北理工《概率论与数理统计》课程学习资料(一)791

合集下载

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。

-频率和概率的关系,概率的基本性质。

-古典概型和几何概型的概念。

-条件概率和乘法定理。

-全概率公式和贝叶斯公式。

-随机变量和概率分布函数的概念。

-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。

2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。

-协方差、相关系数和线性变换的数学期望和方差公式。

-两个随机变量的和、差、积的数学期望和方差公式。

3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。

-中心极限定理的概念和中心极限定理的两种形式。

4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。

-样本统计量和抽样分布的概念。

-点估计和区间估计的概念。

-假设检验的基本思想和步骤。

-正态总体的参数的假设检验和区间估计。

5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。

-矩估计的原理和方法。

-最小二乘估计的原理和方法。

-一般参数的假设检验和区间估计。

6.相关分析和回归分析-相关系数和线性相关的概念和性质。

-回归分析的一般原理。

-简单线性回归的估计和检验。

7.非参数统计方法-秩和检验和符号检验的基本思想和应用。

-秩相关系数的计算和检验。

8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。

-正态总体参数的拟合优度检验。

-贝叶斯估计的基本思想和方法。

9.时间序列分析和质量控制-时间序列的基本性质和分析方法。

-时间序列预测的方法和模型。

-质量控制的基本概念和控制图的应用。

以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。

北京理工大学《概率论与数理统计》课件-第4章随机变量的数字特征

北京理工大学《概率论与数理统计》课件-第4章随机变量的数字特征

北京理工大学《概率论与数理统计》分布函数能够完整地描述随机变量的统计特性,但在某些实际问题中,不需要全面考查随机变量的变化,只需知道它的随机变量的某些数字特征也就够了.评定某企业的经营能力时,只要知道该企业例如:年平均赢利水平研究水稻品种优劣时,我们关心的是稻穗的平均粒数及平均重量考察一射手的水平,既要看他的平均环数是否高,还要看他弹着点的范围是否小,即数据的波动是否小.由上面的例子看到,平均盈利水平、平均粒数、平均环数、数据的波动大小等,都是与随机变量有关的某个数值,能清晰地描述随机变量在某些方面的重要特征,这些数字特征在理论和实践上都具有重要意义.另一方面,对于一些常用的重要分布,如二项分布、泊松分布、指数分布、正态分布等,其中的参数恰好就是某些数字特征,因此,只要知道了这些数字特征,就能完全确定其具体的分布.第四章随机变量的数字特征4.1随机变量的平均取值——数学期望4.2随机变量取值平均偏离平均值的情况——方差4.3 描述两个随机变量之间的某种关系的数——协方差与相关系数4.1 数学期望一离散型随机变量的数学期望二连续型随机变量的数学期望三常见分布的数学期望四随机变量函数的数学期望五数学期望的性质六、数学期望的应用一离散型随机变量的数学期望引例射击问题设某射击手在同样的条件下,瞄准靶子相继射击90次,(命中的环数是一个随机变量).射中次数记录如下命中环数Y0 1 2 3 4 5命中次数n k 2 13 15 10 20 30频率n k/n2/90 13/90 15/90 10/90 20/90 30/90试问:该射手每次射击平均命中靶多少环?解:平均命中环数这是以频率为权的加权平均命中环数Y0 1 2 3 4 5命中次数n k2 13 15 10 20 30频率n k /n 2/90 13/90 15/90 10/90 20/90 30/900211321531042053090×+×+×+×+×+×=21315102030012345909090909090=×+×+×+×+×+×50k k n k n =⋅∑ 3.37.==射中靶的总环数射击次数平均射中环数频率随机波动随机波动“平均射中环数”的稳定值?=由频率的稳定性知:当n 很大时:频率n k /n 稳定于概率p k 稳定于50k k n k n =⋅∑50k k k p =⋅∑50k k n k n =⋅∑“平均射中环数”等于射中环数的可能值与其概率之积的累加定义1 设X 是离散型随机变量,它的概率分布是:P {X =x k }=p k , k =1,2,…如果绝对收敛,则称它为X 的数学期望或均值.记为E (X ), 即如果发散,则称X 的数学期望不存在.1k k k x p ∞=∑1()k k k E X x p ∞==∑1||k k k x p∞=∑注意:随机变量的数学期望的本质就是加权平均数,它是一个数,不再是随机变量.注1:随机变量X 的数学期望完全是由它的概率分布确定的,而不应受X 的可能取值的排列次序的影响,因此要求绝对收敛1k k k xp ∞=<+∞∑11111(1)1ln 2234212n n−+−++−→− 1111111(2)1ln 22436852−−+−−+→注2.E (X )是一个实数,而非随机变量,它是一种以概率为权的加权平均,与一般的算术平均值不同,它从本质上体现了随机变量X 取可能值的真正的平均值,也称均值.当随机变量X 取各个可能值是等概率分布时,X 的期望值与算术平均值相等.假设X 1P80 85 90 1/4 1/4 1/21()800.25850.25+900.586.25E X =×+××=X 2P80 85 901/3 1/3 1/32()85.E X =注3.数学期望E(X)完全由随机变量X的概率分布确定,若X服从某一分布,也称E(X)是这一分布的数学期望.乙射手甲射手例1.甲、乙两个射击手,他们射击的分布律如下表所示,问:甲和乙谁的技术更好?击中环数8 9 10概率0.3 0.1 0.6击中环数8 9 10概率0.2 0.5 0.3单从分布列看不出好坏,解:设甲,乙两个射击手击中的环数分别为X 1,X 2E (X 1)=8×0.3+9×0.1+10×0.6=9.3(环)E (X 2)=8×0.2+9×0.5+10×0.3=9.1(环)例2.1654年职业赌徒德.梅尔向法国数学家帕斯卡提出一个使他苦恼很久的分赌本问题:甲、乙两赌徒赌技相同,各出赌注50法郎,每局中无平局.他们约定,谁先赢三局,则得到全部100法郎的赌本.当甲赢了2局,乙赢了1局时,因故要中止赌博.现问这100法郎如何分才算公平?解:假如比赛继续进行下去,直到结束为止. 则需要2局.这时,可能的结果为:甲甲,甲乙,乙甲,乙乙即:甲赢得赌局的概率为3/4,而乙赢的概率为1/4.设:X、Y分别表示甲和乙得到的赌金数. 则分布律分别为:X0 100 P1/4 3/4Y0 100 P3/4 1/4这时,可能的结果为:甲甲,甲乙,乙甲,乙乙即:甲赢得赌局的概率为3/4,而乙赢的概率为1/4.E(X)=0×1/4+100×3/4=75E(Y)=0×3/4+100×1/4=25即甲、乙应该按照3:1的比例分配全部的赌本.例3.确定投资决策方向?某人有10万元现金,想投资于某项目,预估成功的机会为30%,可得利润8万元,失败的机会为70%,将损失2万元.若存入银行,同期间的利率为5%,问是否做此项投资?解:设X 为此项投资的利润,则存入银行的利息:故应该选择该项投资.(注:投资有风险,投资须谨慎)X 8 −2P0.3 0.7此项投资的平均利润为:E (X )=8×0.3+(−2)×0.7=1(万元)10×0.05=0.5(万元)设X 是连续型随机变量,密度函数为f (x ).问题:如何寻找一个体现随机变量平均值的量.将X 离散化.二、连续型随机变量的数学期望在数轴上取等分点:…x −2<x −1<x 0<x 1<x 2<…x k +1−x k =∆x ,k =0,±1,….,并设x k 都是f (x )的连续点.则小区间[x i ,x i+1)阴影面积近似为f (x i )∆x i1()i x x f x dx+=∫()i f x x≈∆P {x i <X ≤x i +1}定义一个离散型随机变量X *如下:其数学期望存在,且绝对收敛时,P {X *=x i }=P {x i ≤X <x i +1} ≈f (x i )∆x对于X *,当当分点越来越密,即∆x →0时,可以认为X *=x i 当且仅当x i ≤X <x i +1(*)i i ix P X x =∑(*){*}i i iE X x P X x ==∑()i i ix f x x ≈∆∑0=lim ()i i x ix f x x ∆→∆∑则其分布律为E (X *) →E (X ) *0=lim x EX EX ∆→即有:+()xf x dx∞−∞=∫定义2:设X 是连续型随机变量,其密度函数为f (x ),如果绝对收敛,则称的值为X 的数学期望,如果积分发散,则称随机变量X 的数学期望不存在.+()xf x dx ∞−∞∫+||()x f x dx∞−∞∫即+()()E X xf x dx∞−∞=∫+()xf x dx ∞−∞∫记为E (X ).注意:随机变量的数学期望的本质就是加权平均数,它是一个数,不再是随机变量.三、常见分布的数学期望1.0−1分布设随机变量X服从参数为p的0−1分布,求EX.解:X的分布律为X0 1P1−p p则:E(X)=0×P{X=0}+1×P{X=1}=P{X=1}=p概率是数学期望的特例(第五章)2.二项分布X 的分布律为P {X =k }=C n k p k (1−p )n−k ,k =0,1,…,n .解:设随机变量X ~b (n ,p ),求EX .0{}nk EX kP X k ==∑0(1)n k k n k n k kC p p −=−∑1!(1)!()!n k n kk n k p p k n k −=−−∑1(1)(1)1(1)!(1)(1)!()!nk n k k n np p p k n k −−−−=−−−−∑11(1)1(1)n l k l ln ln l np Cp p −=−−−−=−∑1[(1)]n np p p −=+−np=抛掷一枚均匀硬币100次,能期望得到多少次正面3.泊松分布则解:X 的分布律为设随机变量X ~π(λ),求EX .{},0,1,2,!kP X k e k k λλ−=== 00(){}!k k k e E X kP X k k k λλ−∞∞=====∑∑11(1)!k k ek λλλ−∞−==−∑1!ii k i e i λλλ∞=−−=∑=e e λλλλ−=1!k k e k k λλ−∞==∑泊松分布的参数是λ4.几何分布解:X 的分布律为P {X =k }=q k −1p ,k =1,2,….p+q =1设随机变量X 服从参数为p 的几何分布,求EX .111(){}k k k E X kP Xk k pq∞∞−=====⋅∑∑11k k p k q∞−=⋅∑1=()kk p q ∞=′∑1=()k k p q ∞=′∑()1q p q′=−211(1)p q p=−重复掷一颗骰子平均掷多少次才能第一次出现6点设X ~U (a , b ),求E (X ).解:X 的概率密度为:X 的数学期望为:数学期望位于区间(a ,b )的中点.5.均匀分布1()0a xb f x b a<<=− 其它()()2bax a b E X xf x dx dx b a +∞−∞+===−∫∫设X 服从指数分布,求E (X ).分部积分法6.指数分布当概率密度表示为:对应的数学期望为θ.,0()0,x e x f x x λλ− >=≤ 0xxedx λλ+∞−=∫()()E X xf x dx +∞−∞=∫1λ=1,0()0,0xe xf x x θθ− > = ≤解:X 的概率密度为:设X ~N (μ,σ2),求E (X ).解:X 的概率密度为被积函数为奇函数,故此项积分为0.7.正态分布22()21()2x f x eµσπσ−−=()()E X xf x dx +∞−∞=∫22()212x xedxµσπσ−+∞−−∞=∫221()2x t t t edtµσσµπ−=+∞−−∞+∫ 2222122t t tedt edt σµππ+∞+∞−−−∞−∞+∫∫µ=N (0,1)的密度函数积分为1.注意:不是所有的随机变量都有数学期望例如:Cauchy 分布的密度函数为但发散故其数学期望不存在.21(),(1)f x x x π=−∞<<+∞+2||||()(1)x x f x dx dx x π+∞+∞−∞−∞=+∫∫四随机变量函数的数学期望设已知随机变量X的分布,我们需要计算的不是X的期望,而是X的某个函数的期望,比如说g(X)的期望. 那么应该如何计算呢?一种方法是,因为g(X)也是随机变量,故应有概率分布,它的分布可以由已知的X的分布求出来. 一旦我们知道了g(X)的分布,就可以按照期望的定义把E[g(X)]计算出来.例4.某商店对某种家用电器的销售采用先使用后付款的方式,记该种电器的使用寿命为X (以年计),规定:X ≤1,一台付款1500元;1<X ≤2,一台付款2000元2<X ≤3,一台付款2500元;X >3,一台付款3000元设X 服从指数分布,且平均寿命为10年,求该商店一台电器的平均收费.解:设该商店一台电器的收费为Y .要求E (Y )X 的分布函数为:1101,()0,0x e x F x x − −>=≤设该商店一台电器的收费为YX ≤1,一台付款1500元1 <X ≤2,一台付款2000元2 <X ≤3,一台付款2500元X >3,一台付款3000元1101,0()0,0x ex F x x − −>=≤P {Y =1500}=P {X ≤1}=F (1)=1−e −0.1=0.0952P {Y =2000}=P {1<X ≤2}=F (2)−F (1)=0.0861P {Y =2500}=P {2<X ≤3}=F (3)−F (2)=0.0779P {Y =3000}=P {X >3}=1−F (3)=0.7408设X 服从指数分布,且平均寿命为10年.Y 的分布律为所以该商店一台电器的平均收费,即Y 的数学期望为Y 1500 2000 2500 3000P0.0952 0.0861 0.0779 0.7408()15000.095220000.086125000.0779 30000.74082732.15E Y =×+×+×+×=使用上述方法必须先求出g(X)的分布,有时这一步骤是比较复杂的.那么是否可以不先求g(X)的分布,而只根据X的分布求E[g(X)]呢?例5.设离散型随机变量X 的概率分布如下表所示,求:Z=X 2的期望.X−11P214141E (Z )= g (0)×0.5+g (-1)×0.25+g (1)×0.25解:=0.5注:这里的.)(2x x g =(1)当X 为离散型随机变量时,分布律为P {X = x k }=p k ,k =1,2,⋯(2)当X 为连续型随机变量时,概率密度函数为f (x ).定理:设Y 是随机变量X 的函数,Y =g (X )(g 是连续函数)若级数绝对收敛,则有若积分绝对收敛,则有1()[()]()kkk E Y E g X g x p∞===∑()[()]()()E Y E g X g x f x dx+∞==∫1()k k k g x p ∞=∑()()g x f x dx+∞−∞∫该公式的重要性在于:当求E [g (X )]时,不必知道g (X )的分布,而只需知道X 的分布就可以了,这给求随机变量函数的期望带来很大方便.k k k g x p X E Y E g X g x f x dx X 1(),()[()]()(),∞=+∞−∞== ∑∫离散型连续型例6.设随机变量X~b(n, p),Y=e aX,求E(Y).解:因为X的分布律为所以有{}(1), 0,1,...,k k n knP X k C p p k n−==−= ()E Y=(1)nak k k n knke C p p−=−∑()(1)nk a k n knkC e p p−=−∑[(1)]a npe p=+−={}nakke P X k==∑例7.设X ~U [0,π],Y=sinX ,求E (Y ).解:因为X 的概率密度为所以有1,0()0,x f x ππ≤≤ =其他()sin ()E Y xf x dx +∞−∞=∫01sin x dx ππ⋅∫2π=定理:设Z 是随机变量X 和Y 的函数,Z =g (X,Y )(g 是连续函数),Z 是一维随机变量(1)若(X,Y )是二维离散型随机变量,概率分布为(2)若(X,Y )是二维连续型随机变量,概率密度为f (x, y ),则有这里假定上两式右边的积分或级数都绝对收敛11()[(,)](,)ijijj i E Z E g X Y g x y p∞∞====∑∑()[(,)](,)(,)E Z E g X Y g x y f x y dxdy+∞+∞−∞−∞==∫∫{,},,1,2,i j ij P X x Y y p i j ====则有几个常用的公式()[(,)](,)(,)E Z E g X Y g x y f x y dxdy+∞+∞−∞−∞==∫∫(,)EX xf x y dxdy+∞+∞−∞−∞=∫∫(,)EY yf x y dxdy+∞+∞−∞−∞=∫∫22()(,)E Y y f x y dxdy+∞+∞−∞−∞=∫∫22()(,)E X x f x y dxdy+∞+∞−∞−∞=∫∫()(,)E XY xyf x y dxdy+∞+∞−∞−∞=∫∫例8.设二维随机变量(X ,Y )的密度函数为求E (X ),E (Y ),E (X +Y ),E (XY ).解:21(13),02,01,(,)40,x y x y f x y +<<<< =其它()(,)E X xf x y dxdy+∞+∞−∞−∞=∫∫212001(13)4x xdx y dy =⋅+∫∫43=()(,)E Y yf x y dxdy+∞+∞−∞−∞=∫∫212001(13)4xdx y y dy +∫∫58=数学期望的性质注意:X ,Y 相互独立()()(,)E X Y x y f x y dxdy+∞+∞−∞−∞+=+∫∫(,)(,)xf x y dxdy yf x y dxdy+∞+∞+∞+∞−∞−∞−∞−∞+∫∫∫∫()()E X E Y +45473824=+=()(,)E XY xyf x y dxdy +∞+∞−∞−∞=∫∫2120011(13)22x xdx y y dy=⋅⋅+∫∫455386=⋅=()()E X E Y ⋅设X =(X 1,…, X n )为离散型随机向量,概率分布为≥ 1nnj j j j n P X =x ,,x =p ,j ,,j .11{()}1Z = g (X 1,…, X n ),若级数绝对收敛,则.<∞∑ nnnj j j j j j g x ,,x p 111()=∑ nnnn j j j jj j E Z =E g X ,,X g x ,,x p 1111()(())()设X =(X 1,…, X n )为连续型随机向量,联合密度函数为 n f x x 1(,,)Z = g (X 1,…, X n ),若积分绝对收敛,则+∞+∞−∞−∞∫∫n n ng x x f x x x x 111(,,)(,,)d d n E Z E g X X 1()=((,,))+∞+∞−∞−∞=∫∫n n ng x x f x x x x 111(,,)(,,)d d五数学期望的性质1.设C 是常数,则E (C )=C 4.设X 、Y 相互独立,则E (XY )=E (X )E (Y );2.若k 是常数,则E (kX )=kE (X )3.E (X +Y )=E (X )+E (Y )注意:由E (XY )=E (X )E (Y )不一定能推出X ,Y 独立推广(诸X i 相互独立时)推广11[]()nni i i i i i E C X C E X ===∑∑11[]()n ni i i i E X E X ===∏∏性质4 的逆命题不成立,即若E (X Y ) = E (X )E (Y ),X ,Y 不一定相互独立.反例XY p ij -1 0 1-10181818181818181810p • j838382p i•838382X Y P-1 0 1828284EX EY ==0;E XY ()=0;=E XY EX EY ()但P X Y 1{=-1,=-1}=8≠=P X P Y 23{=-1}{=-1}8××=30+2103-3+5=92X XY Y X XY Y E(3+2-+5)=3E()+2E()-E()+E(5)性质2和3×××EX EY =310+2-3+5性质4例9.设X ~N (10,4),Y ~U [1,5],且X 与Y 相互独立,求E (3X +2XY -Y +5).解:由已知,有E (X )=10, E (Y )=3.例10: 设X 1 , X 2…,X n 相互独立且都服从B (1, p ),求Z = X 1 + X 2+…+X n 的数学期望E (Z ).解:注: 由二项分布的可加性易知Z = X 1 + X 2+…+X n ~B (n, p ).EZ = E (X 1 + X 2+…+X n )= E (X 1 ) +E ( X 2)+…+E (X n )= p +p +…+p =n p求二项分布的数学期望的又一种方法.例11.(超几何分布的数学期望)设一批同类型的产品共有N 件,其中次品有M 件.今从中任取n (假定n ≤N −M )件,记这n 件中所含的次品数为X ,求E (X ).则有所以解: 引入X =X 1+X 2+…+X n且易知抽签模型,概率与试验次数无关例10和例11:将X 分解成数个随机变量之和,然后利用随机变量和的期望等于期望的和这一性质,此方法具有一定的意义.1,,1,2,,0,i i X i n i ==第件是次品第件不是次品iMP X N{1}==1()ni i EX E X ==∑ni i P X 1{1}==∑1ni M N ==∑nM N =为普查某种疾病,N 个人需验血.有如下两种验血方案:(1)分别化验每个人的血,共需化验N 次;(2)分组化验.每k 个人分为1组,k 个人的血混在一起化验,若结果为阴性,则只需化验一次;若为阳性,则对k 个人的血逐个化验,找出有病者,此时k 个人的血需化验k+1次.设每个人血液化验呈阳性的概率为p ,且每个人化验结果是相互独立的.试说明选择哪一方案较经济.验血方案的选择例13.六、数学期望的应用解:只需计算方案(2)所需化验次数X 的期望.。

概率论与数理统计学习知识资料心得与分享与分享之第一章

概率论与数理统计学习知识资料心得与分享与分享之第一章

第一章概率论的基本概念确定性现象:在一定条件下必然发生的现象随机现象:在个别试验中其结果呈现出不确定性,有统计规律性的现象随机试验:具有下述三个在大量重复试验中其结果又具特点的试验:1. 可以在相同的条件下重复地进行2. 每次试验的可能结果不止一个,且能事先明确试验的所有可能结果3. 进行一次试验之前不能确定哪一个结果会出现样本空间:将随机试验E 的所有可能出现的结果组成的集合称为E 的样本空间,记为S 样本点:样本空间的元素,即E 的每个结果,称为样本点样本空间的元素是由试验的目的所确定的。

随机事件:一般,我们称试验E的样本空间S的子集为E的随机事件,简称事件在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生。

基本事件:由一个样本点组成的单点集,称为基本事件。

必然事件:样本空间S包含所有的样本点,它是S自身的子集,在每次试验中它总是发生的,称为必然事件。

不可能事件:空集不包含任何样本点,它也作为样本空间的子集,在每次试验中,称为不可能事件。

事件间的关系与运算:设试验E的样本空间为S,而A,B, A k(k=1,2,…)是S的子集。

1. 若A B ,则称事件B包含事件A,这指的是事件A发生必然导致事件B发生。

若A B且B A,即A=B则称事件A与事件B相等。

2. 事件A B x | x A或x B称为事件A与事件B的和事件。

当且仅当A,B 中至少有一个发生时,事件A B 发生。

类似地,称U A k为事件几小2,…,A n的和事件;称U A k为可列个事件A,A,… k 1 k 1的和事件。

3. 事件A B={x | x A且x B}称为事件A与事件B的积事件。

当且仅当A,B同时发生时,事件A B 发生。

A B 记作AB。

类似地,称| A k为n个事件AiA,…,A n的积事件;称| A k为可列个事件k 1 k 1AA,…的积事件。

4. 事件A B {x I x A且x B}称为事件A与事件B的差事件。

概率论与数理统计知识点

概率论与数理统计知识点

概率论与数理统计知识点概率论与数理统计是一门研究随机现象及其规律的学科,它在众多领域都有着广泛的应用,如自然科学、工程技术、社会科学、经济金融等。

下面就让我们一起来了解一下这门学科的一些重要知识点。

一、随机事件与概率随机事件是指在一定条件下,可能出现也可能不出现的事件。

比如掷骰子出现的点数,明天是否下雨等。

而概率则是用来衡量随机事件发生可能性大小的数值。

概率的计算方法有多种。

古典概型是一种常见的情形,假设某个试验有 n 个等可能的结果,而事件 A 包含其中的 m 个结果,那么事件 A 发生的概率 P(A) = m / n 。

还有几何概型,比如在一个区间内随机取一个点,计算这个点落在某个特定子区间的概率。

条件概率也是一个重要概念。

如果已知事件 B 发生的条件下,事件A 发生的概率,称为条件概率,记作 P(A|B)。

二、随机变量及其分布随机变量是用来表示随机现象结果的变量。

它可以是离散型的,比如掷骰子的点数;也可以是连续型的,比如某地区一天的气温。

常见的离散型随机变量分布有二项分布和泊松分布。

二项分布适用于 n 次独立重复试验中成功的次数,比如抛硬币正面朝上的次数。

泊松分布则常用于描述在一定时间或空间内稀有事件发生的次数。

连续型随机变量的分布通常用概率密度函数来描述,常见的有正态分布。

正态分布在自然界和社会现象中非常常见,很多测量数据都近似服从正态分布。

三、多维随机变量及其分布当考虑多个随机变量时,就有了多维随机变量。

比如同时考虑一个学生的数学和语文成绩。

联合分布函数可以描述多维随机变量的概率分布情况。

边缘分布则是从多维随机变量中单独取出某个变量的分布。

条件分布是在已知某个变量取值的条件下,另一个变量的分布。

四、随机变量的数字特征期望是随机变量取值的平均值,它反映了随机变量取值的平均水平。

方差则衡量了随机变量取值相对于期望的分散程度。

协方差和相关系数用于描述两个随机变量之间的线性关系程度。

五、大数定律和中心极限定理大数定律表明,在大量重复试验中,随机事件发生的频率接近于其概率。

《概率论与数理统计》(46学时)课程教学大纲1

《概率论与数理统计》(46学时)课程教学大纲1

《概率论与数理统计》(46学时)课程教学大纲一、课程的基本情况课程中文名称:概率论与数理统计课程英文名称:Probability Theory and Mathematical Statistics课程编码:0702003课程类别:学科基础课课程性质:必修总学时:46 讲课学时:46 实验学时:0学分:2.5授课对象:本科相关专业前导课程:《高等数学》《线性代数》二、教学目的概率论与数理统计是研究随机现象统计规律性的数学学科,是理工科各专业的一门重要的学科基础课。

通过本课程的学习,使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。

同时,也为一些后续课程的学习提供必要的基础。

三、教学基本要求第一章概率论的基本概念1.1 随机试验1.2 样本空间、随机事件1.3 频率与概率1.4 等可能概型(古典概型)1.5 条件概率1.6 独立性基本要求:1. 理解随机试验、样本空间、随机事件的概念并掌握事件的关系与运算2. 掌握概率的定义与基本性质3. 理解古典概型的概念,掌握古典概率的计算方法4. 理解条件概率的定义,熟练掌握乘法定理、全概率公式与贝叶斯公式并会灵活应用5. 理解事件独立性的概念,熟练掌握相互独立事件的性质及有关概率的计算重点与难点:1. 重点:随机事件;概率的基本性质及其应用;乘法定理、全概率公式与贝叶斯公式事件的独立性2. 难点:概率的公理化定义、条件概率概念的建立、全概率公式与贝叶斯公式的应用第二章随机变量及其分布2.1 随机变量2.2 离散型随机变量及其分布律2.3 随机变量的分布函数2.4 连续型随机变量及其概率密度2.5 随机变量的函数的分布 基本要求:1. 理解随机变量的概念;掌握离散型随机变量和连续型随机变量的描述方法2. 掌握分布律、分布函数、概率密度函数的概念及性质;掌握由概率分布计算相关事件的概率的方法3. 熟练掌握二项分布、泊松(Poisson )分布、正态分布、指数分布和均匀分布,特别是正态分布的性质并能灵活运用;熟练掌握伯努利概型概率的计算方法4. 熟练掌握一些简单的随机变量函数的概率分布的求法 重点与难点:1. 重点:随机变量、分布律、密度函数和分布函数的概念;二项分布、均匀分布的概念和性质2. 难点:二项分布的推导及应用;随机变量函数的概率分布第三章 多维随机变量及其分布 3.1 二维随机变量 3.2 边缘分布 3.3 条件分布3.4 相互独立的随机变量3.5 两个随机变量的函数的分布 基本要求:1. 正确理解二维随机变量的定义,掌握二维随机变量的联合分布律、联合分布函数、联合概率密度函数及条件分布的概念2. 熟练掌握由联合分布求事件的概率,求边缘分布及条件分布的基本方法3. 理解随机变量独立性的概念,掌握随机变量独立性的判别方法4. 了解求二维随机变量函数分布的基本思路,会求,max{,},min{,}X Y X Y X Y 的分布 重点与难点:1. 重点:由联合分布求概率,求边缘分布及条件分布的方法2. 难点:求离散型随机变量联合分布律的方法,条件密度的导出,随机变量函数的分布第四章 随机变量的数字特征 4.1 数学期望 4.2 方差4.3 协方差及相关系数 4.4 矩、协方差矩阵 基本要求:1. 掌握随机变量及随机变量函数的数学期望的计算公式,熟悉数学期望的性质并能灵活运用2. 掌握方差的概念和性质;熟悉二项分布、泊松分布、正态分布、指数分布和均匀分布的数学期望和方差;了解切比雪夫(Chebyshev )不等式3. 掌握协方差和相关系数的定义和性质,并会灵活应用4. 掌握矩、协方差矩阵的定义 重点与难点:1. 重点:数学期望、方差、相关系数与协方差的计算公式及性质2. 难点:随机变量函数的数学期望的计算,利用数学期望的性质计算数学期望,相关系数的含义第五章大数定律及中心极限定理5.1 大数定律5.2 中心极限定理基本要求:1. 掌握依概率收敛的概念及贝努利大数定律和契比雪夫大数定律2. 掌握独立同分布的中心极限定理和德莫佛-拉普拉斯(De Moivre-Laplace)极限定理3. 掌握应用中心极限定理计算有关事件的概率近似值的方法重点与难点:1. 重点:用中心极限定理计算概率的近似值的方法2. 难点:依概率收敛的概念第六章样本及抽样分布6.1 随机样本6.2 抽样分布基本要求:1. 理解总体、个体、样本容量、简单随机样本以及样本观察值的概念2. 理解统计量的概念;熟悉数理统计中最常用的统计量(如样本均值、样本方差)的计算方法及其分布χ-分布,t-分布,F-分布的定义并会查表计算3. 掌握24. 熟悉正态总体的某些常用统计量的分布并能运用这些统计量进行计算重点与难点:χ-分布, t-分布, F-分布的定义与分位点的查表;正态总体常用统计量的分布1. 重点:2χ-分布, t-分布, F-分布的定义与分位点的查表2. 难点:2第七章参数估计7.1 点估计7.3 估计量的评选标准7.4 区间估计7.5 正态总体均值与方差的区间估计7.7 单侧置信区间基本要求:1. 理解参数的点估计(矩估计、最大似然估计)的计算方法2. 掌握参数点估计的评选标准:无偏性,有效性和相合性3. 理解参数的区间估计的概念,熟悉对单个正态总体和两个正态总体的均值与方差进行区间估计的方法及步骤重点与难点:1. 重点:点估计的矩法、最大似然估计法;正态总体参数的区间估计2. 难点:最大似然估计法,两个正态总体的参数的区间估计四、课程内容与学时分配五、教材参考书教材:盛骤谢式千潘承毅《概率论与数理统计》(第三版)高等教育出版社2001. 参考书:[1] 茆诗松《概率论与数理统计教程》(第一版)高教出版社2004.[2] 王展青李寿贵《概率论与数理统计》(第一版)科学出版社2000.六、教学方式和考核方式1.教学方式:以课堂讲授为主,辅以答疑、课后作业。

非常全面的《概率论与数理统计》复习材料

非常全面的《概率论与数理统计》复习材料

《概率论与数理统计》复习大纲第一章随机事件与概率事件与集合论的对应关系表古典概型古典概型的前提是Ω={ω1, ω2,ω3,…, ωn,}, n为有限正整数,且每个样本点ωi出现的可能性相等。

例1设3个球任意投到四个杯中去,问杯中球的个数最多为1个的事件A1,最多为2个的事件A2的概率。

[解]:每个球有4种放入法,3个球共有43种放入法,所以|Ω|=43=64。

(1)当杯中球的个数最多为1个时,相当于四个杯中取3个杯子,每个杯子恰有一个球,所以|A1|= C433!=24;则P(A1)=24/64 =3/8. (2) 当杯中球的个数最多为2个时,相当于四个杯中有1个杯子恰有2个球(C41C32),另有一个杯子恰有1个球(C31C11),所以|A2|= C41C32C31C11=36;则P(A2)=36/64 =9/16例2从1,2,…,9,这九个数中任取三个数,求:(1)三数之和为10的概率p1;(2)三数之积为21的倍数的概率p2。

[解]:p1=4C93=121, p2=C31C51+C32C93=314P(A)=A包含样本总个数样本点总数=|A||Ω|几何概型前提是如果在某一区域Ω任取一点,而所取的点落在Ω中任意两个度量相等的子区域的可能性是一样的。

若A⊂Ω,则P(A)=A的度量Ω的度量例1把长度为a的棒任意折成三段,求它们可以构成一个三角形的概率。

[解]:设折得的三段长度分别为x,y和a-x-y,那么,样本空间,S={(x,y)|0≤x≤a,0≤y≤a,0≤a-x-y≤a}。

而随机事件A:”三段构成三角形”相应的区域G应满足两边之和大于第三边的原则,得到联立方程组,⎩⎪⎨⎪⎧a-x-y<x+yx<a-x-y+yy<a-x-y+x解得0<x<a2, 0<y<a2,a2<x+y<a 。

即G={(x,y)| 0<x<a2, 0<y<a2,a2<x+y<a }由图中计算面积之比,可得到相应的几何概率P(A)=1/4。

北京理工大学《概率论与数理统计》课件-第4章

北京理工大学《概率论与数理统计》课件-第4章

解:X 的分布函数为依题意,当x <0时,当0≤x ≤2时,当x >2时,F (x )=P (X ≤x )F (x )=P (X ≤x )=0F (x )=P (X ≤x )=P (X <0)+P (0≤X ≤x )=0+kx 2=kx 2F (x )=P (X ≤x )=1例1.一个靶子是半径为2米的圆盘,设击中靶上任一同心圆盘上的点的概率与该盘的面积成正比,并设射击都能中靶.以X 表示弹着点与圆心的距离,试求随机变量X 的分布函数.当0≤x ≤2时,F (x )=P (X ≤x )=kx 2另外依题意F (2)=P (X ≤2)=k.22=1所以k 14=x x F x x x 20,0(),0241,2<⎧⎪⎪=≤≤⎨⎪>⎪⎩10.80.60.40.2-0.2-2-101234解得说明,存在一个非负可积函数f (x ),使得下式成立易知x x F x x x 20,0(),0241,2<⎧⎪⎪=≤≤⎨⎪>⎪⎩x x F x f x ,02()()20⎧≤≤⎪'==⎨⎪⎩其他()()xF x f t dt-∞=⎰1.定义:设随机变量X 的分布函数为F (x ),如果存在一个非负可积函数f (x ),使对任意的实数x ,均有则称X 是连续型随机变量(Continuous Random Variable ),称f (x )是X 的概率密度函数,简称概率密度(Probability Density Function ).()()xF x f t dt-∞=⎰连续型随机变量X的分布函数F(x)和概率密度f(x)统称为X的概率分布,简称X的分布.易知此时分布函数F(x)是连续函数,即连续型随机变量的分布是连续函数.2.概率密度函数的性质(1)f (x ) ≥ 0(2)这两条性质是判定一个函数f (x )是否为某r.v.X 的概率密度函数的充要条件.f (x )xo 面积为1+()1f x dx ∞-∞=⎰(3)P (a <X ≤b )=F (b )-F (a )如 f (x )xo a b (4)()()GP X G f x dx∈=⎰()()b a f x dx f x dx -∞-∞=-⎰⎰()baf x dx =⎰()()a P X a f x dx+∞>=⎰(5)在f (x )的连续点x 处,有f (x )=F '(x )(6)设x 为f (x )的连续点,当∆x 较小,则有P (x< X ≤x+∆x )故X 的密度f (x )在x 这一点的值,恰好是X 落在区间(x ,x +∆x ]上的概率与区间长度∆x 之比.它反映了X 在x 附近单位长区间上取值的概率.x xx f t dt f x x()()+∆=≈⎰∆连续型随机变量密度函数的性质与离散型随机变量分布律的性质非常相似,但是,密度函数不是概率!(7)P (X =x 0)=F (x 0)-F (x 0-0)P (a <X ≤b )=P (a ≤X ≤b )=P (a <X <b )=P (a ≤X <b )密度函数f (x )在某点处a 的函数值f (a ),并不等于X 取值为a 的概率.但是,这个值f (a )越大,则X 在a 附近取值的概率f (a )∆x 就越大.也可以说,在某点密度曲线的函数值反映了概率集中在该点附近的程度,即X 在该点附近取值的密集程度.=0()ba f x dx=⎰=F (b )-F (a )若X 为连续型随机变量,概率密度f (x )唯一确定了分布函数F (x );若随机变量X 的分布函数F (x )满足:(1)F (x )连续;(2)存在x 1<x 2<…<x n (n ≥0),除这些点外,F (x )可导,且导函数F '(x )连续;令F x F x f x F x (),()()0,()''⎧=⎨'⎩当存在当不存在则f (x )必是X 的概率密度.例2.设随机变量X 的概率密度为求(1)常数k 的值;(2)X 的分布函数;(3)P (1<X <7/2).解:(1)由解得kx x f x x x ,03()2/2,340,≤<⎧⎪=-≤≤⎨⎪⎩其他+1()f x dx ∞-∞=⎰3403(2)2x kxdx dx =+-⎰⎰k 16=k 9124=+解:(2)当x <0时,当0≤x <3时,当3≤x <4时,020()()0612x x t x F x f t dt dt dt -∞-∞==+=⎰⎰⎰03203()()0(2)32624x xt t x F x f t dt dt dt dt x -∞-∞==++-=-+-⎰⎰⎰⎰()()0x F x f t dt -∞==⎰求(2)X 的分布函数;()()xF x f t dt-∞=⎰6,03()2/2,340,x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他当x ≥4时,所以()()1xF x f t dt -∞==⎰x x x F x x x x x 220,0/12,03()32/4,341,4<⎧⎪≤<⎪=⎨-+-≤<⎪⎪≥⎩求(2)X 的分布函数;6,03()2/2,340,x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他P X F F 7741(1)()(1)2248<<=-=72723113741(1)()(2)26248x x P X f x dx dx dx <<==+-=⎰⎰⎰求(3)P (1<X <7/2)解:(3)6,03()2/2,340,x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他在上例中,当x ∉[0,4]时,f (x )=0,所以P (X ∉[0,4])=0,为了方便,我们说X 只在[0,4]上取值.g x a x b f x ()0,()0,>≤≤⎧=⎨⎩其他我们就说X 只在[a , b ]上取值.一般地,若随机变量X 的概率密度f (x )是如下分段函数:6,03()2/2,340,x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他例3.设连续型随机变量X 的分布函数为求(1)常数C 值;(2)X 取值于(0.3,0.7)内的概率;(3)X 的密度函数.解:(1)应用连续型随机变量X 的分布函数的连续性,有所以C =1x F x Cx x x 20,0(),011,1<⎧⎪=≤<⎨⎪≥⎩x F F x C11(1)lim ()→-===x x f x F x 2,01()()0,<<⎧'==⎨⎩其他解:20,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩(2)P (0.3<X <0.7)=F (0.7)−F (0.3)=0.72−0.32=0.4求(2)P (0.3<X <0.7);(3)X 的密度函数.(3)随机变量的分类:离散型随机变量连续型随机变量.非离散型随机变量非连续非离散型随机变量.(1)若随机变量X 的概率密度为1.均匀分布(Uniform Distribution )则称X 在[a , b ]上服从均匀分布,记为X~U [a , b ]1,()0,a x b f x b a ⎧≤≤⎪=-⎨⎪⎩其他[,]1a b I b a =-[,][,]1,[,]()0,[,]a b a b x a b I I x x a b ∈⎧==⎨∉⎩区间[a ,b ]上的示性函数类似地,我们可以定义区间[a , b )、(a , b ]和(a , b )上的均匀分布一般地,设D 是数轴上一些不相交的区间之和,若X 的概率密度为x D f x D x D 1()0⎧∈⎪=⎨⎪∉⎩,的长度,则称X 在D 上服从均匀分布.若X ~U [a , b ],X 的分布函数为对于满足a ≤c <d ≤b 的任意的c 、d ,有0(),1,x a x a F x a x bb a<⎧⎪-⎪=≤≤⎨-⎪⎪⎩,其他()d c P c X d b a-<≤=-例1.设公共汽车站从上午7时起每隔15分钟来一班车,如果某乘客到达此站的时间是7:00到7:30之间的均匀随机变量.试求该乘客候车时间不超过5分钟的概率.解:设该乘客于7时X 到达此站,则X 服从[0, 30]上的均匀分布令B ={候车时间不超过5分钟}1530102511130303dx dx =+=⎰⎰()(1015)(2530)P B P X P X =≤≤+≤≤1030()300x f x ⎧≤≤⎪=⎨⎪⎩其它2.指数分布(Exponential Distribution )若随机变量X 的概率密度为其中常数λ>0,则称X 服从参数为λ的指数分布.,0()0,0x e x f x x λλ-⎧>=⎨≤⎩易求得X 的分布函数为1,0()0,0x e x F x x λ-⎧->=⎨≤⎩指数分布的另一种等价定义定义:设连续型随机变量X 的概率密度为1,0()0,0x e x f x x θθ-⎧>⎪=⎨⎪≤⎩其中θ>0为常数,则称X 服从参数为θ的指数分布.服从指数分布的随机变量X 具有以下性质:事实上无记忆性或无后效性(|)()P X s t X s P X t >+>=>(,)(|)()P X s t X s P X s t X s P X s >+>>+>=>()()P X s t P X s >+=>1()1()F s t F s -+=-()s t t s e e e λλλ-+--==1()()F t P X t =-=>1,0()0,0x e x F x x λ-⎧->=⎨≤⎩即对于任意s , t >0,有如果X 表示某仪器的工作寿命,无后效性的解释是:当仪器工作了s 小时后再能继续工作t 小时的概率等于该仪器刚开始就能工作t 小时的概率.说明该仪器的使用寿命不随使用时间的增加发生变化,或说仪器是“永葆青春”的.(|)()P X s t X s P X t >+>=>一般来说,电子元件等具备这种性质,它们本身的老化是可以忽略不计的,造成损坏的原因是意外的高电压等等.3.正态分布(Normal Distribution )若随机变量X 的概率密度为其中μ, σ均为常数,且σ>0,则称X 服从参数为μ和σ的正态分布.记作X ~N (μ, σ2)正态分布最初由高斯(Gauss )在研究偏差理论时发现,又叫高斯分布.22()21(),2x f x e x μσσπ--=-∞<<∞X 的分布函数为22()21()2t xF x e dtμσσπ---∞=⎰N (10, 32)0-50.10.20.30.40.50.60.70.80.910510152025正态分布N(μ,σ2)密度函数图形的特点f(x)μa.正态分布的密度曲线是一条关于μ对称的钟形曲线.f(μ+c)=f(μ−c )特点是“两头小,中间大,左右对称”.b .μ决定了图形的中心位置,称为位置参数;σ决定了图形中峰的陡峭程度,称为形状参数或者刻度参数μ2μ1μ3x f (x )f (x )0xc .在x =μ处达到最大值:1()2f μπσ=d .曲线f (x )向左右伸展时,越来越贴近x 轴,即f (x )以x 轴为渐近线.当x →±∞时,f (x )→0e .x=μ±σ为f (x )的两个拐点的横坐标.说明X 落在μ附件的概率最大,或者说X 的取值在μ附件最密集.22()21(),2x f x e x μσσπ--=-∞<<∞μf (x )年降雨量、同龄人身高、在正常条件下各种产品的质量指标——如零件的尺寸;纤维的强度和张力、农作物的产量,小麦的穗长、株高、测量误差、射击目标的水平或垂直偏差、信号噪声等等,都服从或近似服从正态分布.标准正态分布(Standard Normal Distribution )μ=0,σ=1的正态分布称为标准正态分布.其密度函数和分布函数常用φ(x )和Ф(x )表示:)(x Φ)(x ϕ221(),2x x e x ϕπ-=-∞<<∞221()2t x x e dt π--∞Φ=⎰注意:Φ(0)=0.5,Φ(-x )=1-Φ(x )若X ~N (0, 1),对任意的实数x 1,x 2(x 1< x 2),有人们已编制了Φ(x )的函数表,可供查用.P (X≤x 1)=Φ(x 1)P (X>x 1)=1-Φ(x 1)P (x 1≤X≤x 2)=Φ(x 2)-Φ(x 1)221()2x t x e dt π--∞Φ=⎰−x x Φ(x )x4-40.40.2正态分布的计算()x μσ-=Φ对任意的实数x 1,x 2(x 1< x 2),有211221()()()()()x x P x X x F x F x μμσσ--<≤=-=Φ-Φ222()()22()22x t xu F x e dt e du μσμσπσπ-----∞-∞==⎰⎰111()()()x P X x F x μσ-≤==Φ111()1()1()x P X x F x μσ->=-=-Φ例2.设X ~N (μ,σ2),求P (|X −μ|<k σ)的值,k =1, 2, 3.解:当k =1时当k =2时当k =3时(||)()P X k P k X k μσμσμσ-<=-<<+()()F k F k μσμσ=+--()()k k μσμμσμσσ+---=Φ-Φ()()k k =Φ-Φ-()[1()]2()1k k k =Φ--Φ=Φ-(||)2(1)10.6826P X μσ-<=Φ-=(||2)2(2)10.9544P X μσ-<=Φ-=(||3)2(3)10.9974P X μσ-<=Φ-=质量控制中的3σ原则设在正常生产的情况下,某零件的尺寸X服从正态分布N(μ,σ2),为了在生产过程中随时检查有无系统性误差出现,人们画了一个质量控制图.每隔一定时间,对产品尺寸进行检查,测量的产品的尺寸应落在上、下控制线之内.如果超出控制线,则很有可能是生产出现了异常情况,应该暂停生产进行检查.当然也可能虚报,但虚报的可能性比较小.214y x=π因此,需要求某些随机变量的函数的分布.在某些实际问题中,我们所关心的随机变量不能直接测量得到,而它却是某个能够直接测量的随机变量的函数.例如,考察一批圆轴的截面面积Y ,我们能够直接测量的是直径X ,且当直径X 取x 值时,截面面积Y 的取值为一般地,设X、Y是两个随机变量,y=g(x)是一个已知函数,如果当X取值x时,Y取值为g(x),则称Y是随机变量X的函数,记为Y=g(X).问题是:如何由已知的随机变量X的概率分布去求它的函数Y=g(X)的概率分布.解:求Y =(X –1)2的分布律.Y 所有可能的取值为0,1,4,而且(0)(1)0.1P Y P X ====(1)(0)(2)0.7P Y P X P X ===+==(4)(1)0.2P Y P X ===-=例1.设随机变量X 的分布律为X −10 1 2P0.20.3 0.1 0.4一、离散型随机变量X 的函数Y =g (X )的分布所以,Y 的分布律为Y0 1 4P0.10.7 0.2X−1 0 1 2 Y= (X–1)24101 P0.20.3 0.1 0.4所以,Y 的分布律为Y0 1 4P0.10.7 0.2一般地,若X 的分布律为则Y =g (X )的分布律为如果g (x k )中有一些值是相等的,则它们是Y 可能取的同一个值.此时,在Y 的分布律中,只需列出一个,然后把对应于这些相同值的概率相加,作为Y 取这个可能值的概率.X x 1 x 2 … x k …Pp 1 p 2 … p k…Y g (x 1) g (x 2)… g (x k ) …Pp 1 p 2 … p k…二、连续型随机变量X 的函数Y =g (X )的分布例2.设随机变量X 的概率密度为令求Y 的分布.解:2,01()0,x x f x <<⎧=⎨⎩其他1,1/20,1/2X Y X ≤⎧=⎨>⎩(1)P Y =(1/2)P X =≤1/2124xdx ==⎰所以Y 的分布为13(0)1(1)144P Y P Y ==-==-=Y0 1P 3/4 1/4例3.设连续型随机变量X 的概率密度函数为求Y =2X +8的概率密度.解:设X 和Y 的分布函数分别为F X (x )和F Y (y ).F Y (y )=P (Y≤y )=P (2X +8≤y )于是Y 的密度函数/8,04()0,X x x f x <<⎧=⎨⎩其它88()()22X y y P X F --=≤=()81()()22Y Y X dF y y f y f dy -==⋅故当8<y <16时,当y ≤8或y ≥16时,81()()22Y X y f y f -=⋅/8,04()0,X x x f x <<⎧=⎨⎩其它88()216X y y f --=8()02X y f -=8,816()320,Y y y f y -⎧<<⎪=⎨⎪⎩其它方法:1.先求Y=g(X)分布函数F(y);Y2.求分布函数F Y (y)的导数,即为密度函数f Y(y).关键步骤:F(y)=P(Y≤y)=P(g(X)≤y)=P(X∈D)Y。

(完整版)《概率论与数理统计》讲义

(完整版)《概率论与数理统计》讲义

第一章 随机事件和概率 第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。

)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。

例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。

(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。

例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种B.140种 C.160种D.180种(4)一些常见排列①特殊排列②相邻③彼此隔开④顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。

例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?①重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?②对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?③ 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) 例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

概率论与数理统计各章重点知识整理

概率论与数理统计各章重点知识整理

概率论与数理统计各章重点知识整理 第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,当P(A)>0, P(B i )>0时,.六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1)(3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2 )参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度.2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-d x d y y x f . (3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=∙i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律.同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛),}{},{jji j j i p p y Y P y Y x X P ∙=====,}{},{∙=====i j i i j i p p x X P y Y x X P函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P 的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α.(3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求. 2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w+---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w +-+±-α其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。

北京理工大学《概率论与数理统计2》课件-第七章 总复习

北京理工大学《概率论与数理统计2》课件-第七章 总复习

S
S2
1 n1
n i 1
(Xi
X
)2
它反映了总体 标准差的信息
37
它反映了总体k
阶矩的信息
3(1) 样本k阶原点矩
an,k
1 n
n
X
k i
,
Байду номын сангаас
k
1,
2,
i1
(2)样本k阶中心矩
它反映了总体k 阶
中心矩的信息
mn,k
1 n
n i1
(Xi
X )k ,k
2, 3,
特别
an,1 X
mn,2
1 n
有时也根据总体分布的类型来称呼总体 的名称,如正态总体、二项分布总体、0-1分 布总体等等.
11
1.2.2. 样本空间和样本的两重性 1 样本空间
为推断总体分布及各种特征,按一定规 则从总体中抽取若干个体进行观察试验, 以获得有关总体的信息,这一抽取过程称 为 “抽样”
所抽取的部分个体称为样本(或子样). 样本中所包含的个体数目称为样本容量.
设样本X1, X 2 , , X ni.i.d., X1 ~ N (, 2 ), 其中和 2未知.
设样本X1, X 2 , , X ni.i.d., X1 ~ Exp(), 其中未知.
这些未知的量只有通过样本去估计. 统计学上把出现在样本分布中的未知的 常数称为参数.
25
在一些问题中,参数虽然未知,但根据 参数的性质可以给出参数取值范围.
33
注1:统计量只与样本有关,不能依赖 任何未知参数
注2:统计量既然是依赖于样本的,而
后者又是随机变量,即统计量是随机变量
的函数,故统计量是随机变量,具有概率

北理工《概率论与数理统计》题库复习资料

北理工《概率论与数理统计》题库复习资料

北理工《概率论与数理统计》FAQ (一)一、【古典概型】把4个不同的球任意投入4个不同的盒子内(每盒装球数不限),计算: (1)无空盒的概率; (2)恰有一个空盒的概率.解:4个球任意投入4个不同的盒子内有44种等可能的结果. (1)其中无空盒的结果有A 44种,所求概率P =4444A =323. 答:无空盒的概率是323. (2)先求恰有一空盒的结果数:选定一个空盒有C 14种,选两个球放入一盒有C 24A 13种,其余两球放入两盒有A 22种.故恰有一个空盒的结果数为C 14C 24A 13A 22,所求概率P (A )=4221324144A A C C =169. 答:恰有一个空盒的概率是169. 二、【条件概型】盒中有3个红球,2个白球,每次从袋中任取一只,观察其颜色后放回,并再放入一只与所取之球颜色相同的球,若从合中连续取球4次,试求第1、2次取得白球、第3、4次取得红球的概率。

解 设Ai 为第 i 次取球时取到白球,则 )|()|()|()()(32142131214321A A A A P A A A P A A P A P A A A A P =52)(1=A P 73)|(213=A A A P 63)|(12=A A P 84)|(3214=A A A A P求得:3 / 70三、【条件概型+全概型】市场上有甲、乙、丙三家工厂生产的同一品牌产品,已知三家工厂的市场占有率分别为1/4、1/4、1/2,且三家工厂的次品率分别为 2%、1%、3%,试求市场上该品牌产品的次品率。

解 设B 买到一件次品,A1为买到甲厂一件产品 A2为买到乙厂一件产品 A3为买到丙厂一件产品 可得:)()|()()|()()|(332211A P A B P A P A B P A P A B P ++= = ≈⨯+⨯+⨯2103.04101.04102.00.00225 四、【贝叶斯公式】商店论箱出售玻璃杯,每箱20只,其中每箱含0,1,2只次品的概率分别为0.8, 0.1,0.1,某顾客选中一箱,从中任选4只检查,结果都是好的,便买下了这一箱.问这一箱含有一个次品的概率是多少?解 设A :从一箱中任取4只检查,结果都是好的. B 0, B 1, B 2分别表示事件每箱含0,1,2只次品已知:P (B 0)=0.8, P (B 1)=0.1, P (B 2)=0.11)|(0=B A P 54)|(4204191==C C B A P 1912)|(4204182==C C B A P由Bayes 公式:∑==2111)|()()|()()|(i iiB A P B P B A P B P A B P 0848.019121.0541.018.0541.0≈⨯+⨯+⨯⨯=五、 【伯努利概型】在体育比赛中,若甲选手对乙选手的胜率是0.6,那么甲在五局三胜与三局两胜这两种赛制中,选择哪个对自己更有利 解:在五局三胜赛制中,甲获胜的概率为P 5(3)+P 5(4)+P 5(5) =0.6826在三局两胜赛制中,甲获胜的概率为 P 3(2)+P 3(3) =0.648 甲应选择五局三胜制。

华北理工大学2016年概率论与数理统计1-5章总复习PPT

华北理工大学2016年概率论与数理统计1-5章总复习PPT
密度,则
x
f ( x, y ) f X Y ( x y) fY ( y )
f ( x, y ) FY X ( y x ) , fY X ( y x ) f X ( y)
3-4 、 边缘分布
1、(X,Y) 关于 X 和 Y 的边缘分布函数
FX ( x ) F ( x , )
X 和 Y 的边缘分布律
i 1
n
此公式称为全概率公式 .
(6) 贝叶斯公式 : 设 B1,B2,…Bn为样本空间 E的一个划分,且 P(Bi) > 0 , (i=1 , 2 , … , n) ,又设
P( A ) 0
则对于每一个
k (1 k n)
P ( Bk A )
P ( A Bk )P ( Bk )
P( A B
;
3-2、二维离散型随机变量(X,Y)的联合分布律 1、二维离散型随机变量(X,Y) 概率函数P{X=xi,Y=yj}=pij的性质:
( 1 ) pi j 0 ( i , j 1 , 2 , )
( 2 ) pi j 1
i 1 j 1
x
Y y1 y2 y3 x1 p11 p21 p31 pn1 … x2 p12 p22 p32 pn2 … x3 p13 p23 p33 pn3 … … xn … p1n … … … p2n p3n pmn … … … …
X ~ N ( ,
2
)
当 0, 1
时,称X服从标准正态分布,
记为 X~N(0,1), 分布函数
1 ( x ) 2

e
x
t2 2
dx
性质1 :X~N(0,1),P{X﹥x}=1-Φ(x)

概率论与数理统计

概率论与数理统计
7
历史统计表。
• • • • • • 实验者 德摩尔根 蒲丰 皮尔逊 皮尔逊 维尼 • 表1.2.1 试验次数 出现的次数 2048 1061 4049 2048 12000 6019 24000 12012 30000 14994 频率= 0.5181 0.5069 0.5016 0.5005 0.4998
1 8 2 5
1 3 1 3 C82 ⋅ C5 + C8 ⋅ C52+ C5 = C13 − C 83
19
例题
• 例1.4.6 有10人的会议,开会前两两互相握 手并互相赠送照片一张,问整个会议上的 人共握了几次手?共送了几张照片? • 分堆问题
n! n1 ! n 2 !L n k !
20
1.4.4 古典概率计算
概率的统计定义(频率) §1.2 概率的统计定义(频率)
• 几个重要概念 • 随机试验的每一基本结果称为基本事件 基本事件,也称样 基本事件 样 本点;所有基本结果构成的集合称为样本空间 样本空间; 本点 样本空间 在一定的条件下,可能发生也可能不发生的事件 叫做随机事件 随机事件,简称事件 事件;在一定条件下必然发 随机事件 事件 生的事件叫做必然事件 必然事件;在一定条件下必然不发 必然事件 生的事件叫做不可能事件 不可能事件。以后我们分别以字母 不可能事件 和表示必然事件和不可能事件;以字母表示随机 事件。 • 掷币试验:事件、频数,历史统计表。
• 掷两颗均匀的骰子,点数之和为2, 3,….,12共十一个结果,试问点数之和 是7的概率是1/11吗? • 验证是否满足古典实验的条件,若满足 可以直接应用定义公式解答。 • 否则,构建新的符合条件的样本空间。 • 除此之外,要数清分子和分母,有时要 借助排列组合的知识。

北理工《概率论与数理统计》开篇导学89

北理工《概率论与数理统计》开篇导学89

北理工《概率论与数理统计》开篇导学
同学们,你们好!新学期即将开始,你们一定很想了解《概率论与数理统计》是怎样一门课,它的教学目标和基本任务是什么,能学到那些概率统计的知识,如何学好这些知识,有那些可利用的网络辅导资源。

下面就这些问题给大家做一概述。

一、教学目标、基本任务和要求
本课程是一门研究随机现象统计规律性的基础课,为重要的数学分枝之一。

其应用已普及经济、科技、教育、管理和军事等方面。

现已成为高等工科院校教学计划中一门重要的公共基础课。

通过本课程的学习,使学生掌握处理随机现象的基本理论和方法,并且掌握一定的分析问题和解决实际问题的能力。

通过这门课程的学习学员可以了解以下内容:。

概率论与数理统计第1讲

概率论与数理统计第1讲

随机现象的特点
对随机现象进行观察 ,观测或测量,每次 观测或测量, 出现的结果是多个可能结果中的一个, 出现的结果是多个可能结果中的一个, 不可预知的" "每次结果都是 不可预知的"; 但"所有 可能的结果是已知的" 可能的结果是已知的". 在一定条件下对随机现象进行大量重复观 测后就会发现: 测后就会发现:随机现象的发生具有统计 规律性. 规律性.
n个事件 1,A2,…,An的积 个事件A ,…, 个事件
C = IA i
i =1 n
C 发生就是 1,A2,…, An 发生就是A 都发生. 都发生.
无穷多个事件A 无穷多个事件 1,A2,…的积
C = IA i
i =1 ∞
C 发生就是 1,A2,… 发生就是A 都发生. 都发生.
集合A与集合 的差 集合 与集合B的差: 与集合 的差: 若ω ∈C当且仅当ω ∈A 当且仅当 则称集合C为 且ω B,则称集合 则称集合 集合A与B的差,记成 的差, 与 的差 A-B. - .
概率论与数理统计 第一 讲
概述
随机现象及其统计规律性 什么是随机现象? ☆ 什么是随机现象? ☆ 随机现象的特点 ☆ 概率论与数理统计的研究内容 ☆ 概率论与数理统计的广泛应用 随机事件的基本概念 ○ 随机试验与事件 ○ 事件的关系与运算
什么是随机现象? 什么是随机现象?
人们所观察到的现象大体上分成两类: 人们所观察到的现象大体上分成两类:
想一想
"天有不测风云"和"天气可以预报" 天有不测风云" 天气可以预报" 有无矛盾? 有无矛盾? 天有不测风云指的是:对随机现象进行一 ☆ 天有不测风云指的是:对随机现象进行一 观测,其观测结果具有偶然性; 次观测,其观测结果具有偶然性; ☆ 天气可以预报指的是:观测者通过大量的 天气可以预报指的是: 气象资料对天气进行预测, 气象资料对天气进行预测,得到天气的变 化规律. 化规律.

概率论与数理统计基础知识共45页文档

概率论与数理统计基础知识共45页文档


29、勇猛、大胆和坚定的决心能够抵得上武倚靠在明眼的跛子肩上。——叔本华
谢谢!
45

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子
概率论与数理统计基础知识
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北理工《概率论与数理统计》拓展资源(一)
概率论probability theory
研究随机现象数量规律的数学分支。

随机现象是相对于决定性现象而言的。

在一定条件下必然发生某一结果的现象称为决定性现象。

例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。

随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。

每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。

例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。

随机现象的实现和对它的观察称为随机试验。

随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。

事件的概率则是衡量该事件发生的可能性的量度。

虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。

例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2。

又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性。

大数定律及中心极限定理就是描述和论证这些规律的。

在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程。

例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程。

随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题。

概率论的起源与赌博问题有关。

16世纪,意大利的学者吉罗拉莫•卡尔达诺(Girolamo Cardano,1501——1576)开始研究掷骰子等赌博中的一些简单问题。

17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则是玩家连续掷 4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家(相当于现在的赌场)赢。

按照这一游戏规则,从长期来看,庄家扮演赢家的角色,而玩家大部分时间是输家,因为庄家总是要靠此为生的,因此当时人们也就接受了这种现象。

后来为了使游戏更刺激,游戏规则发生了些许变化,玩家这回用 2 个骰子连续掷 24 次,不同时出现2个6点,玩家赢,否则庄家赢。

当时人们普遍认为,2 次出现 6 点的概率是一次出现 6 点的概率的 1 / 6 ,因此 6 倍于前一种规则的次数,也既是 24 次赢或输的概率与以前是相等的。

然而事实却刚好相反,从长期来看,这回庄家处于输家的状态,于是他们去请教当时的数学家帕斯卡,求助其对这种现象作出解释,,这个问题的解决直接推动了概率论的产生。

随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。

使概率论成为数学的一个分支的奠基人是瑞士数学家j.伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。

随后 a.de 棣莫弗和p.s.拉普拉斯又导出了第二个基本极限定理(中心极限定理)的原始形式。

拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。

19世纪末,俄国数学家p.l.切比雪夫、a.a.马尔可夫、a.m.李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。

20
世纪初受物理学的刺激,人们开始研究随机过程。

这方面a•n•柯尔莫哥洛夫、n.维纳、a•a•马尔可夫、a•r•辛钦、p•莱维及w•费勒等人作了杰出的贡献。

如何定义概率,如何把概率论建立在严格的逻辑基础上,是概率理论发展的困难所在,对这一问题的探索一直持续了3个世纪。

20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。

在这种背景下,苏联数学家柯尔莫哥洛夫1933年在他的《概率论基础》一书中第一次给出了概率的测度论的定义和一套严密的公理体系。

他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支,对概率论的迅速发展起了积极的作用。

概率与统计的一些概念和简单的方法,早期主要用于赌博和人口统计模型。

随着人类的社会实践,人们需要了解各种不确定现象中隐含的必然规律性,并用数学方法研究各种结果出现的可能性大小,从而产生了概率论,并使之逐步发展成一门严谨的学科。

现在,概率与统计的方法日益渗透到各个领域,并广泛应用于自然科学、经济学、医学、金融保险甚至人文科学中。

相关文档
最新文档