直流斩波电路课设资料

合集下载

升压直流斩波电路

升压直流斩波电路

〈〈电力电子技术》课程设计说明书升压直流斩波电路设计院、部:电气与信息工程学院学生姓名: _____________________指导教师:职称专业:电气工程及其白动化班级: ________________________完成时间: _____________________电力电子课程设计课题任务书电力电子电路的基本作用是进行电能的变换与控制,即将一定形式的输入点能变换成另外一种形式的电能输出,从而满足不同负载的要求。

电能的形式可以分为交流和直流两种类型,因此根据输入、输出的不同形式,可将电力电子电路分为四大类型,即AC-DC变换器、DC-AC变换器、DC-DC变换器、AC-AC变换器。

该设计将主要介绍其中的DC-DC变换器。

随着半导体工业的发展,DC/DC^换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。

目前直流变换电路的用途非常广泛,无论是从性能、功率还是节能性上,都处丁不断地发展之中。

其中升压直流斩波电路是输出电压高丁电源电压的一种斩波电路,主要运用丁直流电动机传动、单相功率因数校正以及交直流电源中。

该设计中,运用了单相桥式全控整流电路和升压斩波电路结合,从而实现升压直流斩波。

通过方案选定,电路构造以及电路调试,最终基本实现升压直流斩波电路功能。

由丁知识浅薄,该课程设计说明书里还存在不少批漏和错误,殷切希望老师和同学们的批评指正。

关键词:直流;斩波;升压1绪论 (1)1.1电力电子技术的介绍 (1)1.2电力电子技术的应用 (1)1.3直流直流变流技术 (2)1.4设计要求 (2)2 系统总体方案设计 (2)2.1总体电路设计框图 (2)2.2整流电路选择 (2)3主电路设计 (5)3.1整流电路 (5)3.1.1 整流电路图及工作波形 (5)3.1.2 整流电路工作原理 (6)3.2升压斩波电路 (6)3.2.1升压斩波电路及工作波形 (6)3.2.2升压斩波电路工作原理 (7)3.3元器件参数及选型 (7)3.3.1 晶闸管的选型 (7)3.3.2绝缘栅双极晶体管(IGBD选型 (9)4控制电路及驱动电路 (11)4.1控制电路 (11)4.1.1 SG3525控制芯片介绍 (11)4.1.2 SG3525外部引脚功能 (12)4.2驱动电路 (13)4.3控制和驱动电路原理图 (13)5保护电路设计 (15)5.1过电流保护 (15)5.2过电压保护 (15)6仿真电路图及结果 (16)6.1 MATLAB仿真软件 (16)6.2整流电路仿真及部分参数设置 (16)6.2.1 整流电路仿真模型 (16)6.2.2部分参数设置 (17)6.3升压斩波电路仿真模型 (19)6.4总电路仿真模型 (19)6.5仿真波形及波形分析 (20)7设计总结 (21)参考文献 (22)致谢 (23)附录 (24)附录A升压直流斩波总电路图 (24)附录B元件活单 (25)1绪论1.1电力电子技术的介绍电力电子技术是一门新兴的应用丁电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTQ IGBT等)对电能进行变换和控制的技术。

电力电子直流斩波电路实验

电力电子直流斩波电路实验

特性曲线
六、思考问题回答
1.二极管在电路里起到什么作用 · 提供续流通道;单向导通 2.在观察负载电阻R两端电压波形时应 注意什么? · 3.将测试数据与理论计算做比较 分析 误差产生的原因 ·
测, 图由 形于 反二 向极 。管 方 向 原 电 因 路 应 实 将 验 探 时
பைடு நூலகம்
则波 用 会形 示 造时 波 成, 器 短要 两 路注 探 。意 头 共同 地时 问观 题测 ,两 否处
分别用示波器测量PWM脉宽调制信号 的VT-G端及负载电阻R两端的波形 通过改 变PWM脉宽调制信号的占空比 按下面表 格来进行波形及数据的测试
数据记录
20
负载 R 两端电压U o ( V )
35
50
65
80
此表格可用于所有直流斩波电路的测试
五、实验报告要求
1.记录降压斩波电路buck chopper的 输入及输出波形 2.分别画出不同斩波电路的Uo =f (������)
实验一 直流斩波电路实验
一、实验目的
熟悉六种斩波电路(buck chopper 、 boost chopper 、buck-boost chopper、 cuk chopper、 sepic chopper、 zeta chopper)的工作原理, 掌握这六种斩波电路的工作状态及波形 情况。
二、实验设备和仪器
1 SMCL-1电力电子教学实验装置 2 NMCL-22组件 3 数字双踪记忆示波器 4 数字万用表
三、实验原理接线图
直流斩波电路实验线路
四、实验内容及步骤
按照实验面板上各种斩波器的电路 图,取用相应的元件,搭成相应的斩波 电路即可 (可带电操作) 直流电源取上面的5v 电阻 电容 电感任选 PWM脉宽调制信号的输出VT-G端 与斩波电路中的 VT管的控制端G连 接 地线与VT管的E端连接 通过旋转 电位计来调节占空比 用示波器测出 脉宽调制信号的幅值 频率及占空比 的调节范围

直流斩波电路设计

直流斩波电路设计

第一章电路总体思路,基本结构和原理框图1.1 电路总体思路直流斩波电路功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流—直流变换器。

在设计直流斩波电路过程中,日常所用的电源一般都是220V 交流电,在设计中首先通过变压器降压,然后用整流电路将交流电转变为直流电,经过绿波电路滤掉高次谐波,从而获得直流斩波电路的输入电压。

控制和驱动电路,采用直接产生PWM的专用芯片SG3525,该芯片的外围电路只需简单的连接几个电阻电容,就能产生特定频率的PWM波,通过改变IN+输入电阻就能改变输出PWM波的占空比,故在IN+端接个可调电阻就能实现PWM控制。

为了减少不同电源之间的相互干扰,SG3525输出的PWM经过光电耦合之后才送至驱动电路,通过驱动电路对信号进行放大,放大后的电压可以直接驱动IGBT。

此电路具有信号稳定,安全可靠等优点。

因此他适用于中小容量的PWM斩波电路。

过压和过流保护电路,均采用反馈控制,将过流过压信号反馈到芯片SG3525的输入,从而起到调节保护作用。

1.2 基本结构直流斩波电路一般主要可分为主电路模块,控制电路模块和驱动电路模块三部分组成。

主电路模块,主要由电源变压器、整流电路、滤波电路和直流斩波电路组成,其中主要由全控器件IGBT的开通与关断的时间占空比来决定输出电压u。

的大小。

控制电路模块,可用直接产生PWM的专用芯片SG3525来控制IGBT的开通与关断。

驱动电路模块,驱动电路把控制信号转换为加在IGBT控制端和公共端之间,用来驱动IGBT的开通与关断。

1.3 原理框图电力电子器件在实际应用中,一般是由控制电路,驱动电路,保护电路和以电力电子器件为核心的主电路组成一个系统。

由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断。

来完成整个系统的功能。

因此,一个完整的降压斩波电路也应包括主电路,控制电路,驱动电路和保护电路这些环节。

直流降压斩波电路课程设计

直流降压斩波电路课程设计

直流降压斩波电路课程设计引言直流降压斩波电路是电子电路领域中一种常见的电路,它主要用于将高压直流电源降压为所需的低压直流电源,并通过斩波电路消除输出信号的脉动。

本文将详细介绍直流降压斩波电路的设计原理、实施步骤和实际应用。

设计原理直流降压斩波电路的设计原理基于基础的电路理论知识。

在设计中,需要考虑以下几个方面的内容:输入电压和输出电压的关系根据设计的需求,需要确定输入电压和输出电压的关系。

通常情况下,输出电压要低于输入电压。

这个关系对于电路的元件选择和参数确定非常重要。

电路拓扑结构根据输入输出电压的关系,可以选择不同的电路拓扑结构。

常见的直流降压斩波电路拓扑有BUCK和BOOST两种。

BUCK电路用于输出电压小于输入电压的情况,BOOST电路用于输出电压大于输入电压的情况。

斩波电路设计斩波电路的设计是直流降压斩波电路设计中的重要部分。

斩波电路的作用是消除输出信号的脉动,使输出电压更加稳定。

常见的斩波电路包括电容滤波、电感滤波等。

根据设计需求,选择合适的斩波电路并计算电路参数。

控制电路设计直流降压斩波电路通常需要控制电路来调整输出电压。

控制电路可以通过开关元件的开关频率和工作占空比来实现电压调节。

控制电路的设计需要考虑开关元件的特性和相关电路参数。

实施步骤针对以上设计原理,可以按照以下步骤进行直流降压斩波电路的设计:1.确定输入输出电压的关系,并计算所需降压比例。

2.根据电压关系选择合适的电路拓扑结构,BUCK或BOOST。

3.根据拓扑结构选择合适的元件并计算参数,包括开关元件、电容和电感等。

4.设计斩波电路,选择合适的斩波电路拓扑和计算电路参数。

5.设计控制电路,选择合适的控制策略和计算相关参数。

6.综合考虑各个部分的设计结果,进行仿真验证。

7.制作电路原型并进行实际测试,调整和优化电路参数。

8.编写电路设计报告,包括设计原理、步骤、仿真结果和实际测试结果等。

实际应用直流降压斩波电路在实际应用中有广泛的应用。

直流降压斩波电路课程设计

直流降压斩波电路课程设计

直流降压斩波电路课程设计一、设计背景直流降压斩波电路是电子工程中常见的一种电路,其作用是将高压的直流电源转换为低压的直流电源,以满足不同设备对电压的需求。

本次课程设计旨在通过设计一个直流降压斩波电路来加深学生对该电路原理和应用的理解,并提高学生的实践能力。

二、设计要求1. 输入电压:24V DC2. 输出电压:12V DC3. 输出电流:最大2A4. 效率:不低于80%5. 稳定性:输出稳定性好,纹波小于100mV三、设计原理1. 直流降压原理直流降压是指通过变换器将输入端直流高压转换成输出端所需的较低直流电源。

通常情况下,使用变换器将输入端高频交变成矩形波进行输出,再通过滤波器进行平滑处理,从而得到稳定的直流输出。

2. 斩波原理斩波是指将交流信号转化为脉冲信号输出。

在斩波过程中,通过改变占空比(即高电平时间与周期时间之比)可以调节输出脉冲宽度,从而实现对输出电压的调节。

3. 直流降压斩波电路原理直流降压斩波电路是将直流高压输入信号通过变换器转化为高频交流信号,再通过斩波电路将其转化为脉冲信号输出。

最后通过滤波器对输出信号进行平滑处理,得到稳定的直流低压输出。

四、设计方案1. 变换器选择变换器是直流降压斩波电路中最关键的部分之一。

在本次设计中,我们选择使用UC3845作为变换器控制芯片,并搭配IRF540N MOSFET管进行驱动。

同时,我们还需要根据输入和输出电压的不同来选择合适的变压器。

2. 斩波电路设计在本次设计中,我们选择使用NE555作为斩波芯片,并根据输入和输出电压的不同来计算出合适的占空比。

同时,在斩波过程中还需要注意控制脉冲宽度以保证输出稳定性。

3. 滤波器设计滤波器是直流降压斩波电路中用于平滑处理输出信号的部分。

在本次设计中,我们选择使用L-C滤波器进行滤波处理,以保证输出电压的稳定性和纹波小于100mV。

4. 控制电路设计为了保证直流降压斩波电路的稳定性和安全性,我们还需要设计一个控制电路来监测输入和输出电压,并对变换器进行合适的控制。

电力电子课程设计直流斩波电路优秀设计

电力电子课程设计直流斩波电路优秀设计

课程设计汇报课题名称:直流斩波电路旳设计电力电子技术课程设计任务书系:电气与信息工程系年级:专业:自动化直流斩波电路旳功能是将直流电变为另一种固定旳或可调旳直流电,也称为直流-直流变换器(DC/DC Converter),直流斩波电路一般是指直接将直流变成直流旳状况,不包括直流-交流-直流旳状况;直流斩波电路旳种类诸多:降压斩波电路,升压斩波电路,这两种是最基本电路。

此外尚有升降压斩波电路,Cuk斩波电路,Sepic斩波电路,Zeta斩波电路。

斩波器旳工作方式有:脉宽调制方式(Ts不变,变化ton)和频率调制方式(ton不变,变化Ts)。

本设计是基于SG3525芯片为关键控制旳脉宽调制方式旳升压斩波电路和降压斩波电路,设计分为Multisim仿真和Protel两大部分构成。

Multisim重要是仿真分析,借助其强大旳仿真功能可以很直观旳看到PWM控制输出电压旳曲线图,通过设置参数分析输出与电路参数和控制量旳关系,运用软件自带旳电表和示波器能直观旳分析多种输出成果。

第二部分是硬件电路设计,它通过Protel等软件设计完毕。

关键字:直流斩波;PWM;SG35251 直流斩波主电路旳设计 (1)1.1 直流斩波电路原理 (1)直流降压斩波电路 (1)直流升压斩波电路 ........................................... 错误!未定义书签。

1.2 主电路旳设计.............................................................. 错误!未定义书签。

直流降压斩波电路 ........................................... 错误!未定义书签。

直流降压斩波电路参数计数 ........................... 错误!未定义书签。

直流升压斩波电路 ........................................... 错误!未定义书签。

第十一讲直流斩波电路分析

第十一讲直流斩波电路分析

E
V
iG
C
uo R
时的电压向负载供电,因值很大, 输出电压为恒值,记为。设通的
iG
a)
时间为,此E阶I1t段on 上积蓄的能量为 O
t
io
断时,和共同向充电并向负载供电。
I1
设断的时 放能量为
间为,则
此U期oE 间I1电tof感f 释
O
t b)
稳态时,一个周期中积蓄能量与释
图 升压斩波电路及其 工作波形
当电流连续时,有: I10i2(t2) I20i1(t1)
()
()
() () ()
降压斩波电路
即进入通态时的电流初值就是在断态阶段结束时的电流值,反过 来,进入断态时的电流初值就是在通态阶段结束时的电流值。 由式()、()、()、()得出:
I10 e eT t1// 1 1E RE R Mee 1 1m E R

降压斩波电路

升压斩波电路

升降压斩波电路和斩波电路

斩波电路和斩波电路
返回
降压斩波电路
V
L
io
R
E
iG
VD uo
+
斩波电路的典型用途之一是拖动直
M
EM
-
流电动机,也可带蓄电池负载,两
a)
种情况下负载中均会出现反电动势,
iG
ton
t off
O
T
如图中所示
t
io
i1
i2
工作原理
I10
I20
O
t1
在整个周期中,负载一直在消耗能量,消耗的能量

Ro 2 T IE M Io T
Eoto In Ro 2T IEM IoT ()

直流斩波电路实验

直流斩波电路实验

实验四直流斩波电路实验一.实验目的1.加深理解斩波器电路的工作原理2.掌握斩波器的主电路,触发电路的调试步骤和方法。

3.熟悉斩波器各点的波形。

二.实验内容1.触发电路调试2.斩波器接电阻性负载。

3.斩波器接电阻—电感性负载。

三.实验线路与原理本实验采用脉宽可调逆阻型斩波器。

其中VT1为主晶闸管,当它导通后,电源电压就加在负载上。

VT2为辅助晶闸管,由它控制输出电压的脉宽。

C和L1为振荡电路,它们与VT2、VD1、L2组成VT1的换流关断电路。

斩波器主电路如图4-14所示。

接通电源时,C经VD1,负载充电至+Udo,VT1导通,电源加到负载上,过一段时间后VT2导通,C和L1产生振荡,C上电压由+Vdo变为-Vdo,C经VD1和VT1反向放电,使VT1、VT2关断。

从以上斩波器工作过程可知,控制VT2脉冲出现的时刻即可调节输出电压的脉宽,从而达到调压的目的,VT1、VT2的脉冲间隔由触发电路决定。

四.实验设备及仪器1.MCL系列教学实验台主控制屏。

2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。

3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)。

4.MCL—06组件或MCL—375.MEL—03三相可调电阻器(或自配滑线变阻器450 ,1A)6.双踪示波器7.万用表五.注意事项1.斩波电路的直流电源由三相不控整流桥提供,整流桥的极性为下正上负,接至斩波电路时,极性不可接错。

2.实验时,每次合上主电源前,须把调压器退至零位,再缓慢提高电压。

3.实验时,若负载电流过大,容易造成逆变失败,所以调节负载电阻,电感时,需注意电流不可超过0.5A。

4.若逆变失败,需关断主电源,把调压器退至零位,再合上主电源。

5.实验时,先把MCL-18的给定调到0V,再根据需要调节。

六.实验方法1.触发电路调试打开MCL—06面板右下角的电源开关(或接人MCL—37低压电源)。

调节电位器RP,观察“2”端的锯齿波波形,锯齿波频率为100Hz左右。

直流斩波电路设计

直流斩波电路设计

一、设计项目与要求1、输入直流电压U i=60V,R=8Ω;2、输出电压范围为0-100V,试选用合适斩波电路;3、计算占空比α=23%和α=59%时,负载两端输出电压和电流;4、画出α=23%和α=59%时斩波电路的电压电流波形分析图;5、IGBT的工作特性分析。

二、电路原理图设计2.1主电路的设计斩波电路:将直流电变为另一固定电压或可调电压的直流电。

也称为直流-直流变换器(DC/DCConverter)。

一般指直接将直流电变为另一直流电,不包括直流-交流-直流。

升降压斩波斩波电路结构Boost型升降压斩波变换器的特点是输出电压可以低于电源电压,也可以高于电源电压,是将降压斩波和升压斩波电路结合的一种直接变换电路。

主要由功率开关、二极管、储能电感、输出滤波电容等组成。

本次课题是在输入直流电压为60V时,想要输出电压的范围为0-100V,故而要选择的斩波电路应为升降压斩波斩波电路。

图1升降压斩波电路原理图2.2触发电路设计斩波器触发电路由三部分组成,图2为斩波器触发电路的原理图。

第一部分为由幅值比较电路U1和积分电路U2组成一个频率和幅值均可调的锯齿波发生器。

电位器RP1用来调节锯齿波的上下位置,电位器RP2用来调节锯齿波的频率,频率从100到700Hz可调。

由于晶闸管的开关速度及LC振荡频率所限,所以在斩波实验中我们一般选用200Hz这一范围。

第二部分是比较器部分。

比较器U3输入的一路是锯齿波信号,另一路是给定的电平信号,输出为前沿固定后沿可调的方波信号。

改变输入的电平信号的值,则相应改变了输出方波的占空比。

第三部分是比较器产生的方波送到4098双单稳电路U4,单稳电路则在方波的前沿和后沿分别产生两个脉冲,如图4所示,其后沿脉冲随方波的宽度变化而移动,前沿脉冲相位则保持不变,输出的脉冲经三极管放大通过脉冲变压器输出。

将上述两脉冲分别送至主晶闸管及辅助晶闸管,其中方波前沿触发脉冲G1、K1接主晶闸管VT1,而后沿触发脉冲G2、K2接辅助晶闸管VT2。

直流斩波电路课设资料

直流斩波电路课设资料

电力电子技术课程设计说明书直流降压斩波电路的设计院、部:__________________________学生姓名:________________________指导教师:_________ 职称__________专业:___________________________班级:___________________________完成时间:________________________直流降压斩波电路又称为Buck变换器,它对输入电压进行降压变换。

通过控制电路的占空比即通过IGBT来控制降压斩波电路的输出电压。

直流斩波电路作为将直流电变成另一种固定电压或可调电压的 DC-DC变换器,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用•随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。

直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。

全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。

首先分析了直流斩波主电路(即 Buck变换器)的工作原理,计算了电路的电压电流和IGBT承受的正反向电压,按照留有裕量的选型原则,选择了 IRG4PC40U型号的IGBT,并对其参数进行了介绍。

利用PWM控制芯片SG3525 作为触发电路的核心部件,最后利用 MATLAB建立了仿真模型,设置了模型的参数,并进行了仿真。

仿真结果证明了设计的正确性。

关键字:设计;仿真;直流降压斩波;Buck1 绪论 (1)1.1设计的背景与意义 (1)1.2直流斩波发展现状 (1)1.3本设计主要内容 (2)2直流斩波主电路的设计 (3)2.1设计原始参数 (3)2.2直流斩波电路原理 (3)2.3主电路的设计 (4)2.3.1直流降压斩波电路 (4)2.3.2直流降压斩波电路参数计算 (4)2.3.3主电路参数分析 (5)3控制电路设计 (7)3.1PWM控制芯片SG3525简介及特点 (7)3.2SG3525内部结构及工作特性 (7)3.3触发电路 (9)4仿真调试 (10)4.1仿真软件的介绍 (10)4.2仿真模型建立 (10)4.3仿真结果分析 (12)结束语 (15)参考文献 (16)致谢 (17)附录 (18)附录A:元件清单 (18)附录B:主电路CAD图 (19)1绪论1.1设计的背景与意义直流斩波主要应用于低压大电流领域,其目的是为了解决续流管的导通损耗问题。

(完整word版)直流升压斩波电路课程设计

(完整word版)直流升压斩波电路课程设计

辽宁工业大学电力电子技术课程设计(论文)题目:升压直流斩波电路实验装置院(系):电气工程学院专业班级:学号:学生姓名:指导教师:起止时间:2013-12-30至2014—1-10院(系):电气工程学院教研室:电气注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘要直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC变换器,包括直接直流电变流电路和间接直流电变流电路。

直接直流电变流电路也称斩波电路,它的功能是将直流电变为另一固定电压或可调电压的直流电,一般是指直接将直流电变为另一直流电,这种情况下输入与输出之间不隔离。

间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采用变压器实现输入输出间的隔离,因此也称带隔离的直流直流变流电路或直交直电路。

直流斩波电路的种类有很多,包括六种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta 斩波电路,利用不同的斩波电路的组合可以构成符合斩波电路,如电流可逆斩波电路,桥式可逆斩波电路等.利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路.关键字:直流斩波;升压斩波;变压器目录第1章绪论 (1)第2章直流升压斩波电路的设计思想 (3)2.1直流升压斩波电路原理 (3)2.2参数计算 (4)第3章直流升压斩波电路驱动电路设计 (5)第4章直流升压斩波电路保护电路设计 (6)4。

1过电流保护电路 (6)4.2过电压保护电路 (6)第5章直流升压斩波电路总电路的设计 (8)第6章直流升压斩波电路仿真 (9)6.1仿真模型的选择 (9)6。

2仿真结果及分析 (9)第7章设计总结 (12)参考文献 (13)附录:元件清单 (15)第1章绪论直流升压电路作为将直流电变成另一种固定电压或可调电压的DC-DC 变换器,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。

降压直流斩波电路课程设计

降压直流斩波电路课程设计

降压直流斩波电路课程设计
降压直流斩波电路是一种基本的电子电路,它可以将高电压的直流电源降压为合适的电压,以满足电子设备的需求。

以下是一个简单的降压直流斩波电路的课程设计:
1.电路原理:降压直流斩波电路主要由变压器、桥式整流电路、
电容和负载组成。

变压器将高电压的直流电源降压,桥式整流电路将交流输出转换为直流输出,电容平滑输出电压,负载则是电路的输出部分。

2.设计要求:设计一个输出电压为12V,输出电流为1A的降压直
流斩波电路。

3.设计步骤:
(1)计算变压器的变比。

因为输出电压为12V,变压器的变比为Vin/Vout=36/12=3。

(2)选择变压器。

根据变比选择合适的变压器。

(3)设计桥式整流电路。

选择合适的整流二极管和滤波电容。

(4)计算电容容值。

根据输出电流和输出电压计算电容的容值。

(5)确定负载。

根据输出电流和输出电压确定负载的电阻值。

(6)进行电路仿真。

使用电路仿真软件进行电路仿真,验证电路的性能是否符合设计要求。

4.实验步骤:
(1)搭建电路。

根据设计要求,搭建电路。

(2)连接电源。

将电源连接到电路上,调整电源输出电压。

(3)测量输出电压和输出电流。

使用万用表测量输出电压和输出电流,检查是否符合设计要求。

(4)观察电路波形。

使用示波器观察电路各部分的电压和电流波形,检查是否正常。

5.实验结果:
经过实验测量和仿真验证,输出电压为12V,输出电流为1A,符合设计要求。

第六章直流斩波变换电路-精品文档

第六章直流斩波变换电路-精品文档

平均负 载电流
在给定T、UO、L和k等参数的条件下,如果平均输 出电流或平均电感电流小于由上式给出的ILB值,那 么iL将不再连续。
6.1 降压式斩波变换电路

三、电流不连续导通时的工作模式 电流不连续导通的工作模式分为输入电压Ud不变和输出 电压UO不变两种情况,这里主要介绍Ud不变的非连续导 通模式。
图6-5 临界连续时的电压、电流波形
6.1 降压式斩波变换电路
电流临界连续时 i0min=0

平均电感电流
1 1 I ( i i ) i LB 0 max 0 min 0 max 2 2
t kT on I ( U U ) ( U U ) I LB d O d O O B 2 L 2 L
图6-1 直流变换系统的结构图
第一节 降压式斩波变换电路
一、基本斩波器的工作原理
降压式斩波电路的输出电压平均值 低于输入直流电压Ud 。
最基本的降压式斩波电路如图 6-2 所示: Q 为斩波开关,是斩波电 路中的关键功率器件,它可用普 通型晶闸管、可关断晶闸管 GTO 或者其它自关断器件来实现。
Q交替通断,在负载上就可得到方 波电压。
第六章 直流斩波变换电路
直流斩波电路:将一个固定的直流电压变换成大小可变的直 流电压的电路。也称之为直流变换电路。 直流斩波技术的应用:被广泛应用于开关电源及直流电动机 驱动中,如不间断电源(UPS)、无轨电车、地铁列车、蓄电 池供电的机动车辆的无级变速及电动汽车的控制。从而使上 述控制获得加速平稳、快速响应的性能,并同时收到节约电 能的效果。 直流变换系统的结构如图6-1所示:
CC 22 2 8 C
2 2 T ( 1 k ) U f 0 1 C2 ( 1 k )( ) 其纹波电压相对值: U 8 LC 2 fs 0

直流升压斩波电路课程设计

直流升压斩波电路课程设计

直流升压斩波电路课程设计介绍如下:
直流升压斩波电路是一种能够将直流电源输出电压升高的电路,其基本结构包括斩波电路和升压电路。

在本次课程设计中,我们将设计一种直流升压斩波电路,并通过实验验证其性能。

设计需求:
1.输入电压:12V直流电源;
2.输出电压:至少24V;
3.斩波电路:使用快速二极管;
4.升压电路:使用升压变压器;
5.输出电压稳定性:±2%;
6.负载变化时输出电压稳定性:±5%。

设计步骤:
1.根据设计需求,选择适合的二极管和变压器。

在实验中我们选择快速二极管1N4148
以及3:1的升压变压器;
2.根据升压电路的特点,需要选择合适的升压交流电压。

一般情况下,将输入交流电
压直接升高三倍的场合比较适宜。

根据实验需要,我们选择将输入电压升高2倍,即使用3:1的升压变压器;
3.设计斩波电路。

斩波电路是直流升压斩波电路的关键。

为了避免斩波电路对输出电
压的影响,我们选择快速二极管1N4148作为斩波管,将其正向的承受电压设为12V 即可;
4.设计升压电路。

升压电路是直流升压斩波电路的另一个重要组成部分。

根据设计需
求,我们选择将输入电压升高2倍,因此需要选用3:1的升压变压器;
5.组装电路并测试。

将斩波电路和升压电路组装在一起,接入12V直流电源。

使用示
波器检测电路输出电压波形,并进行输出稳定性测试,最终得出该直流升压斩波电路的性能。

通过以上设计步骤,我们可以设计出一款简单的直流升压斩波电路,并通过实验验证其性能。

电力电子课程设计直流斩波电路优秀设计

电力电子课程设计直流斩波电路优秀设计

课程设计报告课题名称:直流斩波电路的设计电力电子技术课程设计任务书系:电气与信息工程系年级:专业:自动化摘要直流斩波电路的功能是将直流电变为另一种固定的或可调的直流电,也称为直流-直流变换器(DC/DC Converter),直流斩波电路一般是指直接将直流变成直流的情况,不包括直流-交流-直流的情况;直流斩波电路的种类很多:降压斩波电路,升压斩波电路,这两种是最基本电路。

另外还有升降压斩波电路,Cuk斩波电路,Sepic斩波电路,Zeta斩波电路。

斩波器的工作方式有:脉宽调制方式(Ts不变,改变ton)和频率调制方式(ton不变,改变Ts)。

本设计是基于SG3525芯片为核心控制的脉宽调制方式的升压斩波电路和降压斩波电路,设计分为Multisim仿真和Protel两大部分构成。

Multisim主要是仿真分析,借助其强大的仿真功能可以很直观的看到PWM控制输出电压的曲线图,通过设置参数分析输出与电路参数和控制量的关系,利用软件自带的电表和示波器能直观的分析各种输出结果。

第二部分是硬件电路设计,它通过Protel等软件设计完成。

SG3525;PWM:直流斩波;关键字目录1 直流斩波主电路的设计 (1)1.1直流斩波电路原理 (1)1.1.1 直流降压斩波电路 (1)直流升压斩波电路1.2.2 (2)主电路的设计1.2 (3)1.2.1 直流降压斩波电路 (3)直流降压斩波电路参数计数1.2.2 (3)直流升压斩波电路1.2.3 (4)直流升压斩波参数计算1.2.4 (4)2 触发电路设计 (5)2.1控制及驱动电路设计 (5)2.1.1 PWM控制芯片SG3525简介 (5)SG3525内部结构及工作特性......................................................... 5 2.1.2触发电路........................................................................................... 62.1.32.2 系统总电路图 (7)3 电路仿真 (8)3.1触发电路的仿真 (8)3.1.1 Multisim仿真电路的建立 (8)触发电路的仿真结果及分析........................................................... 3.1.293.2 直流降压斩波电路的仿真及分析 (10)3.2.1 Multisim仿真电路的建立 (10)3.2.2 直流降压斩波电路仿真结果及分析 (10)3.3 升压斩波电路仿真 (11)3.3.1 Multisim仿真电路的建立 (11)3.3.2 直流升压斩波电路仿真结果及分析 (12)4 总结与体会 (13)参考文献 (14)1 直流斩波主电路的设计1.1直流斩波电路原理1.1.1直流降压斩波电路直流降压变流器用于降低直流电源的电压,使负载侧电压低于电源电压,其1-1 所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子技术课程设计说明书直流降压斩波电路的设计院、部:学生姓名:指导教师:职称专业:班级:完成时间:摘要直流降压斩波电路又称为Buck变换器,它对输入电压进行降压变换。

通过控制电路的占空比即通过IGBT来控制降压斩波电路的输出电压。

直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC变换器 ,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。

直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。

全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。

首先分析了直流斩波主电路(即Buck变换器)的工作原理,计算了电路的电压电流和IGBT承受的正反向电压,按照留有裕量的选型原则,选择了IRG4PC40U型号的IGBT,并对其参数进行了介绍。

利用PWM控制芯片SG3525作为触发电路的核心部件,最后利用MATLAB建立了仿真模型,设置了模型的参数,并进行了仿真。

仿真结果证明了设计的正确性。

关键字:设计;仿真;直流降压斩波;Buck目录1 绪论 (1)1.1 设计的背景与意义 (1)1.2 直流斩波发展现状 (1)1.3 本设计主要内容 (2)2 直流斩波主电路的设计 (3)2.1 设计原始参数 (3)2.2 直流斩波电路原理 (3)2.3 主电路的设计 (4)2.3.1 直流降压斩波电路 (4)2.3.2 直流降压斩波电路参数计算 (4)2.3.3 主电路参数分析 (5)3 控制电路设计 (7)3.1 PWM控制芯片SG3525简介及特点 (7)3.2 SG3525内部结构及工作特性 (7)3.3 触发电路 (9)4 仿真调试 (10)4.1 仿真软件的介绍 (10)4.2 仿真模型建立 (10)4.3 仿真结果分析 (12)结束语 (15)参考文献 (16)致谢 (17)附录 (18)附录A:元件清单 (18)附录B:主电路CAD图 (19)1 绪论1.1 设计的背景与意义直流斩波主要应用于低压大电流领域,其目的是为了解决续流管的导通损耗问题。

采用一般的二极管续流,其导通电阻较大,应用在大电流场合时,损耗很大。

用导通电阻非常小的MOS管代替二极管,可以解决损耗问题,但同时对驱动电路提出了更高的要求。

此外,对Buck电路应用同步整流技术,用MOS管代替二极管后,电路从拓扑上整合了Buck和Boost两种变换器,为实现双向DC /DC变换提供了可能。

由于直流斩波具有调压、调磁等作用,因此它的应用领域之一是直流电机的调速。

直流电机的转速取决于电枢电压及磁场的大小,通过直流斩波器的调压作用,可以调节电机的电枢电压,达到调速的目的。

另外,通过直流斩波器的调磁作用,可以调节电机的磁场及励磁电流,也可以达到调速的目的。

直流电机调速在地铁、城市无轨电车、电动汽车等运输车辆上得到了广泛的应用。

直流斩波的另一应用领域是直流供电电源。

在各种应用场合中,不同用电设备所需要的直流供电电压的等级不同,采用直流斩波器可以将单一的、不稳定的直流输入电压变换成负载所需要的稳定的、不同电压等级的直流供电电压,因为直流斩波器工作在开关状态,因此这种类型的直流供电电源也称为开关电源。

开关电源在计算机、通信等各个领域也得到了广泛的应用。

1.2 直流斩波发展现状电力电子学(Power Electronics)是应用于电力技术领域中的电子学,在工程应用中称为电力电子技术(Power Electronic Technique)。

它是以利用大功率电子器件对电能进行变换和控制为研究内容,是一门与电子、控制和电力紧密相关的边缘学科。

它在电能的产生和使用之间建立了一种关系,在这种关系下,电能的产生、输送和使用都有很高的效率,而且各种不同的负载都能得到其所期望的最佳能量供应形式和最佳的控制。

因此,电力电子技术不仅大量用于传统电力系统中的交直流输变电装置,更广泛应用于工业生产各个领域中各种电机的交直流调速,材料加工领域中各种加热电源(如中高频感应加热电源、焊接电源等)的能量输出控制等。

随着技术的发展,以电压驱动的各种全控型高频大功率器件及其功率模块相继出现,这为制造各种小巧轻便、性能稳定的高效率和高品质高频开关电源提供了条件,这类电源目前广泛用于各种通讯设备、计算机乃至各类家电产品。

现代电力电子技术(Modern Power Electronic Technique)主要以该领域中那些后起的,目前最具发展前景的全控型电力电子器件如Power-MOSFET、IGBT、MCT、PIC等为背景,介绍它们的基本结构、工作原理、主要参数、应用特点,以及器件应用中的驱动、保护等基本问题,分别介绍在硬PWM开关和软PWM开关条件下的各类变换电路。

而直流斩波器(DC Chopper)是一种把恒定直流电压变换成为另一固定电压或可调电压的直流电压,从而满足负载所需的直流电压的变流装置。

也称为直接直流-直流变换器(DC/DC Converter)。

它通过周期性地快速通、断,把恒定直流电压斩成一系列的脉冲电压,而改变这一脉冲列的脉冲宽度或频率就可实现输出电压平均值的调节。

直流斩波器除可调节直流电压的大小外,还可以用来调节电阻的大小和磁场的大小。

直流传动、开关电源是斩波电路应用的两个重要领域,是电力电子领域的热点。

全控型器件选择绝缘栅双极晶体管(IGBT)综合了GTR 和电力MOSFET的优点,具有良好的特性。

目前已取代了原来GTR和一部分电力MOSFET的市场,应用领域迅速扩展,成为中小功率电力电子设备的主导器件。

前者是斩波电路应用的传统领域后者则是斩波电路应用的新领域。

直流斩波器的种类较多,包括6种基本斩波器:降压斩波器(Buck Chopper)、升压斩波器(Boost Chopper)、升降压斩波器(Boost-Buck Chopper)、Cuk斩波器、Sepic 斩波器和Zeta斩波器,前两种是最基本的类型。

1.3 本设计主要内容首先分析了直流斩波主电路(即Buck变换器)的工作原理,计算了电路的电压电流和IGBT承受的正反向电压,按照留有裕量的选型原则,选择了IRG4PC40U型号的IGBT,并对其参数进行了介绍。

利用PWM控制芯片SG3525作为触发电路的核心部件,最后利用MATLAB建立了仿真模型,设置了模型的参数,并进行了仿真。

仿真结果证明了设计的正确性。

本设计说明书主要分为4章,第1章绪论,主要介绍了直流斩波的应用及发展现状。

第2章直流斩波主电路的设计主要介绍了直流斩波电路原理及直流降压斩波电路的主电路设计、参数分析等。

第3章触发电路分析主要介绍了PWM控制芯片SG3525简介及其内部结构、工作特性,整体触发电路的相关设计。

第4章电路系统仿真及结论主要介绍了仿真软件MATLAB的Simulink组件,仿真电路及其仿真结果分析。

2 直流斩波主电路的设计2.1 设计原始数据设计一个电路,要求实现直流输入电压200V ,输出电压50V-100V 连续可调,输出最大电流40A ,实现DC-DC 变换,接阻感性负载。

2.2 直流斩波电路原理直流降压变流器用于降低直流电源的电压,使负载侧电压低于电源电压,其原理电路如图1所示。

在开关器件V 导通时,有电流经电感L 向负载供电,在V关断时,电感L 释放储能,维持负载电流,电流经负载和二极管VD 形成回路。

调节开关器件V 的通断周期,可以调整负载侧输出电流和电压的大小。

图1 直流降压斩波电路(1)式(1)中T 为V 开关周期,on t 为导通时间,α为占空比。

Uo 最大为E ,减小α ,Uo 随之减小,降压斩波电路。

也称为Buck 变换器(Buck Converter)负载电流平均值为:00U E I R-= (2) 电流断续时,Uo 平均值会被抬高,一般不希望出现。

根据对输出电压平均值进行调制的方式不同,斩波电路可有三种控制方式:(l )保持开关周期T 不变,调节开关导通时间on t ,称为PWM(Pulse WidthE E T t E t t t U α==+=on offon on oMadula-tion)或脉冲调宽型。

(2)保持开关导通时间on t 不变,改变开关周期T ,称为频率调制或调频型。

(3)on t 和T 都可调,使占空比改变,称为混合型。

2.3 主电路的设计2.3.1 直流降压斩波电路直流降压斩波主电路框图,如图2所示:图2 直流降压斩波主结构框图2.3.2 直流降压斩波电路参数计算(1)设计降压斩波电路中,直流降压变压器电源电压E =200V ,负载电阻R =10Ω,试选L =2mH,T =50μS ,on t =25μS 。

根据判断电流断续的条件:11-->e e m ραρ (3) 0.0002==R L τ,0.1==τρT ,0.05=αρ m >0.48711=--e e ραρ(4)所有所选L 符合要求,电流不断续。

(2)IGBT 的参数设定此次设计的电源电压为220V ,开关频率f =40kHz,当二极管VD 导通时V 的C 和E 两端承受的电压为电源电压,因此max 220CE U V =。

U GE(th)随温度的升高略有下降,温度每升高1°C ,其值下降5mV 左右。

在+25°C 时,U GE(th)的值一般为2-6V 。

参考电力电子技术课本可得:R E m e e R E R E e e I m T t )11()11(//min1---=---=ρσρττ (5)R E m ee R E R E e e I m T t )11()11(//max 1---=---=----ρσρττ (6) 式(5)、(6)中,τρ/T =;E E m m /=;αρττ==T T t t 11/。

若取R 为22Ω,则:10/220max ==R I A (3)续流二极管VD 的参数设定VD 所承受的最大反向电压是当IGBT 导通是的电源电压100V 。

所承受的最大电流是当IGBT 关断瞬间电感L 作用在VD 上的电流,此电流为22max =I A 。

(4)电感的参数设定由上面所选的电阻10Ω,根据欧姆定律:(7) 由式(7)可知,当O U =80V 时,o max =8I A;当O U =50V 时,min 5o I =A ;根据电感电流连续时电感量临界值条件:000(U )/(2U I )d d L U U =⨯-为了保证负载最小电流电路能够连续,取05I =A 来算,可得L =0.0625mH ,所以只要所取电感L >0.0625mH ,取L =1mH 。

相关文档
最新文档