等效电路法在放大电路分析中的应用

合集下载

微变等效电路法分析放大电路

微变等效电路法分析放大电路

微变等效电路法分析放⼤电路微变等效电路法分析放⼤电路本⽂介绍的定义⼀、简化的h参数微变等效电路⼆、微变等效电路法应⽤本⽂介绍的定义微变等效电路法、h参数微变等效电路、单管共射放⼤电路的微变等效电路、Rbe近似估算、微变等效电路法应⽤。

⼀、简化的h参数微变等效电路微变等效电路法:在信号变化范围很⼩的情况下,三极管电压、电流之间的关系基本是线性的。

此时,可以将⼆极管的输⼊、输出特性曲线近似地视为直线。

⽤⼀个线性电路来等效⾮线性的三极管。

这样的电路称为三极管的微变等效电路。

微变等效电路法⽤于电路的动态分析。

如上图所⽰,对于输⼊特性曲线(a),可⽤等效电阻表⽰Ube变化量和Ib变化量之间的关系。

对于上图输出特性曲线(b),Q点附近特性曲线基本上是⽔平的,可以⽤⼀个⼤⼩为βIb的恒流源来代替三极管。

这个电流源是⼀个受控电流源,体现了基极电流ib对集电极电流ic的控制作⽤。

最终得到下图(b)的微变等效电路,称为简化的h参数(混合参数)微变等效电路,因为忽略了Uce对Ic的影响,忽略了Uce对输⼊特性的影响。

但是由于忽略这些影响带来的误差⼩,所以简化的h参数微变等效电路⾜以应对⼯程计算。

单管共射放⼤电路的微变等效电路:⾸先⽤上图b的等效电路代替三极管,然后画其他部分的交流通路。

Ui、Uo、Ib、Ic上⾯有个点,表⽰输⼊电压、输出电压、基极电流、集电极电流的正弦相量。

⼀些公式如下,Au是单管共射放⼤电路的电压放⼤倍数。

Rbe近似估算:Rbe由三部分组成,基区体电阻、基射之间的结电阻、发射区体电阻。

流过PN结的电流Ie与PN两端电压Ube之间的关系:Is是反向饱和电流;Ut温度电压当量,常温等于26mv;⼯作在放⼤区发射结正向偏置,Ube⼤于0.1 。

由于上式括号⾥⾯左边的数远⼤于1,可以简化:对Ube求导,得到Rbe的倒数,那么就可以得到Rbe的值,⽽且在静态⼯作点附近⼀个⽐较⼩的变化范围内,Ie约等于Ieq,那么Reb表⽰如下。

什么是等效电路?

什么是等效电路?

什么是等效电路?等效电路是指在电路中,把一部分电路装置(包括电源、负载等)简化为一个与之等效的电路,该电路具有相同的输入输出特性。

等效电路是电路分析中的重要概念,对于电路的设计和分析具有重要的指导意义。

本文将介绍等效电路的基本概念、分类、应用和具体实例。

一、等效电路的基本概念1. 等效电路的定义所谓等效电路,是指将一个复杂的电路简化为一个与之等效的简单电路,该简单电路具有相同的输入输出特性。

等效电路是为了方便电路的设计和分析,使用较简单的元件或电路把复杂的电路剖分出来,从而使电路的分析、计算和实现变得更加简单。

2. 等效电路的基本原理等效电路的基本原理是利用各种电学定律和电路分析方法,将一个复杂的电路转化为一个与之等效的简单电路。

常见的等效电路包括电阻、电容、电感等元件等效电路,以及放大器、滤波器等电路装置等效电路。

二、等效电路的分类1. 元件等效电路元件等效电路主要是把复杂的元件(例如电阻、电容、电感等)用一个简单的等效电路来代替。

这样做的好处是使电路分析和计算更加简单,方便设计和理解电路的工作原理。

常用的元件等效电路有串联等效电路、并联等效电路等。

2. 电路装置等效电路电路装置等效电路是将电路中的某个特定的装置(例如放大器、滤波器等)用一个简单的等效电路来代替。

这样做的好处是能够更加精确地预测电路的性能和工作特性,便于电路的设计和分析。

常见的电路装置等效电路有放大器等效电路、滤波器等效电路等。

三、等效电路的应用1. 电路分析与计算等效电路在电路分析与计算中具有重要的作用。

通过将复杂的电路转化为等效电路,可以简化电路的分析与计算过程,从而降低分析的难度。

利用等效电路,可以方便地计算电流、电压、功率等电路参数。

2. 电路设计与优化在电路设计与优化中,等效电路可以帮助工程师更好地理解电路的工作原理,从而选择合适的元件和电路装置。

通过对等效电路的分析和优化,可以提高电路的性能和效率,实现电路的设计目标。

三极管放大电路及其等效电路分析法

三极管放大电路及其等效电路分析法
详细描述
共集放大电路采用NPN或PNP三极管,输入信号加在基极和发射极之间,通过调整集电极和发射极之间的电压来 控制输出信号的幅度和相位。其输入阻抗较高,输出阻抗较高,电压放大倍数小于1,适用于信号跟随和缓冲。
04
CATALOGUE
三极管放大电路的应用
在音频信号处理中的应用
音频信号放大
三极管放大电路常用于音频信号的放大 ,如音响设备、麦克风等。通过放大音 频信号,提高声音的响度和清晰度。
合理布线
优化电路板布线,减小信号干扰和寄生效应 。
电源滤波
采用电源滤波技术,减小电源噪声对电路的 影响。
三极管放大电路的调试与测试
静态工作点的调试
调整三极管基极和集电极的偏置电压 ,使放大器处于最佳工作状态。
动态性能测试
测试放大器的电压放大倍数、频率响 应和失真度等动态性能指标。
输入输出匹配调试
确保输入信号和输出信号之间的阻抗 匹配,减小信号损失。
VS
声音效果处理
在音频领域,三极管放大电路还可以用于 声音效果的添加和处理,如音调调整、混 响等。
在通信系统中的应用
信号放大
在通信系统中,三极管放大电路用于信号的 放大,确保信号传输的稳定性和可靠性。
调制解调
在无线通信中,三极管放大电路用于信号的 调制和解调,实现信号的发送和接收。
在自动控制系统中的应用
CATALOGUE
三极管放大电路的等效电路分析法
等效电路分析法的定义
等效电路分析法是一种将复杂电路简 化为简单等效电路的方法,通过等效 元件和等效参数来描述电路的性能。
在三极管放大电路中,等效电路分析 法可以将三极管内部结构及其工作原 理抽象化,以便于理解和分析。

《模拟电子技术》第5讲放大电路的分析方法I

《模拟电子技术》第5讲放大电路的分析方法I

例题一
2. 从输出电压上看,哪个Q点下最易产生截止失真? 哪个Q点下最易产生饱和失真?哪个Q点下Uom最大?
(1) Q2靠近截止区,最容易出现截止失真;
(2) Q3靠近饱和区,最容易出现饱和失真; (3) Q4距离饱和区和截止区最远,最大不失真电压Uom 最大;
例题二:已知放大电路如下图所示,电路参数都标 在电路中,并且已知三极管的输入特性曲线, 80 rbb' 200 求解放大电路的静态工作点Q。
解答:空载时Uom=5.3/2^1/2=3.75V,容易出现饱和 失真;带载时Uom=3/2^1/2=2.12V,容易出现截止 失真。
作业:
P138 2.2(a),(b) P138 2.4
饱和失真
饱和失真产生于晶体管的输出回路! 集电极电流ic顶部失真,输出电压uo底部失真!
消除饱和失真的方法
Rc↓或VCC↑
Q '''
Q''
Rb↑或 VBB ↓或 β↓
• 消除方法:增大Rb,减小VBB,减小β • 消除方法:减小Rc,增大VCC
一般不采 用!
4、图解法的特点
• 形象直观; • 适应于Q点分析、失真分析、最大不失真输出 电压的分析; • 能够用于大信号分析; • 不易准确求解; • 不能求解输入电阻、输出电阻、通频带等参数。
I BQ
VBB U BEQ Rb
分析静态工作点
ICQ I BQ
UCEQ VCC ICQ Rc
直流通路
基本共射放大电路的交流通路
交流通路绘制原则: VBB=0(短路),VCC=0(短路)
交流通路
阻容耦合单管共射放大电路的直流通路直流Biblioteka 路绘制原则:C1开路,C2开路

放大电路的基本分析方法

放大电路的基本分析方法

学校工作总结本学期,我校工作在全体师生的大力支持下,按照学校工作计划及行事历工作安排,紧紧围绕提高教育教学质量的工作思路,不断强化学校内部管理,着力推进教师队伍建设,进一步提高学校办学水平,提升学校办学品位,取得了显著的成绩。

现将我校一学期来的工作总结如下:一、德育工作本学期我校德育工作围绕学校工作中心,精心安排了“文明守纪”、“良好习惯养成”、“光辉的旗帜”、“争先创优”等主题教育月活动,从培养学生的行为规范,狠抓养成教育入手,注重务实,探索途径,加强针对性、实效性和全面性,真正把德育工作落到实处。

1.强化学生养成教育,培养学生良好习惯。

本学期,我校德育工作十分注重学生的常规管理,尤其重视对学生的养成教育。

一是利用班队会、红领巾广播站、国旗下演讲对学生进行品德熏陶。

二是以文明监督岗为阵地,继续强化了“文明班集体”的创建评比活动,通过卫生、纪律、两操等各项常规的评比,增强了学生的竞争意识,同时也规范了学生的行为。

三是继续加大值周检查的力度,要求值周领导、教师、学生按时到岗,在校门口检查、督促学生有秩序出入校园,从而使学生的行为规范时时有人抓,处处有人管,形成了良好的局面。

2.抓好班主任队伍建设,营造全员育人氛围。

班主任是学校德育工作最重要的力量,为了抓好班主任队伍建设,提高班主任素质水平,学校在第十二周组织开展了班主任工作讲座,在学期末举行了班主任工作交流,在活动中探索行之有效的工作方法,总结经验,交流心得,使班级管理工作更上新台阶。

3.充分发挥主题班队会的教育功能。

主题班队会,是对学生进行德育教育的一种特殊而卓见成效的方式之一。

为了充分发挥主题班队会的教育意义,第十三周,四(3)中队举行了“祖国美,家乡好”主题队会观摩活动,有效规范了我校主题中队会程序,强化了主题队会对学生的思想教育作用。

二、学校管理工作1.建立健全规章制度。

学期初,学校制定了出明确的目标计划及管理措施,做到了目标明确、工作具体,有效地增强了全体教师参与学校管理的主人翁意识,充分调动了全体教师的工作积极性,保障了教育教学工作的顺利开展。

共射放大电路直流通路戴维南等效

共射放大电路直流通路戴维南等效

共射放大电路直流通路戴维南等效
戴维南等效是一种用于分析放大电路的方法,通过将放大器转化为等效电路来简化分析。

在共射放大电路中,通常使用NPN型晶体管作为放大器。

戴维南等效可以将放大器分解为三个部分:输入电阻(Rin)、输入电流源(Iin)和输出电流源(Iout)。

这样,可以使用简单的等效电路分析方法来分析放大器的行为。

戴维南等效的具体步骤如下:
1. 将晶体管视为两个二极管的串联组合:基极-发射结为一部分,集电极-发射结为另一部分。

2. 将集电极的直流电阻(RC)与输出电源(VCC)相连,构成输出电流源(Iout)。

3. 将基极的直流电阻(RB)与输入电源(VIN)相连,构成输入电流源(Iin)。

4. 基极与地(GND)之间引入一个输入电阻(Rin),代表输入电路的直流通路。

通过引入这些等效电路元素,原来复杂的放大电路被简化为一个输入电阻、一个输入电流源和一个输出电流源的组合。

这样简化后的电路更容易分析,而且可以用更简单的等效电路模型来描述放大器的行为。

需要注意的是,戴维南等效主要适用于直流通路分析。

在分析交流信号的放大器行为时,还需要考虑耦合电容、绕组等元件的影响,并使用更复杂的等效电路模
型,如小信号模型。

放大电路分析方法、图解法分析放大电路

放大电路分析方法、图解法分析放大电路

放⼤电路分析⽅法、图解法分析放⼤电路放⼤电路分析⽅法、图解法分析放⼤电路⼀、本⽂介绍的定义⼆、放⼤电路分析⽅法三、图解法⼀、本⽂介绍的定义放⼤电路分析、图解法、微变等效电路法、静态分析、动态分析、直流通路、交流通路、单管共射放⼤电路的直流和交流通路、静态⼯作点、图解法分析静态、直流负载线、交流负载线、电压放⼤倍数公式、交直流并存状态、电压放⼤作⽤、倒相作⽤、⾮线性失真、截⽌失真、饱和失真、最⼤输出幅度、电路参数对静态⼯作点的影响、⼆、放⼤电路分析⽅法放⼤电路分析:放⼤电路主要器件如双极型三极管、场效应管,特性曲线是⾮线性的,对放⼤电路定量分析,需要处理⾮线性问题,常⽤⽅法,图解法和微变等效电路法。

图解法:在放⼤管特性曲线上⽤作图的⽅法对放⼤电路求解。

微变等效电路法:将⾮线性问题转化成线性问题,也就是,在较⼩变化范围内,近似认为特性曲线是线性的,导出放⼤器件等效电路和微变等效参数,利⽤线性电路适⽤的定律定理对放⼤电路求解。

静态分析:讨论对象是直流成分,分析未加输⼊信号时,电路中各处的直流电压、直流电流。

动态分析:讨论对象是交流成分,加上交流输⼊信号,估算动态技术指标,电压放⼤倍数、输⼊电阻、输出电阻、通频带、最⼤输出功率。

直流通路:电容所在路视为开路;电感所在路视为短路。

交流通路:电容容抗为1/(wC),电容值⾜够⼤,电容所在路视为短路;电感感抗为wL;理想直流电压源Vcc视为短路(因为电压恒定不变);理想电流源,视为开路(因为电流变化量为0) 。

单管共射放⼤电路的直流和交流通路:如下图,直流通路,将隔直电容开路;交流通路,将隔直电容短路,直流电源Vcc短路。

静态⼯作点:三极管基极回路和集电极回路存在着直流电流和直流电压,这些电流电压在三极管输⼊输出特性曲线上对应⼀个点,称为静态⼯作点,静态⼯作点的基极电流Ibq、基极与发射极之间的电压Ubeq、集电极电流Icq、集电极与发射极电压Uceq。

三、图解法图解法分析静态:⽤作图的⽅法分析放⼤电路静态⼯作点。

(完整版)第2章基本放大电路(2--放大电路的微变等效电路分析方法)

(完整版)第2章基本放大电路(2--放大电路的微变等效电路分析方法)
第3页 3
(2)输入电阻
第第2章2 章基基本本放放大大电电路
Ri Rb // rbe
对于共发射极低频电压放 大倍数,rbe约为1KΩ左右。
通常Rb》 rbe,所以Ri≈ rbe。 Ri越大,放大电路从信号源取得的信号也越大。
广东水利电力职业技术学院电力系WXH
第4页 4
第第2章2 章基基本本放放大大电电路 输出电阻
第第2章2 章基基本本放放大大电电路 微变等效电路分析法
微变等效电路法就是在小信号条件下,在给定的工作范围内,将晶体管看 成一个线性元件。把晶体管放大电路等效成一个线性电路来进行分析、计算。
1.晶体管的微变等效模型 (1)晶体管输入回路的等效电路
rbe为晶体管的交流输入电阻,
广东水利电力职业技术学院电力系WXH
RL Re // RL
AV
Vo Vi
(1 ) R'L rbe (1 )R&院电力系WXH
输入电压与输 出电压同相
电压跟随器
第 10 页 10
(3)输入电阻
第第2章2 章基基本本放放I•大T大电电路
Ri
VT IT
+

Rb // RL
VT
-
(4)输出电阻
Ro
RS
rbe
第 15 页 15
第第2章2 章基基本本放放大大电电路
放大电路的幅频特性和相频特性,称为频 率响应。因放大电路对不同频率成分信号的增 益不同,从而使输出波形产生失真,称为幅度 频率失真,简称幅频失真。放大电路对不同频 率成分信号的相移不同,从而使输出波形产生 失真,称为相位频率失真,简称相频失真。幅 频失真和相频失真是线性失真。
广东水利电力职业技术学院电力系WXH

(最新整理)第6讲放大电路的分析方法wang

(最新整理)第6讲放大电路的分析方法wang

RC IB IC
+UCC +
IC IB 3 7 .5 0 .0 4 m A 1 .5 m A U+B–ETU–CE
UC EUC CICRC
121.54V6V
注意:电路中IB 和 IC 的数量级不同
例2:用估算法计算图示电路的静态工作点。
+UCC 由KVL可得:
RB
RC IB IC
+
U C CIB R B U B EIE R E
适,晶体管进入截
• 截止失真
止区或饱和区工作, 将造成非线性失真。
Q'
Q设置过低,
t
截止失真是在输入回路首先产生失真! 消除方法:增大VBB,即向上平移输入回路负载线。
• 饱和失真
若Q设置过高
晶体管进入饱 和区工作,造成 饱和失真。
饱和失真产生于晶体管的输出回路!
消除饱和失真的方法
Rc↓或VCC↑
5. 放大电路输出电阻的计算
放大电路对负载(或对后级放大电路)来说,是一个信
号源,可以将它进行戴维南等效,等效电源的内阻即为放
大电路的输出电阻。
RS
E
+ S_
Au 放大 电路
+
RL _U o
输出电阻是 动态电阻,与 负载无关。
ro
定义:
输 出 电 阻 Ro :UIoo
E
+
o_
+
RL _U o
输出电阻是表明放大电路带负载能力的参数。电路
rbe
60
4. 放大电路输入电阻的计算
放大电路对信号源(或对前级放大电路)来说,是一个负载, 可用一个电阻来等效代替。这个电阻是信号源的负载电阻,也 就是放大电路的输入电阻。

3.基本放大电路的两种分析方法

3.基本放大电路的两种分析方法

基本放大电路的两种分析方法1.图解法:主要功能:分析静态工作点,动态范围和波形失真。

分析步骤:①画出三极管的输出特性,根据电路参数求出I BQ ; ②作直流负载线,确定静态工作点;③通过静态工作点作交流负载线;④根据输入信号引起的i b 变化,由交流负载线确定i C 和u CE 的变化范围; ⑤检查是否有失真,确定输出波形。

2.微变等效电路法:主要功能:分析动态参数,计算放大倍数、输入和输出电阻。

分析步骤:①利用估算法或图解法求静态工作点;②根据放大电路的交流通路画出微变等效电路; ③根据三极管参数,利用公式()EQ bb be I 261r r 'β++=求出r be ;④按照线性电路的分析方法求A u 、R i 、R 0 。

对于共射极基本放大电路电压放大倍数A u 、输入电阻R i 、输出电阻R o 的计算公式分别为:A u = -βbe L C r R R // 考虑了信号源内阻R S 的电压放大倍为A uSA uS =Sbe L C R r R R +-//β R i =R b //r beR o = R C3.例题分析右图所示电路中,设三极管的β值为100,U BE =0.7V ,r bb ’=200Ω,C 1和C 2足够大,又知U CC =10V ,R b =490k Ω,R C =RL=3k Ω。

试求:(1)静态时I BQ 、I CQ 、U CEQ ;(2)计算r be ;(3)求电压放大倍数A u ;(4)求输入电阻R i 和输出电阻R o 。

解:(1)根据估算公式可求出静态工作点,其中: I BQ =mA 02.04907.010R U U b BEQ CC =-=- I CQ =βI BQ =100×0.02=2mAU CEQ =U CC -I CQ R C =10-2×3=4V(2)根据公式可求出r be ,即:()()Ω=++=β++=k 5.12261001200I 261r r CQ 'bb be (3)根据已知公式可求放大倍数为:()1005.13333100r R //R A be L C u -=+⨯⨯-=β-= (4)电路的输入和输出电阻分别为:R i =R b //r be =1.5k ΩR o =R c =3k Ω主讲老师建议:✧阅读文字主教材3。

放大电路的三种基本分析方法

放大电路的三种基本分析方法

放大电路的三种基本分析方法i c =0,U CE =V CC =12vu CE =0,ic=123CC c V R k==4mA (3)连接两点,得直流负载线。

(4)列基极输入回路,计算I BQI BQ =CC BE b V U R -=120.7280k-≈0.04mA=40μA(5)找出直流负载线与i B = I BQ =40μA 的交点,即为Q 点,从图上查出I BQ =40μA 、I CQ =2mA 、U CEQ =6v 。

(与上例结果一致)2、电路参数对静态工作点的影响 (1) R b 对Q 点的影响R b 增大,I BQ 减小,Q 点沿直流负载线下移,易产生截至失真。

R b 减小,I BQ 增大,Q 点沿直流负载线上移,易产生饱和失真。

非线性失真分为截止失真和饱和失真两种。

① 饱和失真当放大电路的静态工作点Q 选取比较高时,I BQ 较大,U CEQ 较小,输入信号的正半周进入饱和区而造成的失真称为饱和失真。

图2.10所示为放大电路的饱和失真。

u i 正半周进入饱和区造成i c 失真,从而使u o 失真。

图2.10饱和失真消除饱和失真的方法是:增大R b ,即减小I BQ ,使Q 点下移至中心位置。

板书饱和失真与截至失真i c/m AM u CE/v I BQ1IBQI BQ2图2.9 R b 对Q 点的影响aQ 1R b1>R bQ 2R b2<R bN② 截至失真当放大电路的静态工作点Q 选取比较低时,I BQ 较小,输入信号的负半周进入截止区而造成的失真称为截止失真。

图2.11所示为放大电路的截止失真。

图2.11截至失真消除截至失真的方法是:减小R b ,即增大I BQ ,使Q 点上移至中心位置。

(2)Rc 对Q 点的影响R c 的变化,仅改变直流负载线的斜率。

R c ↓,Q 点↑,i B = I BQ 曲线右移;R c ↑,Q 点↓,i B = I BQ曲线左移。

晶体三极管放大电路交流分析-等效电路法

晶体三极管放大电路交流分析-等效电路法

uo
us
80/131
ii us
ic ib
ib b
+
hie ube
-
e
ic
ii
ib
uohfeibuo Nhomakorabeaus
ui
hie
ri' ri
ic
+
hfeib
-
c
+
uce
-
e
(1) 输入阻抗计算
ri=hie
ri'=Rb//hie
81/131
(2) 输出阻抗计算 步骤:
ib
+
ic
Rs
ui
Rb hie
us
-
ri
ri
hfeib
Rc
+ RL uo
-
ro ro
①将输入信号源电压us短路,即 us =0 ②将负载开路即RL′ =∞,并令输出端电压为uo; ③在uo激励下,产生电流io, 输出阻抗ro ′ = uo/ io,
输出阻抗为:
ro

uo io

ro'=Rc
ib
+
ic hfeib io
Rs
Rb hie
Rc
uo
-
ro ro
82/131
(3) 电流增益AI
AI

ic ib
=
hfe
+ Rs
ui
uus s
-
ri
(4) 电压增益AU
AU

uo ui
=
-icRL'
ibhie

hfe RL' hie
ib ic

共基极放大电路交流等效电路

共基极放大电路交流等效电路

共基极放大电路交流等效电路
共基极放大电路是一种常见的电子放大电路,用于放大交流信号。

它的交流等效电路可以通过简化原始电路得到。

在交流条件下,我们可以将电容视为短路,电感视为开路,这样可以简化电路分析。

在共基极放大电路中,输入信号通过输入电容耦合到晶体管的基极,输出信号则从晶体管的集电极获取。

在交流等效电路中,我们可以
将输入信号源和输出负载等效为交流电阻。

此时,输入电容可以被
视为短路,输出电容可以被视为开路,而晶体管的参数也会有所变化。

在交流等效电路中,我们可以使用小信号模型来描述晶体管的
行为。

这包括输入电阻、输出电阻、电流增益等参数。

通过这些参数,我们可以分析电路的放大特性、频率响应、稳定性等。

同时,
我们也可以通过交流等效电路来分析共基极放大电路的输入阻抗、
输出阻抗、增益特性等。

这些分析有助于我们更好地理解电路的工
作原理,优化设计参数,提高性能。

另外,通过交流等效电路分析,我们还可以研究共基极放大电
路的频率特性。

这包括截止频率、增益带宽积等参数。

这些参数对
于放大电路的性能评估和设计至关重要。

通过对交流等效电路的分
析,我们可以优化电路的频率响应,使其在特定频率范围内具有较
高的增益和稳定性。

总之,通过对共基极放大电路的交流等效电路进行全面的分析,我们可以更好地理解电路的工作原理、优化设计参数,提高性能,
为实际应用提供更可靠的支持。

共射极放大器的交流等效电路分析法

共射极放大器的交流等效电路分析法
*
解 由于RE=RE1+RE2=1kΩ,所以Q点不变。对于交流通路,现在射极通过RE1接地。交流等效电路为:
1
*
1
*
可见,RE1的接入,使得Au减小了约10倍。但是,由于输入电阻增大,因而Aus与Au的差异明显减小了。
*
2.6 共集电极放大器




U
o
U
i
U
s
R
s
R
B2
C
1
R
E



R
s
U
s
R
B1
I
b
R
o
R
B2
r
be
βI
b
b
c
I
c
I
e
R
E
R
L
I
o
R
i

I
i
e
*
图2.6.1 共集电极放大器及交流等效电路
(b)交流等效电路
U
i
R
i




R
s
U
s
R
B1
I
b
R
o
R
B2
r
be
βI
b
b
c
I
c
I
e
R
E
R
L
I
o
R
i

I
i
e
3.输入电阻Ri
*
Ri’显著增大,所以共集电极电路的具有高输入电阻的特性
R
L
R
o



U

2.5放大电路的小信号等效电路分析

2.5放大电路的小信号等效电路分析

ic ib
1 rce
uce
(5)
需要指出的是,H参数小信号模型不会随外部信号 输入与输出连接方式不同而改变,所以该模型同 样可以在共集电极和共基极放大电路中使用。
4 用小信号等效模型求解放大电路的动态参数 ①电压放大倍数
Uo IcRc //RL IbRc //RL (6)
Ui Ibrbe (7)
26mV IE
(3)
hre (uBE /uCE ) iB0
hre为反向电压传输比 μr
ic hfeib h u oe ce (2) hfe (iC /iB ) uCE0 hoe (iC /uCE ) iB0
hfe为电流放大系数
hoe为输出电导的倒数1/rce
3 H参数小信号简化模型
ube ibrbe ruce (4)
h参数小信号模型的建立二端口有源网络receoeceierefeoeceieie为输入电阻rcefefe为电流放大系数oeoe为输出电导的倒数1rcerere为反向电压传输比receoece26mv200cece需要指出的是h参数小信号模型不会随外部信号输入与输出连接方式不同而改变所以该模型同样可以在共集电极和共基极放大电路中使用
hre
hoe
ube hieib hreuce (1)
ic hfeib h u oe ce (2)
iB
+ uBE
-
iC
+
T
uCE
-
3 H参数小信号简化模型
hie (uBE /iB ) uCE 0 hie为输入电阻rbe
ube hieib h ure ce (1)
rbe
200
(1
)
模拟电子技术基础

h参数等效电路

h参数等效电路

h参数等效电路一、介绍在电路分析和设计中,我们经常会遇到复杂的电路系统。

为了简化电路分析和设计过程,我们需要建立等效电路模型来代替原始电路。

其中,h参数等效电路是一种常用的方法。

二、h参数概述h参数是一种常用的等效电路模型,用于描述线性电路中的放大器或两端口网络。

它可以帮助我们简化复杂的电路系统,并进行更简便的分析和计算。

h参数等效电路由四个参数组成:h11、h12、h21和h22。

•h11表示输入端口电压变化与输入端口电流变化之间的比例系数。

单位为欧姆(Ω)。

•h12表示输入端口电压变化与输出端口电流变化之间的比例系数。

单位为欧姆(Ω)。

•h21表示输出端口电压变化与输入端口电流变化之间的比例系数。

单位为亨利(H)。

•h22表示输出端口电压变化与输出端口电流变化之间的比例系数。

单位为亨利(H)。

三、h参数等效电路的建立方法建立h参数等效电路需要进行以下步骤:1. 断开输入源首先,我们需要将输入源断开,保持输出端口短路。

2. 测量h11在断开输入源的情况下,我们可以测量输入端口电流I1和输入端口电压V1之间的关系。

根据测量结果,可以得到h11的值。

3. 测量h12在断开输入源的情况下,我们可以测量输入端口电压V1和输出端口电流I2之间的关系。

根据测量结果,可以得到h12的值。

4. 断开输出源接下来,我们需要将输出源断开,保持输入端口开路。

5. 测量h21在断开输出源的情况下,我们可以测量输出端口电压V2和输入端口电流I1之间的关系。

根据测量结果,可以得到h21的值。

6. 测量h22在断开输出源的情况下,我们可以测量输出端口电压V2和输出端口电流I2之间的关系。

根据测量结果,可以得到h22的值。

四、h参数等效电路的应用h参数等效电路可以应用于放大器的分析和设计中。

通过等效电路模型,我们可以更方便地进行计算和优化。

1. 放大器分析通过h参数等效电路,我们可以计算放大器的增益、输入电阻、输出电阻等参数,从而对放大器的性能进行分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4 有源负载放大电路 有源负载放大电路主要构成元件为晶体管、场效应管及若干电阻,这种放大电路以电流源电路作为有源负载,这样在电源电压不变的情况下,既可获得合适的静态电流,对于交流信号,又可以得到较大的等效电阻,从而提高电压增益。常见电路形式。
2 等效电路法在放大电路分析中的应用实例 为了研究等效电路法在实际放大电路分析中的应用,下面以晶体管放大电路分析为例。2.1 等效电路法的具体应用过程 首先将晶体管作为一个双口网络,。
等效电路法在放大电路分析中的应用
等效电路法,又称为低频小信号模型,即在低频小信号作用下的放大电路中,将放大电路中的基本元件看成一个线性双口网络,利用该网络的h参数来表示放大电路的输入与输出特性便可得到一个等效线性电路,所以也称为h参数等效模型。1 模拟电路中的常用放大电路1.1 晶体管放大电路 晶体管放大电路的主要构成元件为pnp型、npn型硅晶体管及若干电阻组成。它主要利用晶体管的特性对电路中电流进行放大,通过对该电路的输入特性与输出特性的分析,得出该放大电路包含3种工作状态,即饱和区、放大区及截止区,正常情况下应使放大电路工作在放大区。常见电路形式。
2.2 等效电路法的简化模型 输入回路:从前面对晶体管的特性分析可知,当晶体管工作在放大区时,C-E间的电压对输入特性曲线的影响很小,即管子的内反馈可以忽略不计,可以vCE&gt;VBE用的任意一条特性曲线取代vCE&gt;VBE的所有特性曲线。因此,认为hre=0,则晶体管的输入回路只等效为一个动态电阻rBE(hie)。 输出回路:当晶体管工作在放大区时,C-E间电压的变化对iC的影响很小,即在放大区输出特性曲线几乎是横轴的平行线,可以认为C-E间的动态电阻1/hoe无穷大。因此,hoe近似为0,晶体管的输出回路只等效为一个电流iB控制的电流源&beta;iB(hfeiB)。简化后的h参数等效模型。
3 结束语 分析了晶体管等效模型,其分析结论可直接用于分析由晶体管所构成放大电路的各种动态参数,该结论完全可以适用于场效应管及其组成的放大电路中,而其他类型放大电路如差分放大电路、功率放大构成与晶体管、场效应管放大电路相同,所以同样可以采用等效电路法来分析。
1.2 场效应管放大电路 场效应管也是作为一种最基本的放大电路,它的主要组成为场效应管及若干电阻,其工作原理与电路形式和晶体管放大电路相同,相比晶体管放大电路,具有输入阻抗高、噪声低、热稳定性好等优点。常见电路形式。1.3 差分放大电路 差分放大电路的主要构成为晶体管、场效应管及若干电阻,它的主要特点在于采用完全对称的电路结构形式,以此来抑制基本放大电路产生的零点漂移,使得工作点更加稳定,常见电路形式。
以B-E作为输入端口,以C-E作为输出端口,则网络外部的端电压和电流之间的关系就是晶体管的输入特性和输出特性,。
根据特性曲线,可以将输入特性、输出特性写成关系式 h参数的下标e表示共发射极接法,i表示输入;r表示反向传输;f表示正向传输;o表示输出,其中 由h参数方程可知,电压vBE由两部分组成,第一项表示由iB产生一个电压,所以hie为一电阻;第二项vCE由产生一个电压,因而hre无量纲;所以B-E间可以等效成一个电阻与一个受控电压源串联。 电流iC也由两部分组成,第一项表示由iB控制产生一个电流,因而hfe无量纲;第二项表示由vCE产生一个电流,因而hoe为电导;所以C-E间可以等效为一个受控电流源与一个电阻并联。这样得到的晶体管的等效模型。由于h参数方程中的4个h参数的量纲都不同,故称为h参数等效模型。
相关文档
最新文档