人教版八年级上册数学第十二单元全等三角形测试卷(含答案)
人教版八年级数学上册第十二章《全等三角形》测试卷(含答案)
人教版八年级数学上册第十二章《全等三角形》测试卷(含答案)班级_______________姓名_________________分数________________一、选择题(每小题5分,共25分)1.如图,已知AC =BD ,AD =BC ,则△ABC ≌△BAD 的依据是( ) A .SAS B .ASA C .AAS D .SSS2.如图,AC 和BD 相交于点O, AO =CO ,BO =DO ,若∠A =25°,则∠C =( )A.25°B.35°C.45°D.55°3. 如图所示,∠ACB =∠DFE ,BC =EF ,如果要使得△ABC ≌△DEF ,则还须补充的一个条件 可以是( )A .∠ABC =∠DEFB .∠ACE =∠DFBC .BF =ECD .AB =DE4.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与 书上完全重合的三角形,那么这两个三角形完全重合的依据是( ) A.SSS B.SAS C. ASA D. AAS5.如图,已知在△ABC 中,∠A=90°,AB=AC ,CD 平分∠ACB ,DE ⊥BC 于E ,若BC=18cm , 则△DEB 的周长为( )A.16cmB.17cmC.18cmD.19cm二、填空题(每小题5分,共25分)6.已知:△ABC ≌△A ′B ′C ′,∠A=∠A ′,∠B=∠B ′,∠C=70°,AB=15cm ,则 ∠C ′=_________,A ′B ′=__________。
7.在△ABC 中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形___对.D O CBA 第1题 第4题ACBDO第2题ADBCEF第3题第5题8.如图,△ABC ≌△ADE ,若∠BAE =120°,∠BAD =42°,则∠D AC 的度数为 .9.如图,在Rt △ABC 中,∠C=90°, AD 是△ABC 的角平分线,AB=6cm, CD=2cm,则△ABD 的面积是____. 10. 如图,6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .三、解答题(每小题10分,共50分) 11.如图,AB ,CD 相交于点O ,OA =OC ,OB =OD.求证:∠A=∠C.12.如图,AC ⊥CB ,DB ⊥CB ,垂足分别为C,B,AB=DC.求证:∠ABD=∠ACD.第10题图CBAED第8题A BCD第9题第7题13.如图,点B,C,D,E在同一直线上,AB∥EF,∠A=∠F, BD=CE.求证:(1)△ABC ≌△FED;(2)AC∥DF14.如图,在△ABC中,D是BC的中点,DE⊥AB, DF⊥AC, 垂足分别为E,F,BE=CF. 求证:AD平分∠BAC.AE F15.如图,已知△ABC中,∠ABC=∠BAC, D是BC边上的一点。
八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)
八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列可以判定两个直角三角形全等的条件是( )A .斜边相等B .面积相等C .两对锐角对应相等D .两对直角边对应相等2.到三角形三边的距离相等的点是( )A .三角形三内角平分线的交点;B .三角形三边中线的交点;C .三角形三边高的交点;D .三角形三边中垂线的交点。
3.如图,ABC ≌△DEC ,B 、C 、D 在同一直线上,且CE=5,AC=7,则BD 长( )A .12B .7C .2D .144.如图,在ABC 中,AD 平分BAC ∠,DE AB ⊥于点E ,再添加一个条件仍然不能证明△ADC ≌△ADE 的是( )A .90ACB ∠=︒ B .∠ADC =∠ADE C .AC AE =D .DC DE =5.如图,在△ABC 中,∠A=90°,AB=AC=6,点D 是BC 中点,点E 、F 分别在AB 、AC 上,且BE=AF ,则四边形AEDF 的面积为( )A .6B .7C .D .96.如图,在ABC 中90A ∠=︒,AB =2,BC =5,BD 是ABC ∠的平分线,设ABD 和BDC 的面积分别是1S 和2S ,则S 1:S 2的值为( )A .5:2B .2:5C .12:D .1:5 7.如图,∠A=∠B ,AE=BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O ,若∠1=38°,则∠BDE 的度数为( )A .71°B .76°C .78°D .80°8.如图所示,点 ,A B 分别是 ,NOF MOF ∠∠ 平分线上的点, AB OF ⊥ 于点 E , BC ⊥MN 于点 C , AD ⊥MN 于点 D ,下列结论错误的是( )A .90AOB ∠= B .AD +BC =ABC .点 O 是 CD 的中点 D .图中与 ∠CBO 互余的角有两个二、填空题:(本题共5小题,每小题3分,共15分.)9.如图,在△ABC 和△DEF 中,已知CB =DF ,∠C =∠D ,要使△ABC ≌△EFD ,还需添加一个条件,那么这个条件可以是 .10.在Rt △ABC 中,∠ACB=90°,BC=2cm ,CD ⊥AB ,在AC 上取一点E ,使EC=BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF=5cm ,则AE= cm.11.如图,AC 平分∠DCB ,CB =CD ,DA 的延长线交BC 于点E ,若∠BAE =80°,则∠EAC 的度数为 .12.如图,有一个直角三角形ABC ∠C =90° , AC=10 , BC=5 ,一条线段PQ=AB ,P 、Q 两点分别在线段AC 和过点A 且垂直于AC 的射线AX 上运动,动点P 从C 点以2个单位秒的速度出发,问P 点运动 秒时(不包括点C ),才能使△ABC ≌△QPA .13.如图,已知ABC ∆的周长是 21 ,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且OD =4,ABC ∆ 面积是 .三、解答题:(本题共5题,共45分)14.如图,△ABO ≌△CDO ,点B 在CD 上,AO ∥CD ,∠BOD=30°,求∠A 的度数.15.如图,在ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD CE ⊥于D ,AD =2.5cm ,DE =1.7cm ,求BE 的长.16.如图,DE AC ⊥于点E ,BFAC ⊥于点F .AB =CD ,AE =CF ,BD 交AC 于点M ,求证:MB =MD .17.如图所示,已知 AD//BC , 点 E 为 CD 上一点,AE 、BE 分别平分∠DAB 、∠CBA ,BE 交 AD 的延长线于点 F.求证:(1)△ABE ≌△AEF ;(2) AD+BC=AB18.如图,在△ABC 中,∠B =60°,AD 平分∠BAC ,CE 平分∠BCA ,AD 、CE 交于点F ,CD =CG ,连结FG.(1)求证:FD =FG ;(2)线段FG 与FE 之间有怎样的数量关系,请说明理由;(3)若∠B ≠60°,其他条件不变,则(1)和(2)中的结论是否仍然成立?请直接写出判断结果,不必说明理由参考答案:1.D 2.A 3.A 4.D 5.D 6.B 7.A 8.D9.AC =ED 或∠A =∠FED 或∠ABC =∠F .10.311.50°12.2.513.4214.解:∵△ABO ≌△CDO∴OB=OD ,∠ABO=∠D∴∠OBD=∠D=12(180°﹣∠BOD )=12×(180°﹣30)=75° ∴∠ABC=180°﹣75°×2=30°∴∠A=∠ABC=30°.15.解:∵90ACB ∠=︒∴90BCE ACD ∠+∠=︒∵AD CE BE CE ⊥⊥,∴9090ADC CEB CAD ACD ∠=∠=︒∠+∠=︒, ∴CAD BCE ∠∠=在ACD 与CBE 中{∠ADC =∠CEB∠BCE =∠CAD AC =BC∴()AAS ACD CBE ≌∴BE CD CE AD ==,∴ 2.5 1.70.8cm BE CD CE DE AD DE ==-=-=-=. 答:BE 的长为0.8cm .16.证明:∵AE =CF∴AE +EF =CF +EF ,即AF =CE∵DE ⊥AC 于点E ,BF AC ⊥于点F∴ABF 和CDE 是直角三角形在Rt ABF 和Rt CDE 中{AB =CD AF =CE∴Rt △ABF ≌Rt △CDE(HL),∴BF =DE ;在DEM 和△BFM 中{∠DEM =∠BFM =90°∠DME =∠BMF DE =BF∴△DEM ≌△BFM(AAS),∴MB =MD .17.(1)证明:如图,∵AE 、BE 分别平分∠DAB 、∠CBA∴∠1=∠2,∠3=∠4∵AD∥BC∴∠2=∠F,∠1=∠F在△ABE和△AFE中∴△ABE≌△AFE(AAS)(2)证明:∵△ABE≌△AFE∴BE=EF在△BCE和△FDE中∴△BCE≌△FDE(ASA)∴BC=DF∴AD+BC=AD+DF=AF=AB即AD+BC=AB.18.(1)证明:∵EC平分∠ACB ∴∠FCD=∠FCG∵CG=CD,CF=CF∴△CFD≌△CFG(SAS)∴FD=FG.(2)解:结论:FG=FE.理由:∵∠B=60°∴∠BAC+∠BCA=120°∵AD平分∠BAC,CE平分∠BCA∴∠ACF+∠FAC=12(∠BCA+∠BAC)=60°∴∠AFC=120°,∠CFD=∠AFE=60°∵△CFD≌△CFG∴∠CFD=∠CFG=60°∴∠AFG=∠AFE=60°∵AF=AF,∠FAG=∠FAE∴△AFG≌△AFE(ASA)∴FG=FE.(3)解:结论:(1)中结论成立.(2)中结论不成立. 理由:①同法可证△CFD≌△CFG(SAS)∴FD=FG.②∵∠B≠60°∴无法证明∠AFG=∠AFE∴不能判断△AFG≌△AFE∴(2)中结论不成立。
人教版八年级上册数学 第十二章 全等三角形 单元测试卷(含答案)
人教版八年级上册数学第十二章全等三角形单元测试卷一、选择题(30分)1.下列说法正确的是()A.周长相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两角和其中一角的对边对应相等的两个三角形全等2.现已知线段a,b(a<b),∠MON=90°,求作Rt∠ABO,使得∠O=90°,AB=b,小惠和小雷的作法分别如下.小惠:①以点O为圆心、线段a为半径画弧,交射线ON于点A;②以点A为圆心、线段b长为半径画弧,交射线OM于点B,连接AB,∠ABO即为所求.小雷:①以点O为圆心、线段a为半径画弧,交射线ON于点A;②以点O为圆心、线段b长为半径画弧,交射线OM于点B,连接AB,∠ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误3.下列说法中,正确的是()A.两边及其中一边的对角分别相等的两个三角形全等B.两边及其中一边上的高分别相等的两个三角形全等C.有一直角边和一锐角分别相等的两个直角三角形全等D.面积相等的两个三角形全等4.在两个三角形中给出条件:①两角一边对应相等;②两边一角对应相等;③两角夹边对应相等;④两边夹角对应相等;⑤三边对应相等;⑥三角形对应相等.其中能判断出三角形全等的是( )A.①②③⑤B.①③④⑤C.①④⑤⑥D.②③④⑤5.有下列说法:①形状相同的图形是全等形;②全等形的大小相同,形状也相同;③全等三角形的面积相等;④面积相等的两个三角形全等;⑤若∠ABC∠∠A1B1C1,∠A1B1C1∠∠A2B2C2,则∠ABC∠∠A2B2C2.其中正确的说法有()A.2个B.3个C.4个D.5个6.下列结论错误的是()A.全等三角形对应边上的高相等B.全等三角形对应边上的中线相等C.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等D.两个直角三角形中,两个锐角相等,则这两个三角形全等7.下列说法中,正确的个数是( )①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的夹角对应相等的两个直角全角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.1B.2C.3D.48.在下列条件中,不能判定两直角三角形全等的是()A.斜边和一锐角对应相等B.斜边上的中线和一直角边对应相等C.两边分别相等D.直角的平分线和一直角边对应相等9.边长都为整数的△ABC△△DEF△AB与DE是对应边△AB△2△BC△4.若△DEF的周长为偶数△则DF的长为( )A.3B.4C.5D.3或4或510.已知△ABC∠∠DEF,∠A=35°,那么∠D的度数是()A.65°B.55°C.35D.45°二、填空题(15分)11.若△ABC≌△A′B′C′,AD和A′D′分别是对应边BC和B′C′的高,则△ABD≌△A′B′D′,理由是_______________.12.用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③菱形;④正方形;⑤等腰三角形.一定可以拼成的图形是_____________(填序号)13.若A(2,0),B(0,4),C(2,4),D为坐标平面内一点,且△ABC与△ACD全等,则D点坐标为_________. 14.在△ABC中,∠C=90°△BC=4cm△∠BAC的平分线交BC于D,且BD∶DC=5∶3,则D到AB的距离为__________△15.已知一个多边形的内角和与它的一个外角的和是797,则这个多边形的这个外角的度数是________.三、解答题(75分)16.(1)如图(1),已知:在∠ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD∠直线m, CE∠直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在∠ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且∠ABF和∠ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断∠DEF 的形状.。
八年级数学上册《第十二章 全等三角形》单元测试卷及答案-人教版
八年级数学上册《第十二章 全等三角形》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列说法正确的是( )A .全等三角形是指形状相同的三角形B .全等三角形是指面积相等的三角形C .全等三角形的周长和面积都相等D .所有的等边三角形都全等2.已知:△ABC ≌△DEF ,AB=DE ,∠A=70°,∠E=30°,则∠F 的度数为( )A .80°B .70°C .30°D .100°3.在测量一个小口圆形容器的壁厚时,小明用“X 型转动钳”按如图方法进行测量,其中OA =OD ,OB =OC ,测得AB =5厘米,EF =6厘米,圆形容器的壁厚是( )A .5厘米B .6厘米C .2厘米D .12厘米 4.如图,在ABC 中90B ∠=︒,AD 平分BAC ∠,10BC =和6CD =,则点D 到AC 的距离为( )A .4B .6C .8D .105.如图,在△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB=10,则△EDB 的周长是( )A .4B .6C .8D .106.如图,AB BC ⊥于点B ,AE DE ⊥于点E ,AB AE =与ACB ADE ∠=∠和65ACD ∠=︒75BAD ∠=︒ 则BAE ∠的度数为( )A .95︒B .100︒C .105︒D .110︒7.如图,在ABC 中B C ∠=∠,M ,N ,P 分别是边AB ,AC ,BC 上的点,且BM CP =与CN BP = 若44MPN ∠=︒,则A ∠的度数为( )A .44︒B .88︒C .92︒D .136︒8.如图所示 90,,E F B C AE AF ∠=∠=∠=∠= ,结论:①EM FN = ;②CD =DN ;③FAN EAM ∠=∠ ;④ΔACN ≅ΔABM ,其中正确的是有( )A .1个B .2个C .3个D .4个二、填空题:(本题共5小题,每小题3分,共15分.)9.已知△ABC 的两边长分别为AB=2和AC=6,第三边上的中线AD=x ,则x 的取值范围是 .10.如图,点A ,D ,B ,E 在同一条直线上,AD =BE ,AC =EF ,要使△ABC ≌△EDF ,只需添加一个条件,这个条件可以是 .11.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,△ABD 的面积是12cm 2,AB =8cm ,则DF = .12.如图, ABC 的三边 AB BC CA 、、 的长分别为 405060、、 ,其三条角平分线交于点 O ,则 S △ABO :S △BCO :S △CAO = .13.如图, ABC 中 ABC ∠ 、 EAC ∠ 的角平分线 BP 、 AP 交于点P ,延长 BA 和BC 则下列结论中正确的有 .(将所有正确序号填在横线上) ①CP 平分ACF ∠;②2180ABC APC ︒∠+∠=,③2ACB APB ∠=∠;④若PM BE ⊥ PN BC ⊥则AM CN AC +=.三、解答题:(本题共5题,共45分)14.如图,在ABC 中,D 是BC 边上一点DE AC ,CB DE =,ABC E ∠=∠求证:AC BD =.15.如图,在四边形ABCD 中,E 是对角线AC 上一点,连接DE ,AD ∥BC ,AC =AD ,∠CED+∠B =180°.△ADE 与△CAB 全等吗?为什么?16.如图,在五边形ABCDE 中,∠BCD=∠EDC=90°,BC=ED ,AC=AD .(1)求证:△ABC ≌△AED ;(2)当∠B=140°时,求∠BAE 的度数.17.如图,在Rt ABC 中,AC=BC ,∠ACB=90°,BF 平分ABC ∠交AC 于点F ,AE BF ⊥于点E ,AE ,BC 的延长线交于点M .(1)求证:ABE MBE ≌(2)求证:2BF AE =.18.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,E 为AC 边上一点,连接BE 与AD 交于点F ,G 为△ABC 外一点,满足∠ACG =∠ABE ,∠FAG =∠BAC ,连接EG .(1)求证:△ABF ≌△ACG ;(2)求证:BE =CG+EG .参考答案:1.C 2.A 3.D 4.A 5.D 6.B 7.C 8.C9.2<x<410.∠A=∠E11.3cm12.4:5:613.①②③④14.证明:∵DE AC∴C EDB ∠=∠在ABC 和BED 中∴()ASA ABC BED ≅,∴AC BD =15.解:△ADE 与△CAB 全等,理由如下:∵ AD ∥BC∴∠ACB=∠DAE ,∠B+∠DAB=180°∵ ∠CED+∠B =180°∴∠CED=∠DAB∵∠CED=∠EDA+∠DAE ,∠DAB=∠BAC+∠DAE∴∠EDA=∠BAC在△ADE 和△CAB 中{∠ACB =∠DAEAC =AD ∠EDA =∠BAC∴ △ADE ≌△CAB (ASA ).16.(1)证明:∵AC=AD∴∠ACD=∠ADC又∵∠BCD=∠EDC=90°∴∠ACB=∠ADE在△ABC 和△AED 中{BC =ED∠ACB =∠ADE AC =AD∴△ABC ≌△AED (SAS );(2)解:当∠B=140°时,∠E=140°又∵∠BCD=∠EDC=90°∴五边形ABCDE 中,∠BAE=540°﹣140°×2﹣90°×2=80°.17.(1)证明:由题意得AE BF ⊥,即BE AM ⊥∴90AEB MEB ∠=∠=︒∵BF 平分ABC ∠∴ABE MBE ∠=∠在AEB 和MEB 中90AEB MEB BE BEABE MBE ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴()ASA AEB MEB ≌;(2)证明:∵9090FBC BFC CAM AFE ∠+∠=︒∠+∠=︒, 由图可得BFC AFE ∠=∠∴FBC CAM ∠=∠在BCF 和ACM 中90ACB ACM BC ACFBC CAM ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴()ASA BCF ACM ≌∴BF AM =∵AEB MEB ≌∴AE ME =∴2BF AM AE ME AE ==+=.18.(1)证明:∵∠BAC =∠FAG ,∴∠BAC −∠3=∠FAG −∠3 即 12∠∠=.在ABF 和ACG 中,∵{∠1=∠2AB =AC∠ABF =∠ACG∴ABF ≌ACG (ASA ).(2)证明:∵ABF ≌ACG∴AF AG = BF CG =. ∵AB AC = AD BC ⊥于点D ∴∠1=∠3.∵12∠∠=∴∠2=∠3.在AEF 和AEG 中∵{AF =AG∠3=∠2AE =AE∴AEF ≌AEG (SAS ). ∴EF EG =.∴BE =BF +FE =CG +EG。
人教版八年级数学上册第十二章《全等三角形》测试题(含答案)
人教版八年级数学上册第十二章《全等三角形》测试题(含答案)一、选择题:1、如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC2、如图,点C在∠DAB的内部,CD⊥AD于D,CB⊥AB于B,CD=CB那么Rt△ADC ≌Rt△ABC的理由是()A.SSS B. ASA C. SAS D. HL3、下列说法正确的有()①角平分线上任意一点到角两边的距离相等②到一个角两边的距离相等的点在这个角的平分线上③三角形三个角平分线的交点到三个顶点的距离相等④三角形三条角平分线的交点到三边的距离相等A、1个B、2个C、3个D、4个4、在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是()A.AC=DF B.∠B=∠E C.∠A=∠D D.AB=DE5、如图,D、E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=48度,则∠ADP等于()度。
A.42 B.48 C .52 D.586、如图,△AEC≌△BED,点D在AC边上,∠1=∠2,AE和BD相交于点O.下列说法:(1)若∠B=∠A,则BE∥AC;(2)若BE=AC,则BE∥AC;(3)若△ECD≌△EOD,∠1=36°,则BE∥AC.其中正确的有()个.A.3个B.2个C.1个D.0个7、如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A.15°B.20°C.25°D.30°8、如图所示,AD、BC相交于点O,已知∠A=∠C,要根据“ASA”证明△AOB≌△COD,还要添加一个条件是()A. AB=CDB. AO=COC.BO=DOD.∠ABO=∠CDO9、如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD 的面积为()A.15 B.12.5 C.14.5 D.1710、如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是()A.75°B.70°C.65°D.60°11、如图所示,在Rt△ABC中,AD是斜边上的高,∠ABC的平分线分别交AD、AC于点F、E,EG⊥BC于G,下列结论正确的是()A.∠C=∠ABC B.BA=BGC.AE=CE D. AF=FD12、如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个二、填空题:13、点O是△ABC内一点,且点O到三边的距离相等,∠BAC=60°,则∠BOC的度数为 .14、如图:在△ABC中,∠B=∠C=50°,D是BC的中点,DE⊥AB,DF⊥AC,则∠BAD= 。
人教版八年级数学上册《第十二章 全等三角形》单元测试卷-附含答案
人教版八年级数学上册《第十二章 全等三角形》单元测试卷-附含答案时间:100分钟 总分:120分一、选择题(每题3分 共24分)1.图中是全等的三角形是 ( )A .甲和乙B .乙和丁C .甲和丙D .甲和丁【解析】解:比较三角形的三边长度 发现乙和丁的长度完全一样 即为全等三角形故选:B .【点睛】本题考查全等三角形的判定SSS 三边对应相等 两三角形全等.2.如图 在△ABC 和△DEF 中 AB =DE ∠A =∠D 添加一个条件不能判定这两个三角形全等的是 ( )A .AC =DFB .∠B =∠EC .BC =EFD .∠C =∠F【解析】根据全等三角形的判定定理 结合各选项的条件进行判断即可.解:A 、添加AC =DF 满足SAS 可以判定两三角形全等;B 、添加∠B =∠E 满足ASA 可以判定两三角形全等;C 、添加BC =EF 不能判定这两个三角形全等;D 、添加∠C =∠F 满足AAS 可以判定两三角形全等;故选:C .【点睛】本题考查三角形全等的判定方法 判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等 判定两个三角形全等时 必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.3.BD 、CE 分别是△ABC 中∠ABC 、∠ACB 的平分线 且交于点O 若O 到AB 的距离为1 BC =3 则OCB S △= ( )A .12B .1C .32 D .3【解析】解:∵点O 是△ABC 中∠ABC 、∠ACB 的平分线的交点∴O 到AB 的距离与O 到BC 的距离相等∴O 到BC 的距离为1∴OCB S △ =12×3×1= 32.故选:C .【点睛】本题考查了角平分线的性质 角平分线上的点到角的两边的距离相等 熟练掌握角平分线的性质是解题的关键.4.如图 已知ABN ACM △≌△ 则下列结论不正确...的是 ( )A .BC ∠=∠ B .BAM CAN =∠∠ C .AMN ANM ∠=∠D .AMC BAN ∠=∠【解析】解:∵ABN ACM △≌△∴B C ∠=∠ A 选项正确;BAN CAM ∠=∠ AN AM = AMC ANB ∠=∠∵BAM MAN CAN MAN ∠+∠=∠+∠∴BAM CAN =∠∠ B 选项正确;∵AN AM =∴AMN ANM ∠=∠ C 选项正确;∵AMC ANB ∠=∠∴AMC BAN ∠=∠ 不一定成立 D 选项不正确.故选:D.【点睛】本题考查全等三角形的性质 解答本题的关键是找准对应边和对应角以及熟悉等腰三角形的性质.5.如图 △ABC ≌△A ′B ′C ′ 边 B ′C ′过点 A 且平分∠BAC 交 BC 于点 D ∠B =27° ∠CDB ′=98° 则∠C ′的度数为 ( )A.60°B.45°C.43°D.34°【解析】解∶∵△ABC≌△A′B′C′∴∠C′=∠C∵∠CDB′=98°∴∠ADB=98°∵∠B=27°∴∠BAD=55°∵B′C′过点A 且平分∠BAC 交BC 于点D∴∠BAC=2∠BAD=110°∴∠C=180°-∠BAD-∠B=43°即∠C′=43°.故选:C【点睛】本题主要考查了全等三角形的性质三角形的内角和定理熟练掌握全等三角形的性质三角形的内角和定理是解题的关键.6.如图为了估算河的宽度我们可以在河的对岸选定一个目标点A再在河的这一边选定点B和F使AB⊥BF并在垂线BF上取两点C、D使BC=CD再作出BF的垂线DE使点A、C、E在同一条直线上因此证得△ABC≌△EDC进而可得AB=DE即测得DE的长就是AB的长则△ABC≌△EDC的理论依据是()A.SAS B.HL C.ASA D.AAA【解析】解:∵证明在△ABC≌△EDC用到的条件是:CD=BC∠ABC=∠EDC=90°∠ACB=∠ECD∴用到的是两角及这两角的夹边对应相等即ASA这一方法故C正确.故选:C.【点睛】本题考查了全等三角形的应用判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL 做题时注意选择.注意:AAA、SSA不能判定两个三角形全等判定两个三角形全等时必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.7.如图33 的正方形网格中 ABC 的顶点都在小正方形的格点上 这样的三角形称为格点三角形 则在此网格中与ABC 全等的格点三角形(不含ABC )共有 ( )A .5个B .6个C .7个D .8个【解析】解:如图所示:与ABC 全等的三角形有DEF 、HIJ 、GMN 、IEM △、HAF △、BDG 、CJN △ 共7个故选:C .【点睛】本题考查了全等三角形的判定定理 能熟记全等三角形的判定定理是解此题的关键 注意:全等三角形的判定定理有SAS ASA AAS SSS 两直角三角形全等还有HL 等.8.如图 BC ⊥CE BC =CE AC ⊥CD AC =CD DE 交AC 的延长线于点M M 是DE 的中点 若AB =8 则CM 的长为 ( )A .3.2B .3.6C .4D .4.8【解析】解:如图 过点E 作EF ⊥AC 交AC 的延长线于点F∵ CD ⊥AC EF ⊥AC∴∠DCM =∠EFM =90°∵M 是DE 的中点∴DM =EM∵∠DMC =∠EMF∴△DCM ≌△EFM (AAS )∴CM =FM CD =FE∵BC ⊥CE EF ⊥AC∴∠BCE =90° ∠CFE =90°∴∠ACB +∠ECF =90° ∠ECF +∠FEC =90°∴∠ACB =∠FEC∵AC =CD∴AC =FE∵BC =CE∴△ABC ≌△FCE (SAS )∴FC =AB =8∵CM =FM∴M 是FC 的中点∴CM =12FC =4故选:C【点睛】本题考查了全等三角形的判定与性质 熟练掌握三角形的判定方法是基础添加辅助线构造全等三角形是关键.二、填空题(每题3分 共24分)9.如图 90B D ∠=∠=︒ AB AD = 130BAD ∠=︒ 则DCA ∠=______°.【解析】解:∵90B D ∠=∠=︒∴△ABC 和△ADC 是直角三角形∵AC =AC AB AD =∴Rt △ABC ≌Rt △ADC (HL )∴∠DAC =∠BAC∵130BAD ∠=︒∴∠DAC =12∠BAD =65°∴DCA ∠=90°-∠DAC =25°.故答案为:25.【点睛】此题考查了全等三角形的判定和性质 熟练掌握直角三角形的判定定理是解题的关键.10.如图 ,AC AD BC BD == 连结CD 交AB 于点E F 是AB 上一点 连结FC FD 则图中的全等三角形共有_________对.【解析】解:解:在△ACB 和ADB 中AC AD AB AB BC BD =⎧⎪=⎨⎪=⎩∴△ACB ≌ADB∴∠CAB =∠DAB ∠CBA =∠DBA∵AC =AD ∠CAB =∠DAB AF =AF∴△CAF ≌△DAF CF =DF∵AC =AD ∠CAB =∠DAB AE =AE∴△ACE ≌△ADE CE =DE∵BC =BD ∠CBA =∠DBA BE =BE∴△CBE ≌△DBE∵BC =BD ∠CBA =∠DBA BF =BF∴△FCB ≌△FDB∵CF =DF CE =DE EF =EF∴△CEF ≌△DEF∴图中全等的三角形有6对图中全等三角形有△ACB ≌△ADB △ACF ≌△ADF △ACE ≌△ADE △BCE ≌△BDE△BCF ≌△BDF △FCE ≌△FDE 共6对故答案为:6 .【点睛】本题考查了对全等三角形的判定定理的应用 注意:全等三角形的判定定理有SAS ASA AAS SSS .11.如图 在△ABC 中 ∠B =∠C =65° BD =CE BE =CF 则∠DEF 的度数是_____.【解析】解:在△DBE 和△ECF 中=C BD CE B BE CF =⎧⎪∠∠⎨⎪=⎩∴△DBE ≌△ECF (SAS )∴∠BDE =∠FEC∵∠DEF +∠FEC =∠B +∠BDE∴∠DEF =∠B =65°故答案为:65°.【点睛】本题考查全等三角形的判定与性质、三角形的外角性质等知识 证明△DBE ≌△ECF 是解题的关键 属于中考常考题型.12.如图 E ABC AD ≅∆∆ BC 的延长线经过点E 交AD 于F 105AED ∠=︒ 10CAD ∠=︒ 50B ∠=︒ 则EAB ∠=__︒.【解析】解:ABC ADE ∆≅∆ 50B ∠=︒ 50D B EAD CAB ∠=∠105AED ∠=︒18025EAD D AED ∴∠=︒-∠-∠=︒25CAB ∴∠=︒10CAD25102560EAB EAD DAC CAB ∴∠=∠+∠+∠=︒+︒+︒=︒.故答案为:60.【点睛】本题考查了全等三角形的性质和三角形内角和定理 能熟记全等三角形的性质的内容是解此题的关键 注意:全等三角形的对应边相等 对角角相等.13.如图 在ABC 中 AD 是它的角平分线 8cm AB = 6cm AC = 则:ABD ACD S S =△△______.【解析】解:如图 过D 作DH AB ⊥于,H 作DG AC ⊥于,G∵AD 是它的角平分线,DH DG 而8cm AB = 6cm AC =1842.1632ABDACD AB DH SAB S AC AC DG 故答案为:4∶3【点睛】本题考查的是角平分线的性质 三角形的面积的计算 证明DH DG =是解本题的关键.14.如图 ∠ACB =90° AC =BC BE ⊥CE AD ⊥CE垂足分别为E D AD =25 DE =17 则BE =_____.【解析】解:∵∠ACB =90°∴∠BCE +∠ACD =90°又∵BE ⊥CE AD ⊥CE∴∠E =∠ADC =90°∴∠BCE +∠CBE =90°∴∠CBE =∠ACD在△CBE 和△ACD 中E ADC CBE ACD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CBE ≌△ACD (AAS )∴BE =CD CE =AD =25∵DE =17∴CD =CE ﹣DE =AD ﹣DE =25﹣17=8∴BE =CD =8;故答案为:8.【点睛】本题主要考查全等三角形的判定和性质;证明三角形全等得出对应边相等是解决问题的关键.15.如图 在平面直角坐标系中 点A 的坐标是(4 0) 点P 的坐标是(0 3) 把线段AP 绕点P 逆时针旋转90°后得到线段PQ 则点Q 的坐标是__________.【解析】解:过Q 作QE ⊥y 轴于E 点 如下图所示:∵旋转90°∴∠1+∠2=90°∵EQ ⊥y 轴∴∠3+∠2=90°∴∠1=∠3且∠QEP =∠POA =90° PQ=PA∴△QEP ≌△POA (AAS )∴EQ=PO =3 EP=OA =4∴EO=EP+PO =4+3=7∴点Q 的坐标是(3 7)故答案为:(3 7).【点睛】本题考查三角形全等的判定和性质 坐标与图形 本题的关键过Q 作QE ⊥y 轴于E 点 证明△QEP ≌△POA .16.如图 ∠ABC =∠ACD =90° BC =2 AC =CD 则△BCD 的面积为_________.【解析】解:如图 作DE 垂直于BC 的延长线 垂足为E∵90ACB BAC ∠+∠=︒ 90ACB DCE ∠+∠=︒∴BAC DCE ∠=∠在ABC 和CED 中∵90BAC DCEABC CED AC CD∠=∠⎧⎪∠==︒⎨⎪=⎩∴()ABC CED AAS ≌∴2BC DE == ∴122BCD S BC DE =⨯⨯=故答案为:2.【点睛】本题考查了三角形全等的判定与性质.解题的关键在于证明三角形全等.三、解答题(每题8分 共72分)17.如图 在四边形ABCD 中 点E 为对角线BD 上一点 A BEC ∠=∠ ABD BCE ∠=∠ 且AD BE = 证明:AD BC ∥.【解析】证明:在ABD ∆与ECB ∆中A BEC ABD BCE AD BE ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABD ECB AAS ∴∆≅∆;ADB EBC ∴∠=∠AD BC ∴;【点睛】本题主要考查了平行线的判定及全等三角形的判定及性质 熟练运用全等三角形的判定及性质是解题的关键.18.如图 点A 、D 、C 、F 在同一条直线上 ,,AD CF AB DE BC EF ===.若55A ∠=︒ 求EDF ∠的度数.【解析】∵AC =AD +DC DF =DC +CF 且AD =CF∴AC =DF在△ABC 和△DEF 中AB DE BC EF AC DF ⎧⎪⎨⎪⎩=== ∴△ABC ≌△DEF (SSS )∴∠A =∠EDF =55︒.【点睛】本题考查全等三角形的判定与性质 解答本题的关键是明确题意 利用数形结合的思想解答.19.已知:如图 AB ⊥BD ED ⊥BD C 是BD 上的一点 AC ⊥CE AB =CD 求证:BC =DE .【解析】证明:∵AB ⊥BD ED ⊥BD AC ⊥CE (已知)∴∠ACE =∠B =∠D =90°(垂直的意义)∵∠BCA +∠DCE +∠ACE =180°(平角的意义)∠ACE =90°(已证)∴∠BCA +∠DCE =90°(等式性质)∵∠BCA +∠A +∠B =180°(三角形内角和等于180°)∠B =90°(已证)∴∠BCA +∠A =90°(等式性质)∴∠DCE =∠A (同角的余角相等)在△ABC 和△CDE 中A DCE AB CD B D ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△CDE (ASA )∴BC =DE (全等三角形对应边相等)【点睛】本题考查了全等三角形的判定和性质;熟练掌握三角形全等的判定定理是解题的关键.20.如图 在ABC 中 240AB AC B ==∠=︒, 点D 在线段BC 上运动(D 不与B 、C 重合) 连接AD 作40ADE ∠=︒ DE 交线段AC 于E .(1)点D 从B 向C 运动时 BDA ∠逐渐变__________(填“大”或“小”) 但BDA ∠与EDC ∠的度数和始终是__________度.(2)当DC 的长度是多少时 ABD DCE △△≌ 并说明理由.【解析】(1)在△ABD 中 ∠B +∠BAD +∠ADB =180°设∠BAD =x ° ∠BDA =y °∴40°+x +y =180°∴y =140-x (0<x <100)当点D 从点B 向C 运动时 x 增大∴y 减小BDA ∠+EDC ∠=180°-140ADE ∠=︒故答案为:小 140;(2)当DC =2时 △ABD ≌△DCE理由:∵∠C =40°∴∠DEC +∠EDC =140°又∵∠ADE =40°∴∠ADB +∠EDC =140°∴∠ADB =∠DEC又∵AB =DC =2在△ABD 和△DCE 中===ADB DEC B CAB DC ∠∠⎧⎪∠∠⎨⎪⎩∴△ABD ≌△DCE (AAS );【点睛】此题主要考查学生对等腰三角形的判定与性质 全等三角形的判定与性质 三角形外角的性质等知识点的理解和掌握 三角形的内角和公式 解本题的关键是分类讨论.21.如图 已知ABC 中 ,90AC BC ACB =∠=︒ 点D 与点E 都在射线AP 上 且CD CE = 90DCE ∠=︒.(1)说明AD BE =的理由;(2)说明BE AE ⊥的理由.【解析】(1)解:90ACB DCE ∠=∠=︒ACD DCB BCE DCB ∴∠+∠=∠+∠ACD BCE ∠∠∴=在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ACD BCE SAS ∴∆≅∆AD BE ∴=;(2)解:如图 设AE 和BC 交于点F∆≅∆ACD BCE∴∠=∠CAD CBEEFB FAB FBA FAB∠=∠+∠=∠+︒45EFB FBE FAB FBE∴∠+∠=∠+︒+∠45=∠+︒+∠FAB CAD45=∠+︒CAB45=︒+︒=︒454590∴∠BEF=90°BE AE∴⊥.【点睛】本题考查了全等三角形的性质和判定、外角的性质解题的关键是能证明出E∆.≅∆ACD BC 22.已知:如图在△ABC△ADE中∠BAC=∠DAE=90°AB=AC AD=AE点C D E 三点在同一直线上连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD CE有何特殊位置关系并证明.【解析】(1)证明:∠BAC=∠DAE=90°∴∠+∠=∠+∠,BAC CAD CAD DAEBAD CAE∴∠=∠,AB=AC AD=AE≌BAD CAE.BD CE BD CE理由如下:(2)解:,,BAD CAE≌,ABD ACE∴∠=∠,∠=︒90,BACABC ACB90,ABD DBC ACB90,ACE DBC ACB DBC BCD90,BDC BD CE90,.【点睛】本题考查的是三角形的内角和定理的应用全等三角形的判定与性质掌握“利用SAS证明两个三角形全等及应用全等三角形的性质”是解本题的关键.23.图已知AE⊥AB AF⊥AC.AE=AB AF=AC BF与CE相交于点M.(1)EC=BF;(2)EC⊥BF;(3)连接AM求证:AM平分∠EMF.【解析】(1)证明:∵AE⊥AB AF⊥AC∴∠BAE=∠CAF=90°∴∠BAE+∠BAC=∠CAF+∠BAC即∠EAC=∠BAF在△ABF和△AEC中∵AE ABEAC BAF AF AC=⎧⎪∠=∠⎨⎪=⎩∴△ABF≌△AEC(SAS)∴EC=BF;(2)根据(1)∵△ABF≌△AEC∴∠AEC=∠ABF∵AE⊥AB∴∠BAE=90°∴∠AEC+∠ADE=90°∵∠ADE=∠BDM(对顶角相等)∴∠ABF+∠BDM=90°在△BDM中∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°所以EC⊥BF.(3)作AP⊥CE于P AQ⊥BF于Q.如图:∵△EAC ≌△BAF∴AP =AQ (全等三角形对应边上的高相等).∵AP ⊥CE 于P AQ ⊥BF 于Q∴AM 平分∠EMF .【点睛】本题考查了全等三角形的判定与性质 根据条件找出两组对应边的夹角∠EAC =∠BAF 是证明的关键 也是解答本题的难点.24.在直线m 上依次取互不重合的三个点,,D A E 在直线m 上方有AB AC = 且满足BDA AEC BAC α∠=∠=∠=.(1)如图1 当90α=︒时 猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2 当0180α<<︒时 问题(1)中结论是否仍然成立?如成立 请你给出证明;若不成立 请说明理由;(3)应用:如图3 在ABC 中 BAC ∠是钝角 AB AC = ,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠ 直线m 与CB 的延长线交于点F 若3BC FB = ABC 的面积是12 求FBD 与ACE 的面积之和.【解析】(1)解:DE =BD +CE 理由如下∵∠BDA =∠BAC =∠AEC =90°∴∠BAD +∠EAC =∠BAD +∠DBA =90°∴∠DBA =∠EAC∵AB =AC∴△DBA ≌△EAC (AAS )∴AD =CE BD =AE∴DE =AD +AE =BD +CE故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立 理由如下∵∠BDA =∠BAC =∠AEC =α∴∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α∴∠DBA =∠EAC∵AB =AC∴△DBA ≌△EAC (AAS )∴BD =AE AD =CE∴DE =AD +AE =BD +CE ;(3)解:∵∠BAD <∠CAE ∠BDA =∠AEC =∠BAC∴∠CAE =∠ABD在△ABD 和△CAE 中ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS )∴S △ABD =S △CAE设△ABC 的底边BC 上的高为h 则△ABF 的底边BF 上的高为h∴S △ABC =12BC •h =12 S △ABF =12BF •h∵BC =3BF∴S △ABF =4∵S △ABF =S △BDF +S △ABD =S △FBD +S △ACE =4∴△FBD 与△ACE 的面积之和为4.【点睛】本题考查了全等三角形的判定与性质、直角三角形的性质 三角形的面积 解题的关键是熟练掌握全等三角形的判定与性质.25.如图 ∠MAN 是一个钝角 AB 平分∠MAN 点C 在射线AN 上 且AB =BC BD ⊥AC 垂足为D .(1)求证:BAM BCA ∠=∠;(2)动点P Q 同时从A 点出发 其中点Q 以每秒3个单位长度的速度沿射线AN 方向匀速运动;动点P 以每秒1个单位长度的速度匀速运动.已知AC =5 设动点P Q 的运动时间为t 秒. ①如图② 当点P 在射线AM 上运动时 若点Q 在线段AC 上 且52ABP BQC S S =△△ 求此时t 的值;②如图③ 当点P 在直线AM 上运动时 点Q 在射线AN 上运动的过程中 是否存在某个时刻 使得APB 与BQC 全等?若存在 请求出t 的值;若不存在 请说出理由.【解析】(1)证明:∵BD ⊥AC∴90BDA BDC ∠=∠=︒在Rt △BDA 和Rt △BDC 中BD BD AB CB =⎧⎨=⎩, ∴Rt△BDA ≌Rt△BDC (HL )∴∠BAC =∠BCA .∵AB 平分∠MAN∴∠BAM =∠BAC∴∠BAM =∠BCA .(2)解:①如下图所示 作BH ⊥AM 垂足为M .∵BH ⊥AM BD ⊥AC∴∠AHB =∠ADB =90°在△AHB 和△ADB 中AHB ADB BAH BAD AB AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△AHB ≌△ADB (AAS )∴BH =BD∵S △ABP =52S △BQC ∴151222AP BH CQ BD =⨯∴52AP CQ =∴5(53)2t t =-∴2517t =.②存在 理由如下:当点P 沿射线AM 方向运动 点Q 在线段AC 上时 如下图所示∵AB =BC又由(1)得∠BAM =∠BCA∴当AP =CQ 时 △APB ≌△CQB∴53t t =-∴54t =;当点P沿射线AM 反向延长线方向运动 点Q 在线段AC 延长线上时 如下图所示由(1)得∠BAM=∠BCA∴∠BAP=∠BCQ又∵AB=BC∴当AP=CQ时△APB≌△CQB ∴35t t=-∴52t=.综上所述当54t=或52t=时△APB和△CQB全等.【点睛】本题考查角平分线的定义全等三角形的判定与性质熟练掌握全等三角形的判定方法并注意分类讨论是解题的关键.第21页共21页。
八年级数学上册人教版试题 第12章 全等三角形单元测试卷(含答案)
第12章 全等三角形单元测试卷一.选择题(共12小题,每小题4分,共48分)1.下列各图形中,不是全等形的是( )A .B .C .D .2.下列说法正确的是( )A .所有的等边三角形都是全等三角形B .全等三角形是指面积相等的三角形C .周长相等的三角形是全等三角形D .全等三角形是指形状相同大小相等的三角形3.如图,AB 与CD 交于点O ,已知△AOD ≌△COB ,∠A =40°,∠COB =115°,则∠B 的度数为( )A .25°B .30°C .35°D .40°4.已知△ABC 的六个元素如图所示,则甲、乙、丙三个三角形中与△ABC 全等的是( )A .甲、乙B .乙、丙C .只有乙D .只有丙5.如图,已知MB =ND ,∠MBA =∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( )A .∠M =∠NB .AB =CDC .AM =CND .AM ∥CN6.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带( )去.A .第1块B .第2块C .第3块D .第4块7.如图是一个平分角的仪器,其中AB =AD ,BC =DC ,将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是( )第3图第5图第6图第7图A .SSSB .SASC .ASAD .AAS8.如图,点A 、D 、C 、E 在同一条直线上,AB ∥EF ,AB =EF ,∠B =∠F ,AE =10,AC =7,则CD 的长为( )A .5.5B .4C .4.5D .39.如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC =110°,则∠MAB =( )A .30°B .35°C .45°D .60°10.如图,AB =AD ,AE 平分∠BAD ,点C 在AE 上,则图中全等三角形有( )A .2对B .3对C .4对D .5对11.如图,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处12.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE =DG ,△ADG和△AED 的面积分别为60和35,则△EDF 的面积为( )A .25B .5.5C .7.5D .12.5二.填空题(共4小题,每小题4分,共16分)13.已知△ABC ≌△DEF ,∠A =60°,∠F =50°,点B 的对应顶点是点E ,则∠B 的度数是 .14.如图,BD =CF ,FD ⊥BC 于点D ,DE ⊥AB 于点E ,BE =CD ,若∠AFD =145°,则∠EDF = .15.如图,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是 .16.如图,四边形ABCD 中,AB =AD ,AC =5,∠DAB =∠DCB =90°,则四边形ABCD 的面积为 .三.解答题(共8小题,共86分)第8图第9图第10图第11图第12图第14图第15图第16图17.如图所示,△ABE≌△ACD,∠B=70°,∠AEB=75°,求∠CAE的度数.18.如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.19.如图,AB=AD,AC=AE,∠CAE=∠BAD.求证:∠B=∠D.20.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.21.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.22.如图,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD.求证:(1)△BFD≌△ACD;(2)BE⊥AC.23.如图①,点A,E,F,C在同一条直线上,且AE=CF,过点E,F分别作DE⊥AC,BF⊥AC,垂足分别为E,F,AB=CD.(1)若EF与BD相交于点G,则EG与FG相等吗?请说明理由;(2)若将图①中△DEC沿AC移动到如图②所示的位置,其余条件不变,则(1)中的结论是否仍成立?不必说明理由.24.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是 A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是 A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,已知:CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE.答案一.选择题A.D.A.B.C.B.A.B.B.B.D.D.二.填空题13.70°.14.55°.15.5.16.18.三.解答题17.解:∵△ABE≌△ACD,∴∠C=∠B=70°,∴∠CAE=∠AEB﹣∠C=5°.18.证明:∵∠ABD+∠4=180°∠ABC+∠3=180°,且∠3=∠4,∴∠ABD=∠ABC在△ADB和△ACB中,,∴△ADB≌△ACB(ASA),∴BD=BC.19.证明:∵∠CAE=∠BAD,∴∠CAE+∠EAB=∠BAD+∠EAB,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠B=∠D.20.(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10m,BF=3m,∴FC=10﹣3﹣3=4m.21.(1)解:河的宽度是5m;(2)证明:由作法知,BC=DC,∠ABC=∠EDC=90°,在Rt△ABC和Rt△EDC中,,∴Rt△ABC≌Rt△EDC(ASA),∴AB=ED,即他们的做法是正确的.22.证明:(1)∵AD为△ABC的边BC上的高,∴△BDF和△ADC为直角三角形.∴∠BDF=∠ADC=90°.在Rt△BFD和Rt△ACD中,,∴Rt△△BFD≌Rt△ACD(HL);(2)∵△BDF≌△ADC,∴∠DBF=∠DAC.∵∠AFE与∠BFD是对顶角,∴∠BDF=∠AEF=90°,∴BE⊥AC.23.解:(1)EG=FG,理由如下:∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL),∴BF=DE,在△DEG和△BFG中,,∴△DEG≌△BFG(AAS),∴EG=FG;(2)(1)中的结论仍成立,理由如下:同(1)得:Rt△ABF≌Rt△CDE(HL),∴BF=DE,在△DEG和△BFG中,,∴△DEG≌△BFG(AAS),∴EG=FG.24.(1)解:∵在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),故答案为:B;(2)解:∵由(1)知:△ADC≌△EDB,∴BE=AC=6,AE=2AD,∵在△ABE中,AB=8,由三角形三边关系定理得:8﹣6<2AD<8+6,∴1<AD<7,故答案为:C.(3)证明:如图,延长AE到F,使EF=AE,连接DF,∵AE是△ABD的中线∴BE=ED,在△ABE与△FDE中,,∴△ABE≌△FDE(SAS),∴AB=DF,∠BAE=∠EFD,∵∠ADB是△ADC的外角,∴∠DAC+∠ACD=∠ADB=∠BAD,∴∠BAE+∠EAD=∠BAD,∠BAE=∠EFD,∴∠EFD+∠EAD=∠DAC+∠ACD,∴∠ADF=∠ADC,∵AB=DC,∴DF=DC,在△ADF与△ADC中,,∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.。
人教版八年级数学上册试题 第12章 全等三角形单元测试(含答案)
第12章全等三角形单元测试一.选择题(共12小题,满分48分,每小题4分)1.下列各组两个图形属于全等图形的是( )A.B.C.D.2.下列说法中正确的是( )A.两个面积相等的图形,一定是全等图形B.两个等边三角形是全等图形C.两个全等图形的面积一定相等D.若两个图形周长相等,则它们一定是全等图形3.已知图中的两个三角形全等,则∠1等于( )A.72°B.60°C.50°D.58°4.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B.带②去C.带③去D.带①和②去5.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是( )A.SSS B.SAS C.ASA D.AAS6.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A.10B.7C.5D.47.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是( )A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF8.(4分)下列各组条件,不能判定△ABC≌△DEF的是( )A.AB=DE,∠B=∠E,∠C=∠F B.AB=DE,BC=EF,AC=DFC.AB=DE,AC=DF,∠B=∠E D.AB=DE,AC=DF,∠B=∠E=90°9.如图,在△ABC中,AB=4,AC=7,延长中线AD至E,使DE=AD,连结CE,则△CDE的周长可能是( )A.9B.10C.11D.1210.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=( )A.90°B.120°C.135°D.150°11.如图,在四边形ABCD中,∠A=90°,AD=3,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为( )A.1B.6C.3D.1212.如图,方格中△ABC的三个顶点分别在正方形的顶点(格点上),这样的三角形叫格点三角形,图中可以画出与△ABC全等的格点三角形共有( )个.(不含△ABC)A.28B.29C.30D二.填空题(共4小题,满分16分,每小题4分)13.已知:△ABC≌△DEF,若∠ABC=65°,则∠DEF= .14.如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是 .15.(4分)沛沛沿一段笔直的人行道行走,边走边欣赏风景,在由C走到D的过程中,通过隔离带的空隙P,刚好浏览完对面人行道宣传墙上的一条标语,具体信息如下:如图,AB∥PM ∥CD,相邻两平行线间的距离相等,AC,BD相交于P,PD⊥CD垂足为D.已知CD=16米.请根据上述信息求标语AB的长度 .16.(4分)如图,在第1个△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第3个三角形中以A3为顶点的内角的度数为 ;第n个三角形中以A n为顶点的底角的度数为 .三.解答题(共8小题,满分86分)17.(8分)如图,点B,F,C,E在一条直线上,BD=CF,AB=EF,AC=ED.求证:△ABC≌△EFD.18.(8分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE≌△CFE.19.(10分)如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,且BE=CF.求证:AB=AC.20.(10分)如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD =DF.(1)求证:CF=EB.(2)若AB=12,AF=8,求CF的长.21.(12分)已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠BAD;(2)试说明线段DM与AM有怎样的位置关系?(3)线段CD、AB、AD间有怎样的关系?直接写出结果.22.(12分)如图,CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CFA=α.(1)若直线CD经过∠BCA的内部,且E、F在射线CD上.①如图1,若∠BCA=90°,α=90°,则BE CF;②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA关系的条件 ,使①中的结论仍然成立,并说明理由;(2)如图3,若线CD经过∠BCA的外部,α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想,并简述理由.23.(12分)在△ABC中,D是BC边上的点(不与点B、C重合),连接AD.(1)如图1,当点D是BC边上的中点时,S△ABD:S△ACD= ;(2)如图2,当AD是∠BAC的平分线时,若AB=m,AC=n,求S△ABD:S△ACD的值(用含m,n 的代数式表示);(3)如图3,AD平分∠BAC,延长AD到E,使得AD=DE,连接BE,如果AC=2,AB=4,S=6,那么S△ABC= .△BDE24.(14分)如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC= cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以vcm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.答案一.选择题B .C .D .C .A .C .D .C .D .C.C .D .二.填空题13.65°.14.5.15.16米.16.17.5°,70°2n −1.三.解答题17.证明:∵BD =CF ,∴BD +DC =CF +DC .∴BC =FD .在△ABC 和△EFD 中,{AB =EFAC =ED BC =FD,∴△ABC ≌△EFD (SSS ).18.证明:∵FC ∥AB ,∴∠A =∠FCE ,∠ADE =∠F ,在△ADE 与△CFE 中:∵{∠A =∠FCE∠ADE =∠F DE =EF,∴△ADE ≌△CFE (AAS ).19.证明:∵D 是BC 的中点,∴BD =CD ,∵DE ⊥AB ,DF ⊥AC ,∴△BED 和△CFD 都是直角三角形,在△BED 和△CFD 中,{BD =CD BE =CF ,∴△BED≌△CFD(HL),∴∠B=∠C,∴AB=AC(等角对等边).20.(1)证明:∵AD平分∠BAC,∠C=90°,DE⊥AB于E,∴DE=DC.在Rt△CDF与Rt△EDB中,{DF=DBDC=DE,∴Rt△CDF≌Rt△EDB(HL),∴CF=EB.(2)解:设CF=x,则AE=12﹣x,∵AD平分∠BAC,DE⊥AB,∴CD=DE.在Rt△ACD与Rt△AED中,{AD=ADCD=DE,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,即8+x=12﹣x,解得x=2,即CF=2.21.(1)证明:作ME⊥AD于E,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.(2)解:DM⊥AM,理由是:∵DM平分∠CDA,AM平分∠DAB,∴∠1=∠2,∠3=∠4,∵DC∥AB,∴∠CDA+∠BAD=180°,∴∠1+∠3=90°,∴∠DMA=180°﹣(∠1+∠3)=90°,即DM⊥AM.(3)解:CD+AB=AD,理由是:∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt△DCM和Rt△DEM中{DM=DMEM=CM∴Rt△DCM≌Rt△DEM(HL),∴CD=DE,同理AE=AB,∵AE+DE=AD,∴CD+AB=AD.22.解:(1)∵∠BEC=∠CFA=α=90°,∴∠BCE+∠CBE=180°﹣∠BEC=90°.又∵∠BCA=∠BCE+∠ACF=90°,∴∠CBE=∠ACF.在△BCE和△CAF中,{∠BEC=∠CFA,∠CBE=∠ACF,BC=AC.∴△BCE≌△CAF(AAS).∴BE=CF.(2)α+∠BCA=180°,理由如下:∵∠BEC=∠CFA=α,∴∠BEF=180°﹣∠BEC=180°﹣α.又∵∠BEF=∠EBC+∠BCE,∴∠EBC+∠BCE=180°﹣α.又∵α+∠BCA=180°,∴∠BCA=180°﹣α.∴∠BCA=∠BCE+∠ACF=180°﹣α.∴∠EBC=∠FCA.在△BCE和△CAF中,{∠CBE=∠ACF,∠BEC=∠CFA,BC=CA.∴△BCE≌△CAF(AAS).∴BE=CF.(3)EF=BE+AF,理由如下:∵∠BCA=α,∴∠BCE+∠ACF=180°﹣∠BCA=180°﹣α.又∵∠BEC=α,∴∠EBC+∠BCE=180°﹣∠BEC=180°﹣α.∴∠EBC=∠FCA.在△BEC和△CFA中,{∠EBC=∠FCA,∠BEC=∠FCA,BC=CA.∴△BEC≌△CFA(AAS).∴BE=CF,EC=FA.∴EF=EC+CF=FA+BE,即EF=BE+AF.23.解:(1)过A作AE⊥BC于E,∵点D是BC边上的中点,∴BD=DC,∴S ABD:S△ACD=(12×BD×AE):(12×CD×AE)=1:1,故答案为:1:1;(2)过D作DE⊥AB于E,DF⊥AC于F,∵AD为∠BAC的角平分线,∴DE=DF,∵AB=m,AC=n,∴S ABD:S△ACD=(12×AB×DE):(12×AC×DF)=m:n;(3)∵AD=DE,∴由(1)知:S△ABD:S△EBD=1:1,∵S△BDE=6,∴S△ABD=6,∵AC=2,AB=4,AD平分∠CAB,∴由(2)知:S△ABD:S△ACD=AB:AC=4:2=2:1,∴S△ACD=3,∴S△ABC=3+6=9,故答案为:9.24.解:(1)点P从点B出发,以2cm/秒的速度沿BC向点C运动,点P的运动时间为t秒时,BP=2t,则PC=(10﹣2t)cm;故答案为:(10﹣2t);(2)当△ABP≌△DCP时,则BP=CP=5,故2t=5,解得:t=2.5;(3)①如图1,当△ABP≌△QCP,则BA=CQ,PB=PC,∵PB=PC,BC=5,∴BP=PC=122t=5,解得:t=2.5,BA=CQ=6,v×2.5=6,解得:v=2.4(cm/秒).②如图2,当△ABP≌△PCQ,则BP=CQ,AB=PC.∵AB=6,∴PC=6,∴BP=10﹣6=4,2t=4,解得:t=2,CQ=BP=4,v×2=4,解得:v=2;综上所述:当v=2.4cm/秒或2cm/秒时△ABP与△PQC全等.。
人教版八年级数学上册第十二章 全等三角形 单元测试卷(含答案)
人教版八年级数学上册第十二章全等三角形单元测试卷(含答案)一、单选题(共10题;共30分)1. ( 3分) 如图,点B、E、C、F在一条直线上,△ABC≌△DEF则下列结论正确的是()A. AB∥DE,且AC不平行于DF.B. BE=EC=CFC. AC∥DF.且AB不平行于DED. AB∥DE,AC∥DF.2. ( 3分) 如图(1),若△ABC与△DEF全等,请根据图中提供的信息,得出x的值为()A. 20B. 18C. 60D. 503. ( 3分) 如图,将长方形纸片沿对角线折叠,重叠部分为△BDE,则图中全等三角形共有()A. 0对B. 1对C. 2对D. 3对4. ( 3分) 如图所示,D,E分别是△ABC的边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A. 15°B. 20°C. 25°D. 30°5. ( 3分) 如图,AB=AC,若要使△ABE≌△ACD,则添加的一个条件不能是()A. ∠B=∠CB. BE=CDC. BD=CED. ∠ADC=∠AEB6. ( 3分) 如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P 旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON 的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A. 4B. 3C. 2D. 17. ( 3分) 下列各组中的两个图形属于全等图形的是()A. B. C. D.8. ( 3分) 下列说法正确的是()A. 周长相等的两个三角形全等B. 面积相等的两个三角形全等C. 三个角对应相等的两个三角形全等D. 三条边对应相等的两个三角形全等9. ( 3分) 下列数据能唯一确定三角形的形状和大小的是()A. AB=4,BC=5,∠C=60°B. AB=6,∠C=60°,∠B=70°C. AB=4,BC=5,CA=10D. ∠C=60°,∠B=70°,∠A=50°10. ( 3分) 如图,乐乐书上的三角形墨迹污染了一部分,很快他就画出一个三角形与书上的三角形全等,这两个三角形全等的依据是()A. SSSB. ASAC. AASD. SAS二、填空题(共8题;共24分)11. ( 3分) 如图所示,AC=DF,BD=EC,AC∥DF,∠ACB=80°,∠B=30°,则∠F= 1 .12. ( 3分) 如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是________.(不添加任何字母和辅助线)13. ( 3分) 如图,△ACE ≅△DBF,如果DA=12,CB=6,那么线段AB的长是________.14. ( 3分) 三个全等三角形按如图的形式摆放,则∠1+∠2+∠3=________度.15. ( 3分) 如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D.若CD=3,AB=8则△ABD的面积是________。
人教版八年级数学上册《第十二章全等三角形》单元检测卷-带有答案
人教版八年级数学上册《第十二章全等三角形》单元检测卷-带有答案一、选择题1.下列各选项中的两个图形属于全等图形的是()A.B.C.D.2.如图△ABC≌△DEC,B、C、D在同一直线上,且CE=6,AC=8,则BD长()A.12 B.14 C.16 D.183.如图,已知AE=AC,∠C=∠E,下列条件中,无法判定△ABC≅△ADE的是()A.∠B=∠D B.BC=DE C.∠1=∠2D.AB=AD4.如图,亮亮想测量某湖A,B两点之间的距离,他选取了可以直接到达点A,B的一点C,连接CA,CB并作BD∥AC,截取BD=AC,连接CD,他说,根据三角形全等的判定定理,可得△ABC≌△DCB,所以AB=CD,他用到三角形全等的判定定理是()A.SAS B.AAS C.SSS D.ASA5.如图,B,E,C,F在同一条直线上AB=DE,BE=CF,添加下列哪一个条件可以使△ABC≌△DEF()A.∠B=∠DEF B.∠A=∠D C.AC∥DF D.BE=EC6.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=4,则PQ的长不可能是()A.3.5 B.4 C.4.5 D.57.如图,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带上()A.①B.②C.③D.①和③8.如图,在Rt△ABC中∠C=90°,以顶点A为圆心,任意长为半径作弧,分别交AC,AB于点M,N,再MN的长为半径作弧,两弧交于点P.作射线AP交边BC于点D.若CD=3,AB=分别以点M,N为圆心,大于1210,则△ABD的面积是()A.30 B.24 C.15 D.12二、填空题9.如图△ABC≌△A′B′C′,其中AB=3,A′C′=7,B′C′=5,则△ABC的周长为10.如图,已知∠1=∠2,要使△ABD≌△ACD需要添加的一个条件是.11.如图,D是AB上一点,DF交AC于点E,E为DF的中点,FC∥AB,若BD=3,FC=8,则AB=.12.如图,在△ABD中,BC平分∠ABD,DE为高∠ACB=135°,△ABD的面积为6,AE=4则BD的长为.13.如图,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.则∠CMB的度数为°.三、解答题14.如图,B是线段AC的中点AD∥BE,BD∥CE,求证:△ABD≌△BCE.15.如图,点A,F,C,D在同一直线上,BC∥EF,AF=DC,BC=EF.求证:AB∥DE.16.有一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:AC平分∠BAD.17.如图,点A,B,C,D在同一条直线上,点E,F分别在直线AB的两侧,且AE=BF,AE∥BF,AC=BD(1)求证:△ACE≅△BDF;(2)若AB=8,AC=2求CD的长.18.如图,DE⊥AB的延长线于E,DF⊥AC于F,若BD=CD,BE=CF.(1)求证:△BDE≅△CDF;(2)求证:AD平分∠BAC.参考答案1.B2.B3.D4.A5.A6.A7.C8.C9.1510.AC=AB(答案不唯一)11.1112.313.14014.证明:∵B是AC中点∴AB=BC∵AD∥BE∴∠A=∠EBC∵BD∥EC∴∠DBA=∠C在△ABD和△BCE中{∠A=∠EBC AB=BC ∠DBA=∠C∴△ABD≌△BCE(ASA). 15.证明:∵BC∥EF ∴∠ACB=∠EFD∵AF=CD∴AC=DF在△ABC和△DEF中{AC=DF ∠ACB=∠DFE BC=EF∴△ABC≌△DEF(SAS)∴∠A=∠D∴AB∥DE.16.证明:在△BAC和△DAC中{AB=AD BC=DC AC=AC∴△BAC≌△DAC(SAS)∴∠BAC=∠DAC∴AC是∠BAD的平分线17.(1)解:证明:∵AE∥BF∴∠A=∠B∵AC=BD∴AC+CD=BD+CD∴AD=BC在△ACE和△BDF中∴△ACE≅△BDF(SAS);(2)解:由(1)知△ACE≅△BDF∴BD=AC=2∵AB=8∴CD=AB−AC−BD=418.(1)证明:∵DE⊥AB∴∠E=∠DFC=90°在Rt△DBE和Rt△DCF中BD=CD∴Rt△DBE≅Rt△DCF(HL).(2)证明:∵Rt△DBE≅Rt△DCF∴DE=DF ∵DE⊥AB,DF⊥AC∴AD平分∠BAC.。
人教版八年级数学上册《第十二章 全等三角形》单元测试卷(附答案)
人教版八年级数学上册《第十二章全等三角形》单元测试卷(附答案)一、选择题1.下列说法正确的是( )A. 两个等边三角形一定全等B. 形状相同的两个三角形全等C. 面积相等的两个三角形全等D. 全等三角形的面积一定相等2.根据下列已知条件,能唯一画出△ABC的是( )A. AB=5,BC=3,AC=8B. AB=4,BC=3C. ∠C=90°,AB=6D. ∠A=60°,∠B=45°3.如图,已知∠C=∠D=90°,AC=AD那么△ABC与△ABD全等的理由是( )A. HLB. SASC. ASAD. AAS4.如图∠CAB=∠DBA,再添加一个条件,不一定能判定△ABC≌△BAD的是( )A. AC=BDB. ∠1=∠2C. AD=BCD. ∠C=∠D5.如图,若△ABC≌△ADE,则下列结论中一定成立的是( )A. AC=DEB. ∠BAD=∠CAEC. AB=AED. ∠ABC=∠AED6.在△ABC中AC=6则BC边上的中线AD的取值范围是( )A. 3<AD<11B. 3<AD<9C. 1<AD<7D. 5<AD<117.如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F,若S△ABC=7,DE= 2,AB=4则AC的长为( )A. 3B. 4C. 5D. 68.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE= 55°,∠BCD=155°,则∠BPD的度数为( )A. 130°B. 155°C. 125°D. 110°9.在△ABC中AC=6则BC边上的中线AD的取值范围是( )A. 6<AD<8B. 2<AD<14C. 1<AD<7D. 无法确定10.如图AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=5cm,DE=3cm,则BD等于( )A. 6cmB. 8cmC. 10cmD. 4cm二、填空题11.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x−y=__________.12.如图为6个边长相等的正方形的组合图形,则∠1+∠3=______ .13.如图△ABC≌△A′B′C′,其中∠C′=24°则∠B=°.14.如图,已知△ABC≌△ADE,若AB=7,AC=3则BE的值为_____.15.如图,已知在△ABC和△DEF中BF=CE点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).16.如图△ABC中AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_______度.17.如图△ABC≌△DCB,若AC=7,BE=5则DE的长为.18.如图,Rt△ABC中AD为的∠BAC角平分线,与BC相交于点D,若CD=3,AB=10则△ABD的面积是______.19.如图,在△ABC中∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8cm,则△BED的周长是______.20.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF//AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF给出下列四个结论:①DE=DF②DB=DC③AD⊥BC④AC=3BF其中正确的结论是______ .三、解答题21.如图,在直线MN上求作一点P,使点P到射线OA和OB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程)22.如图AB//CD,AB=CD,CE=BF请写出DF与AE的数量关系,并证明你的结论.23.已知:如图AB//DE,点C、F在AD上AF=DC,AB=DE.求证:△ABC≌△DEF.24.如图,点A,E,F,B在直线l上AE=BF,AC//BD且AC=BD,求证:CF=DE.25.如图,在△ABC中∠C=90∘,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE、AF与BE之间的数量关系,并说明理由.答案和解析1.【答案】D【解析】【分析】本题考查的是全等图形,熟知全等三角形的判定与性质是解答此题的关键,根据全等图形的性质对各选项进行逐一分析即可.【解答】解:A.两个边长不相等的等边三角形不全等,故本选项错误;B.形状相同,边长不对应相等的两个三角形不全等,故本选项错误;C.面积相等的两个三角形不一定全等,故本选项错误;D.全等三角形的面积一定相等,故本选项正确.故选D.2.【答案】D【解析】【分析】本题考查了三角形的三边关系定理和全等三角形的判定定理,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL.根据三角形的三边关系定理,先看看能否组成三角形,再根据全等三角形的判定定理判断即可.【解答】解:A∵3+5=8∴根据三角形三边关系AB=5BC=3AC=8不能画出三角形故本选项错误;B已知AB BC和BC的对角AB=4BC=3∠A=30°不能画出唯一三角形故本选项错误;C根据∠C=90°AB=6已知一个角和一条边不能画出唯一三角形故本选项错误;D根据∠A=60°∠B=45°AB=4已知两角和夹边符合全等三角形的判定定理ASA即能画出唯一三角形故本选项正确;故选D.3.【答案】A【解析】【分析】本题考查全等三角形的判定解题的关键是注意AB是两个三角形的公共边本题属于基础题型.已知∠C=∠D=90°AC=AD且公共边AB=AB故△ABC与△ABD全等.【解答】解:在Rt△ABC与Rt△ABD中{AB=ABAC=AD∴Rt△ABC≌Rt△ABD(HL)故选A.4.【答案】C【解析】【分析】本题主要考查全等三角形的判定.熟记5种判定并灵活运用是解决本题的关键.【解答】解:A.添加AC=BD则可以通过(SAS)判定△ABC≌△BAD故本选项不符合题意;B.添加∠1=∠2则可以通过(ASA)判定△ABC≌△BAD故本选项不符合题意;C.添加AD=BC不能判定△ABC≌△BAD故本选项符合题意;D.添加∠C=∠D则可以通过(AAS)判定△ABC≌△BAD故本选项不符合题意;故选C.5.【答案】B【解析】【分析】本题考查了全等三角形的性质熟练掌握全等三角形的性质是解题的关键.根据全等三角形的性质即可得到结论.【解答】解:∵△ABC≌△ADE∴AC=AE AB=AD∠ABC=∠ADE∠BAC=∠DAE∴∠BAC−∠DAC=∠DAE−∠DAC即∠BAD=∠CAE.故A C D选项错误B选项正确故选:B.6.【答案】C【解析】【分析】这是一道考查全等三角形的判定和三角形的三边关系的题目解题关键在于构造三角形延长AD至E使DE=AD连接CE证明△ABD≌△ECD再利用三边关系即可得到答案.【解答】解:延长AD至E使DE=AD连接CE在△ABD和△ECD中{AD=ED∠ADB=∠EDC DB=DC,∴△ABD≌△ECD∴CE=AB=8在△ACE中CE−AC<AE<CE+AC即2<2AD<14故1<AD<7故选C.7.【答案】A【解析】【分析】本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法要注意掌握应用.先由角平分线的性质可知DF=DE=2然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.【解答】解:∵AD是△ABC中∠BAC的平分线DE⊥AB于点E DF⊥AC交AC于点F∴DF=DE=2又∵S△ABC=S△ABD+S△ACD AB=4∴7=12×4×2+12·AC·2∴AC=3.故选A.8.【答案】A【解析】【分析】本题考查了全等三角形的判定和性质三角形的内角和定理以及四边形的内角和定理易证△ACD≌△BCE由全等三角形的性质可知:∠A=∠B再根据已知条件和四边形的内角和为360°即可求出∠BPD的度数.【解答】解:在△ACD 和△BCE 中{AC =BC CD =CE AD =BE∴△ACD≌△BCE(SSS)∴∠A =∠B ∠BCE =∠ACD∴∠BCA =∠ECD∵∠ACE =55° ∠BCD =155°∴∠BCA +∠ECD =100°∴∠BCA =∠ECD =50°∵∠ACE =55°∴∠ACD =105°∴∠A +∠D =75°∴∠B +∠D =75°∵∠BCD =155°∴∠BPD =360°−75°−155°=130°.故选A .9.【答案】C【解析】【分析】此题主要考查了全等三角形的判定和性质 三角形的三边关系.注意:倍长中线是常见的辅助线之一. 延长AD 至E 使DE =AD 连接CE.根据SAS 证明△ABD≌△ECD 得CE =AB 再根据三角形的三边关系即可求解.【解答】解:延长AD 至E 使DE =AD 连接CE .在△ABD和△ECD中{DE=AD∠ADB=∠CDE DB=DC∴△ABD≌△ECD(SAS)∴CE=AB.在△ACE中CE−AC<AE<CE+AC即2<2AD<141<AD<7.故选:C.10.【答案】B【解析】【分析】由题意可证△ABC≌△CDE即可得CD=AB=5cm DE=BC=3cm进而可求BD的长。
人教版数学八年级上册第十二章《全等三角形》测试卷(含答案)
人教版数学八年级上册第十二章《全等三角形》测试卷(含答案)班级姓名一、选择题(每小题3分,共30分)1.(2022江苏连云港期中)已知△ABC的三边的长分别为3,5,7,△DEF的三边的长分别为3,7,2x-1,若这两个三角形全等,则x的值是()A.3B.5C.-3D.-52.(2021天津北仓二中月考)如图是一种测量工具,点O是两根钢条AC、BD的中点,并能绕点O转动.由三角形全等可得内槽宽AB与CD相等,其中△OAB≌△OCD的依据是()A.SSSB.ASAC.SASD.AAS3.(2022湖北武汉一模)已知△ABC,两个完全一样的三角板如图摆放,它们的一组对应直角边分别在AB,AC上,且这组对应边所对的顶点重合于点M,点M一定在()A.∠A的平分线上B.AC边的高上C.BC边的垂直平分线上D.AB边的中线上4.(2020四川南充嘉陵期中)如图,△ABC≌△ADE,若∠C=70°,∠B=30°,∠CAD=35°,则∠CAE=()A.40°B.45°C.50°D.55°5.如图,在方格纸中,以AB为一边作△ABP,使其与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个6.如图,点B,C,E在同一直线上,且AC=CE,∠B=∠D=90°,AC⊥CD,下列结论不一定成立的是()A.∠A=∠2B.∠A+∠E=90°C.BC=DED.∠BCD=∠ACE7.如图,在四边形ABCD中,AB∥DC,E为BC的中点,连接DE、AE,AE⊥DE,延长DE交AB的延长线于点F.若AB=5,CD=3,则AD的长为()A.2B.5C.8D.118.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,作射线AP交2边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.609.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,有下列结论:①CD=ED;②AC+BE=AB;③DA平分∠CDE;④∠BDE=∠BAC;⑤S△ABD∶S△ACD=AB∶AC,其中结论正确的个数为()A.5B.4C.3D.210.(2022山东聊城期中)如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的结论有()A.①B.①②C.①②③D.①②④二、填空题(每小题3分,共24分)11.(2022江苏徐州二中期末)如图,已知△ABC≌△DFE,∠B=80°,∠ACB=30°,则∠D=.12.(2021湖南长沙中考)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,若BC=4,DE=1.6,则BD的长为.13.(2021黑龙江齐齐哈尔中考)如图,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的条件是.(只需写出一个条件即可)14.(2021广东中山四校联考)如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为.15.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE 的长为.16.(2022广东广州六中月考)如图,小张同学拿着老师的等腰直角三角尺,摆放在两摞长方体教具之间,∠ACB=90°,AC=BC,若每个长方体教具高度均为6 cm,则两摞长方体教具之间的距离DE的长为cm.17.如图,在△PAB中,∠A=∠B,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为.18.如图,在Rt△ABC中,∠C=90°,AC=12,BC=6,PQ=AB,P、Q两点分别在AC和过点A 且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP=.三、解答题(共46分)19.(2021湖北黄石中考)(6分)如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E 点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.20.(2022福建福州三中期中)(6分)如图,点E,F分别在OA,OB上,DE=DF,∠OED+∠OFD=180°.(1)请作出点D到OA、OB的距离,标明垂足;(2)求证:OD平分∠AOB.21.(2020江苏常州中考)(6分)已知:如图,点A、B、C、D在一条直线上,EA∥FB,EA= FB,AB=CD.(1)求证:∠E=∠F;(2)若∠A=40°,∠D=80°,求∠E的度数.22.(2021广东深圳宝安期末)(8分)如图,在△ABC中,D为AB上一点,E为AC的中点,连接DE并延长至点F,使得EF=ED,连接CF.(1)求证:CF∥AB;(2)若∠ABC=50°,连接BE,BE平分∠ABC,CA平分∠BCF,求∠A的度数.23.(2021江西宜春期中)(10分)如图所示,E、F分别为线段AC上的两个点,且DE⊥AC 于点E,BF⊥AC于点F,若AB=CD,AE=CF,BD交AC于点M.(1)试猜想DE与BF的关系,并证明你的结论;(2)求证:MB=MD.24.(2022山东日照模拟)(10分)在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC= 90°,E、F分别是BC、CD上的点,且∠EAF=60°,试探究图1中线段BE、EF、FD之间的数量关系.(1)小亮同学认为:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,则可得到BE、EF、FD之间的数量关系是;(2)在四边形ABCD中,如图2,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的∠BAD,上述结论是否仍然成立?请说明理由.点,∠EAF=12答案全解全析1.A ∵这两个三角形全等, ∴2x-1=5,解得x=3,故选A.2.C ∵O 是AC 、BD 的中点,∴AO=CO,BO=DO. 在△OAB 和△OCD 中,{AO =CO,∠AOB =∠COD,BO =DO,∴△OAB ≌△OCD(SAS),故选C. 3.A 连接AM,由题意得,MG=MH,MG ⊥AB,MH ⊥AC,∴AM 平分∠BAC,∴点M 一定在∠BAC 的平分线上,故选A. 4.B ∵∠C=70°,∠B=30°,∴∠BAC=180°-∠C-∠B=180°-70°-30°=80°,∵△ABC ≌△ADE,∴∠EAD=∠BAC=80°,∴∠CAE=∠EAD-∠CAD=80°-35°=45°,故选B.5.C 由题图可知,满足条件的有P 1,P 3,P 4,共3个,故选C.6.D ∵AC ⊥CD,∴∠ACD=90°,∴∠1+∠2=90°, ∵∠B=90°,∴∠1+∠A=90°,∴∠2=∠A, 在△ABC 和△CDE 中,{∠B =∠D,∠A =∠2,AC =CE,∴△ABC ≌△CDE(AAS),∴BC=DE,∠1=∠E,∴∠A+∠E=90°,∵∠1不一定等于∠2,∴∠BCD 不一定等于∠ACE. 故A,B,C 选项不符合题意,故选D. 7.C ∵E 为BC 的中点,∴BE=EC,∵AB ∥CD,∴∠F=∠CDE,在△BEF 与△CED 中,{∠F =∠CDE,∠BEF =∠CED,BE =EC,∴△BEF ≌△CED(AAS),∴EF=ED,BF=CD=3,∴AF=AB+BF=8, ∵AE ⊥DE,∴∠AED=∠AEF=90°, 在△AED 与△AEF 中,{AE =AE,∠AED =∠AEF,ED =EF,∴△AED ≌△AEF(SAS),∴AD=AF=8,故选C.8.B 由题意得AP 是∠BAC 的平分线,过点D 作DE ⊥AB 于E,如图,∵∠C=90°,∴DE=CD=4,∴△ABD 的面积=12AB·DE=12×15×4=30.故选B.9.A ∵在△ABC 中,∠C=90°,AD 平分∠BAC,DE ⊥AB,∴CD=ED,①正确; 在Rt △ADE 和Rt △ADC 中,{AD =AD,ED =CD,∴Rt △ADE ≌Rt △ADC(HL), ∴∠ADE=∠ADC,AE=AC, ∴DA 平分∠CDE,③正确;∵AE=AC,∴AB=AE+BE=AC+BE,②正确; ∵∠BDE+∠B=90°,∠B+∠BAC=90°, ∴∠BDE=∠BAC,④正确;∵S △ABD =12AB·DE,S △ACD =12AC·CD,且CD=ED,∴S △ABD ∶S △ACD =AB ∶AC,⑤正确. 故结论正确的个数为5,故选A. 10.D ∵∠AOB=∠COD=40°, ∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC 和△BOD 中,{OA =OB,∠AOC =∠BOD,OC =OD,∴△AOC ≌△BOD(SAS),∴∠OCA=∠ODB,∠OAC=∠OBD,AC=BD,①正确;由三角形的外角性质得∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG ⊥MC 于G,OH ⊥MB 于H,如图所示:则∠OGC=∠OHD=90°,在△OCG 和△ODH 中,{∠OGC =∠OHD,∠OCG =∠ODH,OC =OD,∴△OCG ≌△ODH(AAS),∴OG=OH,∴MO 平分∠BMC,④正确;∵∠AOB=∠COD,∴当∠DOM=∠AOM 时,OM 才平分∠BOC,假设∠DOM=∠AOM,∵∠AOC=∠BOD,∴∠COM=∠BOM,∵MO 平分∠BMC,∴∠CMO=∠BMO,在△COM 和△BOM 中,{∠COM =∠BOM,OM =OM,∠CMO =∠BMO,∴△COM ≌△BOM(ASA),∴OB=OC,∵OA=OB,∴OA=OC,与OA>OC 矛盾,∴③错误.正确的有①②④.故选D.11.70°解析 ∵∠B=80°,∠ACB=30°,∴∠A=180°-80°-30°=70°,∵△ABC ≌△DFE,∴∠D=∠A=70°.12.2.4解析 ∵AD 平分∠BAC,DE ⊥AB,∠C=90°,∴CD=DE,∵DE=1.6,∴CD=1.6,∴BD=BC-CD=4-1.6=2.4.故答案为2.4.13.∠B=∠E(或∠C=∠D 或AB=AE)解析 ∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD,∵AC=AD,∴当添加∠B=∠E 时,可根据“AAS”判定△ABC ≌△AED;当添加∠C=∠D 时,可根据“ASA”判定△ABC ≌△AED;当添加AB=AE 时,可根据“SAS”判定△ABC ≌△AED.(答案不唯一,任选一个即可) 14.5解析 ∵AD 是BC 边上的高,BE 是AC 边上的高,∴∠ADC=∠BDF=∠CEB=90°,∴∠DAC+∠C=90°,∠C+∠DBF=90°,∴∠DAC=∠DBF,在△ADC 和△BDF 中,{∠ADC =∠BDF,∠DAC =∠DBF,AC =BF,∴△ADC ≌△BDF(AAS),∴FD=CD=3,AD=BD=8,∴AF=AD-FD=8-3=5,故答案为5.15.2解析 ∵BE ⊥CE,AD ⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB 和△ADC 中,{∠E =∠ADC,∠EBC =∠DCA,BC =CA,∴△CEB ≌△ADC(AAS),∴DC=BE=1,CE=AD=3.∴DE=EC-CD=3-1=2.16.42解析 由题意得AD ⊥DE,BE ⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠DAC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠BCE=∠DAC,在△ADC 和△CEB 中,{∠ADC =∠CEB,∠DAC =∠ECB,AC =CB,∴△ADC ≌△CEB(AAS),∴CD=BE,AD=CE,∵DE=CD+CE,∴DE=BE+AD,∵一个长方体教具的高度为6 cm,∴AD=24 cm,BE=18 cm,∴两摞长方体教具之间的距离DE 的长=24+18=42(cm).故答案为42.17.92°解析 在△AMK 和△BKN 中,{AM =BK,∠A =∠B,AK =BN,∴△AMK ≌△BKN,∴∠AKM=∠BNK,∵∠AKN=∠B+∠BNK,∴∠AKM+∠MKN=∠B+∠BNK,∴∠B=∠MKN=44°,∴∠P=180°-2×44°=92°.故答案为92°.18.6或12解析 当AP=CB=6时,在Rt △ABC 与Rt △QPA 中,{AB =QP,CB =AP,∴Rt △ABC ≌Rt △QPA(HL);当点P 与点C 重合时,AP=AC=12,在Rt △QAP 与Rt △BCA 中,{QP =BA,AP =CA,∴Rt △QAP ≌Rt △BCA(HL).综上所述,AP=6或12.19.解析 (1)证明:∵CF ∥AB,∴∠ADF=∠F,∠A=∠ECF.在△ADE 和△CFE 中,{∠A =∠ECF,∠ADE =∠F,DE =FE,∴△ADE ≌△CFE(AAS).(2)∵△ADE ≌△CFE,∴AD=CF=4,∴BD=AB-AD=5-4=1.20.解析 (1)分别作DM ⊥OA,DN ⊥OB,垂足分别为M 、N,则DM 、DN 的长分别为点D 到OA 、OB 的距离.(2)证明:∵∠OED+∠OFD=180°,∠OED+∠MED=180°,∴∠MED=∠NFD,∵DM ⊥OA,DN ⊥OB,∴∠DME=∠DNF=90°,在△DME 和△DNF 中,{∠DME =∠DNF,∠MED =∠NFD,DE =DF,∴△DME ≌△DNF(AAS),∴DM=DN,∴点D 在∠AOB 的平分线上,即OD 平分∠AOB.21.解析 (1)证明:∵EA ∥FB,∴∠A=∠FBD,∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△EAC 与△FBD 中,{EA =FB,∠A =∠FBD,AC =BD,∴△EAC ≌△FBD(SAS),∴∠E=∠F.(2)∵△EAC ≌△FBD,∴∠ECA=∠D=80°,∵∠A=40°,∴∠E=180°-40°-80°=60°.22.解析 (1)证明:在△AED 和△CEF 中,{AE =CE,∠AED =∠CEF,DE =FE,∴△AED ≌△CEF(SAS),∴∠A=∠ACF,∴CF ∥AB.(2)∵CA 平分∠BCF,∴∠ACB=∠ACF,∵∠A=∠ACF,∴∠A=∠ACB,∵∠A+∠ABC+∠ACB=180°,∠ABC=50°,∴2∠A=130°,∴∠A=65°.23.解析 (1)DE=BF,且DE ∥BF.证明:∵DE ⊥AC,BF ⊥AC,∴∠DEC=∠BFA=90°,∴DE ∥BF,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在Rt △ABF 和Rt △CDE 中,{AB =CD,AF =CE,∴Rt △ABF ≌Rt △CDE(HL),∴DE=BF.(2)证明:在△DEM 和△BFM 中,{∠DME =∠BMF,∠DEM =∠BFM,DE =BF,∴△DEM ≌△BFM(AAS),∴MB=MD.24.解析 (1)EF=BE+DF.证明:在△ABE 和△ADG 中,{BE =DG,∠B =∠ADG,AB =AD,∴△ABE ≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠BAD=120°,∠EAF=60°,∴∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,在△AEF 和△AGF 中,{AE =AG,∠EAF =∠GAF,AF =AF,∴△AEF ≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF.(2)结论EF=BE+DF 仍然成立.理由:如图,延长FD 到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADF+∠ADG=180°,∴∠B=∠ADG,在△ABE 和△ADG 中,{BE =DG,∠B =∠ADG,AB =AD,∴△ABE ≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,在△AEF 和△AGF 中,{AE =AG,∠EAF =∠GAF,AF =AF,∴△AEF ≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF.。
八年级数学上册《第十二章全等三角形》单元检测卷附答案-人教版
八年级数学上册《第十二章全等三角形》单元检测卷附答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.如图,AC 与BD 相交于点O ,AB CD =和A D ∠∠=,不添加辅助线,判定ABO ≌DCO 的依据是( )A .SSSB .SASC .HLD .AAS2.边长都为整数的△ABC 和△DEF 全等,AB 与DE 是对应边,AB =2,BC =4,若△DEF 的周长为奇数,则DF 的值为( )A .3B .4C .3或5D .3或4或53.小丽与爸妈在公园里荡秋千.如图,小丽坐在秋千的起始位置A 处,OA 与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1m 高的B 处接住她后用力一推,爸爸在C 处接住她.若妈妈与爸爸到OA 的水平距离BD 、CE 分别为1.4m 和1.8BOC 90m ∠︒=,.爸爸在C 处接住小丽时,小丽距离地面的高度是( )A .1mB .1.6mC .1.8mD .1.4m4.如图所示,在 ABC 中 90C ∠=︒ ,点D 在 AB 上 BC BD = , DE AB ⊥ 交 AC 于点E , ABC 的周长为12, ADE 的周长为6,则 BC 长为( )A .3B .4C .5D .65.如图,在ACD 中9068CAD AC AD ∠=︒==,,,AB CD 且E 是CD 上一点,BE 与AD 相交于点F ,当AB CE CD +=时,图中阴影部分的面积为( )A .24B .36C .48D .606.如图,ABC ≌ADE ,BC 的延长线交DE 于点F3011010B AED DAC ∠=︒∠=︒∠=︒,, 则DFB ∠=( )A .55︒B .50︒C .65︒D .60︒7.如图,已知 ABC 的周长是16,MB 和MC 分别平分∠ABC 和∠ACB ,过点M 作BC 的垂线交BC 于点D ,且MD =4,则 ABC 的面积是( )A .64B .48C .32D .428.如图,已知线段40AB =米,MA AB ⊥于点A ,20MA =米射线BD AB ⊥于B ,P 点从B 点向A 运动,每秒走1米,Q 点从B 点向D 运动,每秒走3米,P 、Q 同时从B 出发,则出发x 秒后,在线段MA 上有一点C ,使CAP 与PBQ 全等,则x 的值为( )A .20B .20或10C .10D .6或10二、填空题:(本题共5小题,每小题3分,共15分.) 9.在平面直角坐标系中,已知点A ,B 的坐标分别是 (2,0) , (4,2) 若在x 轴下方有一点P ,使以O ,A ,P 为顶点的三角形与 OAB 全等,则满足条件的P 点的坐标是 .10.如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若∠DEF=40°,PB=PF ,则∠APF= °.11.如图,在△ABC 中,BD 是边AC 上的高,CE 平分∠ACB ,交BD 于点E ,DE =2,BC =5,则△BCE 的面积为 .12.如图,D 为ABC 内一点,CD 平分ACB ∠,BE CD ⊥垂足为D ,交AC 与点E ,A ABE ∠=∠若7AC =,4BC =则BD 的长为 .13.如图,点A ,E ,F ,C 在一条直线上,若将△DEC 的边EC 沿AC 方向平移,平移过程中始终满足下列条件:AE =CF ,DE ⊥AC 于点E ,BF ⊥AC 于点F ,且AB =CD .则当点E ,F 不重合时,BD 与EF 的关系是 .三、解答题:(本题共5题,共45分)14.如图,已知AC 平分BAF ∠,CE AB ⊥于点E ,CF AF ⊥于点F ,且BC DC =.求证:CFD CEB ≌.15.如图AB AC = , AB AC ⊥ 和AD AE ⊥ ,且 D AEC ∠=∠ ,求证: AD AE = .16.如图,AD 为△ABC 的中线,分别过点C 、B 作AD 的垂线,垂足分别为E 、F .求证:BF=CE .17.如图所示,在△ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 交BD 的延长线于点E ,CE =1,延长CE 、BA 交于点F .(1)求证:△ADB ≌△AFC ;(2)求BD 的长度.18.如图 AB AC = , AE AD = 和 CAB EAD α∠=∠= .(1)求证: AEC ADB ≅ ;(2)若 90α=︒ ,试判断 BD 与 CE 的数量及位置关系并证明;(3)若 CAB EAD α∠=∠= ,求 CFA ∠ 的度数.参考答案:1.D 2.D 3.D 4.A 5.A 6.B 7.C 8.C9.(2,2)-- 或 (4,2)-10.8011.512.3213.互相平分14.证明:∵AC 平分BAD ∠,CE AB ⊥于E ,CF AD ⊥于F ∴CE CF =在Rt CEB 和Rt CFD 中{CE =CF CB =CD∴()Rt Rt HL CFD CEB ≌.15.证明:∵AB ⊥AC ,AD ⊥AE∴∠BAE+∠CAE =90°,∠BAE+∠BAD =90°∴∠CAE =∠BAD又AB =AC , D AEC ∠=∠∴△ABD ≌△ACE(AAS)∴AD AE = .16.证明:∵CE ⊥AF ,BF ⊥AF∴∠CED=∠BFD=90°又∵AD 是边BC 上的中线∴BD=DC ;在Rt △BDF 和Rt △CDE 中∴△BDF ≌△CDE (AAS )∴BF=CE (全等三角形的对应边相等).17.(1)证明:如图∵∠BAC =90°∴∠2+∠F =90°,∠ACF+∠F =90°∴∠ACF =∠2在△ACF 和△ABD 中{∠CAF =∠BAD =90∘AC =AB∠ACF =∠2∴△ACF ≌△ABD(2)解:∵△ACF≌△ABD∴BD=CF∵BE⊥CF∴∠BEC=∠BEF=90°∵∠1+∠BCE=90°,∠2+∠F=90°∴∠BCF=∠F∴BC=BF,CE=EF=1∴BD=CF=2.18.(1)证明:∵∠CAB=∠EAD ∴∠CAB+∠BAE=∠EAD+∠BAE∴∠CAE=∠BAD∵AB=AC,AE=AD在△AEC和△ADB中{AB=AC∠CAE=∠BADAE=AD∴△AEC≌△ADB(SAS)(2)解:CE=BD且CE⊥BD,证明如下:将直线CE与AB的交点记为点O由(1)可知△AEC≌△ADB∴ CE=BD,∠ACE=∠ABD∵∠BOF=∠AOC,∠α =90°∴∠BFO=∠CAB=∠α =90°∴ CE⊥BD.(3)解:过A分别做AM⊥CE,AN⊥BD由(1)知△AEC≌△ADB∴两个三角形面积相等故AM·CE=AN·BD∴AM=AN∴AF平分∠DFC由(2)可知∠BFC=∠BAC= α∴∠DFC=180°- α∴∠CFA= 12∠DFC= 902α︒-。
八年级数学上册《第十二章 全等三角形》单元测试卷含答案(人教版)
八年级数学上册《第十二章 全等三角形》单元测试卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.角平分线的性质:角平分线上的点到这个角的两边距离相等,其理论依据是全等三角形判定定理( )A .SASB .HLC .AASD .ASA2.如图,Rt ABC 沿直角边BC 所在的直线向右平移得到DEF ,下列结论中错误的是( )A .ΔABC ≌ΔDEFB .90DEF ∠=︒C .AC DF =D .EC CF =3.如图:EA ∥DF ,AE=DF ,要使△AEC ≌△DBF ,则只要( )A .AB=CDB .EC=BFC .∠A=∠D D .AB=BC4.如图,ABC A B C '''≌,其中3624A C ∠=︒∠='︒,,则B ∠的度数为( )A .150︒B .120︒C .100︒D .60︒5.如图,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,F 是CD 与BE 的交点.若AD =FD ,∠ABE =26°,则∠ACB 的度数为( )A .76°B .71°C .81°D .86°6.如图,在ABC 中,108AB AC O ==,,为ABC 角平分线的交点,若ABO 的面积为30,则ACO 的面积为( )A .18B .20C .22D .247.如图,△ABC 中,AB =4,BC =6,BD 是△ABC 的角平分线,DE ⊥AB 于点E ,AF ⊥BC 于点F ,若DE =2,则AF 的长为( )A .3B .103C .72D .1548.如图,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE=DF ,连结BF ,CE.下列说法:①△ABD 和△ACD 面积相等;②∠BAD=∠CAD ;③△BDF ≌△CDE ;④BF ∥CE ;⑤CE=AE.其中正确的有( )A .1个B .2个C .3个D .4个二、填空题9.如图,已知 ABC 中,点D ,E 分别在边AC ,AB 上,连接BD ,DE 和 180C AED ∠+∠=︒ 请你添加一个条件,使 BDE BDC ≌ ,你所添加的条件是 .(只填一个条件即可)10.如图,在△ABC 中,已知∠1=∠2,BE=CD ,AB=7,AE=3,则CE= .11.如图所示,点O 在一块直角三角板ABC 上(其中30ABC ∠=︒),OM AB ⊥于点M ,ON BC∠=度.=,则ABO⊥于点N,若OM ON--路径运动,终12.如图,ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A点出发沿A C B--路径运动,终点为A点.点P和点Q分别以1cm/s和点为B点;点Q从B点出发沿B C A⊥3cm/s的速度同时开始运动,两点到达相应的终点时分别停止运动.若分别过点P和Q作PE l ⊥于F.当PEC与QFC全等时,点P的运动时间t为.于E,QF l13.如图,AD是ABC的角平分线,DF⊥AB,垂足为F,DE=DG,ADG和AED的面积分别为27和14,则EDF的面积为.三、解答题14.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,求AC长.∠,交AC边于点E,连接DE.求15.如图,在ABC中,D是BC边上的一点,AB=DB,BE平分ABC≌;证:ABE DBE16.如图,AD,BC相交于点O,且AB CD,OA=OD.=;(1)求证:OB OC=,求证:BE CF.(2)若在直线AD上截取AE DF17.已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于点F,连接BF并延长交AC于点E,∠BAD=∠FCD.求证:(1)△ABD≌△CFD;(2)BE⊥AC.cm的18.如图,在ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AF=10cm,AC=14cm,动点E以2/scm的速度从C点向A点运动,当一个点到达终点时,另一个速度从A点向F点运动,动点G以1/s点随之停止运动,设运动时间为t.=;(1)求证:AF AM(2)当t取何值时,DFE与DMG全等参考答案:1.C 2.D 3.A 4.B 5.B 6.D 7.B 8.C9.答案不唯一,如∠CBD=∠EBD 等10.411.1512.1或72或12 13.6514.解:过D 作DF ⊥AC 于F∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,DE=2∴DE=DF=2∵S △ABC =7∴S △ADB +S △ADC =7 ∴1122AB DE AC DF ⨯⨯+⨯⨯ =7 ∴1142222AC ⨯⨯+⨯⨯ =7解得:AC=3.15.证明:∵BE 平分 ABC ∠ ∴ABE DBE ∠=∠在 ABE 和 DBE 中∵AB DB ABE DBE BE BE =⎧⎪∠=∠⎨⎪=⎩∴()ABE DBE SAS ≌ ;16.(1)证明:∵AB CD∴OAB ODC ∠=∠∵OA OD = AOB DOC ∠=∠∴()ASA OAB ODC ≌.∴OB OC =;(2)证明:∵OA OD = AE DF =∴OA AE OD DF +=+即OE OF =.∵EOB FOC ∠=∠,且在(1)中,有OB OC =∴()SAS BOE COF ≌∴E F ∠=∠.∴BE CF .17.(1)证明:∵AD ⊥BC,∴∠ADC=∠ADB=90°又∵∠ACB=45°∴∠DAC=45°,∴∠ACB=∠DAC∴AD=CD在△ABD 和△CFD 中,∠BAD=∠FCD, AD=CD ∠ADB=∠FDC∴△ABD ≌△CFD;(2)证明:∵△ABD ≌△CFD,∴BD=FD∴∠1=∠2又∵∠FDB=90°,∴∠1=∠2=45°又∵∠ACD=45°∴△BEC 中,∠BEC=90°,∴BE ⊥AC.18.(1)证明:∵BAD DAC DF AB DM AC ∠=∠⊥⊥,,,∴DF DM =,在Rt AFD ∆和Rt ΔAMD 中DF DM AD AD =⎧⎨=⎩∴()Rt ΔRt ΔHL AFD AMD ≌;∴AF AM =;(2)解:若DFE 与DMG 全等,且90DF DM EFD GMD =∠=∠=︒, ∴EF MG =∵10AM AF ==∴14104CM AC AM =-=-=①当04t <<时,点G 在线段CM 上,点E 在线段AF 上∴1024EF t MG CM CG t =-=-=-,∴1024t t -=-∴6t =(不合题意,舍去);②当45t ≤<时,点G 在线段AM 上,点E 在线段AF 上1024EF t MG CG CM t =-=-=-,∴1024t t -=- ∴143t =综上所述,当14s 3t 时,DFE 与DMG 全等。
人教版八年级数学上册《第十二章全等三角形》单元测试卷(含答案)
人教版八年级数学上册《第十二章全等三角形》单元测试卷(含答案)一、选择题1.如图ABC ADE ≌,若80B ∠=︒,70DAE ∠=︒则E ∠的度数为( )A .30︒B .35︒C .70︒D .80︒2.关于全等图形的描述,下列说法正确的是( )A .形状相同的图形B .面积相等的图形C .能够完全重合的图形D .周长相等的图形3.如图是某纸伞截面示意图,伞柄AP 平分两条伞骨所成的角∠BAC .若支杆DF 需要更换,则所换长度应与哪一段长度相等( )A .BEB .AEC .DED .DP4.如图,是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质,则判定图中两三角形全等的条件是( )A .SASB .ASAC .AASD .SSS5.如图,OP 平分∠AOB ,点E 为OA 上一点,OE =4,点P 到OB 的距离是2,则∠POE 的面积为( )A .4B .5C .6D .76.已知ABC 的三边长为357,,,DEF 的三边长为33221x x --,,,若ABC 与DEF 全等,则x 等于( )A .73B .4C .3D .3或737.如图,∠ABC∠∠A'B'C ,其中∠A=36°,∠C=24°,则∠B'=( )A .60°B .100C .120D .135°8.如图,已知12∠=∠,要说明ABD ACD ≌,需从下列条件中选一个,错误的是( )A .ADB ADC ∠=∠ B .B C ∠=∠ C .DB DC =D .AB AC =9.如图,在ABC 中D ,E 是BC 边上的两点,1211060AD AE BE CD BAE ==∠=∠=︒∠=︒,,,,则BAC ∠的度数为( )A .90°B .80°C .70°D .60°10.如图,在ΔABC 中90C ∠=︒,AD 平分CAB ∠,若10AB =,CD=3,则ABD 的面积是( )A .9B .12C .15D .24二、填空题11.如图,射线OC 是AOB ∠的角平分线,D 是射线OC 上一点,DP OA ⊥于点P ,DP=5,若点Q 是射线OB 上一点,OQ=4,则ODQ 的面积是 .12.在平面直角坐标系中点()10A ,,()02B ,作BOC ,使BOC 与ABO 全等(点C 与点A 不重合),则点C 坐标为 .13.如图,四边形ABCD 中AB=BC ,90ABC ∠=︒对角线BD CD ⊥,若14BD =,则ABD 的面积为 .14.如图,BO 平分ABC ∠,OD BC ⊥于点D ,点E 为射线BA 上一动点,若6OD =则OE 的最小值为 .三、解答题15.如图,已知ABC BAE ≌,=60ABE ∠︒和=92E ∠︒,求ABC ∠的度数.16.如图,AD∠AB ,CB∠AB ,垂足分别为A ,B ,AC =BD ,AC 与BD 相交于点E ,求证:DE=CE.17.如图是一个工业开发区局部的设计图,河的同一侧有两个工厂A 和B ,AD BC 、的长表示两个工厂到河岸的距离,其中E 是进水口,D 、C 为污水净化后的出口.已知90150AE BE AEB AD ∠︒=,=,=米,350BC =米,求两个排污口之间的水平距离DC .18.如图,在ABC 中D 是BC 的中点DE AB ⊥,DF AC ⊥垂足分别是E ,F .(∠)若BE CF =,求证:AD 是ABC 的角平分线;(∠)若AD 是ABC 的角平分线,求证:BE CF =.四、综合题19.如图,A ,D ,E 三点在同一直线上,且∠BAD∠∠ACE ,试说明:(1)BD=DE+CE ;(2)∠ABD 满足什么条件时,BD∠CE .20.王强同学用10块高度都是 2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板( 90AC BC ACB =∠=︒, ),点 C 在 DE 上,点 A 和 B 分别与木墙的顶端重合.(1)求证: ADC CEB ∆≅∆ ;(2)求两堵木墙之间的距离.21.如图,在四边形ABCD 中P 为CD 边上的一点BC AD AP 、BP 分别是BAD ∠、ABC ∠的角平分线.(1)若70BAD ∠=︒,则ABP ∠的度数为 ,APB ∠的度数为 ;(2)求证:AB BC AD =+;(3)设3BP a =,4AP a =过点P 作一条直线,分别与AD ,BC 所在直线交于点E 、F ,若AB EF =,直接写出AE 的长(用含a 的代数式表示)答案解析部分1.【答案】A【解析】【解答】解:∵ABC ADE ≌∴∠D=∠B=80°∵70DAE ∠=︒∴∠E=180°-∠D-∠DAE=30°故答案为:A【分析】根据全等三角形的性质及三角形内角和定理即可求出答案。
人教版初中数学八年级上册第十二章《全等三角形》单元测试卷(含答案解析)
第十二章《全等三角形》单元测试卷一、选择题(每小题只有一个正确答案)1.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSSB.SASC.ASAD.以上全不对2.如图,在ABC和△DCB中,AB=DC,AC与BD相交于点E,若不再添加任何字母与辅助线,要使△△ABC≌△DCB,则还需增加的一个条件是()A.AC=BD B.AC=BC C.BE=CE D.AE=DE3.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.M点B.N点C.P点D.Q点4.如图,在ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与△∠ACE的平分线CD相交于点D,连接AD,则下列结论中,正确的是()A.∠BAC=60°B.∠DOC=85°C.BC=CD D.AC=AB5.如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠ABC和∠DFE的大小间的关系是()A.∠ABC=∠DFE B.∠ABC>∠DFEC.∠ABC<∠DFE D.∠ABC+∠DFE=90°6.如图,已知∠BAD=∠CAD,则下列条件中用AAS使△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.AB=AC D.BD=CD7.如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为点E,F,连接EF,EF与AD交与点G,下列说法不一定正确的是()A.DE=DF B.△AED≌△AFD C.AD⊥EF D.EG=AG8.在△ABC和△DEF中,已知∠C=∠D,∠B=∠E,要用ASA判定这两个三角形全等,还需要条件()A.BC=ED B.AB=FD C.AC=FD D.∠A=∠F9.如图所示,D,E分别是△ABC的边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°10.如图,△ABC的两个外角平分线相交于点P,则下列结论正确的是()A.AB=AC B.BP平分∠ABC C.BP平分∠APC D.PA=PC11.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10B.7C.5D.412.如图所示,点D在∠BAC的角平线上,DE⊥AB于点E,DF⊥AC于点F,连结EF,BC⊥AD于点D,则下列结论中①DE=DF;②AE=AF;③∠ABD=∠ACD;④∠EDB=∠FDC,其中正确的序号是()A.②B.①②C.①②③D.①②③④二、填空题13.如图,在△ABD和△CDB中,AD=CB,AB、CD相交于点O,请你补充一个条件,使得△ABD≌△CDB.你补充的条件是________________.14.△ABC中,∠BAC:∠ACB:∠ABC=4:3:△2,且ABC≌△DEF,则∠D EF=_____________度.15.如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=____________.16.如图,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.17.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BD:DC=3:2,且点D到边AB的距离6,则BC的长是.三、解答题18.如图,将两根等长钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,O A′B′的理由是什就做成了一个测量工件,则AB的长等于容器内径A′△B′,那么判定OAB≌△么?请说明理由.19.把两个同样大小的含30度的三角尺像如图所示那样放置,其中M是AD与BC的交点.证明:(1)MC的长度等于点M到AB的距离;(2)求∠AMB的度数.20.如图,AD∥BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P,作PE⊥AB于点E,若PE=3,求两平行线AD与BC间的距离.21.如图,已知BE,CF是△ABC的高,P为BE延长线上的-点,Q为CF上一点,△PAB≌△AQC,且AB与QC是对应边,求证:AP⊥AQ.22.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)AB、AC、AE之间有什么关系?证明你的结论.答案解析1.【答案】C【解析】根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选C.2.【答案】A【解析】由AB=DC,BC是公共边,即可得要证△ABC≌△DCB,可利用SSS,即再增加AC=DB即可.3.【答案】A【解析】从图上可以看出点M在∠AOB的平分线上,其它三点不在∠AOB的平分线上.所以点M到∠AOB两边的距离相等.故选A.4.【答案】B【解析】∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=180°-50°-60°=70°,故A 选项错误,∵BD平分∠ABC,∴∠A BO=∠ABC=×50°=25°,在ABO中,∠AOB=180°-∠BAC-∠ABO=180°-70°-25°=85°,∴∠DOC=∠AOB=85°,故B选项正确;∵CD平分∠ACE,∴∠CBD=∠ABC=×50°=25°,∵CD平分∠ACE,∴∠ACD=(180°-60°)=60°,∴∠BDC=180°-85°-60°=35°,∴BC≠CD,故C选项错误;∵∠ABC=50°,∠ACB=60°,∴AC≠AB,故D选项错误.故选B.5.【答案】D【解析】∵BC=EF,AC=DF,∠CAB=∠FDE=90°,∴△A BC≌△DEF(HL),∴∠BCA=∠DFE.又∵在Rt△ABC中∠ABC+∠BCA=90°,∴∠ABC+∠DFE=90°.故选D.6.【答案】A【解析】因为∠BAD=∠CAD,AD为公共边,若∠B=∠△C,则ABD≌△ACD(AAS).7.【答案】D【解析】A.∵AD是△ABC的角平分线,DE⊥AB,D F⊥AC,∴DE=DF,正确;B.∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴D E=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中∴Rt△AED≌Rt△AFD(H L),正确;C.∵Rt△AED≌Rt△AFD,∴AE=AF,∵AD是△ABC的角平分线,∴∠BAD=∠CAD,∴Rt△AEG≌Rt△AFG(SAS)=∴∠AGE =∠AGF∵∠AGE +∠AGF =180°∴∠AGE =∠AGF =90°∴AD ⊥EF ,正确;D.根据已知不能推出 EG =AG ,错误;故选 D .8.【答案】A【解析】根据两角及其夹边对应相等的两个三角形全等,可知应该添加的条件是 BC =DE .9.【答案】D【 解 析 】 ∵ ADB ≌△EDB ≌△EDC , ∴∠A =∠BED =∠CED , ∠ABD =∠EBD =∠C ,∵∠BED +∠CED =180° , ∴∠A =∠BED =∠CED =90° , 在 △ABC 中 , ∠C +2∠C +90°=180° ,∴∠C =30°.故选 D .10.【答案】B【解析】如图,过点 P 作 PD ⊥AB 于 D ,作 PE ⊥BC 于 E ,作 PF ⊥AC 于 △F ,∵ ABC 的两个外角平分线相交于点 P ,∴PD =PE =PF ,∴BP 平分∠ABC .故选 B .11.【答案】C【解析】作 EF ⊥BC 于 F ,∵BE 平分∠ABC ,ED ⊥AB ,EF ⊥BC ,∴EF =DE =2,∴△S BCEBC •EF =×5×2=5,故选 C .12.【答案】D【解析】∵点 D 在∠BAC 的角平分线上,DE ⊥AB , DF ⊥AC , ∴DE =DF , 故 ① 正 确 ; 在 Rt△ADE 和 Rt△ADF 中 ,,∴Rt△ADE ≌Rt△ADF (HL ),∴AE =AF ,∠ADE =∠ADF ,故②正确;∵ BC ⊥AD ,∴∠ADB =∠ADC =90°,∴∠ADB -∠ADE =∠ADC -∠ADF , 即 ∠EDB =∠FDC , 故 ④ 正 确 ; ∵∠ABD +∠EDB =90° ,∠ACD +∠FDC =90°,∴∠ABD =∠ACD ,故③正确;综上所述,正确的是①②③④.故选 D .13.【答案】∠ADB =∠CBD【解析】∠ADB=∠CBD,理由是:∵在△AOD和△C OB中,∴△A BD≌△CDB(SAS),故答案为∠ADB=∠CBD.14.【答案】40【解析】设∠BAC为4x,则∠ACB为3x,∠ABC为2x∵∠BAC+∠ACB+∠ABC=180°,∴4x+3x+2x=180,解得x=20,∴∠ABC=2△x=40°,∵ABC≌△DEF,∴∠DEF=∠ABC=40°.故填40.15.【答案】30°【解析】∵△ABC≌△ADE,∴∠BAC=∠DAE=60°,∵D是∠BAC的平分线上一点,∴∠BAD=∠DAC=∠BAC=30°,∴∠CAE=∠DAE-∠DAC=60°-30°=30°.故答案填30°.16.【答案】△C E;ABF;△CDEC E,再用“SSS”证明ABF≌△CDE得到结论.【解析】先运用等式的性质证明AF=△C E,ABF,△CDE.故答案为△17.【答案】15【解析】∵AD平分∠BAC,∴D到边AB的距离=CD=6.∵CD=6,BD:DC=3:2,∴BD=9,∴BC=15,故答案为15.18.【答案】解:是边角边法判定三角形全等.理由如下:∵AA′、BB′的中点O连在一起,∴OA=OA′,OB=OB′,又∵∠AOB=∠A′OB′,∴△OAB≌△O A′B′的理由是“边角边”.【解析】因为是用两钢条中点连在一起做成一个测量工件,可求出两边分别对应相等,再加上对顶角相等,可判断出两个三角形全等,且用的是SAS.19.【答案】(1)证明:过点M做MN⊥AB,由题意可得:∠CAD=∠DAB=30°,∵∠C=90°,MN⊥AB,∴MC=MN(角平分线上的点到角的两边距离相等),则MC的长度就等于点M到AB的距离.(2)解:由题意知:∠MAB=∠MBA=30°,∴∠AMB=180°-30°-30°=120°.【解析】(1)利用角平分线的性质以及全等三角形的性质得出答案;(2)由三角形内角和定理直接得出.20.【答案】解:如图,过点P作PF⊥AD于F,作PG⊥BC于G,∵AP是∠BAD的平分线,PE⊥AB,∴PF=PE,同理可得PG=PE,∵AD∥BC,∴点F、P、G三点共线,∴FG的长即为AD、BC间的距离,∴平行线AD与BC间的距离为3+3=6.【解析】过点P作PF⊥AD于F,作PG⊥BC于G,根据角平分线上的点到角的两边距离相等可得PF=PE,PG=PE,再根据平行线之间的距离的定义判断出EG的长即为AD、BC间的距离.21.【答案】证明:∵△PAB≌△AQC,∴AP=AQ,∠P=∠QAC,∵BE⊥AC,∴∠AEP=90°,∴∠P+∠PAE=90°,∴∠QAC+∠PAE=90°,即∠PAQ=90°,∴AP⊥AQ.【解析】由全等三角形的性质得出对应边相等AP=AQ,对应角相等∠P=∠QAC,再由BE⊥AC,根据互余两角的关系得出∠QAC+∠PAE=90°,即可得出结论.22.【答案】(1)证明:∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,∴△BDE与△CDE均为直角三角形,∵∴△BDE≌△CDF,∴DE=DF,即AD平分∠BAC;(2)解:AB+AC=2AE.证明:∵BE=CF,AD平分∠BAC,∴∠EAD=∠CAD,∵∠E=∠AFD=90°,∴∠ADE=∠ADF,在△AED与△AFD中,∵,∴△AED≌△AFD,∴AE=AF,∴AB+AC=AE-BE+AF+CF=AE+AE=2AE.【解析】(△1)根据相“HL”定理得出BDE≌△CDF,故可得出DE=DF,所以AD平分∠BAC;(2)由(△1)中BDE≌△CDE可知BE=CF,AD平分∠BAC,故可得出△AED≌△AFD,所以AE=AF,故AB+AC=AE-BE+AF+CF=AE+AE=2AE.。
八年级数学上册《第十二章 全等三角形》单元测试卷-带答案(人教版)
八年级数学上册《第十二章全等三角形》单元测试卷-带答案(人教版)一、单选题1.如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AB=AC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个2.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=a,EF=b,圆形容器的壁厚是()A.A B.B C.b﹣a D.1(b﹣a)23.如图,AB与CD相交于点E,AD=CB,要使△ADE≌△CBE,需添加一个条件,则添加的条件以及相应的判定定理正确的是()A.AE=CE;SAS B.DE=BE;SASC.∠D=∠B;AAS D.∠A=∠C;ASA4.如图∠ACB=90∘,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=5,BE=2则DE 的长是()A.7 B.3 C.5 D.25.如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=CD,B=AC B.∠ADB=∠ADC,BD=CDC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=CD6.如图,已知△ABC≌△ADE,∠D=55°,∠AED=76°,则∠C的大小是()A.50°B.60°C.76°D.55°7.如图,在等边三角形ABC中,D,E分别是AB,AC上的点,且AD=CE,则∠BCD+∠CBE的度数为()A.60°B.45°C.30°D.无法确定8.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,DE平分∠ADB,则∠B=()A.40°B.30°C.25°D.22.5°二、填空题9.如图,在△ABC中,∠ABC=45°,AC=9cm,F是高AD和BE的交点,则BF的长是.10.如图所示,已知△ABC的周长是15,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是.11.如图,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,若DE=20米,则AB= 米;12.如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是.13.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=52°,则∠AEB=.三、解答题14.如图所示,要测量河两岸相对的两点A、B的距离,因无法直接量出A、B两点的距离,请你设计一种方案,求出A、B的距离,并说明理由.15.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.16.如图,已知,△ABC中,∠A=60º,BD,CE是△ABC的两条角平分线,BD,CE相交于点O,求证:BC=CD+BE.17.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.18.如图,AD=CB,AE⊥BD,CF⊥BD,E、F是垂足,AE=CF.求证:(1)AB=CD(2)AB//CD.19.已知:在△AOB和△COD中,OA=OB,OC=OD.(1)如图①,若∠AOB=∠COD=60°,求证:AC=BD.(2)如图②,若∠AOB=∠COD=α,则AC与BD间的等量关系式为,∠APB的大小为(直接写出结果,不证明)参考答案1.D2.D3.C4.B5.D6.C7.A8.B9.9cm10.3011.2012.3313.142°14.解:在AB的垂线BF上取两点C,D,使CD=BC,再作出BF的垂线DE,使A,C,E在一条直线上,这时测得的DE的长就是AB的长.作出的图形如图所示:∵AB⊥BF ED⊥BF∴∠ABC=∠EDC=90°又∵CD=BC ∠ACB=∠ECD∴△ACB≌△ECD,∴AB=DE.15.证明:∵点C是AE的中点∴AC=CE在△ABC和△CDE中∴△ABC≌△CDE∴∠B=∠D.16.解:在BC上找到F使得BF=BE∵∠A=60°,BD、CE是△ABC的角平分线∴∠BOC=180°- 12(∠ABC+∠ACB)=180°- 12(180°-∠A)=120°∴∠BOE=∠COD=60°在△BOE和△BOF中,{BE=BF ∠1=∠2 BO=BO,∴△BOE≌△BOF,(SAS)∴∠BOF=∠BOE=60°∴∠COF=∠BOC-∠BOF=60°在△OCF和△OCD中∴△OCF≌△OCD(ASA)∴CF=CD∵BC=BF+CF∴BC=BE+CD.17.证明:∵∠1=∠2∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠DAE 在△ABC和△ADE中{AB=AD∠BAC=∠DAEAC=AE∴△ABC≌△ADE∴BC=DE.18.(1)∵AE⊥BD CF⊥BD∴∠AEB=∠CFD=∠AED=∠CFB=90°∵AE=CF AD=CB∴RtΔADE≅ΔCBF(HL)∴DE=BF∴BD−DE=BD−BF∴BE=DF∵∠AEB=∠CFD AE=CF∴ΔABE≅ΔCDF(SAS)∴AB=CD(2)∵ΔABE≅ΔCDF∴∠ABE=∠CDF∴AB//CD 19.(1)证明:∵∠AOB=∠COD=60°∴∠AOB+∠BOC=∠COD+∠BOC∴∠AOC=∠BOD.在△AOC和△BOD中,{AO=BO∠AOC=∠BOD OC=OD∴△AOC≌△BOD(SAS)∴AC=BD;(2)AC=BD;α。
人教版八年级上册数学第12章全等三角形测试卷含答案
数学YOURSCHOOLNAME版人教版初中数学FEDCBA全等三角形 单元测试班级_________ 姓名__________ 学号________一.填空题(每小题5分,共40分)1. 已知ΔABC ≌ΔDEF ,A 与D ,B 与E 分别是对应顶点,∠A=52°,∠B=67°,BC =15cm ,则∠F= °,FE = cm 2. 已知:如图,∠ABC=∠DEF ,AB=DE ,要说明ΔABC≌ΔDEF(1) 若以“SAS ”为依据,还要添加的条件为 (2) 若以“ASA ”为依据,还要添加的条件为 (3) 若以“AAS ”为依据,还要添加的条件为 3.如图4,在△ABC 中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的F ED BAEODCBA中点,则图中共有全等三角形4.如图5,已知AB ∥CD ,O 为∠CAB 、∠ACD 的角平分线的交点,OE ⊥AC于E ,且OE=2,则两平行线间AB 、CD 的距离等于 5.如图,把△ABC 绕C 点顺时针旋转35°,得到△A ′B ′C ,A ′B ′交AC 于点D ,则∠AB ′D= °6.如图,AB=CD ,AD=CB ,E 、F 是DB 上两点,且BE=DF ,若∠AEB=100°,∠ADB=30°,则∠BCF=7.AD 是△ABC 的边BC 上的中线,AB =12,AC =8,则边BC 的取值范围是 ,中线AD 的取值范围是 8.如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__ ____ ___ 二.选择题(每小题4分,共24分)9. 在△ABC 与△A ′B ′C ′中,已知∠A =44°15′,∠B =67°12′,∠C ′=68°33′,∠A ′=44°15′,第3题图 第4题图 第5题图 第6题图PDBAOCBA且AC =A ′C ′,则这两个三角形( )A .一定不全等B .一定全等C .不一定全等D .以上都不对10.已知ΔABC 中,AB=10,BC=15,CA=20,点O 是ΔABC 内角平分线的交点,则ΔABO 、 ΔBCO 、 ΔCAO 的面积比是( )A .1:1:1B .1:2:3C .2:3:4D .3:4:5 11.如图,已知点E 在△ABC 的外部,点D 在BC 边上,DE 交AC 于F ,若∠1=∠2=∠3,AC=AE ,则有( )A .△ABD ≌△AFDB .△AFE ≌△ADC C .△AEF ≌△DFCD .△ABC ≌△ADE12.如图,AB > AC ,点P 为ΔABC 的角平分线AD 上一点,则下列说法正第10题图第11题图第12题图确的是()A. AB – AC > PB – PC B. AB – AC < PB – PC C. AB – AC = PB – PC D.无法确定13.下列说法不正确的是()A.有两个角和一条边对应相等的两个三角形全等B.有一条边和一个锐角对应相等的两个直角三角形全等C.有两边和其中一边的对角对应相等的两个三角形全等D.有两条直角边对应相等的两个直角三角形全等14.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中C 的位置是有理数,2008应排在A、B、C、D、E中的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学第十二单元测试卷
一、选择题(每小题3分,共30分)
1.已知△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF的长是()
A.3
B.4
C.5
D.3或4或5
2.给出下列条件:①两角及一边对应相等;②两边及其夹角对应相等;③两边及一边所
对的角对应相等;④两角及其夹边对应相等。
其中能判定两个三角形全等的是()
A.①③
B.②④
C.①②④
D.②③④
3.根据下列条件,只能画出唯一的△ABC的是()
A.AB=3,BC=4
B.AB=4,BC=3,∠A=30°
C.∠A=60°,∠B=45°,AB=4
D.∠C=60°,AB=6
4.如图,点A、DC、F在同一直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要
添加一个条件是()
A.∠BCA=∠F
B.∠B=∠E
C.BC∥EF
D.∠A=∠EDF
第4题图第5题图
5.工人师傅常用角尺平分一个任意角。
做法如下:如图所示,∠AOB是一个任意角,
在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合
过角尺顶点C的射线OC即是∠AOB的平分线。
这种做法的道理是()
A. HL
B.SSS
C.SAS
D.ASA
6.利用三角形全等所测距离叙述正确的是()
A.绝对准确
B.误差很大,不可信
C.可能有误差,但误差不大,结果可信
D.如果有误差的话就想办法直接测量,不能用三角形全等的方法测距离
7.根据下列条件,能判定△ABC≌△AEC的是()
A.AB=A'B',BC=B'C',∠A=∠A'
B.∠A=∠A',∠B=∠B',AC=B'C'
C.∠A=∠A',∠B=∠B',∠C=∠C'
D.AB=A'B',BC=B'C',△ABC的周长等于△A'B'C'的周长
8.如图所示,△ABC中,∠C=90°,点D在AB上,BC=BD,DE⊥AB交AC于点E.
△ABC的周长为12,△ADE的周长为6,则BC的长为()
A.3
B.4
C.5
D.6
第8题图第9题图第10题图
9.将一副直角三角尺如图所示放置,已知AE∥BC,则∠AFD的度数是()
A.45°
B.50°
C.60°
D.75°
10.如图所示,m∥n,点B,C是直线n上两点,点A是直线m上一点,在直线m上另
找一点D,使得以点D,B,C为顶点的三角形和△ABC全等,这样的点D ()
A.不存在
B.有1
C.有3个
D.有无数个
二、填空题(每小题3分,共24分)
11.已知△ABC≌△DEF,且∠A=90°,AB=6,AC=8,BC=10,则△DEF的最长边是
,最大角的度数是。
12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,则点D
到AB的距离为。
第12题图第13题图第14题图
13.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=。
14.如图,点C、F在BE上,∠1=∠2,BC=EF,请补充一个条件: ,
使△ABC≌△DEF。
15.如图所示,将纸片△ABC沿DE折叠,点A落在点A'处,已知∠1+∠2=100°,
则∠A的大小等于。
16.如图所示,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯
水平方向的长度DF相等,则△ABC≌△DEF,理由是。
第15题图第16题图第17题图
17.如图所示,AD∥BC,AB∥DC,点O为线段AC的中点,过点O作一条直线分别与
AB、CD交于点M、N.点E、F在直线MN上,且OE=OF.图中全等的三角形共有对。
18.如图所示三角形纸片ABC,AB=10厘米,BC=7厘米,
AC=6厘米。
沿BC过点B的直线折叠这个三角形,使顶
点C落在AB边上的点E处,折痕为BD,则△AED的周长
为厘米。
第18题图
三、解答题(共46分)
19.(6分)如图,C、D两地分别位于路段上A、B两地的正北处和正南处,现有两辆车
分别从E、F两地同时出发,以相同的速度行驶,相同时间后分别到达C、D两地,休
整一段时间后又同时以原来的速度行驶,最终同时到达A、B两地,那么CE与DF平
行吗?为什么?
第19题图
20.(10分)如图,AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE。
(1)求证:△AOB≌△DOC
(2)求∠AEO的度数
第20题图
21.(8分)如图所示,在△ABC中,已知:AD⊥BC,∠B=64°,∠C=56°。
(1)求∠BAD和∠DAC的度数。
(2)若DE平分∠ADB,求∠AED的度数。
第21题图
22.(10分)如图,在△ABC中,AD是∠BAC的平分线,DH⊥AC于点H,DM=DN。
(1)在线段AB上找一点P,使AP=AN,连接DP。
求证:DP=DM;
(2)若△AMD的面积等于100,△AND的面积等于80,求△DHN的面积.
第22题图
23.(12分)已知如图,CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O,且AO平分
∠BAC.
(1)图中有多少对全等的三角形?请你一一列举出来(不要求说明理由).
(2)小明说:欲证BE=CD,可先证明△AOE≌△AOD得到AE=AD,再证明△ADB≌△AEC
得到AB=AC,然后利用等式的性质即可得到BE=CD,请问他的说法正确吗?如果不正
确,请说明理由;如果正确,请按他的思路写出推导过程.
(3)要得到BE=CD,你还有其他的思想路吗?若有,请仿照小明的说法具体说一说的
想法。
第23题图
参考答案
一、1.B 2.C 3.C 4.B 5.B 6.A 7.D 8.A 9.D 10.B 二、11.EF 90 12.4 13.95°
14.答案不唯一,如AC =DF 或∠B =∠E 或∠A =∠D 15.50° 16.HL 17.4 18.9 19.
平行 理由:由题意可得CE =DF ,AC =BD ,∠A =∠B =90°, ∴Rt △ACE ≌Rt △BDF(HL) ∴∠CEA =∠DFB.:CE ∥DF
20.(1)∵∠AOB =∠DOC ,∠B =∠C ,AB =DC ,
∴△AOB ≌△DOC(AAS) (2)
由(1)知△AOB ≌△DOC ,∴AO =DO.
又∵AE =DE ,OE =OE ,∴△AEO ≌△DEO(SSS).∴∠AEO =∠DEO. ∵∠AEO+∠DEO =180°,∴∠AEO =90°
21.(1)∠BAD =90°-∠B =26°,∠DAC =∠ADE-∠C =34° (2)∠AED =∠B+∠EDB =∠B+2
1∠ADB =64°+2
1×90=109° 22.(1)在△ADP 和△ADN 中,
AP=AN
∠PAD =∠NAD(角平分线的定义) AD=AD
∴△ADP ≌△ADN.∴DP =DN.
又∵DM =DN ,∴DP =DM.
(2)过点D 作AB 的垂线,垂足为Q.∵DP =DM ,DQ =DQ ,∴Rt △DPQ ≌△DMQ. ∴△DPQ 与△DMQ 的面积相等.∵DP =DH ,DP =DN ,∴Rt △DQP ≌Rt △DHN. 又∵由△ADP ≌△ADN 知,△ADN △ADP S S ==80.∴△DQP △DHN S S ==2
1×(100-80)=10 23.
(1)图中有4对三角形全等,△AOD ≌△AOE ,△BOE ≌△COD ,
△AOB ≌△AOC ,△ADB ≌△AEC.
(2)正确,由题意知∠AEO =∠ADO =90°,∠EAO =∠DAO ,AO =AO ,
所以△AOD ≌△AOE ,AD =AE ,又有AD =AE ,∠AEO =∠ADO =90°,∠A =∠A , ∴△ADB ≌△AEC ,∴AB =AC.所以BE =AB-AE =AC-AD=CD
(3)可以先证△AOD ≌△AOE 得AD =AE ,再证△AOB ≌△AOC 得AB =AC ,由等式性 质得BE =CD.。