2019年数学一轮复习 第8章 立体几何章末总结分层演练 文
2019高考数学文一轮分层演练:第8章立体几何 第3讲 Word版含解析
[学生用书P250(单独成册)]一、选择题1.四条线段顺次首尾相连,它们最多可确定的平面个数有()A.4个B.3个C.2个D.1个解析:选A.首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.2.已知A,B,C,D是空间四点,命题甲:A,B,C,D四点不共面,命题乙:直线AC和BD不相交,则甲是乙成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.若A,B,C,D四点不共面,则直线AC和BD不共面,所以AC和BD 不相交;若直线AC和BD不相交,若直线AC和BD平行时,A,B,C,D四点共面,所以甲是乙成立的充分不必要条件.3.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.若直线a,b相交,设交点为P,则P∈a,P∈b.又a⊂α,b⊂β,所以P∈α,P∈β,故α,β相交.反之,若α,β相交,则a,b可能相交,也可能异面或平行.故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.4.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直解析:选A.由BC═∥AD,AD═∥A1D1知,BC═∥A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1BCD1,EF∩D1C=F,则A 1B 与EF 相交.5.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,则异面直线AP 与BD 所成的角为( )A .π6B .π4C .π3D .π2解析:选C .如图,将原图补成正方体ABCD -QGHP ,连接AG ,GP ,则GP ∥BD ,所以∠APG 为异面直线AP 与BD 所成的角,在△AGP 中,AG =GP =AP , 所以∠APG =π3.6.已知l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是( ) A .l 1⊥l 2,l 2⊥l 3⇒l 1∥l 3 B .l 1⊥l 2,l 2∥l 3⇒l 1⊥l 3 C .l 1∥l 2∥l 3⇒l 1,l 2,l 3共面 D .l 1,l 2,l 3共点⇒l 1,l 2,l 3共面解析:选B .在空间中,垂直于同一直线的两条直线不一定平行,故A 错;两条平行直线中的一条垂直于第三条直线,则另一条也垂直于第三条直线,B 正确;相互平行的三条直线不一定共面,如三棱柱的三条侧棱,故C 错;共点的三条直线不一定共面,如三棱锥的三条侧棱,故D 错.二、填空题7.设a ,b ,c 是空间中的三条直线,下面给出四个命题: ①若a ∥b ,b ∥c ,则a ∥c ;②若a⊥b,b⊥c则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中正确的命题是________(写出所有正确命题的序号).解析:由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④错.答案:①8.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.解析:取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成角等于异面直线AC1与BC所成角,因为C1是圆柱上底面弧A1B1的中点,所以C1D⊥圆柱下底面,所以C1D⊥AD,因为圆柱的轴截面ABB1A1是正方形,所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC 1与BC 所成角的正切值为2. 答案: 29.如图,平行六面体ABCD -A 1B 1C 1D 1中既与AB 共面又与CC 1共面的棱有________条.解析:依题意,与AB 和CC 1都相交的棱有BC ;与AB 相交且与CC 1平行有棱AA 1,BB 1;与AB 平行且与CC 1相交的棱有CD ,C 1D 1.故符合条件的有5条.答案:510.如图所示,在空间四边形ABCD 中,点E 、H 分别是边AB 、AD 的中点,点F 、G 分别是边BC 、CD 上的点,且CF CB =CG CD =23,则下列说法正确的是________.①EF 与GH 平行; ②EF 与GH 异面;③EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上; ④EF 与GH 的交点M 一定在直线AC 上.解析:连接EH ,FG (图略),依题意,可得EH ∥BD ,FG ∥BD ,故EH ∥FG ,所以E 、F 、G 、H 共面.因为EH =12BD ,FG =23BD ,故EH ≠FG ,所以EFGH 是梯形,EF 与GH必相交,设交点为M .因为点M 在EF 上,故点M 在平面ACB 上.同理,点M 在平面ACD 上,所以点M 是平面ACB 与平面ACD 的交点,又AC 是这两个平面的交线,所以点M 一定在直线AC 上.答案:④ 三、解答题11.如图,在正方体ABCD -A 1B 1C 1D 1中,O 为正方形ABCD 的中心,H 为直线B 1D 与平面ACD 1的交点.求证:D 1、H 、O 三点共线.证明:如图,连接BD,B1D1,则BD∩AC=O,因为BB1═∥DD1,所以四边形BB1D1D为平行四边形,又H∈B1D,B1D⊂平面BB1D1D,则H∈平面BB1D1D,因为平面ACD1∩平面BB1D1D=OD1,所以H∈OD1.即D1、H、O三点共线.12.如图所示,A是△BCD所在平面外的一点,E,F分别是BC,AD的中点.(1)求证:直线EF与BD是异面直线;(2)若AC⊥BD,AC=BD,求EF与BD所成的角.解:(1)证明:假设EF与BD不是异面直线,则EF与BD共面,从而DF与BE共面,即AD与BC共面,所以A,B,C,D在同一平面内,这与A是△BCD所在平面外的一点相矛盾.故直线EF与BD是异面直线.(2)取CD的中点G,连接EG,FG,则AC∥FG,EG∥BD,所以相交直线EF与EG所成的角,即为异面直线EF 与BD 所成的角.又因为AC ⊥BD ,则FG ⊥EG .在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.1.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与四边形ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC ═∥12AD ,BE ═∥12F A ,G ,H 分别为F A ,FD 的中点.(1)求证:四边形BCHG 是平行四边形; (2)C ,D ,F ,E 四点是否共面?为什么? 解:(1)证明:由题设知,FG =GA ,FH =HD , 所以GH ═∥12AD .又BC ═∥12AD ,故GH ═∥BC . 所以四边形BCHG 是平行四边形. (2)C ,D ,F ,E 四点共面.理由如下: 由BE ═∥12F A ,G 是F A 的中点知,BE ═∥GF , 所以EF ═∥BG . 由(1)知BG ∥CH ,所以EF ∥CH ,故EC 、FH 共面.又点D 在直线FH 上,所以C ,D ,F ,E 四点共面.2.如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB=2,AC =23,P A =2.求:(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解:(1)S △ABC =12×2×23=23,三棱锥P -ABC 的体积为V =13S △ABC ·P A =13×23×2=433.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2, cos ∠ADE =22+22-22×2×2=34.故异面直线BC 与AD 所成角的余弦值为34.。
2019版高考数学一轮复习训练: 基础与考点过关 第八章 立体几何初步
第八章 立体几何初步第1课时 空间点、直线、平面之间的 位置关系1. (必修2P 24练习2改编)用集合符号表示“点P 在直线l 外,直线l 在平面α内”为________.答案:P ∉l ,l ⊂α解析:考查点、线、面之间的符号表示. 2. (必修2P 28练习2改编)已知AB∥PQ,BC ∥QR ,若∠ABC=45°,则∠PQR=________. 答案:45°或135°解析:由等角定理可知∠PQR 与∠ABC 相等或互补,故答案为45°或135°. 3. (原创)若直线l 上有两个点在平面α外,则________.(填序号) ① 直线l 上至少有一个点在平面α内; ② 直线l 上有无穷多个点在平面α内; ③ 直线l 上所有点都在平面α外; ④ 直线l 上至多有一个点在平面α内. 答案:④解析:由已知得直线l ⊄α,故直线l 上至多有一个点在平面α内.4. (必修2P 31习题15改编)如图所示,设E ,F ,G ,H 依次是空间四边形ABCD 的边AB ,BC ,CD ,DA 上除端点外的点,AE AB =AH AD =λ,CF CB =CGCD=μ,则下列结论中不正确的是________.(填序号)① 当λ=μ时,四边形EFGH 是平行四边形; ② 当λ≠μ时,四边形EFGH 是梯形;③ 当λ≠μ时,四边形EFGH 一定不是平行四边形; ④ 当λ=μ时,四边形EFGH 是梯形. 答案:④解析:由AE AB =AH AD =λ,得EH∥BD,且EH BD =λ,同理得FG ∥BD 且 FGBD=μ,当λ=μ时,EH ∥FG 且EH =FG.当λ≠μ时,EH ∥FG ,但EH≠FG,只有④错误.5. (必修2P 30练习2改编)在正方体A 1B 1C 1D 1ABCD 中,与AB 异面的棱有______________________.答案:A 1D 1,DD 1,CC 1,C 1B 11. 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.公理3:经过不在同一条直线上的三点,有且只有一个平面. 推论1:经过一条直线和这条直线外的一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面. 2. 空间两条直线的位置关系(1) 公理4:平行于同一条直线的两条直线互相平行. (2) 定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.4. 异面直线的判定(1) 判定定理:过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线.(2) 符号表示:若l ⊂α,A ∉α,B ∈α,B ∉l ,则直线AB 与l 是异面直线. 5. 异面直线所成的角(1) 定义:设a ,b 是异面直线,经过空间任意一点O ,作直线a′∥a,b ′∥b ,我们把直线a′与b′所成的锐角(或直角)叫做异面直线a ,b 所成的角.(2) 范围:⎝⎛⎦⎥⎤0,π2.(3) 若异面直线a ,b 所成的角是直角,就称异面直线a ,b 互相垂直.记作a⊥b. [备课札记], 1平面的基本性质), 1) 如图,正方体ABCDA1B1C1D1中,点E,F分别为CC1,AA1的中点,画出平面BED1F和平面ABCD的交线.解:如图,在平面ADD1A1内延长D1F与DA交于一点P,则P∈平面BED1F.∵ DA⊂平面ABCD,∴ P∈平面ABCD,∴点P是平面ABCD与平面BED1F的一个公共点.又点B是两平面的一个公共点,∴ PB为两平面的交线.备选变式(教师专享)如图,在直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.解:显然点S是平面SBD和平面SAC的一个公共点,即点S在交线上,由于AB>CD,则分别延长AC和BD交于点E,如图所示.∵ E∈AC,AC⊂平面SAC,∴ E∈平面SAC.同理,可证E∈平面SBD,∴点E在平面SBD和平面SAC的交线上,连结SE,则直线SE是平面SBD和平面SAC的交线., 2共点、共线、共面问题), 2) 如图,在四边形ABCD 和四边形ABEF 中,BC ∥AD ,BC =12AD ,BE∥FA ,BE =12FA ,点G ,H 分别为FA ,FD 的中点.(1) 求证:四边形BCHG 是平行四边形. (2) C ,D ,F ,E 四点是否共面?为什么?(1) 证明:因为点G ,H 分别为FA ,FD 的中点,所以GH∥AD,GH =12AD.又BC∥AD,BC=12AD , 所以GH∥BC,且GH =BC ,所以四边形BCHG 为平行四边形.(2) 解:C ,D ,F ,E 四点共面.理由如下:由BE∥FA,BE =12FA ,点G 为FA 的中点知,BE ∥FG ,BE =FG ,所以四边形BEFG 为平行四边形,所以EF∥BG. 由(1)知BG∥CH,BG =CH ,所以EF∥CH,所以EF 与CH 共面. 又D∈FH,所以C ,D ,F ,E 四点共面. 变式训练如图,在直四棱柱ABCDA 1B 1C 1D 1中,点E ,F 分别是AB ,BC 的中点,A 1C 1与B 1D 1交于点O.求证:A 1,C 1,F ,E 四点共面.证明:如图,连结AC ,因为点E ,F 分别是AB ,BC 的中点,所以EF 是△ABC 的中位线,所以EF ∥AC.由直棱柱知AA 1綊CC 1,所以四边形AA 1C 1C 为平行四边形,所以AC∥A 1C 1. 所以EF∥A 1C 1,故A 1,C 1,F ,E 四点共面., 3 空间直线位置关系问题), 3) 如图,在正方体ABCDA 1B 1C 1D 1中,点M ,N 分别是A 1B 1,B 1C 1的中点.求证:(1) AM 和CN 共面;(2) D 1B 和CC 1是异面直线.证明:(1) 如图,连结MN,A1C1,AC.∵点M,N分别是A1B1,B1C1的中点,∴ MN∥A1C1.∵ A1A綊C1C,∴四边形A1ACC1为平行四边形,∴ A1C1∥AC,∴ MN∥AC,∴ A,M,N,C四点共面,即AM和CN共面.(2) ∵ ABCDA1B1C1D1是正方体,∴ B,C,C1,D1不共面.假设D1B与CC1不是异面直线,则存在平面α,使D1B⊂平面α,CC1⊂平面α,∴ D1,B,C,C1∈α,这与B,C,C1,D1不共面矛盾.∴假设不成立,即D1B与CC1是异面直线.变式训练已知空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD 的中点.(1) 求证:BC与AD是异面直线;(2) 求证:EG与FH相交.证明:(1) 假设BC与AD不是异面直线,则BC与AD共面.不妨设它们所共平面为α,则B,C,A,D∈α,所以四边形ABCD为平面图形,这与四边形ABCD为空间四边形相矛盾.所以BC与AD是异面直线.(2) 如图,连结AC,BD,则EF∥AC,HG∥AC,因此EF∥HG;同理EH∥FG,则EFGH为平行四边形.又EG,FH是平行四边形EFGH的对角线,所以EG与FH相交.1. 在下列命题中,不是公理的是________.(填序号)①如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;②过不在同一条直线上的三点,有且只有一个平面;③如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内;④平行于同一个平面的两个平面相互平行.答案:④解析:④不是公理,是个常用的结论,需经过推理论证;①②③是平面的基本性质公理.2. 一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:① AB⊥EF;② AB与CM所成的角为60°;③ EF与MN是异面直线;④ MN∥CD.以上结论中正确的是________.(填序号)答案:①③解析:把正方体平面展开图还原到原来的正方体,如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD,只有①③正确.3. 在正方体ABCDA1B1C1D1中,点E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有________条.答案:无数解析:在A1D1,C1D1上任取一点P,M,过点P,M与直线EF作一个平面α,因CD与平面α不平行,所以它们相交,设α∩CD =Q,连结PQ,则PQ与EF必然相交,即PQ为所求直线.由点P的任意性知,有无数条直线与直线A1D1,EF,CD都相交.4. 如图,在正方体ABCDA1B1C1D1中,点E,F,G分别是棱CC1,BB1及DD1的中点.求证:∠BGC=∠FD1E.证明:∵ 点E,F,G分别是正方体的棱CC1,BB1,DD1的中点,∴ CE平行且等于GD1,BF平行且等于GD1,则四边形CED1G与四边形BFD1G均为平行四边形.则GC∥D1E,GB∥D1F.∵∠BGC与∠FD1E对应两边的方向分别相同,∴∠BGC=∠FD1E.5. 如图,在正方体ABCDA1B1C1D1中,对角线A1C与平面BDC1交于点O,AC,BD交于点M,点E为AB的中点,点F为AA1的中点.求证:(1) C1,O,M三点共线;(2) E,C,D1,F四点共面;(3) CE,D1F,DA三线共点.证明:(1) ∵ C 1,O ,M ∈平面BDC 1,又C 1,O ,M ∈平面A 1ACC 1,由公理3知,点C 1,O ,M 在平面BDC 1与平面A 1ACC 1的交线上,∴ C 1,O ,M 三点共线.(2) ∵ 点E ,F 分别是AB ,A 1A 的中点,∴ EF ∥A 1B. ∵ A 1B ∥CD 1,∴ EF ∥CD 1.∴ E ,C ,D 1,F 四点共面.(3) 由(2)可知,E ,C ,D 1,F 四点共面.∵ EF∥A 1B ,EF =12A 1B ,∴ EF =12D 1C ,∴ D 1F ,CE 为相交直线,记交点为P.则P∈D 1F ⊂平面ADD 1A 1,P ∈CE ⊂平面ADCB ,∴ P ∈平面ADD 1A 1∩平面ADCB =AD ,∴ CE ,D 1F ,DA 三线共点.1. 如图,在正方体ABCDEFMN 中,①BM 与ED 平行;②CN 与BM 是异面直线;③CN 与BE 是异面直线;④DN 与BM 是异面直线.以上四个命题中,正确的命题是________.(填序号)答案: ②④解析:观察图形,根据异面直线的定义可知,BM 与ED 是异面直线,CN 与BM 是异面直线,CN 与BE 不是异面直线,DN 与BM 是异面直线,故①③错误,②④正确.即正确的命题是②④.2. 在空间四边形ABCD 中,AB =CD 且AB 与CD 所成的角为30°,点M ,N 分别是BC ,AD 的中点,求直线AB 和MN 所成的角.解:如图,取AC 的中点P.连结PM ,PN ,则PM∥AB,且PM =12AB ,PN ∥CD ,且PN =12CD ,所以∠MPN 为直线AB 与CD 所成的角(或所成角的补角). 则∠MPN=30°或∠MPN=150°. 若∠MPN=30°,因为PM∥AB,所以∠PMN 是AB 与MN 所成的角(或所成角的补角).又AB =CD ,所以PM =PN ,则△PMN 是等腰三角形,所以∠PMN=75°, 即直线AB 与MN 所成的角为75°.若∠MPN=150°,易知△PMN 是等腰三角形,所以∠PMN=15°, 即直线AB 与MN 所成的角为15°.故直线AB 和MN 所成的角为75°或15°.3. 已知在棱长为a 的正方体ABCDA 1B 1C 1D 1中,点M ,N 分别是棱CD ,AD 的中点.求证: (1) 四边形MNA 1C 1是梯形; (2) ∠DNM=∠D 1A 1C 1.证明:(1) 如图,连结AC ,在△ACD 中,∵ 点M ,N 分别是CD ,AD 的中点, ∴ MN 是三角形ACD 的中位线,∴ MN ∥AC ,MN =12AC.由正方体的性质得AC∥A 1C 1,AC =A 1C 1,∴ MN ∥A 1C 1且MN =12A 1C 1,即MN≠A 1C 1,∴ 四边形MNA 1C 1是梯形.(2) 由(1)知MN∥A 1C 1.又∵ ND∥A 1D 1, ∴ ∠DNM 与∠D 1A 1C 1相等或互补.而∠DNM 与∠D 1A 1C 1均是直角三角形中的锐角, ∴ ∠DNM =∠D 1A 1C 1.1. 证明点线共面的常用方法:一是依据题中所给部分条件先确定一个平面,然后证明其余的点或线都在平面内;二是将所有元素分成几个部分,然后分别确定几个平面,再证这些平面重合;三是采用反证法.2. 证明三线共点的方法:通常先证明两条直线的交点在第三条直线上,而第三条直线是分别经过这两条直线的两个平面的一条交线.3. 异面直线的证明方法:一是应用判定定理(过平面内一点与平面外一点的连线与平面内不经过该点的直线是异面直线);二是采用反证法.判定异面直线时通常采用排除法(既不相交也不平行)或判定定理.4. 对于异面直线所成的角,要注意角的范围是⎝⎛⎦⎥⎤0,π2以及两条直线垂直的定义,平移法是解决此类问题的关键.[备课札记]第2课时 直线与平面的位置关系(1) (对应学生用书(文)109~110页、(理)111~112页)了解直线与平面的位置关系,了解线面平行的有关概念;除了能熟练运用线面平行的判定定理和性质定理外,还能运用定义判断位置关系.① 要熟练掌握线面平行的定义、判定及性质.② 要注意线线关系、线面关系以及面面关系的转化.对于直线与平面所成的角,点到面的距离了解即可.1. (必修2P 35练习2改编)给出下列条件:① l∥α;② l 与α至少有一个公共点;③ l 与α至多有一个公共点.则能确定直线l 在平面α外的条件为________.(填序号)答案:①③解析:直线l 在平面α外:l∥α或直线l 与平面α仅有一个交点. 2. (必修2P 35练习7改编)在梯形ABCD 中,AB ∥CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位置关系是________.答案:平行或异面解析:因为AB∥CD,AB ⊂平面α,CD ⊄平面α,所以CD∥平面α,所以CD 与平面α内的直线可能平行,也可能异面.3. (必修2P 35练习4改编)在正六棱柱ABCDEFA 1B 1C 1D 1E 1F 1的表面中,与A 1F 1平行的平面是________.答案:平面ABCDEF 、平面CC 1D 1D解析:在正六棱柱中,易知A 1F 1∥AF ,AF ⊂平面ABCDEF ,且A 1F 1⊄平面ABCDEF ,所以A 1F 1∥平面ABCDEF.同理,A 1F 1∥C 1D 1,C 1D 1⊂平面CC 1D 1D ,且A 1F 1⊄平面CC 1D 1D ,所以A 1F 1∥平面CC 1D 1D.其他各面与A 1F 1均不满足直线与平面平行的条件.故答案为平面ABCDEF 与平面CC 1D 1D.4. (原创)P 为矩形ABCD 所在平面外一点,矩形对角线的交点为O ,M 为PB 的中点,给出下列四个命题:① OM ∥平面PCD ;② OM∥平面PBC ;③ OM∥平面PDA ;④ OM∥平面PBA. 其中正确命题的个数是________. 答案:2解析:由已知OM∥PD,得OM∥平面PCD 且OM∥平面PAD.故正确的只有①③.5. (必修2P 41习题5改编)在四面体ABCD 中,点M ,N 分别是△ACD,△BCD 的重心,则四面体的四个面中与MN 平行的是________.答案:平面ABC 、平面ABD 解析:如图,连结AM 并延长交CD 于E ,连结BN 并延长交CD 于F ,由重心性质可知,E ,F 重合为一点,且该点为CD 的中点E ,由EM MA =EN NB =12,得MN∥AB,因此,MN ∥平面ABC ,且MN∥平面ABD.1. 一条直线和一个平面的位置关系有且只有以下三种:, 1基本概念辨析), 1) 下列命题中真命题的个数为W.①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线b⊂α,则a∥α;④若直线a∥b,b⊂α,那么直线a平行于平面α内的无数条直线.答案:1解析:∵ 直线l虽与平面α内无数条直线平行,但l有可能在平面α内,∴ l不一定平行于α.∴ ①是假命题.∵ 直线a在平面α外,包括两种情况:a∥α和a与α相交,∴ a和α不一定平行.∴ ②是假命题.∵ 直线a∥b,b⊂α,则只能说明a和b无公共点,但a可能在平面α内,∴ a不一定平行于α.∴ ③是假命题.∵ a∥b,b⊂α,那么a⊂α或a∥α,∴ a可以与平面α内的无数条直线平行.∴ ④是真命题.综上可知,真命题的个数为1.备选变式(教师专享)下列命题中正确的是W.(填序号)①若直线a不在平面α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④若l与平面α平行,则l与α内任何一条直线都没有公共点;⑤平行于同一平面的两直线可以相交.答案:④⑤解析:如图①,a∩α=A时,a⊄α,∴①错误;直线l与α相交时,l上有无数个点不在α内,∴②错误;l∥α时,α内的直线与l平行或异面,∴③错误;l∥α,l与α无公共点,∴ l与α内任一直线都无公共点,④正确;如图②,长方体ABCDA1B1C1D1中,A1C1与B1D1都与平面ABCD平行,∴⑤正确., 2线面平行的判定), 2) 如图,在底面为平行四边形的四棱锥PABCD中,点E是PC的中点.求证:PA∥平面BDE.证明:如图,连结AC交BD于点O,连结OE.在平行四边形ABCD中,O是AC的中点,又E是PC的中点,∴ OE∥PA.∵ PA⊄平面BDE,OE⊂平面BDE,∴ PA∥平面BDE.变式训练如图,在三棱柱A1B1C1ABC中, E,F分别是A1B,AC1的中点.求证:EF∥平面ABC.证明:如图,连结A1C,因为三棱柱A1B1C1ABC中,四边形AA1C1C是平行四边形,所以点F在A1C上,且为A1C的中点.在△A1BC中,因为E,F分别是A1B,A1C的中点,所以EF∥BC.因为BC⊂平面ABC,EF⊄平面ABC,所以EF∥平面ABC.备选变式(教师专享)如图,在正方体ABCDA1B1C1D1中,点M,N,P分别为棱AB,BC,C1D1的中点.求证:AP∥平面C1MN.证明:在正方体ABCDA1B1C1D1中,因为点M ,P 分别为棱AB ,C 1D 1的中点,所以AM =PC 1. 又AM∥CD,PC 1∥CD ,故AM∥PC 1,所以四边形AMC 1P 为平行四边形.从而AP∥C 1M. 又AP ⊄ 平面C 1MN ,C 1M ⊂平面C 1MN , 所以AP∥平面C 1MN., 3 线面平行的性质), 3) 如图,在直三棱柱ABCA 1B 1C 1中,AC ⊥BC ,CC 1=4,M 是棱CC 1上的一点.若点N 是AB 的中点,且CN∥平面AB 1M ,求CM 的长.解:(解法1)如图①,取AB 1的中点P ,连结NP ,PM.①因为点N 是AB 的中点,所以NP∥BB 1.因为CM∥BB 1,所以NP∥CM,所以NP 与CM 共面.因为CN∥平面AB 1M ,平面CNPM∩平面AB 1M =MP ,所以CN∥MP.所以四边形CNPM 为平行四边形,所以CM =NP =12CC 1=2.(解法2)如图②,设NC 与CC 1确定的平面交AB 1于点P ,连结NP ,PM.②因为CN∥平面AB 1M ,CN ⊂平面CNPM ,平面AB 1M ∩平面CNPM =PM ,所以CN∥MP. 因为BB 1∥CM ,BB 1⊄平面CNPM ,CM ⊂平面CNPM ,所以BB 1∥平面CNPM. 又BB 1⊂平面ABB 1,平面ABB 1∩平面CNPM =NP ,所以BB 1∥NP ,所以CM∥NP,所以四边形CNPM 为平行四边形.因为点N 是AB 的中点,所以CM =NP =12BB 1=12CC 1=2.(解法3)如图③,取BB 1的中点Q ,连结NQ ,CQ.③因为点N 是AB 的中点,所以NQ∥AB 1. 因为NQ ⊄平面AB 1M ,AB 1⊂平面AB 1M , 所以NQ∥平面AB 1M.因为CN∥平面AB 1M ,NQ ∩NC =N ,NQ ,NC ⊂平面NQC , 所以平面NQC∥平面AB 1M.因为平面BCC 1B 1∩平面NQC =QC ,平面BCC 1B 1∩平面AB 1M =MB 1,所以CQ∥MB 1. 因为BB 1∥CC 1,所以四边形CQB 1M 是平行四边形,所以CM =B 1Q =12CC 1=2.(解法4)如图④,分别延长BC ,B 1M ,设交点为S ,连结AS.④因为CN∥平面AB 1M ,CN ⊂平面ABS , 平面ABS∩平面AB 1M =AS ,所以CN∥AS. 由于AN =NB ,所以BC =CS.又CM∥BB 1,同理可得SM =MB 1,所以CM =12BB 1=12CC 1=2.备选变式(教师专享) 如图,在斜三棱柱ABCA 1B 1C 1中,AC 1与A 1C 交于点O ,E 是棱AB 上一点,且OE∥平面BCC 1B 1.求证:点E 是AB 的中点.证明:连结BC 1,因为OE∥平面BCC 1B 1,OE ⊂平面ABC 1,平面BCC 1B 1∩平面ABC 1=BC 1,所以OE∥BC 1.在斜三棱柱ABCA 1B 1C 1中,侧面AA 1C 1C 是平行四边形,AC 1∩A 1C =O , 所以点O 是AC 1的中点,所以AE EB =AOOC 1=1,即点E 是AB 的中点.1. 如图,在直三棱柱ABCA 1B 1C 1中,已知AB =AC ,点M ,N ,P 分别为BC ,CC 1,BB 1的中点.求证:A 1N ∥平面AMP.证明:取C 1B 1的中点D ,连结A 1D ,DN ,DM ,B 1C.由于点D ,M 分别为C 1B 1,CB 的中点,所以DM∥CC 1且DM =CC 1,故DM∥AA 1且DM =AA 1,则四边形A 1AMD 为平行四边形,所以A 1D ∥AM.又A 1D ⊄平面APM ,AM ⊂平面APM ,所以A 1D ∥平面APM.由于D ,N 分别为C 1B 1,CC 1的中点,所以DN∥B 1C.又点P ,M 分别为BB 1,CB 的中点,所以MP∥B 1C.所以DN∥MP.又DN ⊄平面APM ,MP ⊂平面APM , 所以DN∥平面APM.由于A 1D ∩DN =D ,所以平面A 1DN∥平面APM. 由于A 1N ⊂平面A 1DN ,所以A 1N ∥平面APM.2. 如图,在四棱锥EABCD 中,四边形ABCD 为矩形,点M ,N 分别是AE ,CD 的中点.求证:直线MN∥平面EBC.证明:取BE 中点F ,连结CF ,MF.因为点M 是AE 的中点,所以MF 綊12AB.又点N 是矩形ABCD 边CD 的中点,所以NC 綊12AB ,所以MF 綊NC ,所以四边形MNCF 是平行四边形,所以MN∥CF.又MN ⊄平面EBC ,CF ⊂平面EBC ,所以MN∥平面EBC. 3. 如图,在正三棱柱ABCA′B′C′中,D 是AA′上的点,点E 是B′C′的中点,且A′E∥平面DBC′.试判断D 点在A A′上的位置,并给出证明.解:点D 为AA′的中点.证明如下:如图,取BC 的中点F ,连结AF ,EF ,设EF 与BC′交于点O ,连结DO ,BE ,C ′F ,在正三棱柱ABCA′B′C′中,点E 是B′C′的中点,所以 EF ∥BB ′∥AA ′,且EF =BB′=AA′, 所以四边形A′EFA 是平行四边形.因为A′E∥平面DBC′,A ′E ⊂平面A′EFA,且平面DBC′∩平面A′EFA=DO , 所以A′E∥DO.在正三棱柱ABC -A′B′C′中,点E 是B′C′的中点, 所以EC′∥BC 且EC′=BF ,所以四边形BFC′E 是平行四边形,所以点O 是EF 的中点. 因为在平行四边形A′EFA 中, A ′E ∥DO , 所以点D 为AA′的中点. 4. 如图,在直四棱柱ABCDA 1B 1C 1D 1中,底面ABCD 是菱形,点E 是A 1C 1的中点.求证:BE∥平面ACD 1.证明:如图,连结B 1D 1交A 1C 1于点E ,连结BD 交AC 于点O ,连结OD 1.∵ 在直四棱柱ABCDA 1B 1C 1D 1中,底面ABCD 是菱形, ∴ D 1E ∥BO 且D 1E =BO ,∴ 四边形BED 1O 是平行四边形, ∴ BE ∥OD 1.∵ OD 1⊂平面ACD 1,BE ⊄平面ACD 1, ∴ BE ∥平面ACD 1.5. 如图,在四棱锥PABCD 中,PC ⊥平面PAD ,AB ∥CD ,CD =2AB =2BC ,点M ,N 分别是棱PA ,CD 的中点.求证:PC∥平面BMN.证明:设AC∩BN=O ,连结MO ,AN.因为AB =12CD ,AB ∥CD ,点N 为CD 的中点,所以AB =CN ,AB ∥CN ,所以四边形ABCN 为平行四边形, 所以O 为AC 的中点.又点M 为PA 的中点,所以MO∥PC. 因为MO ⊂平面BMN ,PC ⊄ 平面BMN , 所以PC∥平面BMN.1. 如图,在三棱锥PABC中,点M,N分别为AB,PA的中点.求证:PB∥平面MNC.证明:因为点M,N分别为AB,PA的中点,所以MN∥PB.因为MN⊂平面MNC,PB⊄平面MNC,所以PB∥平面MNC.2. 如图,在直三棱柱ABCA1B1C1中,点D是AB的中点.求证:BC1∥平面A1CD.证明:连结AC1,设交A1C于点O,连结OD.∵四边形AA1C1C是矩形,∴ O是AC1的中点.∵在△ABC1中, O,D分别是AC1,AB的中点,∴OD∥BC1.∵ OD⊂平面A1CD,BC1⊄平面A1CD,∴ BC1∥平面A1CD.3. 如图,在长方体ABCDA1B1C1D1中,点P∈BB1(P不与B,B1重合).PA∩A1B=M,PC∩BC1=N.求证:MN∥平面ABCD.证明:连结AC,A1C1,在长方体ABCDA1B1C1D1中,AA1∥CC1,且AA1=CC1,∴四边形ACC1A1是平行四边形.∴ AC∥A1C1.∵ AC⊄平面A1BC1,A1C1⊂平面A1BC1,∴ AC∥平面A1BC1.∵ AC⊂平面PAC,平面A1BC1∩平面PAC=MN,∴ AC∥MN.∵ MN⊄平面ABCD,AC⊂平面ABCD,∴ MN∥平面ABCD.1. 判定或证明直线与平面平行的常用方法(1)利用直线与平面平行的定义(无公共点).(2)利用直线与平面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).(3)利用平面与平面平行的性质(α∥β,a⊂α⇒a∥β).注意不管用哪种方法,都应将相应的条件写全,缺一不可.2. 直线与平面平行的性质定理的作用是证线线平行,应用时常常需构造辅助平面,和在平面几何中添加辅助线一样,在构造辅助平面时要确认这个平面的存在性.3. 证明平行问题时要注意“转化思想”的应用,要抓住线线、线面、面面之间的平行关系,实现“空间问题”与“平面问题”之间的转化.[备课札记]第3课时直线与平面的位置关系(2)(对应学生用书(文)111~113页、(理)113~115页)1. (必修2P38练习2(3)改编)已知直线l,a,b,平面α.若l∥a,a⊥α,b⊥α,则l与b的位置关系是W.答案:平行解析:由线面垂直的性质可知,若a⊥α,b ⊥α,则a∥b.因为l ∥a ,所以l∥b. 2. 已知两条异面直线平行于一平面,一直线与两异面直线都垂直,那么这个平面与这条直线的位置关系是 W.(填序号)① 平行;② 垂直;③ 斜交;④ 不能确定. 答案:② 解析:设a ,b 为异面直线,a ∥平面α,b ∥平面α,直线l⊥a,l ⊥b.过a 作平面β∩α=a′,则a ∥a ′,∴ l ⊥a ′.同理过b 作平面γ∩α=b′,则l ⊥b ′.∵ a ,b 异面,∴ a ′与b′相交,∴ l ⊥α.3. 设l ,m 表示直线,m 是平面α内的任意一条直线,则“l⊥m”是“l⊥α”成立的 条件.(选填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)答案:充要解析:由线面垂直的定义知,直线垂直于平面内任意一条直线,则直线与平面垂直,说明是充分条件,反之,直线垂直于平面,则直线垂直于平面内任意一条直线,说明是必要条件,则“l⊥m”是“l⊥α”成立的充要条件.4. (必修2P 42习题9改编)如图,AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆O 上不同于A ,B 的任一点,则图中直角三角形的个数为 W.答案:4解析:因为AB 是圆O 的直径,所以AC⊥BC,△ACB 是直角三角形;由PA⊥平面ABC 可得,PA ⊥AB ,PA ⊥AC ,所以△PAB 与△PAC 是直角三角形;因为PA⊥平面ABC ,且BC ⊂平面ABC ,所以PA⊥BC.又BC⊥AC,PA ∩AC =A ,所以BC⊥平面PAC.而PC ⊂平面PAC ,所以BC⊥PC,△PCB 是直角三角形.故直角三角形的个数为4.5. (必修2P 38练习3改编)在正方体ABCDA 1B 1C 1D 1中,已知AB =1,则点C 到平面B 1BDD 1.解析:连结AC ,则AC⊥BD,又BB 1⊥AC ,故AC⊥平面B 1BDD 1,所以点C 到平面B 1BDD 1的距离为12AC =22.1. 直线与平面垂直的定义:如果一条直线a 与一个平面α内的任意一条直线都垂直,我们就说直线a 与平面α互相垂直,记作a ⊥α,直线a 叫做平面α的垂线,平面α叫做直线a 的垂面,垂线和平面的交点称为垂足W.2. 结论:过一点有且只有一条直线与已知平面垂直,过一点有且只有一个平面与已知直线垂直.3. 直线与平面垂直从平面外一点引平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.5. 直线和平面的距离一条直线和一个平面平行,这条直线上任意一点到这个平面的距离,叫做这条直线和这个平面的距离.6. 直线与平面所成的角(1)斜线一条直线与一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线与平面的交点叫做斜足,斜线上一点与斜足间的线段叫做这个点到平面的斜线段.(2)射影过平面α外一点P向平面α引斜线和垂线,那么过斜足Q和垂足P1的直线就是斜线在平面内的正投影(简称射影),线段P1Q就是斜线段PQ在平面α内的射影,如图.(3)直线和平面所成的角平面的一条斜线与它在这个平面内的射影所成的锐角,叫做这条直线与这个平面所成的角.特别地,如果直线和平面垂直,那么就说这条直线与平面所成的角是直角;如果直线与平面平行或在平面内,则它们所成的角是0°的角.[备课札记], 1直线与平面垂直的判定), 1) 如图,在直四棱柱ABCDA1B1C1D1中,点E,F分别是AB,BC的中点,A1C1与B1D1交于点O.若底面ABCD是菱形,且OD⊥A1E,求证:OD⊥平面A1C1FE.证明:连结BD,因为直棱柱中DD1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,所以DD1⊥A1C1.因为底面A1B1C1D1是菱形,所以A1C1⊥B1D1.又DD1∩B1D1=D1,所以A1C1⊥平面BB1D1D.因为OD⊂平面BB1D1D,所以OD⊥A1C1.又OD⊥A1E,A1C1∩A1E=A1,A1C1⊂平面A1C1FE,A1E⊂平面A1C1FE,所以OD⊥平面A1C1FE.变式训练如图,在三棱锥PABC中,平面PAB⊥平面ABC,PA⊥PB,M,N分别为AB,PA的中点.若AC=BC,求证:PA⊥平面MNC.证明:因为M,N分别为AB,PA的中点,所以MN∥PB.又因为PA⊥PB,所以PA⊥MN. 因为AC=BC,AM=BM,所以CM⊥AB.因为平面PAB⊥平面ABC,CM⊂平面ABC,平面PAB∩平面ABC=AB,所以CM⊥平面PAB.因为PA⊂平面PAB,所以CM⊥PA.又因为PA⊥MN,MN⊂平面MNC,CM⊂平面MNC,MN∩CM=M,所以PA⊥平面MNC., 2直线与平面垂直性质的应用), 2) 如图,在四棱锥PABCD中,AD⊥平面PAB,AP⊥AB.(1)求证:CD⊥AP;(2)若CD⊥PD,求证:CD∥平面PAB.证明:(1)因为AD⊥平面PAB,AP⊂平面PAB,所以AD⊥AP.因为AP⊥AB,AB∩AD=A,AB⊂平面ABCD,AD⊂平面ABCD,所以AP⊥平面ABCD.因为CD⊂平面ABCD,所以CD⊥AP.(2)因为CD⊥AP,CD⊥PD,且PD∩AP=P,PD⊂平面PAD,AP⊂平面PAD,所以CD⊥平面PAD ①.因为AD⊥平面PAB,AB⊂平面PAB,所以AB⊥AD.因为AP⊥AB,AP∩AD=A,AP⊂平面PAD,AD⊂平面PAD,所以AB⊥平面PAD ②.由①②得CD∥AB,因为CD⊄平面PAB,AB⊂平面PAB,所以CD∥平面PAB.变式训练如图,在正方体ABCDA1B1C1D1中,EF与异面直线AC,A1D都垂直相交.求证:(1)EF⊥平面AB1C;(2)EF∥BD1.证明:(1)在正方体ABCDA1B1C1D1中,A1B1∥AB∥CD,且A1B1=AB=CD,所以四边形A1B1CD是平行四边形,所以A1D∥B1C.因为EF⊥A1D,所以EF⊥B1C.又因为EF⊥AC,AC∩B1C=C,AC⊂平面AB1C,B1C ⊂平面AB1C,所以EF⊥平面AB1C.(2)连结BD,则BD⊥AC.因为DD1⊥平面ABCD,AC⊂平面ABCD,所以DD1⊥AC.因为AC⊥BD,DD1∩BD=D,DD1⊂平面BDD1B1,BD⊂平面BDD1B1,所以AC⊥平面BDD1B1.又BD1⊂平面BDD1B1,所以AC⊥BD1.同理可证BD1⊥B1C,又AC∩B1C=C,AC⊂平面AB1C,B1C⊂平面AB1C,所以BD1⊥平面AB1C.又EF⊥平面AB1C,所以EF∥BD1., 3直线与平面垂直的探索题), 3) 在正三棱柱ABCA1B1C1中,点D是BC的中点,BC=BB1.(1)若P是CC1上任一点,求证:AP不可能与平面BCC1B1垂直;(2)试在棱CC1上找一点M,使MB⊥AB1.(1)证明:(反证法)假设AP⊥平面BCC1B1,∵ BC⊂平面BCC1B1,∴ AP⊥BC.又正三棱柱ABCA1B1C1中,CC1⊥BC,AP∩CC1=P,AP⊂平面ACC1A1,CC1⊂平面ACC1A1,∴ BC⊥平面ACC1A1.而AC⊂平面ACC1A1,∴ BC⊥AC,这与△ABC是正三角形矛盾,故AP 不可能与平面BCC 1B 1垂直. (2) 解:M 为CC 1的中点.∵ 在正三棱柱ABCA 1B 1C 1中,BC =BB 1, ∴ 四边形BCC 1B 1是正方形.∵ 点M 为CC 1的中点,点D 是BC 的中点, ∴ △B 1BD ≌△BCM ,∴ ∠BB 1D =∠CBM,∠BDB 1=∠CMB.∵ ∠BB 1D +∠BDB 1=π2,∴ ∠CBM +∠BDB 1=π2,∴ BM ⊥B 1D.∵ △ABC 是正三角形,D 是BC 的中点, ∴ AD ⊥BC.∵ 平面ABC⊥平面BB 1C 1C ,平面ABC∩平面BB 1C 1C =BC ,AD ⊂平面ABC , ∴ AD ⊥平面BB 1C 1C.∵ BM ⊂平面BB 1C 1C ,∴ AD ⊥BM. ∵ AD ∩B 1D =D ,∴ BM ⊥平面AB 1D. ∵ AB 1⊂平面AB 1D ,∴ MB ⊥AB 1. 备选变式(教师专享)如图,在棱长为1的正方体ABCDA 1B 1C 1D 1中,点E 是棱BC 的中点,点F 是棱CD 上的动点.试确定点F 的位置,使得D 1E⊥平面AB 1F.解:如图,连结A 1B ,CD 1,则A 1B ⊥AB 1.∵ 在正方体ABCDA 1B 1C 1D 1中,D 1A 1⊥平面ABB 1A 1,AB 1⊂平面ABB 1A 1,∴ A 1D 1⊥AB 1.又A 1D 1∩A 1B =A 1,A 1D 1,A 1B ⊂平面A 1BCD 1, ∴ AB 1⊥平面A 1BCD 1.又D 1E ⊂平面A 1BCD 1,∴ AB 1⊥D 1E.于是使D 1E ⊥平面AB 1F 等价于使D 1E ⊥AF. 连结DE ,易知D 1D ⊥AF ,若有AF⊥平面D 1DE ,只需证DE⊥AF.∵ 四边形ABCD 是正方形,点E 是BC 的中点, ∴ 当且仅当点F 是CD 的中点时,DE ⊥AF , 即当点F 是CD 的中点时,D 1E ⊥平面AB 1F.1. 如图,在矩形ABCD 中,AB =1,BC =a (a>0),PA ⊥平面ABCD ,且PA =1,问BC 边上是否存在点Q ,使得PQ ⊥QD ,并说明理由.解:假设存在点Q ,使得PQ⊥QD.连结AQ. ∵ PA ⊥平面ABCD ,且DQ ⊂平面ABCD , ∴ PA ⊥DQ.∵ PQ ⊥DQ ,且PQ∩PA=P ,PQ ⊂平面PAQ ,PA ⊂平面PAQ , ∴ DQ ⊥平面PAQ.∵ AQ ⊂平面PAQ ,∴ AQ ⊥DQ.设BQ =x ,则CQ =a -x ,AQ 2=x 2+1,DQ 2=(a -x )2+1.∵ AQ 2+DQ 2=AD 2,∴ x 2+1+(a -x )2+1=a 2,即x 2-ax +1=0 (*).方程(*)的判别式Δ=a 2-4. ∵ a>0,∴ 当Δ<0,即0<a<2时,方程(*)无实根;当Δ=0,即a =2时,方程(*)有惟一实根,此时x =1;当Δ>0,即a>2时,方程(*)有两个不等实根,设两个实根分别为x 1,x 2.由于x 1+x 2=a>0,x 1x 2=1>0,则这两个实根均为正数.因此,当0<a<2时,BC 边上不存在点Q 使PQ⊥QD; 当a =2时,BC 边上存在惟一一点Q (即BC 的中点),使PQ ⊥QD ; 当a>2时,BC 边上存在不同的两点Q ,使PQ⊥QD.2. 如图,在长方体ABCDA 1B 1C 1D 1中,AB =BC =EC =12AA 1.(1) 求证:AC 1∥平面BDE ; (2) 求证:A 1E ⊥平面BDE.证明:(1) 连结AC 交BD 于点O ,连结OE.在长方体ABCDA 1B 1C 1D 1中,四边形ABCD 是正方形,点O 为AC 的中点,AA 1∥CC 1且AA 1=CC 1,由EC =12AA 1,得EC =12CC 1,即点E 为CC 1的中点,于是在△CAC 1中,AC 1∥OE.因为OE ⊂平面BDE ,AC 1⊄平面BDE ,所以AC 1∥平面BDE.(2) 连结B 1E.设AB =a ,则在△BB 1E 中,BE =B 1E =2a ,BB 1=2a.所以BE 2+B 1E 2=BB 21,所以B 1E ⊥BE.在长方体ABCDA 1B 1C 1D 1中,A 1B 1⊥平面BB 1C 1C ,BE ⊂平面BB 1C 1C ,所以A 1B 1⊥BE. 因为B 1E ∩A 1B 1= B 1,B 1E ⊂平面A 1B 1E ,A 1B 1⊂平面A 1B 1E ,所以BE⊥平面A 1B 1E. 因为A 1E ⊂平面A 1B 1E ,所以A 1E ⊥BE. 同理A 1E ⊥DE.又因为BE∩DE=E ,BE ⊂平面BDE ,DE ⊂平面BDE , 所以A 1E ⊥平面BDE.3. 如图,在四棱锥PABCD 中,底面ABCD 是矩形,侧棱PA 垂直于底面,点E ,F 分别是AB ,PC 的中点,PA =AD.求证:(1) CD⊥PD;(2) EF⊥平面PCD.证明:(1) ∵ PA⊥底面ABCD ,∴ CD ⊥PA.又矩形ABCD 中,CD ⊥AD ,且AD∩PA=A ,AD ,PA ⊂平面PAD ,∴ CD ⊥平面PAD ,∴ CD ⊥PD.(2) 如图,取PD 的中点G ,连结AG ,FG.∵ 点G ,F 分别是PD ,PC 的中点,∴ GF 綊12CD ,∴ GF 綊AE ,∴ 四边形AEFG 是平行四边形,∴ AG ∥EF. ∵ PA =AD ,G 是PD 的中点, ∴ AG ⊥PD ,∴ EF ⊥PD.∵ CD ⊥平面PAD ,AG ⊂平面PAD , ∴ CD ⊥AG ,∴ EF ⊥CD.∵ PD ∩CD =D ,PD ,CD ⊂平面PCD ,∴ EF ⊥平面PCD.4. 如图,在直三棱柱ABCA 1B 1C 1中,已知AC⊥BC,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E. 求证:(1) DE∥平面AA 1C 1C ; (2) BC 1⊥AB 1.。
2019版高考数学大一轮复习江苏专版文档:第八章 立体
§8.1空间几何体的表面积与体积考情考向分析本部分是高考考查的重点内容,主要涉及空间几何体的表面积与体积的计算.命题形式主要以填空题为主,考查空间几何体的表面积与体积的计算,涉及空间几何体的结构特征,要求考生要有较强的空间想象能力和计算能力,广泛应用转化与化归思想.1.多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式3.柱、锥、台、球的表面积和体积【知识拓展】1.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差.(2)底面面积及高都相等的两个同类几何体的体积相等.2.几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=3a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R=2a.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.(3)正四面体的外接球与内切球的半径之比为3∶1.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)多面体的表面积等于各个面的面积之和.(√)(2)锥体的体积等于底面积与高之积.(×)(3)球的体积之比等于半径比的平方.( × )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( √ ) (5)长方体既有外接球又有内切球.( × )(6)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS .( × ) 题组二 教材改编2.[P55练习T3]已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为________cm. 答案 2解析 S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, ∴r 2=4,∴r =2.3.[P60练习T4]已知棱台的上、下底面面积分别为4,16,高为3,则该棱台的体积为________. 答案 28 题组三 易错自纠4.各棱长均为2的正三棱锥的表面积是________. 答案 4 3解析 每个面的面积为12×2×2×32=3,∴该正三棱锥的表面积为4 3.5.体积为8的正方体的顶点都在同一球面上,则该球的表面积为________. 答案 12π解析 由题意可知正方体的棱长为2,其体对角线23即为球的直径,所以球的表面积为4πR 2=(2R )2π=12π.6.已知某圆柱的侧面展开图是边长为2a ,a 的矩形,则该圆柱的体积为________. 答案 a 32π或a 3π解析 设圆柱的母线长为l ,底面圆的半径为r , 则当l =2a 时,2πr =a ,∴r =a2π,这时V 圆柱=2a ·π⎝⎛⎭⎫a 2π2=a32π; 当l =a 时,2πr =2a ,∴r =a π,这时V 圆柱=a ·π⎝⎛⎭⎫a 2=a3π. 综上,该圆柱的体积为a 32π或a 3π.题型一 求空间几何体的表面积1.若三棱锥的三条侧棱两两垂直,且侧棱长都相等,其外接球的表面积是4π,则其侧棱长为________. 答案233解析 依题意可以构造一个正方体,其体对角线就是该三棱锥外接球的直径. 设侧棱长为a ,外接球的半径为r . 由外接球的表面积为4π,得r =1, ∴3a =2r =2,∴a =233.2.正六棱台的上、下两底面的边长分别是1 cm,2 cm ,高是1 cm ,则它的侧面积为________ cm 2. 答案972解析 正六棱台的侧面是6个全等的等腰梯形,上底长为1 cm ,下底长为2 cm ,高为正六棱台的斜高.又边长为1 cm 的正六边形的中心到各边的距离是32cm ,边长为2 cm 的正六边形的中心到各边的距离是 3 cm ,则梯形的高为 1+⎝⎛⎭⎫3-322=72(cm),所以正六棱台的侧面积为6×12×(1+2)×72=972(cm 2).思维升华 空间几何体表面积的求法(1)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. (2)旋转体的表面积问题注意其侧面展开图的应用. 题型二 求空间几何体的体积典例 (1)(2017·江苏宿迁三模)如图,在正三棱柱ABC -A 1B 1C 1中,已知AB =AA 1=3,点P 在棱CC 1上,则三棱锥P -ABA 1的体积为________.答案934解析 三棱锥P -ABA 1的体积等于三棱锥B -AP A 1的体积,点B 到面AP A 1的距离为332,△AP A 1的面积为92,故三棱锥P -ABA 1的体积为934.(2)(2017·江苏南京三模)如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,BB 1=3,∠ABC =90°,点D 为侧棱BB 1上的动点.当AD +DC 1最小时,三棱锥D -ABC 1的体积为________.答案 13解析 几何体展开图如图所示:△ABD ∽△ACC 1,∴BD CC 1=ABAC ,∵AB =1,BC =2,BB 1=3, ∴AC =3,CC 1=3,∴BD =1,则11--=D ABC A BC D V V =13×12×1×2×1=13.思维升华 空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.跟踪训练 (1)(2018届南京一中调研)如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个正三角形组成,则该多面体的体积是________.答案26解析 由展开图,可知该多面体是正四棱锥,底面正方形的边长为1,侧棱长也为1,∴该正四棱锥的高h =⎝⎛⎭⎫322-⎝⎛⎭⎫122=22,∴其体积V =13×12×22=26.(2)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为________.答案23解析 如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连结DG ,CH ,容易求得EG =HF =12,AG =GD =BH =HC =32, 取AD 的中点O ,连结GO ,易得GO =22, ∴S △AGD =S △BHC =12×22×1=24,∴多面体的体积V =V三棱锥E -ADG+V三棱锥F -BCH+V三棱柱AGD -BHC=2V 三棱锥E -ADG +V 三棱柱AGD -BHC=13×24×12×2+24×1=23. 题型三 简单的等积变换典例 如图所示,三棱柱ABC -A 1B 1C 1中,若E ,F 分别为AB ,AC 的中点,平面EB 1C 1F 将三棱柱分成体积为V 1,V 2的两部分,那么V 1∶V 2等于多少?解 如图,延长A 1A 到A 2,B 1B 到B 2,C 1C 到C 2,且A 1A =AA 2,B 1B =BB 2,C 1C =CC 2,连结A 2C 2,A 2B 2,B 2C 2,则得到三棱柱ABC -A 2B 2C 2,且111222--=,ABC A B C ABC A B C V V 延长B 1E ,C 1F ,则B 1E 与C 1F 相交于点A 2.因为A 2A ∶A 2A 1=1∶2,所以2A AEF V 三棱-锥=182111A A B C V 三棱-锥.又2A AEF V 三棱-锥=142A ABC V 三棱-锥=14×13222ABC A B C V 三棱柱-=112111ABC A B C V 三棱柱-, 所以V 1=72A AEF V 三棱-锥=712111ABC A B C V 三棱柱-,故V 1∶V 2=7∶(12-7)=7∶5.思维升华 当所给几何体的体积不容易计算时,可根据几何体的结构特征将其分解成多个体积可求的几何体,或者补形成体积可求的几何体,这种解法就是割补法,割补法求体积体现了转化与化归思想的应用.跟踪训练 (2018届灌云高级中学检测)正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 的中点,则三棱锥A -B 1DC 1的体积为________. 答案 1解析 如图,连结AD ,因为△ABC 是正三角形, 且D 为BC 中点,则AD ⊥BC . 又因为BB 1⊥平面ABC ,故BB 1⊥AD ,且BB 1∩BC =B ,BB 1,BC ⊂平面BCC 1B 1,所以AD ⊥平面BCC 1B 1,所以AD 是三棱锥A -B 1DC 1的高. 所以11A B DC V 三棱-锥=1311·B DC S AD=13×3×3=1.1.若圆锥的轴截面是正三角形,则它的侧面积是底面积的________倍. 答案 2解析 设底面半径为r ,则S 底面=πr 2, S 侧面=12×2πr ×2r =2πr 2,所以S 侧面=2S 底面.2.(2014·江苏)设甲、乙两个圆柱的底面面积分别为S 1,S 2,体积分别为V 1,V 2,若它们的侧面积相等且S 1S 2=94,则V 1V 2的值是________.答案 32解析 设甲、乙两个圆柱的底面半径分别为r 1,r 2,高分别为h 1,h 2, 则2πr 1h 1=2πr 2h 2,所以h 1h 2=r 2r 1.又S 1S 2=πr 21πr 22=94, 所以r 1r 2=32,则V 1V 2=πr 21h 1πr 22h 2=r 21r 22·h 1h 2=r 21r 22·r 2r 1=r 1r 2=32.3.已知A ,B ,C 三点都在以O 为球心的球面上,OA ,OB ,OC 两两垂直,三棱锥O —ABC 的体积为43,则球O 的表面积为________.答案 16π解析 设球O 的半径为R ,以球心O 为顶点的三棱锥的三条侧棱两两垂直且都等于球的半径R ,另外一个侧面是边长为2R 的等边三角形.因此根据三棱锥的体积公式,得13×12R 2·R=43,∴R =2,∴S 球的表面积=4π×22=16π. 4.(2013·江苏) 如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=________.答案124解析 由题意可知,三棱锥F -ADE 与三棱柱A 1B 1C 1-ABC 的高之比为12,底面积之比为14,故V 1∶V 2=13×12×141=124.5.(2018届淮安中学质检) 如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =22,则三棱锥B -AEF的体积为______.答案112解析 连结AC ,BD ,易知AC ⊥平面BDD 1B 1,则V 三棱锥B -AEF =V 三棱锥A -BEF =13×AC 2×S △BEF =13×AC 2×12×EF ×BB 1=13×22×12×22×1=112.6.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P —ABC 为鳖臑,P A ⊥平面ABC ,P A =AB =2,AC =4,三棱锥P —ABC 的四个顶点都在球O 的球面上,则球O 的表面积为________. 答案 20π解析 方法一 将三棱锥P —ABC 放入长方体中,如图(1),三棱锥P —ABC 的外接球就是长方体的外接球.因为P A =AB =2,AC =4,△ABC 为直角三角形,所以BC =42-22=2 3.设外接球的半径为R ,由题意可得(2R )2=22+22+(23)2=20,故R 2=5,则球O 的表面积为4πR 2=20π.方法二 利用鳖臑的特点求解,如图(2),因为四个面都是直角三角形,所以PC 的中点到每一个顶点的距离都相等,即PC 的中点为球心O ,易得2R =PC =20,所以球O 的表面积为4πR 2=20π.7.(2015·江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________. 答案7解析 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7.8.(2017·天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________. 答案 92π解析 设正方体棱长为a ,则6a 2=18, ∴a = 3.设球的半径为R ,则由题意知2R =a 2+a 2+a 2=3, ∴R =32.故球的体积V =43πR 3=43π×⎝⎛⎭⎫323=92π.9. 如图所示,在直角梯形ABCD 中,AD ⊥DC ,AD ∥BC ,BC =2CD =2AD =2,若将该直角梯形绕BC 边旋转一周,则所得的几何体的表面积为________.答案 (2+3)π解析 根据题意可知,此旋转体的上半部分为圆锥(底面半径为1,高为1),下半部分为圆柱(底面半径为1,高为1),如图所示.则所得几何体的表面积为圆锥的侧面积、圆柱的侧面积以及圆柱的下底面积之和,即表面积为12·2π·1·12+12+2π·12+π·12=(2+3)π. 10.如图所示,一个底面半径为R 的圆柱形量杯中装有适量的水.若放入一个半径为r 的实心铁球,水面高度恰好升高r ,则R r=________.答案 233解析 由水面高度升高r ,得圆柱体积增加了πR 2r ,恰好是半径为r 的实心铁球的体积,因此有43πr 3=πR 2r .故R r =233. 11.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E —ACD 的体积为63,求该三棱锥的侧面积. (1)证明 因为四边形ABCD 为菱形,所以AC ⊥BD .因为BE ⊥平面ABCD ,AC ⊂平面ABCD ,所以BE ⊥AC .而BD ∩BE =B ,BD ,BE ⊂平面BED ,所以AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)解 设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x 2. 因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x . 由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x . 由已知得,三棱锥E —ACD 的体积V 三棱锥E-ACD =13×12AC ·GD ·BE =624x 3=63, 故x =2.从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5.故三棱锥E —ACD 的侧面积为3+2 5.12.(2017·南京二十九中调研)如图,四棱锥P -ABCD 的底面为正方形,平面PCD ⊥平面ABCD ,平面PCB ⊥平面ABCD ,E ,F 分别为线段CD ,P A 的中点.(1)求证:EF ∥平面PBC ;(2)若∠PBC =π4,AB =4,求棱锥P -ABCE 的体积. (1)证明 取PB 中点G ,连结FG ,CG .∵F 为P A 的中点,∴FG 綊12AB .又E 为CD 的中点,ABCD 为正方形,∴EC 綊12CD 綊12AB ,∴EC 綊FG . 即四边形ECGF 为平行四边形,∴EF ∥GC .又EF ⊄平面PBC ,CG ⊂平面PBC ,∴EF ∥平面PBC .(2)解 ∵平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,又BC ⊥CD ,∴BC ⊥平面PCD ,∴BC ⊥PC .同理CD ⊥PC ,∴PC ⊥平面ABCD ,∵AB =4,∠PBC =π4,∴PC =4. ∴V P -ABCE =13×4×2+42×4=16.13.(2014·江苏)设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________. 答案 32解析 设两个圆柱的底面半径和高分别为r 1,r 2和h 1,h 2,由S 1S 2=94,得πr 21πr 22=94,则r 1r 2=32. 由圆柱的侧面积相等,得2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2,所以V 1V 2=πr 21h 1πr 22h 2=r 1r 2=32. 14.在三棱锥P —ABC 中,P A ⊥平面ABC 且P A =2,△ABC 是边长为3的等边三角形,则该三棱锥外接球的表面积为________.答案 8π解析 由题意得,此三棱锥外接球即为以△ABC 为底面、以P A 为高的正三棱柱的外接球,因为△ABC 的外接圆半径r =32×3×23=1,外接球球心到△ABC 的外接圆圆心的距离d =1,所以外接球的半径R =r 2+d 2=2,所以三棱锥外接球的表面积S =4πR 2=8π.15.已知三棱锥O —ABC 的顶点A ,B ,C 都在半径为2的球面上,O 是球心,∠AOB =120°,当△AOC 与△BOC 的面积之和最大时,三棱锥O —ABC 的体积为________.答案 233解析 设球O 的半径为R ,因为S △AOC +S △BOC =12R 2(sin ∠AOC +sin ∠BOC ),所以当∠AOC =∠BOC =90°时, S △AOC +S △BOC 取得最大值,此时OA ⊥OC .OB ⊥OC ,OB ∩OA =O ,OA ,OB ⊂平面AOB ,所以OC ⊥平面AOB ,所以V 三棱锥O —ABC =V 三棱锥C —OAB =13OC ·12OA ·OB sin ∠AOB =16R 3sin ∠AOB =233. 16.(2016·江苏)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥P —A 1B 1C 1D 1,下部分的形状是正四棱柱ABCD —A 1B 1C 1D 1(如图所示),并要求正四棱柱的高OO 1是正四棱锥的高PO 1的4倍.(1)若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大?解 (1)V =13×62×2+62×2×4=312(m 3). (2)设PO 1=x ,则O 1B 1=62-x 2,B 1C 1=2·62-x 2,∴1111A B C D S =2(62-x 2),又由题意可得下面正四棱柱的高为4x .则仓库容积V =13x ·2(62-x 2)+2(62-x 2)·4x =263x (36-x 2). 由V ′=0得x =23或x =-23(舍去).由实际意义知V 在x =23(m)时取到最大值, 故当PO 1=23(m)时,仓库容积最大.。
核按钮(新课标)高考数学一轮复习第八章立体几何训练文
核按钮(新课标)高考数学一轮复习第八章立体几何训练文考纲链接1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.(3)会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)了解球、棱柱、棱锥、台的表面积和体积的计算公式.2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理:①公理1:如果一条直线上的两点在同一个平面内,那么这条直线在此平面内.②公理2:过不在一条直线上的三点,有且只有一个平面.③公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.④公理4:平行于同一条直线的两条直线平行.⑤定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补.(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理:①平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.②一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.③一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直.④一个平面过另一个平面的垂线,则两个平面垂直.理解以下性质定理,并加以证明:①如果一条直线与一个平面平行,那么过该直线的任一个平面与此平面的交线和该直线平行.②两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行.③垂直于同一个平面的两条直线平行.④两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.(3)能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会简单应用空间两点间的距离公式.§8.1 空间几何体的结构、三视图和直观图1.棱柱、棱锥、棱台的概念(1)棱柱:有两个面互相______,其余各面都是________,并且每相邻两个四边形的公共边都互相______,由这些面所围成的多面体叫做棱柱.※注:棱柱又分为斜棱柱和直棱柱.侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱.(2)棱锥:有一个面是________,其余各面都是有一个公共顶点的__________,由这些面所围成的多面体叫做棱锥.※注:如果棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,则这个棱锥叫做正棱锥.(3)棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,叫做棱台.※注:由正棱锥截得的棱台叫做正棱台.※2.棱柱、棱锥、棱台的性质(1)棱柱的性质侧棱都相等,侧面是______________;两个底面与平行于底面的截面是__________的多边形;过不相邻的两条侧棱的截面是______________;直棱柱的侧棱长与高相等且侧面、对角面都是________.(2)正棱锥的性质侧棱相等,侧面是全等的______________;棱锥的高、斜高和斜高在底面上的射影构成一个____________;棱锥的高、侧棱和侧棱在底面上的射影也构成一个____________;斜高、侧棱及底面边长的一半也构成一个____________;侧棱在底面上的射影、斜高在底面上的射影及底面边长的一半也构成一个____________.(3)正棱台的性质侧面是全等的____________;斜高相等;棱台的高、斜高和两底面的边心距组成一个____________;棱台的高、侧棱和两底面外接圆的半径组成一个____________;棱台的斜高、侧棱和两底面边长的一半也组成一个____________.3.圆柱、圆锥、圆台(1)圆柱、圆锥、圆台的概念分别以______的一边、__________的一直角边、________中垂直于底边的腰所在的直线为旋转轴,其余各边旋转一周而形成的曲面所围成的几何体分别叫做圆柱、圆锥、圆台.(2)圆柱、圆锥、圆台的性质圆柱、圆锥、圆台的轴截面分别是________、________、________;平行于底面的截面都是________.4.球(1)球面与球的概念以半圆的______所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球.半圆的圆心叫做球的________.(2)球的截面性质球心和截面圆心的连线________截面;球心到截面的距离d与球的半径R及截面圆的半径r的关系为______________.5.平行投影在一束平行光线照射下形成的投影,叫做__________.平行投影的投影线互相__________.6.空间几何体的三视图、直观图(1)三视图①空间几何体的三视图是用正投影得到的,在这种投影下,与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的.三视图包括__________、__________、__________.②三视图尺寸关系口诀:“长对正,高平齐,宽相等.” 长对正指正视图和俯视图长度相等,高平齐指正视图和侧(左)视图高度要对齐,宽相等指俯视图和侧(左)视图的宽度要相等.(2)直观图空间几何体的直观图常用斜二测画法来画,其规则是:①在已知图形所在空间中取水平面,在水平面内作互相垂直的轴Ox,Oy,再作Oz轴,使∠xOz=________且∠yOz=________.②画直观图时,把Ox,Oy,Oz画成对应的轴O′x′,O′y′,O′z′,使∠x′O′y′=____________,∠x′O′z′=____________.x′O′y′所确定的平面表示水平面.③已知图形中,平行于x轴、y轴或z轴的线段,在直观图中分别画成____________x′轴、y′轴或z′轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.④已知图形中平行于x轴和z轴的线段,在直观图中保持长度不变,平行于y轴的线段,长度为原来的__________.⑤画图完成后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图.自查自纠:1.(1)平行四边形平行(2)多边形三角形2.(1)平行四边形全等平行四边形矩形(2)等腰三角形直角三角形直角三角形直角三角形直角三角形(3)等腰梯形直角梯形直角梯形直角梯形3.(1)矩形直角三角形直角梯形(2)矩形等腰三角形等腰梯形圆4.(1)直径球心(2)垂直于d=R2-r25.平行投影平行6.(1)①正(主)视图侧(左)视图俯视图(2)①90°90°②45°(或135°) 90°③平行于④一半给出下列四个命题:①有两个侧面是矩形的棱柱是直棱柱;②侧面都是等腰三角形的棱锥是正棱锥;③侧面都是矩形的直四棱柱是长方体;④若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中所有错误命题....的序号是( )A.②③④ B. ①②③C.①②④ D. ①②③④解:认识棱柱一般要从侧棱与底面的垂直与否和底面多边形的形状两方面去分析,故①③错误,对等腰三角形的腰是否为侧棱未作说明,故②错误,平行六面体的两个相对侧面也可能与底面垂直且互相平行,故④错误.故选D.以下关于几何体的三视图的论述中,正确的是( )A.球的三视图总是三个全等的圆B.正方体的三视图总是三个全等的正方形C.水平放置的正四面体的三视图都是正三角形D.水平放置的圆台的俯视图是一个圆解:几何体的三视图要考虑视角,只有球无论选择怎样的视角,其三视图总是三个全等的圆.故选A.(2015·北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A . 1 B. 2 C. 3 D .2解:由题中三视图知,此四棱锥的直观图如图所示,其中侧棱SA ⊥底面ABCD ,且底面是边长为1的正方形,SA =1,∴四棱锥最长棱的棱长为SC =3,故选 C.用一张4cm ×8cm 的矩形硬纸卷成圆柱的侧面,则圆柱轴截面的面积为________cm 2(接头忽略不计).解:以4cm 或8cm 为底面周长,所得圆柱的轴截面面积均为32πcm 2,故填32π.已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为________.解:如图所示是实际图形和直观图.由图可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图中作C ′D ′⊥A ′B ′,垂足为D ′,则C ′D ′=22O ′C ′=68a. ∴S △A ′B ′C ′=12A ′B ′×C ′D ′=12×a ×68a =616a 2.故填616a 2.类型一 空间几何体的结构特征(2014·全国课标Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱解:该几何体的三视图由一个三角形,两个矩形组成,经分析可知该几何体为三棱柱,故选B.点拨:解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( )解:D 选项的正视图应为如图所示的图形.故选D.类型二 空间几何体的三视图如图所示的三个直角三角形是 一个体积为20cm 3的几何体的三视图,则h =________cm .解:由三视图可知,该几何体为三棱锥,此三棱锥的底面为直角三角形,直角边长分别为5cm ,6cm ,三棱锥的高为h cm ,则三棱锥的体积为V =13×12×5×6×h =20,解得h =4cm .故填4.点拨:对于空间几何体的考查,从内容上看,锥的定义和相关性质是基础,以它们为载体考查三视图、体积和棱长是重点.本题给出了几何体的三视图,只要掌握三视图的画法“长对正、高平齐、宽相等”,不难将其还原得到三棱锥.(2015·全国Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解:由图可知该几何体由半个圆柱和半个球体组合而成,则S 表=4πr 2×12+12πr 2×2+πr ·2r+2r ·2r =16+20π,解得r =2.故选B.类型三 空间多面体的直观图如图是一个几何体的三视图,用斜二测画法画出它的直观图.解:由三视图知该几何体是一个简单组合体,它的下部是一个正四棱台,上部是一个正四棱锥.画法:(1)画轴.如图1,画x 轴、y 轴、z 轴,使∠xOy =45°,∠xOz =90°.图1(2)画底面.利用斜二测画法画出底面ABCD ,在z 轴上截取O ′使OO ′等于三视图中相应高度,过O ′作Ox 的平行线O ′x ′,Oy 的平行线O ′y ′,利用O ′x ′与O ′y ′画出底面A ′B ′C ′D ′.(3)画正四棱锥顶点.在Oz 上截取点P ,使PO ′等于三视图中相应的高度.(4)成图.连接PA ′,PB ′,PC ′,PD ′,A ′A ,B ′B ,C ′C ,D ′D ,整理得到三视图表示的几何体的直观图如图2所示.图2点拨:根据三视图可以确定一个几何体的长、宽、高,再按照斜二测画法,建立x 轴、y 轴、z 轴,使∠xOy =45°,∠xOz =90°,确定几何体在x 轴、y 轴、z 轴方向上的长度,最后连线画出直观图.已知一个四棱锥的高为3,其底面用斜二测画法所画出的水平放置的直观图是一个边长为1的正方形,则此四棱锥的体积为( )A. 2 B .6 2 C.13D .2 2解:因为四棱锥的底面直观图是一个边长为1的正方形,该正方形的对角线长为2,根据斜二测画法的规则,原图底面的底边长为1,高为直观图中正方形的对角线长的两倍,即22,则原图底面积为S =22.因此该四棱锥的体积为V =13Sh =13×22×3=22.故选D.类型四 空间旋转体的直观图用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3cm ,求圆台的母线长.解:设圆台的母线长为l ,截得圆台的上、下底面半径分别为r ,4r.根据相似三角形的性质得, 33+l =r4r,解得 l =9. 所以,圆台的母线长为9cm .点拨:用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,设相关几何变量列方程求解.(2014·湖南)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4解:该几何体为一直三棱柱,底面是边长为6,8,10的直角三角形,侧棱为12,其最大球的半径为底面直角三角形内切圆的半径r ,由等面积法可得12×(6+8+10)·r =12×6×8,得r =2.故选B.1.在研究圆柱、圆锥、圆台的相关问题时,主要方法就是研究它们的轴截面,这是因为在轴截面中容易找到这些几何体的有关元素之间的位置关系以及数量关系.2.建议对下列一些具有典型意义的重要空间图形的数量关系予以推证并适当记忆.(1)正多面体(Ⅰ)正四面体就是棱长都相等的三棱锥,正六面体就是正方体,连接正方体六个面的中心,可得到一个正八面体,正八面体可以看作是由两个棱长都相等的正四棱锥拼接而成.棱长为a 的正四面体中:①斜高为32a ;②高为63a ;③对棱中点连线长为22a ; ④外接球的半径为64a ,内切球的半径为612a ; ⑤正四面体的表面积为3a 2,体积为212a 3. (Ⅱ)如图,在棱长为a 的正方体ABCD A 1B 1C 1D 1中,连接A 1B ,BC 1,A 1C 1,DC 1,DA 1,DB ,可以得到一个棱长为2a 的正四面体A 1BDC 1,其体积为正方体体积的13.(Ⅲ)正方体与球有以下三种特殊情形:一是球内切于正方体;二是球与正方体的十二条棱相切;三是球外接于正方体.它们的相应轴截面如图所示(正方体的棱长为a ,球的半径为R ).(2)长方体的外接球(Ⅰ)长、宽、高分别为a ,b ,c 的长方体的体对角线长等于外接球的直径,即a 2+b 2+c 2=2R.(Ⅱ)棱长为a 的正方体的体对角线长等于外接球的直径,即3a =2R.3.三视图的正(主)视图、侧(左)视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,主视图反映了物体的长度和高度;俯视图反映了物体的长度和宽度;左视图反映了物体的宽度和高度.由此得到:主俯长对正,主左高平齐,俯左宽相等.4.一个平面图形在斜二测画法下的直观图与原图形相比,有“三变、三不变”.三变:坐标轴的夹角改变,与y轴平行线段的长度改变(减半),图形改变.三不变:平行性不变,与x轴平行的线段长度不变,相对位置不变.1.由平面六边形沿某一方向平移形成的空间几何体是( )A.六棱锥B.六棱台C.六棱柱D.非棱柱、棱锥、棱台的一个几何体解:平面六边形沿某一方向平移形成的空间几何体符合棱柱的定义,故选C.2.下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解:A错误,如图1是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B错误,如图2,若△ABC不是直角三角形,或△ABC是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾;易知D正确.故选D.3.将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括( )A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆台、一个圆锥D.一个圆柱、两个圆锥解:把等腰梯形分割成两个直角三角形和一个矩形,由旋转体的定义可知所得几何体包括一个圆柱、两个圆锥.故选D.4.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为( )解:观察可知,该几何体的侧视图为正方形,且AD1为实线,故选B.5.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )解:A,B的正视图不符合要求,C的俯视图显然不符合要求,故选D.6.(2014·课标Ⅰ)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.6 2 B.4 2 C.6 D.4解法一:如图甲,设辅助正方体棱长为4,三视图对应的多面体为三棱锥DABC,最长的棱为AD =6.解法二:将三视图还原为三棱锥DABC,如图乙,易知侧面DBC⊥底面AB C.点D在底面ABC的射影点O是BC的中点,△ABC为直角三角形.∵AB=4,BO=2,∴AO=25,DO⊥底面ABC,∴DO⊥AO,DO=4,∴最长的棱AD=20+16=6.故选C.7.已知某一多面体内接于球构成一个简单组合体,该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的半径是____________.解:由三视图可知该组合体为球内接棱长为2的正方体,∴正方体的体对角线为球的直径,即2r=22+22+22=23,r =3.故填3.8.若一个螺栓的底面是正六边形,它的正(主)视图和俯视图如图所示,则它的体积是____________.解:由三视图知,该螺栓的上部是一个底面半径为0.8,高为2的圆柱,下部是底面边长为2,高为1.5的正六棱柱,故体积V =π×0.82×2+6×34×22×1.5=93+32π25.故填93+32π25.9.在四棱锥P ABCD 中,底面为正方形,PC 与底面ABCD 垂直.该四棱锥的正视图和侧视图如图所示,它们是腰长为6 cm 的全等的等腰直角三角形.(1)根据所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA 的长度.解:(1)该四棱锥的俯视图为边长为6 cm 的正方形,如图,其面积为36cm 2.(2)在正方形ABCD 中,易得AC =62cm ,∵PC ⊥面ABCD ,∴PC ⊥A C.在Rt △ACP 中,PA =PC 2+AC 2=62+(62)2=63cm .10.如图是某几何体的三视图,试说明该几何体的结构特征,并用斜二测画法画出它的直观图.解:图中几何体是由上部为正六棱柱,下部为倒立的正六棱锥堆砌而成的组合体.斜二测画法:(1)画轴.如图(1),画x 轴,y 轴,z 轴,使∠xOy =45°,∠xOz =∠yOz =90°.(2)画底面,利用斜二测画法画出底面ABCDEF ,在z 轴上截取O ′,使OO ′等于正六棱柱的高,过O ′作Ox 的平行线O ′x ′,Oy 的平行线O ′y ′,利用O ′x ′与O ′y ′画出底面A ′B ′C ′D ′E ′F ′.(3)画正六棱锥顶点.在Oz 上截取点P ,使PO ′等于正六棱锥的高.(4)成图.连接PA ′,PB ′,PC ′,PD ′,PE ′,PF ′,AA ′,BB ′,CC ′,DD ′,EE ′,FF ′,整理得到三视图表示的几何体的直观图如图(2)所示.注意:图形中平行于x 轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,长度为原来的一半.11.某长方体的一条体对角线长为7,在该长方体的正视图中,这条对角线的投影长为6,在该长方体的侧视图与俯视图中,这条体对角线的投影长分别为a 和b ,求ab 的最大值.解:如图,则有AC1=7,DC1=6,BC1=a,AC=b,设AB=x,AD=y,AA1=z,有x2+y2+z2=7,x2+z2=6,∴y2=1.∵a2=y2+z2=z2+1,b2=x2+y2=x2+1,∴a=z2+1,b=x2+1.∴ab=(z2+1)(x2+1)≤z2+1+x2+12=4,当且仅当z2+1=x2+1,即x=z=3时,ab的最大值为4.水以匀速注入某容器中,容器的三视图如图所示,其中与题中容器对应的水的高度h与时间t的函数关系图象是( )解:由三视图知其直观图为两个圆台的组合体,水是匀速注入的,所以水面高度随时间变化的变化率先逐渐减小后逐渐增大,又因为容器的对称性,所以函数图象关于一点中心对称.故选C.§8.2 空间几何体的表面积与体积1.柱体、锥体、台体的表面积(1)直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=__________,S 正棱锥侧=__________, S 正棱台侧=__________(其中C ,C ′为底面周长,h 为高,h ′为斜高). (2)圆柱、圆锥、圆台的侧面积 S 圆柱侧=________,S 圆锥侧=________,S 圆台侧=________(其中r ,r ′为底面半径,l 为母线长). (3)柱或台的表面积等于________与__________的和,锥体的表面积等于________与__________的和.2.柱体、锥体、台体的体积(1)棱柱、棱锥、棱台的体积V 棱柱=__________,V 棱锥=__________,V 棱台=__________(其中S ,S ′为底面积,h 为高). (2)圆柱、圆锥、圆台的体积V 圆柱=__________,V 圆锥=__________,V 圆台=__________(其中r ,r ′为底面圆的半径,h 为高). 3.球的表面积与体积(1)半径为R 的球的表面积S 球=________. (2)半径为R 的球的体积V 球=________.自查自纠:1.(1)Ch 12Ch ′ 12()C +C ′h ′ (2)2πrl πrl π(r +r ′)l(3)侧面积 两个底面积 侧面积 一个底面积2.(1)Sh 13Sh 13h ()S +SS ′+S ′(2)πr 2h 13πr 2h 13πh ()r 2+rr ′+r ′23.(1)4πR 2 (2)43πR 3已知圆锥的正视图是边长为2的等边三角形,则该圆锥体积为( )A.2π2B.2πC.3π3D.3π 解:易知圆锥的底面直径为2,母线长为2,则该圆锥的高为22-12=3,因此其体积是13π·12×3=3π3.故选C.一个长方体共一顶点的三个面的面积分别是2,3,6,则这个长方体的体对角线的长是( )A .2 3B .3 2C .6 D. 6 解:设长方体的长、宽、高分别为a ,b ,c ,则有ab =2,ac =3,bc =6,解得a =1,b =2,c =3,则长方体的体对角线的长l =a 2+b 2+c 2=6.故选D. (2015·安徽)一个四面体的三视图如图所示,则该四面体的表面积是( ) A .1+ 3 B .2+ 3C .1+2 2D .2 2 解:根据几何体的三视图可知,该几何体是底面为等腰直角三角形的三棱锥, 如图所示.因此该几何体的表面积为S 表面积= S △PAC +2S △PAB +S △ABC =12×2×1+2×34×(2)2+12×2×1=2+3.故选B.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为____________.解:∵该正四棱柱的外接球的半径是正四棱柱体对角线的一半,∴半径r =1212+12+(2)2=1,V 球=4π3×13=4π3.故填4π3.若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于________.解:由正视图知,三棱柱是底面边长为2,高为1的正三棱柱,所以底面积为2×12×2×2×32=23,侧面积为3×2×1=6,所以其表面积为6+23.故填6+23.类型一 空间几何体的面积问题如图,在△ABC 中,∠ABC =45°,∠BAC =90°,AD 是BC 边上的高,沿AD 把△ABD 折起,使∠BDC =90°.若BD =1,求三棱锥D ABC 的表面积.解:∵折起前AD 是BC 边上的高,∴沿AD 把△ABD 折起后,AD ⊥DC ,AD ⊥B D. 又∠BDC =90°,DB =DA =DC =1, ∴AB =BC =CA =2.从而S △DAB =S △DBC =S △DCA =12×1×1=12,S △ABC =12×2×2×sin60°=32. ∴三棱锥D ABC 的表面积S =12×3+32=3+32.点拨:充分运用图形在翻折前后的不变性,如角的大小不变,线段长度不变等.(2015·北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A .2+ 5B .4+ 5C .2+2 5D .5 解:由三视图作出该几何体的直观图如图所示,底面△ABC 是等腰三角形,PC ⊥平面ABC ,取AB 的中点D ,连接CD ,PD ,易证AB ⊥PD ,由三视图中的数据知PC =1,AB =CD =2,∴AC =BC =5,PD =5,∴S △ABC =12×2×2=2,S △PAC =S △PBC =12×5×1=52,S △PAB =12×2×5=5,∴S 表=2+25.故选C. 类型二 空间旋转体的面积问题如图,半径为4的球O 中有一内接圆柱,当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是______.解:如图,设球的一条半径与圆柱相应的母线的夹角为α,圆柱侧面积S =2π×4sin α×2×4cos α=32πsin2α,当α=π4时,S 取最大值32π,此时球的表面积与该圆柱的侧面积之差为32π.故填32π.点拨:根据球的性质,内接圆柱上、下底面中心连线的中点为球心,且圆柱的上、下底面圆周均在球面上,球心和圆柱的上、下底面圆上的点的连线与母线的夹角相等,这些为我们建立圆柱的侧面积与上述夹角之间的函数关系提供了依据.(2015·陕西)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+4 解:该几何体为半圆柱,底面半径为1,高为2,其表面积为π×12+2×2+12×2π×1×2=3π+4.故选D.类型三 空间多面体的体积问题如图,在多面体ABCDEF 中,已知ABCD是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23 B.33 C.43 D.32 解:如图,过A ,B 两点分别作AM ,BN 垂直于EF ,垂足分别为M ,N ,连接DM ,CN ,可证得DM ⊥EF ,CN ⊥EF ,则多面体ABCDEF 分为三部分,即多面体的体积V ABCDEF =V AMD BNC +V E AMD +V F BN C.依题意知AEFB 为等腰梯形.易知Rt △DME Rt △CNF ,∴EM =NF =12.又BF =1,∴BN =32. 作NH 垂直于BC ,则H 为BC 的中点,∴NH =22. ∴S △BNC =12·BC ·NH =24.∴V F BNC =13·S △BNC ·NF =224,V E AMD =V F BNC =224,V AMD BNC =S △BNC ·MN =24. ∴V ABCDEF =23,故选A.点拨:求空间几何体体积的常用方法为割补法和等积变换法:①割补法:将这个几何体分割成几个柱体、锥体,分别求出柱体和锥体的体积,从而得出要求的几何体的体积;②等积变换法:特别的,对于三棱锥,由于其任意一个面均可作为棱锥的底面,从而可选择更容易计算的方式来求体积;利用“等积性”还可求“点到面的距离”.(2014·重庆)某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .30解:由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥得到的.所以该几何体的体积为V =12×3×4×5-13×12×3×4×3=24.故选C. 类型四 空间旋转体的体积问题已知某几何体的三视图如图所示,其中,正(主)视图、侧(左)视图均是由三角形与半圆构成,俯视图由圆与其内接三角形构成,根据图中的数据可得此几何体的体积为( )。
2019版高考数学一轮复习训练: 基础与考点过关 第八章 立体几何初步
第八章 立体几何初步第1课时 空间点、直线、平面之间的 位置关系1. (必修2P 24练习2改编)用集合符号表示“点P 在直线l 外,直线l 在平面α内”为________.答案:P ∉l ,l ⊂α解析:考查点、线、面之间的符号表示. 2. (必修2P 28练习2改编)已知AB∥PQ,BC ∥QR ,若∠ABC=45°,则∠PQR=________. 答案:45°或135°解析:由等角定理可知∠PQR 与∠ABC 相等或互补,故答案为45°或135°. 3. (原创)若直线l 上有两个点在平面α外,则________.(填序号) ① 直线l 上至少有一个点在平面α内; ② 直线l 上有无穷多个点在平面α内; ③ 直线l 上所有点都在平面α外; ④ 直线l 上至多有一个点在平面α内. 答案:④解析:由已知得直线l ⊄α,故直线l 上至多有一个点在平面α内.4. (必修2P 31习题15改编)如图所示,设E ,F ,G ,H 依次是空间四边形ABCD 的边AB ,BC ,CD ,DA 上除端点外的点,AE AB =AH AD =λ,CF CB =CGCD=μ,则下列结论中不正确的是________.(填序号)① 当λ=μ时,四边形EFGH 是平行四边形; ② 当λ≠μ时,四边形EFGH 是梯形;③ 当λ≠μ时,四边形EFGH 一定不是平行四边形; ④ 当λ=μ时,四边形EFGH 是梯形. 答案:④解析:由AE AB =AH AD =λ,得EH∥BD,且EH BD =λ,同理得FG ∥BD 且 FGBD=μ,当λ=μ时,EH ∥FG 且EH =FG.当λ≠μ时,EH ∥FG ,但EH≠FG,只有④错误.5. (必修2P 30练习2改编)在正方体A 1B 1C 1D 1ABCD 中,与AB 异面的棱有______________________.答案:A 1D 1,DD 1,CC 1,C 1B 11. 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.公理3:经过不在同一条直线上的三点,有且只有一个平面. 推论1:经过一条直线和这条直线外的一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面. 2. 空间两条直线的位置关系(1) 公理4:平行于同一条直线的两条直线互相平行. (2) 定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.4. 异面直线的判定(1) 判定定理:过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线.(2) 符号表示:若l ⊂α,A ∉α,B ∈α,B ∉l ,则直线AB 与l 是异面直线. 5. 异面直线所成的角(1) 定义:设a ,b 是异面直线,经过空间任意一点O ,作直线a′∥a,b ′∥b ,我们把直线a′与b′所成的锐角(或直角)叫做异面直线a ,b 所成的角.(2) 范围:⎝⎛⎦⎥⎤0,π2.(3) 若异面直线a ,b 所成的角是直角,就称异面直线a ,b 互相垂直.记作a⊥b. [备课札记], 1平面的基本性质), 1) 如图,正方体ABCDA1B1C1D1中,点E,F分别为CC1,AA1的中点,画出平面BED1F和平面ABCD的交线.解:如图,在平面ADD1A1内延长D1F与DA交于一点P,则P∈平面BED1F.∵ DA⊂平面ABCD,∴ P∈平面ABCD,∴点P是平面ABCD与平面BED1F的一个公共点.又点B是两平面的一个公共点,∴ PB为两平面的交线.备选变式(教师专享)如图,在直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.解:显然点S是平面SBD和平面SAC的一个公共点,即点S在交线上,由于AB>CD,则分别延长AC和BD交于点E,如图所示.∵ E∈AC,AC⊂平面SAC,∴ E∈平面SAC.同理,可证E∈平面SBD,∴点E在平面SBD和平面SAC的交线上,连结SE,则直线SE是平面SBD和平面SAC的交线., 2共点、共线、共面问题), 2) 如图,在四边形ABCD 和四边形ABEF 中,BC ∥AD ,BC =12AD ,BE∥FA ,BE =12FA ,点G ,H 分别为FA ,FD 的中点.(1) 求证:四边形BCHG 是平行四边形. (2) C ,D ,F ,E 四点是否共面?为什么?(1) 证明:因为点G ,H 分别为FA ,FD 的中点,所以GH∥AD,GH =12AD.又BC∥AD,BC=12AD , 所以GH∥BC,且GH =BC ,所以四边形BCHG 为平行四边形.(2) 解:C ,D ,F ,E 四点共面.理由如下:由BE∥FA,BE =12FA ,点G 为FA 的中点知,BE ∥FG ,BE =FG ,所以四边形BEFG 为平行四边形,所以EF∥BG. 由(1)知BG∥CH,BG =CH ,所以EF∥CH,所以EF 与CH 共面. 又D∈FH,所以C ,D ,F ,E 四点共面. 变式训练如图,在直四棱柱ABCDA 1B 1C 1D 1中,点E ,F 分别是AB ,BC 的中点,A 1C 1与B 1D 1交于点O.求证:A 1,C 1,F ,E 四点共面.证明:如图,连结AC ,因为点E ,F 分别是AB ,BC 的中点,所以EF 是△ABC 的中位线,所以EF ∥AC.由直棱柱知AA 1綊CC 1,所以四边形AA 1C 1C 为平行四边形,所以AC∥A 1C 1. 所以EF∥A 1C 1,故A 1,C 1,F ,E 四点共面., 3 空间直线位置关系问题), 3) 如图,在正方体ABCDA 1B 1C 1D 1中,点M ,N 分别是A 1B 1,B 1C 1的中点.求证:(1) AM 和CN 共面;(2) D 1B 和CC 1是异面直线.证明:(1) 如图,连结MN,A1C1,AC.∵点M,N分别是A1B1,B1C1的中点,∴ MN∥A1C1.∵ A1A綊C1C,∴四边形A1ACC1为平行四边形,∴ A1C1∥AC,∴ MN∥AC,∴ A,M,N,C四点共面,即AM和CN共面.(2) ∵ ABCDA1B1C1D1是正方体,∴ B,C,C1,D1不共面.假设D1B与CC1不是异面直线,则存在平面α,使D1B⊂平面α,CC1⊂平面α,∴ D1,B,C,C1∈α,这与B,C,C1,D1不共面矛盾.∴假设不成立,即D1B与CC1是异面直线.变式训练已知空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD 的中点.(1) 求证:BC与AD是异面直线;(2) 求证:EG与FH相交.证明:(1) 假设BC与AD不是异面直线,则BC与AD共面.不妨设它们所共平面为α,则B,C,A,D∈α,所以四边形ABCD为平面图形,这与四边形ABCD为空间四边形相矛盾.所以BC与AD是异面直线.(2) 如图,连结AC,BD,则EF∥AC,HG∥AC,因此EF∥HG;同理EH∥FG,则EFGH为平行四边形.又EG,FH是平行四边形EFGH的对角线,所以EG与FH相交.1. 在下列命题中,不是公理的是________.(填序号)①如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;②过不在同一条直线上的三点,有且只有一个平面;③如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内;④平行于同一个平面的两个平面相互平行.答案:④解析:④不是公理,是个常用的结论,需经过推理论证;①②③是平面的基本性质公理.2. 一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:① AB⊥EF;② AB与CM所成的角为60°;③ EF与MN是异面直线;④ MN∥CD.以上结论中正确的是________.(填序号)答案:①③解析:把正方体平面展开图还原到原来的正方体,如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD,只有①③正确.3. 在正方体ABCDA1B1C1D1中,点E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有________条.答案:无数解析:在A1D1,C1D1上任取一点P,M,过点P,M与直线EF作一个平面α,因CD与平面α不平行,所以它们相交,设α∩CD =Q,连结PQ,则PQ与EF必然相交,即PQ为所求直线.由点P的任意性知,有无数条直线与直线A1D1,EF,CD都相交.4. 如图,在正方体ABCDA1B1C1D1中,点E,F,G分别是棱CC1,BB1及DD1的中点.求证:∠BGC=∠FD1E.证明:∵ 点E,F,G分别是正方体的棱CC1,BB1,DD1的中点,∴ CE平行且等于GD1,BF平行且等于GD1,则四边形CED1G与四边形BFD1G均为平行四边形.则GC∥D1E,GB∥D1F.∵∠BGC与∠FD1E对应两边的方向分别相同,∴∠BGC=∠FD1E.5. 如图,在正方体ABCDA1B1C1D1中,对角线A1C与平面BDC1交于点O,AC,BD交于点M,点E为AB的中点,点F为AA1的中点.求证:(1) C1,O,M三点共线;(2) E,C,D1,F四点共面;(3) CE,D1F,DA三线共点.证明:(1) ∵ C 1,O ,M ∈平面BDC 1,又C 1,O ,M ∈平面A 1ACC 1,由公理3知,点C 1,O ,M 在平面BDC 1与平面A 1ACC 1的交线上,∴ C 1,O ,M 三点共线.(2) ∵ 点E ,F 分别是AB ,A 1A 的中点,∴ EF ∥A 1B. ∵ A 1B ∥CD 1,∴ EF ∥CD 1.∴ E ,C ,D 1,F 四点共面.(3) 由(2)可知,E ,C ,D 1,F 四点共面.∵ EF∥A 1B ,EF =12A 1B ,∴ EF =12D 1C ,∴ D 1F ,CE 为相交直线,记交点为P.则P∈D 1F ⊂平面ADD 1A 1,P ∈CE ⊂平面ADCB ,∴ P ∈平面ADD 1A 1∩平面ADCB =AD ,∴ CE ,D 1F ,DA 三线共点.1. 如图,在正方体ABCDEFMN 中,①BM 与ED 平行;②CN 与BM 是异面直线;③CN 与BE 是异面直线;④DN 与BM 是异面直线.以上四个命题中,正确的命题是________.(填序号)答案: ②④解析:观察图形,根据异面直线的定义可知,BM 与ED 是异面直线,CN 与BM 是异面直线,CN 与BE 不是异面直线,DN 与BM 是异面直线,故①③错误,②④正确.即正确的命题是②④.2. 在空间四边形ABCD 中,AB =CD 且AB 与CD 所成的角为30°,点M ,N 分别是BC ,AD 的中点,求直线AB 和MN 所成的角.解:如图,取AC 的中点P.连结PM ,PN ,则PM∥AB,且PM =12AB ,PN ∥CD ,且PN =12CD ,所以∠MPN 为直线AB 与CD 所成的角(或所成角的补角). 则∠MPN=30°或∠MPN=150°. 若∠MPN=30°,因为PM∥AB,所以∠PMN 是AB 与MN 所成的角(或所成角的补角).又AB =CD ,所以PM =PN ,则△PMN 是等腰三角形,所以∠PMN=75°, 即直线AB 与MN 所成的角为75°.若∠MPN=150°,易知△PMN 是等腰三角形,所以∠PMN=15°, 即直线AB 与MN 所成的角为15°.故直线AB 和MN 所成的角为75°或15°.3. 已知在棱长为a 的正方体ABCDA 1B 1C 1D 1中,点M ,N 分别是棱CD ,AD 的中点.求证: (1) 四边形MNA 1C 1是梯形; (2) ∠DNM=∠D 1A 1C 1.证明:(1) 如图,连结AC ,在△ACD 中,∵ 点M ,N 分别是CD ,AD 的中点, ∴ MN 是三角形ACD 的中位线,∴ MN ∥AC ,MN =12AC.由正方体的性质得AC∥A 1C 1,AC =A 1C 1,∴ MN ∥A 1C 1且MN =12A 1C 1,即MN≠A 1C 1,∴ 四边形MNA 1C 1是梯形.(2) 由(1)知MN∥A 1C 1.又∵ ND∥A 1D 1, ∴ ∠DNM 与∠D 1A 1C 1相等或互补.而∠DNM 与∠D 1A 1C 1均是直角三角形中的锐角, ∴ ∠DNM =∠D 1A 1C 1.1. 证明点线共面的常用方法:一是依据题中所给部分条件先确定一个平面,然后证明其余的点或线都在平面内;二是将所有元素分成几个部分,然后分别确定几个平面,再证这些平面重合;三是采用反证法.2. 证明三线共点的方法:通常先证明两条直线的交点在第三条直线上,而第三条直线是分别经过这两条直线的两个平面的一条交线.3. 异面直线的证明方法:一是应用判定定理(过平面内一点与平面外一点的连线与平面内不经过该点的直线是异面直线);二是采用反证法.判定异面直线时通常采用排除法(既不相交也不平行)或判定定理.4. 对于异面直线所成的角,要注意角的范围是⎝⎛⎦⎥⎤0,π2以及两条直线垂直的定义,平移法是解决此类问题的关键.[备课札记]第2课时 直线与平面的位置关系(1) (对应学生用书(文)109~110页、(理)111~112页)了解直线与平面的位置关系,了解线面平行的有关概念;除了能熟练运用线面平行的判定定理和性质定理外,还能运用定义判断位置关系.① 要熟练掌握线面平行的定义、判定及性质.② 要注意线线关系、线面关系以及面面关系的转化.对于直线与平面所成的角,点到面的距离了解即可.1. (必修2P 35练习2改编)给出下列条件:① l∥α;② l 与α至少有一个公共点;③ l 与α至多有一个公共点.则能确定直线l 在平面α外的条件为________.(填序号)答案:①③解析:直线l 在平面α外:l∥α或直线l 与平面α仅有一个交点. 2. (必修2P 35练习7改编)在梯形ABCD 中,AB ∥CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位置关系是________.答案:平行或异面解析:因为AB∥CD,AB ⊂平面α,CD ⊄平面α,所以CD∥平面α,所以CD 与平面α内的直线可能平行,也可能异面.3. (必修2P 35练习4改编)在正六棱柱ABCDEFA 1B 1C 1D 1E 1F 1的表面中,与A 1F 1平行的平面是________.答案:平面ABCDEF 、平面CC 1D 1D解析:在正六棱柱中,易知A 1F 1∥AF ,AF ⊂平面ABCDEF ,且A 1F 1⊄平面ABCDEF ,所以A 1F 1∥平面ABCDEF.同理,A 1F 1∥C 1D 1,C 1D 1⊂平面CC 1D 1D ,且A 1F 1⊄平面CC 1D 1D ,所以A 1F 1∥平面CC 1D 1D.其他各面与A 1F 1均不满足直线与平面平行的条件.故答案为平面ABCDEF 与平面CC 1D 1D.4. (原创)P 为矩形ABCD 所在平面外一点,矩形对角线的交点为O ,M 为PB 的中点,给出下列四个命题:① OM ∥平面PCD ;② OM∥平面PBC ;③ OM∥平面PDA ;④ OM∥平面PBA. 其中正确命题的个数是________. 答案:2解析:由已知OM∥PD,得OM∥平面PCD 且OM∥平面PAD.故正确的只有①③.5. (必修2P 41习题5改编)在四面体ABCD 中,点M ,N 分别是△ACD,△BCD 的重心,则四面体的四个面中与MN 平行的是________.答案:平面ABC 、平面ABD 解析:如图,连结AM 并延长交CD 于E ,连结BN 并延长交CD 于F ,由重心性质可知,E ,F 重合为一点,且该点为CD 的中点E ,由EM MA =EN NB =12,得MN∥AB,因此,MN ∥平面ABC ,且MN∥平面ABD.1. 一条直线和一个平面的位置关系有且只有以下三种:, 1基本概念辨析), 1) 下列命题中真命题的个数为W.①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线b⊂α,则a∥α;④若直线a∥b,b⊂α,那么直线a平行于平面α内的无数条直线.答案:1解析:∵ 直线l虽与平面α内无数条直线平行,但l有可能在平面α内,∴ l不一定平行于α.∴ ①是假命题.∵ 直线a在平面α外,包括两种情况:a∥α和a与α相交,∴ a和α不一定平行.∴ ②是假命题.∵ 直线a∥b,b⊂α,则只能说明a和b无公共点,但a可能在平面α内,∴ a不一定平行于α.∴ ③是假命题.∵ a∥b,b⊂α,那么a⊂α或a∥α,∴ a可以与平面α内的无数条直线平行.∴ ④是真命题.综上可知,真命题的个数为1.备选变式(教师专享)下列命题中正确的是W.(填序号)①若直线a不在平面α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④若l与平面α平行,则l与α内任何一条直线都没有公共点;⑤平行于同一平面的两直线可以相交.答案:④⑤解析:如图①,a∩α=A时,a⊄α,∴①错误;直线l与α相交时,l上有无数个点不在α内,∴②错误;l∥α时,α内的直线与l平行或异面,∴③错误;l∥α,l与α无公共点,∴ l与α内任一直线都无公共点,④正确;如图②,长方体ABCDA1B1C1D1中,A1C1与B1D1都与平面ABCD平行,∴⑤正确., 2线面平行的判定), 2) 如图,在底面为平行四边形的四棱锥PABCD中,点E是PC的中点.求证:PA∥平面BDE.证明:如图,连结AC交BD于点O,连结OE.在平行四边形ABCD中,O是AC的中点,又E是PC的中点,∴ OE∥PA.∵ PA⊄平面BDE,OE⊂平面BDE,∴ PA∥平面BDE.变式训练如图,在三棱柱A1B1C1ABC中, E,F分别是A1B,AC1的中点.求证:EF∥平面ABC.证明:如图,连结A1C,因为三棱柱A1B1C1ABC中,四边形AA1C1C是平行四边形,所以点F在A1C上,且为A1C的中点.在△A1BC中,因为E,F分别是A1B,A1C的中点,所以EF∥BC.因为BC⊂平面ABC,EF⊄平面ABC,所以EF∥平面ABC.备选变式(教师专享)如图,在正方体ABCDA1B1C1D1中,点M,N,P分别为棱AB,BC,C1D1的中点.求证:AP∥平面C1MN.证明:在正方体ABCDA1B1C1D1中,因为点M ,P 分别为棱AB ,C 1D 1的中点,所以AM =PC 1. 又AM∥CD,PC 1∥CD ,故AM∥PC 1,所以四边形AMC 1P 为平行四边形.从而AP∥C 1M. 又AP ⊄ 平面C 1MN ,C 1M ⊂平面C 1MN , 所以AP∥平面C 1MN., 3 线面平行的性质), 3) 如图,在直三棱柱ABCA 1B 1C 1中,AC ⊥BC ,CC 1=4,M 是棱CC 1上的一点.若点N 是AB 的中点,且CN∥平面AB 1M ,求CM 的长.解:(解法1)如图①,取AB 1的中点P ,连结NP ,PM.①因为点N 是AB 的中点,所以NP∥BB 1.因为CM∥BB 1,所以NP∥CM,所以NP 与CM 共面.因为CN∥平面AB 1M ,平面CNPM∩平面AB 1M =MP ,所以CN∥MP.所以四边形CNPM 为平行四边形,所以CM =NP =12CC 1=2.(解法2)如图②,设NC 与CC 1确定的平面交AB 1于点P ,连结NP ,PM.②因为CN∥平面AB 1M ,CN ⊂平面CNPM ,平面AB 1M ∩平面CNPM =PM ,所以CN∥MP. 因为BB 1∥CM ,BB 1⊄平面CNPM ,CM ⊂平面CNPM ,所以BB 1∥平面CNPM. 又BB 1⊂平面ABB 1,平面ABB 1∩平面CNPM =NP ,所以BB 1∥NP ,所以CM∥NP,所以四边形CNPM 为平行四边形.因为点N 是AB 的中点,所以CM =NP =12BB 1=12CC 1=2.(解法3)如图③,取BB 1的中点Q ,连结NQ ,CQ.③因为点N 是AB 的中点,所以NQ∥AB 1. 因为NQ ⊄平面AB 1M ,AB 1⊂平面AB 1M , 所以NQ∥平面AB 1M.因为CN∥平面AB 1M ,NQ ∩NC =N ,NQ ,NC ⊂平面NQC , 所以平面NQC∥平面AB 1M.因为平面BCC 1B 1∩平面NQC =QC ,平面BCC 1B 1∩平面AB 1M =MB 1,所以CQ∥MB 1. 因为BB 1∥CC 1,所以四边形CQB 1M 是平行四边形,所以CM =B 1Q =12CC 1=2.(解法4)如图④,分别延长BC ,B 1M ,设交点为S ,连结AS.④因为CN∥平面AB 1M ,CN ⊂平面ABS , 平面ABS∩平面AB 1M =AS ,所以CN∥AS. 由于AN =NB ,所以BC =CS.又CM∥BB 1,同理可得SM =MB 1,所以CM =12BB 1=12CC 1=2.备选变式(教师专享) 如图,在斜三棱柱ABCA 1B 1C 1中,AC 1与A 1C 交于点O ,E 是棱AB 上一点,且OE∥平面BCC 1B 1.求证:点E 是AB 的中点.证明:连结BC 1,因为OE∥平面BCC 1B 1,OE ⊂平面ABC 1,平面BCC 1B 1∩平面ABC 1=BC 1,所以OE∥BC 1.在斜三棱柱ABCA 1B 1C 1中,侧面AA 1C 1C 是平行四边形,AC 1∩A 1C =O , 所以点O 是AC 1的中点,所以AE EB =AOOC 1=1,即点E 是AB 的中点.1. 如图,在直三棱柱ABCA 1B 1C 1中,已知AB =AC ,点M ,N ,P 分别为BC ,CC 1,BB 1的中点.求证:A 1N ∥平面AMP.证明:取C 1B 1的中点D ,连结A 1D ,DN ,DM ,B 1C.由于点D ,M 分别为C 1B 1,CB 的中点,所以DM∥CC 1且DM =CC 1,故DM∥AA 1且DM =AA 1,则四边形A 1AMD 为平行四边形,所以A 1D ∥AM.又A 1D ⊄平面APM ,AM ⊂平面APM ,所以A 1D ∥平面APM.由于D ,N 分别为C 1B 1,CC 1的中点,所以DN∥B 1C.又点P ,M 分别为BB 1,CB 的中点,所以MP∥B 1C.所以DN∥MP.又DN ⊄平面APM ,MP ⊂平面APM , 所以DN∥平面APM.由于A 1D ∩DN =D ,所以平面A 1DN∥平面APM. 由于A 1N ⊂平面A 1DN ,所以A 1N ∥平面APM.2. 如图,在四棱锥EABCD 中,四边形ABCD 为矩形,点M ,N 分别是AE ,CD 的中点.求证:直线MN∥平面EBC.证明:取BE 中点F ,连结CF ,MF.因为点M 是AE 的中点,所以MF 綊12AB.又点N 是矩形ABCD 边CD 的中点,所以NC 綊12AB ,所以MF 綊NC ,所以四边形MNCF 是平行四边形,所以MN∥CF.又MN ⊄平面EBC ,CF ⊂平面EBC ,所以MN∥平面EBC. 3. 如图,在正三棱柱ABCA′B′C′中,D 是AA′上的点,点E 是B′C′的中点,且A′E∥平面DBC′.试判断D 点在A A′上的位置,并给出证明.解:点D 为AA′的中点.证明如下:如图,取BC 的中点F ,连结AF ,EF ,设EF 与BC′交于点O ,连结DO ,BE ,C ′F ,在正三棱柱ABCA′B′C′中,点E 是B′C′的中点,所以 EF ∥BB ′∥AA ′,且EF =BB′=AA′, 所以四边形A′EFA 是平行四边形.因为A′E∥平面DBC′,A ′E ⊂平面A′EFA,且平面DBC′∩平面A′EFA=DO , 所以A′E∥DO.在正三棱柱ABC -A′B′C′中,点E 是B′C′的中点, 所以EC′∥BC 且EC′=BF ,所以四边形BFC′E 是平行四边形,所以点O 是EF 的中点. 因为在平行四边形A′EFA 中, A ′E ∥DO , 所以点D 为AA′的中点. 4. 如图,在直四棱柱ABCDA 1B 1C 1D 1中,底面ABCD 是菱形,点E 是A 1C 1的中点.求证:BE∥平面ACD 1.证明:如图,连结B 1D 1交A 1C 1于点E ,连结BD 交AC 于点O ,连结OD 1.∵ 在直四棱柱ABCDA 1B 1C 1D 1中,底面ABCD 是菱形, ∴ D 1E ∥BO 且D 1E =BO ,∴ 四边形BED 1O 是平行四边形, ∴ BE ∥OD 1.∵ OD 1⊂平面ACD 1,BE ⊄平面ACD 1, ∴ BE ∥平面ACD 1.5. 如图,在四棱锥PABCD 中,PC ⊥平面PAD ,AB ∥CD ,CD =2AB =2BC ,点M ,N 分别是棱PA ,CD 的中点.求证:PC∥平面BMN.证明:设AC∩BN=O ,连结MO ,AN.因为AB =12CD ,AB ∥CD ,点N 为CD 的中点,所以AB =CN ,AB ∥CN ,所以四边形ABCN 为平行四边形, 所以O 为AC 的中点.又点M 为PA 的中点,所以MO∥PC. 因为MO ⊂平面BMN ,PC ⊄ 平面BMN , 所以PC∥平面BMN.1. 如图,在三棱锥PABC中,点M,N分别为AB,PA的中点.求证:PB∥平面MNC.证明:因为点M,N分别为AB,PA的中点,所以MN∥PB.因为MN⊂平面MNC,PB⊄平面MNC,所以PB∥平面MNC.2. 如图,在直三棱柱ABCA1B1C1中,点D是AB的中点.求证:BC1∥平面A1CD.证明:连结AC1,设交A1C于点O,连结OD.∵四边形AA1C1C是矩形,∴ O是AC1的中点.∵在△ABC1中, O,D分别是AC1,AB的中点,∴OD∥BC1.∵ OD⊂平面A1CD,BC1⊄平面A1CD,∴ BC1∥平面A1CD.3. 如图,在长方体ABCDA1B1C1D1中,点P∈BB1(P不与B,B1重合).PA∩A1B=M,PC∩BC1=N.求证:MN∥平面ABCD.证明:连结AC,A1C1,在长方体ABCDA1B1C1D1中,AA1∥CC1,且AA1=CC1,∴四边形ACC1A1是平行四边形.∴ AC∥A1C1.∵ AC⊄平面A1BC1,A1C1⊂平面A1BC1,∴ AC∥平面A1BC1.∵ AC⊂平面PAC,平面A1BC1∩平面PAC=MN,∴ AC∥MN.∵ MN⊄平面ABCD,AC⊂平面ABCD,∴ MN∥平面ABCD.1. 判定或证明直线与平面平行的常用方法(1)利用直线与平面平行的定义(无公共点).(2)利用直线与平面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).(3)利用平面与平面平行的性质(α∥β,a⊂α⇒a∥β).注意不管用哪种方法,都应将相应的条件写全,缺一不可.2. 直线与平面平行的性质定理的作用是证线线平行,应用时常常需构造辅助平面,和在平面几何中添加辅助线一样,在构造辅助平面时要确认这个平面的存在性.3. 证明平行问题时要注意“转化思想”的应用,要抓住线线、线面、面面之间的平行关系,实现“空间问题”与“平面问题”之间的转化.[备课札记]第3课时直线与平面的位置关系(2)(对应学生用书(文)111~113页、(理)113~115页)1. (必修2P38练习2(3)改编)已知直线l,a,b,平面α.若l∥a,a⊥α,b⊥α,则l与b的位置关系是W.答案:平行解析:由线面垂直的性质可知,若a⊥α,b ⊥α,则a∥b.因为l ∥a ,所以l∥b. 2. 已知两条异面直线平行于一平面,一直线与两异面直线都垂直,那么这个平面与这条直线的位置关系是 W.(填序号)① 平行;② 垂直;③ 斜交;④ 不能确定. 答案:② 解析:设a ,b 为异面直线,a ∥平面α,b ∥平面α,直线l⊥a,l ⊥b.过a 作平面β∩α=a′,则a ∥a ′,∴ l ⊥a ′.同理过b 作平面γ∩α=b′,则l ⊥b ′.∵ a ,b 异面,∴ a ′与b′相交,∴ l ⊥α.3. 设l ,m 表示直线,m 是平面α内的任意一条直线,则“l⊥m”是“l⊥α”成立的 条件.(选填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)答案:充要解析:由线面垂直的定义知,直线垂直于平面内任意一条直线,则直线与平面垂直,说明是充分条件,反之,直线垂直于平面,则直线垂直于平面内任意一条直线,说明是必要条件,则“l⊥m”是“l⊥α”成立的充要条件.4. (必修2P 42习题9改编)如图,AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆O 上不同于A ,B 的任一点,则图中直角三角形的个数为 W.答案:4解析:因为AB 是圆O 的直径,所以AC⊥BC,△ACB 是直角三角形;由PA⊥平面ABC 可得,PA ⊥AB ,PA ⊥AC ,所以△PAB 与△PAC 是直角三角形;因为PA⊥平面ABC ,且BC ⊂平面ABC ,所以PA⊥BC.又BC⊥AC,PA ∩AC =A ,所以BC⊥平面PAC.而PC ⊂平面PAC ,所以BC⊥PC,△PCB 是直角三角形.故直角三角形的个数为4.5. (必修2P 38练习3改编)在正方体ABCDA 1B 1C 1D 1中,已知AB =1,则点C 到平面B 1BDD 1.解析:连结AC ,则AC⊥BD,又BB 1⊥AC ,故AC⊥平面B 1BDD 1,所以点C 到平面B 1BDD 1的距离为12AC =22.1. 直线与平面垂直的定义:如果一条直线a 与一个平面α内的任意一条直线都垂直,我们就说直线a 与平面α互相垂直,记作a ⊥α,直线a 叫做平面α的垂线,平面α叫做直线a 的垂面,垂线和平面的交点称为垂足W.2. 结论:过一点有且只有一条直线与已知平面垂直,过一点有且只有一个平面与已知直线垂直.3. 直线与平面垂直从平面外一点引平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.5. 直线和平面的距离一条直线和一个平面平行,这条直线上任意一点到这个平面的距离,叫做这条直线和这个平面的距离.6. 直线与平面所成的角(1)斜线一条直线与一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线与平面的交点叫做斜足,斜线上一点与斜足间的线段叫做这个点到平面的斜线段.(2)射影过平面α外一点P向平面α引斜线和垂线,那么过斜足Q和垂足P1的直线就是斜线在平面内的正投影(简称射影),线段P1Q就是斜线段PQ在平面α内的射影,如图.(3)直线和平面所成的角平面的一条斜线与它在这个平面内的射影所成的锐角,叫做这条直线与这个平面所成的角.特别地,如果直线和平面垂直,那么就说这条直线与平面所成的角是直角;如果直线与平面平行或在平面内,则它们所成的角是0°的角.[备课札记], 1直线与平面垂直的判定), 1) 如图,在直四棱柱ABCDA1B1C1D1中,点E,F分别是AB,BC的中点,A1C1与B1D1交于点O.若底面ABCD是菱形,且OD⊥A1E,求证:OD⊥平面A1C1FE.证明:连结BD,因为直棱柱中DD1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,所以DD1⊥A1C1.因为底面A1B1C1D1是菱形,所以A1C1⊥B1D1.又DD1∩B1D1=D1,所以A1C1⊥平面BB1D1D.因为OD⊂平面BB1D1D,所以OD⊥A1C1.又OD⊥A1E,A1C1∩A1E=A1,A1C1⊂平面A1C1FE,A1E⊂平面A1C1FE,所以OD⊥平面A1C1FE.变式训练如图,在三棱锥PABC中,平面PAB⊥平面ABC,PA⊥PB,M,N分别为AB,PA的中点.若AC=BC,求证:PA⊥平面MNC.证明:因为M,N分别为AB,PA的中点,所以MN∥PB.又因为PA⊥PB,所以PA⊥MN. 因为AC=BC,AM=BM,所以CM⊥AB.因为平面PAB⊥平面ABC,CM⊂平面ABC,平面PAB∩平面ABC=AB,所以CM⊥平面PAB.因为PA⊂平面PAB,所以CM⊥PA.又因为PA⊥MN,MN⊂平面MNC,CM⊂平面MNC,MN∩CM=M,所以PA⊥平面MNC., 2直线与平面垂直性质的应用), 2) 如图,在四棱锥PABCD中,AD⊥平面PAB,AP⊥AB.(1)求证:CD⊥AP;(2)若CD⊥PD,求证:CD∥平面PAB.证明:(1)因为AD⊥平面PAB,AP⊂平面PAB,所以AD⊥AP.因为AP⊥AB,AB∩AD=A,AB⊂平面ABCD,AD⊂平面ABCD,所以AP⊥平面ABCD.因为CD⊂平面ABCD,所以CD⊥AP.(2)因为CD⊥AP,CD⊥PD,且PD∩AP=P,PD⊂平面PAD,AP⊂平面PAD,所以CD⊥平面PAD ①.因为AD⊥平面PAB,AB⊂平面PAB,所以AB⊥AD.因为AP⊥AB,AP∩AD=A,AP⊂平面PAD,AD⊂平面PAD,所以AB⊥平面PAD ②.由①②得CD∥AB,因为CD⊄平面PAB,AB⊂平面PAB,所以CD∥平面PAB.变式训练如图,在正方体ABCDA1B1C1D1中,EF与异面直线AC,A1D都垂直相交.求证:(1)EF⊥平面AB1C;(2)EF∥BD1.证明:(1)在正方体ABCDA1B1C1D1中,A1B1∥AB∥CD,且A1B1=AB=CD,所以四边形A1B1CD是平行四边形,所以A1D∥B1C.因为EF⊥A1D,所以EF⊥B1C.又因为EF⊥AC,AC∩B1C=C,AC⊂平面AB1C,B1C ⊂平面AB1C,所以EF⊥平面AB1C.(2)连结BD,则BD⊥AC.因为DD1⊥平面ABCD,AC⊂平面ABCD,所以DD1⊥AC.因为AC⊥BD,DD1∩BD=D,DD1⊂平面BDD1B1,BD⊂平面BDD1B1,所以AC⊥平面BDD1B1.又BD1⊂平面BDD1B1,所以AC⊥BD1.同理可证BD1⊥B1C,又AC∩B1C=C,AC⊂平面AB1C,B1C⊂平面AB1C,所以BD1⊥平面AB1C.又EF⊥平面AB1C,所以EF∥BD1., 3直线与平面垂直的探索题), 3) 在正三棱柱ABCA1B1C1中,点D是BC的中点,BC=BB1.(1)若P是CC1上任一点,求证:AP不可能与平面BCC1B1垂直;(2)试在棱CC1上找一点M,使MB⊥AB1.(1)证明:(反证法)假设AP⊥平面BCC1B1,∵ BC⊂平面BCC1B1,∴ AP⊥BC.又正三棱柱ABCA1B1C1中,CC1⊥BC,AP∩CC1=P,AP⊂平面ACC1A1,CC1⊂平面ACC1A1,∴ BC⊥平面ACC1A1.而AC⊂平面ACC1A1,∴ BC⊥AC,这与△ABC是正三角形矛盾,故AP 不可能与平面BCC 1B 1垂直. (2) 解:M 为CC 1的中点.∵ 在正三棱柱ABCA 1B 1C 1中,BC =BB 1, ∴ 四边形BCC 1B 1是正方形.∵ 点M 为CC 1的中点,点D 是BC 的中点, ∴ △B 1BD ≌△BCM ,∴ ∠BB 1D =∠CBM,∠BDB 1=∠CMB.∵ ∠BB 1D +∠BDB 1=π2,∴ ∠CBM +∠BDB 1=π2,∴ BM ⊥B 1D.∵ △ABC 是正三角形,D 是BC 的中点, ∴ AD ⊥BC.∵ 平面ABC⊥平面BB 1C 1C ,平面ABC∩平面BB 1C 1C =BC ,AD ⊂平面ABC , ∴ AD ⊥平面BB 1C 1C.∵ BM ⊂平面BB 1C 1C ,∴ AD ⊥BM. ∵ AD ∩B 1D =D ,∴ BM ⊥平面AB 1D. ∵ AB 1⊂平面AB 1D ,∴ MB ⊥AB 1. 备选变式(教师专享)如图,在棱长为1的正方体ABCDA 1B 1C 1D 1中,点E 是棱BC 的中点,点F 是棱CD 上的动点.试确定点F 的位置,使得D 1E⊥平面AB 1F.解:如图,连结A 1B ,CD 1,则A 1B ⊥AB 1.∵ 在正方体ABCDA 1B 1C 1D 1中,D 1A 1⊥平面ABB 1A 1,AB 1⊂平面ABB 1A 1,∴ A 1D 1⊥AB 1.又A 1D 1∩A 1B =A 1,A 1D 1,A 1B ⊂平面A 1BCD 1, ∴ AB 1⊥平面A 1BCD 1.又D 1E ⊂平面A 1BCD 1,∴ AB 1⊥D 1E.于是使D 1E ⊥平面AB 1F 等价于使D 1E ⊥AF. 连结DE ,易知D 1D ⊥AF ,若有AF⊥平面D 1DE ,只需证DE⊥AF.∵ 四边形ABCD 是正方形,点E 是BC 的中点, ∴ 当且仅当点F 是CD 的中点时,DE ⊥AF , 即当点F 是CD 的中点时,D 1E ⊥平面AB 1F.1. 如图,在矩形ABCD 中,AB =1,BC =a (a>0),PA ⊥平面ABCD ,且PA =1,问BC 边上是否存在点Q ,使得PQ ⊥QD ,并说明理由.解:假设存在点Q ,使得PQ⊥QD.连结AQ. ∵ PA ⊥平面ABCD ,且DQ ⊂平面ABCD , ∴ PA ⊥DQ.∵ PQ ⊥DQ ,且PQ∩PA=P ,PQ ⊂平面PAQ ,PA ⊂平面PAQ , ∴ DQ ⊥平面PAQ.∵ AQ ⊂平面PAQ ,∴ AQ ⊥DQ.设BQ =x ,则CQ =a -x ,AQ 2=x 2+1,DQ 2=(a -x )2+1.∵ AQ 2+DQ 2=AD 2,∴ x 2+1+(a -x )2+1=a 2,即x 2-ax +1=0 (*).方程(*)的判别式Δ=a 2-4. ∵ a>0,∴ 当Δ<0,即0<a<2时,方程(*)无实根;当Δ=0,即a =2时,方程(*)有惟一实根,此时x =1;当Δ>0,即a>2时,方程(*)有两个不等实根,设两个实根分别为x 1,x 2.由于x 1+x 2=a>0,x 1x 2=1>0,则这两个实根均为正数.因此,当0<a<2时,BC 边上不存在点Q 使PQ⊥QD; 当a =2时,BC 边上存在惟一一点Q (即BC 的中点),使PQ ⊥QD ; 当a>2时,BC 边上存在不同的两点Q ,使PQ⊥QD.2. 如图,在长方体ABCDA 1B 1C 1D 1中,AB =BC =EC =12AA 1.(1) 求证:AC 1∥平面BDE ; (2) 求证:A 1E ⊥平面BDE.证明:(1) 连结AC 交BD 于点O ,连结OE.在长方体ABCDA 1B 1C 1D 1中,四边形ABCD 是正方形,点O 为AC 的中点,AA 1∥CC 1且AA 1=CC 1,由EC =12AA 1,得EC =12CC 1,即点E 为CC 1的中点,于是在△CAC 1中,AC 1∥OE.因为OE ⊂平面BDE ,AC 1⊄平面BDE ,所以AC 1∥平面BDE.(2) 连结B 1E.设AB =a ,则在△BB 1E 中,BE =B 1E =2a ,BB 1=2a.所以BE 2+B 1E 2=BB 21,所以B 1E ⊥BE.在长方体ABCDA 1B 1C 1D 1中,A 1B 1⊥平面BB 1C 1C ,BE ⊂平面BB 1C 1C ,所以A 1B 1⊥BE. 因为B 1E ∩A 1B 1= B 1,B 1E ⊂平面A 1B 1E ,A 1B 1⊂平面A 1B 1E ,所以BE⊥平面A 1B 1E. 因为A 1E ⊂平面A 1B 1E ,所以A 1E ⊥BE. 同理A 1E ⊥DE.又因为BE∩DE=E ,BE ⊂平面BDE ,DE ⊂平面BDE , 所以A 1E ⊥平面BDE.3. 如图,在四棱锥PABCD 中,底面ABCD 是矩形,侧棱PA 垂直于底面,点E ,F 分别是AB ,PC 的中点,PA =AD.求证:(1) CD⊥PD;(2) EF⊥平面PCD.证明:(1) ∵ PA⊥底面ABCD ,∴ CD ⊥PA.又矩形ABCD 中,CD ⊥AD ,且AD∩PA=A ,AD ,PA ⊂平面PAD ,∴ CD ⊥平面PAD ,∴ CD ⊥PD.(2) 如图,取PD 的中点G ,连结AG ,FG.∵ 点G ,F 分别是PD ,PC 的中点,∴ GF 綊12CD ,∴ GF 綊AE ,∴ 四边形AEFG 是平行四边形,∴ AG ∥EF. ∵ PA =AD ,G 是PD 的中点, ∴ AG ⊥PD ,∴ EF ⊥PD.∵ CD ⊥平面PAD ,AG ⊂平面PAD , ∴ CD ⊥AG ,∴ EF ⊥CD.∵ PD ∩CD =D ,PD ,CD ⊂平面PCD ,∴ EF ⊥平面PCD.4. 如图,在直三棱柱ABCA 1B 1C 1中,已知AC⊥BC,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E. 求证:(1) DE∥平面AA 1C 1C ; (2) BC 1⊥AB 1.。
近年高考数学一轮复习第八章立体几何学案文(2021年整理)
(江苏专版)2019版高考数学一轮复习第八章立体几何学案文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专版)2019版高考数学一轮复习第八章立体几何学案文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专版)2019版高考数学一轮复习第八章立体几何学案文的全部内容。
第八章立体几何第一节空间几何体的表面积与体积1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r+r′)l2.空间几何体的表面积与体积公式名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=13Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=错误!(S上+S下+错误!)h球S=4πR2V=错误!πR3[小题体验]1.(2018·南京高三年级学情调研)将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为27π cm3,则该圆柱的侧面积为________cm2。
解析:设正方形的边长为a cm,则πa2·a=27π,得a=3,所以侧面积2π×3×3=18π cm2。
答案:18π2.(2018·海安高三质量测试)已知正三棱锥的体积为36 3 cm3,高为4 cm,则底面边长为________cm.解析:设正三棱锥的底面边长为a cm,则其面积为S=错误!a2,由题意知错误!×错误!a2×4=36错误!,解得a=6错误!.答案:6错误!3.正三棱柱ABCA1B1C1的底面边长为2,侧棱长为3,D为BC中点,则三棱锥A。
2019版高考数学一轮复习训练: 基础与考点过关 第八章 立体几何初步
第八章 立体几何初步第1课时 空间点、直线、平面之间的 位置关系1. (必修2P 24练习2改编)用集合符号表示“点P 在直线l 外,直线l 在平面α内”为________.答案:P ∉l ,l ⊂α解析:考查点、线、面之间的符号表示. 2. (必修2P 28练习2改编)已知AB∥PQ,BC ∥QR ,若∠ABC=45°,则∠PQR=________. 答案:45°或135°解析:由等角定理可知∠PQR 与∠ABC 相等或互补,故答案为45°或135°. 3. (原创)若直线l 上有两个点在平面α外,则________.(填序号) ① 直线l 上至少有一个点在平面α内; ② 直线l 上有无穷多个点在平面α内; ③ 直线l 上所有点都在平面α外; ④ 直线l 上至多有一个点在平面α内. 答案:④解析:由已知得直线l ⊄α,故直线l 上至多有一个点在平面α内.4. (必修2P 31习题15改编)如图所示,设E ,F ,G ,H 依次是空间四边形ABCD 的边AB ,BC ,CD ,DA 上除端点外的点,AE AB =AH AD =λ,CF CB =CGCD=μ,则下列结论中不正确的是________.(填序号)① 当λ=μ时,四边形EFGH 是平行四边形; ② 当λ≠μ时,四边形EFGH 是梯形;③ 当λ≠μ时,四边形EFGH 一定不是平行四边形; ④ 当λ=μ时,四边形EFGH 是梯形. 答案:④解析:由AE AB =AH AD =λ,得EH∥BD,且EH BD =λ,同理得FG ∥BD 且 FGBD=μ,当λ=μ时,EH ∥FG 且EH =FG.当λ≠μ时,EH ∥FG ,但EH≠FG,只有④错误.5. (必修2P 30练习2改编)在正方体A 1B 1C 1D 1ABCD 中,与AB 异面的棱有______________________.答案:A 1D 1,DD 1,CC 1,C 1B 11. 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.公理3:经过不在同一条直线上的三点,有且只有一个平面. 推论1:经过一条直线和这条直线外的一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面. 2. 空间两条直线的位置关系(1) 公理4:平行于同一条直线的两条直线互相平行. (2) 定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.4. 异面直线的判定(1) 判定定理:过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线.(2) 符号表示:若l ⊂α,A ∉α,B ∈α,B ∉l ,则直线AB 与l 是异面直线. 5. 异面直线所成的角(1) 定义:设a ,b 是异面直线,经过空间任意一点O ,作直线a′∥a,b ′∥b ,我们把直线a′与b′所成的锐角(或直角)叫做异面直线a ,b 所成的角.(2) 范围:⎝⎛⎦⎥⎤0,π2.(3) 若异面直线a ,b 所成的角是直角,就称异面直线a ,b 互相垂直.记作a⊥b. [备课札记], 1平面的基本性质), 1) 如图,正方体ABCDA1B1C1D1中,点E,F分别为CC1,AA1的中点,画出平面BED1F和平面ABCD的交线.解:如图,在平面ADD1A1内延长D1F与DA交于一点P,则P∈平面BED1F.∵ DA⊂平面ABCD,∴ P∈平面ABCD,∴点P是平面ABCD与平面BED1F的一个公共点.又点B是两平面的一个公共点,∴ PB为两平面的交线.备选变式(教师专享)如图,在直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.解:显然点S是平面SBD和平面SAC的一个公共点,即点S在交线上,由于AB>CD,则分别延长AC和BD交于点E,如图所示.∵ E∈AC,AC⊂平面SAC,∴ E∈平面SAC.同理,可证E∈平面SBD,∴点E在平面SBD和平面SAC的交线上,连结SE,则直线SE是平面SBD和平面SAC的交线., 2共点、共线、共面问题), 2) 如图,在四边形ABCD 和四边形ABEF 中,BC ∥AD ,BC =12AD ,BE∥FA ,BE =12FA ,点G ,H 分别为FA ,FD 的中点.(1) 求证:四边形BCHG 是平行四边形. (2) C ,D ,F ,E 四点是否共面?为什么?(1) 证明:因为点G ,H 分别为FA ,FD 的中点,所以GH∥AD,GH =12AD.又BC∥AD,BC=12AD , 所以GH∥BC,且GH =BC ,所以四边形BCHG 为平行四边形.(2) 解:C ,D ,F ,E 四点共面.理由如下:由BE∥FA,BE =12FA ,点G 为FA 的中点知,BE ∥FG ,BE =FG ,所以四边形BEFG 为平行四边形,所以EF∥BG. 由(1)知BG∥CH,BG =CH ,所以EF∥CH,所以EF 与CH 共面. 又D∈FH,所以C ,D ,F ,E 四点共面. 变式训练如图,在直四棱柱ABCDA 1B 1C 1D 1中,点E ,F 分别是AB ,BC 的中点,A 1C 1与B 1D 1交于点O.求证:A 1,C 1,F ,E 四点共面.证明:如图,连结AC ,因为点E ,F 分别是AB ,BC 的中点,所以EF 是△ABC 的中位线,所以EF ∥AC.由直棱柱知AA 1綊CC 1,所以四边形AA 1C 1C 为平行四边形,所以AC∥A 1C 1. 所以EF∥A 1C 1,故A 1,C 1,F ,E 四点共面., 3 空间直线位置关系问题), 3) 如图,在正方体ABCDA 1B 1C 1D 1中,点M ,N 分别是A 1B 1,B 1C 1的中点.求证:(1) AM 和CN 共面;(2) D 1B 和CC 1是异面直线.证明:(1) 如图,连结MN,A1C1,AC.∵点M,N分别是A1B1,B1C1的中点,∴ MN∥A1C1.∵ A1A綊C1C,∴四边形A1ACC1为平行四边形,∴ A1C1∥AC,∴ MN∥AC,∴ A,M,N,C四点共面,即AM和CN共面.(2) ∵ ABCDA1B1C1D1是正方体,∴ B,C,C1,D1不共面.假设D1B与CC1不是异面直线,则存在平面α,使D1B⊂平面α,CC1⊂平面α,∴ D1,B,C,C1∈α,这与B,C,C1,D1不共面矛盾.∴假设不成立,即D1B与CC1是异面直线.变式训练已知空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD 的中点.(1) 求证:BC与AD是异面直线;(2) 求证:EG与FH相交.证明:(1) 假设BC与AD不是异面直线,则BC与AD共面.不妨设它们所共平面为α,则B,C,A,D∈α,所以四边形ABCD为平面图形,这与四边形ABCD为空间四边形相矛盾.所以BC与AD是异面直线.(2) 如图,连结AC,BD,则EF∥AC,HG∥AC,因此EF∥HG;同理EH∥FG,则EFGH为平行四边形.又EG,FH是平行四边形EFGH的对角线,所以EG与FH相交.1. 在下列命题中,不是公理的是________.(填序号)①如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;②过不在同一条直线上的三点,有且只有一个平面;③如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内;④平行于同一个平面的两个平面相互平行.答案:④解析:④不是公理,是个常用的结论,需经过推理论证;①②③是平面的基本性质公理.2. 一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:① AB⊥EF;② AB与CM所成的角为60°;③ EF与MN是异面直线;④ MN∥CD.以上结论中正确的是________.(填序号)答案:①③解析:把正方体平面展开图还原到原来的正方体,如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD,只有①③正确.3. 在正方体ABCDA1B1C1D1中,点E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有________条.答案:无数解析:在A1D1,C1D1上任取一点P,M,过点P,M与直线EF作一个平面α,因CD与平面α不平行,所以它们相交,设α∩CD =Q,连结PQ,则PQ与EF必然相交,即PQ为所求直线.由点P的任意性知,有无数条直线与直线A1D1,EF,CD都相交.4. 如图,在正方体ABCDA1B1C1D1中,点E,F,G分别是棱CC1,BB1及DD1的中点.求证:∠BGC=∠FD1E.证明:∵ 点E,F,G分别是正方体的棱CC1,BB1,DD1的中点,∴ CE平行且等于GD1,BF平行且等于GD1,则四边形CED1G与四边形BFD1G均为平行四边形.则GC∥D1E,GB∥D1F.∵∠BGC与∠FD1E对应两边的方向分别相同,∴∠BGC=∠FD1E.5. 如图,在正方体ABCDA1B1C1D1中,对角线A1C与平面BDC1交于点O,AC,BD交于点M,点E为AB的中点,点F为AA1的中点.求证:(1) C1,O,M三点共线;(2) E,C,D1,F四点共面;(3) CE,D1F,DA三线共点.证明:(1) ∵ C 1,O ,M ∈平面BDC 1,又C 1,O ,M ∈平面A 1ACC 1,由公理3知,点C 1,O ,M 在平面BDC 1与平面A 1ACC 1的交线上,∴ C 1,O ,M 三点共线.(2) ∵ 点E ,F 分别是AB ,A 1A 的中点,∴ EF ∥A 1B. ∵ A 1B ∥CD 1,∴ EF ∥CD 1.∴ E ,C ,D 1,F 四点共面.(3) 由(2)可知,E ,C ,D 1,F 四点共面.∵ EF∥A 1B ,EF =12A 1B ,∴ EF =12D 1C ,∴ D 1F ,CE 为相交直线,记交点为P.则P∈D 1F ⊂平面ADD 1A 1,P ∈CE ⊂平面ADCB ,∴ P ∈平面ADD 1A 1∩平面ADCB =AD ,∴ CE ,D 1F ,DA 三线共点.1. 如图,在正方体ABCDEFMN 中,①BM 与ED 平行;②CN 与BM 是异面直线;③CN 与BE 是异面直线;④DN 与BM 是异面直线.以上四个命题中,正确的命题是________.(填序号)答案: ②④解析:观察图形,根据异面直线的定义可知,BM 与ED 是异面直线,CN 与BM 是异面直线,CN 与BE 不是异面直线,DN 与BM 是异面直线,故①③错误,②④正确.即正确的命题是②④.2. 在空间四边形ABCD 中,AB =CD 且AB 与CD 所成的角为30°,点M ,N 分别是BC ,AD 的中点,求直线AB 和MN 所成的角.解:如图,取AC 的中点P.连结PM ,PN ,则PM∥AB,且PM =12AB ,PN ∥CD ,且PN =12CD ,所以∠MPN 为直线AB 与CD 所成的角(或所成角的补角). 则∠MPN=30°或∠MPN=150°. 若∠MPN=30°,因为PM∥AB,所以∠PMN 是AB 与MN 所成的角(或所成角的补角).又AB =CD ,所以PM =PN ,则△PMN 是等腰三角形,所以∠PMN=75°, 即直线AB 与MN 所成的角为75°.若∠MPN=150°,易知△PMN 是等腰三角形,所以∠PMN=15°, 即直线AB 与MN 所成的角为15°.故直线AB 和MN 所成的角为75°或15°.3. 已知在棱长为a 的正方体ABCDA 1B 1C 1D 1中,点M ,N 分别是棱CD ,AD 的中点.求证: (1) 四边形MNA 1C 1是梯形; (2) ∠DNM=∠D 1A 1C 1.证明:(1) 如图,连结AC ,在△ACD 中,∵ 点M ,N 分别是CD ,AD 的中点, ∴ MN 是三角形ACD 的中位线,∴ MN ∥AC ,MN =12AC.由正方体的性质得AC∥A 1C 1,AC =A 1C 1,∴ MN ∥A 1C 1且MN =12A 1C 1,即MN≠A 1C 1,∴ 四边形MNA 1C 1是梯形.(2) 由(1)知MN∥A 1C 1.又∵ ND∥A 1D 1, ∴ ∠DNM 与∠D 1A 1C 1相等或互补.而∠DNM 与∠D 1A 1C 1均是直角三角形中的锐角, ∴ ∠DNM =∠D 1A 1C 1.1. 证明点线共面的常用方法:一是依据题中所给部分条件先确定一个平面,然后证明其余的点或线都在平面内;二是将所有元素分成几个部分,然后分别确定几个平面,再证这些平面重合;三是采用反证法.2. 证明三线共点的方法:通常先证明两条直线的交点在第三条直线上,而第三条直线是分别经过这两条直线的两个平面的一条交线.3. 异面直线的证明方法:一是应用判定定理(过平面内一点与平面外一点的连线与平面内不经过该点的直线是异面直线);二是采用反证法.判定异面直线时通常采用排除法(既不相交也不平行)或判定定理.4. 对于异面直线所成的角,要注意角的范围是⎝⎛⎦⎥⎤0,π2以及两条直线垂直的定义,平移法是解决此类问题的关键.[备课札记]第2课时 直线与平面的位置关系(1) (对应学生用书(文)109~110页、(理)111~112页)了解直线与平面的位置关系,了解线面平行的有关概念;除了能熟练运用线面平行的判定定理和性质定理外,还能运用定义判断位置关系.① 要熟练掌握线面平行的定义、判定及性质.② 要注意线线关系、线面关系以及面面关系的转化.对于直线与平面所成的角,点到面的距离了解即可.1. (必修2P 35练习2改编)给出下列条件:① l∥α;② l 与α至少有一个公共点;③ l 与α至多有一个公共点.则能确定直线l 在平面α外的条件为________.(填序号)答案:①③解析:直线l 在平面α外:l∥α或直线l 与平面α仅有一个交点. 2. (必修2P 35练习7改编)在梯形ABCD 中,AB ∥CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位置关系是________.答案:平行或异面解析:因为AB∥CD,AB ⊂平面α,CD ⊄平面α,所以CD∥平面α,所以CD 与平面α内的直线可能平行,也可能异面.3. (必修2P 35练习4改编)在正六棱柱ABCDEFA 1B 1C 1D 1E 1F 1的表面中,与A 1F 1平行的平面是________.答案:平面ABCDEF 、平面CC 1D 1D解析:在正六棱柱中,易知A 1F 1∥AF ,AF ⊂平面ABCDEF ,且A 1F 1⊄平面ABCDEF ,所以A 1F 1∥平面ABCDEF.同理,A 1F 1∥C 1D 1,C 1D 1⊂平面CC 1D 1D ,且A 1F 1⊄平面CC 1D 1D ,所以A 1F 1∥平面CC 1D 1D.其他各面与A 1F 1均不满足直线与平面平行的条件.故答案为平面ABCDEF 与平面CC 1D 1D.4. (原创)P 为矩形ABCD 所在平面外一点,矩形对角线的交点为O ,M 为PB 的中点,给出下列四个命题:① OM ∥平面PCD ;② OM∥平面PBC ;③ OM∥平面PDA ;④ OM∥平面PBA. 其中正确命题的个数是________. 答案:2解析:由已知OM∥PD,得OM∥平面PCD 且OM∥平面PAD.故正确的只有①③.5. (必修2P 41习题5改编)在四面体ABCD 中,点M ,N 分别是△ACD,△BCD 的重心,则四面体的四个面中与MN 平行的是________.答案:平面ABC 、平面ABD 解析:如图,连结AM 并延长交CD 于E ,连结BN 并延长交CD 于F ,由重心性质可知,E ,F 重合为一点,且该点为CD 的中点E ,由EM MA =EN NB =12,得MN∥AB,因此,MN ∥平面ABC ,且MN∥平面ABD.1. 一条直线和一个平面的位置关系有且只有以下三种:, 1基本概念辨析), 1) 下列命题中真命题的个数为W.①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线b⊂α,则a∥α;④若直线a∥b,b⊂α,那么直线a平行于平面α内的无数条直线.答案:1解析:∵ 直线l虽与平面α内无数条直线平行,但l有可能在平面α内,∴ l不一定平行于α.∴ ①是假命题.∵ 直线a在平面α外,包括两种情况:a∥α和a与α相交,∴ a和α不一定平行.∴ ②是假命题.∵ 直线a∥b,b⊂α,则只能说明a和b无公共点,但a可能在平面α内,∴ a不一定平行于α.∴ ③是假命题.∵ a∥b,b⊂α,那么a⊂α或a∥α,∴ a可以与平面α内的无数条直线平行.∴ ④是真命题.综上可知,真命题的个数为1.备选变式(教师专享)下列命题中正确的是W.(填序号)①若直线a不在平面α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④若l与平面α平行,则l与α内任何一条直线都没有公共点;⑤平行于同一平面的两直线可以相交.答案:④⑤解析:如图①,a∩α=A时,a⊄α,∴①错误;直线l与α相交时,l上有无数个点不在α内,∴②错误;l∥α时,α内的直线与l平行或异面,∴③错误;l∥α,l与α无公共点,∴ l与α内任一直线都无公共点,④正确;如图②,长方体ABCDA1B1C1D1中,A1C1与B1D1都与平面ABCD平行,∴⑤正确., 2线面平行的判定), 2) 如图,在底面为平行四边形的四棱锥PABCD中,点E是PC的中点.求证:PA∥平面BDE.证明:如图,连结AC交BD于点O,连结OE.在平行四边形ABCD中,O是AC的中点,又E是PC的中点,∴ OE∥PA.∵ PA⊄平面BDE,OE⊂平面BDE,∴ PA∥平面BDE.变式训练如图,在三棱柱A1B1C1ABC中, E,F分别是A1B,AC1的中点.求证:EF∥平面ABC.证明:如图,连结A1C,因为三棱柱A1B1C1ABC中,四边形AA1C1C是平行四边形,所以点F在A1C上,且为A1C的中点.在△A1BC中,因为E,F分别是A1B,A1C的中点,所以EF∥BC.因为BC⊂平面ABC,EF⊄平面ABC,所以EF∥平面ABC.备选变式(教师专享)如图,在正方体ABCDA1B1C1D1中,点M,N,P分别为棱AB,BC,C1D1的中点.求证:AP∥平面C1MN.证明:在正方体ABCDA1B1C1D1中,因为点M ,P 分别为棱AB ,C 1D 1的中点,所以AM =PC 1. 又AM∥CD,PC 1∥CD ,故AM∥PC 1,所以四边形AMC 1P 为平行四边形.从而AP∥C 1M. 又AP ⊄ 平面C 1MN ,C 1M ⊂平面C 1MN , 所以AP∥平面C 1MN., 3 线面平行的性质), 3) 如图,在直三棱柱ABCA 1B 1C 1中,AC ⊥BC ,CC 1=4,M 是棱CC 1上的一点.若点N 是AB 的中点,且CN∥平面AB 1M ,求CM 的长.解:(解法1)如图①,取AB 1的中点P ,连结NP ,PM.①因为点N 是AB 的中点,所以NP∥BB 1.因为CM∥BB 1,所以NP∥CM,所以NP 与CM 共面.因为CN∥平面AB 1M ,平面CNPM∩平面AB 1M =MP ,所以CN∥MP.所以四边形CNPM 为平行四边形,所以CM =NP =12CC 1=2.(解法2)如图②,设NC 与CC 1确定的平面交AB 1于点P ,连结NP ,PM.②因为CN∥平面AB 1M ,CN ⊂平面CNPM ,平面AB 1M ∩平面CNPM =PM ,所以CN∥MP. 因为BB 1∥CM ,BB 1⊄平面CNPM ,CM ⊂平面CNPM ,所以BB 1∥平面CNPM. 又BB 1⊂平面ABB 1,平面ABB 1∩平面CNPM =NP ,所以BB 1∥NP ,所以CM∥NP,所以四边形CNPM 为平行四边形.因为点N 是AB 的中点,所以CM =NP =12BB 1=12CC 1=2.(解法3)如图③,取BB 1的中点Q ,连结NQ ,CQ.③因为点N 是AB 的中点,所以NQ∥AB 1. 因为NQ ⊄平面AB 1M ,AB 1⊂平面AB 1M , 所以NQ∥平面AB 1M.因为CN∥平面AB 1M ,NQ ∩NC =N ,NQ ,NC ⊂平面NQC , 所以平面NQC∥平面AB 1M.因为平面BCC 1B 1∩平面NQC =QC ,平面BCC 1B 1∩平面AB 1M =MB 1,所以CQ∥MB 1. 因为BB 1∥CC 1,所以四边形CQB 1M 是平行四边形,所以CM =B 1Q =12CC 1=2.(解法4)如图④,分别延长BC ,B 1M ,设交点为S ,连结AS.④因为CN∥平面AB 1M ,CN ⊂平面ABS , 平面ABS∩平面AB 1M =AS ,所以CN∥AS. 由于AN =NB ,所以BC =CS.又CM∥BB 1,同理可得SM =MB 1,所以CM =12BB 1=12CC 1=2.备选变式(教师专享) 如图,在斜三棱柱ABCA 1B 1C 1中,AC 1与A 1C 交于点O ,E 是棱AB 上一点,且OE∥平面BCC 1B 1.求证:点E 是AB 的中点.证明:连结BC 1,因为OE∥平面BCC 1B 1,OE ⊂平面ABC 1,平面BCC 1B 1∩平面ABC 1=BC 1,所以OE∥BC 1.在斜三棱柱ABCA 1B 1C 1中,侧面AA 1C 1C 是平行四边形,AC 1∩A 1C =O , 所以点O 是AC 1的中点,所以AE EB =AOOC 1=1,即点E 是AB 的中点.1. 如图,在直三棱柱ABCA 1B 1C 1中,已知AB =AC ,点M ,N ,P 分别为BC ,CC 1,BB 1的中点.求证:A 1N ∥平面AMP.证明:取C 1B 1的中点D ,连结A 1D ,DN ,DM ,B 1C.由于点D ,M 分别为C 1B 1,CB 的中点,所以DM∥CC 1且DM =CC 1,故DM∥AA 1且DM =AA 1,则四边形A 1AMD 为平行四边形,所以A 1D ∥AM.又A 1D ⊄平面APM ,AM ⊂平面APM ,所以A 1D ∥平面APM.由于D ,N 分别为C 1B 1,CC 1的中点,所以DN∥B 1C.又点P ,M 分别为BB 1,CB 的中点,所以MP∥B 1C.所以DN∥MP.又DN ⊄平面APM ,MP ⊂平面APM , 所以DN∥平面APM.由于A 1D ∩DN =D ,所以平面A 1DN∥平面APM. 由于A 1N ⊂平面A 1DN ,所以A 1N ∥平面APM.2. 如图,在四棱锥EABCD 中,四边形ABCD 为矩形,点M ,N 分别是AE ,CD 的中点.求证:直线MN∥平面EBC.证明:取BE 中点F ,连结CF ,MF.因为点M 是AE 的中点,所以MF 綊12AB.又点N 是矩形ABCD 边CD 的中点,所以NC 綊12AB ,所以MF 綊NC ,所以四边形MNCF 是平行四边形,所以MN∥CF.又MN ⊄平面EBC ,CF ⊂平面EBC ,所以MN∥平面EBC. 3. 如图,在正三棱柱ABCA′B′C′中,D 是AA′上的点,点E 是B′C′的中点,且A′E∥平面DBC′.试判断D 点在A A′上的位置,并给出证明.解:点D 为AA′的中点.证明如下:如图,取BC 的中点F ,连结AF ,EF ,设EF 与BC′交于点O ,连结DO ,BE ,C ′F ,在正三棱柱ABCA′B′C′中,点E 是B′C′的中点,所以 EF ∥BB ′∥AA ′,且EF =BB′=AA′, 所以四边形A′EFA 是平行四边形.因为A′E∥平面DBC′,A ′E ⊂平面A′EFA,且平面DBC′∩平面A′EFA=DO , 所以A′E∥DO.在正三棱柱ABC -A′B′C′中,点E 是B′C′的中点, 所以EC′∥BC 且EC′=BF ,所以四边形BFC′E 是平行四边形,所以点O 是EF 的中点. 因为在平行四边形A′EFA 中, A ′E ∥DO , 所以点D 为AA′的中点. 4. 如图,在直四棱柱ABCDA 1B 1C 1D 1中,底面ABCD 是菱形,点E 是A 1C 1的中点.求证:BE∥平面ACD 1.证明:如图,连结B 1D 1交A 1C 1于点E ,连结BD 交AC 于点O ,连结OD 1.∵ 在直四棱柱ABCDA 1B 1C 1D 1中,底面ABCD 是菱形, ∴ D 1E ∥BO 且D 1E =BO ,∴ 四边形BED 1O 是平行四边形, ∴ BE ∥OD 1.∵ OD 1⊂平面ACD 1,BE ⊄平面ACD 1, ∴ BE ∥平面ACD 1.5. 如图,在四棱锥PABCD 中,PC ⊥平面PAD ,AB ∥CD ,CD =2AB =2BC ,点M ,N 分别是棱PA ,CD 的中点.求证:PC∥平面BMN.证明:设AC∩BN=O ,连结MO ,AN.因为AB =12CD ,AB ∥CD ,点N 为CD 的中点,所以AB =CN ,AB ∥CN ,所以四边形ABCN 为平行四边形, 所以O 为AC 的中点.又点M 为PA 的中点,所以MO∥PC. 因为MO ⊂平面BMN ,PC ⊄ 平面BMN , 所以PC∥平面BMN.1. 如图,在三棱锥PABC中,点M,N分别为AB,PA的中点.求证:PB∥平面MNC.证明:因为点M,N分别为AB,PA的中点,所以MN∥PB.因为MN⊂平面MNC,PB⊄平面MNC,所以PB∥平面MNC.2. 如图,在直三棱柱ABCA1B1C1中,点D是AB的中点.求证:BC1∥平面A1CD.证明:连结AC1,设交A1C于点O,连结OD.∵四边形AA1C1C是矩形,∴ O是AC1的中点.∵在△ABC1中, O,D分别是AC1,AB的中点,∴OD∥BC1.∵ OD⊂平面A1CD,BC1⊄平面A1CD,∴ BC1∥平面A1CD.3. 如图,在长方体ABCDA1B1C1D1中,点P∈BB1(P不与B,B1重合).PA∩A1B=M,PC∩BC1=N.求证:MN∥平面ABCD.证明:连结AC,A1C1,在长方体ABCDA1B1C1D1中,AA1∥CC1,且AA1=CC1,∴四边形ACC1A1是平行四边形.∴ AC∥A1C1.∵ AC⊄平面A1BC1,A1C1⊂平面A1BC1,∴ AC∥平面A1BC1.∵ AC⊂平面PAC,平面A1BC1∩平面PAC=MN,∴ AC∥MN.∵ MN⊄平面ABCD,AC⊂平面ABCD,∴ MN∥平面ABCD.1. 判定或证明直线与平面平行的常用方法(1)利用直线与平面平行的定义(无公共点).(2)利用直线与平面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).(3)利用平面与平面平行的性质(α∥β,a⊂α⇒a∥β).注意不管用哪种方法,都应将相应的条件写全,缺一不可.2. 直线与平面平行的性质定理的作用是证线线平行,应用时常常需构造辅助平面,和在平面几何中添加辅助线一样,在构造辅助平面时要确认这个平面的存在性.3. 证明平行问题时要注意“转化思想”的应用,要抓住线线、线面、面面之间的平行关系,实现“空间问题”与“平面问题”之间的转化.[备课札记]第3课时直线与平面的位置关系(2)(对应学生用书(文)111~113页、(理)113~115页)1. (必修2P38练习2(3)改编)已知直线l,a,b,平面α.若l∥a,a⊥α,b⊥α,则l与b的位置关系是W.答案:平行解析:由线面垂直的性质可知,若a⊥α,b ⊥α,则a∥b.因为l ∥a ,所以l∥b. 2. 已知两条异面直线平行于一平面,一直线与两异面直线都垂直,那么这个平面与这条直线的位置关系是 W.(填序号)① 平行;② 垂直;③ 斜交;④ 不能确定. 答案:② 解析:设a ,b 为异面直线,a ∥平面α,b ∥平面α,直线l⊥a,l ⊥b.过a 作平面β∩α=a′,则a ∥a ′,∴ l ⊥a ′.同理过b 作平面γ∩α=b′,则l ⊥b ′.∵ a ,b 异面,∴ a ′与b′相交,∴ l ⊥α.3. 设l ,m 表示直线,m 是平面α内的任意一条直线,则“l⊥m”是“l⊥α”成立的 条件.(选填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)答案:充要解析:由线面垂直的定义知,直线垂直于平面内任意一条直线,则直线与平面垂直,说明是充分条件,反之,直线垂直于平面,则直线垂直于平面内任意一条直线,说明是必要条件,则“l⊥m”是“l⊥α”成立的充要条件.4. (必修2P 42习题9改编)如图,AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆O 上不同于A ,B 的任一点,则图中直角三角形的个数为 W.答案:4解析:因为AB 是圆O 的直径,所以AC⊥BC,△ACB 是直角三角形;由PA⊥平面ABC 可得,PA ⊥AB ,PA ⊥AC ,所以△PAB 与△PAC 是直角三角形;因为PA⊥平面ABC ,且BC ⊂平面ABC ,所以PA⊥BC.又BC⊥AC,PA ∩AC =A ,所以BC⊥平面PAC.而PC ⊂平面PAC ,所以BC⊥PC,△PCB 是直角三角形.故直角三角形的个数为4.5. (必修2P 38练习3改编)在正方体ABCDA 1B 1C 1D 1中,已知AB =1,则点C 到平面B 1BDD 1.解析:连结AC ,则AC⊥BD,又BB 1⊥AC ,故AC⊥平面B 1BDD 1,所以点C 到平面B 1BDD 1的距离为12AC =22.1. 直线与平面垂直的定义:如果一条直线a 与一个平面α内的任意一条直线都垂直,我们就说直线a 与平面α互相垂直,记作a ⊥α,直线a 叫做平面α的垂线,平面α叫做直线a的垂面,垂线和平面的交点称为垂足W.2. 结论:过一点有且只有一条直线与已知平面垂直,过一点有且只有一个平面与已知直线垂直.3. 直线与平面垂直从平面外一点引平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.5. 直线和平面的距离一条直线和一个平面平行,这条直线上任意一点到这个平面的距离,叫做这条直线和这个平面的距离.6. 直线与平面所成的角(1)斜线一条直线与一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线与平面的交点叫做斜足,斜线上一点与斜足间的线段叫做这个点到平面的斜线段.(2)射影过平面α外一点P向平面α引斜线和垂线,那么过斜足Q和垂足P1的直线就是斜线在平面内的正投影(简称射影),线段P1Q就是斜线段PQ在平面α内的射影,如图.(3)直线和平面所成的角平面的一条斜线与它在这个平面内的射影所成的锐角,叫做这条直线与这个平面所成的角.特别地,如果直线和平面垂直,那么就说这条直线与平面所成的角是直角;如果直线与平面平行或在平面内,则它们所成的角是0°的角.[备课札记], 1直线与平面垂直的判定), 1) 如图,在直四棱柱ABCDA1B1C1D1中,点E,F分别是AB,BC的中点,A1C1与B1D1交于点O.若底面ABCD是菱形,且OD⊥A1E,求证:OD⊥平面A1C1FE.证明:连结BD,因为直棱柱中DD1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,所以DD1⊥A1C1.因为底面A1B1C1D1是菱形,所以A1C1⊥B1D1.又DD1∩B1D1=D1,所以A1C1⊥平面BB1D1D.因为OD⊂平面BB1D1D,所以OD⊥A1C1.又OD⊥A1E,A1C1∩A1E=A1,A1C1⊂平面A1C1FE,A1E⊂平面A1C1FE,所以OD⊥平面A1C1FE.变式训练如图,在三棱锥PABC中,平面PAB⊥平面ABC,PA⊥PB,M,N分别为AB,PA的中点.若AC=BC,求证:PA⊥平面MNC.证明:因为M,N分别为AB,PA的中点,所以MN∥PB.又因为PA⊥PB,所以PA⊥MN. 因为AC=BC,AM=BM,所以CM⊥AB.因为平面PAB⊥平面ABC,CM⊂平面ABC,平面PAB∩平面ABC=AB,所以CM⊥平面PAB.因为PA⊂平面PAB,所以CM⊥PA.又因为PA⊥MN,MN⊂平面MNC,CM⊂平面MNC,MN∩CM=M,所以PA⊥平面MNC., 2直线与平面垂直性质的应用), 2) 如图,在四棱锥PABCD中,AD⊥平面PAB,AP⊥AB.(1)求证:CD⊥AP;(2)若CD⊥PD,求证:CD∥平面PAB.证明:(1)因为AD⊥平面PAB,AP⊂平面PAB,所以AD⊥AP.因为AP⊥AB,AB∩AD=A,AB⊂平面ABCD,AD⊂平面ABCD,所以AP⊥平面ABCD.因为CD⊂平面ABCD,所以CD⊥AP.(2)因为CD⊥AP,CD⊥PD,且PD∩AP=P,PD⊂平面PAD,AP⊂平面PAD,所以CD⊥平面PAD ①.因为AD⊥平面PAB,AB⊂平面PAB,所以AB⊥AD.因为AP⊥AB,AP∩AD=A,AP⊂平面PAD,AD⊂平面PAD,所以AB⊥平面PAD ②.由①②得CD∥AB,因为CD⊄平面PAB,AB⊂平面PAB,所以CD∥平面PAB.变式训练如图,在正方体ABCDA1B1C1D1中,EF与异面直线AC,A1D都垂直相交.求证:(1)EF⊥平面AB1C;(2)EF∥BD1.证明:(1)在正方体ABCDA1B1C1D1中,A1B1∥AB∥CD,且A1B1=AB=CD,所以四边形A1B1CD是平行四边形,所以A1D∥B1C.因为EF⊥A1D,所以EF⊥B1C.又因为EF⊥AC,AC∩B1C=C,AC⊂平面AB1C,B1C ⊂平面AB1C,所以EF⊥平面AB1C.(2)连结BD,则BD⊥AC.因为DD1⊥平面ABCD,AC⊂平面ABCD,所以DD1⊥AC.因为AC⊥BD,DD1∩BD=D,DD1⊂平面BDD1B1,BD⊂平面BDD1B1,所以AC⊥平面BDD1B1.又BD1⊂平面BDD1B1,所以AC⊥BD1.同理可证BD1⊥B1C,又AC∩B1C=C,AC⊂平面AB1C,B1C⊂平面AB1C,所以BD1⊥平面AB1C.又EF⊥平面AB1C,所以EF∥BD1., 3直线与平面垂直的探索题), 3) 在正三棱柱ABCA1B1C1中,点D是BC的中点,BC=BB1.(1)若P是CC1上任一点,求证:AP不可能与平面BCC1B1垂直;(2)试在棱CC1上找一点M,使MB⊥AB1.(1)证明:(反证法)假设AP⊥平面BCC1B1,∵ BC⊂平面BCC1B1,∴ AP⊥BC.又正三棱柱ABCA1B1C1中,CC1⊥BC,AP∩CC1=P,AP⊂平面ACC1A1,CC1⊂平面ACC1A1,∴ BC⊥平面ACC1A1.而AC⊂平面ACC1A1,∴ BC⊥AC,这与△ABC是正三角形矛盾,故AP 不可能与平面BCC 1B 1垂直. (2) 解:M 为CC 1的中点.∵ 在正三棱柱ABCA 1B 1C 1中,BC =BB 1, ∴ 四边形BCC 1B 1是正方形.∵ 点M 为CC 1的中点,点D 是BC 的中点, ∴ △B 1BD ≌△BCM ,∴ ∠BB 1D =∠CBM,∠BDB 1=∠CMB.∵ ∠BB 1D +∠BDB 1=π2,∴ ∠CBM +∠BDB 1=π2,∴ BM ⊥B 1D.∵ △ABC 是正三角形,D 是BC 的中点, ∴ AD ⊥BC.∵ 平面ABC⊥平面BB 1C 1C ,平面ABC∩平面BB 1C 1C =BC ,AD ⊂平面ABC , ∴ AD ⊥平面BB 1C 1C.∵ BM ⊂平面BB 1C 1C ,∴ AD ⊥BM. ∵ AD ∩B 1D =D ,∴ BM ⊥平面AB 1D. ∵ AB 1⊂平面AB 1D ,∴ MB ⊥AB 1. 备选变式(教师专享)如图,在棱长为1的正方体ABCDA 1B 1C 1D 1中,点E 是棱BC 的中点,点F 是棱CD 上的动点.试确定点F 的位置,使得D 1E⊥平面AB 1F.解:如图,连结A 1B ,CD 1,则A 1B ⊥AB 1.∵ 在正方体ABCDA 1B 1C 1D 1中,D 1A 1⊥平面ABB 1A 1,AB 1⊂平面ABB 1A 1,∴ A 1D 1⊥AB 1.又A 1D 1∩A 1B =A 1,A 1D 1,A 1B ⊂平面A 1BCD 1, ∴ AB 1⊥平面A 1BCD 1.又D 1E ⊂平面A 1BCD 1,∴ AB 1⊥D 1E.于是使D 1E ⊥平面AB 1F 等价于使D 1E ⊥AF. 连结DE ,易知D 1D ⊥AF ,若有AF⊥平面D 1DE ,只需证DE⊥AF.∵ 四边形ABCD 是正方形,点E 是BC 的中点, ∴ 当且仅当点F 是CD 的中点时,DE ⊥AF , 即当点F 是CD 的中点时,D 1E ⊥平面AB 1F.1. 如图,在矩形ABCD 中,AB =1,BC =a (a>0),PA ⊥平面ABCD ,且PA =1,问BC 边上是否存在点Q ,使得PQ ⊥QD ,并说明理由.解:假设存在点Q ,使得PQ⊥QD.连结AQ. ∵ PA ⊥平面ABCD ,且DQ ⊂平面ABCD , ∴ PA ⊥DQ.∵ PQ ⊥DQ ,且PQ∩PA=P ,PQ ⊂平面PAQ ,PA ⊂平面PAQ , ∴ DQ ⊥平面PAQ.∵ AQ ⊂平面PAQ ,∴ AQ ⊥DQ.设BQ =x ,则CQ =a -x ,AQ 2=x 2+1,DQ 2=(a -x )2+1.∵ AQ 2+DQ 2=AD 2,∴ x 2+1+(a -x )2+1=a 2,即x 2-ax +1=0 (*).方程(*)的判别式Δ=a 2-4. ∵ a>0,∴ 当Δ<0,即0<a<2时,方程(*)无实根;当Δ=0,即a =2时,方程(*)有惟一实根,此时x =1;当Δ>0,即a>2时,方程(*)有两个不等实根,设两个实根分别为x 1,x 2.由于x 1+x 2=a>0,x 1x 2=1>0,则这两个实根均为正数.因此,当0<a<2时,BC 边上不存在点Q 使PQ⊥QD; 当a =2时,BC 边上存在惟一一点Q (即BC 的中点),使PQ ⊥QD ; 当a>2时,BC 边上存在不同的两点Q ,使PQ⊥QD.2. 如图,在长方体ABCDA 1B 1C 1D 1中,AB =BC =EC =12AA 1.(1) 求证:AC 1∥平面BDE ; (2) 求证:A 1E ⊥平面BDE.证明:(1) 连结AC 交BD 于点O ,连结OE.在长方体ABCDA 1B 1C 1D 1中,四边形ABCD 是正方形,点O 为AC 的中点,AA 1∥CC 1且AA 1=CC 1,由EC =12AA 1,得EC =12CC 1,即点E 为CC 1的中点,于是在△CAC 1中,AC 1∥OE.因为OE ⊂平面BDE ,AC 1⊄平面BDE ,所以AC 1∥平面BDE.(2) 连结B 1E.设AB =a ,则在△BB 1E 中,BE =B 1E =2a ,BB 1=2a.所以BE 2+B 1E 2=BB 21,所以B 1E ⊥BE.在长方体ABCDA 1B 1C 1D 1中,A 1B 1⊥平面BB 1C 1C ,BE ⊂平面BB 1C 1C ,所以A 1B 1⊥BE. 因为B 1E ∩A 1B 1= B 1,B 1E ⊂平面A 1B 1E ,A 1B 1⊂平面A 1B 1E ,所以BE⊥平面A 1B 1E. 因为A 1E ⊂平面A 1B 1E ,所以A 1E ⊥BE. 同理A 1E ⊥DE.又因为BE∩DE=E ,BE ⊂平面BDE ,DE ⊂平面BDE , 所以A 1E ⊥平面BDE.3. 如图,在四棱锥PABCD 中,底面ABCD 是矩形,侧棱PA 垂直于底面,点E ,F 分别是AB ,PC 的中点,PA =AD.求证:(1) CD⊥PD;(2) EF⊥平面PCD.证明:(1) ∵ PA⊥底面ABCD ,∴ CD ⊥PA.又矩形ABCD 中,CD ⊥AD ,且AD∩PA=A ,AD ,PA ⊂平面PAD ,∴ CD ⊥平面PAD ,∴ CD ⊥PD.(2) 如图,取PD 的中点G ,连结AG ,FG.∵ 点G ,F 分别是PD ,PC 的中点,∴ GF 綊12CD ,∴ GF 綊AE ,∴ 四边形AEFG 是平行四边形,∴ AG ∥EF. ∵ PA =AD ,G 是PD 的中点, ∴ AG ⊥PD ,∴ EF ⊥PD.∵ CD ⊥平面PAD ,AG ⊂平面PAD , ∴ CD ⊥AG ,∴ EF ⊥CD.∵ PD ∩CD =D ,PD ,CD ⊂平面PCD ,∴ EF ⊥平面PCD.4. 如图,在直三棱柱ABCA 1B 1C 1中,已知AC⊥BC,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E. 求证:(1) DE∥平面AA 1C 1C ; (2) BC 1⊥AB 1.。
近年高考数学一轮复习第八章立体几何第一节空间几何体的结构特征及其三视图和直观图夯基提能作业本文(2
(北京专用)2019版高考数学一轮复习第八章立体几何第一节空间几何体的结构特征及其三视图和直观图夯基提能作业本文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((北京专用)2019版高考数学一轮复习第八章立体几何第一节空间几何体的结构特征及其三视图和直观图夯基提能作业本文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(北京专用)2019版高考数学一轮复习第八章立体几何第一节空间几何体的结构特征及其三视图和直观图夯基提能作业本文的全部内容。
第一节空间几何体的结构特征及其三视图和直观图A组基础题组1.(2015北京东城二模)若一个底面是正三角形的直三棱柱的正(主)视图如图所示,则其侧面积等于( )A.3 B。
4 C。
5 D.62.(2015北京海淀一模)某三棱锥的正视图如图所示,则图①②③④中,所有可能成为这个三棱锥的俯视图的是()A.①②③B.①②④C.②③④D。
①②③④3.(2015北京丰台二模)如图所示,某三棱锥的正视图、俯视图均为边长为2的正三角形,则其左视图的面积为( )A.2B. C。
D。
4.(2017北京朝阳一模)某四棱锥的三视图如图所示,则该四棱锥的底面的面积是( )A。
B. C. D.5。
(2016北京朝阳二模)已知某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长是()A. B. C.2 D.6。
(2017北京西城二模)某四面体的三视图如图所示,该四面体的体积为( )A. B.2 C。
D。
47。
(2017北京西城模拟)某四棱锥的三视图如图所示,该四棱锥的表面积是( )A。
20+2B。
14+4C。
26 D.12+28。
2019版高考文科数学大一轮复习人教A版文档:第八章 立
§8.3 空间点、直线、平面之间的位置关系1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线互相平行. 2.直线与直线的位置关系 (1)位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行直线相交直线异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角). ②范围:⎝⎛⎦⎤0,π2. 3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况. 4.平面与平面的位置关系有平行、相交两种情况. 5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.知识拓展1.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.2.异面直线的判定定理经过平面内一点的直线与平面内不经过该点的直线互为异面直线.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.(√)(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.(×)(3)两个平面ABC与DBC相交于线段BC.(×)(4)经过两条相交直线,有且只有一个平面.(√)(5)没有公共点的两条直线是异面直线.(×)(6)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线.(×)题组二教材改编2.[P52B组T1(2)]如图所示,已知M,N分别是正方体ABCD—A1B1C1D1中BB1和B1C1的中点,则MN与CD1所成的角为________.答案60°解析连接AD1,AC,因为M,N分别是正方体ABCD—A1B1C1D1中BB1和B1C1的中点,所以AD1∥MN,故∠AD1C为MN与CD1所成的角或其补角,由于AC=AD1=D1C,故∠AD1C =60°,则MN与CD1所成的角为60°.3.[P45例2]如图,在三棱锥A—BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC ,BD 满足条件________时,四边形EFGH 为菱形; (2)当AC ,BD 满足条件________时,四边形EFGH 为正方形. 答案 (1)AC =BD (2)AC =BD 且AC ⊥BD 解析 (1)∵四边形EFGH 为菱形, ∴EF =EH ,故AC =BD .(2)∵四边形EFGH 为正方形,∴EF =EH 且EF ⊥EH , ∵EF 綊12AC ,EH 綊12BD ,∴AC =BD 且AC ⊥BD .题组三 易错自纠4.若P 是两条异面直线l ,m 外的任意一点,则( ) A .过点P 有且仅有一条直线与l ,m 都平行 B .过点P 有且仅有一条直线与l ,m 都垂直 C .过点P 有且仅有一条直线与l ,m 都相交 D .过点P 有且仅有一条直线与l ,m 都异面 答案 B解析 A 项,设过点P 的直线为n ,若n 与l ,m 都平行,则l ,m 平行,与l ,m 异面矛盾,A 错;B 项,l ,m 只有唯一的公垂线,而过点P 与公垂线平行的直线只有1条,B 对;C 项,如图所示,在正方体ABCD —A ′B ′C ′D ′中,设AD 为直线l ,A ′B ′为直线m ,若点P 在P 1点,显然无法作出直线与两直线都相交,C 错; D 项,若P 在P 2点,则直线CC ′及D ′P 2均与l ,m 异面,D 错. 5.下列命题正确的有________.(填序号) ①若直线与平面有两个公共点,则直线在平面内;②若直线l 上有无数个点不在平面α内,则l 与平面α平行; ③若直线l 与平面α相交,则l 与平面α内的任意直线都是异面直线;④如果两条异面直线中的一条与一个平面平行,则另一条直线一定与该平面相交; ⑤若直线l 与平面α平行,则l 与平面α内的直线平行或异面. 答案 ①⑤ 解析 ①正确;②错误,直线l 与平面α相交时,仍有无数个点不在平面α内; ③错误,直线l 与平面α内过该交点的直线不是异面直线; ④错误,另一条直线可能在该平面内;⑤正确.6.如图为正方体表面的一种展开图,则图中的四条线段AB ,CD ,EF ,GH 在原正方体中互为异面的对数为______.答案 3解析平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行.故互为异面的直线有且只有3对.题型一平面基本性质的应用典例如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.思维升华共面、共线、共点问题的证明(1)证明点或线共面问题的两种方法:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.(2)证明点共线问题的两种方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.跟踪训练已知正方体ABCD—A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q,求证:(1)D,B,F,E四点共面;(2)若A1C交平面BDEF于R点,则P,Q,R三点共线.证明如图.(1)∵EF是△D1B1C1的中位线,∴EF∥B1D1.在正方体AC1中,B1D1∥BD,∴EF∥BD.∴EF,DB确定一个平面,即D,B,F,E四点共面.(2)在正方体AC1中,设A1ACC1确定的平面为α,平面BDEF为β.∵Q∈A1C1,∴Q∈α.又Q∈EF,∴Q∈β,则Q是α与β的公共点,∴α∩β=PQ.又A1C∩β=R,∴R∈A1C,∴R∈α,且R∈β,则R∈PQ,故P,Q,R三点共线.题型二判断空间两直线的位置关系典例(1)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交答案 D解析方法一由于l与直线l1,l2分别共面,故直线l与l1,l2要么都不相交,要么至少与l1,l2中的一条相交.若l∥l1,l∥l2,则l1∥l2,这与l1,l2是异面直线矛盾.故l至少与l1,l2中的一条相交.方法二如图1,l1与l2是异面直线,l1与l平行,l2与l相交,故A,B不正确;如图2,l1与l2是异面直线,l1,l2都与l相交,故C不正确.(2)(2017·唐山一中月考)如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________.(填上所有正确答案的序号)答案②④解析在图①中,直线GH∥MN;在图②中,G,H,N三点共面,但M∉平面GHN,N∉GH,因此直线GH与MN异面;在图③中,连接GM,GM∥HN,因此GH与MN共面;在图④中,G,M,N共面,但H∉平面GMN,G∉MN,因此GH与MN异面.所以在图②④中GH与MN异面.思维升华空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.对于异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;对于垂直关系,往往利用线面垂直或面面垂直的性质来解决.跟踪训练 (1)(2016·山东)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交,故选A. (2)已知a ,b ,c 为三条不重合的直线,已知下列结论:①若a ⊥b ,a ⊥c ,则b ∥c ;②若a ⊥b ,a ⊥c ,则b ⊥c ;③若a ∥b ,b ⊥c ,则a ⊥c . 其中正确的个数为( ) A .0 B .1 C .2 D .3 答案 B解析 在空间中,若a ⊥b ,a ⊥c ,则b ,c 可能平行,也可能相交,还可能异面,所以①②错,③显然成立.题型三 求异面直线所成的角典例 (2018·南宁模拟)如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为( )A.15B.25C.35D.45答案 D解析 连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,由AB =1,AA 1=2,易得A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45,即异面直线A 1B 与AD 1所成角的余弦值为45.引申探究将上例条件“AA 1=2AB =2”改为“AB =1,若异面直线A 1B 与AD 1所成角的余弦值为910”,试求AA 1AB的值.解 设AA 1AB =t ,则AA 1=tAB .∵AB =1,∴AA 1=t .∵A 1C 1=2,A 1B =t 2+1=BC 1, ∴cos ∠A 1BC 1=t 2+1+t 2+1-22×t 2+1×t 2+1=910.∴t =3,即AA 1AB=3.思维升华 用平移法求异面直线所成的角的三步法 (1)一作:根据定义作平行线,作出异面直线所成的角; (2)二证:证明作出的角是异面直线所成的角;(3)三求:解三角形,求出所作的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.跟踪训练 在如图所示的正方体ABCD —A 1B 1C 1D 1中,E ,F 分别是棱B 1B ,AD 的中点,则异面直线BF 与D 1E 所成角的余弦值为( )A.147B.57C.105D.255答案 D解析 如图,过E 点作EM ∥AB ,过M 点作MN ∥AD ,取MN 的中点G ,所以平面EMN ∥平面ABCD ,EG ∥BF ,异面直线BF 与D 1E 所成的角,转化为∠D 1EG ,不妨设正方体的棱长为2,GE =5,D 1G =2,D 1E =3,在△D 1GE 中,由余弦定理 cos ∠D 1EG =9+5-22×3×5=255,故选D.构造模型判断空间线面位置关系典例已知m,n是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若m⊥α,n⊥β,m⊥n,则α⊥β;②若m∥α,n∥β,m⊥n,则α∥β;③若m⊥α,n∥β,m⊥n,则α∥β;④若m⊥α,n∥β,α∥β,则m⊥n.其中所有正确的命题是________.(填序号)思想方法指导本题可通过构造模型法完成,构造法实质上是结合题意构造符合题意的直观模型,然后利用模型直观地对问题作出判断,这样减少了抽象性,避免了因考虑不全面而导致解题错误.对于线面、面面平行、垂直的位置关系的判定,可构造长方体或正方体化抽象为直观去判断.解析借助于长方体模型来解决本题,对于①,可以得到平面α,β互相垂直,如图(1)所示,故①正确;对于②,平面α,β可能垂直,如图(2)所示,故②不正确;对于③,平面α,β可能垂直,如图(3)所示,故③不正确;对于④,由m⊥α,α∥β可得m⊥β,因为n∥β,所以过n作平面γ,且γ∩β=g,如图(4)所示,所以n与交线g平行,因为m⊥g,所以m⊥n,故④正确.答案①④1.在下列命题中,不是公理的是()A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线答案 A解析选项A是由公理推证出来的,而公理是不需要证明的.2.(2018·佛山模拟)在三棱柱ABC-A1B1C1中,E,F分别为棱AA1,CC1的中点,则在空间中与直线A1B1,EF,BC都相交的直线()A.不存在B.有且只有两条C.有且只有三条D.有无数条答案 D解析在EF上任意取一点M,直线A1B1与M确定一个平面,这个平面与BC有且仅有1个交点N,当M的位置不同时确定不同的平面,从而与BC有不同的交点N,而直线MN与A1B1,EF,BC分别有交点P,M,N,如图,故有无数条直线与直线A1B1,EF,BC都相交.3.(2017·济南模拟)a,b,c是两两不同的三条直线,下面四个命题中,真命题是() A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥c答案 C解析若直线a,b异面,b,c异面,则a,c相交、平行或异面;若a,b相交,b,c相交,则a,c相交、平行或异面;若a⊥b,b⊥c,则a,c相交、平行或异面;由异面直线所成的角的定义知C正确.故选C. 4.(2017·福州质检)直三棱柱ABC—A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°答案 C解析如图,延长CA到点D,使得AD=AC,连接DA1,BD,则四边形ADA1C1为平行四边形,所以∠DA1B就是异面直线BA1与AC1所成的角.又A1D=A1B=DB,所以△A1DB为等边三角形,所以∠DA1B=60°.故选C.5.下列命题中,正确的是()A.若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线B.若a,b是两条直线,且a∥b,则直线a平行于经过直线b的所有平面C.若直线a与平面α不平行,则此直线与平面内的所有直线都不平行D.若直线a∥平面α,点P∈α,则平面α内经过点P且与直线a平行的直线有且只有一条答案 D解析对于A,当α∥β,a,b分别为第三个平面γ与α,β的交线时,由面面平行的性质可知a∥b,故A错误.对于B,设a,b确定的平面为α,显然a⊂α,故B错误.对于C,当a⊂α时,直线a与平面α内的无数条直线都平行,故C错误.易知D正确.故选D.6.以下四个命题中,①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.正确命题的个数是()A.0 B.1 C.2 D.3答案 B解析①显然是正确的;②中若A,B,C三点共线,则A,B,C,D,E五点不一定共面;③中构造长方体(或正方体),如图所示,显然b,c异面,故不正确;④中空间四边形中四条线段不共面,故只有①正确.7.给出下列命题,其中正确的命题为________.(填序号)①如果线段AB在平面α内,那么直线AB在平面α内;②两个不同的平面可以相交于不在同一直线上的三个点A,B,C;③若三条直线a,b,c互相平行且分别交直线l于A,B,C三点,则这四条直线共面;④若三条直线两两相交,则这三条直线共面;⑤两组对边相等的四边形是平行四边形.答案①③8. 一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.以上四个命题中,正确命题的序号是________.答案①③解析如图,①AB⊥EF,正确;②显然AB∥CM,所以不正确;③EF与MN是异面直线,所以正确;④MN与CD异面,并且垂直,所以不正确,则正确的是①③.9.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.答案 4解析EF与正方体左、右两侧面均平行,所以与EF相交的平面有4个.10.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.答案 2D,AD,解析取圆柱下底面弧AB的另一中点D,连接C因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成的角即为异面直线AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点,所以C1D⊥圆柱下底面,所以C1D⊥AD.因为圆柱的轴截面ABB1A1是正方形,所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为 2.11.(2018·石家庄调研)如图,在正方体ABCD—A1B1C1D1中,O为正方形ABCD的中心,H为直线B1D与平面ACD1的交点.求证:D1,H,O三点共线.证明如图,连接BD,BD1,则BD ∩AC =O ,∵BB 1綊DD 1,∴四边形BB 1D 1D 为平行四边形,又H ∈B 1D ,B 1D ⊂平面BB 1D 1D ,则H ∈平面BB 1D 1D ,∵平面ACD 1∩平面BB 1D 1D =OD 1,∴H ∈OD 1.即D 1,H ,O 三点共线.12.如图所示,等腰直角三角形ABC 中,∠A =90°,BC =2,DA ⊥AC ,DA ⊥AB ,若DA =1,且E 为DA 的中点,求异面直线BE 与CD 所成角的余弦值.解 如图所示,取AC 的中点F ,连接EF ,BF ,∵在△ACD 中,E ,F 分别是AD ,AC 的中点,∴EF ∥CD .∴∠BEF 或其补角即为异面直线BE 与CD 所成的角.在Rt △EAB 中,AB =AC =1,AE =12AD =12, ∴BE =52. 在Rt △EAF 中,AF =12AC =12,AE =12,∴EF =22. 在Rt △BAF 中,AB =1,AF =12,∴BF =52. 在等腰三角形EBF 中,cos ∠FEB =12EF BE =2452=1010. ∴异面直线BE 与CD 所成角的余弦值为1010.13.(2018·长春质检)若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定答案 D解析 如图,在长方体ABCD —A 1B 1C 1D 1中,记l 1=DD 1,l 2=DC ,l 3=DA .若l 4=AA 1,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,此时l 1∥l 4,可以排除选项A 和C.若取C 1D 为l 4,则l 1与l 4相交;若取BA 为l 4,则l 1与l 4异面;若取C 1D 1为l 4,则l 1与l 4相交且垂直.因此l 1与l 4的位置关系不能确定.14.(2017·郑州质检)如图,在矩形ABCD 中,AB =2AD ,E 为边AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE .若M 为线段A 1C 的中点,则在△ADE 翻折过程中,下列四个命题中不正确的是________.(填序号)①BM 是定值;②点M 在某个球面上运动;③存在某个位置,使DE ⊥A 1C ;④存在某个位置,使MB ∥平面A 1DE .答案 ③解析 取DC 的中点F ,连接MF ,BF ,则MF ∥A 1D 且MF =12A 1D ,FB ∥ED 且FB =ED ,所以∠MFB =∠A 1DE .由余弦定理可得MB 2=MF 2+FB 2-2MF ·FB ·cos ∠MFB 是定值,所以M 是在以B 为球心,MB 为半径的球上,可得①②正确;由MF ∥A 1D 与FB ∥ED 可得平面MBF ∥平面A 1DE ,可得④正确;若存在某个位置,使DE ⊥A 1C ,则因为DE 2+CE 2=CD 2,即CE ⊥DE ,因为A 1C ∩CE =C ,则DE ⊥平面A 1CE ,所以DE ⊥A 1E ,与DA 1⊥A 1E 矛盾,故③不正确.15.(2017·山西四校联考)如图,已知正方体ABCD —A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,点N 在正方体的底面ABCD 内运动,则MN 的中点P 的轨迹的面积是( )A .4πB .πC .2π D.π2答案 D解析 连接DN ,则△MDN 为直角三角形,在Rt △MDN 中,MN =2,P 为MN 的中点,连接DP ,则DP =1,所以点P 在以D 为球心,半径R =1的球面上,又因为点P 只能落在正方体上或其内部,所以点P 的轨迹的面积等于该球面面积的18,故所求面积S =18×4πR 2=π2. 16.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,CC 1的中点,则在空间中与三条直线A 1D 1,EF ,CD 都相交的直线有________条.答案 无数解析 方法一 在EF 上任意取一点M ,直线A 1D 1与M 确定一个平面,这个平面与CD 有且仅有1个交点N ,M 取不同的位置就确定不同的平面,从而与CD 有不同的交点N ,而直线MN 与这3条异面直线都有交点.如图所示.方法二 (图略)在A 1D 1上任取一点P ,过点P 与直线EF 作一个平面α,因CD 与平面α不平行,所以它们相交,设它们交于点Q ,连接PQ ,则PQ 与EF 必然相交,即PQ 为所求直线.由点P 的任意性,知有无数条直线与三条直线A 1D 1,EF ,CD 都相交.。
2019年高考数学(文科)一轮分层演练:第8章立体几何第4讲(含答案解析)
[学生用书P252(单独成册)]一、选择题1.设α,β是两个不同的平面,m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分不必要条件是()A.m∥l1且n∥l2B.m∥β且n∥l2C.m∥β且n∥βD.m∥β且l1∥α解析:选A.由m∥l1,m⊂α,得l1∥α,同理l2∥α,又l1,l2相交,l1,l2⊂β,所以α∥β,反之不成立,所以m∥l1且n∥l2是α∥β的一个充分不必要条件.2.已知m,n,l是不同的直线,α,β是不同的平面,以下命题正确的是()①若m∥n,m⊂α,n⊂β,则α∥β;②若m⊂α,n⊂β,α∥β,l⊥m,则l⊥n;③若m⊥α,n⊥β,α∥β,则m∥n;④若α⊥β,m∥α,n∥β,则m⊥n.A.①③B.③④C.②④D.③解析:选D.①若m∥n,m⊂α,n⊂β,则α∥β或α,β相交;②若m⊂α,n⊂β,α∥β,l⊥m,则l⊥n或l∥n或l,n异面;③正确;④若α⊥β,m∥α,n∥β,则m⊥n或m∥n或m,n异面.3.如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则()A.BD∥平面EFGH,且四边形EFGH是矩形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是菱形D.EH∥平面ADC,且四边形EFGH是平行四边形解析:选B.由AE∶EB=AF∶FD=1∶4知EF═∥15BD,所以EF∥平面BCD.又H,G分别为BC,CD的中点,所以HG═∥12BD,所以EF∥HG且EF≠HG.所以四边形EFGH是梯形.4.在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,给出下列四个推断:①FG∥平面AA1D1D;②EF∥平面BC1D1;③FG∥平面BC1D1;④平面EFG∥平面BC1D1.其中推断正确的序号是()A.①③B.①④C.②③D.②④解析:选A.因为在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,所以FG∥BC1,因为BC1∥AD1,所以FG∥AD1,因为FG⊄平面AA1D1D,AD1⊂平面AA1D1D,所以FG∥平面AA1D1D,故①正确;因为EF∥A1C1,A1C1与平面BC1D1相交,所以EF与平面BC1D1相交,故②错误;因为E,F,G分别是A1B1,B1C1,BB1的中点,所以FG∥BC1,因为FG⊄平面BC1D1,BC1⊂平面BC1D1,所以FG∥平面BC1D1,故③正确;因为EF与平面BC1D1相交,所以平面EFG与平面BC1D1相交,故④错误.故选A.5.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列命题:①若m∥l,且m⊥α,则l⊥α;②若m∥l,且m∥α,则l∥α;③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.其中正确命题的个数是()A.1 B.2C.3 D.4解析:选B.由题易知①正确;②错误,l也可以在α内;③错误,以墙角为例即可说明;④正确,可以以三棱柱为例说明,故选B.6.如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列说法中,错误的为( ) A .AC ⊥BD B .AC =BD C .AC ∥截面PQMND .异面直线PM 与BD 所成的角为45° 解析:选B .因为截面PQMN 是正方形, 所以PQ ∥MN ,QM ∥PN ,则PQ ∥平面ACD 、QM ∥平面BDA , 所以PQ ∥AC ,QM ∥BD ,由PQ ⊥QM 可得AC ⊥BD ,故A 正确; 由PQ ∥AC 可得AC ∥截面PQMN ,故C 正确; 由BD ∥PN ,所以∠MPN 是异面直线PM 与BD 所成的角,且为45°,D 正确; 由上面可知:BD ∥PN ,MN ∥AC . 所以PN BD =AN AD ,MN AC =DN AD ,而AN ≠DN ,PN =MN , 所以BD ≠AC .B 错误.故选B . 二、填空题 7.如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH 所在四边形的面积为定值; ③棱A 1D 1始终与水面所在平面平行; ④当容器倾斜如图所示时,BE ·BF 是定值. 其中正确的命题是________.解析:由题图,显然①是正确的,②是错误的;对于③,因为A 1D 1∥BC ,BC ∥FG , 所以A 1D 1∥FG 且A 1D 1⊄平面EFGH , 所以A 1D 1∥平面EFGH (水面). 所以③是正确的;对于④,因为水是定量的(定体积V ), 所以S △BEF ·BC =V ,即12BE ·BF ·BC =V .所以BE ·BF =2VBC (定值),即④是正确的.答案:①③④8.棱长为2的正方体ABCD -A 1B 1C 1D 1中,M 是棱AA 1的中点,过C ,M ,D 1作正方体的截面,则截面的面积是________.解析:由面面平行的性质知截面与平面AB 1的交线MN 是△AA 1B 的中位线,所以截面是梯形CD 1MN ,易求其面积为92.答案:929.已知平面α∥β,P ∉α且P ∉ β,过点P 的直线m 与α,β分别交于A ,C ,过点P 的直线n 与α,β分别交于B ,D ,且P A =6,AC =9,PD =8,则BD 的长为________.解析:如图1,因为AC ∩BD =P ,图1所以经过直线AC 与BD 可确定平面PCD . 因为α∥β,α∩平面PCD =AB , β∩平面PCD =CD ,所以AB ∥CD .所以P A AC =PBBD ,即69=8-BD BD ,所以BD =245. 如图2,同理可证AB ∥CD .图2所以P A PC =PB PD ,即63=BD -88,所以BD =24.综上所述,BD =245或24.答案:245或2410.如图,在直三棱柱ABC -A 1B 1C 1中,若BC ⊥AC ,∠BAC =π3,AC =4,M 为AA 1的中点,点P 为BM 的中点,Q 在线段CA 1上,且A 1Q =3QC ,则PQ 的长度为________.解析:由题意知,AB =8,过点P 作PD ∥AB 交AA 1于点D ,连接DQ ,则D 为AM 的中点,PD =12AB =4.又因为A 1Q QC =A 1D AD=3,所以DQ ∥AC ,∠PDQ =π3,DQ =34AC =3,在△PDQ 中,PQ =42+32-2×4×3×cos π3=13.答案:13 三、解答题11.如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为菱形,E ,F 分别是线段A 1D ,BC 1的中点.延长D 1A 1到点G ,使得D 1A 1=A 1G .证明:GB ∥平面DEF .证明:连接A 1C ,B 1C ,则B 1C ,BC 1交于点F .因为CB ═∥D 1A 1,D 1A 1=A 1G ,所以CB ═∥A 1G ,所以四边形BCA 1G 是平行四边形,所以GB ∥A 1C . 又GB ⊄平面A 1B 1CD ,A 1C ⊂平面A 1B 1CD , 所以GB ∥平面A 1B 1CD .又点D ,E ,F 均在平面A 1B 1CD 内,所以GB ∥平面DEF . 12.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是BC ,CC 1,C 1D 1,A 1A 的中点.求证: (1)BF ∥HD 1; (2)EG ∥平面BB 1D 1D ; (3)平面BDF ∥平面B 1D 1H . 证明:(1)如图所示,取BB 1的中点M ,连接MH ,MC 1,易证四边形HMC 1D 1是平行四边形, 所以HD 1∥MC 1. 又因为MC 1∥BF , 所以BF ∥HD 1.(2)取BD 的中点O ,连接EO ,D 1O , 则OE ═∥12DC ,又D 1G ═∥12DC , 所以OE ═∥D 1G ,所以四边形OEGD 1是平行四边形,所以GE ∥D 1O . 又GE ⊄平面BB 1D 1D ,D 1O ⊂平面BB 1D 1D ,所以EG ∥平面BB 1D 1D .(3)由(1)知BF ∥HD 1,又BD ∥B 1D 1,B 1D 1,HD 1⊂平面B 1D 1H ,BF ,BD ⊂平面BDF ,且B 1D 1∩HD 1=D 1,DB ∩BF =B ,所以平面BDF ∥平面B 1D 1H .1.如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形.(1)证明:平面A 1BD ∥平面CD 1B 1;(2)若平面ABCD ∩平面B 1D 1C =直线l ,证明B 1D 1∥l . 证明:(1)由题设知BB 1═∥DD 1, 所以四边形BB 1D 1D 是平行四边形, 所以BD ∥B 1D 1. 又BD ⊄平面CD 1B 1, B 1D 1⊂平面CD 1B 1, 所以BD ∥平面CD 1B 1.因为A 1D 1═∥B 1C 1═∥BC , 所以四边形A 1BCD 1是平行四边形, 所以A 1B ∥D 1C .又A 1B ⊄平面CD 1B 1,D 1C ⊂平面CD 1B 1, 所以A 1B ∥平面CD 1B 1. 又因为BD ∩A 1B =B , 所以平面A 1BD ∥平面CD 1B 1. (2)由(1)知平面A 1BD ∥平面CD 1B 1, 又平面ABCD ∩平面B 1D 1C =直线l , 平面ABCD ∩平面A 1BD =直线BD , 所以直线l ∥直线BD ,在四棱柱ABCD -A 1B 1C 1D 1中,四边形BDD 1B 1为平行四边形, 所以B 1D 1∥BD , 所以B 1D 1∥l .2.如图,ABCD 与ADEF 为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.(1)求证:BE ∥平面DMF ; (2)求证:平面BDE ∥平面MNG .证明:(1)如图,连接AE ,则AE 必过DF 与GN 的交点O ,连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO ,又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB中点,所以MN为△ABD的中位线,所以BD∥MN,又BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG,又DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.。
第八章 立体几何初步 章末复习与总结
∵四边形 ABCD 是平行四边形, ∴O 是 BD 的中点.∴OF∥PD. 又 OF⊄平面 PMD,PD⊂平面 PMD, ∴OF∥平面 PMD.又 MA 綉12PB,
∴PF 綉 MA.∴四边形 AFPM 是平行四边形.
∴AF∥PM.又 AF⊄平面 PMD,PM⊂平面 PMD. ∴AF∥平面 PMD. 又 AF∩OF=F,AF⊂平面 AFC,OF⊂平面 AFC, ∴平面 AFC∥平面 PMD.
对于 A,令 m=AB,n=BC,满足 m∥α,n∥α,但 m∥n 不成立,故错误;
对于 B,令 m=AA′,n=A′B′,满足 m⊥α,m⊥n,但 n∥α 不成立,故错误;
对于 D,令 m=AB,n=AD,满足 m∥α,m⊥n,但 n⊥α 不成立,故错误.故选 C.
(2)矩形在翻折前和翻折后的图形如图①,图②所示.
在图①中,过点 A 作 AE⊥BD,垂足为 E,过点 C 作 CF⊥BD,垂 足为 F,由边 AB,BC 不相等可知点 E,F 不重合.在图②中,连接 CE, 对于选项 A,若 AC⊥BD,又知 BD⊥AE,AE∩AC=A,所以 BD⊥平 面 ACE,所以 BD⊥CE,与点 E,F 不重合相矛盾,故选项 A 错误;对 于选项 B,若 AB⊥CD,又知 AB⊥AD,AD∩CD=D,所以 AB⊥平面 ADC,所以 AB⊥AC,由 AB<BC 可知,存在这样的等腰直角三角形,使 得直线 AB 与直线 CD 垂直,故选项 B 正确;对于选项 C,若 AD⊥BC, 又知 DC⊥BC,AD∩DC=D,所以 BC⊥平面 ADC,所以 BC⊥AC,已 知 AB=2,BC=2 2,则 BC>AB,所以不存在这样的直角三角形,故选
B.存在某个位置,使得直线 AB 与直线 CD 垂直
2019版高考文科数学大一轮复习人教A版文档:第八章 立体几何8-1 含答案 精品
§8.1空间几何体的结构、三视图和直观图1.多面体的结构特征2.旋转体的形成3.空间几何体的三视图 (1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图. (2)三视图的画法①在画三视图时,重叠的线只画一条,挡住的线要画成虚线.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察到的几何体的正投影图. 4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴,y ′轴的夹角为45°或135°,z ′轴与x ′轴和y ′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x 轴和z 轴的线段在直观图中保持原长度不变;平行于y 轴的线段在直观图中长度变为原来的一半.知识拓展1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的正视图和侧视图均为全等的等腰三角形. (3)水平放置的圆台的正视图和侧视图均为全等的等腰梯形. (4)水平放置的圆柱的正视图和侧视图均为全等的矩形. 2.斜二测画法中的“三变”与“三不变” “三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度变为原来的一半图形改变“三不变”⎩⎪⎨⎪⎧平行性不改变与x ,z 轴平行的线段的长度不改变相对位置不改变题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.(×)(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.(×)(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台.(×)(4)正方体、球、圆锥各自的三视图中,三视图均相同.(×)(5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.(×)(6)菱形的直观图仍是菱形.(×)题组二教材改编2.[P19T3]由斜二测画法得到:①相等的线段和角在直观图中仍然相等;②正方形在直观图中是矩形;③等腰三角形在直观图中仍然是等腰三角形;④平行四边形的直观图仍然是平行四边形.上述结论正确的个数是()A.0 B.1 C.2 D.3答案 B解析逐一考查所给的说法:①相等的线段平行时在直观图中仍然相等,原说法错误;②正方形在直观图中是平行四边形,不是矩形,原说法错误;③等腰三角形在直观图中不是等腰三角形,原说法错误;④平行四边形的直观图仍然是平行四边形,原说法正确.综上可得,结论正确的个数是1.故选B.3.[P8T1]在如图所示的几何体中,是棱柱的为________.(填写所有正确的序号)答案③⑤题组三 易错自纠4.某空间几何体的正视图是三角形,则该几何体不可能是( ) A .圆柱 B .圆锥 C .四面体 D .三棱柱答案 A解析 由三视图知识知,圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形.5.(2018·珠海质检)将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的侧视图为( )答案 B解析 侧视图中能够看到线段AD 1,应画为实线,而看不到B 1C ,应画为虚线.由于AD 1与B 1C 不平行,投影为相交线,故选B.6.正三角形AOB 的边长为a ,建立如图所示的直角坐标系xOy ,则它的直观图的面积是________.答案616a 2解析 画出坐标系x ′O ′y ′,作出△OAB 的直观图O ′A ′B ′(如图),D ′为O ′A ′的中点.易知D ′B ′=12DB (D 为OA 的中点),∴S△O′A′B′=12×22S△OAB=24×34a2=616a2.题型一空间几何体的结构特征1.给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1 C.2 D.3答案 A解析①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.2.下列命题中正确的为________.(填序号)①存在一个四个侧面都是直角三角形的四棱锥;②如果棱柱有一个侧面是矩形,则其余各侧面也都是矩形;③圆台的任意两条母线所在直线必相交.答案①③解析①如图中的四棱锥,底面是矩形,一条侧棱垂直于底面,那么它的四个侧面都是直角三角形,故①正确;②如图所示的棱柱有一个侧面是矩形,则其余各侧面不是矩形,故②错误;③根据圆台的定义和性质可知,命题③正确.所以答案为①③.思维升华(1)关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一反例即可.(2)圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.(3)既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.题型二简单几何体的三视图命题点1已知几何体,识别三视图典例(2017·贵州七校联考)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤答案 B解析正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①,侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.命题点2已知三视图,判断几何体的形状典例(2017·全国Ⅰ)某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16答案 B解析 观察三视图可知,该多面体是由直三棱柱和三棱锥组合而成的,且直三棱柱的底面是直角边长为2的等腰直角三角形,侧棱长为2.三棱锥的底面是直角边长为2的等腰直角三角形,高为2,如图所示.因此该多面体各个面中有两个梯形,且这两个梯形全等,梯形的上底长为2,下底长为4,高为2,故这两个梯形的面积之和为2×12×(2+4)×2=12.故选B.命题点3 已知三视图中的两个视图,判断第三个视图典例 (2018届辽宁凌源二中联考)如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )答案 B解析 由正视图和俯视图可知,该几何体是一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知其侧视图为B ,故选B. 思维升华 三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形状,然后再找其剩下部分三视图的可能形状.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.跟踪训练 (1)(2017·全国Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π答案 B解析 方法一 (割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π.故选B.方法二 (估值法)由题意知,12V 圆柱<V 几何体<V 圆柱,又V 圆柱=π×32×10=90π,∴45π<V 几何体<90π.观察选项可知只有63π符合.故选B.(2)一个几何体的三视图中,正视图和侧视图如图所示,则俯视图不可以为( )答案 C解析 A 中,该几何体是直三棱柱,∴A 有可能; B 中,该几何体是直四棱柱,∴B 有可能; C 中,由题干中正视图的中间为虚线知,C 不可能; D 中,该几何体是直四棱柱,∴D 有可能.题型三 空间几何体的直观图典例 (2018·福州调研)已知等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________. 答案22解析 如图所示,作出等腰梯形ABCD 的直观图.因为OE =(2)2-1=1,所以O ′E ′=12,E ′F =24,则直观图A ′B ′C ′D ′的面积S ′=1+32×24=22.思维升华 用斜二测画法画直观图的技巧在原图形中与x 轴或y 轴平行的线段在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出.跟踪训练 如图,一个水平放置的平面图形的直观图(斜二测画法)是一个底角为45°、腰和上底长均为2的等腰梯形,则这个平面图形的面积是( )A .2+ 2B .1+ 2C .4+2 2D .8+4 2答案 D解析 由已知直观图根据斜二测画法规则画出原平面图形,如图所示, ∴这个平面图形的面积为4×(2+2+22)2=8+42,故选D.1.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱答案 D解析球、正方体的三视图形状都相同、大小均相等.当三棱锥的三条侧棱相等且两两垂直时,其三视图的形状都相同、大小均相等.不论圆柱如何放置,其三视图的形状都不会完全相同,故选D.2.如图为几何体的三视图,根据三视图可以判断这个几何体为()A.圆锥B.三棱锥C.三棱柱D.三棱台答案 C3.“牟合方盖”(如图1)是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图2所示,图中四边形是为体现其直观性所作的辅助线,其实际直观图中四边形不存在,当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是()A.a,b B.a,c C.c,b D.b,d答案 A解析当正视图和侧视图完全相同时,“牟合方盖”相对的两个曲面正对前方,正视图为一个圆,俯视图为一个正方形,且两条对角线为实线,故选A.4.(2018·成都质检)如图,在长方体ABCD-A1B1C1D1中,点P是棱CD上一点,则三棱锥P -A1B1A的侧视图是()答案 D解析在长方体ABCD-A1B1C1D1中,从左侧看三棱锥P-A1B1A,B1,A1,A的射影分别是C1,D1,D;AB1的射影为C1D,且为实线,P A1的射影为PD1,且为虚线.故选D.5.如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AA1,C1D1的中点,G是正方形BCC1B1的中心,则四边形AGFE在该正方体的各个面上的投影不可能是()A.三角形B.正方形C.四边形D.等腰三角形答案 B解析四边形AGFE在该正方体的底面上的投影为三角形,可能为A;四边形AGFE在该正方体的前面上的投影为四边形,可能为C;四边形AGFE在该正方体的底面上的投影为等腰三角形,可能为D;四边形AGFE 在该正方体的左侧面上的投影为三角形,可能为A.故选B.6.(2017·广州模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )答案 C解析 该几何体为正方体截去一部分后的四棱锥P —ABCD ,如图所示,该几何体的俯视图为C.7.(2017·东北师大附中、吉林市一中等五校联考)如图所示,在三棱锥D —ABC 中,已知AC =BC =CD =2,CD ⊥平面ABC ,∠ACB =90°.若其正视图、俯视图如图所示,则其侧视图的面积为( )A. 6 B .2 C. 3 D. 2答案 D解析 由几何体的结构特征和正视图、俯视图,得该几何体的侧视图是一个直角三角形,其中一直角边为CD ,其长度为2,另一直角边为底面△ABC 的边AB 上的中线,其长度为2,则其侧视图的面积S =12×2×2= 2.8.如图,在一个正方体内放入两个半径不相等的球O 1,O 2,这两个球外切,且球O 1与正方体共顶点A 的三个面相切,球O 2与正方体共顶点B 1的三个面相切,则两球在正方体的面AA 1C 1C 上的正投影是( )答案 B解析 由题意可以判断出两球在正方体的面上的正投影与正方形相切.由于两球球心连线AB 1与面ACC 1A 1不平行,故两球球心射影所连线段的长度小于两球半径的和,即两个投影圆相交,即为图B.9.(2017·福建龙岩联考)一水平放置的平面四边形OABC ,用斜二测画法画出它的直观图O ′A ′B ′C ′如图所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC 的面积为________.答案 2 2解析 因为直观图的面积是原图形面积的24倍,且直观图的面积为1,所以原图形的面积为2 2.10.(2017·南昌一模)如图,在正四棱柱ABCD —A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P —BCD 的正视图与侧视图的面积之比为________.答案 1∶1解析 根据题意,三棱锥P —BCD 的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高,故三棱锥P—BCD的正视图与侧视图的面积之比为1∶1.11.如图,点O为正方体ABCD—A′B′C′D′的中心,点E为平面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的射影可能是________.(填出所有可能的序号)答案①②③解析空间四边形D′OEF在正方体的平面DCC′D′上的射影是①;在平面BCC′B′上的射影是②;在平面ABCD上的射影是③,而不可能出现的射影为④中的情况.12.如图,已知三棱锥P—ABC的底面是等腰直角三角形,且∠ACB=90°,侧面P AB⊥底面ABC,AB=P A=PB=4,则这个三棱锥的三视图中标注的尺寸x,y,z分别是__________.答案23,2,2解析由三棱锥及其三视图可知,x为等边△P AB的高,所以x=23,又因为2y为AB的长,所以2y=4,y=2,可得z为点C到AB的距离,由此得z=2.13.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是()A .8B .7C .6D .5答案 C解析 画出直观图,共六块.14.(2017·湖南省东部六校联考)某三棱锥的三视图如图所示,则该三棱锥的四个面的面积中,最大的面积是( )A .4 3B .8 3C .47D .8 答案 C解析 如图,设该三棱锥为P —ABC ,其中P A ⊥平面ABC ,P A =4,则由三视图可知△ABC 是边长为4的等边三角形,故PB =PC =42,所以S △ABC =12×4×23=43,S △P AB =S △P AC =12×4×4=8,S △PBC =12×4×(42)2-22=47,故四个面中面积最大的为S △PBC =47,故选C.15.(2017·泉州二模)某几何体的三视图如图所示,则该几何体的侧视图中的虚线部分是( )A .圆弧B .抛物线的一部分C .椭圆的一部分D .双曲线的一部分答案 D解析根据几何体的三视图,可得侧视图中的虚线部分是由平行于旋转轴的平面截圆锥所得,故侧视图中的虚线部分是双曲线的一部分,故选D.16.(2018·济南模拟)一只蚂蚁从正方体ABCD—A1B1C1D1的顶点A出发,经正方体的表面,按最短路线爬行到顶点C1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是()A.①②B.①③C.③④D.②④答案 D解析由点A经正方体的表面,按最短路线爬行到达顶点C1的位置,共有6种路线(对应6种不同的展开方式),若把平面ABB1A1和平面BCC1B1展开到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过BB1的中点,此时对应的正视图为②;若把平面ABCD和平面CDD1C1展开到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过CD的中点,此时对应的正视图为④.而其他几种展开方式对应的正视图在题中没有出现.故选D.。
2019高考数学文一轮分层演练:第8章立体几何 第2讲 Word版含解析
[学生用书P248(单独成册)]一、选择题1.圆柱的底面积为S ,侧面展开图是一个正方形,那么圆柱的侧面积是( ) A .4πS B .2πS C .πSD .233πS解析:选A .由πr 2=S 得圆柱的底面半径是Sπ,故侧面展开图的边长为2π·S π=2πS ,所以圆柱的侧面积是4πS ,故选A .2.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的体积是( )A .πB .π3C .3πD .3π3解析:选D .由三视图可知,该几何体是两个同底的半圆锥,其中底的半径为1,高为22-12=3,因此体积=2×12×13π×12×3=33π.3.如图所示的是一个几何体的三视图,则该几何体的表面积为( )A .20B .22C .24D .26解析:选D .该几何体为一个长方体从正上方挖去一个半圆柱剩下的部分,长方体的长,宽,高分别为4,1,2,挖去半圆柱的底面半径为1,高为1,所以表面积为S =S 长方体表-2S半圆柱底-S圆柱轴截面+S半圆柱侧=2×4×1+2×1×2+2×4×2-π×12-2×1+12×2π×1=26.故选D .4.(2018·兰州诊断考试)某几何体的三视图如图所示,则该几何体的表面积为( )A .(9+5)πB .(9+25)πC .(10+5)πD .(10+25)π解析:选A .由三视图可知,该几何体为一个圆柱挖去一个同底的圆锥,且圆锥的高是圆柱高的一半.故该几何体的表面积S =π×12+4×2π+12×2π×5=(9+5)π.5.(2018·云南第一次统考)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .12B .18C .24D .30解析:选C .由三视图知,该几何体是直三棱柱削去一个同底的三棱锥,其中三棱柱的高为5,削去的三棱锥的高为3,三棱锥与三棱柱的底面均为两直角边分别为3和4的直角三角形,所以该几何体的体积为12×3×4×5-13×12×3×4×3=24,故选C .6.正四棱锥P -ABCD 的侧棱和底面边长都等于22,则它的外接球的表面积是( ) A .16π B .12π C .8πD .4π解析:选A .设正四棱锥的外接球半径为R ,顶点P 在底面上的射影为O ,因为OA =12AC =12AB 2+BC 2=12(22)2+(22)2=2,所以PO =P A 2-OA 2=(22)2-22=2.又OA =OB =OC =OD =2,由此可知R =2,于是S 球=4πR 2=16π.二、填空题7.将一个边长分别为4π,8π的矩形卷成一个圆柱,则这个圆柱的表面积是________. 解析:当以长度为4π的边为底面圆时,底面圆的半径为2,两个底面的面积是8π;当以长度为8π的边为底面圆时,底面圆的半径为4,两个底面圆的面积为32π.无论哪种方式,侧面积都是矩形的面积32π2.故所求的表面积是32π2+8π或32π2+32π.答案:32π2+8π或32π2+32π8.一个几何体的三视图如图所示,则该几何体的体积为________.解析:该几何体可视为正方体截去两个三棱锥所得,所以其体积为8-43-16=132.答案:1329.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,过A 1,C 1,B 三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD -A 1C 1D 1,这个几何体的体积为403,则经过A 1,C 1,B ,D 四点的球的表面积为________.解析:设AA 1=x ,则V ABCD A 1C 1D 1=V ABCD A 1B 1C 1D 1-V B A 1B 1C 1=2×2×x -13×12×2×2×x=403,则x =4. 因为A 1,C 1,B ,D 是长方体的四个顶点,所以经过A 1,C 1,B ,D 四点的球的球心为长方体ABCD -A 1B 1C 1D 1的体对角线的中点,且长方体的体对角线为球的直径,所以球的半径R =22+22+422=6,所以球的表面积为24π.答案:24π10.一个几何体的三视图如图所示,且其侧(左)视图是一个等边三角形,则这个几何体的体积为________.解析:由题意得,该几何体为如图所示的五棱锥P ABCDE ,所以体积V =13×⎝⎛⎭⎫12×2×1+22×3=533.答案:53 3三、解答题11.如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.解:由已知得:CE =2,DE =2,CB =5,S 表面=S 圆台侧+S 圆台下底+S 圆锥侧=π(2+5)×5+π×25+π×2×22=(60+42)π,V =V 圆台-V圆锥=13(π·22+π·52+22·52π2)×4-13π×22×2=1483π.12.已知一个圆锥的底面半径为R ,高为H .(1)若圆锥内有一个高为x 的内接圆柱,则x 为何值时,圆柱的侧面积最大?最大侧面积是多少?(2)作一平面将圆锥分成一个小圆锥与一个圆台,当两几何体的体积相等时,求小圆锥的高与圆台的高的比值.解:(1)设圆柱的侧面积为S ,底面半径为r .由r R =H -x H ,得r =R -R H·x . 则圆柱的侧面积S =2πrx =2πx ⎝⎛⎭⎫R -R H ·x =-2πR H·x 2+2πRx ,显然,当x =-2πR 2⎝⎛⎭⎫-2πR H =H2时,圆柱的侧面积最大,最大侧面积为-2πR H ·⎝⎛⎭⎫H 22+2πR ·H 2=12πRH .(2)设小圆锥的底面半径为a ,高为b .由题意得小圆锥的体积V 1=12×13πR 2H =16πR 2H ,由a R =b H ,且13πa 2b =16πR 2H ,得b =312H =342H . 设圆台高为c ,则b c=342H H -342H=342-34,故小圆锥的高与圆台的高的比值为342-34.。
2019高考数学一轮复习 第8章 立体几何章末总结分层演练 文
第8章立体几何章末总结28π D.32πT14,5分)α,β是两个平面,∥β,那么α⊥β.PAC内的正投影F(中,AB∥CD,且∠BAP=∠PAD;一、选择题1.(必修2 P 10B 组T 1改编)如图,若Ω是长方体ABCD A 1B 1C 1D 1被平面EFGH 截去几何体EFGHB 1C 1后得到的几何体,其中E 为线段A 1B 1上异于B 1的点,F 为线段BB 1上异于B 1的点,且EH ∥A 1D 1,则下列结论中不正确的是( )A .EH ∥FGB .四边形EFGH 是矩形C .Ω是棱柱D .Ω是棱台解析:选D .因为EH ∥A 1D 1,A 1D 1∥B 1C 1,EH ⊄平面BCC 1B 1,所以EH ∥平面BCC 1B 1.又因为平面EFGH ∩平面BCC 1B 1=FG ,所以EH ∥FG ,且EH =FG ,由长方体的特征知四边形EFGH 为矩形,Ω为五棱柱,所以选项A ,B ,C 都正确.故选D .2.(必修2 P 61练习、P 71练习T 2、P 73练习T 1改编)已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若m ∥α,m ∥β,则α∥βC .若α⊥γ,β⊥γ,则α∥βD .若m ⊥α,n ⊥α,则m ∥n解析:选D .A 中,两直线可能平行,相交或异面;B 中,两平面可能平行或相交;C 中,两平面可能平行或相交;D 中,由线面垂直的性质定理可知结论正确,故选D .3.(必修2 P 78A 组T 7改编)正四棱锥的三视图如图所示,则它的外接球的表面积为( )A .25πB .252πC .253πD .254π解析:选C .由三视图画出直观图与其外接球示意图,且设O 1是底面中心.由三视图知,O 1A =2,O 1P =3,所以正四棱锥P ABCD 的外接球的球心O 在线段O 1P 上. 设球O 的半径为R .由O 1O 2+O 1A 2=OA 2得(3-R )2+(2)2=R 2. 所以R =523.则外接球的表面积为S =4πR 2=4π·⎝ ⎛⎭⎪⎫5232=253π.4.(必修2 P 79 B 组 T 2改编)如图,在正方体ABCD A 1B 1C 1D 1中,B 1D ∩平面A 1BC 1=H . 有下列结论. ①B 1D ⊥平面A 1BC 1;②平面A 1BC 1将正方体体积分成1∶5两部分; ③H 是B 1D 的中点;④平面A 1BC 1与正方体的六个面所成的二面角的余弦值都为33.则正确结论的个数有( ) A .1 B .2 C .3D .4解析:选C .对于①,连接B 1C 与A 1D ,由正方体性质知,BC 1⊥B 1C ,BC 1⊥A 1B 1, 又A 1B 1∩B 1C =B 1,A 1B 1,B 1C ⊂平面A 1B 1CD . 所以BC 1⊥平面A 1B 1CD . 又B 1D ⊂平面A 1B 1CD . 所以B 1D ⊥BC 1.同理B 1D ⊥A 1B ,A 1B ∩BC 1=B . 所以B 1D ⊥平面A 1BC 1,故①正确. 对于②.设正方体棱长为a .则V 三棱锥B A 1B 1C 1=13·12a ·a ·a =16a 3.所以平面A 1BC 1将正方体分成两部分的体积之比为16a 3∶(a 3-16a 3)=1∶5.故②正确.对于③,设正方体棱长为a , 则A 1B =2a .由VB 1A 1BC 1=16a 3,得13×34×(2a )2·B 1H =16a 3, 所以B 1H =33a ,而B 1D =3a . 所以B 1H ∶HD =1∶2,即③错误.对于④,由对称性知,平面A 1BC 1与正方体六个面所成的二面角的大小都相等. 由①知B 1H ⊥平面A 1BC 1,而A 1B 1⊥平面B 1BCC 1. 所以∠A 1B 1H 的大小即为所成二面角的大小.cos ∠A 1B 1H =B 1H A 1B 1=33a a =33.故④正确.故选C . 二、填空题5.(必修2 P 53 B 组 T 2改编)已知三棱柱ABC A 1B 1C 1的侧棱与底面边长都相等,点A 1在底面ABC 上的射影D 为BC 的中点,则异面直线AB 与CC 1所成的角的余弦值为________.解析:连接A 1D ,AD ,A 1B ,易知∠A 1AB 为异面直线AB 和CC 1所成的角,设三棱柱的侧棱长与底面边长均为1,则AD =32,A 1D =12,A 1B =22,由余弦定理得cos ∠A 1AB =1+1-122×1×1=34.答案:346.(必修2 P 79 B 组 T 1改编)如图在直角梯形ABCD 中,BC ⊥DC ,AE ⊥DC ,M ,N 分别是AD ,BE 的中点,将△ADE 沿AE 折起.则下列说法正确的是________.(填上所有正确说法的序号)①不论D 折至何位置(不在平面ABC 内)都有MN ∥平面DEC ; ②不论D 折至何位置都有MN ⊥AE ;③不论D 折至何位置(不在平面ABC 内)都有MN ∥AB ; ④在折起过程中,一定存在某个位置,使EC ⊥AD ; ⑤无论D 折至何位置,都有AE ⊥DC . 解析:如图,设Q ,P 分别为CE ,DE 的中点,可得四边形MNQP 是矩形,所以①②正确;不论D 折至何位置(不在平面ABC 内)都有MN 与AB 是异面直线,不可能MN ∥AB ,所以③错;当平面ADE ⊥平面ABCD 时,可得EC ⊥平面ADE ,故EC ⊥AD ,④正确.无论D 折到何位置,均有AE ⊥平面CDE .故AE ⊥CD .故⑤正确.答案:①②④⑤ 三、解答题7.(必修2 P 79B 组T 1改编)如图,边长为33的正方形ABCD 中,点E ,F 分别是边AB ,BC 上的点,将△AED ,△DCF 分别沿DE ,DF 折起,使A ,C 两点重合于点A ′.(1)求证:A ′D ⊥EF .(2)当BE =BF =13BC 时,求三棱锥A ′EFD 的体积.解:(1)证明:因为A ′D ⊥A ′E ,A ′D ⊥A ′F ,A ′E ∩A ′F =A ′,所以A ′D ⊥平面A ′EF ,因为EF ⊂平面A ′EF , 所以A ′D ⊥EF .(2)由(1)知,A ′D ⊥平面A ′EF , 所以A ′D 的长即为三棱锥D A ′EF 的高, 则A ′E =A ′F =23BC =23,EF =BE 2+BF 2=6,作A ′O ⊥EF 于点O ,则V A ′EFD =V D A ′EF =13A ′D ·S △A ′EF =13×33×12EF ·A ′O =13×33×12×6×422=3212.8.(必修2 P 78 A 组 T 4改编)如图,正方体ABCD A 1B 1C 1D 1的棱长为2,E 、F 、M 分别是C 1B 1,C 1D 1和AB 的中点.(1)求证:MD 1∥平面BEFD . (2)求M 到平面BEFD 的距离. 解:(1)证明:连接BF .因为M 、F 分别为AB 与C 1D 1的中点,且ABCD A 1B 1C 1D 1是正方体. 所以MB ═∥D 1F .所以四边形MBFD 1为平行四边形, 所以MD 1∥BF .又MD 1⊄平面BEFD ,BF ⊂平面BEFD . 所以MD 1∥平面BEFD . (2)过E 作EG ⊥BD 于G . 因为正方体的棱长为2,所以BE =5,BG =12(BD -EF )=12(22-2)=22.所以EG =BE 2-BG 2=5-12=322. 所以S △EBD =12BD ×EG =12×22×322=3.又S △MBD =12MB ×AD =12×1×2=1.E 到平面ABCD 的距离为2,设M 到平面BEFD 的距离为d .由V 三棱锥M BDE =V 三棱锥E MBD 得13S △EBD ·d =13S △MBD ×2.所以d =S △MBD ×2S △EBD =1×23=23. 所以M 到平面BED 的距离为23.。
2019高考数学文一轮分层演练:第8章立体几何 第1讲
[学生用书P246(单独成册)]一、选择题1.将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的侧视图为()解析:选B.侧视图中能够看到线段AD1,应画为实线,而看不到B1C,应画为虚线.由于AD1与B1C不平行,投影为相交线,故应选B.2.已知一个几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱C.球D.四棱柱解析:选B.由已知中的三视图可得该几何体是三棱柱,故选B.3.将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为()解析:选D.根据几何体的结构特征进行分析即可.4.若某几何体的三视图如图所示,则这个几何体的直观图可以是()解析:选D .A ,B 的正视图不符合要求,C 的俯视图显然不符合要求,故选D . 5.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )解析:选C .由正视图和侧视图及体积易得几何体是四棱锥P -ABCD ,其中ABCD 是边长为2的正方形,P A ⊥平面ABCD ,且P A =2,此时V P ABCD =13×22×2=83,则俯视图为Rt△P AB ,故选C .6.(2018·兰州适应性考试)如图,在正方体ABCD -A 1B 1C 1D 1中,点P 是线段A 1C 1上的动点,则三棱锥P -BCD 的俯视图与正视图面积之比的最大值为( )A .1B . 2C . 3D .2解析:选D .正视图,底面B ,C ,D 三点,其中D 与C 重合,随着点P 的变化,其正视图均是三角形且点P 在正视图中的位置在边B 1C 1上移动,由此可知,设正方体的棱长为a ,则S正视图=12×a 2;设A 1C 1的中点为O ,随着点P 的移动,在俯视图中,易知当点P 在OC 1上移动时,S 俯视图就是底面三角形BCD 的面积,当点P 在OA 1上移动时,点P 越靠近A 1,俯视图的面积越大,当到达A 1的位置时,俯视图为正方形,此时俯视图的面积最大,S 俯视图=a 2,所以S 俯视图S 正视图的最大值为a 212a 2=2,故选D . 二、填空题7.如图,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为________.解析:直观图的面积S ′=12×(1+1+2)×22=2+12.故原平面图形的面积S =S ′24=2+2.答案: 2+ 28.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm .解析:如图,过点A 作AC ⊥OB ,交OB 于点C . 在Rt △ABC 中,AC =12 cm ,BC =8-3=5(cm). 所以AB =122+52=13(cm). 答案:139.已知正四棱锥V -ABCD 中,底面面积为16,一条侧棱的长为211,则该棱锥的高为________.解析:如图,取正方形ABCD 的中心O ,连接VO ,AO ,则VO 就是正四棱锥V -ABCD 的高.因为底面面积为16,所以AO=22.因为一条侧棱长为211,所以VO=VA2AO2=44-8=6.所以正四棱锥V-ABCD的高为6.答案:610.如图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是________.解析:作出直观图如图所示,通过计算可知AF、DC最长且DC=AF=BF2+AB2=33.答案:3 3三、解答题11.如图,在四棱锥P-ABCD中,底面为正方形,PC与底面ABCD垂直,如图为该四棱锥的正视图和侧视图,它们是腰长为6 cm的全等的等腰直角三角形.(1)根据图中所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求P A.解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm的正方形,如图,其面积为36 cm2.俯视图(2)由侧视图可求得PD =PC 2+CD 2=62+62=6 2 (cm). 由正视图可知AD =6 cm , 且AD ⊥PD , 所以在Rt △APD 中, P A =PD 2+AD 2=(62)2+62=6 3 (cm).12.如图所示的三个图中,上面是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图如图所示(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积.解:(1)如图.(2)所求多面体的体积 V =V 长方体-V 正三棱锥=4×4×6-13×(12×2×2)×2=2843(cm 3).。
2019版高考数学一轮复习训练: 基础与考点过关 第八章 立体几何初步
第八章 立体几何初步第1课时 空间点、直线、平面之间的 位置关系1. (必修2P 24练习2改编)用集合符号表示“点P 在直线l 外,直线l 在平面α内”为________.答案:P ∉l ,l ⊂α解析:考查点、线、面之间的符号表示. 2. (必修2P 28练习2改编)已知AB∥PQ,BC ∥QR ,若∠ABC=45°,则∠PQR=________. 答案:45°或135°解析:由等角定理可知∠PQR 与∠ABC 相等或互补,故答案为45°或135°. 3. (原创)若直线l 上有两个点在平面α外,则________.(填序号) ① 直线l 上至少有一个点在平面α内; ② 直线l 上有无穷多个点在平面α内; ③ 直线l 上所有点都在平面α外; ④ 直线l 上至多有一个点在平面α内. 答案:④解析:由已知得直线l ⊄α,故直线l 上至多有一个点在平面α内.4. (必修2P 31习题15改编)如图所示,设E ,F ,G ,H 依次是空间四边形ABCD 的边AB ,BC ,CD ,DA 上除端点外的点,AE AB =AH AD =λ,CF CB =CGCD=μ,则下列结论中不正确的是________.(填序号)① 当λ=μ时,四边形EFGH 是平行四边形; ② 当λ≠μ时,四边形EFGH 是梯形;③ 当λ≠μ时,四边形EFGH 一定不是平行四边形; ④ 当λ=μ时,四边形EFGH 是梯形. 答案:④解析:由AE AB =AH AD =λ,得EH∥BD,且EH BD =λ,同理得FG ∥BD 且 FGBD=μ,当λ=μ时,EH ∥FG 且EH =FG.当λ≠μ时,EH ∥FG ,但EH≠FG,只有④错误.5. (必修2P 30练习2改编)在正方体A 1B 1C 1D 1ABCD 中,与AB 异面的棱有______________________.答案:A 1D 1,DD 1,CC 1,C 1B 11. 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.公理3:经过不在同一条直线上的三点,有且只有一个平面. 推论1:经过一条直线和这条直线外的一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面. 2. 空间两条直线的位置关系(1) 公理4:平行于同一条直线的两条直线互相平行. (2) 定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.4. 异面直线的判定(1) 判定定理:过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线.(2) 符号表示:若l ⊂α,A ∉α,B ∈α,B ∉l ,则直线AB 与l 是异面直线. 5. 异面直线所成的角(1) 定义:设a ,b 是异面直线,经过空间任意一点O ,作直线a′∥a,b ′∥b ,我们把直线a′与b′所成的锐角(或直角)叫做异面直线a ,b 所成的角.(2) 范围:⎝⎛⎦⎥⎤0,π2.(3) 若异面直线a ,b 所成的角是直角,就称异面直线a ,b 互相垂直.记作a⊥b. [备课札记], 1平面的基本性质), 1) 如图,正方体ABCDA1B1C1D1中,点E,F分别为CC1,AA1的中点,画出平面BED1F和平面ABCD的交线.解:如图,在平面ADD1A1内延长D1F与DA交于一点P,则P∈平面BED1F.∵ DA⊂平面ABCD,∴ P∈平面ABCD,∴点P是平面ABCD与平面BED1F的一个公共点.又点B是两平面的一个公共点,∴ PB为两平面的交线.备选变式(教师专享)如图,在直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.解:显然点S是平面SBD和平面SAC的一个公共点,即点S在交线上,由于AB>CD,则分别延长AC和BD交于点E,如图所示.∵ E∈AC,AC⊂平面SAC,∴ E∈平面SAC.同理,可证E∈平面SBD,∴点E在平面SBD和平面SAC的交线上,连结SE,则直线SE是平面SBD和平面SAC的交线., 2共点、共线、共面问题), 2) 如图,在四边形ABCD 和四边形ABEF 中,BC ∥AD ,BC =12AD ,BE∥FA ,BE =12FA ,点G ,H 分别为FA ,FD 的中点.(1) 求证:四边形BCHG 是平行四边形. (2) C ,D ,F ,E 四点是否共面?为什么?(1) 证明:因为点G ,H 分别为FA ,FD 的中点,所以GH∥AD,GH =12AD.又BC∥AD,BC=12AD , 所以GH∥BC,且GH =BC ,所以四边形BCHG 为平行四边形.(2) 解:C ,D ,F ,E 四点共面.理由如下:由BE∥FA,BE =12FA ,点G 为FA 的中点知,BE ∥FG ,BE =FG ,所以四边形BEFG 为平行四边形,所以EF∥BG. 由(1)知BG∥CH,BG =CH ,所以EF∥CH,所以EF 与CH 共面. 又D∈FH,所以C ,D ,F ,E 四点共面. 变式训练如图,在直四棱柱ABCDA 1B 1C 1D 1中,点E ,F 分别是AB ,BC 的中点,A 1C 1与B 1D 1交于点O.求证:A 1,C 1,F ,E 四点共面.证明:如图,连结AC ,因为点E ,F 分别是AB ,BC 的中点,所以EF 是△ABC 的中位线,所以EF ∥AC.由直棱柱知AA 1綊CC 1,所以四边形AA 1C 1C 为平行四边形,所以AC∥A 1C 1. 所以EF∥A 1C 1,故A 1,C 1,F ,E 四点共面., 3 空间直线位置关系问题), 3) 如图,在正方体ABCDA 1B 1C 1D 1中,点M ,N 分别是A 1B 1,B 1C 1的中点.求证:(1) AM 和CN 共面;(2) D 1B 和CC 1是异面直线.证明:(1) 如图,连结MN,A1C1,AC.∵点M,N分别是A1B1,B1C1的中点,∴ MN∥A1C1.∵ A1A綊C1C,∴四边形A1ACC1为平行四边形,∴ A1C1∥AC,∴ MN∥AC,∴ A,M,N,C四点共面,即AM和CN共面.(2) ∵ ABCDA1B1C1D1是正方体,∴ B,C,C1,D1不共面.假设D1B与CC1不是异面直线,则存在平面α,使D1B⊂平面α,CC1⊂平面α,∴ D1,B,C,C1∈α,这与B,C,C1,D1不共面矛盾.∴假设不成立,即D1B与CC1是异面直线.变式训练已知空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD 的中点.(1) 求证:BC与AD是异面直线;(2) 求证:EG与FH相交.证明:(1) 假设BC与AD不是异面直线,则BC与AD共面.不妨设它们所共平面为α,则B,C,A,D∈α,所以四边形ABCD为平面图形,这与四边形ABCD为空间四边形相矛盾.所以BC与AD是异面直线.(2) 如图,连结AC,BD,则EF∥AC,HG∥AC,因此EF∥HG;同理EH∥FG,则EFGH为平行四边形.又EG,FH是平行四边形EFGH的对角线,所以EG与FH相交.1. 在下列命题中,不是公理的是________.(填序号)①如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;②过不在同一条直线上的三点,有且只有一个平面;③如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内;④平行于同一个平面的两个平面相互平行.答案:④解析:④不是公理,是个常用的结论,需经过推理论证;①②③是平面的基本性质公理.2. 一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:① AB⊥EF;② AB与CM所成的角为60°;③ EF与MN是异面直线;④ MN∥CD.以上结论中正确的是________.(填序号)答案:①③解析:把正方体平面展开图还原到原来的正方体,如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD,只有①③正确.3. 在正方体ABCDA1B1C1D1中,点E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有________条.答案:无数解析:在A1D1,C1D1上任取一点P,M,过点P,M与直线EF作一个平面α,因CD与平面α不平行,所以它们相交,设α∩CD =Q,连结PQ,则PQ与EF必然相交,即PQ为所求直线.由点P的任意性知,有无数条直线与直线A1D1,EF,CD都相交.4. 如图,在正方体ABCDA1B1C1D1中,点E,F,G分别是棱CC1,BB1及DD1的中点.求证:∠BGC=∠FD1E.证明:∵ 点E,F,G分别是正方体的棱CC1,BB1,DD1的中点,∴ CE平行且等于GD1,BF平行且等于GD1,则四边形CED1G与四边形BFD1G均为平行四边形.则GC∥D1E,GB∥D1F.∵∠BGC与∠FD1E对应两边的方向分别相同,∴∠BGC=∠FD1E.5. 如图,在正方体ABCDA1B1C1D1中,对角线A1C与平面BDC1交于点O,AC,BD交于点M,点E为AB的中点,点F为AA1的中点.求证:(1) C1,O,M三点共线;(2) E,C,D1,F四点共面;(3) CE,D1F,DA三线共点.证明:(1) ∵ C 1,O ,M ∈平面BDC 1,又C 1,O ,M ∈平面A 1ACC 1,由公理3知,点C 1,O ,M 在平面BDC 1与平面A 1ACC 1的交线上,∴ C 1,O ,M 三点共线.(2) ∵ 点E ,F 分别是AB ,A 1A 的中点,∴ EF ∥A 1B. ∵ A 1B ∥CD 1,∴ EF ∥CD 1.∴ E ,C ,D 1,F 四点共面.(3) 由(2)可知,E ,C ,D 1,F 四点共面.∵ EF∥A 1B ,EF =12A 1B ,∴ EF =12D 1C ,∴ D 1F ,CE 为相交直线,记交点为P.则P∈D 1F ⊂平面ADD 1A 1,P ∈CE ⊂平面ADCB ,∴ P ∈平面ADD 1A 1∩平面ADCB =AD ,∴ CE ,D 1F ,DA 三线共点.1. 如图,在正方体ABCDEFMN 中,①BM 与ED 平行;②CN 与BM 是异面直线;③CN 与BE 是异面直线;④DN 与BM 是异面直线.以上四个命题中,正确的命题是________.(填序号)答案: ②④解析:观察图形,根据异面直线的定义可知,BM 与ED 是异面直线,CN 与BM 是异面直线,CN 与BE 不是异面直线,DN 与BM 是异面直线,故①③错误,②④正确.即正确的命题是②④.2. 在空间四边形ABCD 中,AB =CD 且AB 与CD 所成的角为30°,点M ,N 分别是BC ,AD 的中点,求直线AB 和MN 所成的角.解:如图,取AC 的中点P.连结PM ,PN ,则PM∥AB,且PM =12AB ,PN ∥CD ,且PN =12CD ,所以∠MPN 为直线AB 与CD 所成的角(或所成角的补角). 则∠MPN=30°或∠MPN=150°. 若∠MPN=30°,因为PM∥AB,所以∠PMN 是AB 与MN 所成的角(或所成角的补角).又AB =CD ,所以PM =PN ,则△PMN 是等腰三角形,所以∠PMN=75°, 即直线AB 与MN 所成的角为75°.若∠MPN=150°,易知△PMN 是等腰三角形,所以∠PMN=15°, 即直线AB 与MN 所成的角为15°.故直线AB 和MN 所成的角为75°或15°.3. 已知在棱长为a 的正方体ABCDA 1B 1C 1D 1中,点M ,N 分别是棱CD ,AD 的中点.求证: (1) 四边形MNA 1C 1是梯形; (2) ∠DNM=∠D 1A 1C 1.证明:(1) 如图,连结AC ,在△ACD 中,∵ 点M ,N 分别是CD ,AD 的中点, ∴ MN 是三角形ACD 的中位线,∴ MN ∥AC ,MN =12AC.由正方体的性质得AC∥A 1C 1,AC =A 1C 1,∴ MN ∥A 1C 1且MN =12A 1C 1,即MN≠A 1C 1,∴ 四边形MNA 1C 1是梯形.(2) 由(1)知MN∥A 1C 1.又∵ ND∥A 1D 1, ∴ ∠DNM 与∠D 1A 1C 1相等或互补.而∠DNM 与∠D 1A 1C 1均是直角三角形中的锐角, ∴ ∠DNM =∠D 1A 1C 1.1. 证明点线共面的常用方法:一是依据题中所给部分条件先确定一个平面,然后证明其余的点或线都在平面内;二是将所有元素分成几个部分,然后分别确定几个平面,再证这些平面重合;三是采用反证法.2. 证明三线共点的方法:通常先证明两条直线的交点在第三条直线上,而第三条直线是分别经过这两条直线的两个平面的一条交线.3. 异面直线的证明方法:一是应用判定定理(过平面内一点与平面外一点的连线与平面内不经过该点的直线是异面直线);二是采用反证法.判定异面直线时通常采用排除法(既不相交也不平行)或判定定理.4. 对于异面直线所成的角,要注意角的范围是⎝⎛⎦⎥⎤0,π2以及两条直线垂直的定义,平移法是解决此类问题的关键.[备课札记]第2课时 直线与平面的位置关系(1) (对应学生用书(文)109~110页、(理)111~112页)了解直线与平面的位置关系,了解线面平行的有关概念;除了能熟练运用线面平行的判定定理和性质定理外,还能运用定义判断位置关系.① 要熟练掌握线面平行的定义、判定及性质.② 要注意线线关系、线面关系以及面面关系的转化.对于直线与平面所成的角,点到面的距离了解即可.1. (必修2P 35练习2改编)给出下列条件:① l∥α;② l 与α至少有一个公共点;③ l 与α至多有一个公共点.则能确定直线l 在平面α外的条件为________.(填序号)答案:①③解析:直线l 在平面α外:l∥α或直线l 与平面α仅有一个交点. 2. (必修2P 35练习7改编)在梯形ABCD 中,AB ∥CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位置关系是________.答案:平行或异面解析:因为AB∥CD,AB ⊂平面α,CD ⊄平面α,所以CD∥平面α,所以CD 与平面α内的直线可能平行,也可能异面.3. (必修2P 35练习4改编)在正六棱柱ABCDEFA 1B 1C 1D 1E 1F 1的表面中,与A 1F 1平行的平面是________.答案:平面ABCDEF 、平面CC 1D 1D解析:在正六棱柱中,易知A 1F 1∥AF ,AF ⊂平面ABCDEF ,且A 1F 1⊄平面ABCDEF ,所以A 1F 1∥平面ABCDEF.同理,A 1F 1∥C 1D 1,C 1D 1⊂平面CC 1D 1D ,且A 1F 1⊄平面CC 1D 1D ,所以A 1F 1∥平面CC 1D 1D.其他各面与A 1F 1均不满足直线与平面平行的条件.故答案为平面ABCDEF 与平面CC 1D 1D.4. (原创)P 为矩形ABCD 所在平面外一点,矩形对角线的交点为O ,M 为PB 的中点,给出下列四个命题:① OM ∥平面PCD ;② OM∥平面PBC ;③ OM∥平面PDA ;④ OM∥平面PBA. 其中正确命题的个数是________. 答案:2解析:由已知OM∥PD,得OM∥平面PCD 且OM∥平面PAD.故正确的只有①③.5. (必修2P 41习题5改编)在四面体ABCD 中,点M ,N 分别是△ACD,△BCD 的重心,则四面体的四个面中与MN 平行的是________.答案:平面ABC 、平面ABD 解析:如图,连结AM 并延长交CD 于E ,连结BN 并延长交CD 于F ,由重心性质可知,E ,F 重合为一点,且该点为CD 的中点E ,由EM MA =EN NB =12,得MN∥AB,因此,MN ∥平面ABC ,且MN∥平面ABD.1. 一条直线和一个平面的位置关系有且只有以下三种:, 1基本概念辨析), 1) 下列命题中真命题的个数为W.①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线b⊂α,则a∥α;④若直线a∥b,b⊂α,那么直线a平行于平面α内的无数条直线.答案:1解析:∵ 直线l虽与平面α内无数条直线平行,但l有可能在平面α内,∴ l不一定平行于α.∴ ①是假命题.∵ 直线a在平面α外,包括两种情况:a∥α和a与α相交,∴ a和α不一定平行.∴ ②是假命题.∵ 直线a∥b,b⊂α,则只能说明a和b无公共点,但a可能在平面α内,∴ a不一定平行于α.∴ ③是假命题.∵ a∥b,b⊂α,那么a⊂α或a∥α,∴ a可以与平面α内的无数条直线平行.∴ ④是真命题.综上可知,真命题的个数为1.备选变式(教师专享)下列命题中正确的是W.(填序号)①若直线a不在平面α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④若l与平面α平行,则l与α内任何一条直线都没有公共点;⑤平行于同一平面的两直线可以相交.答案:④⑤解析:如图①,a∩α=A时,a⊄α,∴①错误;直线l与α相交时,l上有无数个点不在α内,∴②错误;l∥α时,α内的直线与l平行或异面,∴③错误;l∥α,l与α无公共点,∴ l与α内任一直线都无公共点,④正确;如图②,长方体ABCDA1B1C1D1中,A1C1与B1D1都与平面ABCD平行,∴⑤正确., 2线面平行的判定), 2) 如图,在底面为平行四边形的四棱锥PABCD中,点E是PC的中点.求证:PA∥平面BDE.证明:如图,连结AC交BD于点O,连结OE.在平行四边形ABCD中,O是AC的中点,又E是PC的中点,∴ OE∥PA.∵ PA⊄平面BDE,OE⊂平面BDE,∴ PA∥平面BDE.变式训练如图,在三棱柱A1B1C1ABC中, E,F分别是A1B,AC1的中点.求证:EF∥平面ABC.证明:如图,连结A1C,因为三棱柱A1B1C1ABC中,四边形AA1C1C是平行四边形,所以点F在A1C上,且为A1C的中点.在△A1BC中,因为E,F分别是A1B,A1C的中点,所以EF∥BC.因为BC⊂平面ABC,EF⊄平面ABC,所以EF∥平面ABC.备选变式(教师专享)如图,在正方体ABCDA1B1C1D1中,点M,N,P分别为棱AB,BC,C1D1的中点.求证:AP∥平面C1MN.证明:在正方体ABCDA1B1C1D1中,因为点M ,P 分别为棱AB ,C 1D 1的中点,所以AM =PC 1. 又AM∥CD,PC 1∥CD ,故AM∥PC 1,所以四边形AMC 1P 为平行四边形.从而AP∥C 1M. 又AP ⊄ 平面C 1MN ,C 1M ⊂平面C 1MN , 所以AP∥平面C 1MN., 3 线面平行的性质), 3) 如图,在直三棱柱ABCA 1B 1C 1中,AC ⊥BC ,CC 1=4,M 是棱CC 1上的一点.若点N 是AB 的中点,且CN∥平面AB 1M ,求CM 的长.解:(解法1)如图①,取AB 1的中点P ,连结NP ,PM.①因为点N 是AB 的中点,所以NP∥BB 1.因为CM∥BB 1,所以NP∥CM,所以NP 与CM 共面.因为CN∥平面AB 1M ,平面CNPM∩平面AB 1M =MP ,所以CN∥MP.所以四边形CNPM 为平行四边形,所以CM =NP =12CC 1=2.(解法2)如图②,设NC 与CC 1确定的平面交AB 1于点P ,连结NP ,PM.②因为CN∥平面AB 1M ,CN ⊂平面CNPM ,平面AB 1M ∩平面CNPM =PM ,所以CN∥MP. 因为BB 1∥CM ,BB 1⊄平面CNPM ,CM ⊂平面CNPM ,所以BB 1∥平面CNPM. 又BB 1⊂平面ABB 1,平面ABB 1∩平面CNPM =NP ,所以BB 1∥NP ,所以CM∥NP,所以四边形CNPM 为平行四边形.因为点N 是AB 的中点,所以CM =NP =12BB 1=12CC 1=2.(解法3)如图③,取BB 1的中点Q ,连结NQ ,CQ.③因为点N 是AB 的中点,所以NQ∥AB 1. 因为NQ ⊄平面AB 1M ,AB 1⊂平面AB 1M , 所以NQ∥平面AB 1M.因为CN∥平面AB 1M ,NQ ∩NC =N ,NQ ,NC ⊂平面NQC , 所以平面NQC∥平面AB 1M.因为平面BCC 1B 1∩平面NQC =QC ,平面BCC 1B 1∩平面AB 1M =MB 1,所以CQ∥MB 1. 因为BB 1∥CC 1,所以四边形CQB 1M 是平行四边形,所以CM =B 1Q =12CC 1=2.(解法4)如图④,分别延长BC ,B 1M ,设交点为S ,连结AS.④因为CN∥平面AB 1M ,CN ⊂平面ABS , 平面ABS∩平面AB 1M =AS ,所以CN∥AS. 由于AN =NB ,所以BC =CS.又CM∥BB 1,同理可得SM =MB 1,所以CM =12BB 1=12CC 1=2.备选变式(教师专享) 如图,在斜三棱柱ABCA 1B 1C 1中,AC 1与A 1C 交于点O ,E 是棱AB 上一点,且OE∥平面BCC 1B 1.求证:点E 是AB 的中点.证明:连结BC 1,因为OE∥平面BCC 1B 1,OE ⊂平面ABC 1,平面BCC 1B 1∩平面ABC 1=BC 1,所以OE∥BC 1.在斜三棱柱ABCA 1B 1C 1中,侧面AA 1C 1C 是平行四边形,AC 1∩A 1C =O , 所以点O 是AC 1的中点,所以AE EB =AOOC 1=1,即点E 是AB 的中点.1. 如图,在直三棱柱ABCA 1B 1C 1中,已知AB =AC ,点M ,N ,P 分别为BC ,CC 1,BB 1的中点.求证:A 1N ∥平面AMP.证明:取C 1B 1的中点D ,连结A 1D ,DN ,DM ,B 1C.由于点D ,M 分别为C 1B 1,CB 的中点,所以DM∥CC 1且DM =CC 1,故DM∥AA 1且DM =AA 1,则四边形A 1AMD 为平行四边形,所以A 1D ∥AM.又A 1D ⊄平面APM ,AM ⊂平面APM ,所以A 1D ∥平面APM.由于D ,N 分别为C 1B 1,CC 1的中点,所以DN∥B 1C.又点P ,M 分别为BB 1,CB 的中点,所以MP∥B 1C.所以DN∥MP.又DN ⊄平面APM ,MP ⊂平面APM , 所以DN∥平面APM.由于A 1D ∩DN =D ,所以平面A 1DN∥平面APM. 由于A 1N ⊂平面A 1DN ,所以A 1N ∥平面APM.2. 如图,在四棱锥EABCD 中,四边形ABCD 为矩形,点M ,N 分别是AE ,CD 的中点.求证:直线MN∥平面EBC.证明:取BE 中点F ,连结CF ,MF.因为点M 是AE 的中点,所以MF 綊12AB.又点N 是矩形ABCD 边CD 的中点,所以NC 綊12AB ,所以MF 綊NC ,所以四边形MNCF 是平行四边形,所以MN∥CF.又MN ⊄平面EBC ,CF ⊂平面EBC ,所以MN∥平面EBC. 3. 如图,在正三棱柱ABCA′B′C′中,D 是AA′上的点,点E 是B′C′的中点,且A′E∥平面DBC′.试判断D 点在A A′上的位置,并给出证明.解:点D 为AA′的中点.证明如下:如图,取BC 的中点F ,连结AF ,EF ,设EF 与BC′交于点O ,连结DO ,BE ,C ′F ,在正三棱柱ABCA′B′C′中,点E 是B′C′的中点,所以 EF ∥BB ′∥AA ′,且EF =BB′=AA′, 所以四边形A′EFA 是平行四边形.因为A′E∥平面DBC′,A ′E ⊂平面A′EFA,且平面DBC′∩平面A′EFA=DO , 所以A′E∥DO.在正三棱柱ABC -A′B′C′中,点E 是B′C′的中点, 所以EC′∥BC 且EC′=BF ,所以四边形BFC′E 是平行四边形,所以点O 是EF 的中点. 因为在平行四边形A′EFA 中, A ′E ∥DO , 所以点D 为AA′的中点. 4. 如图,在直四棱柱ABCDA 1B 1C 1D 1中,底面ABCD 是菱形,点E 是A 1C 1的中点.求证:BE∥平面ACD 1.证明:如图,连结B 1D 1交A 1C 1于点E ,连结BD 交AC 于点O ,连结OD 1.∵ 在直四棱柱ABCDA 1B 1C 1D 1中,底面ABCD 是菱形, ∴ D 1E ∥BO 且D 1E =BO ,∴ 四边形BED 1O 是平行四边形, ∴ BE ∥OD 1.∵ OD 1⊂平面ACD 1,BE ⊄平面ACD 1, ∴ BE ∥平面ACD 1.5. 如图,在四棱锥PABCD 中,PC ⊥平面PAD ,AB ∥CD ,CD =2AB =2BC ,点M ,N 分别是棱PA ,CD 的中点.求证:PC∥平面BMN.证明:设AC∩BN=O ,连结MO ,AN.因为AB =12CD ,AB ∥CD ,点N 为CD 的中点,所以AB =CN ,AB ∥CN ,所以四边形ABCN 为平行四边形, 所以O 为AC 的中点.又点M 为PA 的中点,所以MO∥PC. 因为MO ⊂平面BMN ,PC ⊄ 平面BMN , 所以PC∥平面BMN.1. 如图,在三棱锥PABC中,点M,N分别为AB,PA的中点.求证:PB∥平面MNC.证明:因为点M,N分别为AB,PA的中点,所以MN∥PB.因为MN⊂平面MNC,PB⊄平面MNC,所以PB∥平面MNC.2. 如图,在直三棱柱ABCA1B1C1中,点D是AB的中点.求证:BC1∥平面A1CD.证明:连结AC1,设交A1C于点O,连结OD.∵四边形AA1C1C是矩形,∴ O是AC1的中点.∵在△ABC1中, O,D分别是AC1,AB的中点,∴OD∥BC1.∵ OD⊂平面A1CD,BC1⊄平面A1CD,∴ BC1∥平面A1CD.3. 如图,在长方体ABCDA1B1C1D1中,点P∈BB1(P不与B,B1重合).PA∩A1B=M,PC∩BC1=N.求证:MN∥平面ABCD.证明:连结AC,A1C1,在长方体ABCDA1B1C1D1中,AA1∥CC1,且AA1=CC1,∴四边形ACC1A1是平行四边形.∴ AC∥A1C1.∵ AC⊄平面A1BC1,A1C1⊂平面A1BC1,∴ AC∥平面A1BC1.∵ AC⊂平面PAC,平面A1BC1∩平面PAC=MN,∴ AC∥MN.∵ MN⊄平面ABCD,AC⊂平面ABCD,∴ MN∥平面ABCD.1. 判定或证明直线与平面平行的常用方法(1)利用直线与平面平行的定义(无公共点).(2)利用直线与平面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).(3)利用平面与平面平行的性质(α∥β,a⊂α⇒a∥β).注意不管用哪种方法,都应将相应的条件写全,缺一不可.2. 直线与平面平行的性质定理的作用是证线线平行,应用时常常需构造辅助平面,和在平面几何中添加辅助线一样,在构造辅助平面时要确认这个平面的存在性.3. 证明平行问题时要注意“转化思想”的应用,要抓住线线、线面、面面之间的平行关系,实现“空间问题”与“平面问题”之间的转化.[备课札记]第3课时直线与平面的位置关系(2)(对应学生用书(文)111~113页、(理)113~115页)1. (必修2P38练习2(3)改编)已知直线l,a,b,平面α.若l∥a,a⊥α,b⊥α,则l与b的位置关系是W.答案:平行解析:由线面垂直的性质可知,若a⊥α,b ⊥α,则a∥b.因为l ∥a ,所以l∥b. 2. 已知两条异面直线平行于一平面,一直线与两异面直线都垂直,那么这个平面与这条直线的位置关系是 W.(填序号)① 平行;② 垂直;③ 斜交;④ 不能确定. 答案:② 解析:设a ,b 为异面直线,a ∥平面α,b ∥平面α,直线l⊥a,l ⊥b.过a 作平面β∩α=a′,则a ∥a ′,∴ l ⊥a ′.同理过b 作平面γ∩α=b′,则l ⊥b ′.∵ a ,b 异面,∴ a ′与b′相交,∴ l ⊥α.3. 设l ,m 表示直线,m 是平面α内的任意一条直线,则“l⊥m”是“l⊥α”成立的 条件.(选填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)答案:充要解析:由线面垂直的定义知,直线垂直于平面内任意一条直线,则直线与平面垂直,说明是充分条件,反之,直线垂直于平面,则直线垂直于平面内任意一条直线,说明是必要条件,则“l⊥m”是“l⊥α”成立的充要条件.4. (必修2P 42习题9改编)如图,AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆O 上不同于A ,B 的任一点,则图中直角三角形的个数为 W.答案:4解析:因为AB 是圆O 的直径,所以AC⊥BC,△ACB 是直角三角形;由PA⊥平面ABC 可得,PA ⊥AB ,PA ⊥AC ,所以△PAB 与△PAC 是直角三角形;因为PA⊥平面ABC ,且BC ⊂平面ABC ,所以PA⊥BC.又BC⊥AC,PA ∩AC =A ,所以BC⊥平面PAC.而PC ⊂平面PAC ,所以BC⊥PC,△PCB 是直角三角形.故直角三角形的个数为4.5. (必修2P 38练习3改编)在正方体ABCDA 1B 1C 1D 1中,已知AB =1,则点C 到平面B 1BDD 1.解析:连结AC ,则AC⊥BD,又BB 1⊥AC ,故AC⊥平面B 1BDD 1,所以点C 到平面B 1BDD 1的距离为12AC =22.1. 直线与平面垂直的定义:如果一条直线a 与一个平面α内的任意一条直线都垂直,我们就说直线a 与平面α互相垂直,记作a ⊥α,直线a 叫做平面α的垂线,平面α叫做直线a 的垂面,垂线和平面的交点称为垂足W.2. 结论:过一点有且只有一条直线与已知平面垂直,过一点有且只有一个平面与已知直线垂直.3. 直线与平面垂直从平面外一点引平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.5. 直线和平面的距离一条直线和一个平面平行,这条直线上任意一点到这个平面的距离,叫做这条直线和这个平面的距离.6. 直线与平面所成的角(1)斜线一条直线与一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线与平面的交点叫做斜足,斜线上一点与斜足间的线段叫做这个点到平面的斜线段.(2)射影过平面α外一点P向平面α引斜线和垂线,那么过斜足Q和垂足P1的直线就是斜线在平面内的正投影(简称射影),线段P1Q就是斜线段PQ在平面α内的射影,如图.(3)直线和平面所成的角平面的一条斜线与它在这个平面内的射影所成的锐角,叫做这条直线与这个平面所成的角.特别地,如果直线和平面垂直,那么就说这条直线与平面所成的角是直角;如果直线与平面平行或在平面内,则它们所成的角是0°的角.[备课札记], 1直线与平面垂直的判定), 1) 如图,在直四棱柱ABCDA1B1C1D1中,点E,F分别是AB,BC的中点,A1C1与B1D1交于点O.若底面ABCD是菱形,且OD⊥A1E,求证:OD⊥平面A1C1FE.证明:连结BD,因为直棱柱中DD1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,所以DD1⊥A1C1.因为底面A1B1C1D1是菱形,所以A1C1⊥B1D1.又DD1∩B1D1=D1,所以A1C1⊥平面BB1D1D.因为OD⊂平面BB1D1D,所以OD⊥A1C1.又OD⊥A1E,A1C1∩A1E=A1,A1C1⊂平面A1C1FE,A1E⊂平面A1C1FE,所以OD⊥平面A1C1FE.变式训练如图,在三棱锥PABC中,平面PAB⊥平面ABC,PA⊥PB,M,N分别为AB,PA的中点.若AC=BC,求证:PA⊥平面MNC.证明:因为M,N分别为AB,PA的中点,所以MN∥PB.又因为PA⊥PB,所以PA⊥MN. 因为AC=BC,AM=BM,所以CM⊥AB.因为平面PAB⊥平面ABC,CM⊂平面ABC,平面PAB∩平面ABC=AB,所以CM⊥平面PAB.因为PA⊂平面PAB,所以CM⊥PA.又因为PA⊥MN,MN⊂平面MNC,CM⊂平面MNC,MN∩CM=M,所以PA⊥平面MNC., 2直线与平面垂直性质的应用), 2) 如图,在四棱锥PABCD中,AD⊥平面PAB,AP⊥AB.(1)求证:CD⊥AP;(2)若CD⊥PD,求证:CD∥平面PAB.证明:(1)因为AD⊥平面PAB,AP⊂平面PAB,所以AD⊥AP.因为AP⊥AB,AB∩AD=A,AB⊂平面ABCD,AD⊂平面ABCD,所以AP⊥平面ABCD.因为CD⊂平面ABCD,所以CD⊥AP.(2)因为CD⊥AP,CD⊥PD,且PD∩AP=P,PD⊂平面PAD,AP⊂平面PAD,所以CD⊥平面PAD ①.因为AD⊥平面PAB,AB⊂平面PAB,所以AB⊥AD.因为AP⊥AB,AP∩AD=A,AP⊂平面PAD,AD⊂平面PAD,所以AB⊥平面PAD ②.由①②得CD∥AB,因为CD⊄平面PAB,AB⊂平面PAB,所以CD∥平面PAB.变式训练如图,在正方体ABCDA1B1C1D1中,EF与异面直线AC,A1D都垂直相交.求证:(1)EF⊥平面AB1C;(2)EF∥BD1.证明:(1)在正方体ABCDA1B1C1D1中,A1B1∥AB∥CD,且A1B1=AB=CD,所以四边形A1B1CD是平行四边形,所以A1D∥B1C.因为EF⊥A1D,所以EF⊥B1C.又因为EF⊥AC,AC∩B1C=C,AC⊂平面AB1C,B1C ⊂平面AB1C,所以EF⊥平面AB1C.(2)连结BD,则BD⊥AC.因为DD1⊥平面ABCD,AC⊂平面ABCD,所以DD1⊥AC.因为AC⊥BD,DD1∩BD=D,DD1⊂平面BDD1B1,BD⊂平面BDD1B1,所以AC⊥平面BDD1B1.又BD1⊂平面BDD1B1,所以AC⊥BD1.同理可证BD1⊥B1C,又AC∩B1C=C,AC⊂平面AB1C,B1C⊂平面AB1C,所以BD1⊥平面AB1C.又EF⊥平面AB1C,所以EF∥BD1., 3直线与平面垂直的探索题), 3) 在正三棱柱ABCA1B1C1中,点D是BC的中点,BC=BB1.(1)若P是CC1上任一点,求证:AP不可能与平面BCC1B1垂直;(2)试在棱CC1上找一点M,使MB⊥AB1.(1)证明:(反证法)假设AP⊥平面BCC1B1,∵ BC⊂平面BCC1B1,∴ AP⊥BC.又正三棱柱ABCA1B1C1中,CC1⊥BC,AP∩CC1=P,AP⊂平面ACC1A1,CC1⊂平面ACC1A1,∴ BC⊥平面ACC1A1.而AC⊂平面ACC1A1,∴ BC⊥AC,这与△ABC是正三角形矛盾,故AP 不可能与平面BCC 1B 1垂直. (2) 解:M 为CC 1的中点.∵ 在正三棱柱ABCA 1B 1C 1中,BC =BB 1, ∴ 四边形BCC 1B 1是正方形.∵ 点M 为CC 1的中点,点D 是BC 的中点, ∴ △B 1BD ≌△BCM ,∴ ∠BB 1D =∠CBM,∠BDB 1=∠CMB.∵ ∠BB 1D +∠BDB 1=π2,∴ ∠CBM +∠BDB 1=π2,∴ BM ⊥B 1D.∵ △ABC 是正三角形,D 是BC 的中点, ∴ AD ⊥BC.∵ 平面ABC⊥平面BB 1C 1C ,平面ABC∩平面BB 1C 1C =BC ,AD ⊂平面ABC , ∴ AD ⊥平面BB 1C 1C.∵ BM ⊂平面BB 1C 1C ,∴ AD ⊥BM. ∵ AD ∩B 1D =D ,∴ BM ⊥平面AB 1D. ∵ AB 1⊂平面AB 1D ,∴ MB ⊥AB 1. 备选变式(教师专享)如图,在棱长为1的正方体ABCDA 1B 1C 1D 1中,点E 是棱BC 的中点,点F 是棱CD 上的动点.试确定点F 的位置,使得D 1E⊥平面AB 1F.解:如图,连结A 1B ,CD 1,则A 1B ⊥AB 1.∵ 在正方体ABCDA 1B 1C 1D 1中,D 1A 1⊥平面ABB 1A 1,AB 1⊂平面ABB 1A 1,∴ A 1D 1⊥AB 1.又A 1D 1∩A 1B =A 1,A 1D 1,A 1B ⊂平面A 1BCD 1, ∴ AB 1⊥平面A 1BCD 1.又D 1E ⊂平面A 1BCD 1,∴ AB 1⊥D 1E.于是使D 1E ⊥平面AB 1F 等价于使D 1E ⊥AF. 连结DE ,易知D 1D ⊥AF ,若有AF⊥平面D 1DE ,只需证DE⊥AF.∵ 四边形ABCD 是正方形,点E 是BC 的中点, ∴ 当且仅当点F 是CD 的中点时,DE ⊥AF , 即当点F 是CD 的中点时,D 1E ⊥平面AB 1F.1. 如图,在矩形ABCD 中,AB =1,BC =a (a>0),PA ⊥平面ABCD ,且PA =1,问BC 边上是否存在点Q ,使得PQ ⊥QD ,并说明理由.解:假设存在点Q ,使得PQ⊥QD.连结AQ. ∵ PA ⊥平面ABCD ,且DQ ⊂平面ABCD , ∴ PA ⊥DQ.∵ PQ ⊥DQ ,且PQ∩PA=P ,PQ ⊂平面PAQ ,PA ⊂平面PAQ , ∴ DQ ⊥平面PAQ.∵ AQ ⊂平面PAQ ,∴ AQ ⊥DQ.设BQ =x ,则CQ =a -x ,AQ 2=x 2+1,DQ 2=(a -x )2+1.∵ AQ 2+DQ 2=AD 2,∴ x 2+1+(a -x )2+1=a 2,即x 2-ax +1=0 (*).方程(*)的判别式Δ=a 2-4. ∵ a>0,∴ 当Δ<0,即0<a<2时,方程(*)无实根;当Δ=0,即a =2时,方程(*)有惟一实根,此时x =1;当Δ>0,即a>2时,方程(*)有两个不等实根,设两个实根分别为x 1,x 2.由于x 1+x 2=a>0,x 1x 2=1>0,则这两个实根均为正数.因此,当0<a<2时,BC 边上不存在点Q 使PQ⊥QD; 当a =2时,BC 边上存在惟一一点Q (即BC 的中点),使PQ ⊥QD ; 当a>2时,BC 边上存在不同的两点Q ,使PQ⊥QD.2. 如图,在长方体ABCDA 1B 1C 1D 1中,AB =BC =EC =12AA 1.(1) 求证:AC 1∥平面BDE ; (2) 求证:A 1E ⊥平面BDE.证明:(1) 连结AC 交BD 于点O ,连结OE.在长方体ABCDA 1B 1C 1D 1中,四边形ABCD 是正方形,点O 为AC 的中点,AA 1∥CC 1且AA 1=CC 1,由EC =12AA 1,得EC =12CC 1,即点E 为CC 1的中点,于是在△CAC 1中,AC 1∥OE.因为OE ⊂平面BDE ,AC 1⊄平面BDE ,所以AC 1∥平面BDE.(2) 连结B 1E.设AB =a ,则在△BB 1E 中,BE =B 1E =2a ,BB 1=2a.所以BE 2+B 1E 2=BB 21,所以B 1E ⊥BE.在长方体ABCDA 1B 1C 1D 1中,A 1B 1⊥平面BB 1C 1C ,BE ⊂平面BB 1C 1C ,所以A 1B 1⊥BE.因为B 1E ∩A 1B 1= B 1,B 1E ⊂平面A 1B 1E ,A 1B 1⊂平面A 1B 1E ,所以BE⊥平面A 1B 1E. 因为A 1E ⊂平面A 1B 1E ,所以A 1E ⊥BE. 同理A 1E ⊥DE.又因为BE∩DE=E ,BE ⊂平面BDE ,DE ⊂平面BDE , 所以A 1E ⊥平面BDE.3. 如图,在四棱锥PABCD 中,底面ABCD 是矩形,侧棱PA 垂直于底面,点E ,F 分别是AB ,PC 的中点,PA =AD.求证:(1) CD⊥PD;(2) EF⊥平面PCD.证明:(1) ∵ PA⊥底面ABCD ,∴ CD ⊥PA.又矩形ABCD 中,CD ⊥AD ,且AD∩PA=A ,AD ,PA ⊂平面PAD ,∴ CD ⊥平面PAD ,∴ CD ⊥PD.(2) 如图,取PD 的中点G ,连结AG ,FG.∵ 点G ,F 分别是PD ,PC 的中点,∴ GF 綊12CD ,∴ GF 綊AE ,∴ 四边形AEFG 是平行四边形,∴ AG ∥EF. ∵ PA =AD ,G 是PD 的中点, ∴ AG ⊥PD ,∴ EF ⊥PD.∵ CD ⊥平面PAD ,AG ⊂平面PAD , ∴ CD ⊥AG ,∴ EF ⊥CD.∵ PD ∩CD =D ,PD ,CD ⊂平面PCD ,∴ EF ⊥平面PCD.4. 如图,在直三棱柱ABCA 1B 1C 1中,已知AC⊥BC,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E. 求证:(1) DE∥平面AA 1C 1C ; (2) BC 1⊥AB 1.。
2019版高考数学一轮复习训练: 基础与考点过关 第八章 立体几何初步
第八章 立体几何初步第1课时 空间点、直线、平面之间的 位置关系1. (必修2P 24练习2改编)用集合符号表示“点P 在直线l 外,直线l 在平面α内”为________.答案:P ∉l ,l ⊂α解析:考查点、线、面之间的符号表示. 2. (必修2P 28练习2改编)已知AB∥PQ,BC ∥QR ,若∠ABC=45°,则∠PQR=________. 答案:45°或135°解析:由等角定理可知∠PQR 与∠ABC 相等或互补,故答案为45°或135°. 3. (原创)若直线l 上有两个点在平面α外,则________.(填序号) ① 直线l 上至少有一个点在平面α内; ② 直线l 上有无穷多个点在平面α内; ③ 直线l 上所有点都在平面α外; ④ 直线l 上至多有一个点在平面α内. 答案:④解析:由已知得直线l ⊄α,故直线l 上至多有一个点在平面α内.4. (必修2P 31习题15改编)如图所示,设E ,F ,G ,H 依次是空间四边形ABCD 的边AB ,BC ,CD ,DA 上除端点外的点,AE AB =AH AD =λ,CF CB =CGCD=μ,则下列结论中不正确的是________.(填序号)① 当λ=μ时,四边形EFGH 是平行四边形; ② 当λ≠μ时,四边形EFGH 是梯形;③ 当λ≠μ时,四边形EFGH 一定不是平行四边形; ④ 当λ=μ时,四边形EFGH 是梯形. 答案:④解析:由AE AB =AH AD =λ,得EH∥BD,且EH BD =λ,同理得FG ∥BD 且 FGBD=μ,当λ=μ时,EH ∥FG 且EH =FG.当λ≠μ时,EH ∥FG ,但EH≠FG,只有④错误.5. (必修2P 30练习2改编)在正方体A 1B 1C 1D 1ABCD 中,与AB 异面的棱有______________________.答案:A 1D 1,DD 1,CC 1,C 1B 11. 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.公理3:经过不在同一条直线上的三点,有且只有一个平面. 推论1:经过一条直线和这条直线外的一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面. 2. 空间两条直线的位置关系(1) 公理4:平行于同一条直线的两条直线互相平行. (2) 定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.4. 异面直线的判定(1) 判定定理:过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线.(2) 符号表示:若l ⊂α,A ∉α,B ∈α,B ∉l ,则直线AB 与l 是异面直线. 5. 异面直线所成的角(1) 定义:设a ,b 是异面直线,经过空间任意一点O ,作直线a′∥a,b ′∥b ,我们把直线a′与b′所成的锐角(或直角)叫做异面直线a ,b 所成的角.(2) 范围:⎝⎛⎦⎥⎤0,π2.(3) 若异面直线a ,b 所成的角是直角,就称异面直线a ,b 互相垂直.记作a⊥b. [备课札记], 1平面的基本性质), 1) 如图,正方体ABCDA1B1C1D1中,点E,F分别为CC1,AA1的中点,画出平面BED1F和平面ABCD的交线.解:如图,在平面ADD1A1内延长D1F与DA交于一点P,则P∈平面BED1F.∵ DA⊂平面ABCD,∴ P∈平面ABCD,∴点P是平面ABCD与平面BED1F的一个公共点.又点B是两平面的一个公共点,∴ PB为两平面的交线.备选变式(教师专享)如图,在直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.解:显然点S是平面SBD和平面SAC的一个公共点,即点S在交线上,由于AB>CD,则分别延长AC和BD交于点E,如图所示.∵ E∈AC,AC⊂平面SAC,∴ E∈平面SAC.同理,可证E∈平面SBD,∴点E在平面SBD和平面SAC的交线上,连结SE,则直线SE是平面SBD和平面SAC的交线., 2共点、共线、共面问题), 2) 如图,在四边形ABCD 和四边形ABEF 中,BC ∥AD ,BC =12AD ,BE∥FA ,BE =12FA ,点G ,H 分别为FA ,FD 的中点.(1) 求证:四边形BCHG 是平行四边形. (2) C ,D ,F ,E 四点是否共面?为什么?(1) 证明:因为点G ,H 分别为FA ,FD 的中点,所以GH∥AD,GH =12AD.又BC∥AD,BC=12AD , 所以GH∥BC,且GH =BC ,所以四边形BCHG 为平行四边形.(2) 解:C ,D ,F ,E 四点共面.理由如下:由BE∥FA,BE =12FA ,点G 为FA 的中点知,BE ∥FG ,BE =FG ,所以四边形BEFG 为平行四边形,所以EF∥BG. 由(1)知BG∥CH,BG =CH ,所以EF∥CH,所以EF 与CH 共面. 又D∈FH,所以C ,D ,F ,E 四点共面. 变式训练如图,在直四棱柱ABCDA 1B 1C 1D 1中,点E ,F 分别是AB ,BC 的中点,A 1C 1与B 1D 1交于点O.求证:A 1,C 1,F ,E 四点共面.证明:如图,连结AC ,因为点E ,F 分别是AB ,BC 的中点,所以EF 是△ABC 的中位线,所以EF ∥AC.由直棱柱知AA 1綊CC 1,所以四边形AA 1C 1C 为平行四边形,所以AC∥A 1C 1. 所以EF∥A 1C 1,故A 1,C 1,F ,E 四点共面., 3 空间直线位置关系问题), 3) 如图,在正方体ABCDA 1B 1C 1D 1中,点M ,N 分别是A 1B 1,B 1C 1的中点.求证:(1) AM 和CN 共面;(2) D 1B 和CC 1是异面直线.证明:(1) 如图,连结MN,A1C1,AC.∵点M,N分别是A1B1,B1C1的中点,∴ MN∥A1C1.∵ A1A綊C1C,∴四边形A1ACC1为平行四边形,∴ A1C1∥AC,∴ MN∥AC,∴ A,M,N,C四点共面,即AM和CN共面.(2) ∵ ABCDA1B1C1D1是正方体,∴ B,C,C1,D1不共面.假设D1B与CC1不是异面直线,则存在平面α,使D1B⊂平面α,CC1⊂平面α,∴ D1,B,C,C1∈α,这与B,C,C1,D1不共面矛盾.∴假设不成立,即D1B与CC1是异面直线.变式训练已知空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD 的中点.(1) 求证:BC与AD是异面直线;(2) 求证:EG与FH相交.证明:(1) 假设BC与AD不是异面直线,则BC与AD共面.不妨设它们所共平面为α,则B,C,A,D∈α,所以四边形ABCD为平面图形,这与四边形ABCD为空间四边形相矛盾.所以BC与AD是异面直线.(2) 如图,连结AC,BD,则EF∥AC,HG∥AC,因此EF∥HG;同理EH∥FG,则EFGH为平行四边形.又EG,FH是平行四边形EFGH的对角线,所以EG与FH相交.1. 在下列命题中,不是公理的是________.(填序号)①如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;②过不在同一条直线上的三点,有且只有一个平面;③如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内;④平行于同一个平面的两个平面相互平行.答案:④解析:④不是公理,是个常用的结论,需经过推理论证;①②③是平面的基本性质公理.2. 一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:① AB⊥EF;② AB与CM所成的角为60°;③ EF与MN是异面直线;④ MN∥CD.以上结论中正确的是________.(填序号)答案:①③解析:把正方体平面展开图还原到原来的正方体,如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD,只有①③正确.3. 在正方体ABCDA1B1C1D1中,点E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有________条.答案:无数解析:在A1D1,C1D1上任取一点P,M,过点P,M与直线EF作一个平面α,因CD与平面α不平行,所以它们相交,设α∩CD =Q,连结PQ,则PQ与EF必然相交,即PQ为所求直线.由点P的任意性知,有无数条直线与直线A1D1,EF,CD都相交.4. 如图,在正方体ABCDA1B1C1D1中,点E,F,G分别是棱CC1,BB1及DD1的中点.求证:∠BGC=∠FD1E.证明:∵ 点E,F,G分别是正方体的棱CC1,BB1,DD1的中点,∴ CE平行且等于GD1,BF平行且等于GD1,则四边形CED1G与四边形BFD1G均为平行四边形.则GC∥D1E,GB∥D1F.∵∠BGC与∠FD1E对应两边的方向分别相同,∴∠BGC=∠FD1E.5. 如图,在正方体ABCDA1B1C1D1中,对角线A1C与平面BDC1交于点O,AC,BD交于点M,点E为AB的中点,点F为AA1的中点.求证:(1) C1,O,M三点共线;(2) E,C,D1,F四点共面;(3) CE,D1F,DA三线共点.证明:(1) ∵ C 1,O ,M ∈平面BDC 1,又C 1,O ,M ∈平面A 1ACC 1,由公理3知,点C 1,O ,M 在平面BDC 1与平面A 1ACC 1的交线上,∴ C 1,O ,M 三点共线.(2) ∵ 点E ,F 分别是AB ,A 1A 的中点,∴ EF ∥A 1B. ∵ A 1B ∥CD 1,∴ EF ∥CD 1.∴ E ,C ,D 1,F 四点共面.(3) 由(2)可知,E ,C ,D 1,F 四点共面.∵ EF∥A 1B ,EF =12A 1B ,∴ EF =12D 1C ,∴ D 1F ,CE 为相交直线,记交点为P.则P∈D 1F ⊂平面ADD 1A 1,P ∈CE ⊂平面ADCB ,∴ P ∈平面ADD 1A 1∩平面ADCB =AD ,∴ CE ,D 1F ,DA 三线共点.1. 如图,在正方体ABCDEFMN 中,①BM 与ED 平行;②CN 与BM 是异面直线;③CN 与BE 是异面直线;④DN 与BM 是异面直线.以上四个命题中,正确的命题是________.(填序号)答案: ②④解析:观察图形,根据异面直线的定义可知,BM 与ED 是异面直线,CN 与BM 是异面直线,CN 与BE 不是异面直线,DN 与BM 是异面直线,故①③错误,②④正确.即正确的命题是②④.2. 在空间四边形ABCD 中,AB =CD 且AB 与CD 所成的角为30°,点M ,N 分别是BC ,AD 的中点,求直线AB 和MN 所成的角.解:如图,取AC 的中点P.连结PM ,PN ,则PM∥AB,且PM =12AB ,PN ∥CD ,且PN =12CD ,所以∠MPN 为直线AB 与CD 所成的角(或所成角的补角). 则∠MPN=30°或∠MPN=150°. 若∠MPN=30°,因为PM∥AB,所以∠PMN 是AB 与MN 所成的角(或所成角的补角).又AB =CD ,所以PM =PN ,则△PMN 是等腰三角形,所以∠PMN=75°, 即直线AB 与MN 所成的角为75°.若∠MPN=150°,易知△PMN 是等腰三角形,所以∠PMN=15°, 即直线AB 与MN 所成的角为15°.故直线AB 和MN 所成的角为75°或15°.3. 已知在棱长为a 的正方体ABCDA 1B 1C 1D 1中,点M ,N 分别是棱CD ,AD 的中点.求证: (1) 四边形MNA 1C 1是梯形; (2) ∠DNM=∠D 1A 1C 1.证明:(1) 如图,连结AC ,在△ACD 中,∵ 点M ,N 分别是CD ,AD 的中点, ∴ MN 是三角形ACD 的中位线,∴ MN ∥AC ,MN =12AC.由正方体的性质得AC∥A 1C 1,AC =A 1C 1,∴ MN ∥A 1C 1且MN =12A 1C 1,即MN≠A 1C 1,∴ 四边形MNA 1C 1是梯形.(2) 由(1)知MN∥A 1C 1.又∵ ND∥A 1D 1, ∴ ∠DNM 与∠D 1A 1C 1相等或互补.而∠DNM 与∠D 1A 1C 1均是直角三角形中的锐角, ∴ ∠DNM =∠D 1A 1C 1.1. 证明点线共面的常用方法:一是依据题中所给部分条件先确定一个平面,然后证明其余的点或线都在平面内;二是将所有元素分成几个部分,然后分别确定几个平面,再证这些平面重合;三是采用反证法.2. 证明三线共点的方法:通常先证明两条直线的交点在第三条直线上,而第三条直线是分别经过这两条直线的两个平面的一条交线.3. 异面直线的证明方法:一是应用判定定理(过平面内一点与平面外一点的连线与平面内不经过该点的直线是异面直线);二是采用反证法.判定异面直线时通常采用排除法(既不相交也不平行)或判定定理.4. 对于异面直线所成的角,要注意角的范围是⎝⎛⎦⎥⎤0,π2以及两条直线垂直的定义,平移法是解决此类问题的关键.[备课札记]第2课时 直线与平面的位置关系(1) (对应学生用书(文)109~110页、(理)111~112页)了解直线与平面的位置关系,了解线面平行的有关概念;除了能熟练运用线面平行的判定定理和性质定理外,还能运用定义判断位置关系.① 要熟练掌握线面平行的定义、判定及性质.② 要注意线线关系、线面关系以及面面关系的转化.对于直线与平面所成的角,点到面的距离了解即可.1. (必修2P 35练习2改编)给出下列条件:① l∥α;② l 与α至少有一个公共点;③ l 与α至多有一个公共点.则能确定直线l 在平面α外的条件为________.(填序号)答案:①③解析:直线l 在平面α外:l∥α或直线l 与平面α仅有一个交点. 2. (必修2P 35练习7改编)在梯形ABCD 中,AB ∥CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位置关系是________.答案:平行或异面解析:因为AB∥CD,AB ⊂平面α,CD ⊄平面α,所以CD∥平面α,所以CD 与平面α内的直线可能平行,也可能异面.3. (必修2P 35练习4改编)在正六棱柱ABCDEFA 1B 1C 1D 1E 1F 1的表面中,与A 1F 1平行的平面是________.答案:平面ABCDEF 、平面CC 1D 1D解析:在正六棱柱中,易知A 1F 1∥AF ,AF ⊂平面ABCDEF ,且A 1F 1⊄平面ABCDEF ,所以A 1F 1∥平面ABCDEF.同理,A 1F 1∥C 1D 1,C 1D 1⊂平面CC 1D 1D ,且A 1F 1⊄平面CC 1D 1D ,所以A 1F 1∥平面CC 1D 1D.其他各面与A 1F 1均不满足直线与平面平行的条件.故答案为平面ABCDEF 与平面CC 1D 1D.4. (原创)P 为矩形ABCD 所在平面外一点,矩形对角线的交点为O ,M 为PB 的中点,给出下列四个命题:① OM ∥平面PCD ;② OM∥平面PBC ;③ OM∥平面PDA ;④ OM∥平面PBA. 其中正确命题的个数是________. 答案:2解析:由已知OM∥PD,得OM∥平面PCD 且OM∥平面PAD.故正确的只有①③.5. (必修2P 41习题5改编)在四面体ABCD 中,点M ,N 分别是△ACD,△BCD 的重心,则四面体的四个面中与MN 平行的是________.答案:平面ABC 、平面ABD 解析:如图,连结AM 并延长交CD 于E ,连结BN 并延长交CD 于F ,由重心性质可知,E ,F 重合为一点,且该点为CD 的中点E ,由EM MA =EN NB =12,得MN∥AB,因此,MN ∥平面ABC ,且MN∥平面ABD.1. 一条直线和一个平面的位置关系有且只有以下三种:, 1基本概念辨析), 1) 下列命题中真命题的个数为W.①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线b⊂α,则a∥α;④若直线a∥b,b⊂α,那么直线a平行于平面α内的无数条直线.答案:1解析:∵ 直线l虽与平面α内无数条直线平行,但l有可能在平面α内,∴ l不一定平行于α.∴ ①是假命题.∵ 直线a在平面α外,包括两种情况:a∥α和a与α相交,∴ a和α不一定平行.∴ ②是假命题.∵ 直线a∥b,b⊂α,则只能说明a和b无公共点,但a可能在平面α内,∴ a不一定平行于α.∴ ③是假命题.∵ a∥b,b⊂α,那么a⊂α或a∥α,∴ a可以与平面α内的无数条直线平行.∴ ④是真命题.综上可知,真命题的个数为1.备选变式(教师专享)下列命题中正确的是W.(填序号)①若直线a不在平面α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④若l与平面α平行,则l与α内任何一条直线都没有公共点;⑤平行于同一平面的两直线可以相交.答案:④⑤解析:如图①,a∩α=A时,a⊄α,∴①错误;直线l与α相交时,l上有无数个点不在α内,∴②错误;l∥α时,α内的直线与l平行或异面,∴③错误;l∥α,l与α无公共点,∴ l与α内任一直线都无公共点,④正确;如图②,长方体ABCDA1B1C1D1中,A1C1与B1D1都与平面ABCD平行,∴⑤正确., 2线面平行的判定), 2) 如图,在底面为平行四边形的四棱锥PABCD中,点E是PC的中点.求证:PA∥平面BDE.证明:如图,连结AC交BD于点O,连结OE.在平行四边形ABCD中,O是AC的中点,又E是PC的中点,∴ OE∥PA.∵ PA⊄平面BDE,OE⊂平面BDE,∴ PA∥平面BDE.变式训练如图,在三棱柱A1B1C1ABC中, E,F分别是A1B,AC1的中点.求证:EF∥平面ABC.证明:如图,连结A1C,因为三棱柱A1B1C1ABC中,四边形AA1C1C是平行四边形,所以点F在A1C上,且为A1C的中点.在△A1BC中,因为E,F分别是A1B,A1C的中点,所以EF∥BC.因为BC⊂平面ABC,EF⊄平面ABC,所以EF∥平面ABC.备选变式(教师专享)如图,在正方体ABCDA1B1C1D1中,点M,N,P分别为棱AB,BC,C1D1的中点.求证:AP∥平面C1MN.证明:在正方体ABCDA1B1C1D1中,因为点M ,P 分别为棱AB ,C 1D 1的中点,所以AM =PC 1. 又AM∥CD,PC 1∥CD ,故AM∥PC 1,所以四边形AMC 1P 为平行四边形.从而AP∥C 1M. 又AP ⊄ 平面C 1MN ,C 1M ⊂平面C 1MN , 所以AP∥平面C 1MN., 3 线面平行的性质), 3) 如图,在直三棱柱ABCA 1B 1C 1中,AC ⊥BC ,CC 1=4,M 是棱CC 1上的一点.若点N 是AB 的中点,且CN∥平面AB 1M ,求CM 的长.解:(解法1)如图①,取AB 1的中点P ,连结NP ,PM.①因为点N 是AB 的中点,所以NP∥BB 1.因为CM∥BB 1,所以NP∥CM,所以NP 与CM 共面.因为CN∥平面AB 1M ,平面CNPM∩平面AB 1M =MP ,所以CN∥MP.所以四边形CNPM 为平行四边形,所以CM =NP =12CC 1=2.(解法2)如图②,设NC 与CC 1确定的平面交AB 1于点P ,连结NP ,PM.②因为CN∥平面AB 1M ,CN ⊂平面CNPM ,平面AB 1M ∩平面CNPM =PM ,所以CN∥MP. 因为BB 1∥CM ,BB 1⊄平面CNPM ,CM ⊂平面CNPM ,所以BB 1∥平面CNPM. 又BB 1⊂平面ABB 1,平面ABB 1∩平面CNPM =NP ,所以BB 1∥NP ,所以CM∥NP,所以四边形CNPM 为平行四边形.因为点N 是AB 的中点,所以CM =NP =12BB 1=12CC 1=2.(解法3)如图③,取BB 1的中点Q ,连结NQ ,CQ.③因为点N 是AB 的中点,所以NQ∥AB 1. 因为NQ ⊄平面AB 1M ,AB 1⊂平面AB 1M , 所以NQ∥平面AB 1M.因为CN∥平面AB 1M ,NQ ∩NC =N ,NQ ,NC ⊂平面NQC , 所以平面NQC∥平面AB 1M.因为平面BCC 1B 1∩平面NQC =QC ,平面BCC 1B 1∩平面AB 1M =MB 1,所以CQ∥MB 1. 因为BB 1∥CC 1,所以四边形CQB 1M 是平行四边形,所以CM =B 1Q =12CC 1=2.(解法4)如图④,分别延长BC ,B 1M ,设交点为S ,连结AS.④因为CN∥平面AB 1M ,CN ⊂平面ABS , 平面ABS∩平面AB 1M =AS ,所以CN∥AS. 由于AN =NB ,所以BC =CS.又CM∥BB 1,同理可得SM =MB 1,所以CM =12BB 1=12CC 1=2.备选变式(教师专享) 如图,在斜三棱柱ABCA 1B 1C 1中,AC 1与A 1C 交于点O ,E 是棱AB 上一点,且OE∥平面BCC 1B 1.求证:点E 是AB 的中点.证明:连结BC 1,因为OE∥平面BCC 1B 1,OE ⊂平面ABC 1,平面BCC 1B 1∩平面ABC 1=BC 1,所以OE∥BC 1.在斜三棱柱ABCA 1B 1C 1中,侧面AA 1C 1C 是平行四边形,AC 1∩A 1C =O , 所以点O 是AC 1的中点,所以AE EB =AOOC 1=1,即点E 是AB 的中点.1. 如图,在直三棱柱ABCA 1B 1C 1中,已知AB =AC ,点M ,N ,P 分别为BC ,CC 1,BB 1的中点.求证:A 1N ∥平面AMP.证明:取C 1B 1的中点D ,连结A 1D ,DN ,DM ,B 1C.由于点D ,M 分别为C 1B 1,CB 的中点,所以DM∥CC 1且DM =CC 1,故DM∥AA 1且DM =AA 1,则四边形A 1AMD 为平行四边形,所以A 1D ∥AM.又A 1D ⊄平面APM ,AM ⊂平面APM ,所以A 1D ∥平面APM.由于D ,N 分别为C 1B 1,CC 1的中点,所以DN∥B 1C.又点P ,M 分别为BB 1,CB 的中点,所以MP∥B 1C.所以DN∥MP.又DN ⊄平面APM ,MP ⊂平面APM , 所以DN∥平面APM.由于A 1D ∩DN =D ,所以平面A 1DN∥平面APM. 由于A 1N ⊂平面A 1DN ,所以A 1N ∥平面APM.2. 如图,在四棱锥EABCD 中,四边形ABCD 为矩形,点M ,N 分别是AE ,CD 的中点.求证:直线MN∥平面EBC.证明:取BE 中点F ,连结CF ,MF.因为点M 是AE 的中点,所以MF 綊12AB.又点N 是矩形ABCD 边CD 的中点,所以NC 綊12AB ,所以MF 綊NC ,所以四边形MNCF 是平行四边形,所以MN∥CF.又MN ⊄平面EBC ,CF ⊂平面EBC ,所以MN∥平面EBC. 3. 如图,在正三棱柱ABCA′B′C′中,D 是AA′上的点,点E 是B′C′的中点,且A′E∥平面DBC′.试判断D 点在A A′上的位置,并给出证明.解:点D 为AA′的中点.证明如下:如图,取BC 的中点F ,连结AF ,EF ,设EF 与BC′交于点O ,连结DO ,BE ,C ′F ,在正三棱柱ABCA′B′C′中,点E 是B′C′的中点,所以 EF ∥BB ′∥AA ′,且EF =BB′=AA′, 所以四边形A′EFA 是平行四边形.因为A′E∥平面DBC′,A ′E ⊂平面A′EFA,且平面DBC′∩平面A′EFA=DO , 所以A′E∥DO.在正三棱柱ABC -A′B′C′中,点E 是B′C′的中点, 所以EC′∥BC 且EC′=BF ,所以四边形BFC′E 是平行四边形,所以点O 是EF 的中点. 因为在平行四边形A′EFA 中, A ′E ∥DO , 所以点D 为AA′的中点. 4. 如图,在直四棱柱ABCDA 1B 1C 1D 1中,底面ABCD 是菱形,点E 是A 1C 1的中点.求证:BE∥平面ACD 1.证明:如图,连结B 1D 1交A 1C 1于点E ,连结BD 交AC 于点O ,连结OD 1.∵ 在直四棱柱ABCDA 1B 1C 1D 1中,底面ABCD 是菱形, ∴ D 1E ∥BO 且D 1E =BO ,∴ 四边形BED 1O 是平行四边形, ∴ BE ∥OD 1.∵ OD 1⊂平面ACD 1,BE ⊄平面ACD 1, ∴ BE ∥平面ACD 1.5. 如图,在四棱锥PABCD 中,PC ⊥平面PAD ,AB ∥CD ,CD =2AB =2BC ,点M ,N 分别是棱PA ,CD 的中点.求证:PC∥平面BMN.证明:设AC∩BN=O ,连结MO ,AN.因为AB =12CD ,AB ∥CD ,点N 为CD 的中点,所以AB =CN ,AB ∥CN ,所以四边形ABCN 为平行四边形, 所以O 为AC 的中点.又点M 为PA 的中点,所以MO∥PC. 因为MO ⊂平面BMN ,PC ⊄ 平面BMN , 所以PC∥平面BMN.1. 如图,在三棱锥PABC中,点M,N分别为AB,PA的中点.求证:PB∥平面MNC.证明:因为点M,N分别为AB,PA的中点,所以MN∥PB.因为MN⊂平面MNC,PB⊄平面MNC,所以PB∥平面MNC.2. 如图,在直三棱柱ABCA1B1C1中,点D是AB的中点.求证:BC1∥平面A1CD.证明:连结AC1,设交A1C于点O,连结OD.∵四边形AA1C1C是矩形,∴ O是AC1的中点.∵在△ABC1中, O,D分别是AC1,AB的中点,∴OD∥BC1.∵ OD⊂平面A1CD,BC1⊄平面A1CD,∴ BC1∥平面A1CD.3. 如图,在长方体ABCDA1B1C1D1中,点P∈BB1(P不与B,B1重合).PA∩A1B=M,PC∩BC1=N.求证:MN∥平面ABCD.证明:连结AC,A1C1,在长方体ABCDA1B1C1D1中,AA1∥CC1,且AA1=CC1,∴四边形ACC1A1是平行四边形.∴ AC∥A1C1.∵ AC⊄平面A1BC1,A1C1⊂平面A1BC1,∴ AC∥平面A1BC1.∵ AC⊂平面PAC,平面A1BC1∩平面PAC=MN,∴ AC∥MN.∵ MN⊄平面ABCD,AC⊂平面ABCD,∴ MN∥平面ABCD.1. 判定或证明直线与平面平行的常用方法(1)利用直线与平面平行的定义(无公共点).(2)利用直线与平面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).(3)利用平面与平面平行的性质(α∥β,a⊂α⇒a∥β).注意不管用哪种方法,都应将相应的条件写全,缺一不可.2. 直线与平面平行的性质定理的作用是证线线平行,应用时常常需构造辅助平面,和在平面几何中添加辅助线一样,在构造辅助平面时要确认这个平面的存在性.3. 证明平行问题时要注意“转化思想”的应用,要抓住线线、线面、面面之间的平行关系,实现“空间问题”与“平面问题”之间的转化.[备课札记]第3课时直线与平面的位置关系(2)(对应学生用书(文)111~113页、(理)113~115页)1. (必修2P38练习2(3)改编)已知直线l,a,b,平面α.若l∥a,a⊥α,b⊥α,则l与b的位置关系是W.答案:平行解析:由线面垂直的性质可知,若a⊥α,b ⊥α,则a∥b.因为l ∥a ,所以l∥b. 2. 已知两条异面直线平行于一平面,一直线与两异面直线都垂直,那么这个平面与这条直线的位置关系是 W.(填序号)① 平行;② 垂直;③ 斜交;④ 不能确定. 答案:② 解析:设a ,b 为异面直线,a ∥平面α,b ∥平面α,直线l⊥a,l ⊥b.过a 作平面β∩α=a′,则a ∥a ′,∴ l ⊥a ′.同理过b 作平面γ∩α=b′,则l ⊥b ′.∵ a ,b 异面,∴ a ′与b′相交,∴ l ⊥α.3. 设l ,m 表示直线,m 是平面α内的任意一条直线,则“l⊥m”是“l⊥α”成立的 条件.(选填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)答案:充要解析:由线面垂直的定义知,直线垂直于平面内任意一条直线,则直线与平面垂直,说明是充分条件,反之,直线垂直于平面,则直线垂直于平面内任意一条直线,说明是必要条件,则“l⊥m”是“l⊥α”成立的充要条件.4. (必修2P 42习题9改编)如图,AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆O 上不同于A ,B 的任一点,则图中直角三角形的个数为 W.答案:4解析:因为AB 是圆O 的直径,所以AC⊥BC,△ACB 是直角三角形;由PA⊥平面ABC 可得,PA ⊥AB ,PA ⊥AC ,所以△PAB 与△PAC 是直角三角形;因为PA⊥平面ABC ,且BC ⊂平面ABC ,所以PA⊥BC.又BC⊥AC,PA ∩AC =A ,所以BC⊥平面PAC.而PC ⊂平面PAC ,所以BC⊥PC,△PCB 是直角三角形.故直角三角形的个数为4.5. (必修2P 38练习3改编)在正方体ABCDA 1B 1C 1D 1中,已知AB =1,则点C 到平面B 1BDD 1.解析:连结AC ,则AC⊥BD,又BB 1⊥AC ,故AC⊥平面B 1BDD 1,所以点C 到平面B 1BDD 1的距离为12AC =22.1. 直线与平面垂直的定义:如果一条直线a 与一个平面α内的任意一条直线都垂直,我们就说直线a 与平面α互相垂直,记作a ⊥α,直线a 叫做平面α的垂线,平面α叫做直线a 的垂面,垂线和平面的交点称为垂足W.2. 结论:过一点有且只有一条直线与已知平面垂直,过一点有且只有一个平面与已知直线垂直.3. 直线与平面垂直从平面外一点引平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.5. 直线和平面的距离一条直线和一个平面平行,这条直线上任意一点到这个平面的距离,叫做这条直线和这个平面的距离.6. 直线与平面所成的角(1)斜线一条直线与一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线与平面的交点叫做斜足,斜线上一点与斜足间的线段叫做这个点到平面的斜线段.(2)射影过平面α外一点P向平面α引斜线和垂线,那么过斜足Q和垂足P1的直线就是斜线在平面内的正投影(简称射影),线段P1Q就是斜线段PQ在平面α内的射影,如图.(3)直线和平面所成的角平面的一条斜线与它在这个平面内的射影所成的锐角,叫做这条直线与这个平面所成的角.特别地,如果直线和平面垂直,那么就说这条直线与平面所成的角是直角;如果直线与平面平行或在平面内,则它们所成的角是0°的角.[备课札记], 1直线与平面垂直的判定), 1) 如图,在直四棱柱ABCDA1B1C1D1中,点E,F分别是AB,BC的中点,A1C1与B1D1交于点O.若底面ABCD是菱形,且OD⊥A1E,求证:OD⊥平面A1C1FE.证明:连结BD,因为直棱柱中DD1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,所以DD1⊥A1C1.因为底面A1B1C1D1是菱形,所以A1C1⊥B1D1.又DD1∩B1D1=D1,所以A1C1⊥平面BB1D1D.因为OD⊂平面BB1D1D,所以OD⊥A1C1.又OD⊥A1E,A1C1∩A1E=A1,A1C1⊂平面A1C1FE,A1E⊂平面A1C1FE,所以OD⊥平面A1C1FE.变式训练如图,在三棱锥PABC中,平面PAB⊥平面ABC,PA⊥PB,M,N分别为AB,PA的中点.若AC=BC,求证:PA⊥平面MNC.证明:因为M,N分别为AB,PA的中点,所以MN∥PB.又因为PA⊥PB,所以PA⊥MN. 因为AC=BC,AM=BM,所以CM⊥AB.因为平面PAB⊥平面ABC,CM⊂平面ABC,平面PAB∩平面ABC=AB,所以CM⊥平面PAB.因为PA⊂平面PAB,所以CM⊥PA.又因为PA⊥MN,MN⊂平面MNC,CM⊂平面MNC,MN∩CM=M,所以PA⊥平面MNC., 2直线与平面垂直性质的应用), 2) 如图,在四棱锥PABCD中,AD⊥平面PAB,AP⊥AB.(1)求证:CD⊥AP;(2)若CD⊥PD,求证:CD∥平面PAB.证明:(1)因为AD⊥平面PAB,AP⊂平面PAB,所以AD⊥AP.因为AP⊥AB,AB∩AD=A,AB⊂平面ABCD,AD⊂平面ABCD,所以AP⊥平面ABCD.因为CD⊂平面ABCD,所以CD⊥AP.(2)因为CD⊥AP,CD⊥PD,且PD∩AP=P,PD⊂平面PAD,AP⊂平面PAD,所以CD⊥平面PAD ①.因为AD⊥平面PAB,AB⊂平面PAB,所以AB⊥AD.因为AP⊥AB,AP∩AD=A,AP⊂平面PAD,AD⊂平面PAD,所以AB⊥平面PAD ②.由①②得CD∥AB,因为CD⊄平面PAB,AB⊂平面PAB,所以CD∥平面PAB.变式训练如图,在正方体ABCDA1B1C1D1中,EF与异面直线AC,A1D都垂直相交.求证:(1)EF⊥平面AB1C;(2)EF∥BD1.证明:(1)在正方体ABCDA1B1C1D1中,A1B1∥AB∥CD,且A1B1=AB=CD,所以四边形A1B1CD是平行四边形,所以A1D∥B1C.因为EF⊥A1D,所以EF⊥B1C.又因为EF⊥AC,AC∩B1C=C,AC⊂平面AB1C,B1C ⊂平面AB1C,所以EF⊥平面AB1C.(2)连结BD,则BD⊥AC.因为DD1⊥平面ABCD,AC⊂平面ABCD,所以DD1⊥AC.因为AC⊥BD,DD1∩BD=D,DD1⊂平面BDD1B1,BD⊂平面BDD1B1,所以AC⊥平面BDD1B1.又BD1⊂平面BDD1B1,所以AC⊥BD1.同理可证BD1⊥B1C,又AC∩B1C=C,AC⊂平面AB1C,B1C⊂平面AB1C,所以BD1⊥平面AB1C.又EF⊥平面AB1C,所以EF∥BD1., 3直线与平面垂直的探索题), 3) 在正三棱柱ABCA1B1C1中,点D是BC的中点,BC=BB1.(1)若P是CC1上任一点,求证:AP不可能与平面BCC1B1垂直;(2)试在棱CC1上找一点M,使MB⊥AB1.(1)证明:(反证法)假设AP⊥平面BCC1B1,∵ BC⊂平面BCC1B1,∴ AP⊥BC.又正三棱柱ABCA1B1C1中,CC1⊥BC,AP∩CC1=P,AP⊂平面ACC1A1,CC1⊂平面ACC1A1,∴ BC⊥平面ACC1A1.而AC⊂平面ACC1A1,∴ BC⊥AC,这与△ABC是正三角形矛盾,故AP 不可能与平面BCC 1B 1垂直. (2) 解:M 为CC 1的中点.∵ 在正三棱柱ABCA 1B 1C 1中,BC =BB 1, ∴ 四边形BCC 1B 1是正方形.∵ 点M 为CC 1的中点,点D 是BC 的中点, ∴ △B 1BD ≌△BCM ,∴ ∠BB 1D =∠CBM,∠BDB 1=∠CMB.∵ ∠BB 1D +∠BDB 1=π2,∴ ∠CBM +∠BDB 1=π2,∴ BM ⊥B 1D.∵ △ABC 是正三角形,D 是BC 的中点, ∴ AD ⊥BC.∵ 平面ABC⊥平面BB 1C 1C ,平面ABC∩平面BB 1C 1C =BC ,AD ⊂平面ABC , ∴ AD ⊥平面BB 1C 1C.∵ BM ⊂平面BB 1C 1C ,∴ AD ⊥BM. ∵ AD ∩B 1D =D ,∴ BM ⊥平面AB 1D. ∵ AB 1⊂平面AB 1D ,∴ MB ⊥AB 1. 备选变式(教师专享)如图,在棱长为1的正方体ABCDA 1B 1C 1D 1中,点E 是棱BC 的中点,点F 是棱CD 上的动点.试确定点F 的位置,使得D 1E⊥平面AB 1F.解:如图,连结A 1B ,CD 1,则A 1B ⊥AB 1.∵ 在正方体ABCDA 1B 1C 1D 1中,D 1A 1⊥平面ABB 1A 1,AB 1⊂平面ABB 1A 1,∴ A 1D 1⊥AB 1.又A 1D 1∩A 1B =A 1,A 1D 1,A 1B ⊂平面A 1BCD 1, ∴ AB 1⊥平面A 1BCD 1.又D 1E ⊂平面A 1BCD 1,∴ AB 1⊥D 1E.于是使D 1E ⊥平面AB 1F 等价于使D 1E ⊥AF. 连结DE ,易知D 1D ⊥AF ,若有AF⊥平面D 1DE ,只需证DE⊥AF.∵ 四边形ABCD 是正方形,点E 是BC 的中点, ∴ 当且仅当点F 是CD 的中点时,DE ⊥AF , 即当点F 是CD 的中点时,D 1E ⊥平面AB 1F.1. 如图,在矩形ABCD 中,AB =1,BC =a (a>0),PA ⊥平面ABCD ,且PA =1,问BC 边上是否存在点Q ,使得PQ ⊥QD ,并说明理由.解:假设存在点Q ,使得PQ⊥QD.连结AQ. ∵ PA ⊥平面ABCD ,且DQ ⊂平面ABCD , ∴ PA ⊥DQ.∵ PQ ⊥DQ ,且PQ∩PA=P ,PQ ⊂平面PAQ ,PA ⊂平面PAQ , ∴ DQ ⊥平面PAQ.∵ AQ ⊂平面PAQ ,∴ AQ ⊥DQ.设BQ =x ,则CQ =a -x ,AQ 2=x 2+1,DQ 2=(a -x )2+1.∵ AQ 2+DQ 2=AD 2,∴ x 2+1+(a -x )2+1=a 2,即x 2-ax +1=0 (*).方程(*)的判别式Δ=a 2-4. ∵ a>0,∴ 当Δ<0,即0<a<2时,方程(*)无实根;当Δ=0,即a =2时,方程(*)有惟一实根,此时x =1;当Δ>0,即a>2时,方程(*)有两个不等实根,设两个实根分别为x 1,x 2.由于x 1+x 2=a>0,x 1x 2=1>0,则这两个实根均为正数.因此,当0<a<2时,BC 边上不存在点Q 使PQ⊥QD; 当a =2时,BC 边上存在惟一一点Q (即BC 的中点),使PQ ⊥QD ; 当a>2时,BC 边上存在不同的两点Q ,使PQ⊥QD.2. 如图,在长方体ABCDA 1B 1C 1D 1中,AB =BC =EC =12AA 1.(1) 求证:AC 1∥平面BDE ; (2) 求证:A 1E ⊥平面BDE.证明:(1) 连结AC 交BD 于点O ,连结OE.在长方体ABCDA 1B 1C 1D 1中,四边形ABCD 是正方形,点O 为AC 的中点,AA 1∥CC 1且AA 1=CC 1,由EC =12AA 1,得EC =12CC 1,即点E 为CC 1的中点,于是在△CAC 1中,AC 1∥OE.因为OE ⊂平面BDE ,AC 1⊄平面BDE ,所以AC 1∥平面BDE.(2) 连结B 1E.设AB =a ,则在△BB 1E 中,BE =B 1E =2a ,BB 1=2a.所以BE 2+B 1E 2=BB 21,所以B 1E ⊥BE.在长方体ABCDA 1B 1C 1D 1中,A 1B 1⊥平面BB 1C 1C ,BE ⊂平面BB 1C 1C ,所以A 1B 1⊥BE. 因为B 1E ∩A 1B 1= B 1,B 1E ⊂平面A 1B 1E ,A 1B 1⊂平面A 1B 1E ,所以BE⊥平面A 1B 1E. 因为A 1E ⊂平面A 1B 1E ,所以A 1E ⊥BE. 同理A 1E ⊥DE.又因为BE∩DE=E ,BE ⊂平面BDE ,DE ⊂平面BDE , 所以A 1E ⊥平面BDE.3. 如图,在四棱锥PABCD 中,底面ABCD 是矩形,侧棱PA 垂直于底面,点E ,F 分别是AB ,PC 的中点,PA =AD.求证:(1) CD⊥PD;(2) EF⊥平面PCD.证明:(1) ∵ PA⊥底面ABCD ,∴ CD ⊥PA.又矩形ABCD 中,CD ⊥AD ,且AD∩PA=A ,AD ,PA ⊂平面PAD ,∴ CD ⊥平面PAD ,∴ CD ⊥PD.(2) 如图,取PD 的中点G ,连结AG ,FG.∵ 点G ,F 分别是PD ,PC 的中点,∴ GF 綊12CD ,∴ GF 綊AE ,∴ 四边形AEFG 是平行四边形,∴ AG ∥EF. ∵ PA =AD ,G 是PD 的中点, ∴ AG ⊥PD ,∴ EF ⊥PD.∵ CD ⊥平面PAD ,AG ⊂平面PAD , ∴ CD ⊥AG ,∴ EF ⊥CD.∵ PD ∩CD =D ,PD ,CD ⊂平面PCD ,∴ EF ⊥平面PCD.4. 如图,在直三棱柱ABCA 1B 1C 1中,已知AC⊥BC,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E. 求证:(1) DE∥平面AA 1C 1C ; (2) BC 1⊥AB 1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8章立体几何
章末总结
C.28π D.32π(2016·高考全国卷Ⅱ,T14,5分)α,β
的中点;
在平面PAC内的正投影
一、选择题
1.
(必修2 P10B组T1改编)如图,若Ω是长方体ABCDA1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是( )
A.EH∥FG B.四边形EFGH是矩形
C.Ω是棱柱D.Ω是棱台
解析:选D.因为EH∥A1D1,A1D1∥B1C1,EH⊄平面BCC1B1,所以EH∥平面BCC1B1.
又因为平面EFGH∩平面BCC1B1=FG,所以EH∥FG,且EH=FG,由长方体的特征知四边形EFGH为矩形,Ω为五棱柱,所以选项A,B,C都正确.故选D.
2.(必修2 P61练习、P71练习T2、P73练习T1改编)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是( )
A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥β
C.若α⊥γ,β⊥γ,则α∥βD.若m⊥α,n⊥α,则m∥n
解析:选D.A中,两直线可能平行,相交或异面;B中,两平面可能平行或相交;C 中,两平面可能平行或相交;D中,由线面垂直的性质定理可知结论正确,故选D.3.(必修2 P78A组T7改编)正四棱锥的三视图如图所示,则它的外接球的表面积为( )
A .25π
B .252π
C .25
3π
D .254
π
解析:选C .
由三视图画出直观图与其外接球示意图,且设O 1是底面中心.
由三视图知,O 1A =2,O 1P =3,所以正四棱锥P ABCD 的外接球的球心O 在线段O 1P 上.
设球O 的半径为R .
由O 1O 2
+O 1A 2
=OA 2
得(3-R )2
+(2)2
=R 2
. 所以R =5
23
.
则外接球的表面积为S =4πR 2
=4π·⎝ ⎛⎭
⎪⎫5232=25
3π.
4.
(必修2 P 79 B 组 T 2改编)如图,在正方体ABCD A 1B 1C 1D 1中,B 1D ∩平面A 1BC 1=H . 有下列结论. ①B 1D ⊥平面A 1BC 1;
②平面A 1BC 1将正方体体积分成1∶5两部分;
③H 是B 1D 的中点;
④平面A 1BC 1与正方体的六个面所成的二面角的余弦值都为3
3
.则正确结论的个数有( )
A .1
B .2
C .3
D .4
解析:选C .对于①,连接B 1C 与A 1D ,由正方体性质知,BC 1⊥B 1C ,BC 1⊥A 1B 1, 又A 1B 1∩B 1C =B 1,A 1B 1,B 1C ⊂平面A 1B 1CD . 所以BC 1⊥平面A 1B 1CD . 又B 1D ⊂平面A 1B 1CD . 所以B 1D ⊥BC 1.
同理B 1D ⊥A 1B ,A 1B ∩BC 1=B . 所以B 1D ⊥平面A 1BC 1,故①正确. 对于②.设正方体棱长为a .
则V 三棱锥B A 1B 1C 1=13·12a ·a ·a =16
a 3
.
所以平面A 1BC 1将正方体分成两部分的体积之比为16a 3∶(a 3
-16a 3)=1∶5.故②正确.
对于③,设正方体棱长为a , 则A 1B =2a .由VB 1A 1BC 1=16a 3
,
得13×34×(2a )2
·B 1H =16a 3, 所以B 1H =
3
3
a ,而B 1D =3a . 所以B 1H ∶HD =1∶2,即③错误.
对于④,由对称性知,平面A 1BC 1与正方体六个面所成的二面角的大小都相等. 由①知B 1H ⊥平面A 1BC 1,而A 1B 1⊥平面B 1BCC 1. 所以∠A 1B 1H 的大小即为所成二面角的大小.
cos ∠A 1B 1H =B 1H A 1B 1=3
3
a a =33
.故④正确.故选C . 二、填空题
5.(必修2 P 53 B 组 T 2改编)已知三棱柱ABC A 1B 1C 1的侧棱与底面边长都相等,点A 1在底面ABC 上的射影D 为BC 的中点,则异面直线AB 与CC 1所成的角的余弦值为________.
解析:连接A 1D ,AD ,A 1B ,易知∠A 1AB 为异面直线AB 和CC 1所成的角,设三棱柱的侧棱长与底面边长均为1,则AD =32,A 1D =12,A 1B =2
2,由余弦定理得cos ∠A 1AB =1+1-
122×1×1=
3
4
. 答案:34
6.
(必修2 P 79 B 组 T 1改编)如图在直角梯形ABCD 中,BC ⊥DC ,AE ⊥DC ,M ,N 分别是AD ,
BE 的中点,将△ADE 沿AE 折起.则下列说法正确的是________.(填上所有正确说法的序号)
①不论D 折至何位置(不在平面ABC 内)都有MN ∥平面DEC ; ②不论D 折至何位置都有MN ⊥AE ;
③不论D 折至何位置(不在平面ABC 内)都有MN ∥AB ; ④在折起过程中,一定存在某个位置,使EC ⊥AD ; ⑤无论D 折至何位置,都有AE ⊥DC . 解析:
如图,设Q ,P 分别为CE ,DE 的中点,可得四边形MNQP 是矩形,所以①②正确;不论
D 折至何位置(不在平面ABC 内)都有MN 与AB 是异面直线,不可能MN ∥AB ,所以③错;当平
面ADE ⊥平面ABCD 时,可得EC ⊥平面ADE ,故EC ⊥AD ,④正确.无论D 折到何位置,均有
AE ⊥平面CDE .故AE ⊥CD .故⑤正确.
答案:①②④⑤ 三、解答题
7.(必修2 P 79B 组T 1改编)如图,边长为33的正方形ABCD 中,点E ,F 分别是边AB ,
BC 上的点,将△AED ,△DCF 分别沿DE ,DF 折起,使A ,C 两点重合于点A ′.
(1)求证:A ′D ⊥EF .
(2)当BE =BF =1
3BC 时,求三棱锥A ′EFD 的体积.
解:(1)证明:因为A ′D ⊥A ′E ,A ′D ⊥A ′F ,
A ′E ∩A ′F =A ′,所以A ′D ⊥平面A ′EF ,
因为EF ⊂平面A ′EF , 所以A ′D ⊥EF .
(2)由(1)知,A ′D ⊥平面A ′EF , 所以A ′D 的长即为三棱锥D A ′EF 的高, 则A ′E =A ′F =23BC =23,EF =BE 2+BF 2
=6,
作A ′O ⊥EF 于点O , 所以A ′O =
A ′E 2
-⎝ ⎛⎭
⎪⎫12EF 2
=422, 则V A ′EFD =V D A ′EF =13A ′D ·S △A ′EF =13×33×12EF ·A ′O =13×33×12×6×42
2=
321
2
. 8.(必修2 P 78 A 组 T 4改编)如图,正方体ABCD A 1B 1C 1D 1的棱长为2,E 、F 、M 分别是
C 1B 1,C 1
D 1和AB 的中点.
(1)求证:MD 1∥平面BEFD . (2)求M 到平面BEFD 的距离. 解:(1)证明:连接BF .
因为M 、F 分别为AB 与C 1D 1的中点,且ABCD A 1B 1C 1D 1是正方体. 所以MB ═
∥
D 1F .
所以四边形MBFD 1为平行四边形, 所以MD 1∥BF .
又MD 1⊄平面BEFD ,BF ⊂平面BEFD . 所以MD 1∥平面BEFD . (2)过E 作EG ⊥BD 于G . 因为正方体的棱长为2,
所以BE =5,BG =12(BD -EF )=12(22-2)=2
2.
所以EG =BE 2
-BG 2
=
5-12=32
2
. 所以S △EBD =12BD ×EG =12×22×3
22=3.
又S △MBD =12MB ×AD =1
2
×1×2=1.
E 到平面ABCD 的距离为2,设M 到平面BEFD 的距离为d .
由V 三棱锥M BDE =V 三棱锥E MBD 得13S △EBD ·d =1
3S △MBD ×2.
所以d =
S △MBD ×2S △EBD =1×23=2
3
. 所以M 到平面BED 的距离为2
3.。