高中物理圆周运动专题讲解
高一物理圆周运动知识点
高一物理圆周运动知识点高一物理圆周运动知识点详解圆周运动是高中物理中的重要内容之一,它是描述物体在圆周轨道上运动的一种运动形式。
了解圆周运动的基本原理,对于解决相关物理问题具有重要的意义。
接下来,我们将分别从圆周运动的定义、力学分析和自由落体问题等方面,进行详细的论述。
1. 圆周运动的定义圆周运动是指物体沿着圆周轨道运动的过程。
在圆周运动中,物体的速度大小保持不变,而速度的方向则随着时间不断改变,指向圆心。
由此可知,圆周运动是一种变速运动。
2. 圆周运动的力学分析在进行圆周运动的物体上,必然存在向圆心指向的向心力。
向心力是维持物体做圆周运动的力。
根据牛顿第二定律,向心力与物体的质量和加速度有关。
所以,物体的向心加速度可以通过向心力与物体质量之间的关系来确定。
3. 向心力与圆周运动的关系向心力与圆周运动的关系可以用向心加速度的表达式来描述。
根据牛顿第二定律和向心加速度的定义,我们可以得到向心力与圆周运动半径和物体质量的关系公式:F = m·a_c = m·v^2/ r其中,F表示向心力,m表示物体的质量,v表示物体的速度,r表示圆周运动的半径,a_c表示向心加速度。
4. 圆周运动与自由落体问题在圆周运动中,物体绕圆心做匀速圆周运动时,当它与其他物体处于同一圆周轨道时,这两个物体之间的相互作用力可以使它们保持匀速运动。
这里与圆周运动相关的自由落体问题是指当物体在竖直方向上做圆周运动时,其重力与向心力之间的平衡问题。
5. 圆周运动的应用圆周运动在生活和科学研究中有着广泛的应用。
例如,在机械运动中,很多机器的旋转部分都是通过圆周运动来实现的;在天文学中,行星绕着太阳做圆周运动,卫星绕地球做圆周运动。
综上所述,圆周运动是高一物理中一个重要的知识点。
通过深入理解圆周运动的定义、力学分析、与自由落体问题的关系以及应用等方面,我们可以更好地解决和应用这一知识点。
深入学习圆周运动,不仅有助于提高物理学习的能力,也能拓宽我们对物理学的认识。
新教材 人教版高中物理必修第二册 第六章 圆周运动 知识点考点重点难点提炼汇总
第六章圆周运动6.1圆周运动 ........................................................................................................................... - 1 -6.2向心力 ............................................................................................................................... - 9 -6.3向心加速度 ..................................................................................................................... - 16 -6.4生活中的圆周运动 ......................................................................................................... - 21 -专题课向心力的应用和计算............................................................................................ - 32 - 专题课生活中的圆周运动................................................................................................ - 36 -6.1圆周运动一、圆周运动及线速度1.圆周运动的概念运动轨迹为圆周或一段圆弧的机械运动,称为圆周运动。
高中物理 圆周运动 详细讲解
思考题:
“物体做匀速圆周运动时,其速度 是恒定不变的。”
(这种说法正确吗?)
请选择: 正确
错误
弧 S 跟所用的时间 t 之比是个定
值,这个比值就是匀速圆周运动的速 率(速度的大小):
v s 单位 m/s t
(线速度的大小)
(v在数值上等于质点在单位时间内通过 的弧长)
周期:质点做匀速圆周
运动时,运动一周所用
的时间。用 T 表示。
T质点沿半径为r的Fra bibliotek周做圆周 运动,周期为T,则
v 2r
T
轨迹是圆周的运动叫圆周运动。
皮带轮 飞轮 电动机转子各部分
在我们日常生活中,最常见最简 单的圆周运动是匀速圆周运动。
匀速圆周运动:质点沿圆周运动,如 果在任何相等的时间里通过的圆弧相 等,这种运动就叫做匀速圆周运动。
砂轮上各点
电子钟指针上每 一点
速度
v
s t
s
时间 t
质点做匀速圆周运动时,它通过的圆
角速度
t
时间 t
t 角速度:半径转过的角度 跟所用的
时间 之比。用 表示。
角度的单位是rad,时间的单位是s,故角速 度的单位是rad/s.
( 在数值上等于质点在单位时间内沿
半径所转过的角度 )
质点做匀速圆周运动,周期是T
则有: 2
T
例1. 半径10cm的砂轮,每0.2秒转一周,砂 砂轮旋转的角速度多大?砂轮边沿一
点的速度大小为多少?
解:从题中知r=10cm=0.1m,T=0.2s
2 2 10 rad/s
T 0.2
v 2 2 0.10 m/s
t
0.2
高中物理圆周运动和向心加速度专题讲解
圆周运动和向心加速度【要点梳理】要点一、圆周运动的线速度 要点诠释:1、线速度的定义:圆周运动中,物体通过的弧长与所用时间的比值,称为圆周运动的线速度。
公式:tlv ∆∆=(比值越大,说明线速度越大) 方向:沿着圆周上各点的切线方向 单位:m/s 2、 说明1)线速度是指物体做圆周运动时的瞬时速度。
2)线速度的方向就是圆周上某点的切线方向线速度的大小是tl∆∆的比值。
所以v 是矢量。
3)匀速圆周运动是一个线速度大小不变的圆周运动。
4)线速度的定义式tlv ∆∆=,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要t ∆取得足够小,公式计算的结果就是瞬时线速度注:匀速圆周运动中的“匀速”二字的含义:仅指速率不变,但速度的方向(曲线上某点的切线方向)时刻在变化。
【典型例题】类型一、描述匀速圆周运动的各个物理量例1、一个直径为1.4m 的圆盘以中心为轴匀速转动,转速为2转/秒,求圆盘边缘一点的线速度、角速度、周期和向心加速度。
例2、 (2015 海南会考模拟)如图所示,钟表的秒针、分针、时针转动周期、角速度都不同,下列说法中正确的是( )A .秒针的周期最大,角速度最大B .秒针的周期最小,角速度最大C .时针的周期最大,角速度最大D .时针的周期最小,角速度最大 【解析】时针的周期是12h ,分针的周期是1h ,秒针的周期是1min ,秒针的周期最小,根据2Tπω=可知秒针的角速度最大,故A 错误B 正确;时针的周期是12h ,分针的周期是1h ,秒针的周期是1min ,时针的周期最大,根据2Tπω=可知时针的角速度最小,故CD 错误。
【变式】电风扇叶片边缘一点的线速度为56.7m/s ,若它转动半径为18cm ,求电扇转动的角速度和周期。
【解析】根据线速度与角速度的关系r v ω=得)s (02.022)rad/s (315=====v rT T rv rv ππω所以又因为要点二、描写圆周运动的角速度 要点诠释:1、角速度的定义:圆周运动物体与圆心的连线扫过的角度θ∆与所用时间t ∆的比值叫做角速度。
高中物理 圆周运动典型例题详解
B、作匀速圆周运动的物体,在所受合外力突然消失时,
将沿圆周切线方向离开圆心
C、作匀速圆周运动的物体,它自己会产生一个向心力,
维持其作圆周运动
D、作离心运动的物体,是因为受到离心力作用的缘故
【例4】以下属于离心现象应用的是( BC ) A、水平抛出去的物体,做平抛运动 B、链球运动员加速旋转到一定的速度后将链球抛开 C、离心干燥器使衣物干燥 D、锤头松了,将锤柄在石头上磕风下就可以把柄安牢
解题感悟
2.两个圆周运动临界问题
v0
v0
杆连球(管通球)模型的临界问题
小球速度 运动情况 弹力的方向
弹力的大小
v=0 平衡状态 竖直向上的支持力
v gr 圆周运动 竖直向上的支持力
FN=mg
FN
mg
m
v2 r
v gr
圆周运动
v gr 圆周运动 指向圆心的拉力
FN
FN=0 mg
m
解题感悟
解决竖直平面内的变速圆周运动问题的关键是掌握两个圆周 运动模型和两个圆周运动临界问题: 1.两种圆周运动模型:
最低点圆周运动模型
最高点圆周运动模型
v0
v0
第四章 曲线运动和万有引力→3圆周运动
(三)考点应用,精讲精析 典型问题三:曲线运动中的动力学问题(四)------竖直平面内的变速圆周运动
例1 下列关于离心现象的说法正确的是( ) A.当物体所受的离心力大于向心力时产生离心现 象 B.做匀速圆周运动的物体,当它所受的一切力都 突然消失后,物体将做背离圆心的圆周运动 C.做匀速圆周运动的物体,当它所受的一切力都
突然消失后,物体将沿切线做匀速直线运动 D.做匀速圆周运动的物体,当它所受的一切力都 突然消失后,物体将做曲线运动 【解析】向心力是根据效果命名的,做匀速圆周 运动的物体所需要的向心力是它所受的某个力或 几个力的合力提供的,因此,它并不受向心力的 作用.它之所以产生离心现象是由于F合=Fn<mω2r,
高三物理一轮复习 第3讲 圆周运动
心力。
(×)
(6)“魔盘”的转速逐渐增大时,盘上的人便逐渐向边缘滑去,这是人受沿
半径向外的离心力作用的缘故。
(× )
(7)当“魔盘”转动到一定速度时,人会“贴”在“魔盘”竖直壁上而不会
滑下,此时的向心力是由静摩擦力提供。
(×)
提能点(一) 描述圆周运动的物理量(自练通关)
点点通
1.[皮带传动]
(多选)如图甲所示是中学物理实验室常用的感应起电机,它是由两个大小
3.[同轴传动] (2021·上海黄浦区模拟)某高中开设了糕点制作的选修课, 小明同学在体验糕点制作“裱花”环节时,他在绕中心匀 速转动的圆盘上放了一块直径 8 英寸(20 cm)的蛋糕,在 蛋糕上每隔 4 s 均匀“点”一次奶油,蛋糕一周均匀 “点”上 15 个奶油,则下列说法正确的是 A.圆盘转动的转速约为 2π r/min B.圆盘转动的角速度大小为3π0 rad/s C.蛋糕边缘的奶油线速度大小约为π3 m/s D.蛋糕边缘的奶油向心加速度约为9π0 m/s2
速圆周运动需要的向心力。
情景创设 现在有一种叫作“魔盘”的娱乐设施,如图所示。当“魔盘”转动很慢时, 人会随着“魔盘”一起转动,当盘的速度逐渐增大时,盘上的人便逐渐向边缘 滑去,离转动中心越远的人,这种滑动的趋势越明显,当“魔盘”转动到一定 速度时,人会“贴”在“魔盘”竖直壁上而不会滑下。
微点判断
(1)人随“魔盘”一起做匀速圆周运动时,其角速度是不变的。
(√ )
(2)人随“魔盘”一起做匀速圆周运动时,其合外力是不变的。
(× )
(3)人随“魔盘”一起做匀速圆周运动的向心加速度与半径成反比。
(× )
(4)随“魔盘”一起做匀速圆周运动时,人离“魔盘”中心越远,人运动得
高中物理生活中的圆周运动专题讲解
生活中的圆周运动要点一、静摩擦力提供向心力的圆周运动的临界状态 要点诠释:1、水平面上的匀速圆周运动,静摩擦力的大小和方向物体在做匀速圆周运动的过程中,物体的线速度大小不变,它受到的切线方向的力必定为零,提供向心力的静摩擦力一定沿着半径指向圆心。
这个静摩擦力的大小2f ma mr ω==向,它正比于物体的质量、半径和角速度的平方。
当物体的转速大到一定的程度时,静摩擦力达到最大值,若再增大角速度,静摩擦力不足以提供物体做圆周运动所需要的向心力,物体在滑动摩擦力的作用下做离心运动。
临界状态:物体恰好要相对滑动,静摩擦力达到最大值的状态。
此时物体的角速度rgμω=(μ为最大静摩擦因数),可见临界角速度与物体质量无关,与它到转轴的距离有关。
2、水平面上的变速圆周运动中的静摩擦力的大小和方向无论是加速圆周运动还是减速圆周运动,静摩擦力都不再沿着半径指向圆心,静摩擦力一定存在着一个切向分量改变速度的大小。
如图是在水平圆盘上的物体减速和加速转动时静摩擦力的方向:(为了便于观察,将图像画成俯视图)【典型例题】类型一、生活中的水平圆周运动 例1(多选)、(2015 安阳二模)如图所示,粗糙水平圆盘上,质量相等的A 、B 两物块叠放在一起,随圆盘一起做匀速圆周运动,则下列说法正确的是( )A .B 的向心力是A 的向心力的2倍B .盘对B 的摩擦力是B 对A 的摩擦力的2倍C .A 、B 都有沿半径向外滑动的趋势D .若B 先滑动,则B 对A 的动摩擦因数A μ小于盘对B 的动摩擦因数B μ 【答案】BC【解析】因为A 、B 两物体的角速度大小相等,根据2n F mr ω=,因为两物块的角速度大小相等,转动半径相等,质量相等,则向心力相等;对A 、B 整体分析,22B f mr ω=,对A 分析,有2A f mr ω=,知盘对B 的摩擦力是B 对A 的摩擦力的2倍,则B 正确;A 所受的摩擦力方向指向圆心,可知A 有沿半径向外滑动的趋势,B 受到盘的静摩擦力方向指向圆心,有沿半径向外滑动的趋势,故C 正确;对AB 整体分析,222B B mg mr μω=,解得:B B grμω=,对A 分析,2A A mg mr μω=,解得A A grμω=,因为B 先滑动,可知B 先到达临界角速度,可知B 的临界角速度较小,即B A μμ<,故D 错误。
高中物理圆周运动知识点总结
高中物理圆周运动知识点总结圆周运动是高考必考的三大基础运动之一。
前两种基本运动是匀速直线运动和平抛运动。
先说圆周运动的基础知识,首先是对圆周运动基本物理量的理解。
我们都知道圆周运动的物理量,线速度,角速度,周期,向心加速度,向心力。
那我们就一个一个来了解吧!线速度 v 和角速度 \omega设一个物体做匀速圆周运动,在时间 t 内从A点运动到B 点,扫过的弧长为 l ,扫过的圆心角为θ,如下图所示。
则v=\frac{l}{t}, \omega=\frac{\theta}{t}当物体从A点出发运动一周回到A点,则 t=T , l=2\piR , \theta=2\pi :( T 为物体做匀速圆周运动的周期)v=\frac{l}{t}=\frac{2\pi R}{T},\omega=\frac{\theta}{t}=\frac{2\pi}{T}综合上面这两个式子,可得 v=\omega R 。
转速n:转速代表物体做圆周运动时1s内转过的圈数,而角速度\omega 代表1s内转过的弧度。
它们之间的关系是: \omega=2\pi\cdot n 。
向心加速度 a_向:a_向=\frac{v^2}{R}=\omega^2R=\frac{4\pi^2}{T^2}\cdot R=\omega v特点:方向永远指向圆心。
向心力 F_向:F_向=ma_向=m\frac{v^2}{R}=m\omega^2R=m\cdot\frac{4\pi^2}{T^2}\cd ot R向心力是按效果命名的力,不是某种性质的力,因此,向心力可以由某一个力提供,也可以由几个力的合力提供,要根据物体受力的实际情况判定.向心力公式:向心力公式是六个关键公式之一,可以说是六个关键公式中最简单的公式。
那么写向心力公式的基本步骤是什么呢?1.明确研究对象,确定位置(定点);2.受力分析;3.确定向心力方向;4.如果存在与向心力方向既不垂直也不平行的力,应正交分解;5.把所有与向心力方向垂直的力去掉;6.向心方向的力减去另一个方向的力得到向心力,列出向心力公式。
高中物理总复习:圆周运动专题讲解
物理总复习:圆周运动【知识网络】角速度 2v t T r θπω===线速度 2s rv r t Tπω===向心加速度 22224v ra r v r T πωω====运行周期 22rT vππω==向心力 22224v F ma m m r mr r Tπω====【考点梳理】考点一、描述圆周运动的物理量 1、描述圆周运动的物理量描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等。
2、匀速圆周运动特点:线速度的大小恒定,角速度、周期和频率都是恒定不变的,向心加速度和向心力的大小也都是恒定不变的。
要点诠释:1、匀速圆周运动是速度大小不变而速度方向时刻在变的变速曲线运动,并且是加速度大小不变、方向时刻变化的变加速曲线运动。
2、只存在向心加速度,向心力就是做匀速圆周运动的物体所受的合外力。
3、质点做匀速圆周运动的条件(1)物体具有初速度; (2)物体受到的合外力F 的方向与速度v 的方向始终垂直。
(匀速圆周运动) 考点二、向心力的性质和来源要点诠释:向心力是按力的效果命名的,它可以是做圆周运动的物体受到的某一个力或是几个力的合力或是某一个力的分力,要视具体问题而定。
在匀速圆周运动中,由于物体运动的速率不变,动能不变,故物体所受合外力与速度时刻垂直、不做功,其方向指向圆心,充当向心力,只改变速度的方向,产生向心加速度。
考点三、传动装置中各物理量之间的关系在分析传动装置中各物理量的关系时,一定要明确哪个量是相等的,哪个量是不等的。
1、角速度相等:同轴转动的物体上的各点角速度相等。
2、线速度大小相等:(要求:在不打滑的条件下)(1)皮带传动的两轮在皮带不打滑的条件下,皮带上及两轮边缘各点的线速度大小相等; (2)齿轮传动;(3)链条传动;(4)摩擦轮传动;(5)交通工具的前后轮(自行车、摩托车、拖拉机、汽车、火车等等) 考点四、圆周运动实例分析1、火车转弯 在转弯处,若向心力完全由重力G 和支持力N F 的合力F 合来提供,则铁轨不受轮缘的挤压,此时行车最安全。
高中物理:5.4圆周运动详解
高中物理:5.4圆周运动详解
圆周运动
线速度v
描述质点沿圆周运动的快慢,是矢量。
单位:m/s
角速度ω
描述质点和圆心的连线(即半径)扫过弧度角的快慢,是标量;
单位:rad/s
角速度和线速度的关系
在圆周运动中,线速度的大小等于角速度大小与半径的乘积。
v=ωr
转速n
描述单位时间内物体做圆周运动绕圆心转过的圈数。
单位:r/s r/min
当转速的单位是r/s时,
ω=2nπ
周期T
物体沿圆周运动一周的时间。
单位:s
频率
位时间内完成周期性变化的次数。
单位:Hz
描述匀速圆周运动的物理量
习题演练
1.关于加速度和线速度,下面说法正确的是()
A 半径一定时,角线速度一定成反比
B 半径一定时,角线速度一定成正比
C 线速度一定时,角速度与半径成反比
D 角速度一定时,线速度与半径成反比
2.如图所示,A.B亮点分别位于大轮,小轮的边缘,C点位于大轮半径的中点,大轮半径是小轮的2倍,两轮靠摩擦传动,接触处没有相对滑动,则()
A A点和B点的角速度相等,线速度之比为1:2
B A点和C点的角速度相等,线速度之比为2:1
C A点和B点的线速度相等,角速度之比为1:2
D A点和B点的线速度相等,角速度之比为1:2
习题解析
1. BC
2. BC 点A和B靠摩擦传动,具有相同的线速度大小;A和C属于同轴传动,两点的角速度大小相等。
高中物理--圆周运动
一、描述圆周运动的物理量及其相互关系 1、线速度⑴定义:质点做圆周运动通过的弧长s 和所用时间t 的比值叫做线速度.⑵大小:2s rv t T π==单位为m/s.⑶方向:某点线速度的方向即为该点的切线方向.(与半径垂直) ⑷物理意义:描述质点沿圆周运动的快慢.注:对于匀速圆周运动,在任意相等时间内通过的弧长都相等,即线速度大小不变,方向时刻改变。
2、角速度⑴定义:在匀速圆周运动中,连接运动质点和圆心的半径转过的角度 跟所用时间t 的比值,就是质点运动的角速度.⑵大小: 单位:rad/s. ⑶物理意义:描述质点绕圆心转动的快慢.注:对于匀速圆周运动,角速度大小不变。
说明:匀速圆周运动中有两个结论:⑴同一转动圆盘(或物体)上的各点角速度相同.⑵不打滑的摩擦传动和皮带(或齿轮)传动的两轮边缘上各点线速度大小相等。
3、周期、频率、转速⑴周期:做匀速圆周运动的物体,转过一周所用的时间叫做周期。
用T 表示,单位为s 。
⑵频率:做匀速圆周运动的物体在1 s 内转的圈数叫做频率。
用f 表示,其单位为转/秒(或赫兹),符号为r/s(或Hz)。
⑶转速:工程技术中常用转速来描述转动物体上质点做圆周运动的快慢。
转速是指物体单位时间所转过的圈数,常用符号n 表示,转速的单位为转/秒,符号是r/s ,或转/分(r/min)。
4、向心加速度⑴定义:做圆周运动的物体,指向圆心的加速度称为向心加速度. ⑵大小:ϕ2t T ϕπω==⑶方向:沿半径指向圆心.⑷意义:向心加速度的大小表示速度方向改变的快慢.说明:①向心加速度总指向圆心,方向始终与速度方向垂直,故向心加速度只改变速度的方向,不改变速度的大小。
②向心加速度方向时刻变化,故匀速圆周运动是一种加速度变化的变加速曲线运动(或称非匀变速曲线运动).③向心加速度不一定是物体做圆周运动的实际加速度。
对于匀速圆周运动,其所受的合外力就是向心力,只产生向心加速度,因而匀速圆周运动的向心加速度是其实际加速度。
高中物理圆周运动的向心力及其应用专题讲解
圆周运动的向心力及其应用【要点梳理】要点一、物体做匀速圆周运动的条件 要点诠释:物体做匀速圆周运动的条件:具有一定速度的物体,在大小不变且方向总是与速度方向垂直的合外力的作用下做匀速圆周运动。
说明:从物体受到的合外力、初速度以及它们的方向关系上探讨物体的运动情况,是理解运动和力关系的基本方法。
【典型例题】类型一、水平面上的圆周运动例1(多选)、 (2015 哈尔滨校级期末)如图所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO’的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g ,若圆盘从静止开始绕转轴缓慢地加速运动,用ω表示圆盘转动的角速度,下列说法正确的是( ) A .b 一定比a 先开始滑动 B .a 、b 所受的摩擦力始终相等 C .当2kglω=时,b 开始滑动的临界角速度 D .当23kglω=时,a 所受的摩擦力大小为kmg 【解析】两个木块的最大静摩擦力相等,木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律得:木块所受的静摩擦力2f m r ω=,m 、ω相等,f r ∝,所以b 所受的静摩擦力大于a 的静摩擦力,当圆盘的角速度增大时b 的静摩擦力先达到最大值,所以b 一定比a 先开始滑动,故A 正确,B 错误;当b 刚要滑动时,有22kmg m l ω=,解得:2kglω=,故C 正确;以a 为研究对象,当23kgl ω=时,由牛顿第二定律知:2f m l ω=,可解得:23f kmg =,故D 错误。
【变式】原长为L 的轻弹簧一端固定一小铁块,另一端连接在竖直轴OO ′上,小铁块放在水平圆盘上,若圆盘静止,把弹簧拉长后将小铁块放在圆盘上,使小铁块能保持静止的弹簧的最大长度为5L/4,现将弹簧长度拉长到6L/5后,把小铁块放在圆盘上,在这种情况下,圆盘绕中心轴OO ′以一定角速度匀速转动,如图所示.已知小铁块的质量为m ,为使小铁块不在圆盘上滑动,圆盘转动的角速度ω最大不得超过多少? 【答案】max 3/(8)k m ω=【解析】以小铁块为研究对象,圆盘静止时:设铁块受到的最大静摩擦力为max f ,由平衡条件得max /4f kL =.二定律得2max max (6/5)kx f m L ω+=.又因为x =L/5.解以上三式得角速度的最大值max ω=要点二、关于向心力及其来源 1、向心力 要点诠释(1)向心力的定义:在圆周运动中,物体受到的合力在沿着半径方向上的分量叫做向心力. (2)向心力的作用:是改变线速度的方向产生向心加速度的原因。
高中高考物理复习1圆周运动
Rg 2
2
R h
2
v mgtg m r
3、如图所示,一圆锥摆摆长为L,下端拴着质 量为m的小球,当绳子与竖直方向成θ角时,绳 的拉力大小是多少?圆锥摆的周期是多少?
mg cos
m
L cos 2 g
L θ
4、如图所示,长为L的线一端系小球,另一端 悬于光滑水平面上方h(h<L)高处的O点,使球在 水平面内以角速度ω 做匀匀速圆周运动,水平 面受到的压力为多大?为使小球不离开水平面, 小球运动的角速度最大值为多大? mg-mω 2h
4、质量为m的物块,沿着半径为R的半球形金属 壳内壁滑下,半球形金属壳竖直放置,开口向 上,滑到最低点时速度大小为V,若物体与球壳 之间的摩擦因数为μ,则物体在最低点时,下列 v2 说法正确的是 mg m R A.受到向心力为 v2 m B.受到的摩擦力为 R C.受到的摩擦力为μmg D 受到的合力方向斜向左上方. D
g h
5、升降机内悬挂一圆锥摆,摆线为1米,小球 质量为0.5kg,当升降机以2m/s2加速度匀加速 上升时,摆线恰与竖直方向成θ=370角,试求小 球的转速和摆线的拉力?
θ
0.62转/秒 7.5N
a
三、竖直面上的圆周运动 汽车过拱桥 在各种公路上拱形桥是常见的, 质量为m的汽车在拱桥上以速度v前进,桥面的圆 弧半径为R,我们来分析汽车通过桥的最高点时对 桥面的压力——通常是重力和弹力的合力。
(2)大小:
v 2 F ma m mr mv r 2 2 mr (2 f ) mr(2 n)
2
(3)方向: 向心力一定指向圆心,方向时刻在变
三、向心加速度 (1)物理意义: 描述线速度方向改变的快慢 (2)大小: a
高考物理重点难点知识专题讲解:圆周运动
【审题指导】 关键 获取信 词语 息 隐含条件 与同一皮带接触 皮带 不打 va=vc 滑 的点线速度大小 利用公式:v=ωR, v2 相等, 共轴的转动 a= ,a=ω2·R 分 R 体上各点的角速 析 度相等 突破口
【解析】由图可看出 ,a 点的线速度等于 c 点的线速度,而 c 点的线速度大于 b 点的线速度, 故 a 点的线速度大于 b 点的线速度, 选项 A 错误, C 正确;设 c 点的线速度为 v,则 a 点的角速度为 v v ωa= ,b 点的角速度 ωb=ωc=ωd= ,选项 B r 2r v2 错误;a 点的向心加速度 aa= ,d 点的向心加速 r 2 v 度 ad=ω2 d·4r= ,选项 D 正确. r
(3)受力特点: ①当 F=mω2r 时,物体做 匀速圆周 运动; ②当 F=0 时,物体沿 切线 方向飞出; ③当 F<mω2r 时,物体逐渐 远离 圆心,做离 心运动. 2.近心运动 当提供向心力的合外力大于做圆周运动所需向 心力时,即 F>mω2r,物体将逐渐 绕近 圆心,做近 心运动.
考点一
一周 的时间(T)
2.频率是物体单位时间 转过的 圈数 (f)
向心 1.描述线速度 方向 变 加速 化快慢的物理量(a) 度 2.方向 指向圆心 相互 1.v=rω
2
2 4 π r v 2 关系 2.a= =rω =ωv= 2 r T
知识点三 1.离心运动
离心运不足以提供圆周运动所需 向心力 况下,所做的逐渐远离圆心的运动. (2) 本 质 : 做 圆 周 运 动 的 物 体 , 由 于 本 身 的 惯性 ,总有沿圆周 切线方向 飞出去的趋势. 的情
【答案】D
考点二 匀速圆周运动的一般动力学问题 例 2“飞车走壁”杂技表演简化 后的模型如图所示,表演者沿表演 台的侧壁做匀速圆周运动 . 若表演 时杂技演员和摩托车的总质量不 变,摩托车与侧壁间沿侧壁倾斜方向的摩擦力恰 好为零,轨道平面离地面的高度为 H,侧壁倾斜 角度 α 不变,则下列说法中正确的是( )
高三物理 圆周运动 知识精讲
高三物理 圆周运动 知识精讲一. 圆周运动:1. 定义:如果质点运动的轨迹是个圆,这种运动叫圆周运动。
例:圆盘绕O 点转动,谁在做圆周运动。
2. 圆周运动:是变速运动(非匀变曲线运动)3.匀速圆周运动:速度大小、不变的圆周运动,加速度大小不变,方向改变⎧ 匀速圆周运动:a v 切大小,=0不变 a 向大小恒定方向改变,改变v 的方向二. 匀速圆周运动:1. 定义:质点沿圆周运动,如果在任意相等时间内,通过圆弧的长度相等,叫质点沿圆周运动,运动方向时刻改变,即时速度方向为切线方向,即时速率不变,但方向改变。
2. 匀速圆周运动的向心力:(1)定义:质点做匀速圆周运动的物体产生的加速度的力。
(2)公式:F mv R m R m TR m f R ===⋅=22222244/ωππ(3)方向:总是指向圆心,沿半径方向。
说明:(4)任意圆周运动的物体都必须受到向心力作用。
(5)物体做匀速圆周运动,其所受的合外力必定指向圆心。
(6)向心力根据力的效果命名的,它不是单独的一个新的一种力,是由重力、弹力、摩擦力及其电场力。
磁场力的合力未命名。
例题:固定的圆锥形筒的内壁光滑,两个小球紧贴内壁在各自不同的水平面上做匀速圆周运动。
已知A 、B 两球的质量完全相同,试比较物理量的大小:它们的线速度vm R m R v v R R v v A A B BAB A BA B221==>>m R m R R R A A B BAB B AA Bωωωωωω22221==<<分析解题方法:1. 研究匀速圆周运动,首先确定圆轨道平面和圆心;2. 然后仔细对物体进行受力分析,搞清楚向心力的来源;3.例1. 径为N ma mg Nm v Rv m1152542542102101510100510151015=+≤⨯≤⨯-⨯⨯≤⨯⨯⨯... v m sv m s v m s21031550707707≤⨯=≤=/././(2)mg Nma -=22N mg mv R 22=-N 254151015105015=⨯-⨯⨯..N N N 244251510510110=⨯-⨯=⨯N 2与N 2'等值反向(1)如果铜块在盘上无滑动,试分析铜块的受力情况; (2)若铜块放在离转轴25cm 处,则转盘旋转的角速度ω为多大时铜块将要被甩出去; (3)当转速为60转/分,铜块放在距轴心多远处才能恰好不被甩出去?解:分析圆盘匀速转动时,铜块在水平面内做匀速圆周运动,圆心为转动中心,此时铜块受到重力G ,支持力N ,静摩擦力f 指向圆心,充当向心力。
高中物理 圆周运动 详解
• 2.做匀速圆周运动的物体: • A. 受平衡的力作用。 • B. 所受的力可能平衡,也可能不平衡。 • C. 所受的外力的合力始终垂直于速度方
向,大小不变。
• D. 所受的外力的合力,始终指向圆心, 是个恒力
• 例题二:
• 长为l的细绳一端栓一小球,另一端固定 在O点,使小球在竖直平面做圆周运动, 若小球恰能通过最高点(不受绳的拉 力),Va=?
触,由①②式消N可得:
⑵当
时,∵V>Vb,∴小物体与锥面不接触,此时小物
体只受绳拉力T′与重力mg。令α表示绳与轴线之
间的夹角,将二力沿水平、竖直正交分解
,根据牛顿
将v代入⑤,由⑤⑥消α得:
离心现象事例
在实际中,有一些利用离心运动的机械,这些机械叫做离心机 械。离心机械的种类很多,应用也很广。例如,离心干燥(脱 水)器,离心分离器,离心水泵。
离心水泵
离心干燥器
典型例题
• 例题一: • 1.一个大轮通过皮带拉着小轮转动,皮带和两
轮之间无滑动,大轮半径是小轮半径的2倍大 轮上一点S离转轴O1的距离是半径的1/3,当大 轮边上P点的向心加速度是0.6m/s2时,大轮上 的S点和小轮边缘上的Q点向心加速度各多大?
3.周期T
定义:对匀速圆周运动,运动一周所用的时间叫周期.
注意:周期是标量
单位:秒
V.T.ω之间关系
一.定性关系 匀速圆周运动的参量是描述匀速圆周运 动快慢的物理量。表示匀速圆周运动快 慢的物理量有线速度、角速度、周期和 频率、转速,分别用符v,ω,T,f,n表示。 线速度、角速度越大,周期越小,频率 越高,表明运动的越快。在匀速圆周运 动中,线速度、角速度、周期和频率的 大小均是不变的。
物理必修二圆周运动知识点
物理必修二圆周运动知识点圆周运动是物理学中比较基础的运动形式之一,也是我们日常生活中比较常见的运动形式之一。
在高中物理课程中,我们必须学习圆周运动的相关知识点。
本文将从圆周运动的概念、圆周运动的基本量、圆周运动的三定律以及应用举例等多个方面,详细介绍圆周运动的知识点。
一、圆周运动的概念圆周运动指的是质点或物体在某一固定中心点处,围绕着该中心点旋转运动的过程。
这种运动一般是在平面内进行的,因此圆周运动也常被称为平面运动。
二、圆周运动的基本量圆周运动的基本量包括角度、弧长、线速度、角速度、角加速度和半径等。
下面分别介绍这些基本量:1. 角度角度是指在圆周上所扫过的弧度数。
角度常表示为角度符号“°”,一个圆的角度为360°。
当角度为180°时,就是所谓的“半圆”。
2. 弧长弧长指的是圆周上弧所对应的圆心角所表示的弧长,弧长常用符号“s”表示,单位为米。
3. 线速度线速度是指圆周上某一点在单位时间内所走的弧长,即单位时间内质点或物体在圆周上运动的位移。
线速度常用符号“v”表示,单位为米/秒。
4. 角速度角速度是指圆周上的角度变化率,即单位时间内质点或物体在圆周上所旋转的角度。
角速度常表示为符号“ω”,单位为弧度/秒。
5. 角加速度角加速度是指圆周中某一点的角速度变化率,即单位时间内角速度的改变量。
角加速度常表示为符号“α”,单位为弧度/秒2。
6. 半径半径是指圆周上某一点到圆心的距离。
在圆周运动中,半径是一个非常关键的量,在许多计算中都需要用到。
三、圆周运动的三定律圆周运动的三定律与牛顿运动定律、牛顿引力定律以及热力学定律一样重要,也是圆周运动研究的基础。
圆周运动的三定律包括:牛顿第一定律、牛顿第二定律、牛顿第三定律。
1. 牛顿第一定律牛顿第一定律又称为惯性定律,指的是一个物体如果没有受到外力的作用,将会保持静止或匀速直线运动的状态。
2. 牛顿第二定律牛顿第二定律指出,物体的加速度与作用在它上面的力成正比,与物体的质量成反比。
高中物理圆周运动讲解
高中物理圆周运动讲解一、教学任务及对象1、教学任务本节课的教学任务为对高中物理中的圆周运动进行深入讲解。
圆周运动是物体运动的一种基本形式,广泛应用于日常生活和工业生产中。
通过本节课的学习,学生应能理解圆周运动的定义,掌握圆周运动的物理量,如线速度、角速度、向心加速度等,并能运用相关公式进行计算。
此外,还要求学生能够分析圆周运动在实际应用中的问题,提高解决实际问题的能力。
2、教学对象本节课的教学对象为高中二年级学生。
经过之前的学习,他们已经掌握了匀速直线运动、匀加速直线运动等基本运动形式,具备了一定的物理基础。
此外,学生对物理现象具有较强的观察力和好奇心,对圆周运动有一定的了解,但可能对其中的物理量关系和计算方法尚不明确。
因此,本节课将针对学生的实际情况,采取合适的教学策略,帮助他们更好地理解和掌握圆周运动相关知识。
二、教学目标1、知识与技能(1)理解圆周运动的定义,掌握圆周运动的物理量,如线速度、角速度、向心加速度等;(2)掌握圆周运动相关公式,并能运用这些公式进行计算;(3)了解圆周运动在实际应用中的例子,如汽车转弯、地球绕太阳旋转等;(4)能够分析圆周运动中的问题,如物体在圆周运动中的受力分析、能量转换等。
2、过程与方法(1)通过观察生活中的圆周运动实例,培养学生的观察能力和发现问题的能力;(2)采用以退为进、以点带面、以动带静等教学策略,引导学生主动探究圆周运动的规律,培养他们的逻辑思维能力和解决问题的方法;(3)通过小组讨论、合作学习等方式,让学生在交流互动中加深对圆周运动知识的理解,提高合作能力;(4)设计实验和动手操作环节,让学生在实践中掌握圆周运动的物理量测量方法,培养实验操作能力。
3、情感,态度与价值观(1)激发学生对圆周运动的兴趣,培养他们探究自然现象的好奇心;(2)通过学习圆周运动,使学生认识到物理学在生活中的应用,增强学以致用的意识;(3)培养学生勇于挑战、克服困难的意志,使他们具备面对问题时敢于迎难而上、积极寻求解决方案的态度;(4)引导学生关注环保、节能等社会问题,让他们明白科学技术在解决这些问题中的重要作用,树立正确的价值观。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动的向心力及其应用【要点梳理】要点一、物体做匀速圆周运动的条件要点诠释:物体做匀速圆周运动的条件:具有一定速度的物体,在大小不变且方向总是与速度方向垂直的合外力的作用下做匀速圆周运动。
要点二、关于向心力及其来源1、向心力要点诠释(1)向心力的定义:在圆周运动中,物体受到的合力在沿着半径方向上的分量叫做向心力.(2)向心力的作用:是改变线速度的方向产生向心加速度的原因。
(3)向心力的大小:22vF ma m mrrω===向向向心力的大小等于物体的质量和向心加速度的乘积;对于确定的物体,在半径一定的情况下,向心力的大小正比于线速度的平方,也正比于角速度的平方;线速度一定时,向心力反比于圆周运动的半径;角速度一定时,向心力正比于圆周运动的半径。
如果是匀速圆周运动则有:22222244vF ma m mr mr mr fr Tπωπ=====向向(4)向心力的方向:与速度方向垂直,沿半径指向圆心。
(5)关于向心力的说明:①向心力是按效果命名的,它不是某种性质的力;②匀速圆周运动中的向心力始终垂直于物体运动的速度方向,所以它只能改变物体的速度方向,不能改变速度的大小;③无论是匀速圆周运动还是变速圆周运动,向心力总是变力,但是在匀速圆周运动中向心力的大小是不变的,仅方向不断变化。
2、向心力的来源要点诠释(1)向心力不是一种特殊的力。
重力(万有引力)、弹力、摩擦力等每一种力以及这些力的合力或分力都可以作为向心力。
(2)匀速圆周运动的实例及对应的向心力的来源 (如表所示):要点三、匀速圆周运动与变速圆周运动的区别1、从向心力看匀速圆周运动和变速圆周运动要点诠释:(1)匀速圆周运动的向心力大小不变,由物体所受到的合外力完全提供,换言之也就是说物体受到的合外力完全充当向心力的角色。
例如月球围绕地球做匀速圆周运动,它受到的地球对它的引力就是合外力,这个合外力正好沿着半径指向地心,完全用来提供月球围绕地球做匀速圆周运动的向心力。
(2)在变速圆周运动中,向心力只是物体受到的合外力的沿着半径方向的一个分量。
例如用一根细线拴一个小球在竖直平面内做变速圆周运动,它的受力情况如图所示,物体受到线的拉力F 拉和重力mg 的作用,其合力分解为两个分量:向心力和切向力。
不难看出:F F mg cos θ=-拉向 θsin mg F =切向心力改变着速度的方向,产生向心加速度;切向力与线速度的方向相同或者相反,改变着线速度的大小使得物体做变速圆周运动。
2、从圆周运动的规律看匀速圆周运动和变速圆周运动要点诠释:(1)匀速圆周运动和变速圆周运动所适用的共同规律无论是匀速圆周运动还是变速圆周运动向心加速度的大小总是:22ωr r v m F a ===向向(公式中的每一个量都是瞬时量,任何一个时刻或者任何一个位置都可以用公式计算向心加速度。
)换一种说法就是:在圆周运动中的任何时刻或位置,牛顿运动定律都成立,即22ωmr rv m ma F ===向向 例如上面的例子,用一根细线拴一个小球在竖直平面内做变速圆周运动,在图中所示的位置用牛顿第二定律可得:22mv F F mg cos ma m r rθω=-===拉向向 切切ma mg F ==θsin(2)只适用于匀速圆周运动的计算公式:2 22222224m4mF44frTrfrTraππππ====向向因为在匀速圆周运动的过程中各个量大小的平均值和瞬时值是相等的;如果将上式用在变速圆周运动中,计算的结果仅是一个意义不大的粗略的平均值。
要点四、圆周运动的实例1、水平面上的圆周运动要点诠释:(1)圆锥摆运动:小球在细线的拉力和重力作用下的在水平面上的匀速圆周运动,如图所示:①向心力来源:物体重力和线的拉力的合力,沿着水平方向指向圆心。
②力学方程:2222sin4sinsintanTlmlmlvmmamgθπθωθθ====③问题讨论:a.物体加速度与夹角θ的关系:θtanga=,向心加速度越大时,夹角θ越大。
b.角速度与夹角θ的关系:θωcoslg=,可见角速度越大时,夹角θ越大。
(2)在水平圆盘上随圆盘一起转动物体①向心力的来源:如图,在竖直方向上重力和支持力平衡,物体做圆周运动的向心力由物体所受的静摩擦力提供。
②静摩擦力的方向:OFlm F向O1rmg当物体做匀速圆周运动时,这个静摩擦力沿着半径指向圆心;当做变速圆周运动时,静摩擦力还有一个切线方向的分量存在,用来改变线速度的大小。
③静摩擦力的变化:当水平圆盘的转速增大时,物体受到的静摩擦力也随之增大,当物体所需要的向心力大于最大静摩擦力时,物体将相对于圆盘滑动,变为滑动摩擦力。
2、竖直平面内的圆周运动要点诠释:(1)汽车过拱形桥在竖直面内的圆周运动中可以分为:匀速圆周运动和变速圆周运动。
对于匀速圆周运动处理起来一般比较方便。
对于变速圆周运动,定量的计算通常是在圆周的最高点和最低点处用牛顿第二定律。
例如:汽车通过半圆的拱形桥,因为桥面对汽车提供的只能是支持力。
①汽车在点位置Ⅰ最高时,对车由牛顿第二定律得:Rv m F mg N 2=- 为了驾驶安全,桥面对车的支持力必须大于零,即0N F > 从而解得车的速度应满足关系v gR < (如果gR v =,在不计空气阻力的情况下,车将做平抛运动) ②汽车在位置Ⅱ时有22N N v v mg F m mg sin F m R Rθ''-=⇒⋅-=径 又0N F > 解得v gR 'sin <θ(2)汽车通过圆弧型的凹处路面如图在最低点处,对车运用牛顿第二定律得:rmv mg F N 2=- 桥面对车的支持力rmv mg F N 2+= 可见,随着车的速度增大,路面对车的支持力变大。
要点五、圆周运动中的超重与失重1、超重与失重的判断标准要点诠释:(1)运动物体的加速度方向向上或者有向上的分量时,物体处于超重状态,物体对水平支持面的压力大于自身的重力。
(2)运动物体的加速度方向向下或者有向下的分量时,物体处于失重状态,物体对水平支持面的压力小于自身的重力。
2、圆周运动中的超重与失重现象要点诠释:(1)失重现象:在竖直面上的圆周运动,物体处在圆周的最高点附近时,向心加速度竖直向下,物体对支持物的压力小于自身重力。
例如在拱形桥顶运动的汽车,由上面计算有Rv m mg F N 2-=,它对于桥面的压力小于重力。
(2)超重现象:在竖直面上的圆周运动,物体处在圆周的最低点附近时,向心加速度竖直向上,物体对支持物的压力大于自身重力。
例如汽车通过圆弧型的凹处路面在最低点处, 桥面对车的支持力rmv mg F N 2+=大于自身重力。
要点五、关于离心现象1、外力提供的向心力与做圆周运动需要的向心力之间的关系对物体运动的影响 要点诠释:(1)外力提供的向心力:是某个力、几个力的合力或者是合力在半径方向上的分量,是实实在在的相互作用。
(2)做圆周运动需要的向心力:是指在半径为r 的圆周上以速度v 运动时,必须要这么大的一个力,才能满足速度方向改变的要求。
(3)供需关系对物体运动的影响:外力提供的向心力等于物体做圆周运动需要的向心力时,物体做圆周运动; 外力提供的向心力小于物体做圆周运动需要的向心力时,物体做远离圆心的运动——离心运动外力提供的向心力大于物体做圆周运动需要的向心力时,物体做靠近圆心的运动——也可称之为向心运动2、离心现象及其运用要点诠释:(1)被利用的离心现象:洗衣机甩干衣服:水珠和衣服之间的附着力不足以提供水珠高速转动时需要的向心力,而做离心运动从而脱离衣服,使得衣服变干。
离心沉淀器:悬浊液在试管中高速转动时,密度大于液体密度的小颗粒做离心运动,密度小于液体密度的小颗粒做向心运动,从而使得液体很快被分离。
离心水泵:水在叶轮转动的作用下做离心运动,从而使得水从低处运动到高处,等等。
(2)需要防止的离心现象:高速转动的砂轮会因为离心运动而破碎,造成事故;火车或者汽车会因为转弯时的速度过大而出现侧滑、倾翻,造成人员伤亡等。
【典型例题】类型一、水平面上在静摩擦力作用下的圆周运动例1、在水平转动的圆盘上距转动中心10cm 处放着一物块,物块随圆盘一起转动。
若物块质量,圆盘转速为s /r 1=n ,求物块与圆盘间的静摩擦力。
【思路点拨】明确向心力的来源,知道向心加速度的大小此题便得到解决。
【解析】由题意可知,物块m 做匀速圆周运动,其向心加速度224n r a n ⋅⋅=π。
对圆周运动的物块受力分析:该物块除受重力和支持力(一对平衡力)外,还受一个沿圆盘平面的摩擦力,这个摩擦力就是物块受到的合力,也就是它做匀速圆周运动的向心力。
所以有N n mr ma f n 394.0422===π,摩擦力的方向指向圆心。
【总结升华】静摩擦力提供物块做匀速圆周运动的向心力,方向沿着半径指向圆心,切不可认为与线速度的方向相反。
【变式】 (2015 广州十二中学业检测)如图所示,质量相等的a 、b 两物体放在圆盘上,到圆心的距离之比是2:3,圆盘绕圆心做匀速圆周运动,两物体相对圆盘静止,a 、b 两物体做圆周运动的向心力之比是( )A .1:1B .3:2C .2:3D .9:4【答案】C【解析】两个物体是同轴转动,因此角速度相等,质量又相等,根据2F m rω=可知,向心力之比23a a b b F r F r ==。
类型二、汽车转弯问题例2、(2015 浙江高考)(多选)如图为一停车场的一个水平“U”形弯道,转弯处为圆心在O 点的半圆,内外半径分别为r 和2r 。
一辆质量为m 的赛车通过AB 线经弯道到达A 'B '线,有如图所示的①、②、③三条路线,其中路线③是以O '为圆心的半圆,OO '=r 。
赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max 。
选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则( )A .选择路线①,赛车经过的路程最短B .选择路线②,赛车的速率最小C .选择路线③,赛车所用时间最短D .①、②、③三条路线的圆弧上,赛车的向心加速度大小相等【解析】由题意可知,以不打滑的最大速度通过弯道,不管选择什么路径,均是最大静摩擦力提供向心力,所以向心加速度相同,D 正确。
由公式:2v a r =可得,半径大的速率大,所以A 正确,B 错误;由前面公式可以得到:2312v v v == ,明显的轨道○3的时间比○2短,我们只需要比较○3和○1的时间即可,则他们的时间分别是:11112(2)r r r t v v v ππ=+=+ ,221222r r t v v ππ==所以:t 2<t 1,C 正确。
【变式】铁路弯道的内外侧铁轨往往不在同一水平面上,质量为M 的火车,以恒定的速率在水平面内沿一段半径为r 的圆弧道转弯,受力如图所示,已知内外铁轨的倾角为α。