发现,通过调节可变电阻和控制开关,我们可以得到不同频率、宽度和幅值的输出波形。
这种电路在实际应用中具有广泛的用途,例如在电力变换、电子通信和电动机控制等领域都有重要的应用。
六、实验总结通过本次实验,我们对直流斩波电路有了更深入的了解。
我们通过实验验证了理论分析的正确性,并掌握了搭建和调节直流斩波电路的方法。
在实验过程中,我们还学会了使用示波器观察和记录波形数据的技巧。
这些实验技能对我们今后的学习和研究都具有重要的意义。
七、参考文献[1] 张三, 李四. 直流斩波电路原理与应用[M]. 北京:电子工业出版社,2010.[2] 王五, 赵六. 电子电路实验指导[M]. 北京:高等教育出版社,2015.以上为直流斩波电路研究实验报告的主要内容。
直流斩波电路
0 uL d t 0
V处于通态
uL = E
E ton Uo toff
V处于断态
uL = - uo
所以输出电压为: U o
ton toff
E ton T ton
E 1
E
升降压斩波电路和Cuk斩波电路
结论
当0<a <1/2时为降压,当1/2<a <1时为升压,故称作升
降压斩波电路。也有称之为buck-boost 变换器。
US
U0
L diL dt
L I ton
t=t1时刻,驱动V关断,在时间内, 电路工作于模式2。VD承受正向 电压而导通,电感L释放储能, 电感电流经VD续流,并呈指数规 律下降。电容C上旳电流为电感 电流与负载电流之差。假如L和C 参数选择合适,负载R上旳电流 基本维持不变,
U0
L
diL dt
L I T ton
因为L和C数值合适时,负载电流维持为Io不变 电源只在V处于通态时提供能量,为 UsIoton 在整个周期T中,负载消耗旳能量为 RIo2T
一周期中,忽视损耗,则电源提供旳能量与负载消耗旳能量相等。
Us Ioton RIo2T
Us I1 Uo Io Uo Io
Io
U s
R
I1
U0
ton
T
t on T
△U
ton
0
T
开通 关断
t
i
0 t
图6.5 平均控制方式波形
3、时间比与瞬时值混合控制方式
此种控制方式是前面两种控制方式旳结合,合用于要求电 流(或电压)按时间比喻式输出,同步又要求控制输出电 流(或电压)瞬时值旳场合。
6.2 基本斩波电路
直流斩波电路分析_电力电子技术
(3-16)
e a - 1 m e -1
第十一讲
直流斩波电路分析
直流斩波电路(DC Chopper)
– 将直流电变为另一固定电压或可调电压的直流电 – 也称为直接直流--直流变换器(DC/DC Converter) – 一般是指直接将直流电变为另一直流电,不包括直流—交流—直流 – 习惯上,DC—DC变换器包括以上两种情况,且甚至更多地指后一种情况
11.1.1 11.1.2 11.1.3 11.1.4 降压斩波电路 升压斩波电路 升降压斩波电路和Cuk斩波电路 Sepic斩波电路和Zeta斩波电路
返回
11.1.1 降压斩波电路
斩波电路的典型用途之一是拖动直 流电动机,也可带蓄电池负载,两 种情况下负载中均会出现反电动势, 如图中EM所示
工作原理
I 20 1 - e -t1 / 1 - e -T /
;
ea - 1 E e -1 - m R
(3-9)
E EM 1 - e -a E m - R R R 1- e
;
(3-10)
式中:
。由图3-1b可知, t1 T t1 / a 分别是负载电流瞬时值的最小值和最大值。 T / m EM / E I10和I20 T
降压斩波电路
11.1.2 升压斩波电路
11.1.3 升降压斩波电路和Cuk斩波电路
11.1.4 Sepic斩波电路和Zeta斩波电路
11.2
复合斩波电路和多相多重斩波电路
11.2.1 电流可逆斩波电路 11.2.2 桥式可逆斩波电路 11.2.3多相多重斩波电路
11.1
基本斩波电路
实验五_直流斩波电路的性能研究实验报告_第五组
XXX学院实验报告学院:专业:班级:成绩:姓名:学号:组别:组员:实验地点:实验日期:指导教师签名:验(序号)项目名称:直流斩波电路的性能研究(六种典型线路)实验五直流斩波电路的性能研究(六种典型线路)一、实验目的(1)熟悉直流斩波电路的工作原理。
(2)熟悉各种直流斩波电路的组成及其工作特点。
(3)了解PWM 控制与驱动电路的原理及其常用的集成芯片。
二、实验所需挂件及附件三、实验线路及原理1、主电路①、降压斩波电路(Buck Chopper)降压斩波电路(Buck Chopper)的原理图及工作波形如图4-12 所示。
图中V 为全控型器件,选用IGBT。
D 为续流二极管。
由图4-12b 中V 的栅极电压波形U GE 可知,当V 处于通态时,电源U i 向负载供电,U D=U i。
当V 处于断态时,负载电流经二极管D 续流,电压U D 近似为零,至一个周期T 结束,再驱动V 导通,重复上一周期的过程。
负载电压的平均值为:式中t on 为V 处于通态的时间,t off 为V 处于断态的时间,T 为开关周期,α为导通占空比,简称占空比或导通比(α=t on/T)。
由此可知,输出到负载的电压平均值U O 最大为U i,若减小占空比α,则U O 随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。
图4-12 降压斩波电路的原理图及波形②、升压斩波电路(Boost Chopper)升压斩波电路(Boost Chopper)的原理图及工作波形如图4-13 所示。
电路也使用一个全控型器件V。
由图4-13b 中V 的栅极电压波形U GE 可知,当V 处于通态时,电源U i 向电感L1 充电,充电电流基本恒定为I1,同时电容C1 上的电压向负载供电,因C1 值很大,基本保持输出电压U O 为恒值。
设V 处于通态的时间为t on,此阶段电感L1 上积蓄的能量为U i I1t on。
当V 处于断态时U i和L1 共同向电容C1 充电,并向负载提供能量。
直流斩波电路的性能研究
直流斩波电路的性能研究一、实验原理及内容:直流斩波电路(DC Chopper)的功能是将直流电变为固定电压或可调电压的直流电,也称为直接直流-直流变换器(DC/DC Converter)。
目前比较基本的和较为常用的直流斩波电路有以下几种:一)降压斩波电路(Buck Chopper)1、电路图如下:2、降压斩波电路原理:在t=0时驱动V导通,电源E向负载供电,负载u o =E,负载电流io按指数曲线上升。
当t=t1时刻,控制V关断,负载电流经二极管VD续流,负载电压uo近似为零,负载电流呈指数曲线下降。
为了使负载电流连续且脉动小,通常串接L值较大的电感。
只一个周期T结束,再驱动V导通,重复上一周期过程。
当电路工作于稳态时,负载电流在一个周期的初值和终值相等Uo的值与占空比(alpha)成正比。
3、典型应用:拖动直流电机,带蓄电池负载二)升压斩波电路(Boost Chopper)1、电路图如下:2、升压斩波电路的原理:假设电路中电感L很大,电容C很大。
当V导通,电源E向L充电,充电电流基本恒定位为I1,同时电容C上的电压向负载R供电,由于C值很大,基本保持输出电压uo 位恒值,记为Uo。
当V关断的时候电源与电感L同时对电容C充电,并且向负载R提供能量。
当电路工作稳定时,有如下方程:U o =(ton+toff)E/toff=TE/toff由上式可知,输出电压高于电源电压。
3、典型应用:直流电动机传动,单项功率因数校正(Power FactorCorrection—PFC)电路,用于其他交直流电源中三)升降压斩波电路(Boost-Buck Chopper)1、电路图如下:2、升降压斩波电路原理:假设电感L很大,电容C很大,致使电感电流i L 和电容典雅即负载电压uo基本为恒值。
V导通,L充电,有电流i1。
同时有电容C 维持输出电压基本恒定并向负载R 供电。
V 关断,电感L 向负载提供其所储存的能量,此时有电流i 2。
直流斩波电路的性能研究_5
目录一、buck斩波电路工作原理 (1)二、硬件调试 (3)2.1、电源电路 (3)2.1.1 工作原理: (3)2.2 buck斩波电路 (5)2.3、控制电路 (6)2.4、驱动电路 (7)2.5 过压保护电路 (9)2.5.1 主电路器件保护 (9)2.5.2 负载过压保护 (9)2.5.3 过流保护电路 (10)2.6 元器件列表 (12)三、总结 (12)四、参考文献 (13)一、buck斩波电路工作原理直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流-直流变换器(DC/DC Converter)。
直流斩波电路一般是指直接将直流电变为另一直流电的情况,不包括直流-交流-直流的情况。
习惯上,DC-DC变换器包括以上两种情况。
直流斩波电路的种类较多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta斩波电路,其中前两种是最基本的电路。
一方面,这两种电路应用最为广泛,另一方面,理解了这两种电路可为理解其他的电路打下基础。
利用不同的基本斩波电路进行组合,可构成复合斩波电路,如电流可逆斩波电路、桥式可逆斩波电路等。
利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。
直流斩波电路广泛应用于直流传动和开关电源领域,是电力电子领域的热点。
全控型器件选择绝缘栅双极晶体管(IGBT)综合了GTR和电力MOSFET 的优点,具有良好的特性。
目前已取代了原来GTR和一部分电力MOSFET的市场,应用领域迅速扩展,成为中小功率电力电子设备的主导器件。
所以,此课程设计选题为:设计使用全控型器件为电力MOSFET的降压斩波电路。
主要讨论电源电路、降压斩波主电路、控制电路、驱动电路和保护电路的原理与设计。
1.1主电路工作原理图1.1 BUCK斩波电路电路图直流降压斩波主电路使用一个Power MOSFET IRF640N控制导通。
直流斩波电路原理实验
直流斩波电路原理实验概述直流斩波电路是一种将直流信号转换为脉冲信号的电路。
该电路通过控制开关管的导通和截止,实现了直流信号的二值化处理。
本文将介绍直流斩波电路的原理和实验步骤。
直流斩波电路原理直流斩波电路的原理基于开关管的开关功能,当开关管导通时,直流信号通过;当开关管截止时,直流信号被切断,产生脉冲信号。
在直流斩波电路中,常用的开关管有晶体管和场效应管。
实验材料1.直流电源2.NPN型晶体管3.耦合电容4.变压器5.负载电阻6.示波器实验步骤1. 搭建电路根据电路原理图,搭建直流斩波电路实验电路。
将直流电源连接到变压器的输入端,变压器的输出端与晶体管的集电极相连,同时将负载电阻接在晶体管的发射极和地之间。
2. 调整参数调整变压器的变比,使得输出信号的幅值适当。
同时调整负载电阻的阻值,以达到所需的输出功率。
3. 连接示波器将示波器的探头分别连接到晶体管的集电极和发射极上,以观察输出信号的波形。
4. 实验记录记录示波器显示的波形和各个参数的数值。
实验结果分析根据实验记录的数据,分析直流斩波电路的性能和特点。
主要包括以下几个方面:1. 输出波形通过示波器观察输出波形,可以判断直流斩波电路的工作状态和性能。
根据波形的幅值、频率和占空比等参数,可以评估电路的性能。
2. 电路效率根据输入功率和输出功率的比值,计算直流斩波电路的效率。
效率越高,电路的能量转换效率越高。
3. 噪声分析通过分析输出波形的噪声水平,可以评估直流斩波电路的抗干扰能力和噪声性能。
实验应用直流斩波电路在实际应用中有着广泛的用途,主要包括以下几个方面:1. 消息传输直流斩波电路可以将模拟信号转换为数字信号,用于消息传输和通信系统中。
2. 电力变换直流斩波电路在电力系统中可以用于直流与交流的转换,实现电力的变压变频控制。
3. 电动机控制直流斩波电路可用于电动机控制系统,实现电机的速度和方向控制。
4. 脉冲控制直流斩波电路产生的脉冲信号可用于触发其他电路和系统的工作,如触发器、计数器等。
直流斩波电路实验报告
直流斩波电路实验报告直流斩波电路实验报告引言:直流斩波电路是电力电子学中的重要实验之一。
通过该实验,我们可以深入了解斩波电路的原理和工作方式,以及其在电力转换中的应用。
本实验旨在通过搭建和测试直流斩波电路,验证其性能和有效性。
一、实验目的本实验的主要目的是搭建直流斩波电路,并通过实验测试来验证其性能和有效性。
具体而言,我们将实现以下目标:1. 理解直流斩波电路的原理和工作方式;2. 掌握搭建直流斩波电路的方法和步骤;3. 测试直流斩波电路的输出波形,分析其性能和有效性。
二、实验原理直流斩波电路是一种将直流电压转换为交流电压的电路。
其基本原理是利用开关器件(如晶闸管、IGBT等)控制直流电源的导通和截断,从而改变电路中的电流路径,实现对直流电压的切割和转换。
直流斩波电路通常由三个主要部分组成:1. 输入滤波电路:用于滤除直流电源中的纹波和杂散信号,保证直流电压的稳定性;2. 斩波开关电路:由开关器件和控制电路组成,用于控制直流电源的导通和截断;3. 输出滤波电路:用于滤除斩波开关引起的高频脉冲信号,使输出电压变为平滑的交流电压。
三、实验步骤1. 搭建直流斩波电路:按照实验指导书提供的电路图和元器件清单,依次连接电路中的各个元器件和开关器件。
确保连接正确无误。
2. 调整控制电路参数:根据实验要求,调整控制电路中的参数,如频率、占空比等。
确保电路能够正常工作。
3. 测试输出波形:将示波器连接到输出端口,调整示波器的设置,观察并记录输出波形。
分析波形的频率、幅值和形状,评估直流斩波电路的性能和有效性。
4. 分析实验结果:根据实验数据和观察结果,对直流斩波电路的性能和有效性进行分析和总结。
比较实验结果与理论预期的差异,并提出可能的原因和改进方法。
四、实验结果与分析经过实验测试,我们得到了直流斩波电路的输出波形。
通过观察和分析波形,我们可以得出以下结论:1. 输出波形呈现出周期性的正弦波形,表明直流斩波电路能够将直流电压有效地转换为交流电压。
直流斩波电路实验报告
实验名称:直流斩波电路实验实验日期:2021年X月X日实验地点:实验室实验目的:1. 理解直流斩波电路的工作原理及组成;2. 掌握直流斩波电路的基本性能参数;3. 分析直流斩波电路在不同负载下的性能变化。
实验仪器:1. 直流斩波电路实验装置;2. 数字示波器;3. 数字万用表;4. 电源及负载。
实验原理:直流斩波电路是一种将直流电压转换为可调直流电压的电力电子电路。
它主要由斩波器、滤波器和控制器等部分组成。
斩波器是直流斩波电路的核心部分,其主要作用是将输入的直流电压斩成脉冲电压,再通过滤波器滤去脉冲电压中的高频谐波,得到稳定的输出电压。
实验步骤:1. 连接实验装置,确保各部分连接正确;2. 打开电源,调整输入电压,观察斩波器输出波形;3. 使用示波器观察斩波器输出波形,分析斩波器开关频率、占空比等参数;4. 调整负载,观察输出电压变化,分析负载对斩波电路性能的影响;5. 记录实验数据,进行数据分析。
实验结果与分析:1. 斩波器输出波形通过观察斩波器输出波形,可以看出斩波器开关频率和占空比对输出波形有重要影响。
当开关频率较高时,输出波形较为平滑;当占空比较大时,输出电压较高。
2. 负载对斩波电路性能的影响当负载增大时,输出电压降低,电流增大。
这是由于负载电流的增加导致斩波器开关频率和占空比发生变化,进而影响输出电压。
3. 实验数据分析通过对实验数据的分析,可以得出以下结论:(1)斩波器开关频率对输出波形有重要影响,频率越高,输出波形越平滑;(2)占空比对输出电压有直接影响,占空比越大,输出电压越高;(3)负载对斩波电路性能有较大影响,负载增大时,输出电压降低,电流增大。
实验结论:通过本次实验,我们了解了直流斩波电路的工作原理及组成,掌握了直流斩波电路的基本性能参数,分析了负载对斩波电路性能的影响。
实验结果表明,斩波器开关频率、占空比和负载对斩波电路性能有显著影响。
注意事项:1. 实验过程中,注意安全,确保电源及负载连接正确;2. 观察波形时,注意调整示波器参数,确保波形清晰;3. 实验数据记录准确,便于后续分析。
直流斩波电路
电路结构
续流二极管
典型用途之一是拖动直流电动机,也可带蓄电池负载。
uo
i
工作原理
G
t i I
t on T
off t i 2 t
O i o
1 I t E
10
20
O u o
1
O i G t i O Gi o O u o O i on
数量关系 当V处于通态时,设电动机电枢电流为i1,得 d i1 下式: L + Ri1 = EM dt 当V处于断态时,设电动机电枢电流为i2, 得下式 di
L
2
当电流连续时,考虑到初始条件,近似L无穷 大时电枢电流的平均值Io,即 E EM − βE Io = (m− β ) = 该式表明,以电动机一侧为基准看,可将直流 电源电压看作是被降低到了 βE 。
数量关系 优点(与升降压斩波电路相比): 优点 输入电源电流和输出负载电流都是连续的,且 脉动很 小,有利于对输入、输出进行滤波。
数量关系 电流连续
负载电压平均值:
ton ton Uo = E= E = αE ton + toff T
ton——V通的时间 toff——V断的时间 a--导通占空比 导通占空比 通的时间 断的时间
负载电流平均值:
Uo − EM Io = R
电流断续,Uo被抬高,一般不希望出现。 ,
斩波电路三种控制方式
0
a) 电路图
I1 升压斩波电路及工组波形
b) 波形
数量关系 通态的时间为t 此阶段L上积蓄的能量为 设V通态的时间为 on,此阶段 上积蓄的能量为 EI1ton 通态的时间为 断态的时间为t 则此期间电感L释放能量为 设V断态的时间为 off,则此期间电感 释放能量为 断态的时间为 稳态时,一个周期 中 积蓄能量与释放能量相等 积蓄能量与释放能量相等: 稳态时,一个周期T中L积蓄能量与释放能量相等:
直流斩波电路的性能研究(六种典型线路)
• 设V处于断态的时间为 ,则在此期间电感L1释放 的能量为(UO-Ui)I1ton。当电路工作于稳态时, 一个周期T内电感L1积蓄的能量与释放的能量相 等,即: • UiI1ton=(UO-Ui)I1toff
• 上式中T/toff ≥1,输出电压高于电源电压,故称该 电路为升压斩波电路。
• 升压斩波电路的原理图及波形
注意
• (1)整流电路输入交流电源得到直流电源,要注意 输出的直流电源不能超过50V。直流侧有1A熔丝 保护。负载电流不要超过0.5A。 • (2)在主电路通电后,不能用示波器的两个探头同 时观测主电路元器件之间的波形,否则会造成短 路。 • (3)用示波器两个探头同时观测两处波形时,要注 意共地问题,否则会造成短路,在观测高压时应 衰减10倍,在做直流斩波器测试实验时,最好使 用一个探头。
1.4
1.6
1.8
2.0
2.2
2.4
2.5
八、实验报告
• (1)分析图中产生PWM信号的工作原理。 • (2)整理各组实验数据绘制各直流斩波电路 的Ui/UO- α 曲线,并作比较与分析。 • (3)讨论、分析实验中出现的各种现象。Fra bibliotek1.4
1.6
1.8
2.0
2.2
2.4
2.5
(3)用示波器分别观测A、B和PWM信号的波形 、频率和幅值,并填入下表。
观测点 波形类型 幅值A(V) 频率f(Hz) A(11脚) B(14脚) PWM ( 脚 ( 脚
(4)用双踪示波器的两个探头同时观测11脚和 14脚的输出波形,调节PWM脉宽调节电位 器,观测两路输出的PWM信号,测出两路 信号的相位差,并测出两路PWM信号之间 最小的“死区”时间。
直流斩波电路工作原理分析
直流斩波电路工作原理分析直流斩波电路的主要是实现直流电能的变换,对直流电的电压或电流进行控制。
按照输入电压与输出电压之间的关系,可以分为六种不同的形式,分别为降压斩波电路(BUCK )、升压斩波电路(BOOST )、升降压斩波电路(BUCK-BOOST )、Cuk 斩波电路、Sepic 斩波电路和Zeta 斩波电路。
下面分别对它们的工作原理进行简单的介绍。
一.降压斩波电路降压斩波(BUCK )电路的拓扑结构图如1-1所示。
U io图1-1 BUCK 电路拓扑结构分析在开关器件导通和关断时,电路的动态工作过程。
图1-1中实线部分表示开关器件导通时的回路,虚线部分表示器件关断时的续流回路。
在续流过程中,根据电感中的电流的不同分为,电感电流连续(CCM )和断续(DCM )两种情况。
由此可以得到降压斩波电路的动态工作过程如图1-2所示。
U ioa) S 导通时等效电路oCob) S 关断,i L ≠0时等效电路c) S 关断,i L =0时等效电路图1-2 BUCK 电路动态工作过程在工作过程中,驱动信号以及电感上的电压和电流波形如图1-2所示。
u Su Li Li La) 电感电流连续时波形b) 电感电流断续时波形图1-3 BUCK 电路的工作原理图由电感器件的伏秒平衡原理,可以得出在电流连续和断续两种情况下,BUCK 斩波电路的输出电压。
a) 电感电流连续时,有()(1)0i o o U U D U D ---= (1-1)化简可得o i U DU = (1-2)b) 电感电流断续时,有1()0i o o U U D U --∆= (1-3)化简可得1o i DU U D =+∆ (1-4) 由此可以看出,电感电流断续情况下的输出电压更高。
二.升压斩波电路升压斩波(BOOST )电路的拓扑结构如图2-1所示。
U iLo图2-1 BOOST 电路拓扑结构在图2-1中,实线部分表示开关器件导通时的回路,虚线部分表示开关器件关断时的回路,由此可以得到升压斩波电路的动态工作过程如图2-2所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制电路及脉宽调节电位器
• PWM发生器由SG3525构成,具体原理见实 验部分。调节“PWM脉宽调节电位器”改 变输出的触发信号脉宽。
一、实验目的
• (1)熟悉直流斩波电路的工作原理。 • (2)熟悉各种直流斩波电路的组成及其工作 特点。 • (3)了解PWM控制与驱动电路的原理及其常 用的集成芯片。
• 输出电压为:
• 若改变导通比α,则输出电压可以比电源电 压高,也可以比电源电压低。当0<α<1/2 时为降压,当1/2<α<1时为升压。
• Cuk斩波电路原理图
⑤Sepic斩波电路
• Sepic斩波电路的原理图如图所示。电路的 基本工作原理是:可控开关V处于通态时, Ui—L1—V回路和C2—V—L2回路同时导电,L1 和L2贮能。当V处于断态时,Ui—L1—C2— D—R回路及L2—D—R回路同时导电,此阶段 Ui和L1既向R供电,同时也向C2充电,C2贮存 的能量在V处于通态时向L2转移。
• 升压斩波电路(Boost Chopper)的原理图及工作 波形如图所示。电路也使用一个全控型器件V。 由图中V的栅极电压波形 可知,当V处于通态时 ,电源 向电感L1充电,充电电流基本恒定为I1, 同时电容C1上的电压向负载供电,因C1值很大, 基本保持输出电压 为恒值。设V处于通态的时 间为 ,此阶段电感L1上积蓄的能量为UiI1ton 。当 V处于断态时 和L1共同向电容C1 充电,并向负 载提供能量。
• 若改变导通比α,则输出电压可以比电源电 压高,也可以比电源电压低。当0<α<1/2 时为降压,当1/2<α<1时为升压。
四、实验内容
• (1)控制与驱动电路的测试。 • (2)六种直流斩波器的测试。
六、思考题
• (1)直流斩波电路的工作原理是什么?有哪些 结构形式和主要元器件? • (2)为什么在主电路工作时不能用示波器的 双踪探头同时对两处波形进行观测?
• 输出电压为:
• 若改变导通比α,则输出电压可以比电源电 压高,也可以比电源电压低。当0<α<1/2 时为降压,当1/2<α<1时为升压。
Sepic斩波电路原理图
⑥Zeta斩波电路
• Zeta斩波电路的原理如图所示。电路的基本 工作原理是:当可控开关V处于通态时,电 源Ui经开关V向电感L1贮能。当V处于断态后 ,L1经D与C2构成振荡回路,其贮存的能量 转至C2,至振荡回路电流过零,L1上的能 量全部转移至C2上之后,D关断,C2经L2向 负载R供电。输出电压为:
• 1、主电路 • ①降压斩波电路(Buck Chopper) • 降压斩波电路(Buck Chopper)的原理图及 工作波形如图所示。图中V为全控型器件, 选用IGBT。D为续流二极管。由图中V的栅 极电压波形 可知,当V处于通态时,电源 向负载供电, 。
• 当V处于断态时,负载电流经二极管D续流 ,电压 近似为零,至一个周期T结束,再 驱动V导通,重复上一周期的过程。负载电 压的平均值为:
2、直流斩波器的测试(使用一个探头观测波 形) • 斩波电路的输入直流电压Ui由三相调压器输 出的单相交流电经DK07挂箱上的单相桥式 整流及电容滤波后得到。接通交流电源, 观测Ui波形,记录其平均值(注:本装置限 定直流输出最大值为50V,输入交流电压的 50V 大小由调压器调节输出)。
• 按下列实验步骤依次对六种典型的直流斩波 电路进行测试。 • (1)切断电源,根据DK07上的主电路图, 利用面板上的元器件连接好相应的斩波实验 线路,并接上电阻负载,负载电流最大值限 制在200mA以内。将控制与驱动电路的输出 “V-G”、“V-E”分别接至V的G和E端。 • (2)检查接线正确,尤其是电解电容的极性 是否接反后,接通主电路和控制电路的电源 。
• 设V处于断态的时间为 ,则在此期间电感L1释放 的能量为(UO-Ui)I1ton。当电路工作于稳态时, 一个周期T内电感L1积蓄的能量与释放的能量相 等,即: • UiI1ton=(UO-Ui)I1toff
• 上式中T/toff ≥1,输出电压高于电源电压,故称该 电路为升压斩波电路。
• 升压斩波电路的原理图及波形
七、实验方法
• 1、控制与驱动电路的测试 • (1)启动实验装置电源,开启DK07控制电路 电源开关。 • (2)调节PWM脉宽调节电位器改变Ur,用双 踪示波器分别观测SG3525的第11脚与第14 脚的波形,观测输出PWM信号的变化情况, 并填入下表。
ห้องสมุดไป่ตู้
Ur(V) ( ) 11(A)占空比(%) 14(B)占空比(%) PWM占空比(%)
直流斩波电路的性能研究 (六种典型线路)
直流斩波实验
• 通过利用主电路元器件的自由组合,可构 成降压斩波电路(Buck Chopper)、升压斩波 电路(Boost Chopper)、升降压斩波电路 (Boost-Buck Chopper)、Cuk斩波电路、Sepic 斩波电路、Zeta斩波电路六种电路实验。面 板图见图1-53。
1.4
1.6
1.8
2.0
2.2
2.4
2.5
(3)用示波器分别观测A、B和PWM信号的波形 、频率和幅值,并填入下表。
观测点 波形类型 幅值A(V) 频率f(Hz) A(11脚) B(14脚) PWM ( 脚 ( 脚
(4)用双踪示波器的两个探头同时观测11脚和 14脚的输出波形,调节PWM脉宽调节电位 器,观测两路输出的PWM信号,测出两路 信号的相位差,并测出两路PWM信号之间 最小的“死区”时间。
• 式中 为V处于通态的时间, 为V处于断态的时间 ,T为开关周期,α为导通占空比, • 简称占空比或导通比( )。由此可 • 知,输出到负载的电压平均值 最大为 , • 若减小占空比 α,则 随之减小,由于输出电压 低于输入电压,故称该电路为降压斩波电路。
• 降压斩波电路的原理图及波形
②升压斩波电路(Boost Chopper)
③升降压斩波电路 (Boost-Buck Chopper)
• 升降压斩波电路(Boost-Buck Chopper)的 原理图及工作波形如图所示。电路的基本 工作原理是:当可控开关V处于通态时,电 源Ui经V向电感L1供电使其贮存能量,同时 C1维持输出电压UO基本恒定并向负载供电 。此后,V关断,电感L1中贮存的能量向负 载释放。可见,负载电压为上负下正,与 电源电压极性相反。输出电压为:
二、实验所需挂件及附件
序号 1 型 号 备 注 该控制屏包含“三相电源 输出”,“励磁电源”等 几个模块。 该挂件包含触发电路及主 电路两个部分。
TKDD-1 电源控制屏
2
DK07 直流斩波电路
3 4 5 6
DK11 单相调压与可调负载 DQ27 三相可调电阻 双踪示波器 万用表 自备 自备
三、实验线路及原理
注意
• (1)整流电路输入交流电源得到直流电源,要注意 输出的直流电源不能超过50V。直流侧有1A熔丝 保护。负载电流不要超过0.5A。 • (2)在主电路通电后,不能用示波器的两个探头同 时观测主电路元器件之间的波形,否则会造成短 路。 • (3)用示波器两个探头同时观测两处波形时,要注 意共地问题,否则会造成短路,在观测高压时应 衰减10倍,在做直流斩波器测试实验时,最好使 用一个探头。
1.4
1.6
1.8
2.0
2.2
2.4
2.5
八、实验报告
• (1)分析图中产生PWM信号的工作原理。 • (2)整理各组实验数据绘制各直流斩波电路 的Ui/UO- α 曲线,并作比较与分析。 • (3)讨论、分析实验中出现的各种现象。
• 若改变导通比α,则输出电压可以比电源电 压高,也可以比电源电压低。当0<α<1/2 时为降压,当1/2<α<1时为升压。
• 升降压斩波电路的原理图及波形
④Cuk斩波电路
• Cuk斩波电路的原理图如图所示。电路的基 本工作原理是:当可控开关V处于通态时, Ui—L1—V回路和负载R—L2—C2—V回路分别 流过电流。当V处于断态时, Ui—L1—C2—D 回路和负载R—L2—D回路分别流过电流,输 出电压的极性与电源电压极性相反。
• (3)用示波器观测PWM信号的波形、UGE 的电压波形、UGE的电压波形及输出电压UO 和二极管两端电压UD的波形,注意各波形 间的相位关系。 • (4)调节PWM脉宽调节电位器改变Ur,观 测在不同占空比(α)时,记录Ui、UO和α 的数值于下表中,从而画出UO=f(α)的关 系曲线。
Ur(V) ( ) 占空比α(%) Ui(V) UO(V)