【重点推荐】2019高中物理 课时 圆周运动的多解问题每日一题(课堂同步系列二)新人教版必修1

合集下载

高中物理生活中的圆周运动解题技巧及练习题(含答案)及解析.docx

高中物理生活中的圆周运动解题技巧及练习题(含答案)及解析.docx

高中物理生活中的圆周运动解题技巧及练习题( 含答案 ) 及解析一、高中物理精讲专题测试生活中的圆周运动1.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m,一质量 m=1kg 的小物块(视为质点)从左側水平轨道上的 A 点以大小 v0= 12m/ s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的 D 点.已知 A、B 两点间的距离 L1= 5. 75m,物块与水平轨道写的动摩擦因数0. 2,取 g= 10m/ s2,圆形轨道间不相互重叠,求:(1)物块经过 B 点时的速度大小 v B;(2)物块到达 C 点时的速度大小 v C;(3) BD 两点之间的距离 L2,以及整个过程中因摩擦产生的总热量Q【答案】 (1)11m / s (2)9m / s(3) 72J【解析】【分析】【详解】(1)物块从 A 到 B 运动过程中,根据动能定理得:mgL11mv B21mv02 22解得: v B11m / s(2)物块从 B 到 C 运动过程中,根据机械能守恒得:1mv B21mv C2mg·2R 22解得: v C9m / s(3)物块从 B 到 D 运动过程中,根据动能定理得:mgL201mv B2 2解得: L230.25m对整个过程,由能量守恒定律有:Q 1mv020 2解得: Q=72J【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.2.如图所示,竖直平面内有一光滑的直角细杆MON ,其中 ON 水平, OM 竖直,两个小物块 A 和 B 分别套在 OM 和 ON 杆上,连接 AB 的轻绳长为 L=0.5m ,.现将直角杆 MON 绕过2OM 的轴 O 1O 2 缓慢地转动起来.已知A 的质量为 m 1=2kg ,重力加速度 g 取 10m/s 。

2019年高考高三物理圆周运动的多解问题

2019年高考高三物理圆周运动的多解问题

2019年高考高三物理圆周运动的多解问题 由于圆周运动具有周期性,所以在处理与圆周运动有关的物理问题时,往往需要考虑由于圆周运动的周期性而引起的多解问题.这类问题是本章中一种常见的问题,也是本章中的一类易错问题,下面通过几个实例来看一下这类问题的求解方法.例1 如图1所示,电风扇在闪光灯下运转,闪光灯每秒闪30次,风扇转轴O 上装有3个叶片.它们互成120°.当风扇转动时,观察者感觉扇叶不动,则风扇转速可能是 ( )图1A. 600r /minB. 900r /minC. 1200r /minD. 3000r /min【解析】风扇转动时,观察者感觉扇叶不动,说明在每相邻两次闪光的时间间隔T 内,风扇转过的角度是120°的整数倍,即31圈的整数倍.由于闪光周期T=s 301,所以风扇的转速n=301k 31r /s=10krs=600kr/min(k=1,2,3) 故选项A 、C 、D 正确.【点评】分析此类问题,关键是抓住周期性这一特点.得出可能的多解通式.解题过程中.常出现的错误是只考虑k=1的情况.而没有注意问题的多解性.例2 如图2所示,一个水平放置的圆桶正绕中轴匀速转动,桶上有一小孔,桶壁很薄.当小孔运动到桶的上方时,在孔的正上方h 处有一个小球由静止开始下落.已知圆孔的半径略大于小球的半径,为了让小球下落时不受任何阻碍而穿过圆桶,h 与桶的半径R 之间应满足什么关系?(不考虑空气阻力)图2【解析】设小球下落h 所用的时间为t 1,则h=21gt 21 ① 要使小球通过圆孔,则小球下落h ,即到达圆桶表面时,圆孔也应该到达同一位置,所以应有ωt 1=2n π(n=1,2,3…) ②设小球通过圆桶所用的时间为t 2,则有 h+2R=221)t (t g 21+ ③要使小球从小孔穿出,则在t ,时间内,圆桶转过的角度应为ωt 2=(2k-1)π(k=1,2,3…) ④联立①②③④式可解得 h=)1k 2)(1k 2n 4(R n 82--+ 其中 n=1,2,3…;k=1,2,3……【点评】本题的关键在于找出小球能够穿过圆桶的条件.以及由于圆桶的转动而引起的多解问题.。

圆周运动的多解问题-学易试题君之每日一题君2019年高考物理一轮复习

圆周运动的多解问题-学易试题君之每日一题君2019年高考物理一轮复习

1 / 6
8月14日 圆周运动的多解问题
高考频度:★★★☆☆
难易程度:★★★★☆
(2018·玉溪江川一中)如图所示,半径为R 的圆板匀速转动,当半径OB 转动到某一方向时,在圆板中心正上方高h 处以平行OB 方向水平抛出一小球,要使小球与圆板只碰撞一次,且落点为B ,求:
(1)小球的初速度的大小;
(2)圆板转动的角速度。

【参考答案】(1)2g R h (2)2π(123g n n h
=⋯、、) 【试题解析】(1)小球平抛的水平位移:R =v 0t
小球平抛的竖直位移:h =
12gt 2 得2h t g 代入可得0==2R g v t h
(2)设在小球运动的时间内圆板转动了n 圈,角速度为:2π2π2n g n t h h
g
ω=,n =1,2,3… 【知识补给】
圆周运动中多解的成因及解法
(1)多解原因:因匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,这将造成多解。

(2)多解问题模型:常涉及两个物体的两种不同运动,其中一个物体做匀速圆周运动,另一个物体做其他运动。

高中物理圆周运动专题讲义练习题和标准答案

高中物理圆周运动专题讲义练习题和标准答案

圆周运动匀速圆周运动1、定义:物体运动轨迹为圆称物体做圆周运动。

2、分类: ⑴匀速圆周运动:质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。

物体在大小恒定而方向总跟速度的方向垂直的外力作用下所做的曲线运动。

注意:这里的合力可以是万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、弹力——绳拴着的物体在光滑水平面上绕绳的一端旋转、重力与弹力的合力——锥摆、静摩擦力——水平转盘上的物体等.⑵变速圆周运动:如果物体受到约束,只能沿圆形轨道运动,而速率不断变化——如小球被绳或杆约束着在竖直平面内运动,是变速率圆周运动.合力的方向并不总跟速度方向垂直. 3、描述匀速圆周运动的物理量(1)轨道半径(r ):对于一般曲线运动,可以理解为曲率半径。

(2)线速度(v ):①定义:质点沿圆周运动,质点通过的弧长S 和所用时间t 的比值,叫做匀速圆周运动的线速度。

②定义式:tsv =③线速度是矢量:质点做匀速圆周运动某点线速度的方向就在圆周该点切线方向上,实际上,线速度是速度在曲线运动中的另一称谓,对于匀速圆周运动,线速度的大小等于平均速率。

(3)角速度(ω,又称为圆频率):①定义:质点沿圆周运动,质点和圆心的连线转过的角度跟所用时间的比值叫做匀速圆周运动的角速度。

②大小:Ttπϕω2==(φ是t 时间内半径转过的圆心角)③单位:弧度每秒(rad/s )④物理意义:描述质点绕圆心转动的快慢(4)周期(T ):做匀速圆周运动的物体运动一周所用的时间叫做周期。

(5)频率(f ,或转速n ):物体在单位时间内完成的圆周运动的次数。

各物理量之间的关系:r t r v f T t rf Tr t s v ωθππθωππ==⇒⎪⎪⎭⎪⎪⎬⎫======2222 注意:计算时,均采用国际单位制,角度的单位采用弧度制。

(6)圆周运动的向心加速度①定义:做匀速圆周运动的物体所具有的指向圆心的加速度叫向心加速度。

高中物理圆周运动解答题专题训练含答案

高中物理圆周运动解答题专题训练含答案

高中物理圆周运动解答题专题训练含答案学校:___________姓名:___________班级:___________考号:___________一、解答题1.如图所示,水平转盘上放有质量为m 的物体(可视为质点),连接物体和转轴的绳长为r ,物体与转盘间的最大静摩擦力是其压力的μ倍,若转盘的角速度由零逐渐增大,求:(1)绳子对物体的拉力为零时的最大角速度ω0;(2)当角速度为F 的大小。

2.如图所示,一不可伸长的轻绳上端悬挂于O 点,下端系一质量m =1.0kg 的小球.现将小球拉到A 点(保持绳绷直)由静止释放,当它经过B 点时绳恰好被拉断,小球平抛后落在水平地面上的C 点.地面上的D 点与OB 在同一竖直线上,已知绳长L =1.0m ,B 点离地高度H =1.0m ,A 、B 两点的高度差h =0.5m ,重力加速度g 取10m/s 2,不计空气阻力影响,求:(1)地面上DC 两点间的距离s ;(2)轻绳所受的最大拉力大小.3.如图所示,半径为R 的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O 的对称轴OO'重合,转台以一定的角速度ω转动,一质量为m 的小物块落入陶罐内,经过一段时间后小物块随陶罐一起转动且相对静止,它和O 点的连线与OO'之间的夹角θ=60︒,重力加速度大小为g 。

(1)若0=ωω,小物块受到的摩擦力恰好为零,求0ω;(2)若()0=1k ωω+,且0<k <<1,求小物块受到的摩擦力大小和方向。

4.如图所示,质量为m 的小球用长为12L 的细线悬于O 点,O 点离地高度为2L ,细线能承受的最大拉力为1.5mg ,重力加速度为g 。

求:(1)将小球拉至如图所示的位置,由静止释放小球,小球运动到最低点时细线刚好拉断,则小球落地点离O 点的水平距离为多少?(2)若悬线长改为L ,让小球做圆锥摆运动,改变小球做圆周运动的角速度,使小球做圆锥摆运动时细线刚好拉断,细线断后小球落地点离O 点的水平距离为多少?5.在火炮发明并被大规模应用于实战之前,抛石机是中国古代常用的破城重器。

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2 讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J3.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点;(2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-4.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方2R处的O '点由静止释放,小球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力, g 取10 m/s 2). 求:(1)小球运动至B 点时的速度大小B v(2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W (3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大.【答案】(1)4?/B v m s = (2)22?f W J = (3) 3.36L m = 【解析】试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度.(1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2BN v F mg m R-=解得:4/B v m s =(2)从O '到B 的过程中重力和阻力做功,由动能定理可得:21022f B R mg R W mv ⎛⎫+-=- ⎪⎝⎭解得:22f W J =(3)由B 到C 的过程中,由动能定理得:221122BC C B mgL mv mv μ-=- 解得:222B C BCv v L gμ-=从C 点到落地的时间:00.8t s == B 到P 的水平距离:2202B CC v v L v t gμ-=+ 代入数据,联立并整理可得:214445C C L v v =-+ 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.5.如图所示,在竖直平面内固定有两个很靠近的同心圆形轨道,外圆ABCD 光滑,内圆的上半部分B′C′D′粗糙,下半部分B′A′D′光滑.一质量m=0.2kg 的小球从轨道的最低点A 处以初速度v 0向右运动,球的直径略小于两圆间距,球运动的轨道半径R=0.2m ,取g=10m/s 2.(1)若要使小球始终紧贴着外圆做完整的圆周运动,初速度v 0至少为多少? (2)若v 0=3m/s ,经过一段时间小球到达最高点,内轨道对小球的支持力F C =2N ,则小球在这段时间内克服摩擦力做的功是多少?(3)若v 0=3.1m/s ,经过足够长的时间后,小球经过最低点A 时受到的支持力为多少?小球在整个运动过程中减少的机械能是多少?(保留三位有效数字) 【答案】(1)0v 10m/s (2)0.1J (3)6N ;0.56J 【解析】 【详解】(1)在最高点重力恰好充当向心力2Cmv mg R= 从到机械能守恒220112-22C mgR mv mv =解得010m/s v =(2)最高点'2-CC mv mg F R= 从A 到C 用动能定理'22011-2--22f C mgR W mv mv =得=0.1J f W(3)由0=3.1m/s<10m/s v 于,在上半圆周运动过程的某阶段,小球将对内圆轨道间有弹力,由于摩擦作用,机械能将减小.经足够长时间后,小球将仅在半圆轨道内做往复运动.设此时小球经过最低点的速度为A v ,受到的支持力为A F212A mgR mv =2-AA mv F mg R= 得=6N A F整个运动过程中小球减小的机械能201-2E mv mgR ∆=得=0.56J E ∆6.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L ,重力加速度g ,小球半径不计,质量为m ,电荷q .不加电场时,小球在最低点绳的拉力是球重的9倍。

高中物理圆周运动专题讲义练习题及答案

高中物理圆周运动专题讲义练习题及答案

圆周运动 匀速圆周运动1、定义:物体运动轨迹为圆称物体做圆周运动。

2、分类:⑴匀速圆周运动:质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。

物体在大小恒定而方向总跟速度的方向垂直的外力作用下所做的曲线运动。

注意:这里的合力可以是万有引力 ——卫星的运动、库仑力 ——电子绕核旋转、洛仑兹力 ——带电粒子在匀强磁场中的偏转、弹力——绳拴着的物体在光滑水平面上绕绳的一端旋转、重力与弹力的合力——锥摆、静摩擦力——水平转盘上的物体等.⑵变速圆周运动:如果物体受到约束,只能沿圆形轨道运动,而速率不断变化——如小球被绳或杆约束着在竖直平面内运动,是变速率圆周运动.合力的方向并不总跟速度方向垂直.3、描述匀速圆周运动的物理量1〕轨道半径〔r 〕:对于一般曲线运动,可以理解为曲率半径。

2〕线速度〔v 〕:①定义:质点沿圆周运动,质点通过的弧长 S 和所用时间 t 的比值,叫做匀速圆周运动的线速度。

s②定义式:vt③线速度是矢量:质点做匀速圆周运动某点线速度的方向就在圆周该点切线方向上,实际上,线速度是速度在曲线运动中的另一称谓,对于匀速圆周运动,线速度的大小等于平均速率。

〔3〕角速度〔ω,又称为圆频率〕:①定义:质点沿圆周运动,质点和圆心的连线转过的角度跟所用时间的比值叫做匀速圆周运动的角速度。

②大小:2tT(φ是t 时间内半径转过的圆心角 )③单位:弧度每秒〔 rad/s 〕④物理意义:描述质点绕圆心转动的快慢4〕周期〔T 〕:做匀速圆周运动的物体运动一周所用的时间叫做周期。

5〕频率〔f ,或转速n 〕:物体在单位时间内完成的圆周运动的次数。

各物理量之间的关系:s 2r rfv2r t T v2 rftt2T注意:计算时,均采用国际单位制,角度的单位采用弧度制。

〔6〕圆周运动的向心加速度①定义:做匀速圆周运动的物体所具有的指向圆心的加速度叫向心加速度。

v 22 2②大小:a n2r 〔还有其它的表示形式,如:a n vr2f 2r 〕rT③方向:其方向时刻改变且时刻指向圆心。

2019高中物理 课时 圆周运动的多解问题每日一题(课堂同步系列二)新人教版必修1

2019高中物理 课时 圆周运动的多解问题每日一题(课堂同步系列二)新人教版必修1

圆周运动的多解问题如图所示,在半径为R的水平圆盘中心轴正上方水平抛出一小球,圆盘以角速度做匀速转动,当圆盘半径Ob恰好转到与小球初速度方向相同且平行的位置时,将小球抛出,要使小球与圆盘只碰一次,且落点为b,重力加速度为g,小球抛出点a距圆盘的高度h和小球的初速度v0可能应满足A.,B.,C.,D.,【参考答案】ABD【名师点睛】小球做平抛运动,小球在水平方向上做匀速直线运动,在竖直方向做自由落体运动,圆盘转动的时间和小球平抛运动的时间相等,在这段时间内,圆盘转动n圈,从而确定运动的时间,再根据水平位移求出抛出的初速度,根据竖直方向求出高度。

【知识补给】圆周运动的多解问题(1)明确两个物体参与运动的性质和求解的问题。

两个物体虽然独立运行,但一定有联系点,其联系点一般是时间或位移,寻求联系点是解题的突破点。

(2)注意圆周运动的周期性造成的多解,分析时可暂时不考虑周期性,表示出一个周期的情况,再根据圆周运动的周期性,在转过的角速度上加上2nπ,具体n的取值应视情况而定。

(2018·山西省吕梁市柳林联盛中学高一第二学期单元测试)如图所示,直径为d的纸制圆筒,以角速度ω绕中心轴匀速转动,把枪口垂直圆筒轴线,使子弹穿过圆筒,结果发现圆筒上只有一个弹孔,则子弹的速度不可能是A.dω/π B.dω/2π C.dω/3π D.dω/4π如图所示,一位同学做飞镖游戏,已知圆盘的直径为d,飞镖距圆盘为L,且对准圆盘上边缘的A点水平抛出,初速度为v0,飞镖抛出的同时,圆盘以垂直圆盘过盘心O的水平轴匀速转动,角速度为ω。

若飞镖恰好击中A点,则下列关系正确的是A.dv02=L2g B.ωL=π(1+2n)v0,(n=0,1,2,3…)C.v0=ωD.dω2=gπ2(1+2n)2,(n=0,1,2,3…)(2018·四川省成都外国语学院高一下学期期中考试)一中空圆筒长l=200cm,其两端以纸封闭,使筒绕其中心轴线OO′匀速转动,一子弹沿与OO′平行的方向以v=400 m/s 的速度匀速穿过圆筒,在圆筒两端面分别留下弹孔A和B,如图所示。

高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)

高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)

高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.如图所示,半径R=2.5m 的竖直半圆光滑轨道在B 点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A 点.一瞬时冲量使滑块以一定的初速度从A 点开始运动,经B 点进入圆轨道,沿圆轨道运动到最高点C,并从C 点水平飞出,落在水平面上的D 点.经测量,D 、B 间的距离s1=10m,A 、B 间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C 点时的速度大小;(2)滑块刚进入圆轨道时,在B 点轨道对滑块的弹力; (3)滑块在A 点受到的瞬时冲量的大小. 【答案】(1) (2)45N (3)【解析】 【详解】(1)设滑块从C 点飞出时的速度为v c ,从C 点运动到D 点时间为t 滑块从C 点飞出后,做平抛运动,竖直方向:2R=gt 2水平方向:s 1=v c t 解得:v c =10m/s(2)设滑块通过B 点时的速度为v B ,根据机械能守恒定律 mv B 2=mv c 2+2mgR 解得:v B =10m/s设在B 点滑块受轨道的压力为N ,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A 点开始运动时的速度为v A ,根据动能定理;-μmgs 2=mv B 2-mv A 2 解得:v A =16.1m/s设滑块在A 点受到的冲量大小为I ,根据动量定理I=mv A 解得:I=8.1kg•m/s ; 【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.3.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,4.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-= 222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.5.如图所示,水平传送带AB 长L=4m ,以v 0=3m/s 的速度顺时针转动,半径为R=0.5m 的光滑半圆轨道BCD 与传动带平滑相接于B 点,将质量为m=1kg 的小滑块轻轻放在传送带的左端.已,知小滑块与传送带之间的动摩擦因数为μ=0.3,取g=10m/s 2,求:(1)滑块滑到B 点时对半圆轨道的压力大小;(2)若要使滑块能滑到半圆轨道的最高点,滑块在传送带最左端的初速度最少为多大. 【答案】(1)28N.(2)7m/s 【解析】 【分析】(1)物块在传送带上先加速运动,后匀速,根据牛顿第二定律求解在B 点时对轨道的压力;(2)滑块到达最高点时的临界条件是重力等于向心力,从而求解到达D 点的临界速度,根据机械能守恒定律求解在B 点的速度;根据牛顿第二定律和运动公式求解A 点的初速度. 【详解】(1)滑块在传送带上运动的加速度为a=μg=3m/s 2;则加速到与传送带共速的时间01v t s a == 运动的距离:211.52x at m ==, 以后物块随传送带匀速运动到B 点,到达B 点时,由牛顿第二定律:2v F mg m R-=解得F=28N ,即滑块滑到B 点时对半圆轨道的压力大小28N.(2)若要使滑块能滑到半圆轨道的最高点,则在最高点的速度满足:mg=m 2Dv R解得v D =5m/s ; 由B 到D ,由动能定理:2211222B D mv mv mg R =+⋅ 解得v B =5m/s>v 0可见,滑块从左端到右端做减速运动,加速度为a=3m/s 2,根据v B 2=v A 2-2aL 解得v A =7m/s6.如图所示,ABCD 是一个地面和轨道均光滑的过山车轨道模型,现对静止在A 处的滑块施加一个水平向右的推力F ,使它从A 点开始做匀加速直线运动,当它水平滑行2.5 m 时到达B 点,此时撤去推力F 、滑块滑入半径为0.5 m 且内壁光滑的竖直固定圆轨道,并恰好通过最高点C ,当滑块滑过水平BD 部分后,又滑上静止在D 处,且与ABD 等高的长木板上,已知滑块与长木板的质量分别为0.2 kg 、0.1 kg ,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、 ,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g =10 m/s 2,求:(1)水平推力F 的大小; (2)滑块到达D 点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少? 【答案】(1)1N (2) (3)t =1 s ;【解析】 【分析】 【详解】(1)由于滑块恰好过C 点,则有:m 1g =m 1从A 到C 由动能定理得:Fx -m 1g ·2R =m 1v C 2-0代入数据联立解得:F =1 N(2)从A 到D 由动能定理得:Fx =m 1v D 2代入数据解得:v D =5 m/s(3)滑块滑到木板上时,对滑块:μ1m 1g =m 1a 1,解得:a 1=μ1g =3 m/s 2对木板有:μ1m 1g -μ2(m 1+m 2)g =m 2a 2,代入数据解得:a 2=2 m/s 2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同, 有:v 共=v D -a 1t v 共=a 2t ,代入数据解得:t =1 s此时滑块的位移为:x 1=v D t -a 1t 2,木板的位移为:x 2=a 2t 2,L =x 1-x 2,代入数据解得:L =2.5 m v 共=2 m/s x 2=1 m达到共同速度后木板又滑行x ′,则有:v 共2=2μ2gx ′,代入数据解得:x ′=1.5 m木板在水平地面上最终滑行的总位移为:x 木=x 2+x ′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.7.如图所示,粗糙水平地面与半径 1.6m R =的光滑半圆轨道BCD 在B 点平滑连接, O 点是半圆轨道BCD 的圆心, B O D 、、三点在同一竖直线上,质量2kg m =的小物块(可视为质点)静止在水平地面上的A 点.某时刻用一压缩弹簧(未画出)将小物块沿AB 方向水平弹出,小物块经过B 点时速度大小为10m/s (不计空气阻力).已知10m AB x =,小物块与水平地面间的动摩擦因数=0.2μ,重力加速度大小210m/s g =.求:(1)压缩弹簧的弹性势能;(2)小物块运动到半圆轨道最高点时,小物块对轨道作用力的大小; (3)小物块离开最高点后落回到地面上的位置与B 点之间的距离. 【答案】(1)140J (2)25N (3)4.8m 【解析】(1)设压缩弹簧的弹性势能为P E ,从A 到B 根据能量守恒,有212P B AB E mv mgx μ=+ 代入数据得140J P E =(2)从B 到D ,根据机械能守恒定律有2211222B D mv mv mg R =+⋅ 在D 点,根据牛顿运动定律有2Dv F mg m R+=代入数据解得25N F =由牛顿第三定律知,小物块对轨道作用力大小为25N (3)由D 点到落地点物块做平抛运动竖直方向有2122R gt = 落地点与B 点之间的距离为D x v t = 代入数据解得 4.8m x =点睛:本题是动能定理、牛顿第二定律和圆周运动以及平抛运动规律的综合应用,关键是确定运动过程,分析运动规律,选择合适的物理规律列方程求解.8.如图,1111C D E F 和2222C D E F 是距离为L 的相同光滑导轨,11C D 和11E F 为两段四分之一圆弧,半径分别为18r r =和2.r r =在水平矩形1122D E E D 内有竖直向上的匀强磁场,磁感应强度为.B 导体棒P 、Q 的长度均为L ,质量均为m ,电阻均为R ,其余电阻不计,Q 停在图中位置,现将P 从轨道最高点无初速释放,则()1求导体棒P 进入磁场瞬间,回路中的电流的大小和方向(顺时针或逆时针);()2若P 、Q 不会在轨道上发生碰撞,棒Q 到达12E E 瞬间,恰能脱离轨道飞出,求导体棒P 离开轨道瞬间的速度;()3若P 、Q 不会在轨道上发生碰撞,且两者到达12E E 瞬间,均能脱离轨道飞出,求回路中产生热量的范围. 【答案】(12BL gr方向逆时针(2)3gr (3)3mgr ≤Q ≤4mgr . 【解析】(1)导体棒P 由12C C 下滑到12D D ,根据机械能守恒定律:211 42D D mgr mv v gr ==,求导体棒P 到达12D D 瞬间:D E BLv = 回路中的电流:22BL grE I R ==(2)棒Q 到达12E E 瞬间,恰能脱离轨道飞出,此时对Q :22QQ mv mg v gr r ==设导体棒P 离开轨道瞬间的速度为P v ,根据动量守恒定律:D P Q mv mv mv =+ 代入数据得:3P v gr =(3)由()2若导体棒Q 恰能在到达12E E 瞬间飞离轨道,P 也必能在该处飞离轨道 根据能量守恒,回路中产生的热量22211113222D P Q Q mv mv mv mgr =--= 若导体棒Q 与P 能达到共速v ,则根据动量守恒:()2D mv m m v v gr =+⇒=回路中产生的热量()22211422D Q mv m m v mgr =-+=; 【点睛】根据机械能守恒定律求出求导体棒P 到达12D D 的速度大小,然后根据法拉第电磁感应定律即可求解;恰好脱了轨道的条件是重力提供向心力,两棒作用过程中动量守恒,由此可正确解答;根据题意求出临界条件结合动量守恒和功能关系即可正确求解;本题是电磁感应与电路、磁场、力学、功能关系,临界条件等知识的综合应用,重点考查了功能关系以及动量守恒定律的应用,是考查分析和处理综合题的能力的好题.9.如图所示,光滑轨道槽ABCD 与粗糙轨道槽GH 通过光滑圆轨道EF 平滑连接(D 、G 处在同一高度),组成一套完整的轨道,整个装置位于竖直平面内。

高中物理高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案).docx

高中物理高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案).docx

高中物理高考物理生活中的圆周运动解题技巧及经典题型及练习题( 含答案 )一、高中物理精讲专题测试生活中的圆周运动1.如图所示,半径R=2.5m 的竖直半圆光滑轨道在 B 点与水平面平滑连接,一个质量m=0.50kg 的小滑块 (可视为质点 )静止在 A 点 .一瞬时冲量使滑块以一定的初速度从 A 点开始运动 ,经 B 点进入圆轨道,沿圆轨道运动到最高点C,并从 C 点水平飞出 ,落在水平面上的 D 点 .经测量 ,D、B 间的距离s1=10m,A、B 间的距离s2=15m,滑块与水平面的动摩擦因数重力加速度.求 :,(1)滑块通过 C 点时的速度大小 ;(2)滑块刚进入圆轨道时 ,在 B 点轨道对滑块的弹力 ;(3)滑块在 A 点受到的瞬时冲量的大小 .【答案】( 1)(2) 45N(3)【解析】【详解】(1)设滑块从 C 点飞出时的速度为v c,从 C 点运动到 D 点时间为t滑块从 C 点飞出后,做平抛运动,竖直方向:2R= gt2水平方向: s1=v c t解得: v c=10m/s(2)设滑块通过 B 点时的速度为v B,根据机械能守恒定律mv B2= mv c2+2mgR解得: v B=10m/s设在 B 点滑块受轨道的压力为解得: N=45NN,根据牛顿第二定律: N-mg=m(3)设滑块从 A 点开始运动时的速度为A2B2- mvA2v,根据动能定理; -μ mgs= mv解得: v A=16.1m/s设滑块在 A 点受到的冲量大小为I,根据动量定理I=mv A解得: I=8.1kg?m/s ;【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.2. 如图所示,一轨道由半径 R 2m 的四分之一竖直圆弧轨道AB 和水平直轨道 BC 在 B 点平滑连接而成.现有一质量为m 1Kg 的小球从 A 点正上方 R处的 O 点由静止释放,小2球经过圆弧上的 B 点时,轨道对小球的支持力大小F N18N ,最后从 C 点水平飞离轨 道,落到水平地面上的 P . B 点与地面间的高度 h3.2m ,小球与 BC段轨道间的动 点 已知 摩擦因数 0.2 ,小球运动过程中可视为质点 . (不计空气阻力,g 取 10 m/s 2). 求:(1)小球运动至 B 点时的速度大小 v B(2)小球在圆弧轨道 AB 上运动过程中克服摩擦力所做的功 W f(3)水平轨道 BC 的长度 L 多大时,小球落点P 与 B 点的水平距最大.【答案】( 1) v B =4?m / s ( 2) W f =22?J (3) L 3.36m【解析】试题分析: ( 1)小球在 B 点受到的重力与支持力的合力提供向心力,由此即可求出 B 点的速度;( 2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;( 3)结合平抛运动的公式,即可求出为使小球落点P 与 B 点的水平距离最大时BC 段的长度 .(1)小球在 B 点受到的重力与支持力的合力提供向心力,则有: F Nmg m v B 2R解得: v B 4m / s(2)从 O 到 B 的过程中重力和阻力做功,由动能定理可得:mg RRW f 1 mv B 2 022解得: W f22J(3)由 B 到 C 的过程中,由动能定理得:mgL BC1mv C21mv B 222解得: L BCv B 2v C 22g从 C 点到落地的时间:t 02h0.8sgB 到 P 的水平距离:Lv B2v C22v C t0g代入数据,联立并整理可得:L 41v C24v C45由数学知识可知,当 v C 1.6m / s时, P 到 B 的水平距离最大,为: L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.3.如图所示,物体 A 置于静止在光滑水平面上的平板小车 B 的左端,物体在 A 的上方 O 点用细线悬挂一小球C(可视为质点 ),线长 L= 0.8m .现将小球 C 拉至水平无初速度释放,并在最低点与物体 A 发生水平正碰,碰撞后小球 C 反弹的速度为2m/s.已知 A、 B、 C的质量分别为 m A= 4kg、 m B= 8kg 和 m C=1kg, A、 B 间的动摩擦因数μ= 0.2, A、 C碰撞时间极短,且只碰一次,取重力加速度g= 10m/s 2.(1)求小球 C 与物体 A 碰撞前瞬间受到细线的拉力大小;(2)求 A、 C 碰撞后瞬间 A 的速度大小;(3)若物体 A 未从小车 B 上掉落,小车 B 的最小长度为多少?【答案】 (1)30 N(2)1.5 m/s(3)0.375 m【解析】【详解】(1)小球下摆过程机械能守恒,由机械能守恒定律得:m0gl 1002 2m v代入数据解得: v0= 4m/s ,对小球,由牛顿第二定律得:v02 F﹣m0g=m0l代入数据解得: F=30N(2)小球 C 与 A 碰撞后向左摆动的过程中机械能守恒,得:1mv C2mgh 2所以: v C2gh 2 100.2 2m/s小球与 A 碰撞过程系统动量守恒,以小球的初速度方向为正方向,由动量守恒定律得:m0v0=﹣ m0v c+mv A代入数据解得: v A=1.5m/s(3)物块 A 与木板 B 相互作用过程,系统动量守恒,以A 的速度方向为正方向,由动量守恒定律得: mv A =( m+M )v代入数据解得: v = 0.5m/s1 2 1 2由能量守恒定律得: μmgxmv A2(m+M ) v2代入数据解得: x =0.375m ;4. 如图所示,一质量 M =4kg 的小车静置于光滑水平地面上,左侧用固定在地面上的销钉 挡住。

高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)

高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)

高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =253gR v =2.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-=222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤ 若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.3.如图所示,竖直平面内有一光滑的直角细杆MON ,其中ON 水平,OM 竖直,两个小物块A 和B 分别套在OM 和ON 杆上,连接AB 的轻绳长为L =0.5m ,.现将直角杆MON 绕过OM 的轴O 1O 2缓慢地转动起来.已知A 的质量为m 1=2kg ,重力加速度g 取10m/s 2。

高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)

高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)

高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ;(2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】【分析】 (1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q.【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v - 解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2d B B v m g m R= 由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m (3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,ABCD 是一个地面和轨道均光滑的过山车轨道模型,现对静止在A 处的滑块施加一个水平向右的推力F ,使它从A 点开始做匀加速直线运动,当它水平滑行2.5 m 时到达B 点,此时撤去推力F 、滑块滑入半径为0.5 m 且内壁光滑的竖直固定圆轨道,并恰好通过最高点C ,当滑块滑过水平BD 部分后,又滑上静止在D 处,且与ABD 等高的长木板上,已知滑块与长木板的质量分别为0.2 kg 、0.1 kg ,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g =10 m/s 2,求:(1)水平推力F 的大小;(2)滑块到达D 点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】(1)1N (2)(3)t =1 s ; 【解析】【分析】【详解】(1)由于滑块恰好过C 点,则有:m 1g =m 1从A 到C 由动能定理得:Fx -m 1g ·2R =m 1v C 2-0代入数据联立解得:F =1 N(2)从A 到D 由动能定理得:Fx =m 1v D 2代入数据解得:v D =5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g=3 m/s2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2=2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v共=v D-a1tv共=a2t,代入数据解得:t=1 s此时滑块的位移为:x1=v D t-a1t2,木板的位移为:x2=a2t2,L=x1-x2,代入数据解得:L=2.5 mv共=2 m/sx2=1 m达到共同速度后木板又滑行x′,则有:v共2=2μ2gx′,代入数据解得:x′=1.5 m木板在水平地面上最终滑行的总位移为:x木=x2+x′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.3.如图所示,P为弹射器,PA、BC为光滑水平面分别与传送带AB水平相连,CD为光滑半圆轨道,其半径R=2m,传送带AB长为L=6m,并沿逆时针方向匀速转动.现有一质量m=1kg的物体(可视为质点)由弹射器P弹出后滑向传送带经BC紧贴圆弧面到达D点,已知弹射器的弹性势能全部转化为物体的动能,物体与传送带的动摩擦因数为 =0.2.取g=10m/s2,现要使物体刚好能经过D点,求:(1)物体到达D点速度大小;(2)则弹射器初始时具有的弹性势能至少为多少.【答案】(1)25m/s ;(2)62J【解析】【分析】【详解】(1)由题知,物体刚好能经过D 点,则有:2D v mg m R= 解得:25D v gR ==m/s(2)物体从弹射到D 点,由动能定理得:21202D W mgL mgR mv μ--=- p WE =解得:p E =62J4.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ;(2)P 点到A 点的距离h .【答案】(1)2.5R (2)23R 【解析】【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h .【详解】(1)在B 点时,由牛顿第二定律:2B B v N mg m R -=,其中N B =3mg ; 解得2B v gR =;从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+;由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =, 从A 点到B 点:202111(1cos60)22A B mv mgR mv +-= 联立解得h=23R5.如图所示,A 、B 两球质量均为m ,用一长为l 的轻绳相连,A 球中间有孔套在光滑的足够长的水平横杆上,两球处于静止状态.现给B 球水平向右的初速度v 0,经一段时间后B 球第一次到达最高点,此时小球位于水平横杆下方l /2处.(忽略轻绳形变)求:(1)B 球刚开始运动时,绳子对小球B 的拉力大小T ;(2)B 球第一次到达最高点时,A 球的速度大小v 1;(3)从开始到B 球第一次到达最高点的过程中,轻绳对B 球做的功W .【答案】(1)mg+m 20v l (2)2012v gl v -=3)204mgl mv - 【解析】【详解】(1)B 球刚开始运动时,A 球静止,所以B 球做圆周运动对B 球:T-mg =m 20v l得:T =mg +m 20v l (2)B 球第一次到达最高点时,A 、B 速度大小、方向均相同,均为v 1以A 、B 系统为研究对象,以水平横杆为零势能参考平面,从开始到B 球第一次到达最高点,根据机械能守恒定律,2220111112222l mv mgl mv mv mg -=+- 得:2012v gl v -= (3)从开始到B 球第一次到达最高点的过程,对B 球应用动能定理W -mg 221011222l mv mv =- 得:W =204mgl mv -6.如图所示,竖直平面内固定有一半径R =1m 的14光滑圆轨道AB 和一倾角为45°且高为H =5m 的斜面CD ,二者间通过一水平光滑平台BC 相连,B 点为圆轨道最低点与平台的切点.现将质量为m 的一小球从圆轨道A 点正上方h 处(h 大小可调)由静止释放,巳知重力加速度g =10m/s 2,且小球在点A 时对圆轨道的压力总比在最低点B 时对圆轨道的压力小3mg .(1)若h =0,求小球在B 点的速度大小;(2)若h =0.8m ,求小球落点到C 点的距离;(结果可用根式表示)(3)若在斜面中点竖直立一挡板,使得无论h 为多大,小球不是越不过挡板,就是落在水平地面上,则挡板的最小长度l 为多少?【答案】(1)25/m s (261m (3)1.25m【解析】【分析】【详解】(1)从释放小球至A 点根据速度与位移关系有22A v gh =在A 点,根据牛顿第二定律21A N v F m R= 在B 点,根据牛顿第二定律22B N v F mg m R-= 根据题意有213N N F F mg -=故B v =若0h =,则小球在B 点的速度1v ==;(2)小球从B 至C 做匀速直线运动,从C 点滑出后做平抛运动,若恰能落在D 点则 水平方向0x t v =竖直方向212y H gt ==又因为斜面倾角为45°,则 x y =解得05m/s v =对应的高度00.25m h =若0.80.25h m m =>,小球将落在水平地面上,而小球在B 点的速度26m/s v =小球做平抛运动竖直方向212H gt =得 1t s =则水平方向126m x v t ==故小球落地点距C 点的距离22161m s x H =+=;(3)若要求无论h 为多大,小球不是打到挡板上,就是落在水平地面上,临界情况是小球擦着挡板落在D 点,经前面分析可知,此时在B 点的临界速度:35m/s v =则从C 点至挡板最高点过程中水平方向3''x v t =竖直方向'2122H y l gt =-=' 又 2H x '=解得 1.25m l =. 点睛:本题研究平抛运动与圆周运动想结合的问题,注意分析题意,找出相应的运动过程,注意方程式与数学知识向结合即可求解.7.如图所示的水平地面上有a 、b 、O 三点.将一条轨道固定在竖直平面内,粗糙的ab 段水平,bcde 段光滑,cde 是以O 为圆心,R 为半径的一段圆弧,可视为质点的物块A 和B 紧靠在一起,中间夹有少量炸药,静止于b 处,A 的质量是B 的2倍.某时刻炸药爆炸,两物块突然分离,分别向左、右沿轨道运动.B 到最高点d 时速度沿水平方向,此时轨道对B 的支持力大小等于B 所受重力的3/4,A 与ab 段的动摩擦因数为μ,重力加速度g ,求:(1)物块B 在d 点的速度大小;(2)物块A 滑行的距离s ;(3)试确定物块B 脱离轨道时离地面的高度;(4)从脱离轨道后到落到水平地面所用的时间.【答案】(12Rg 2)516R μ(3)56R (415(8311)66R g 【解析】(1)设物块A 和B 的质量分别为m A 和m B 234d B B B v m g m g m R-= 解得2d Rg v = (2)设A 、B 分开时的速度分别为v 1、v 2,系统动量守恒 120A B m v m v -=B 由位置b 运动到d 的过程中, 机械能守恒2221122B B B d m v m gR m v =+ 2252v gR = A 在滑行过程中,由动能定理21102A A m v m gs μ-=- 联立得516R s μ= (3)设物块脱离轨道时速度为v ,F N =0向心力公式 2cos v mg m Rθ= 而 ()22111cos 22d mv mgR mv θ+-= 解得 5cos 6θ= , 56v gR = 脱离轨道时离地面的高度5cos 6h R R θ==(4)离轨道时后做向下斜抛运动竖直方向:21cos sin 2h R v t gt θθ==⋅+解得:15831166Rt g = 点睛:本题考查牛顿第二定律、动能定理以及动量守恒定律的应用,解题时关键是认真分析物理过程,挖掘问题的隐含条件,例如物体脱离轨道时F N =0;能选择合适的物理规律列出方程即可解答.8.如图所示,半径为r 的圆筒绕竖直中心轴转动,小橡皮块紧贴在圆筒内壁上,它与圆筒的摩擦因数为μ,现要使小橡皮不落下,则圆筒的角速度至少多大?(设最大静摩擦力等于滑动摩擦力)【答案】g r μ 【解析】 要使A 不下落,则小物块在竖直方向上受力平衡,有f =mg当摩擦力正好等于最大静摩擦力时,圆筒转动的角速度ω取最小值,筒壁对物体的支持力提供向心力,根据向心力公式,得2N m r ω=而f =μN解得圆筒转动的角速度最小值为g rωμ= 综上所述本题答案是:g rμ 点睛:解本题要明确物块刚好不下滑的条件是什么,然后结合受力求解角速度的大小.9.如图所示,A 、B 是水平传送带的两个端点,起初以的速度顺时针运转.今将一质量为1kg 的小物块(可视为质点)无初速度地轻放在A 处,同时传送带以的加速度加速运转,物体和传送带间的动摩擦因素为0.2,水平桌面右侧有一竖直放置的光滑轨道CPN ,其形状为半径R=0.8m 的圆环剪去了左上角1350的圆弧,PN 为其竖直直径,C 点与B 点的竖直距离为R ,物体在B 点水平离开传送带后由C 点恰好无碰撞落入轨道.取g=10m/s 2,求:(1)物块由A 端运动到B 端所经历的时间.(2)AC 间的水平距离(3)小物块在P 点对轨道的压力.【答案】(1)3s (2)8.6m (3)70-10N 【解析】试题分析:(1)物体离开传送带后由C 点无碰撞落入轨道,则得在C 点物体的速度方向与C 点相切,与竖直方向成45º,有,物体从B点到C作平抛运动,竖直方向:水平方向:得出物体刚放上传送带时,由牛顿第二定律得a=2m/s2物体历时t1后与传送带共速,则a t1=v0+ a0t1,t1=1s得v1="2" m/s<4 m/s故物体此时速度还没有达到v B,且此后的过程中由于<,物体将和传送带以共同的加速度运动,设又历时t2到达B点 v B= v1+ a0t2得t2=2s所以从A运动倒B的时间t= t1+t2=3sAB间的距离s==7m(2)从B到C的水平距离s BC=v B t3=2R=1.6m所以A到C的水平距离s AC=s+s BC=8.6m(3) 对CP段由动能定理对P点应牛顿第二定律:解得:N=70-10N考点:牛顿第二定律的综合应用;平抛运动【名师点睛】此题主要是牛顿第二定律的综合应用问题;解决此题的关键是抓住过程分析及各过程之间的联系,分过程依次解决,对于在传送到上的运动又要讨论各种情况,比较复杂;对于圆周运动问题逐一分析向心力来源.有一定难度.10.如图所示,内壁粗糙、半径R=0.4 m的四分之一圆弧轨道AB在最低点B与光滑水平轨道BC相切。

高中物理--圆周运动--最全讲义及典型习题及答案详解

高中物理--圆周运动--最全讲义及典型习题及答案详解

高中物理--圆周运动--最全讲义及典型习题及答案详解状元堂精品辅导资料第三节圆周运动【知识清单】(一)匀速圆周运动的概念1、质点沿圆周运动,如果______________________________,这种运动叫做匀速圆周运动。

2、匀速圆周运动的各点速度不同,这是因为线速度的______时刻在改变。

(二)描述匀速圆周运动的物理量1、匀速圆周运动的线速度大小是指做圆周运动的物体通过的弧长与所用时间的比值。

方向沿着圆周在该点的切线方向。

2、匀速圆周运动的角速度是指做圆周运动的物体与圆心所连半径转过的角度跟所用时间的比值。

3、匀速圆周运动的周期是指____________________________所用的时间。

(三)线速度、角速度、周期1、线速度与角速度的关系是V=ωr ,角速度与周期的关系式是ω=2π/T。

2、质点以半径r=0.1m绕定点做匀速圆周运动,转速n=300r/min,则质点的角速度为_______rad/s,线速度为_______m/s。

3、钟表秒针的运动周期为_______s,频率为_______Hz,角速度为_______rad/s。

(四)向心力、相信加速度1、向心力是指质点做匀速圆周运动时,受到的总是沿着半径指向圆心的合力,是变力。

2、向心力的方向总是与物体运动的方向_______,只是改变速度的_______,不改变线速度的大小。

3、在匀速圆周运动中,向心加速度的_______不变,其方向总是指向_______,是时刻变化的,所以匀速圆周运动是一种变加速曲线运动。

4、向心加速度是由向心力产生的,在匀速圆周运动中,它只描述线速度方向变化的快慢。

5、向心力的表达式_______________。

向心加速度的表达式_______________。

6、向心力是按照效果命名的力,任何一个力或几个力的合力,只要它的作用效果是使物体产生_______,它就是物体所受的向心力。

7、火车拐弯时,如果在拐弯处内外轨的高度一样,则火车拐弯所需的向心力由轨道对火车的弹力来提供,如果在拐弯处外轨高于内轨,且据转弯半径和规定的速度,恰当选择内外轨的高度差,则火车所需的向心力完全由__________和________的合力来提供。

【物理】高中必备物理生活中的圆周运动技巧全解及练习题(含答案)及解析

【物理】高中必备物理生活中的圆周运动技巧全解及练习题(含答案)及解析

【物理】高中必备物理生活中的圆周运动技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨;(3)由④式可知:214/1A A Bm v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.2.如图所示,在竖直平面内有一半径为R 的14光滑圆弧轨道AB ,与水平地面相切于B 点。

高中物理生活中的圆周运动解题技巧讲解及练习题(含答案)

高中物理生活中的圆周运动解题技巧讲解及练习题(含答案)

高中物理生活中的圆周运动解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m2.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =,253gR v =3.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。

高考物理生活中的圆周运动解题技巧讲解及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧讲解及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧讲解及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为045的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为1m kg =,210/g m s =,求:(1)小球在斜面上的相碰点C 与B 点的水平距离; (2)小球通过管道上B 点时对管道的压力大小和方向. 【答案】(1)0.9m ;(2)1N 【解析】 【分析】(1)根据平抛运动时间求得在C 点竖直分速度,然后由速度方向求得v ,即可根据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在B 点应用牛顿第二定律求得支持力N B 的大小和方向. 【详解】(1)根据平抛运动的规律,小球在C 点竖直方向的分速度 v y =gt=10m/s水平分速度v x =v y tan450=10m/s则B 点与C 点的水平距离为:x=v x t=10m (2)根据牛顿运动定律,在B 点N B +mg=m 2v R解得 N B =50N根据牛顿第三定律得小球对轨道的作用力大小N , =N B =50N 方向竖直向上 【点睛】该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B 点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析.2.如图所示,在竖直平面内固定有两个很靠近的同心圆形轨道,外圆ABCD 光滑,内圆的上半部分B′C′D′粗糙,下半部分B′A′D′光滑.一质量m=0.2kg 的小球从轨道的最低点A 处以初速度v 0向右运动,球的直径略小于两圆间距,球运动的轨道半径R=0.2m ,取g=10m/s 2.(1)若要使小球始终紧贴着外圆做完整的圆周运动,初速度v 0至少为多少? (2)若v 0=3m/s ,经过一段时间小球到达最高点,内轨道对小球的支持力F C =2N ,则小球在这段时间内克服摩擦力做的功是多少?(3)若v 0=3.1m/s ,经过足够长的时间后,小球经过最低点A 时受到的支持力为多少?小球在整个运动过程中减少的机械能是多少?(保留三位有效数字) 【答案】(1)0v 10m/s (2)0.1J (3)6N ;0.56J 【解析】 【详解】(1)在最高点重力恰好充当向心力2Cmv mg R= 从到机械能守恒220112-22C mgR mv mv =解得010m/s v =(2)最高点'2-CC mv mg F R= 从A 到C 用动能定理'22011-2--22f C mgR W mv mv =得=0.1J f W(3)由0=3.1m/s<10m/s v 于,在上半圆周运动过程的某阶段,小球将对内圆轨道间有弹力,由于摩擦作用,机械能将减小.经足够长时间后,小球将仅在半圆轨道内做往复运动.设此时小球经过最低点的速度为A v ,受到的支持力为A F212A mgR mv =2-AA mv F mg R= 得=6N A F整个运动过程中小球减小的机械能201-2E mv mgR ∆=得=0.56J E ∆3.如图所示,ABCD 是一个地面和轨道均光滑的过山车轨道模型,现对静止在A 处的滑块施加一个水平向右的推力F ,使它从A 点开始做匀加速直线运动,当它水平滑行2.5 m 时到达B 点,此时撤去推力F 、滑块滑入半径为0.5 m 且内壁光滑的竖直固定圆轨道,并恰好通过最高点C ,当滑块滑过水平BD 部分后,又滑上静止在D 处,且与ABD 等高的长木板上,已知滑块与长木板的质量分别为0.2 kg 、0.1 kg ,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、 ,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g =10 m/s 2,求:(1)水平推力F 的大小; (2)滑块到达D 点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少? 【答案】(1)1N (2) (3)t =1 s ;【解析】 【分析】 【详解】(1)由于滑块恰好过C 点,则有:m 1g =m 1从A 到C 由动能定理得:Fx -m 1g ·2R =m 1v C 2-0代入数据联立解得:F =1 N(2)从A 到D 由动能定理得:Fx =m 1v D 2代入数据解得:v D =5 m/s(3)滑块滑到木板上时,对滑块:μ1m 1g =m 1a 1,解得:a 1=μ1g =3 m/s 2对木板有:μ1m 1g -μ2(m 1+m 2)g =m 2a 2,代入数据解得:a 2=2 m/s 2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同, 有:v 共=v D -a 1t v 共=a 2t ,代入数据解得:t =1 s此时滑块的位移为:x 1=v D t -a 1t 2,木板的位移为:x 2=a 2t 2,L =x 1-x 2,代入数据解得:L =2.5 m v 共=2 m/s x 2=1 m达到共同速度后木板又滑行x ′,则有:v 共2=2μ2gx ′,代入数据解得:x ′=1.5 m木板在水平地面上最终滑行的总位移为:x 木=x 2+x ′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.4.某工厂在竖直平面内安装了如图所示的传送装置,圆心为O 的光滑圆弧轨道AB 与足够长倾斜传送带BC 在B 处相切且平滑连接,OA 连线水平、OB 连线与竖直线的夹角为37θ=︒,圆弧的半径为 1.0m R =,在某次调试中传送带以速度2m/s v =顺时针转动,现将质量为13kg m =的物块P (可视为质点)从A 点位置静止释放,经圆弧轨道冲上传送带,当物块P 刚好到达B 点时,在C 点附近某一位置轻轻地释放一个质量为21kg m =的物块Q 在传送带上,经时间 1.2s t =后与物块P 相遇并发生碰撞,碰撞后粘合在一起成为粘合体A .已知物块P 、Q 、粘合体S 与传送带间的动摩擦因数均为0.5μ=,重力加速度210m/s g =,sin370.6︒=,cos370.8︒=.试求:(1)物块P 在B 点的速度大小; (2)传送带BC 两端距离的最小值;(3)粘合体回到圆弧轨道上B 点时对轨道的压力.【答案】(1)4m/s (2)3.04m (3)59.04N ,方向沿OB 向下。

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。

【答案】【解析】 【分析】根据牛顿第二定律求出支持力为零时,小球的线速度的大小,从而确定小球有无离开圆锥体的斜面,若离开锥面,根据竖直方向上合力为零,水平方向合力提供向心力求出线对小球的拉力大小。

【详解】若小球刚好离开圆锥面,则小球所受重力与细线拉力的合力提供向心力,有:此时小球做圆周运动的半径为:解得小球运动的角速度大小为:代入数据得:若小球运动的角速度为:小球对圆锥体有压力,设此时细线的拉力大小为F ,小球受圆锥面的支持力为,则水平方向上有: 竖直方向上有:联立方程求得:【点睛】解决本题的关键知道小球圆周运动向心力的来源,结合牛顿第二定律进行求解,根据牛顿第二定律求出临界速度是解决本题的关键。

2.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方2R处的O '点由静止释放,小球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力,g 取10 m/s 2). 求:(1)小球运动至B 点时的速度大小B v(2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W (3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大.【答案】(1)4?/B v m s = (2)22?f W J = (3) 3.36L m = 【解析】试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度.(1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2BN v F mg m R-=解得:4/B v m s =(2)从O '到B 的过程中重力和阻力做功,由动能定理可得:21022f B R mg R W mv ⎛⎫+-=- ⎪⎝⎭解得:22f W J =(3)由B 到C 的过程中,由动能定理得:221122BC C B mgL mv mv μ-=- 解得:222B C BCv v L gμ-= 从C 点到落地的时间:020.8ht s g== B 到P 的水平距离:2202B CC v v L v t gμ-=+ 代入数据,联立并整理可得:214445C C L v v =-+ 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.3.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。

高考物理生活中的圆周运动解题技巧分析及练习题(含答案)

高考物理生活中的圆周运动解题技巧分析及练习题(含答案)

高考物理生活中的圆周运动解题技巧分析及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.3.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功.【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:vy =m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 2==m/s 物块到达P 的速度:P v ===3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .4.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m5.如图所示,水平传送带AB 长L=4m ,以v 0=3m/s 的速度顺时针转动,半径为R=0.5m 的光滑半圆轨道BCD 与传动带平滑相接于B 点,将质量为m=1kg 的小滑块轻轻放在传送带的左端.已,知小滑块与传送带之间的动摩擦因数为μ=0.3,取g=10m/s 2,求:(1)滑块滑到B 点时对半圆轨道的压力大小;(2)若要使滑块能滑到半圆轨道的最高点,滑块在传送带最左端的初速度最少为多大. 【答案】(1)28N.(2)7m/s 【解析】 【分析】(1)物块在传送带上先加速运动,后匀速,根据牛顿第二定律求解在B 点时对轨道的压力;(2)滑块到达最高点时的临界条件是重力等于向心力,从而求解到达D 点的临界速度,根据机械能守恒定律求解在B 点的速度;根据牛顿第二定律和运动公式求解A 点的初速度. 【详解】(1)滑块在传送带上运动的加速度为a=μg=3m/s 2;则加速到与传送带共速的时间01v t s a == 运动的距离:211.52x at m ==, 以后物块随传送带匀速运动到B 点,到达B 点时,由牛顿第二定律:2v F mg m R-= 解得F=28N ,即滑块滑到B 点时对半圆轨道的压力大小28N.(2)若要使滑块能滑到半圆轨道的最高点,则在最高点的速度满足:mg=m 2Dv R解得v D =5m/s ; 由B 到D ,由动能定理:2211222B D mv mv mg R =+⋅ 解得v B =5m/s>v 0可见,滑块从左端到右端做减速运动,加速度为a=3m/s 2,根据v B 2=v A 2-2aL 解得v A =7m/s6.如图所示,P 为弹射器,PA 、BC 为光滑水平面分别与传送带AB 水平相连,CD 为光滑半圆轨道,其半径R =2m ,传送带AB 长为L =6m ,并沿逆时针方向匀速转动.现有一质量m =1kg 的物体(可视为质点)由弹射器P 弹出后滑向传送带经BC 紧贴圆弧面到达D 点,已知弹射器的弹性势能全部转化为物体的动能,物体与传送带的动摩擦因数为μ=0.2.取g =10m/s 2,现要使物体刚好能经过D 点,求: (1)物体到达D 点速度大小;(2)则弹射器初始时具有的弹性势能至少为多少.【答案】(1)5;(2)62J 【解析】 【分析】 【详解】(1)由题知,物体刚好能经过D 点,则有:2Dv mg m R=解得:25D v gR ==m/s(2)物体从弹射到D 点,由动能定理得:21202D W mgL mgR mv μ--=-p W E =解得:p E =62J7.如图所示,一质量为m 的小球C 用轻绳悬挂在O 点,小球下方有一质量为2m 的平板车B 静止在光滑水平地面上,小球的位置比车板略高,一质量为m 的物块A 以大小为v 0的初速度向左滑上平板车,此时A 、C 间的距离为d ,一段时间后,物块A 与小球C 发生碰撞,碰撞时两者的速度互换,且碰撞时间极短,已知物块与平板车间的动摩擦因数为μ ,重力加速度为g ,若A 碰C 之前物块与平板车已达共同速度,求: (1)A 、C 间的距离d 与v 0之间满足的关系式;(2)要使碰后小球C 能绕O 点做完整的圆周运动,轻绳的长度l 应满足什么条件?【答案】(1);(2)【解析】(1)A 碰C 前与平板车速度达到相等,设整个过程A 的位移是x ,由动量守恒定律得由动能定理得:解得满足的条件是(2)物块A 与小球C 发生碰撞,碰撞时两者的速度互换, C 以速度v 开始做完整的圆周运动,由机械能守恒定律得小球经过最高点时,有解得【名师点睛】A 碰C 前与平板车速度达到相等,由动量守恒定律列出等式;A 减速的最大距离为d ,由动能定理列出等式,联立求解。

高考物理生活中的圆周运动解题技巧讲解及练习题(含答案)

高考物理生活中的圆周运动解题技巧讲解及练习题(含答案)

高考物理生活中的圆周运动解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,一半径r =0.2 m 的1/4光滑圆弧形槽底端B 与水平传送带相接,传送带的运行速度为v 0=4 m/s ,长为L =1.25 m ,滑块与传送带间的动摩擦因数μ=0.2,DEF 为固定于竖直平面内的一段内壁光滑的中空方形细管,EF 段被弯成以O 为圆心、半径R =0.25 m 的一小段圆弧,管的D 端弯成与水平传带C 端平滑相接,O 点位于地面,OF 连线竖直.一质量为M =0.2 kg 的物块a 从圆弧顶端A 点无初速滑下,滑到传送带上后做匀加速运动,过后滑块被传送带送入管DEF ,已知a 物块可视为质点,a 横截面略小于管中空部分的横截面,重力加速度g 取10 m/s 2.求:(1)滑块a 到达底端B 时的速度大小v B ; (2)滑块a 刚到达管顶F 点时对管壁的压力. 【答案】(1)2/B v m s = (2) 1.2N F N = 【解析】试题分析:(1)设滑块到达B 点的速度为v B ,由机械能守恒定律,有21g 2B M r Mv = 解得:v B =2m/s(2)滑块在传送带上做匀加速运动,受到传送带对它的滑动摩擦力, 由牛顿第二定律μMg =Ma滑块对地位移为L ,末速度为v C ,设滑块在传送带上一直加速 由速度位移关系式2Al=v C 2-v B 2得v C =3m/s<4m/s ,可知滑块与传送带未达共速 ,滑块从C 至F ,由机械能守恒定律,有221122C F Mv MgR Mv =+ 得v F =2m/s在F 处由牛顿第二定律2g FN v M F M R+=得F N =1.2N 由牛顿第三定律得管上壁受压力为1.2N, 压力方向竖直向上 考点:机械能守恒定律;牛顿第二定律【名师点睛】物块下滑和上滑时机械能守恒,物块在传送带上运动时,受摩擦力作用,根据运动学公式分析滑块通过传送带时的速度,注意物块在传送带上的速度分析.2.如图所示,一质量为m 的小球C 用轻绳悬挂在O 点,小球下方有一质量为2m 的平板车B静止在光滑水平地面上,小球的位置比车板略高,一质量为m的物块A以大小为v0的初速度向左滑上平板车,此时A、C间的距离为d,一段时间后,物块A与小球C发生碰撞,碰撞时两者的速度互换,且碰撞时间极短,已知物块与平板车间的动摩擦因数为μ,重力加速度为g,若A碰C之前物块与平板车已达共同速度,求:(1)A、C间的距离d与v0之间满足的关系式;(2)要使碰后小球C能绕O点做完整的圆周运动,轻绳的长度l应满足什么条件?【答案】(1);(2)【解析】(1)A碰C前与平板车速度达到相等,设整个过程A的位移是x,由动量守恒定律得由动能定理得:解得满足的条件是(2)物块A与小球C发生碰撞,碰撞时两者的速度互换,C以速度v开始做完整的圆周运动,由机械能守恒定律得小球经过最高点时,有解得【名师点睛】A碰C前与平板车速度达到相等,由动量守恒定律列出等式;A减速的最大距离为d,由动能定理列出等式,联立求解。

最新2019年高考物理双基突破: 专题19 圆周运动精讲(含答案).doc

最新2019年高考物理双基突破: 专题19 圆周运动精讲(含答案).doc

专题十九圆周运动(精讲)一、匀速圆周运动1.定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动。

2.性质:一种变加速的变速运动。

在匀速圆周运动中,线速度的大小(速率)不变、方向时刻改变,不是恒矢量,所以匀速圆周运动是一种变速运动。

向心加速度大小不变、方向始终指向圆心,时刻改变,是变加速(非匀变速)曲线运动(加速度是变化的)。

角速度、周期、转速都恒定不变。

向心力大小恒不变,但方向时刻改变,是变力。

匀速圆周运动中的“匀速”是“匀速率”的意思。

3.周期性由于圆具有中心对称的特点,故物体每转一周,该物体又回到原处,所以物体在某处出现所需的时间应为周期的整数倍,解题时,应注意圆周运动的多解问题。

4.匀速圆周运动的条件:当物体所受的合外力大小恒定、方向始终与速度方向垂直且指向圆心(是变力)时,物体做匀速圆周运动,此时向心力由物体所受合外力提供。

当物体做匀速圆周运动时,合外力就是向心力。

二、描述圆周运动的物理量1.线速度v —瞬时速度(1)意义:描述质点沿圆弧运动的快慢,线速度越大,质点沿圆弧运动越快。

(2)定义:线速度的大小等于质点通过的弧长s 与所用时间t 的比值。

(3)计算式:ωππr rf T r t s v ====22 单位:m/s 。

(4)矢量:方向在圆周各点的切线方向上。

线速度v =ts 中的s 是弧长、不是位移.线速度只不过为区分角速度而在速度前冠以“线”字罢了,因其方向总是沿弧的切线方向而称之为线速度。

2.角速度ω(1)定义:连接质点和圆心的半径(动半径)转过的角度跟所用时间的比值,叫做匀速圆周运动的角速度。

(2)单位:rad/s (弧度每秒)。

(3)计算式:rv f T t ====ππϕω22。

(4)意义:描述质点转过圆心角的快慢。

3.周期T(1)定义:做匀速圆周运动的物体运动一周所用的时间叫做周期。

(2)单位:s (秒)。

(3)标量:只有大小。

(4)计算式:f v r T 122===ωππ(5)意义:定量描述匀速圆周运动快慢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周运动的多解问题
如图所示,在半径为R的水平圆盘中心轴正上方水平抛出一小球,圆盘以角速度做匀速转动,当圆盘半径Ob恰好转到与小球初速度方向相同且平行的位置时,将小球抛出,要使小球与圆盘只碰一次,且落点为b,重力加速度为g,小球抛出点a距圆盘的高度h和小球的初速度v0可能应满足
A.,B.,
C.,D.,
【参考答案】ABD
【名师点睛】小球做平抛运动,小球在水平方向上做匀速直线运动,在竖直方向做自由落体运动,圆盘转动的时间和小球平抛运动的时间相等,在这段时间内,圆盘转动n圈,从而确定运动的时间,再根据水平位移求出抛出的初速度,根据竖直方向求出高度。

【知识补给】
圆周运动的多解问题
(1)明确两个物体参与运动的性质和求解的问题。

两个物体虽然独立运行,但一定有联系点,其联系点一般是时间或位移,寻求联系点是解题的突破点。

(2)注意圆周运动的周期性造成的多解,分析时可暂时不考虑周期性,表示出一个周期的情况,再根据圆周运动的周期性,在转过的角速度上加上2nπ,具体n的取值应视情况而定。

(2018·山西省吕梁市柳林联盛中学高一第二学期单元测试)如图所示,直径为d的纸制圆筒,以角速度ω绕中心轴匀速转动,把枪口垂直圆筒轴线,使子弹穿过圆筒,结果发现圆筒上只有一个弹孔,则子弹的速度不可能是
A.dω/π B.dω/2π C.dω/3π D.dω/4π
如图所示,一位同学做飞镖游戏,已知圆盘的直径为d,飞镖距圆盘为L,且对准圆盘上边缘的A点水平抛出,初速度为v0,飞镖抛出的同时,圆盘以垂直圆盘过盘心O的水平轴匀速转动,角速度为ω。

若飞镖恰好击中A点,则下列关系正确的是
A.dv02=L2g B.ωL=π(1+2n)v0,(n=0,1,2,3…)
C.v0=ωD.dω2=gπ2(1+2n)2,(n=0,1,2,3…)
(2018·四川省成都外国语学院高一下学期期中考试)一中空圆筒长l=200cm,其两端以纸封闭,使筒绕其中心轴线OO′匀速转动,一子弹沿与OO′平行的方向以v=400 m/s的速度匀速穿过圆筒,在圆筒两端面分别留下弹孔A和B,如图所示。

今测得A和轴线所在平面与B
和轴线所在平面的夹角为120°,此圆筒的转速为
A.r/s
B.r/s
C.200r/s(n=0、1、2、3、…)
D.200r/s(n=0、1、2、3、…)
(2018·黑龙江省哈尔滨师范大学附属中学高一下学期第一次月考)如图所示的装置可测量子弹的飞行速度,在一根轴上相隔s=1 m处安装两个平行的薄圆盘,使轴带动两圆盘以n=35 0 r/s同向匀速转动,飞行的子弹平行于轴沿一直线穿过两圆盘,在两盘上各留下一个孔,现测得两小孔所在半径间的夹角为60°,子弹飞行速度大小可能是下述的
A.1 200 m/s B.420 m/s C.300 m/s D.212 m/s
如图所示,竖直薄壁圆筒内壁光滑、半径为,上部侧面处开有小口,在小口的正下方处亦开有与大小相同的小口,小球从小口沿切线方向水平射入筒内,使小球紧贴筒内壁运动,要使小球从口处飞出,小球进入口的速度可能为
A.B.
C.D.
【参考答案】
BD 子弹从圆筒左侧穿入后沿直径做匀速直线运动,孔转至最右侧时子弹恰好穿出,则子弹飞行时间应恰好等于圆筒转动半个周期的奇数倍,即(2n+1)π=ωd/v,则v=dω/[(2n+1)π],(n=0,1,2…)分母不可能是π的偶数倍。

C 首先由子弹匀速穿过圆筒可计算出子弹穿过圆筒所用时间为,由于整个圆筒在做匀速圆周运动,因此圆筒转过的角度应为一系列的可能值:
,由角速度的定义式、角速度与转速的关系可知,由以上三式联立解得,故C正确。

B C子弹从A盘到B盘,盘转过的角度为:或
,盘转动的角速度,子弹在A、B间运动的时间等于圆盘转动时间,即:,则有
或,n=0时,v=2 100 m/s或v=420 m/s,n=1时,v=300 m/s或v=
m/s,n=2时,v=m/s…,故BC正确,AD错误;故选BC。

【名师点睛】通过轴杆的转速,可求出圆盘的角速度,再由两个弹孔所在的半径间的夹角,及圆盘平行间距可求出圆盘转动的角度,注意圆盘的周期性,从而即可求解。

相关文档
最新文档