山东省东营市中考数学试卷

合集下载

2024年山东省东营市中考数学试题 (解析版)

2024年山东省东营市中考数学试题 (解析版)

二〇二四年东营市初中学业水平考试数学试题(总分120分 考试时间120分钟)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;本试题共6页.2.数学答题卡共8页.答题前,考生务必将自己的姓名、准考证号、座号等填写在试题和答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用0.5mm 碳素笔答在答题卡的相应位置上.第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.3−的绝对值是( )A.3B.3−C.3±D. 【答案】A【解析】【分析】本题考查了绝对值求法.绝对值是指一个数在数轴上对应的点与原点的距离,正数和零的绝对值是它本身,负数的绝对值是它的相反数.【详解】33−=, 故选:A .2.下列计算正确的是( )A.236x x x ⋅= B.()2211x x −=−C.()2224xy x y = D. 2142− −=−【答案】C【解析】【分析】本题考查了同底数幂的乘法,完全平方公式,积的乘方,负整数幂,根据相关运算法则逐个判断即可.【详解】解:A 、235x x x ⋅=,故A 不正确,不符合题意;B 、()22121x x x −=−+,故B 不正确,不符合题意;C 、()2224xy x y =,故C 正确,符合题意;D 、2142− −=,故D 不正确,不符合题意; 故选:C .3. 已知,直线a b ∥,把一块含有30°角的直角三角板如图放置,130∠=°,三角板的斜边所在直线交b 于点A ,则2∠=( )A. 50°B. 60°C. 70°D. 80°【答案】B【解析】 【分析】本题考查了平行线的性质,根据两直线平行,内错角相等,得出90CAD ACB ∠=∠=°,即可解答.【详解】解:∵a b ∥,∴90CAD ACB ∠=∠=°,∴2180160CAD ∠=°−∠−∠=°,故选:B .4. 某几何体的俯视图如图所示,下列几何体(箭头所示为正面)的俯视图与其相同的是( )A. B. C. D.【答案】C【解析】【分析】本题考查了三视图的判断,根据图形特点,正确的确定出俯视图是关键.首先由俯视图可知该几何体共两列,左边一列最底层共三个正方体,右边一列最底层共一个正方体,找出正确的答案即可.【详解】解:由俯视图可知该几何体共两列,左边一列最底层共三个正方体,右边一列最底层共一个正方体,由此可得只有C 符合题意,故选:C .5. 用配方法解一元二次方程2220230x x −−=时,将它转化为2()x a b +=的形式,则b a 的值为( ) A. 2024−B. 2024C. 1−D. 1【答案】D【解析】 【分析】本题主要考查了配方法解一元二次方程.熟练掌握配方法步骤,是解出本题的关键.用配方法把2220230x x −−=移项,配方,化为()212024x −=,即可. 详解】解:∵2220230x x −−=,移项得,222023x x −=,配方得,22120231x x −+=+,即()212024x −=,∴1a =−,2024b =,∴()202411b a =−=.故选:D .6. 如图,四边形ABCD 是矩形,直线EF 分别交AD ,BC ,BD 于点E ,F ,O,下列条件中,不能证【明BOF DOE △△≌的是( )A. O 为矩形ABCD 两条对角线的交点B. EO FO =C. AE CF =D. EEEE ⊥BBBB【答案】D【解析】 【分析】本题考查了矩形的性质、平行线的性质、全等三角形的判定,熟练掌握矩形的性质和全等三角形的判定是解题的关键.由矩形的性质得出AD BC = AD BC ∥,再由平行线的性质得出OBF ODE ∠=∠,OFB OED ∠=∠,然后由全等三角形的判定逐一判定即可.【详解】解:∵四边形ABCD 是矩形,∴AD BC = AD BC ∥,∴OBF ODE ∠=∠,OFB OED ∠=∠,A 、∵O 为矩形ABCD 两条对角线的交点,∴OB OD =,在BOF 和DOE 中,OFB OED OBF ODE OB OD ∠=∠ ∠=∠ =, ∴()AAS BOF DOE ≌,故此选项不符合题意;B 、在BOF 和DOE 中,OFB OED OBF ODE FO EO ∠=∠ ∠=∠ =, ∴()AAS BOF DOE ≌,故此选项不符合题意;C 、∵AE CF =,∴BC CF AD AE −=−,即BF DE =,在BOF 和DOE 中,OFB OED BF DEOBF ODE ∠=∠ = ∠=∠, ∴()ASA BOF DOE ≌,故此选项不符合题意;D 、∵EEEE ⊥BBBB ,∴90BOF DOE ∠=∠=°,两三角形中缺少对应边相等,所以不能判定BOF DOE △△≌,故此选项符合题意;故选:D .7. 如图,四边形ABCD 是平行四边形,从①AC BD =,②AC BD ⊥,③AB BC =,这三个条件中任意选取两个,能使ABCD 是正方形的概率为( )A. 23B. 12C. 13D. 56【答案】A【解析】【分析】本题考查了正方形的判定,用概率公式求概率,掌握正方形的判定方法和概率公式是解题的关键. 根据从①AC BD =,②AC BD ⊥,③AB BC =,这三个条件中任意选取两个,共有①②、①③、②③,3种方法,由正方形的判定方法,可得①②、①③共有2种可判定平行四边形是正方形.再根据概率公式求解即可.【详解】解:从①AC BD =,②AC BD ⊥,③AB BC =,这三个条件中任意选取两个,共有①②、①③、②③,3种方法,由正方形的判定方法,可得①②、①③共有2种可判定平行四边形是正方形. ∴ABCD ,从①AC BD =,②AC BD ⊥,③AB BC =,这三个条件中任意选取两个,能使ABCD 是正方形的概率为23. 故选:A .8. 习近平总书记强调,中华优秀传统文化是中华民族的根和魂.东营市某学校组织开展中华优秀传统文化成果展示活动,小慧同学制作了一把扇形纸扇.如图,20cm OA =,5cm OB =,纸扇完全打开后,外侧两竹条(竹条宽度忽略不计)的夹角120AOC ∠=°.现需在扇面一侧绘制山水画,则山水画所在纸面的面积为( )2cm .A. 25π3B. 75πC. 125πD. 150π【答案】C【解析】【分析】将山水画所在纸面的面积转化为大小两个扇形的面积之差即可解决问题.本题主要考查了扇形面积的计算,熟知扇形面积的计算公式是解题的关键.【详解】解:由题知,()2212020400cm 3603OAC S ππ⋅⋅==扇形, ()22120525cm 3603OBD S ππ⋅⋅==扇形, 所以山水画所在纸面的面积为:240025125(cm )33πππ−=. 故选:C . 9. 已知抛物线2(0)y ax bx c a ++≠的图像如图所示,则下列结论正确的是( )A. 0abc <B. 0a b −=C. 30a c −=D. 2am bm a b +≤−(m 为任意实数)【答案】D【解析】 【分析】本题考查了二次函数的图象和性质,熟知二次函数的图象和性质及巧用数形结合的思想是解题的关键;由图象可知:0a <,0c >,根据抛物线的与x 轴的交点可求对称轴,根据对称轴及a 与b 的符号关系可得20b a =<,则可判断选项A 、B 、C ,由当=1x −时,函数有最大值,可判断选项D .【详解】解:A 、 抛物线开口往下,∴0a <,抛物线与y 轴交于正半轴,∴0c >抛物线的与x 轴的交点是:()3,0−和(1,0)∴对称轴为=1x −, ∴12b a−=−, 20b a ∴=<,0abc ∴>,故选项A 错误.∵2b a =,∴20a b −=,故选项B 错误(否则可得0a =,不合题意). 0a <,0c >,∴30a c −<,故选项C 错误.抛物线的对称轴为直线=1x −,且开口向下,∴当=1x −时,函数值最大为y a b c =−+,∴当x m =时,2y am bm c ++,∴2am bm c a b c ++≤−+,∴2am bm a b +≤−,故选项D 正确.故选:D .10. 如图,在正方形ABCD 中,AC 与BD 交于点O ,H 为AB 延长线上的一点,且BH BD =,连接DH ,分别交AC ,BC 于点E ,F ,连接BE ,则下列结论:①CF BF =;②tan 1H ∠−;③BE平分CBD ∠;④22AB DE DH =⋅.其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个 【答案】B【解析】【分析】根据正方形的性质结合勾股定理可知,AB BD CD AD a ====,BD =,AB CD ∥,AC 与BD 互相垂直且平分,进而可求得)1AH a =,根据正切值定义即可判断②;由AB CD ∥,可知DCF HBF △∽△,由相似三角形的性质即可判断①;由BH BD =,可求得22.5H BDH ∠=∠=°,再结合AC 与BD 互相垂直且平分,得DE BE =,可知22.5DBE BDE ∠=∠=°,进而可判断③;再证BDE HDB △∽△,即可判断④.【详解】解:在正方形ABCD AB CD ∥,AB BD CD AD a ====,90BAD ∠=°,45ABD CBD DAC BAC ∠=∠=∠=∠=°,AC 与BD 互相垂直且平分,则BD ===,∵BH BD ==,则)1AH a =+,∴tan 1AD H AH ==,故②不正确; ∵AB CD ∥,则H CDF ∠=∠,DCF HBF ∠=∠, ∴DCF HBF △∽△,∴CFCD BF BH == ∵BH BD =,∴H BDH ∠=∠,∵45H BDH ABD ∠+∠=∠=°,∴22.5H BDH ∠=∠=°, 又∵AC 与BD 互相垂直且平分,∴DE BE =,∴22.5DBE BDE ∠=∠=°,则22.5CBE CBD DBE ∠=∠−∠=°, ∴DBE CBE ∠=∠,∴BE 平分CBD ∠,故③正确;由上可知,22.5DBE H ∠=∠=°,∴BDE HDB △∽△, ∴BD DE DH BD=,则2BD DE DH =⋅,又∵BD =,∴22AB DE DH =⋅,故④正确;综上,正确的有③④,共2个,故选:B .【点睛】本题考查正方形的性质,相似三角形的判定及性质,勾股定理,解直角三角形等知识,熟练掌握相关图形的性质是解决问题的关键.第Ⅱ卷(非选择题 共90分)二、填空题:本大题共811-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11. 从2024年一季度GDP 增速看,东营市增速位居山东16市“第一方阵”,一季度全市生产总值达到957.2亿元,同比增长7.1%,957.2亿用科学记数法表示为_______.【答案】109.57210×【解析】【分析】本题考查了把绝对值大于1的数用科学记数法表示,关键是确定 n 与a 的值.科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数,它等于原数的整数数位与1的差.据此即可完成作答.【详解】解:957.2亿10957200000009.57210=×,故答案为:109.57210×.12. 因式分解:2aa 3−8aa =______. 【答案】2aa (aa +2)(aa −2)【解析】【分析】本题考查了因式分解,掌握提公因式法和公式法是解题关键.先提公因式2a ,再利用平方差公式分解因式即可.【详解】解:2aa 3−8aa=2aa (aa 2−4)=2aa (aa +2)(aa −2), 故答案为:2aa (aa +2)(aa −2).13. 4月23日是世界读书日,东营市组织开展“书香东营,全民阅读”活动,某学校为了解学生的阅读时间,随机调查了七年级50名学生每天的平均阅读时间,统计结果如下表所示.在本次调查中,学生每天的平均阅读时间的众数是_______小时. 时间(小时)0.5 1 1.5 2 2.5人数(人)1018 12 6 4【答案】1【解析】【分析】本题考查了众数:一组数据中出现次数最多的数据叫做众数.直接根据众数的定义求解.【详解】解:由统计表可知,每天阅读1小时的人数最多,为18人,所以学生每天的平均阅读时间的众数是1小时.故答案为:1.14. 在弹性限度内,弹簧的长度(cm)y 是所挂物体质量(kg)x 的一次函数.一根弹簧不挂物体时长12.5cm ,当所挂物体的质量为2kg 时,弹簧长13.5cm .当所挂物体的质量为5kg 时,弹簧的长度为_______cm ,【答案】15【解析】【分析】本题考查了用待定系数法求一次函数的解析式、由自变量求函数值的知识点,解答时求出函数的解析式是关键.设y 与x 的函数关系式为()0y kx b k =+≠,由待定系数法求出解析式,并把5x =代入解析式求出对应的y 值即可.【详解】解:设y 与x 的函数关系式为()0y kx b k =+≠, 由题意,得12.513.52b k b = =+, 解得:0.512.5k b = =, 故y 与x 之间的关系式为:0.512.5y x =+, 当5x =时,0.5512.515y =×= . 故答案为:15.15. 如图,将DEF 沿FE 方向平移3cm 得到ABC ,若DEF 的周长为24cm ,则四边形ABFD 的周长为_______cm .【答案】30【解析】【分析】本题主要考查了平移的性质、三角形周长等知识点,掌握平移的性质及等量代换成为解题的关键. 由平移的性质可得3cm AD BE ==,DE AB =,再根据DEF 的周长为24cm 可得24AB EF DF ++=,然后根据四边形的周长公式及等量代换即可解答.【详解】解:∵将DEF 沿FE 方向平移3cm 得到ABC ,∴3cm AD BE ==,DE AB =,∵DEF 的周长为24cm ,∴24DE EF DF ++=,即24AB EF DF ++=,∴四边形ABFD 的周长为()243330cm AB BF DF AD AB BE EF DF AD AB EF DF BE AD +++=++++=++++=++=. 故答案为:30.16. 水是人类赖以生存的宝贵资源,为节约用水,创建文明城市,某市经论证从今年1月1日起调整居民用水价格,每立方米水费上涨原价的14.小丽家去年5月份的水费是28元,而今年5月份的水费则是24.5元.已知小丽家今年5月份的用水量比去年5月份的用水量少33m .设该市去年居民用水价格为3/m x 元,则可列分式方程为_______. 【答案】2824.5354x x −= 【解析】【分析】本题主要考查了分式方程的应用,设该市去年居民用水价格为3/m x 元,则今年居民用水价格为35/m 4x 元,根据小丽家今年5月份的用水量比去年5月份的用水量少33m ,列出方程即可. 【详解】解:设该市去年居民用水价格为3/m x 元,则今年居民用水价格为311/m 4x +元,根据题意得: 2824.5354x x −=. 故答案为:2824.5354x x −=. 17. 我国魏晋时期数学家刘徽在《九章算术注》中提到著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416,如图,O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计O 的面积,可得π内接正八边形近似估计O 的面积,可得π的估计值为_________.【答案】【解析】【分析】本题考查了圆内接正多边形的性质,三角形的面积公式,勾股定理等,正确求出正八边形的面积是解题的关键.过点A 作AM OB ⊥,求得360845AOB ∠=°÷=°,根据勾股定理可得222AM OM OA +=,即可求解.【详解】如图,AB 是正八边形的一条边,点O 是正八边形的中心,过点A 作AM OB ⊥,在正八边形中,360845AOB ∠=°÷=°∴AM OM =∵1OA =,222AM OM OA +=,解得:AM =∴12OAB S OB AM =××∴正八边形为8∴21π×∴π=∴π的估计值为故答案为:.18. 如图,在平面直角坐标系中,已知直线l 的表达式为y x =,点1A 的坐标为,以O 为圆心,1OA 为半径画弧,交直线l 于点1B ,过点1B 作直线l 的垂线交x 轴于点2A ;以O 为圆心,2OA 为半径画弧,交直线l 于点2B ,过点2B 作直线l 的垂线交x 轴于点3A ;以O 为圆心,3OA 为半径画弧,交直线l 于点3B ,过点3B 作直线l 的垂线交x 轴于点4A ;……按照这样的规律进行下去,点2024A 的横坐标是_______.【答案】10122【解析】【分析】本题考查的是一次函数性质应用,等腰直角三角形的判定与性质及点的坐标规律问题,作1B H x ⊥轴于点H ,依次求出234OA OA OA ,,,找出规律即可解决.【详解】解:作1B H x ⊥轴于点H ,12345,,,,B B B B B 均直线y x =上,1OH B H ∴=,145B OH ∴∠=︒,)1A ,11OA OB =,11OB OA ∴==,121,45B A l B OH ⊥∠=︒ ,112OB B A ∴==2112OA ∴===,()22,0A ∴,同理,22232OA OB B A ===,在332OA ∴===,同理,44OA = 55OA = 2024101220242OA ∴==,即点2024A 的横坐标是10122,故答案为:10122.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (10(π 3.14)|22sin 60−−°+−;(2)计算:2443111a a a a a −+ ÷+− −−. 【答案】(1)1;(2)22a a −+. 【解析】【分析】(1)先化简,然后计算乘法,最后算加减法即可;(2)先通分括号内的式子,同时将括号外的除法转化为乘法,然后约分即可.【详解】解:(10(π 3.14)|2|2sin 60−−°+−122=−+−−12=−+−1=;(2)2443111a a a a a −+ ÷+− −−()2221311a a a a −−−÷−− ()()()221122a a a a a −−×−+− 22a a −=+.【点睛】本题考查分式的混合运算、特殊三角形函数值、零次幂、实数的运算,熟练掌握运算法则是解答本题的关键.20. 为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,东营市某学校举办“我参与,我劳动,我快乐,我光荣”活动.为了解学生周末在家劳动情况,学校随机调查了八年级部分学生在家劳动时间(单位:小时),并进行整理和分析(劳动时间x 分成五档:A 档:01x ≤<;B 档:12x ≤<;C 档:23x ≤<;D 档:34x ≤<;E 档:4x ≤).调查的八年级男生、女生劳动时间的不完整统计图如下: 根据以上信息,回答下列问题:(1)本次调查中,共调查了_______名学生,补全条形统计图;(2)调查的男生劳动时间在C 档的数据是:2,2.2,2.4,2.5,2.7,2.8,2.9.则调查的全部男生劳动时间的中位数为_______小时.(3)学校为了提高学生的劳动意识,现从E 档中选两名学生作劳动经验交流,请用列表法或画树状图的方法求所选两名学生恰好都是女生的概率.【答案】(1)50,见详解(2)2.5 (3)16【解析】【分析】本题主要考查了条形统计图与扇形统计图信息相关联,树状图法或列表法求解概率,中位数的定义,熟练掌握各知识点是解题的关键.(1)运用D 档人数除以D 百分比,得出调查的学生总数,再运用总数乘上E 档的百分比,即可作答. (2)根据中位数的定义,排序后位于中间位置的数为中位数,据此即可作答.(3)依题意,得出E 档有2名男学生,有2名女学生,运用列表法得共有12种等可能的结果,再运用概率公式列式计算,即可作答.【小问1详解】 解:依题意,()6726%50+÷=(名) ∴本次调查中,共调查了50名学生;的则508%4×=(名)∴422−=(名)则E 档有2名男学生,有2名女学生,补全条形统计图如图所示:【小问2详解】解:依题意,5376223++++=(名)本次调查的男学生的总人数是23名∴则调查的全部男生劳动时间的中位数位于第12名,∵53853715+=++=,∴第12名位于C 档∵调查的男生劳动时间在C 2,2.2,2.4,2.5,2.7,2.8,2.9.则调查的全部男生劳动时间的中位数为2.5小时,故答案为2.5;【小问3详解】解:用A ,B 表示2名男生,用C ,D 表示两名女生,列表如下:共有12种等可能的结果,其中所选两名学生恰好都是女生的结果有2种, ∴21126P ==.21. 如图,ABC 内接于O ,AB 是O 的直径,点E 在O 上,点C 是 BE的中点,AE CD ⊥,垂足为点D ,DC 的延长线交AB 的延长线于点F .(1)求证:CD 是O 的切线;(2)若CD =60ABC ∠=°,求线段AF 的长. 【答案】(1)见解析 (2)6【解析】【分析】本题主要考查了圆与三角形综合.熟练掌握圆周角定理及推论,圆切线的判定.含30°的直角三角形性质,是解决问题的关键.(1)连接OC ,由OA OC =,BC CE =,推出OCA DAC ∠=∠,得到OC AD ∥,由AE CD ⊥,得到CD OC ⊥,即得;(2)由直径性质可得90ACB ∠=°,推出30DAC BAC ∠=∠=°,根据含30°的直角三角形性质得到3AD =,根据30F ∠=°,得到6AF =.【小问1详解】证明:∵连接OC ,则OA OC =,∴OAC OCA ∠=∠,∵点C 是 BE的中点, ∴BC CE =,∴OAC DAC ∠=∠,∴OCA DAC ∠=∠,∴OC AD ∥,∵AE CD ⊥,∴CD OC ⊥,∴CD 是O 的切线;【小问2详解】解:∵AB 是O 的直径,∴90ACB ∠=°,∵60ABC ∠=°,∴9030BAC ABC ∠=°−∠=°,∴30DAC ∠=°,∵CD =∴3AD =,∵()9030FBAC DAC ∠=°−∠+∠=°, ∴26AF AD ==.22. 如图,一次函数y mx n =+(0m ≠)的图象与反比例函数k y x=(0k ≠)的图象交于点(3,)A a −,()1,3B ,且一次函数与轴,y 轴分别交于点C ,D .(1)求反比例函数和一次函数的表达式;(2)根据图象直接写出不等式k mx n x+>的解集; (3)在第三象限的反比例函数图象上有一点P ,使得4=△△OCP OBD S S ,求点P 的坐标.【答案】(1)3y x=,yy =xx +2 (2)30x −<<或1x >(3)点P 坐标为3,44 −−【解析】【分析】本题主要考查了反比例函数与一次函数的交点问题,熟知反比例函数及一次函数的图象与性质是解题的关键.(1)将点B 坐标代入反比例函数解析式,求出k ,再将点A 坐标代入反比例函数解析式,求出点A 坐标,最后将A ,B 两点坐标代入一次函数解析式即可解决问题;(2)利用反比例函数以及一次函数图象,即可解决问题;(3)根据OCP △与OBD 的面积关系,可求出点P 的纵坐标,据此可解决问题.【小问1详解】解:将()1,3B 代入k y x =得,31k = ∴3k =, ∴反比例函数的解析式为3y x =,将(3,)A a −代入3y x=得,313a ==−−, ∴点A 的坐标为(3,1)−−.将点A 和点B 的坐标代入y mx n =+得, 313m n m n −+=− +=, 解得12m n = =, ∴一次函数的解析式为yy =xx +2;【小问2详解】解:根据所给函数图象可知,当30x −<<或1x >时,一次函数的图象在反比例函数图象的上方,即k mx n x+>, ∴不等式k mx n x+>的解集为:30x −<<或1x >. 【小问3详解】 解:将0x =代入yy =xx +2得,2y =,∴点D 的坐标为(0,2), ∴12112=××=△OBD S , ∴44OCP OBD S S ==△△.将0y =代入yy =xx +2得,2x =−,∴点C 的坐标为(2,0)−, ∴1242OCP P S y =××= , 解得4P y =.∵点P 在第三象限,∴4P y =−,将4P y =−代入3y x =得,34P x =−, ∴点P 坐标为3,44 −−. 23. 随着新能源汽车的发展,东营市某公交公司计划用新能源公交车淘汰“冒黑烟”较严重的燃油公交车.新能源公交车有A 型和B 型两种车型,若购买A 型公交车3辆,B 型公交车1辆,共需260万元;若购买A 型公交车2辆,B 型公交车3辆,共需360万元.(1)求购买A 型和B 型新能源公交车每辆各需多少万元?(2)经调研,某条线路上的A 型和B 型新能源公交车每辆年均载客量分别为70万人次和100万人次.公司准备购买10辆A 型、B 型两种新能源公交车,总费用不超过650万元.为保障该线路的年均载客总量最大,请设计购买方案,并求出年均载客总量的最大值.【答案】(1)购买A 60万元,购买B 型新能源公交车每辆需80万元;(2)方案为购买A 型公交车8辆, B 型公交车2辆时.线路的年均载客总量最大,最大在客量为760万人. 【解析】【分析】本题考查二元一次方程组和一元一次不等式及一次函数的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组及一次函数是解题的关键.(1)设购买A 型公交车每辆需x 万元,购买B 型公交车每辆需y 万元,根据“购买A 型公交车3辆,B 型公交车1辆,共需260万元;若购买A 型公交车2辆,B 型公交车3辆,共需360万元”列出方程组解决问题即可;(2)设购买A 型公交车a 辆,则B 型公交车()10a −辆,由“公司准备购买10辆A 型、B 型两种新能源公交车,总费用不超过650万元”列出不等式求得a 的取值,再求出线路的年均载客总量为w 与a 的关系式,根据一次函数的性质求解即可.【小问1详解】解:设购买A 型新能源公交车每辆需x 万元,购买B 型新能源公交车每辆需y 万元,由题意得:326023360x y x y += +=, 解得6080x y = =, 答:购买A 型新能源公交车每辆需60万元,购买B 型新能源公交车每辆需80万元;【小问2详解】解:设购买A 型公交车a 辆,则B 型公交车()10a −辆,该线路年均载客总量为w 万人,由题意得()608010650a a +−≤,解得:7.5a ≥,∵10a ≤,∴7.510a ≤≤,∵a 是整数,∴8a =,9,10;∴线路的年均载客总量为w 与a 的关系式为()7010010301000w a a a =+−=−+, ∵300−<,∴w 随a 的增大而减小,∴当8a =时,线路的年均载客总量最大,最大载客量为3081000760w =−×+=(万人次) ∴1082−=(辆)∴购买方案为购买A 型公交车8辆,则B 型公交车2辆,此时线路的年均载客总量最大时,且为760万人次,24. 在Rt ABC △中,90ACB ∠=°,1AC =,3BC =.(1)问题发现如图1,将CAB △绕点C 按逆时针方向旋转90°得到CDE ,连接AD ,BE ,线段AD 与BE 的数量关系是______,AD 与BE 的位置关系是______;的(2)类比探究将CAB △绕点C 按逆时针方向旋转任意角度得到CDE ,连接AD ,BE ,线段AD 与BE 的数量关系、位置关系与(1)中结论是否一致?若AD 交CE 于点N ,请结合图2说明理由;(3)迁移应用如图3,将CAB △绕点C 旋转一定角度得到CDE ,当点D 落到AB 边上时,连接BE ,求线段BE 的长.【答案】(1)3BE AD =;AD BE ⊥(2)一致;理由见解析(3)BE =【解析】【分析】(1)延长DA 交BE 于点H ,根据旋转得出1CD AC ==,3CE BC ==,90ACD ACB ∠=∠=°,根据勾股定理得出AD,BE ,根据等腰三角形的性质得出190452ADC DAC ∠=∠=×°=°,190452CBE CEB ∠=∠=×°=°,根据三角形内角和定理求出180454590BHD ∠=°−°−°=°,即可得出结论;(2)延长DA 交BE 于点H ACD BCE ∽△△,得出13AD AC BE BC ==,ADC BEC ∠∠=,根据三角形内角和定理得出90EHN DCN ∠=∠=°,即可证明结论; (3)过点C 作CN AB ⊥于点N ,根据等腰三角形性质得出12AN ND AD ==,根据勾股定理得出AB ==,证明ACN ABC ∽,得出AN AC AC AB =,求出AN =,根据解析(2)得出3BE AD == 【小问1详解】解:延长DA 交BE 于点H ,如图所示:的∵将CAB △绕点C 按逆时针方向旋转90°得到CDE ,∴1CD AC ==,3CE BC ==,90ACD ACB ∠=∠=°,∴根据勾股定理得:AD,BE∴3BE AD =,∵CD AC =,CE BC =,90ACD ACB ∠=∠=°, ∴190452ADC DAC ∠=∠=×°=°,190452CBE CEB ∠=∠=×°=°, ∴180180454590BHD ADC CBE ∠=°−∠−∠=°−°−°=°,∴AD BE ⊥.【小问2详解】解:线段AD 与BE 的数量关系、位置关系与(1)中结论一致;理由如下:延长DA 交BE 于点H ,如图所示:∵将CAB △绕点C 旋转得到CDE ,∴1CD AC ==,3CE BC ==ACD BCE =∠,90DCE ACB ∠=∠=°, ∴13ACCD BC CE ==, ∴ACD BCE ∽△△, ∴13ADAC BE BC ==,ADC BEC ∠∠=, ∴3BE AD =;又∵ENH CND ∠=∠,180HEN ENH EHN ∠+∠+∠=°,180CND CDN DCN∠+∠+∠=°, ∴90EHN DCN ∠=∠=°,∴AD BE ⊥;【小问3详解】解:过点C 作CN AB ⊥于点N ,如图所示:根据旋转可知:AC CD =, ∴12AN ND AD ==, ∵在Rt ABC △中,90ACB ∠=°,1AC =,3BC =,∴根据勾股定理得:AB ==∵90ANC ACB ∠=∠=°,∠AA =∠AA ,∴ACN ABC ∽, ∴AN AC AC AB=,即1AN =,解得:AN =,∴2AD AN ==根据解析(2)可知:3BE AD==. 【点睛】本题主要考查了旋转的性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质,解题的关键是作出辅助线,熟练掌握三角形相似的判定方法.25. 如图,在平面直角坐标系中,已知抛物线2y x bx c =++与x 轴交于(1,0)A −,(2,0)B 两点,与y 轴交于点C ,点D 是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点D 在直线BC 下方的抛物线上时,过点D 作y 轴的平行线交BC 于点E ,设点D 的横坐标为t ,DE 的长为l ,请写出l 关于t 的函数表达式,并写出自变量t 的取值范围;(3)连接AD ,交BC 于点F ,求DEF AEFS S △△的最大值. 【答案】(1)2y x x 2−− (2)()2202l t t t =−+<< (3)1()3DEF AEF S S = 最大 【解析】【分析】(1)用待定系数法求出函数解析式即可;(2)先求出(0,2)C −,再用待定系数法求出直线BC 的解析式为:2y x =−,可得出()2,2D t t t −−,(),2E t t −,从而可得()22222l DE t t t t t ==−−−−=−+,再求出自变量取值范围即可; (3)分四种情形:当02t <<时,作AG DE ∥,交BC 于G ,可得出DEF AGF ∽,从而DF DE AF AG=,进而得出22211(1)333DF t t t AF −+==−−+,进一步得出结果;当1t <−,10t −<<和2t >时,可得出DEF AEF S S △△没有最大值.【小问1详解】解: 抛物线2y x bx c =++与x 轴交于(1,0)A −,(2,0)B 两点,∴10420b c b c −+= ++=, 解得12b c =− =−, ∴该抛物线的解析式为:2y x x 2−−;【小问2详解】解:二次函数2y x x 2−−中,令0x =,则2y =−,(0,2)C ∴−,设直线BC 的解析式为:y kx m =+.将(2,0)B ,(0,2)C −代入得到:202k m m += =− ,解得12k m = =−, ∴直线BC 的解析式为:2y x =−,过点D 作y 轴的平行线交BC 于点E ,设点D 的横坐标为t ,()2,2D t t t ∴−−,(),2E t t −,()22222l DE t t t t t ∴==−−−−=−+,点D 在直线BC 下方的抛物线上,02t ∴<<;【小问3详解】解:如图1,当02t <<时,作AG DE ∥,交BC 于G ,DEF AGF ∴ ∽, ∴DFDEAF AG =,把1x =−代入2y x =−得,=3y −,3AG ∴=, ∴22211(1)333DFt tt AF −+==−−+,当1x =时,1()3DF AF =最大, DEFAEFS DF AF S =, ∴1()3DEFAEF S S = 最大,当2t >时,此时222(2)2DE t t t t t =−−−−=−, ∴222(1)133DF t t t AF −−−==, 1t > 时,22t t −随着t 的增大而增大, ∴DF AF没有最大值, ∴()DEF AEF S S 没有最大值, 如图3,当10t −<<时,222(1)133DF t t t AF −−−==, 当10t −<<时,22t t −随着t 的增大而减小, ∴DF AF没有最大值, ∴()DEF AEF S S 没有最大值u ,当1t <−时,由上可知,()DEF AEFS S 没有最大值, 综上所述:当02t <<时,1()3DEF AEF S S = 最大. 【点睛】本题考查了二次函数及其图象的性质,求一次函数的解析式,相似三角形的判定和性质等知识,解决问题的关键是分类讨论.。

2023年东营市中考数学真题

2023年东营市中考数学真题

试卷类型:A二○二三年东营市初中学业水平考试数 学 试 题(总分 120分 考试时间120分钟)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30-分;第Ⅱ卷为非选择题,90分;本试题共6页。

2.数学答题卡共8页。

答题前,考生务必将自己的姓名、准考证号、座号等填写在试题和答题卡上,考试结束,试题和答题卡一并收回。

3.第Ⅰ卷每题选出答案后,都必须用 2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑。

如需改动,先用橡皮擦干净,再改涂其它答案。

第Ⅱ卷按要求用0.5mm 碳素笔答在答题卡的相应位置上。

第Ⅰ卷(选择题 共30分)一、选择题:本大题共 10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。

每小题选对得3分,选错、不选或选出的答案超过一个均记零分。

1.-2的相反数是( ) A.-2 B.2 C.−12D.2.下列运算结果正确的是( ).A. x³·x³=x ⁹B.2x³+3x³=5x ⁶C.(2x²)³=6x ⁶D.(2+3x)(2-3x)=4-9x²4.剪纸是中国最古老的民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录。

小文购买了以“剪纸图案”为主题的 5张书签,他想送给好朋友小乐一张。

小文将书签背面朝上(背面完全相同),让小乐从中随机抽取一张,则小乐3.如图,AB∥CD,点E 在线段BC 上(不与点B,C 重合),连接 DE 。

若∠D=40°,∠BED=60°,则∠B=( )A.10°B.20°C.40°D.60°抽到的书签图案既是轴对称图形又是中心对称图形的概率是( )A.45B.35C.25D.155.为扎实推进“五育”并举工作,加强劳动教育,东营市某中学针对七年级学生开设了“跟我学面点”烹饪课程。

东营市中考数学试题及答案

东营市中考数学试题及答案

东营市中考数学试题及答案一、选择题1. 已知直线L经过点A(4, 2),斜率为2,求直线L的方程。

A. y = x + 2B. y = 2x + 2C. y = -2x + 2D. y = -2x + 10答案:C. y = -2x + 22. ABCD是一个平行四边形,AB的中点为E,连接CE交BD于点F,若AB=8cm,那么BF的长度为?A. 2cmB. 4cmC. 6cmD. 8cm答案:B. 4cm3. 如果a+b=5,a^2-b^2=3,求a的值。

A. 1B. 2C. 3D. 4答案:C. 34. 某商品原价100元,现在打8折出售,购买该商品需要支付的金额是多少?A. 10元B. 20元C. 80元D. 92元答案:D. 92元5. 若a:b=3:4,b:c=5:6,那么a:c的比值为多少?A. 9:10B. 12:15C. 15:16D. 9:12答案:C. 15:16二、填空题1. 一个四边形的周长是48cm,如果其中三个边长分别是9cm、12cm、15cm,那么第四边的长度为____cm。

答案:12cm2. 一个长方形的长是5cm,宽是3cm,它的面积是____平方厘米。

答案:15平方厘米3. 山东省有多少个地级市?答案:17个4. 一个数的1/5是25,那么这个数本身是____。

答案:1255. 若2x-3=-5,那么x的值为____。

答案:-1三、解答题1. 甲乙两个人一起做某事,甲单独做需要3小时,乙单独做需要4小时。

两人一起做需要多少小时完成?解答:甲的单位时间工作量是1/3,乙的单位时间工作量是1/4。

两人一起做的单位时间工作量是1/3 + 1/4 = 7/12。

所以,两人一起做需要12/7小时。

2. 求下列各组数的最大值和最小值。

A. 7, 9, 5, 8, 3B. -2, -5, -3, -1, -4解答:A. 最大值为9,最小值为3。

B. 最大值为-1,最小值为-5。

山东省东营市中考数学试卷(word,带解析)

山东省东营市中考数学试卷(word,带解析)

·2018·山东省东营市中考数学试卷一、选择题:本大题共10小题,在每小题给出四个选项中,只有一项是正确,请把正确选项选出来.每小题选对得3分,选错、不选或选出答案超过一个均记零分.1.(3.00分)﹣倒数是()A.﹣5 B.5 C.﹣ D.2.(3.00分)下列运算正确是()A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2B.a2+a2=a4C.a2•a3=a6 D.(xy2)2=x2y43.(3.00分)下列图形中,根据AB∥CD,能得到∠1=∠2是()A.B.C.D.4.(3.00分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m 取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣15.(3.00分)为了帮助市内一名患“白血病”中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确是()A.众数是100 B.中位数是30 C.极差是20 D.平均数是306.(3.00分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球种类有笑脸和爱心两种,两种气球价格不同,但同一种气球价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球价格如图所示,则第三束气球价格为()A.19 B.18 C.16 D.157.(3.00分)如图,在四边形ABCD中,E是BC边中点,连接DE并延长,交AB 延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF8.(3.00分)如图所示,圆柱高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行最短距离是()A. B.C.D.9.(3.00分)如图所示,已知△ABC中,BC=12,BC边上高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC距离为x.则△DEF面积y 关于x函数图象大致为()A.B.C.D.10.(3.00分)如图,点E在△DBC边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确是()A.①②③④B.②④C.①②③D.①③④二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3.00分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为元.12.(3.00分)分解因式:x3﹣4xy2=.13.(3.00分)有五张背面完全相同卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上图形是中心对称图形概率是.14.(3.00分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A反比例函数解析式为.15.(4.00分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD面积是.16.(4.00分)已知一个圆锥体三视图如图所示,则这个圆锥体侧面积为.17.(4.00分)在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M为x轴上一个动点,若要使MB﹣MA值最大,则点M坐标为.18.(4.00分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018纵坐标是.三、解答题:本大题共7小题,共62分.解答要写出必要文字说明、证明过程或演算步骤.19.(7.00分)(1)计算:|2﹣|+(+1)0﹣3tan30°+(﹣1)2018﹣()﹣1;(2)解不等式组:并判断﹣1,这两个数是否为该不等式组解.20.(8.00分)·2018·东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集数据绘制了下面不完整统计图表.请你根据统计图表中所提供信息解答下列问题:(1)求该校九年级共捐书多少本;(2)统计表中a=,b=,c=,d=;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书简介,请用列表法或树状图求选出2人恰好1人捐“名人传记”,1人捐“科普图书”概率.21.(8.00分)小明和小刚相约周末到雪莲大剧院看演出,他们家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚速度比是3:4,结果小明比小刚提前4min到达剧院.求两人速度.22.(8.00分)如图,CD是⊙O切线,点C在直径AB延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD长.23.(9.00分)关于x方程2x2﹣5xsinA+2=0有两个相等实数根,其中∠A是锐角三角形ABC一个内角.(1)求sinA值;(2)若关于y方程y2﹣10y+k2﹣4k+29=0两个根恰好是△ABC两边长,求△ABC 周长.24.(10.00分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB长.经过社团成员讨论发现,过点B作BD∥AC,交AO延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC长.25.(12.00分)如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC长度;(2)设直线BC与y轴交于点M,点C是BM中点时,求直线BM和抛物线解析式;(3)在(2)条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC 面积最大?若存在,请求出点P坐标;若不存在,请说明理由.·2018·山东省东营市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,在每小题给出四个选项中,只有一项是正确,请把正确选项选出来.每小题选对得3分,选错、不选或选出答案超过一个均记零分.1.(3.00分)﹣倒数是()A.﹣5 B.5 C.﹣ D.【分析】根据倒数定义,互为倒数两数乘积为1.【解答】解:﹣倒数是﹣5,故选:A.【点评】主要考查倒数概念及性质.倒数定义:若两个数乘积是1,我们就称这两个数互为倒数.2.(3.00分)下列运算正确是()A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2B.a2+a2=a4C.a2•a3=a6 D.(xy2)2=x2y4【分析】根据完全平方公式、合并同类项法则、同底数幂乘法、积乘方与幂乘方逐一计算可得.【解答】解:A、﹣(x﹣y)2=﹣x2+2xy﹣y2,此选项错误;B、a2+a2=2a2,此选项错误;C、a2•a3=a5,此选项错误;D、(xy2)2=x2y4,此选项正确;故选:D.【点评】本题主要考查整式运算,解题关键是掌握完全平方公式、合并同类项法则、同底数幂乘法、积乘方与幂乘方.3.(3.00分)下列图形中,根据AB∥CD,能得到∠1=∠2是()A.B.C.D.【分析】两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等,据此进行判断即可.【解答】解:A.根据AB∥CD,能得到∠1+∠2=180°,故本选项不符合题意;B.如图,根据AB∥CD,能得到∠3=∠4,再根据对顶角相等,可得∠1=∠2,故本选项符合题意;C.根据AC∥BD,能得到∠1=∠2,故本选项不符合题意;D.根据AB平行CD,不能得到∠1=∠2,故本选项不符合题意;故选:B.【点评】本题主要考查了平行线性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.4.(3.00分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m 取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【分析】根据第二象限内点横坐标是负数,纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.【点评】本题考查了各象限内点坐标符号特征以及解不等式,记住各象限内点坐标符号是解决关键,四个象限符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(3.00分)为了帮助市内一名患“白血病”中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确是()A.众数是100 B.中位数是30 C.极差是20 D.平均数是30【分析】根据中位数、众数和极差概念及平均数计算公式,分别求出这组数据中位数、平均数、众数和极差,得到正确结论.【解答】解:该组数据中出现次数最多数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据极差是100﹣10=90,故极差是90不是20,所以选项C不正确;该组数据平均数是=不是30,所以选项D不正确.故选:B.【点评】本题考查了中位数、平均数、众数和极差概念.题目难度不大,注意勿混淆概念.6.(3.00分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球种类有笑脸和爱心两种,两种气球价格不同,但同一种气球价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球价格如图所示,则第三束气球价格为()A.19 B.18 C.16 D.15【分析】设一个笑脸气球单价为x元/个,一个爱心气球单价为y元/个,根据前两束气球价格,即可得出关于x、y方程组,用前两束气球价格相加除以2,即可求出第三束气球价格.【解答】解:设一个笑脸气球单价为x元/个,一个爱心气球单价为y元/个,根据题意得:,方程(①+②)÷2,得:2x+2y=18.故选:B.【点评】本题考查了二元一次方程组应用,找准等量关系,正确列出二元一次方程组是解题关键.7.(3.00分)如图,在四边形ABCD中,E是BC边中点,连接DE并延长,交AB 延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF【分析】正确选项是D.想办法证明CD=AB,CD∥AB即可解决问题;【解答】解:正确选项是D.理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE,∴△CDE≌△BFE,CD∥AF,∴CD=BF,∵BF=AB,∴CD=AB,∴四边形ABCD是平行四边形.故选:D.【点评】本题考查平行四边形判定和性质、全等三角形判定和性质等知识,解题关键是正确寻找全等三角形解决问题,属于中考常考题型.8.(3.00分)如图所示,圆柱高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行最短距离是()A. B.C.D.【分析】要求最短路径,首先要把圆柱侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C最短距离为线段AC 长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=1.5π,所以AC=,故选:C.【点评】本题考查了平面展开﹣最短路径问题,解题关键是会将圆柱侧面展开,并利用勾股定理解答.9.(3.00分)如图所示,已知△ABC中,BC=12,BC边上高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC距离为x.则△DEF面积y 关于x函数图象大致为()A.B.C.D.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形性质可求出EF,进而求出函数关系式,由此即可求出答案.【解答】解:过点A向BC作AH⊥BC于点H,所以根据相似比可知:=,即EF=2(6﹣x)所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)该函数图象是抛物线一部分,故选:D.【点评】此题考查根据几何图形性质确定函数图象和函数图象读图能力.要能根据几何图形和图形上数据分析得出所对应函数类型和所需要条件,结合实际意义画出正确图象.10.(3.00分)如图,点E在△DBC边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确是()A.①②③④B.②④C.①②③D.①③④【分析】只要证明△DAB≌△EAC,利用全等三角形性质即可一一判断;【解答】解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE2=BC2﹣EC2=2AB2﹣(CD2﹣DE2)=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2.故④正确,故选:A.【点评】本题考查全等三角形判定和性质、勾股定理、等腰直角三角形性质等知识,解题关键是正确寻找全等三角形解决问题,属于中考选择题中压轴题.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3.00分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为 4.147×1011元.【分析】科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数.确定n值时,要看把原数变成a时,小数点移动了多少位,n绝对值与小数点移动位数相同.当原数绝对值>1时,n是正数;当原数绝对值<1时,n是负数.【解答】解:4147亿元用科学记数法表示为4.147×1011,故答案为:4.147×1011【点评】此题考查科学记数法表示方法.科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a值以及n值.12.(3.00分)分解因式:x3﹣4xy2=x(x+2y)(x﹣2y).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(x2﹣4y2)=x(x+2y)(x﹣2y),故答案为:x(x+2y)(x﹣2y)【点评】此题考查了提公因式法与公式法综合运用,熟练掌握因式分解方法是解本题关键.13.(3.00分)有五张背面完全相同卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上图形是中心对称图形概率是.【分析】直接利用中心对称图形性质结合概率求法直接得出答案.【解答】解:∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,∴从中随机抽取一张,卡片上图形是中心对称图形概率是:.故答案为:.【点评】此题主要考查了中心对称图形性质和概率求法,正确把握中心对称图形定义是解题关键.14.(3.00分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A反比例函数解析式为y=.【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A坐标,利用待定系数法确定出解析式即可.【解答】解:设A坐标为(x,y),∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0﹣3,解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),设过点A反比例解析式为y=,把A(﹣2,﹣3)代入得:k=6,则过点A反比例解析式为y=,故答案为:y=【点评】此题考查了待定系数法求反比例函数解析式,以及平行四边形性质,熟练掌握待定系数法是解本题关键.15.(4.00分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD面积是15.【分析】作DQ⊥AC,由角平分线性质知DB=DQ=3,再根据三角形面积公式计算可得.【解答】解:如图,过点D作DQ⊥AC于点Q,由作图知CP是∠ACB平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,=•AC•DQ=×10×3=15,∴S△ACD故答案为:15.【点评】本题主要考查作图﹣基本作图,解题关键是掌握角平分线尺规作图及角平分线性质.16.(4.00分)已知一个圆锥体三视图如图所示,则这个圆锥体侧面积为20π.【分析】先利用三视图得到底面圆半径为4,圆锥高为3,再根据勾股定理计算=πrl代入计算即可.出母线长l为5,然后根据圆锥侧面积公式:S侧【解答】解:根据三视图得到圆锥底面圆直径为8,即底面圆半径r为4,圆锥高为3,所以圆锥母线长l==5,所以这个圆锥侧面积是π×4×5=20π.故答案为:20π【点评】本题考查了圆锥计算,连接圆锥顶点和底面圆周上任意一点线段叫做圆锥母线.连接顶点与底面圆心线段叫圆锥高.圆锥侧面展开图为一扇形,这个扇形弧长等于圆锥底面周长,扇形半径等于圆锥母线长.掌握圆锥侧面积公式:S=•2πr•l=πrl是解题关键.也考查了三视图.侧17.(4.00分)在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M为x轴上一个动点,若要使MB﹣MA值最大,则点M坐标为.【分析】要使得MB﹣MA值最大,只需取其中一点关于x轴对称点,与另一点连成直线,然后求该直线x轴交点即为所求.【解答】解:取点B关于x轴对称点B′,则直线AB′交x轴于点M.点M即为所求.设直线AB′解析式为:y=kx+b把点A(﹣1,﹣1)B′(2,﹣7)代入解得∴直线AB′为:y=﹣2x﹣3,当y=0时,x=﹣∴M坐标为(﹣,0)故答案为:(﹣,0)【点评】本题考查轴对称﹣最短路线问题、坐标与图象变换,解答本题关键是明确题意,利用三角形两边之差小于第三边和一次函数性质解答.18.(4.00分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018纵坐标是.【分析】因为每个A点为等腰直角三角形直角顶点,则每个点A纵坐标为对应等腰直角三角形斜边一半.故先设出各点A纵坐标,可以表示A横坐标,代入解析式可求点A纵坐标,规律可求.【解答】解:分别过点A1,A2,A3,…向x轴作垂线,垂足为C1,C2,C3,…∵点A1(1,1)在直线y=x+b上∴代入求得:b=∴y=x+∵△OA1B1为等腰直角三角形∴OB1=2设点A2坐标为(a,b)∵△B1A2B2为等腰直角三角形∴A2C2=B1C2=b∴a=OC2=OB1+B1C2=2+b把A2(2+b,b)代入y=x+解得b=∴OB2=5同理设点A3坐标为(a,b)∵△B2A3B3为等腰直角三角形∴A3C3=B2C3=b∴a=OC3=OB2+B2C3=5+b把A2(5+b,b)代入y=x+解得b=以此类推,发现每个A纵坐标依次是前一个倍则A2018纵坐标是故答案为:【点评】本题为一次函数图象背景下规律探究题,结合了等腰直角三角形性质,解答过程中注意对比每个点A纵坐标变化规律.三、解答题:本大题共7小题,共62分.解答要写出必要文字说明、证明过程或演算步骤.19.(7.00分)(1)计算:|2﹣|+(+1)0﹣3tan30°+(﹣1)2018﹣()﹣1;(2)解不等式组:并判断﹣1,这两个数是否为该不等式组解.【分析】(1)先求出每一部分值,再代入求出即可;(2)先求出不等式解集,再求出不等式组解集,再判断即可.【解答】解:(1)原式==;(2)∵解不等式①得:x>﹣3,解不等式②得:x≤1∴不等式组解集为:﹣3<x≤1,则﹣1是不等式组解,不是不等式组解.【点评】本题考查了绝对值、特殊角三角函数值、零指数幂、负整数指数幂、解一元一次组等知识点,能求出每一部分值是解(1)关键,能求出不等式组解集是解(2)关键.20.(8.00分)·2018·东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集数据绘制了下面不完整统计图表.请你根据统计图表中所提供信息解答下列问题:(1)求该校九年级共捐书多少本;(2)统计表中a=0.35,b=150,c=0.22,d=0.13;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书简介,请用列表法或树状图求选出2人恰好1人捐“名人传记”,1人捐“科普图书”概率.【分析】(1)根据名人传记圆心角求得其人数所占百分比,再用名人传记人数除以所得百分比可得总人数;(2)根据频率=频数÷总数分别求解可得;(3)用总人数乘以样本中科普图书和小说频率之和可得;(4)列表得出所有等可能结果,从中找到恰好1人捐“名人传记”,1人捐“科普图书”结果数,利用概率公式求解可得.【解答】解:(1)该校九年级共捐书:;(2)a=175÷500=0.35、b=500×0.3=150、c=110÷500=0.22、d=65÷500=0.13,故答案为:0.35、150、0.22、0.13;(3)估计“科普图书”和“小说”一共1500×(0.3+0.22)=780(本);(4)分别用“1、2、3”代表“名人传记”、“科普图书”、“小说”三本书,可用列表法表示如下:则所有等可能情况有6种,其中2人恰好1人捐“名人传记”,1人捐“科普图书”情况有2种,所以所求概率:.【点评】本题考查了列表法和树状图法求概率,频数分布直方图,扇形统计图,正确识图是解题关键.21.(8.00分)小明和小刚相约周末到雪莲大剧院看演出,他们家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚速度比是3:4,结果小明比小刚提前4min到达剧院.求两人速度.【分析】设小明速度为3x米/分,则小刚速度为4x米/分,根据时间=路程÷速度结合小明比小刚提前4min到达剧院,即可得出关于x分式方程,解之经检验后即可得出结论.【解答】解:设小明速度为3x米/分,则小刚速度为4x米/分,根据题意得:﹣=4,解得:x=25,经检验,x=25是分式方程根,且符合题意,∴3x=75,4x=100.答:小明速度是75米/分,小刚速度是100米/分.【点评】本题考查了分式方程应用,找准等量关系,正确列出分式方程是解题关键.22.(8.00分)如图,CD是⊙O切线,点C在直径AB延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD长.【分析】(1)连接OD,由OB=OD可得出∠OBD=∠ODB,根据切线性质及直径所对圆周角等于180°,利用等角余角相等,即可证出∠CAD=∠BDC;(2)由∠C=∠C、∠CAD=∠CDB可得出△CDB∽△CAD,根据相似三角形性质结合BD=AD、AC=3,即可求出CD长.【解答】(1)证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O切线,OD是⊙O半径,∴∠ODB+∠BDC=90°.∵AB是⊙O直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BDC.(2)解:∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴=.∵BD=AD,∴=,∴=,又∵AC=3,∴CD=2.【点评】本题考查了相似三角形判定与性质、圆周角定义以及切线性质,解题关键是:(1)利用等角余角相等证出∠CAD=∠BDC;(2)利用相似三角形性质找出.23.(9.00分)关于x方程2x2﹣5xsinA+2=0有两个相等实数根,其中∠A是锐角三角形ABC一个内角.(1)求sinA值;(2)若关于y方程y2﹣10y+k2﹣4k+29=0两个根恰好是△ABC两边长,求△ABC 周长.【分析】(1)利用判别式意义得到△=25sin2A﹣16=0,解得sinA=;(2)利用判别式意义得到100﹣4(k2﹣4k+29)≥0,则﹣(k﹣2)2≥0,所以k=2,把k=2代入方程后解方程得到y1=y2=5,则△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,利用三角形函数求出AD=3,BD=4,再利用勾股定理求出BC即得到△ABC周长;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,利用三角函数求出AD得到AC长,从而得到△ABC周长.【解答】解:(1)根据题意得△=25sin2A﹣16=0,∴sin2A=,∴sinA=或,∵∠A为锐角,∴sinA=;(2)由题意知,方程y2﹣10y+k2﹣4k+29=0有两个实数根,则△≥0,∴100﹣4(k2﹣4k+29)≥0,∴﹣(k﹣2)2≥0,∴(k﹣2)2≤0,又∵(k﹣2)2≥0,∴k=2,把k=2代入方程,得y2﹣10y+25=0,解得y1=y2=5,∴△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5∵sinA=,∴AD=3,BD=4∴DC=2,∴BC=.∴△ABC周长为;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,∵sinA=,∴A D=DC=3,∴AC=6.∴△ABC周长为16,综合以上讨论可知:△ABC周长为或16.【点评】本题考查了根判别式:一元二次方程ax2+bx+c=0(a≠0)根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等实数根;当△=0时,方程有两个相等实数根;当△<0时,方程无实数根.也考查了解直角三角形.24.(10.00分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB长.经过社团成员讨论发现,过点B作BD∥AC,交AO延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=75°,AB=4.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC长.【分析】(1)根据平行线性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形性质可求出OD值,进而可得出AD值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE长度,再在Rt△CAD中,利用勾股定理可求出DC长,此题得解.【解答】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==.又∵AO=,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=4.故答案为:75;4.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴==.∵BO:OD=1:3,∴==.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=12.在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,解得:CD=4.【点评】本题考查了相似三角形性质、等腰三角形判定与性质、勾股定理以及平行线性质,解题关键是:(1)利用相似三角形性质求出OD值;(2)利用勾股定理求出BE、CD长度.25.(12.00分)如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC长度;(2)设直线BC与y轴交于点M,点C是BM中点时,求直线BM和抛物线解析式;(3)在(2)条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC 面积最大?若存在,请求出点P坐标;若不存在,请说明理由.【分析】(1)令y=0,求出x值,确定出A与B坐标,根据已知相似三角形得比例,求出OC长即可;(2)根据C为BM中点,利用直角三角形斜边上中线等于斜边一半得到OC=BC,确定出C坐标,利用待定系数法确定出直线BC解析式,把C坐标代入抛物线求出a值,确定出二次函数解析式即可;(3)过P作x轴垂线,交BM于点Q,设出P与Q横坐标为x,分别代入抛物线与直线解析式,表示出坐标轴,相减表示出PQ,四边形ACPB面积最大即为三角形BCP面积最大,三角形BCP面积等于PQ与B和C横坐标之差乘积一半,构造为二次函数,利用二次函数性质求出此时P坐标即可.【解答】解:(1)由题可知当y=0时,a(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,即A(1,0),B(3,0),∴OA=1,OB=3∵△OCA∽△OBC,∴OC:OB=OA:OC,∴OC2=OA•OB=3,则OC=;(2)∵C是BM中点,即OC为斜边BM中线,∴OC=BC,∴点C横坐标为,又OC=,点C在x轴下方,∴C(,﹣),设直线BM解析式为y=kx+b,把点B(3,0),C(,﹣)代入得:,解得:b=﹣,k=,∴y=x﹣,又∵点C(,﹣)在抛物线上,代入抛物线解析式,解得:a=,∴抛物线解析式为y=x2﹣x+2;(3)点P存在,设点P坐标为(x,x2﹣x+2),过点P作PQ⊥x轴交直线BM于点Q,则Q(x,x﹣),∴PQ=x﹣﹣(x2﹣x+2)=﹣x2+3x﹣3,当△BCP面积最大时,四边形ABPC面积最大,S△BCP=PQ(3﹣x)+PQ(x﹣)=PQ=﹣x2+x﹣,有最大值,四边形ABPC面积最大,此时点P坐标为(,当x=﹣=时,S△BCP﹣).【点评】此题属于二次函数综合题,涉及知识有:二次函数图象与性质,待定系数法确定函数解析式,相似三角形判定与性质,以及坐标与图形性质,熟练掌握各自性质是解本题关键.。

东营中考数学试卷真题

东营中考数学试卷真题

东营中考数学试卷真题一、选择题1. 如图,矩形ABCD的边长分别为5和3,将矩形沿着EF作折叠,使点A落在EF上的点F上,点C落在EF上的点P上。

则矩形ABCD在折叠后恰好重合的位置是()(图略)A. EF = 2B. EF = 3C. EF = 4D. EF = 52. 若a, b, c都是满足0 < x < 1的实数,则下列数中最大的是()A. aB. a-bC. a-cD. a-bc3. 如图,正方形中有一条与边平行的直线,将正方形分成两部分面积之比为1:2,则h等于()(图略)A. $h\sqrt{3}$B. $\sqrt{h^2+3}$C. $h$D. $\sqrt{h^2-3}$4. 若$f(x) = \frac{x - 1}{2 - x}$,满足$f(f(x)) = x$,则实数x的取值范围是()A. $(-\infty, 1)$B. $[1, 2)$C. $(1, \infty)$D. 无解5. 已知平行四边形ABCD中,$\angle BAC = 60^{\circ}$,且$BA=AC=2$,则平行四边形ABCD的面积为()A. $2\sqrt{3}$B. $\sqrt{3}$C. $3\sqrt{3}$D. 46. 一筒白球和两筒黑球,将这三筒球搅在一起,从中任取一球,则取到白球的概率是()A. $\frac{1}{3}$B. $\frac{2}{3}$C. $\frac{1}{2}$D. 无法确定二、填空题7. 一颗质量为30kg的木块,放在静止的、水平的桌面上。

如图所示,上面有一个质量为10kg的物品A,它距木块的右边缘距离为30cm, A与木块之间摩擦系数为0.2,求物品A从木块上滑落所需的时间。

(图略)8. 设$a_{1}+a_{2}+\cdots+a_{12}=84$($a_{1}, a_{2}, \cdots,a_{12}$均为正整数),则$$\left(a_{2}-a_{1}\right)\left(a_{3}-a_{2}\right)\left(a_{4}-a_{3}\right) \cdots\left(a_{12}-a_{11}\right)\left(a_{1}-a_{12}\right)$$最小是\_\_\_\_\_\_\_\_\_。

2024年山东省枣庄市、聊城市、临沂市、菏泽市、东营市中考数学试卷正式版含答案解析

2024年山东省枣庄市、聊城市、临沂市、菏泽市、东营市中考数学试卷正式版含答案解析

绝密★启用前学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列实数中,平方最大的数是( )C. −1D. −2A. 3B. 122.用一个平面截正方体,可以得到以下截面图形,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.3.2023年山东省扎实落实民生实事,全年新增城乡公益性岗位61.9万个,将61.9万用科学记数法表示应为( )A. 0.619×103B. 61.9×104C. 6.19×105D. 6.19×1064.下列几何体中,主视图是如图的是( )A. B. C. D.5.下列运算正确的是( )A. a4+a3=a7B. (a−1)2=a2−1C. (a3b)2=a3b2D. a(2a+1)=2a2+a6.为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为( ) A. 200B. 300C. 400D. 5007.如图,已知AB ,BC ,CD 是正n 边形的三条边,在同一平面内,以BC 为边在该正n 边形的外部作正方形BCMN.若∠ABN =120°,则n 的值为( )A. 12B. 10C. 8D. 68.某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是( ) A. 19B. 29C. 13D. 239.如图,点E 为▱ABCD 的对角线AC 上一点,AC =5,CE =1,连接DE 并延长至点F ,使得EF =DE ,连接BF ,则BF 为( )A. 52B. 3C. 72D. 410.根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ; ②1班学生的最低身高小于150cm ; ③2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( ) A. ①②B. ①③C. ②③D. ①②③二、填空题:本题共6小题,每小题3分,共18分。

2023年山东省东营市中考数学试卷(含答案)102604

2023年山东省东营市中考数学试卷(含答案)102604

2023年山东省东营市中考数学试卷试卷考试总分:107 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 9 小题 ,每题 3 分 ,共计27分 )1. 下列运算一定正确的是( )A.B. C.D.2. 将含角的一个直角三角板和一把直尺如图放置,若,则等于( )A.B.C. D.3. 在四张完全相同的卡片上,分別画有等腰三角形、平行四边形、矩形、圆,现从中随机抽取一张,卡片上的图形既是轴对称图形又是中心对称图形的概率是( ) A.B.C.D.4. 东胜到呼市相距千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的倍.从东胜到呼市的时间缩短了小时.设列车提速后所需时间为小时,根据题意,可列方程 A.B.C.D.a +a =a 2⋅=a 2a 3a 6(a +b)(a −b)=−a 2b 2=6(2)a 23a 630∘∠1=50∘∠280∘100∘110∘120∘1234 2.21.2x ()−=1.2234x 2342.2x =×2.2234x+1.2234x −=1.22342.2x 234x ×2.2=234x+1.2234x12πc 25. 若圆锥的侧面积为,它的底面半径为,则此圆锥的母线长( ).A.B.C.D.6. 如图,在中,点是边上任意一点,点,,分别是,,的中点,连接,若的面积为,则的面积为 A.B.C.D.7. 如图,中,,,,将沿射线的方向平移,得到,再将绕点逆时针旋转一定角度后,点恰好与点重合,则平移的距离和旋转角的度数分别为( )A.,B.,C.,D.,8. 如图,二次函数的图象与轴交于,两点,与轴正半轴交于点,它的对称轴为直线.则下列选项中正确的是( )A.B.C.12πcm 23cm cm .2346△ABC D BC F G E AD BF CF GE △FGE 8△ABC ()32486472△ABC AB =4BC =6∠B =60∘△ABC BC △A'B'C'△A'B'C'A'B'C 430∘260∘130∘330∘y =a +bx+c(a >0)x 2x A B y C x =−1abc <04ac −>0b 2c −a >0x =−−22D.当(为实数)时,9. 如图所示,在正方形中,为边中点,连接,对角线交于点.已知,则线段的长度为( )A.B.C.D.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )10. (精确到千分位)________.近似数精确到________位.11. 因式分解:________.12. 若点在第一象限,则的取值范围是________.13. 甲、乙两人进行飞镖比赛,每人各投次,所得平均环数相等,其中甲所得环数的方差为,乙所得环数如下:,,,,,那么成绩较稳定的是_________.(填“甲”或“乙”)14. 将折叠书架画出侧面示意图,为面板架,为支撑架,为锁住定杆,可在动或固定.已知.如图甲,将面板竖直固定时(),点恰为的中点,如图乙,当时, ,则支撑架的长度为________.15. 在半径为 的圆内有两条平行弦,一条弦长为,另一条弦长为,则两条平行弦之间的距离为________.16. 如图,在中,,.按以下步骤作图:①以点为圆心,小于的长为半径画弧,分别交,于点,;②分别以点,为圆心,大于的长为半径画弧,两弧相交于点;③作射线交边于点.则的度数为________.17. 方程组的解是________;直线与直线的交点是________.三、 解答题 (本题共计 7 小题 ,每题 8 分 ,共计56分 )x =−−2n 2n y ≥cABCD E CD AE BD AE F EF =1AE 23450.0617 3.7×1053−27=x 2P(2m−1,m−3)m 515015910AB CD EF F CD BC =CE =8cm AB AB ⊥BD F CD CF =17cm EF ⊥AB CD cm 5cm 6cm 8cm △ABC ∠C =90∘∠CAB =50∘A AC AB AC E F E F EF 12G AG BC D ∠ADC {y =3x−1,y =x+3y =3x−1y =x+318. 计算:. 19. 今年是建党周年,回望“雄关漫道真如铁”的过去,瞭望“乘风破浪会有时”的未来,党史学习教育是牢记初心使命、坚定理想信念、推进党的自我革命的必然要求.教育局党委对教育系统的教师党员个人学习形式开展了问卷调查(问卷调查表如图),并将调查结果绘制成如图的条形统计图和扇形统计图(均不完整).请根据统计图中提供的信息,解答下列问题:本次参与调查的总人数是________人;扇形统计图中,扇形统计图部分的圆心角是________度;若该市教育系统有名党员,如果对全市进行调查,请你估计选择学习形式的人数为多少?教育局党委规定,选择学习形式是的党员要就规定书目中的两本内容进行讲座,并用随机抽取两本书的方式确定具体内容.工作人员将四本书分别编号为,,,,如下图所示,将写有编号的卡片放在不透明的盒子中,王老师选择的学习形式是,他从盒子中随机一次性抽出两张卡片,请用列表或画树状图的方法求他抽到两张卡片编号恰好是和的概率.20. 如图,是的直径,弦于点,过点的切线交的延长线于点,连接.(1)求证:是的切线;(2)连接,若=,=,求的长.21. 如图,一次函数的图象与反比例函数在第一象限的图象交于和两点,与轴交于点.求反比例函数的解析式;−4sin +(2020−π12−−√60∘)0100(1)D (2)6000C (3)A 1234A 12AB ⊙O CD ⊥AB E C AB F DF DF ⊙O BC ∠BCF 30∘BF 2CD y=−x+3y =k x (k ≠0)A(1,a)B x C (1)AB求的值. 22. 如图,利用一面墙(墙的长度不限),篱笆长.围成一个面积为的矩形场地,求矩形场地的长和宽;可以围成一个面积为的矩形场地吗?如果能,求出矩形场地的长和宽;如果不能,请说明理由. 23. 已知:在平面直角坐标系中,四边形是长方形,====,,==,==,点与原点重合,坐标为(1)直接写出点的坐标________.(2)动点从点出发以每秒个单位长度的速度向终点匀速运动,动点从点出发以每秒个单位长度的速度沿射线方向匀速运动,若两点同时出发,设运动时间为秒,当为何值时,轴?(3)在的运动过程中,当运动到什么位置时,使的面积为?求出此时点的坐标? 24. 已知抛物线与轴的一个交点为.求抛物线与轴的另一个交点的坐标;抛物线和抛物线形状一致,求此抛物线的解析式.(2)AB BC 20m (1)50m 2(2)60m 2ABC ∠A ∠B ∠C ∠D 90∘AB//CD AB CD 8AD BC 6D (0,0)B P A 3B 4CD PQ t t PQ//y Q Q △ADQ 9Q y =a +4ax+t x 2x A(−1,0)(1)x B (2)y =a +4ax+t x 2y =x 2参考答案与试题解析2023年山东省东营市中考数学试卷试卷一、 选择题 (本题共计 9 小题 ,每题 3 分 ,共计27分 )1.【答案】C【考点】平方差公式同底数幂的乘法幂的乘方与积的乘方合并同类项【解析】此题暂无解析【解答】解:,故错误;,故错误;,故正确;,故错误.故选.2.【答案】C【考点】平行线的性质三角形的外角性质【解析】根据平行线的性质和三角形的外角的性质即可得到结论.【解答】解:如图所示,∵,,∴,又∵是的外角,∴.a +a =2a A ⋅=a 2a 3a 5B (a +b)(a −b)=−a 2b 2C =8(2)a 23a 6D C AB//CD ∠1=50∘∠ABE=∠1=50∘∠2△ABE ∠2=∠ABE+∠E=+50∘60∘=110∘B【考点】中心对称图形概率公式轴对称图形【解析】由等腰三角形、平行四边形、矩形、圆中是轴对称图形和中心对称图形的有矩形、圆,直接利用概率公式求解即可求得答案.【解答】解:等腰三角形、平行四边形、矩形、圆中是中心对称图形的有平行四边形、矩形、圆,是轴对称图形的有等腰三角形、矩形、圆,…既是轴对称又是中心对称图形的有矩形、圆,.现从中随机抽取一张,卡片上画的图形恰好是中心对称图形的概率是故选:.4.【答案】D【考点】由实际问题抽象出分式方程【解析】此题暂无解析【解答】解:根据题意得,提速之前的时间为:,故可列方程组为:.故选.5.【答案】C【考点】圆锥的计算【解析】圆锥的侧面积底面周长母线长,把相应数值代入即可求解.【解答】解:设母线长为,底面半径是,则底面周长,侧面积,∴.12B x+1.2×2.2=234x+1.2234xD =×÷2R 3cm =6π=3πR =12πR =4cmC【考点】相似三角形的判定与性质三角形中位线定理【解析】此题暂无解析【解答】解:∵,分别是,的中点,∴是的中位线,∴,,∴,∵的面积为,∴的面积为,∵点是的中点,∴,∴的面积的面积.故选.7.【答案】B【考点】旋转的性质平移的性质等边三角形的性质与判定【解析】试题分析:根据平移和旋转的性质得到三角形全等,进而解答即可.【解答】解:由题意得,∴,∵,∴是等边三角形,∴,,,∴,旋转角的度数为.故选.8.【答案】D【考点】二次函数图象与系数的关系G E BF CF GE △BFC GE =BC 12GE//BC △FGE ∼△FBC △FGE 8△BFC 32F AD =,=S △ABF S △BDF S △FDC S △AFC △ABC =2△BFC =64C △ABC ≅△BC A ′AB ==C A ′B ′A ′∠B =60∘△C A ′B ′∠C =B ′A ′60∘C =AB =4B ′BC =6B =6−4=2B ′60∘B抛物线与x 轴的交点二次函数图象上点的坐标特征【解析】由图象开口向上,可知,与轴的交点在轴的上方,可知,根据对称轴方程得到,于是得到,故错误;根据一次函数=的图象与轴的交点,得到,求得,故错误;根据对称轴方程得到=,当=时,=,于是得到,故错误;当=(为实数)时,代入解析式得到===,于是得到=,故正确.【解答】解:,由抛物线与轴交于正半轴,可知,∵对称轴为直线,,∴,∴,∴,故错误;,二次函数的图象与轴交于,两点,∴,∴,故错误;,∵,∴,∵当时,,∴,∴,故错误;,当(为实数)时,,,,,∴,故正确.故选.9.【答案】B【考点】正方形的性质相似三角形的性质与判定【解析】根据正方形的性质可得,,根据平行线的性质可得,,根据相似三角形的判定,可以得出,根据相似三角形的性质及为中点,可得,根据可计算出的长,从而得出的长.【解答】解: 四边形为正方形,,,,,,.为中点,,,∴,a >0y x c >0b >0abc >0A y a +bx+c(a >0)x 2x −4ac >0b 24ac −<0b 2B b 2a x −1y a −b +c <0c −a <0C x −−2n 2n y a +bx+c x 2a(−−2+b(−−2)n 2)2n 2a (+2)+c n 2n 2y a (+2)+c ≥c n 2n 2D A y c >0x =−1a >0−=−1<0b 2a b >0abc >0A B y =a +bx+c(a >0)x 2x A B Δ=−4ac >0b 24ac −<0b 2B C −=−1b 2a b =2a x =−1y =a −b +c <0a −2a +c <0c −a <0C D x =−−2n 2n y =a +bx+cx 2=a +b(−−2)+c(−−2)n 22n 2=a +2a(−−2)+c(−−2)n 22n 2=a (+2)+c n 2n 2∵a >0≥0n 2+2>0n 2y =a (+2)+c ≥c n 2n 2D D AB =CD AB//CD ∠ABF =∠GDF ∠BAF =∠DGF △ABF ∼△EOF E CD =AF EF AB ED EF =1AF AE ∵ABCD ∴AB =CD AB//CD ∴∠ABF =∠EDF ∠BAF =∠DEF ∴△ABF ∽△EDF ∴=AF EF AB ED ∵E CD EF =1∴=2AF EF AF =2.故选.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )10.【答案】,万【考点】科学记数法与有效数字【解析】根据近似数的精确度求解.【解答】精确到千分位为:;近似数精确到万位.11.【答案】【考点】提公因式法与公式法的综合运用【解析】先提取公因式,再根据平方差公式进行二次分解即可求得答案.注意分解要彻底.【解答】解:原式.故答案为:.12.【答案】【考点】点的坐标【解析】让点的横纵坐标均大于列式求值即可.【解答】解:∵点在第一象限,∴,,解得:.故答案为:.13.【答案】甲∴AE =AF +EF =3B 0.0620.06170.062 3.7×1053(x+3)(x−3)3=3(−9)=3(x+3)(x−3)x 23(x+3)(x−3)m>3P 0P(2m−1,m−3)2m−1>0m−3>0m>3m>3【考点】方差算术平均数【解析】此题暂无解析【解答】此题暂无解答14.【答案】【考点】勾股定理的应用【解析】本题考查勾股定理的应用.根据勾股定理得出EF 的长,进而利用勾股定理得出CF ,进而得出CD 的长即可.【解答】解:∵,∴.过作,∵,∴.∵点恰为的中点,∴BC ,∴.∵,∴,∴,∴.故答案为:.15.【答案】或【考点】勾股定理的应用垂径定理的应用【解析】【解答】297−−√EF ⊥AB,CF =17cm,BC =CE =8cm EF =C −C F 2E 2−−−−−−−−−−√=15cm F FG ⊥AB AB ⊥BD FG//BD F CD CG =12=4cm EG =8+4=12cm EF =15cm CG =E −E F 2G 2−−−−−−−−−−√=9cm BD =2CG =18cm CD =C +B B 2D 2−−−−−−−−−−√=297−−√297−−√1cm 7 cm解:令=,=,过点作⊥于,交于.当、在圆心同旁时,∵,∴.∵过圆心,⊥,∴==.∵=,∴由勾股定理可知 =.同理 =,∴=-=.当、在圆心两旁时,同理可知=+=,故答案为:或.16.【答案】【考点】作图—基本作图角平分线的性质【解析】此题暂无解析【解答】解:根据作图方法可得,是的角平分线,∵,∴,∵,∴.故答案为:.17.【答案】,【考点】一次函数与二元一次方程(组)一次函数图象上点的坐标特征一次函数的图象【解析】此题暂无解析【解答】解:对原方程组使用加减消元法,两式相减得,解得,带入原方程得.AB 6 cm CD 8 cm O OE AB E CD F AB CD AB//CD OF ⊥CD OE OE AB EB 12AB 3cm OB 5cm EO 4cm OF 4cm EF OE OF 1 cm AB CD EF OE OF 7cm 1 cm 7 cm 65∘AG ∠CAB ∠CAB =50∘∠CAD =∠CAB =1225∘∠C =90∘∠ADC =−=90∘25∘65∘65∘{x =2,y =5(2,5)2x−4=0x =2y =5所以方程组的解为所以直线与直线的交点为.故答案为:.三、 解答题 (本题共计 7 小题 ,每题 8 分 ,共计56分 )18.【答案】解:原式.【考点】特殊角的三角函数值零指数幂、负整数指数幂二次根式的性质与化简【解析】(1)先计算二次根式、代入三角函数值、计算零指数幂,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:原式.19.【答案】,依题意可得:,∴选择学校形式的人数为:(人);答:选择学校形式的人数为人.列表如下:由列表可以看出,总共有种结果,每种结果出现的可能性相同,其中抽到两张卡片编号恰好是和的结果有种,所以(抽到两张卡片编号恰好是和).【考点】条形统计图扇形统计图用样本估计总体列表法与树状图法【解析】{x =2,y =5,y =3x−1y =x+3(2,5){x =2,y =5;(2,5)=2−4×+13–√3–√2=2−2+13–√3–√=1=2−4×+13–√3–√2=2−2+13–√3–√=112054(2)×100%=25%30120C 6000×25%=1500C 1500(3)12122P 12=16根据图中数据即可求解;先求出的占比,即可求解;列表即可求解.【解答】解:依题意可知有人,占,∴(人),∴占总人数的,占的角度;故答案为:;. 依题意可得:,∴选择学校形式的人数为:(人);答:选择学校形式的人数为人.列表如下:由列表可以看出,总共有种结果,每种结果出现的可能性相同,其中抽到两张卡片编号恰好是和的结果有种,所以(抽到两张卡片编号恰好是和).20.【答案】证明:连接,如图,∵是的切线∴=,∴=∵直径弦,∴=,即为的垂直平分线∴=,∴=,∵=,∴=∴==,∴,∴是的切线;∵=,=,∴=,∵=,∴为等边三角形,∴=,∴=∴==,∴===,在中,∵=,∴=,∴,∴=.(1)(2)C (3)(1)A 2420%=1202420%D 18120D =×=18120360∘54∘12054(2)×100%=25%30120C 6000×25%=1500C 1500(3)12122P 12=16OD CF ⊙O ∠OCF 90∘∠OCD+∠DCF 90∘AB ⊥CD CE ED OF CD CF DF ∠CDF ∠DCF OC OD ∠CDO ∠OCD∠CDO +∠CDB ∠OCD+∠DCF 90∘OD ⊥DF DF ⊙O ∠OCF 90∘∠BCF 30∘∠OCB 60∘OC OB △OCB ∠COB 60∘∠CFO 30∘FO 2OC 2OB FB OB OC 2Rt △OCE ∠COE 60∘OE =OC 121CE =OE =3–√3–√CD 2CE =23–√【考点】垂径定理圆周角定理切线的判定与性质【解析】(1)连接,如图,利用切线的性质得=,再利用垂径定理得到为的垂直平分线,则=,所以=,加上=,则=,然后根据切线的判定定理得到结论;(2)利用=得到=,则可判断为等边三角形,再证明===,然后在中计算出,从而得到的长.【解答】证明:连接,如图,∵是的切线∴=,∴=∵直径弦,∴=,即为的垂直平分线∴=,∴=,∵=,∴=∴==,∴,∴是的切线;∵=,=,∴=,∵=,∴为等边三角形,∴=,∴=∴==,∴===,在中,∵=,∴=,∴,∴=.21.【答案】解:把点代入,得,,把代入反比例函数,,反比例函数的表达式为;连接,由一次函数可知的坐标为,解得,或,,,OD ∠OCD+∠DCF 90∘OF CD CF DF ∠CDF ∠DCF ∠CDO ∠OCD ∠CDO +∠CDB 90∘∠BCF 30∘∠OCB 60∘△OCB FB OB OC 2Rt △OCE CE CD OD CF ⊙O ∠OCF 90∘∠OCD+∠DCF 90∘AB ⊥CD CE ED OF CD CF DF ∠CDF ∠DCF OC OD ∠CDO ∠OCD∠CDO +∠CDB ∠OCD+∠DCF 90∘OD ⊥DF DF ⊙O ∠OCF 90∘∠BCF 30∘∠OCB 60∘OC OB △OCB ∠COB 60∘∠CFO 30∘FO 2OC 2OB FB OB OC 2Rt △OCE ∠COE 60∘OE =OC 121CE =OE =3–√3–√CD 2CE =23–√(1)A(1,a)y=−x+3a =2∴A(1,2)A(1,2)y=k x ∴k=1×2=2∴y =2x (2)OA,OB y=−x+3C (3,0) y =,2x y =−x+3,{x =1,y =2,{x =2,y =1,∴B(2,1)∴=×3×2=3S △AOC 12=×3×1=S △BOC 12323−=AOB 33,,.【考点】反比例函数与一次函数的综合【解析】把把点代入=,求出点坐标,再代入到反比例函数,得解;利用面积比易求出.【解答】解:把点代入,得,,把代入反比例函数,,反比例函数的表达式为;连接,由一次函数可知的坐标为,解得,或,,,,,.22.【答案】解:设矩形场地的宽度为,则长为,依题意列方程:,解得,故场地的宽为,长为.不能.因为设场地的宽为,则长为,依题意列方程:,即,,方程无实数解,故场地的面积不能达到.【考点】222∴=3−=S △AOB 3232∴=1S △AOB S △BOC ∴=1AB BC A(1,a)y −x+3A y=k x =1AB BC (1)A(1,a)y=−x+3a =2∴A(1,2)A(1,2)y=k x ∴k=1×2=2∴y =2x (2)OA,OB y=−x+3C (3,0) y =,2x y =−x+3,{x =1,y =2,{x =2,y =1,∴B(2,1)∴=×3×2=3S △AOC 12=×3×1=S △BOC 1232∴=3−=S △AOB 3232∴=1S △AOB S △BOC ∴=1AB BC(1)xm (20−2x)m x(20−2x)=50x =520−2x =20−10=10(m)5m 10m (2)xm (20−2x)m x(20−2x)=60−10x+30=0x 2Δ=−4×1×30=−20<010260m 2一元二次方程的应用【解析】靠墙的一面不需要篱笆,矩形养鸡场只需要一个长,两个宽用篱笆围成.设宽为,长就是,用矩形面积公式列方程.【解答】解:设矩形场地的宽度为,则长为,依题意列方程:,解得,故场地的宽为,长为.不能.因为设场地的宽为,则长为,依题意列方程:,即,,方程无实数解,故场地的面积不能达到.23.【答案】由运动知,=,=,∴==,∵,∴四边形是平行四边形∴=,∴=,∴,∴当为时,,∵的面积为,∴=,∴=,∴或即:当运动到距原点位置时,使的面积为,此时点的坐标或.【考点】四边形综合题【解析】(1)由==,==,点与原点重合,可求点坐标;(2)根据运动特点,和平行四边形的性质即可得出=,建立方程即可求出时间,(3)根据三角形的面积公式求出即可.【解答】∵四边形是长方形,==,==,点与原点重合,∴点故答案为:;由运动知,=,=,∴==,∵,∴四边形是平行四边形∴=,∴=,xm (20−2x)m (1)xm (20−2x)m x(20−2x)=50x =520−2x =20−10=10(m)5m 10m (2)xm (20−2x)m x(20−2x)=60−10x+30=0x 2Δ=−4×1×30=−20<010260m 2(8,6)AP 3t CQ 4t OQ AD−CQ 8−4t PQ//BC AB//CDAPQO AP OQ 3t 8−4t t =87t 87PQ//BC △ADQ 9=×OQ ×AD =×OQ ×6S △ADQ 12129OQ 3Q(3,0)(−3,0)Q 3cm △ADQ 9Q (3,0)(−3,0)AB CD 8AD BC 6D B AP OQ t OQ ABC AB CD 8AD BC 6D B(8,6)(8,6)AP 3t CQ 4t OQ AD−CQ 8−4t PQ//BC AB//CDAPQO AP OQ 3t 8−4t =8∴,∴当为时,,∵的面积为,∴=,∴=,∴或即:当运动到距原点位置时,使的面积为,此时点的坐标或.24.【答案】解:∵抛物线与轴的一个交点为,∴.∴.∴.令,即.解得,.∴抛物线与轴的另一个交点的坐标为.由知.∵抛物线和抛物线的形状一致,∴.∴抛物线的解析式为或.【考点】二次函数综合题【解析】此题暂无解析【解答】解:∵抛物线与轴的一个交点为,∴.∴.∴.令,即.解得,.∴抛物线与轴的另一个交点的坐标为.由知.∵抛物线和抛物线的形状一致,∴.∴抛物线的解析式为或.t =87t 87PQ//BC △ADQ 9=×OQ ×AD =×OQ ×6S △ADQ 12129OQ 3Q(3,0)(−3,0)Q 3cm △ADQ 9Q (3,0)(−3,0)(1)y =a +4ax+t x 2x A(−1,0)a ×+4a ×(−1)+t =0(−1)2t =3a y =a +4ax+3a x 2y =0a +4ax+3a =0x 2=−1x 1=−3x 2x B (−3,0)(2)(1)y =a +4ax+3a x 2y =a +4ax+3a x 2y =x 2a =±1y =+4x+3x 2y =−−4x−3x 2(1)y =a +4ax+t x 2x A(−1,0)a ×+4a ×(−1)+t =0(−1)2t =3a y =a +4ax+3a x 2y =0a +4ax+3a =0x 2=−1x 1=−3x 2x B (−3,0)(2)(1)y =a +4ax+3a x 2y =a +4ax+3a x 2y =x 2a =±1y =+4x+3x 2y =−−4x−3x 2。

2022年东营市中考数学考试卷及答案解析

2022年东营市中考数学考试卷及答案解析

2022年东营市中考数学考试卷及答案解析第Ⅰ卷(选择题共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.-2的绝对值是()A.2B.12C.12-D.2-【答案】A 【解析】【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义进行求解即可.【详解】解:在数轴上,点-2到原点的距离是2,所以-2的绝对值是2,故选:A .2.下列运算结果正确的是()A.336325x x x += B.22(1)1x x +=+ C.842x x x ÷= D.2=【答案】D 【解析】【分析】根据合并同类项,完全平方公式,同底数幂除法和算术平方根的运算法则逐一进行判断即可.【详解】解:A.333325x x x +=,原计算错误,不合题意;B.22(1)21x x x +=++,原计算错误,不合题意;C.844x x x ÷=,原计算错误,不合题意;D.2=,原计算正确,符合题意;故选:D.【点睛】本题考查了合并同类项,完全平方公式,同底数幂除法和算术平方根,熟练掌握运算法则是解题的关键.∥,一个三角板的直角顶点在直线a上,两直角边均与直线b相交,3.如图,直线a b∠=︒,则2∠=()140A.40︒B.50︒C.60︒D.65︒【答案】B【解析】【分析】先根据平角的定义求出∠3的度数,再根据平行线的性质即可求出∠2的度数.【详解】解:由题意得∠ABC=90°,∵∠1=40°,∴∠3=180°-∠1-∠ABC=50°,∥,∵a b∴∠2=∠3=50°,故选B.【点睛】本题主要考查了几何图形中角度的计算,平行线的性质,三角板中角度的计算,熟知平行线的性质是解题的关键.4.植树节当天,七年级1班植树300棵,正好占这批树苗总数的35,七年级2班植树棵数是这批树苗总数的15,则七年级2班植树的棵数是()A.36 B.60C.100D.180【答案】C 【解析】【分析】设这批树苗一共有x 棵,根据七年级1班植树300棵,正好占这批树苗总数的35,列出方程求解即可.【详解】解:设这批树苗一共有x 棵,由题意得:33005x =,解得500x =,∴七年级2班植树的棵数是15001005⨯=棵,故选C .【点睛】本题主要考查了一元一次方程的应用,正确理解题意列出方程是解题的关键.5.一元二次方程2480x x +-=的解是()A.1222x x =+=-B.1222x x =+=-C.1222x x =-+=--D.1222x x =-+=--【答案】D 【解析】【分析】利用配方法解方程即可.【详解】解:∵2480x x +-=,∴248x x +=,∴24412x x ++=,∴()2212x +=,∴2x +=±,解得1222x x =-+=--故选D .【点睛】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.6.如图,任意将图中的某一白色方块涂黑后,能使所有黑色方块构成的图形是轴对称图形的概率是()A.23B.12C.13D.16【答案】A 【解析】【分析】根据轴对称图形的定义,结合概率计算公式求解即可.【详解】解:如图所示,由轴对称图形的定义可知当选取编号为1,3,5,6其中一个白色区域涂黑后,能使黑色方块构成的图形是轴对称图形,∴任意将图中的某一白色方块涂黑后,能使所有黑色方块构成的图形是轴对称图形的概率是4263=,故选A .【点睛】本题主要考查了轴对称图形的定义,简单的概率计算,熟知轴对称图形的定义是解题的关键.7.如图,点D 为ABC 边AB 上任一点,DE BC ∥交AC 于点E ,连接BE CD 、相交于点F ,则下列等式中不成立...的是()A.AD AEDB EC= B.DE DFBC FC= C.DE AEBC EC= D.EF AEBF AC=【答案】C 【解析】【分析】根据平行线分线段成比例定理即可判断A ,根据相似三角形的性质即可判断B 、C 、D .【详解】解:∵∥DE BC ,∴AD AEBD EC=,△DEF ∽△CBF ,△ADE ∽△ABC ,故A 不符合题意;∴DE DF EF CB CF BF==,DE AECB AC =,故B 不符合题意,C 符合题意;∴EF AEBF AC=,故D 不符合题意;故选C .【点睛】本题主要考查了相似三角形的性质与判定,平行线分线段成比例定理,熟知相似三角形的性质与判定,平行线分线段成比例定理是解题的关键.8.如图,一次函数11y k x b =+与反比例函数22k y x=的图象相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为1-,则不等式21k k x b x+<的解集是()A.10x -<<或2x >B.1x <-或02x <<C.1x <-或2x > D.12x -<<【答案】A 【解析】【分析】根据不等式21k k x b x+<的解集即为一次函数图象在反比例函数图象下方时自变量的取值范围进行求解即可.【详解】解:由题意得不等式21k k x b x+<的解集即为一次函数图象在反比例函数图象下方时自变量的取值范围,∴不等式21k k x b x+<的解集为10x -<<或2x >,故选A .【点睛】本题主要考查了一次函数与反比例函数综合,利用数形结合的思想求解是解题的关键.9.用一张半圆形铁皮,围成一个底面半径为4cm 的圆锥形工件的侧面(接缝忽略不计),则圆锥的母线长为()A.4cm B.8cmC.12cmD.16cm【答案】B 【解析】【分析】设圆锥的母线长为l ,根据圆锥的底面圆周长为半圆形铁皮的周长(不包括直径)列式求解即可.【详解】解:设圆锥的母线长为l ,由题意得:18024180lππ⨯⋅⨯=,∴8cm l =,故选B .【点睛】本题主要考查了求圆锥的母线长,熟知圆锥的底面圆周长为半圆形铁皮的周长(不包括直径)是解题的关键.10.如图,已知菱形ABCD 的边长为2,对角线AC BD 、相交于点O ,点M ,N 分别是边BC CD 、上的动点,60BAC MAN ∠=∠=︒,连接MN OM 、.以下四个结论正确的是()①AMN 是等边三角形;②MN 3MN 最小时18CMN ABCD S S =△菱形;④当OM BC ⊥时,2OA DN AB =⋅.A.①②③ B.①②④C.①③④D.①②③④【答案】D 【解析】【分析】①依据题意,利用菱形的性质及等边三角形的判定与性质,证出MAC DAN ∠=∠,然后证CAM DAN(ASA )△≌△,AM =AN ,即可证出.②当MN 最小值时,即AM 为最小值,当AM BC ⊥时,AM 值最小,利用勾股定理求出2222213AM AB BM -=-=MN 的值.③当MN 最小时,点M 、N 分别为BC 、CD 中点,利用三角形中位线定理得到AC MN ⊥,用勾股定理求出222231122CE CN EN ()=-=-=,1133224CMN S =⨯=△而菱形ABCD的面积为:2323=,即可得到答案.④当OM BC ⊥时,可证OCM BCO △∽△,利用相似三角形对应边成比例可得2OC CM BC =⋅,根据等量代换,最后得到答案.【详解】解:如图:在菱形ABCD 中,AB =BC =AD =CD ,AC BD ⊥,OA =OC ,∵60BAC MAN ∠=∠=︒,∴60ACB ADC ∠=∠=︒,ABC 与ADC 为等边三角形,又60MAC MAN CAN CAN ∠=∠-∠=︒-∠,60DAN DAC CAN CAN ∠=∠-∠=︒-∠,∴MAC DAN ∠=∠,在CAM V 与DAN 中CAM DAN AC AC ACM ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴CAM DAN(ASA )△≌△,∴AM =AN ,即AMN 为等边三角形,故①正确;∵AC BD ⊥,当MN 最小值时,即AM 为最小值,当AM BC ⊥时,AM 值最小,∵1212AB ,BM BC ===,∴AM ==即MN =,故②正确;当MN 最小时,点M 、N 分别为BC 、CD 中点,∴MN BD ∥,∴AC MN ⊥,在CMN △中,12CE ===,∴11224CMN S =⨯=△,而菱形ABCD的面积为:2=∴18⨯=,故③正确,当OM BC ⊥时,90BOC OMC OCM BCO∠=∠=︒⎧⎨∠=∠⎩∴OCM BCO △∽△∴OC CMBC OC=∴2OC CM BC =⋅∴2OA DN AB =⋅故④正确;故选:D .【点睛】此题考查了菱形的性质与面积,等边三角形的判定与性质,全等三角形的判定,勾股定理,三角形中位线定理等相关内容,熟练掌握菱形的性质是解题关键.第Ⅱ卷(非选择题共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共23分.只要求填写最后结果.11.2022年2月20日,北京冬奥会圆满落幕,赛事获得了数十亿次数字平台互动,在中国仅电视收视人数就超6亿.6亿用科学记数法表示为____________.【答案】8610⨯【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:6亿=8600000000610⨯=.故答案为:8610⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.因式分解:39x x -=______.【答案】(3)(3)x x x +-【解析】【分析】利用提公因式法和公式法即可求解.【详解】解:3229(3)(3)(3)x x x x x x x -=-=+-,故答案为:(3)(3)x x x +-.【点睛】本题考查了因式分解,熟练掌握提公因式法和平方差公式是解题的关键.13.为了落实“双减”政策,东营市某学校对初中学生的课外作业时长进行了问卷调查,15名同学的作业时长统计如下表,则这组数据的众数是____________分钟.作业时长(单位:分钟)5060708090人数(单位:人)14622【答案】70【解析】【分析】根据众数的定义,人数最多的即为这组数据的众数.【详解】解:由表可知:∵6>4>2>2>1,∴这组数据的众数是70分钟.故答案为:70.【点睛】本题考查了众数的定义,掌握众数的定义是本题关键.14.如图,在O 中,弦AC ∥半径,40OB BOC ∠=︒,则AOC ∠的度数为____________.【答案】100°##100度【解析】【分析】先根据平行线的性质求出∠OCA 的度数,再根据等边对等角求出∠OAC 的度数,即可利用三角形内角和定理求出∠AOC 的度数.【详解】解:∵AC OB ∥,∴∠OCA =∠BOC =40°,∵OA =OC ,∴∠OAC =∠OCA =40°,∴∠AOC =180°-∠OAC -∠OCA =100°,故答案为:100°.【点睛】本题主要考查了平行线的性质,圆的基本性质,三角形内角和定理,等腰三角形的性质,熟知相关知识是解题的关键.15.关于x 的一元二次方程2(1)210k x x --+=有两个不相等的实数根,则k 的取值范围是____________.【答案】2k <且1k ≠【解析】【分析】根据一元二次方程二次项系数不为0,以及根的判别式即可得出k 的取值范围.【详解】解:∵关于x 的一元二次方程2(1)210k x x --+=有两个不相等的实数根,∴0∆>且10k -≠,∴()24441840b ac k k ∆=-=--=->且1k ≠,∴2k <且1k ≠.故答案为:2k <且1k ≠.【点睛】本题考查了根的判别式,一元二次方程的概念,熟练掌握一元二次方程的概念以及根的判别式是本题的关键.16.如图,OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数1(0)y x x=>的图象上,则经过点A 的反比例函数表达式为____________.【答案】1y x=-【解析】【分析】如图所示,过点A 作AC ⊥x 轴于C ,过点B 作BD ⊥x 轴于D ,证明△ACO ≌△ODB 得到AC =OD ,OC =BD ,设点B 的坐标为(a ,b ),则点A 的坐标为(-b ,a ),再由点B 在反比例函数1y x =,推出1a b-=-,由此即可得到答案.【详解】解:如图所示,过点A 作AC ⊥x 轴于C ,过点B 作BD ⊥x 轴于D ,则∠ACO =∠ODB =90°,由题意得OA =OB ,∠AOB =90°,∴∠CAO +∠COA =∠AOC +∠BOD =90°,∴∠CAO =∠DOB ,∴△ACO ≌△ODB (AAS ),∴AC =OD ,OC =BD ,设点B 的坐标为(a ,b ),则AC =OD =a ,OC =BD =b ,∴点A 的坐标为(-b ,a ),∵点B 在反比例函数1y x =,∴1ab =,∴1ab -=-,∴1a b-=-,∴经过点A 的反比例函数表达式为1y x =-,故答案为:1y x=-.【点睛】本题主要考查了反比例函数与几何综合,全等三角形的性质与判定,熟知相关知识是解题的关键.17.如图,在ABC 中,点F 、G 在BC 上,点E 、H 分别在AB 、AC 上,四边形EFGH 是矩形,2,EH EF AD =是ABC 的高.8,6BC AD ==,那么EH 的长为____________.【答案】245##4.8【解析】【分析】通过四边形EFGH 为矩形推出EH BC ∥,因此△AEH 与△ABC 两个三角形相似,将AM 视为△AEH 的高,可得出AM EH AD BC=,再将数据代入即可得出答案.【详解】∵四边形EFGH 是矩形,∴EH BC ∥,∴AEF ABC ∽,∵AM 和AD 分别是△AEH 和△ABC 的高,∴,AM EH DM EF AD BC==,∴6AM AD DM AD EF EF =-=-=-,∵=2EH EF ,代入可得:6268EF EF -=,解得12=5EF ,∴1224=255EH ⨯=,故答案为:245.【点睛】本题考查了相似三角形的判定和性质及矩形的性质,灵活运用相似三角形的性质是本题的关键.18.如图,11122233,,,AB A A B A A B A ⋅⋅⋅△△△是等边三角形,直线323y x =+经过它们的顶点123,,,,A A A A ⋅⋅⋅,点123,,,B B B ⋅⋅⋅在x 轴上,则点2022A 的横坐标是____________.【答案】(202322-【解析】【分析】如图,设直线323y x =+与x 轴交于点C ,求出点A 、C 的坐标,可得OA =2,OC =,然后解直角三角形求出∠ACO =30°,可得1190CB A ∠=︒,130CB A =∠︒,然后求出12122CB B O ===13222CB CB ===,32422CB CB ===…,进而可得202320222CB =,再求出2022OB 即可.【详解】解:如图,设直线23y x =+与x 轴交于点C ,在23y x =+中,当x =0时,y =2;当y =0时,即3203x +=,解得:x =-,∴A (0,2),C (-,0),∴OA =2,OC =∴tan ∠ACO =33OA OC ==,∴∠ACO =30°,∵11AB A △是等边三角形,∴111160AA B AB A ∠=∠=︒,∴1190CB A ∠=︒,∴130CB A =∠︒,∴AC =1AB ,∵AO ⊥1CB ,∴1O O C B ==∴12122CB B O ===同理可得:13222CB CB ===,32422CB CB ===…,∴202320222CB =,∴(202320232022222OB =-=-,∴点2022A 的横坐标是(202322-故答案为:(202322-【点睛】本题考查了一次函数的图象和性质,等边三角形的性质,解直角三角形,等腰三角形的判定和性质等知识,通过解直角三角形求出∠ACO =30°是解题的关键.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.计算及先化简,再求值:(1)()20220(32)(32)483(3)2sin30+-+--+-︒(2)221122y x y x y x xy y ⎛⎫-÷ ⎪-+++⎝⎭,其中3,2x y ==.【答案】(1)3(2)+-x y x y,5【解析】【分析】(1)先根据特殊角的三角函数值计算,再根据二次根式的混合运算的法则进行计算即可.(2)根据分式的加法和除法可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【小问1详解】原式=343311-++=14-+=3【小问2详解】原式=()()()22x y x y x y x y x y y ++-++- =()()()222x y y x y x y y++- =+-x y x y当x =3,y =2时,原式=+-x y x y=5【点睛】此题考查了二次根式和三角函数的化简,以及分式的化简求值,熟练掌握运算法则是解题的关键.20.中国共产党的助手和后备军——中国共青团,担负着为中国特色社会主义事业培养合格建设者和可靠接班人的根本任务.成立一百周年之际,各中学持续开展了A :青年大学习;B :背年学党史;C :中国梦宣传教育;D :社会主义核心价值观培育践行等一系列活动,学生可以任选一项参加.为了解参与情况,进行了一次抽样调查,根据收集的数据绘制了两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在这次调查中,一共抽取了____________名学生;(2)补全条形统计图;(3)若该校共有学生1280名,请估计参加B 项活动的学生数;(4)小杰和小慧参加了上述活动,请用列表或画树状图的方法,求他们参加同一项活动的概率.【答案】(1)200;(2)见解析;(3)估计参加B项活动的学生数有512名;(4)画树状图见解析,他们参加同一项活动的概率为1 4.【解析】【分析】(1)根据D项活动所占圆心角度数和D项活动的人数计算即可;(2)根据总人数求出参加C项活动的人数,进而可补全条形统计图;(3)用该校总学生人数乘以抽查的学生中参加B项活动所占的比例即可;(4)画出树状图可知,共有16种等可能的结果,其中他们参加同一项活动的情况数有4种,然后根据概率公式计算即可.【小问1详解】解:7240200360︒÷=︒(名),即在这次调查中,一共抽取了200名学生,故答案为:200;【小问2详解】参加C项活动的人数为:200-20-80-40=60(名),补全条形统计图如图:【小问3详解】801280512200⨯=(名),答:估计参加B 项活动的学生数有512名;【小问4详解】画树状图如图:由树状图可知,共有16种等可能的结果,其中他们参加同一项活动的情况数有4种,所以他们参加同一项活动的概率为41164=.【点睛】本题考查了条形统计图,扇形统计图,用样本估计总体,列表法或树状图法求概率,能够从不同的统计图中获取有用信息是解题的关键.21.如图,AB 为O 的直径,点C 为O 上一点,BD CE ⊥于点D ,BC 平分ABD ∠.(1)求证:直线CE 是O 的切线;(2)若30,ABC O ∠=︒ 的半径为2,求图中阴影部分的面积.【答案】(1)见解析(243π-【解析】【分析】(1)连接OC ,根据OB =OC ,以及BC 平分ABD ∠推导出OCB DCB ∠=∠,即可得出BD OC ∥,从而推出OC DE ⊥,即证明得出结论;(2)过点O 作OF CB ⊥于F ,利用OBC OBC S S S =-V 阴影扇形即可得出答案.【小问1详解】证明:连接OC ,如图,∵OB OC =,∴OBC OCB ∠=∠,∵BC 平分ABD ∠,∴OBC DCB ∠=∠,∴OCB DCB ∠=∠,∴BD OC ∥,∵BD CE ⊥于点D ,∴OC DE ⊥,∴直线CE 是O 的切线;【小问2详解】过点O 作OF CB ⊥于F ,如图,∵30ABC ∠=︒,2OB =,∴1OF =,cos30BF OB =⋅︒=,∴2BC BF ==,∴11122OBC S BC OF =⋅=⨯=△∵903060BOF ∠=︒-︒=︒,∴2120BOC BOF ∠=∠=︒,∴2120423603OBC S ππ︒=⨯⨯=︒扇形,∴43OBC OBC S S S π=-=△阴影扇形.【点睛】本题考查了圆的综合问题,包括垂径定理,圆的切线,扇形的面积公式等,熟练掌握以上性质并正确作出辅助线是本题的关键.22.胜利黄河大桥犹如一架巨大的竖琴,凌驾于滔滔黄河之上,使黄河南北“天堑变通途”.已知主塔AB 垂直于桥面BC 于点B ,其中两条斜拉索AD AC 、与桥面BC 的夹角分别为60︒和45︒,两固定点D 、C 之间的距离约为33m ,求主塔AB 的高度(结果保留整数,参考数据: 1.73≈≈)【答案】主塔AB 的高度约为78m .【解析】【分析】在Rt △ABD 中,利用正切的定义求出=AB ,然后根据∠C =45°得出AB=BC ,列方程求出BD ,即可解决问题.【详解】解:∵AB ⊥BC ,∴∠ABC =90°,在Rt △ABD 中,tan 60AB BD =⋅︒=,在Rt △ABC 中,∠C =45°,∴AB =BC ,33BD =+,∴)3312BD ⨯==m ,∴AB =BC =)3313333782BD ⨯++=+≈m ,答:主塔AB 的高度约为78m .【点睛】本题考查了解直角三角形的应用,熟练掌握正切的定义是解题的关键.23.为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?【答案】(1)甲种水果的进价是4元/千克,乙种水果的进价是5元/千克;(2)水果店购进甲种水果100千克,乙种水果50千克时获得最大利润,最大利润是350元.【解析】【分析】(1)设乙种水果的进价是x 元/千克,根据“甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克”列出分式方程,解方程检验后可得出答案;(2)设水果店购进甲种水果a 千克,获得的利润为y 元,则购进乙种水果(150-a )千克,根据利润=(售价-进价)×数量列出y 关于a 的一次函数解析式,求出a 的取值范围,然后利用一次函数的性质解答.【小问1详解】解:设乙种水果的进价是x 元/千克,由题意得:()1000120010120%x x=+-,解得:5x =,经检验,5x =是分式方程的解且符合题意,则()120%0.854x -=⨯=,答:甲种水果的进价是4元/千克,乙种水果的进价是5元/千克;【小问2详解】解:设水果店购进甲种水果a 千克,获得的利润为y 元,则购进乙种水果(150-a )千克,由题意得:()()()6485150450y a a a =-+--=-+,∵-1<0,∴y 随a 的增大而减小,∵甲种水果的重量不低于乙种水果重量的2倍,∴()2150a a -≥,解得:100a ≥,∴当100a =时,y 取最大值,此时100450350y =-+=,15050a -=,答:水果店购进甲种水果100千克,乙种水果50千克时获得最大利润,最大利润是350元.【点睛】本题考查了分式方程的应用,一次函数与一元一次不等式的应用,正确理解题意,找出合适的等量关系列出方程和解析式是解题的关键.24.如图,抛物线23(0)y ax bx a =+-≠与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C .(1)求抛物线的表达式;(2)在对称轴上找一点Q ,使ACQ 的周长最小,求点Q 的坐标;(3)点P 是抛物线对称轴上的一点,点M 是对称轴左侧抛物线上的一点,当PMB △是以PB 为腰的等腰直角三角形时,请直接写出所有点M 的坐标.【答案】(1)223y x x =--(2)(1,-2)(3)(-1,0)或(1-2)或(12)【解析】【分析】(1)利用待定系数法求解即可;(2)先求出点C 的坐标和抛物线的对称轴,如图所示,作点C 关于直线1x =的对称点E ,连接AE ,EQ ,则点E 的坐标为(2,-3),根据轴对称最短路径可知AE 与抛物线对称轴的交点即为点Q ;(3)分两种情况当∠BPM =90°和当∠PBM =90°两种情况讨论求解即可.【小问1详解】解:∵抛物线23(0)y ax bx a =+-≠与x 轴交于点(1,0)A -,点(3,0)B ,∴309330a b a b --=⎧⎨+-=⎩,∴12a b =⎧⎨=-⎩,∴抛物线解析式为223y x x =--;【小问2详解】解:∵抛物线解析式为()222314y x x x =--=--,与y 轴交于点C ,∴抛物线对称轴为直线1x =,点C 的坐标为(0,-3)如图所示,作点C 关于直线1x =的对称点E ,连接AE ,EQ ,则点E 的坐标为(2,-3),由轴对称的性质可知CQ =EQ ,∴△ACQ 的周长=AC +AQ +CQ ,要使△ACQ 的周长最小,则AQ +CQ 最小,即AQ +QE 最小,∴当A 、Q 、E 三点共线时,AQ +QE 最小,设直线AE 的解析式为11y k x b =+,∴1111023k b k b -+=⎧⎨+=-⎩,∴1111k b =-⎧⎨=-⎩,∴直线AE 的解析式为1y x =--,当1x =时,1112y x =--=--=-,∴点Q 的坐标为(1,-2);【小问3详解】解:如图1所示,当点P 在x 轴上方,∠BPM =90°时,过点P 作EF x ∥轴,过点M 作MF ⊥EF 于F ,过点B 作BE ⊥EF 于E ,∵△PBM 是以PB 为腰的等腰直角三角形,∴PA =PB ,∠MFP =∠PEB =∠BPM =90°,∴∠FMP +∠FPM =∠FPM +∠EPB =90°,∴∠FMP =∠EPB ,∴△FMP ≌△EPB (AAS ),∴PE =MF ,BE =PF ,设点P 的坐标为(1,m ),∴2BE m PE ==,,∴2MF =,PF m =,∴点M 的坐标为(1-m ,m -2),∵点M 在抛物线223y x x =--上,∴()()212132m m m ----=-,∴2122232m m m m -+-+-=-,∴220m m --=,解得2m =或1m =-(舍去),∴点M 的坐标为(-1,0);同理当当点P 在x 轴下方,∠BPM =90°时可以求得点M 的坐标为(-1,0);如图2所示,当点P 在x 轴上方,∠PBM =90°时,过点B 作EF y ∥轴,过点P 作PE ⊥EF 于E ,过点M 作MF ⊥EF 于F ,设点P 的坐标为(1,m ),同理可证△PEB ≌△BFM (AAS ),∴2BF PE MF BE m ====,,∴点M 的坐标为(3-m ,-2),∵点M 在抛物线223y x x =--上,∴()()232332m m ----=-,∴2966232m m m -+-+-=-,∴2420m m -+=,解得2m =+2m =-(舍去),∴点M 的坐标为(1-2);如图3所示,当点P 在x 轴下方,∠PBM =90°时,同理可以求得点M 的坐标为(1,2);综上所述,当△PMB 是以PB 为腰的等腰直角三角形时,点M 的坐标为(-1,0)或(1,-2)或(1,2).【点睛】本题主要考查了待定系数法求二次函数解析式,二次函数综合,一次函数与几何综合,全等三角形的性质与判定等等,熟知二次函数的相关知识是解题的关键.25.ABC 和ADF 均为等边三角形,点E 、D 分别从点A ,B 同时出发,以相同的速度沿AB BC 、运动,运动到点B 、C 停止.(1)如图1,当点E 、D 分别与点A 、B 重合时,请判断:线段CD EF 、的数量关系是____________,位置关系是____________;(2)如图2,当点E 、D 不与点A ,B 重合时,(1)中的结论是否依然成立?若成立,请给予证明;若不成立,请说明理由;(3)当点D 运动到什么位置时,四边形CEFD 的面积是ABC 面积的一半,请直接写出答案;此时,四边形BDEF 是哪种特殊四边形?请在备用图中画出图形并给予证明.【答案】(1)CD =EF ,CD ∥EF(2)CD =EF ,CD ∥EF ,成立,理由见解析(3)点D 运动到BC 的中点时,BDEF 是菱形,证明见解析【解析】【分析】(1)根据ABC 和ADF 均为等边三角形,得到AF =AD ,AB =BC ,∠FAD =∠ABC =60°,根据E 、D 分别与点A 、B 重合,得到AB =AD ,EF =AF ,CD =BC ,∠FAD =∠FAB ,推出CD =EF ,CD ∥EF ;(2)连接BF ,根据∠FAD =∠BAC =60°,推出∠FAB =∠DAC ,根据AF =AD ,AB =AC ,推出△AFB ≌△ADC ,得到∠ABF =∠ACD =60°,BF =CD ,根据AE =BD ,推出BE =CD ,得到BF =BE ,推出△BFE 是等边三角形,得到BF =EF ,∠FEB =60°,推出CD =EF ,CD ∥EF ;(3)过点E 作EG ⊥BC 于点G ,设△ABC 的边长为a ,AD =h ,根据AB =BC ,BD =CD =12BC =12a ,BD =AE ,推出AE =BE =12AB ,根据AB =AC ,推出AD ⊥BC ,得到EG ∥AD ,推出△EBG ∽△ABD ,推出12EG BE AD AB ==,得到12EG AD ==12h ,根据CD =EF ,CD ∥EF ,推出四边形CEFD 是平行四边形,推出1111122222CEFD ABC S CD EG a h ah =⋅=⋅=⋅=V ,根据EF =BD ,EF ∥BD ,推出四边形BDEF 是平行四边形,根据BF =EF ,推出BDEF 是菱形.【小问1详解】∵ABC 和ADF 均为等边三角形,∴AF =AD ,AB =BC ,∠FAD =∠ABC =60°,当点E 、D 分别与点A 、B 重合时,AB =AD ,EF =AF ,CD =BC ,∠FAD =∠FAB ,∴CD =EF ,CD ∥EF ;故答案为:CD =EF ,CD ∥EF ;【小问2详解】CD =EF ,CD ∥EF ,成立.证明:连接BF ,∵∠FAD =∠BAC =60°,∴∠FAD-∠BAD=∠BAC-∠BAD,即∠FAB=∠DAC,∵AF=AD,AB=AC,∴△AFB≌△ADC(SAS),∴∠ABF=∠ACD=60°,BF=CD,∵AE=BD,∴BE=CD,∴BF=BE,∴△BFE是等边三角形,∴BF=EF,∠FEB=60°,∴CD=EF,BC∥EF,即CD∥EF,∴CD=EF,CD∥EF;【小问3详解】如图,当点D运动到BC的中点时,四边形CEFD的面积是ABC面积的一半,此时,四边形BDEF是菱形.证明:过点E作EG⊥BC于点G,设△ABC的边长为a,AD=h,∵AB=BC,BD=CD=12BC=12a,BD=AE,∴AE=BE=12 AB,∵AB=AC,∴AD⊥BC,∴EG∥AD,∴△EBG∽△ABD,∴12 EG BEAD AB==,∴12EG AD==12h,由(2)知,CD=EF,CD∥EF,∴四边形CEFD是平行四边形,∴1111122222ABC CEFDS CD EG a h ah S=⋅=⋅=⋅=四边形,此时,EF=BD,EF∥BD,∴四边形BDEF是平行四边形,∵BF=EF,∴BDEF是菱形.【点睛】本题主要考查了等边三角形判定与性质,全等三角形的判定与性质,平行四边形的判定与性质,相似三角形的判定与性质,菱形的判定,解决问题的关键是熟练掌握等边三角形的判定和性质,全等三角形的判定和性质,平行四边形判定和性质,相似三角形的判定和性质,菱形的判定.。

2023年山东省东营市中考数学真题试卷(解析版)

2023年山东省东营市中考数学真题试卷(解析版)

2023年山东省东营市中考数学真题试卷及答案(总分120分,考试时间120分钟)第Ⅰ卷(选择题共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1. 相反数是()A. B. C. D.【答案】B【解析】根据只有符号不同的两个数互为相反数进行解答即可得.解:的相反数是,故选:B.【点拨】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2. 下列运算结果正确的是()A. B.C. D.【答案】D【解析】根据同底数幂的乘法,合并同类项,积的乘方、幂的乘方,平方差公式,逐项分析判断即可求解.解:A. ,故该选项不正确,不符合题意;B. ,故该选项不正确,不符合题意;C. ,故该选项不正确,不符合题意;D. ,故该选项正确,符合题意;故选:D.【点拨】本题考查了同底数幂的乘法,合并同类项,积的乘方、幂的乘方,平方差公式,熟练掌握以上运算法则以及乘法公式是解题的关键.3. 如图,,点在线段上(不与点,重合),连接,若,,则()A. B. C. D.【答案】B【解析】根据三角形的外角的性质求得,根据平行线的性质即可求解.解:∵,,∴,∵,∴,故选:B.【点拨】本题考查了三角形的外角的性质,平行线的性质,熟练掌握以上知识是解题的关键.4. 剪纸是中国最古老的民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.小文购买了以“剪纸图案”为主题的5张书签,他想送给好朋友小乐一张.小文将书签背面朝上(背面完全相同),让小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形的概率是()A. B. C. D.【答案】C【解析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断,然后根据概率公式即可求解.解:共有5个书签图案,既是轴对称图形又是中心对称图形的是第2张与第4张书签图片,共2张,∴小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形的概率是,故选:C.【点拨】本题考查了轴对称图形和中心对称图形的识别,概率公式求概率,熟练掌握以上知识是解题的关键.5. 为扎实推进“五育”并举工作,加强劳动教育,东营市某中学针对七年级学生开设了“跟我学面点”烹饪课程,课程开设后学校花费6000元购进第一批面粉,用完后学校又花费9600元购进了第二批面粉,第二批面粉的采购量是第一批采购量的1.5倍,但每千克面粉价格提高了0.4元.设第一批面粉采购量为x千克,依题意所列方程正确的是()A. B. C. D.【答案】A【解析】表示出第二批面粉的采购量,根据“每千克面粉价格提高了0.4元”这一等量关系即可列方程.设第一批面粉采购量为x千克,则设第二批面粉采购量为千克,根据题意,得故选:A【点拨】本题考查列方程解决实际问题,找出题中的等量关系列出方程是解题的关键.6. 如果圆锥侧面展开图的面积是,母线长是,则这个圆锥的底面半径是()A. 3B. 4C. 5D. 6【答案】A【解析】根据圆锥侧面积公式,进行计算即可求解.解:设这个圆锥的底面半径是,依题意,∴故选:A.【点拨】本题考查了求圆锥底面半径,熟练掌握圆锥侧面积公式是解题的关键.7. 如图,为等边三角形,点,分别在边,上,,若,,则的长为()A. B. C. D.【答案】C【解析】证明,根据题意得出,进而即可求解.解:∵为等边三角形,∴,∵,,∴,∴∴∵,∴,∴∵∴,故选:C.【点拨】本题考查了相似三角形的性质与判定,等边三角形的性质,熟练掌握相似三角形的性质与判定是解题的关键.8. 如图,在平面直角坐标系中,菱形的边长为,点在轴的正半轴上,且,将菱形绕原点逆时针方向旋转,得到四边形点与点重合,则点的坐标是( )A. B. C. D.【答案】B【解析】延长交轴于点,根据旋转的性质以及已知条件得出,进而求得的长,即可求解.解:如图所示,延长交轴于点,∵四边形是菱形,点在轴的正半轴上,平分,,∴,∵将菱形绕原点逆时针方向旋转,∴,则,∴∴,在中,∴,∴,∴,故选:B.【点拨】本题考查了旋转的性质,菱形的性质,勾股定理,含30度角的直角三角形的性质,坐标与图形,熟练掌握菱形的性质是解题的关键.9. 如图,抛物线与x轴交于点A,B,与y轴交于点C,对称轴为直线,若点A的坐标为,则下列结论正确的是()A.B.C. 是关于x的一元二次方程的一个根D. 点,在抛物线上,当时【答案】C【解析】根据对称轴为得到,即可判断A选项;根据当时,,即可判断B选项;根据当时,即可判断C选项;根据当时,y随着x的增大而增大即可判断D选项.解:A.抛物线的对称轴为直线,则,则,即,故选项错误,不符合题意;B.抛物线的对称轴为直线,点A的坐标为,当时,,故选项错误,不符合题意;C.抛物线的对称轴为直线,若点A的坐标为,可得点,当时,,即是关于x的一元二次方程的一个根,故选项正确,符合题意;D.∵抛物线的对称轴为直线,开口向上,∴当时,y随着x的增大而增大,∴点,在抛物线上,当时,故选项错误,不符合题意;故选:C.【点拨】此题考查二次函数的图象和性质,数形结合是解题的关键.10. 如图,正方形的边长为4,点,分别在边,上,且,平分,连接,分别交,于点,,是线段上的一个动点,过点作垂足为,连接,有下列四个结论:①垂直平分;②的最小值为;③;④.其中正确的是()A. ①②B. ②③④C. ①③④D. ①③【答案】D【解析】根据正方形的性质和三角形全等即可证明,通过等量转化即可求证,利用角平分线的性质和公共边即可证明,从而推出①的结论;利用①中的部分结果可证明推出,通过等量代换可推出③的结论;利用①中的部分结果和勾股定理推出和长度,最后通过面积法即可求证④的结论不对;结合①中的结论和③的结论可求出的最小值,从而证明②不对.解:为正方形,,,,,.,,,,.平分,.,.,,垂直平分,故①正确.由①可知,,,,,,由①可知,.故③正确.为正方形,且边长为4,,在中,.由①可知,,,.由图可知,和等高,设高为,,,,.故④不正确.由①可知,,,关于线段的对称点为,过点作,交于,交于,最小即为,如图所示,由④可知的高即为图中的,.故②不正确.综上所述,正确的是①③.故选:D.【点拨】本题考查的是正方形的综合题,涉及到三角形相似,最短路径,三角形全等,三角形面积法,解题的关键在于是否能正确找出最短路径以及运用相关知识点.第Ⅱ卷(非选择题 共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11. 我国古代数学家祖冲之推算出的近似值为,它与的误差小于0.0000003,将0.0000003用科学记数法可以表示为______.【答案】【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000003用科学记数法表示为.故答案为:.【点拨】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12. 因式分解:___________.【答案】【解析】根据因式分解中提公因式法和完全平方公式即可求出答案.解:故答案为:.【点拨】本题考查了因式分解,涉及到提公因式法和完全平方公式,解题的关键需要掌握完全平方公式.13. 如图,一束光线从点出发,经过y轴上的点反射后经过点,则的值是___________.【答案】-1【解析】如图,过点A作,点C作,垂足分别为G,F,可证,得比例线段,由,得线段长度,,代入比例线段求解.如图,过点A作,点C作,垂足分别为G,F由题意知,,∴∴∵,∴,∴∴∴故答案为:【点拨】本题考查相似三角形的判定和性质,直角坐标系内点坐标的含义,添加辅助线构建相似三角形是解题的关键.14. 为备战东营市第十二届运动会,某县区对甲、乙、丙、丁四名射击运动员进行射击测试,他们射击测试成绩的平均数(单位:环)及方差(单位:环2)如下表所示:甲乙丙丁根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择___________.【答案】丁【解析】结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.解:选择一名成绩好的运动员,从平均数最大的运动员中选取,由表可知,甲,丙,丁的平均值最大,都是,从甲,丙,丁中选取,甲的方差是,丙的方差是,丁的方差是,发挥最稳定的运动员是丁,从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择丁.故答案为:丁.【点拨】本题重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15. 一艘船由A港沿北偏东60°方向航行30km至B港,然后再沿北偏西30°方向航行40km至C港,则A,C两港之间的距离为___________km.【答案】50【解析】根据题意画出图形,易证是直角三角形,利用勾股定理即可求解.如图,根据题意,得,,,,∵∴∴∴在中,即A,C两港之间的距离为50 km.故答案为:50【点拨】本题考查方位角,勾股定理,根据题意画出图形,证明是直角三角形是解题的关键.16. “圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”.用现在的几何语言表达即:如图,为的直径,弦,垂足为点,寸,寸,则直径的长度是________寸.【答案】26【解析】连接构成直角三角形,先根据垂径定理,由垂直得到点为的中点,由可求出的长,再设出圆的半径为,表示出,根据勾股定理建立关于的方程,求解方程可得的值,即为圆的直径.解:连接,,且寸,寸,设圆的半径的长为,则,,,在直角三角形中,根据勾股定理得:,化简得:,即,(寸).故答案为:26.【点拨】本题考查了垂径定理和勾股定理,解题的关键是正确作出辅助线构造直角三角形.17. 如图,在中,以点为圆心,任意长为半径作弧,分别交,于点,;分别以点,为圆心,大于的长为半径作弧,两弧交于点;作射线交于点,若,,的面积为,则的面积为___________.【答案】【解析】过点作交的延长线于点,证明,得出,根据,即可求解.解:如图所示,过点作交的延长线于点,∴由作图可得是的角平分线,∴∵∴∵∴∴∴,∵的面积为,∴的面积为,故答案为:.【点拨】本题考查了相似三角形的性质与判定,作角平分线,熟练掌握基本作图以及相似三角形的性质与判定是解题的关键.18. 如图,在平面直角坐标系中,直线l:与x轴交于点,以为边作正方形点在y轴上,延长交直线l于点,以为边作正方形,点在y轴上,以同样的方式依次作正方形,…,正方形,则点的横坐标是___________.【答案】【解析】分别求出点点的横坐标是,点的横坐标是,点的横坐标是,找到规律,得到答案见即可.解:当,,解得,∴点,∵是正方形,∴,∴点,∴点的横坐标是,当时,,解得,∴点,∵是正方形,∴,∴点,即点的横坐标是,当时,,解得,∴点,∵是正方形,∴,∴点的横坐标是,……以此类推,则点的横坐标是故答案为:【点拨】此题是点的坐标规律题,考查了二次函数的图象和性质、正方形的性质等知识,数形结合是是解题的关键.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (1)计算:;(2)先化简,再求值:,化简后,从的范围内选择一个你喜欢的整数作为x的值代入求值.【答案】(1)1;(2),当时,原式=.【解析】(1)根据特殊角的三角函数值,零指数幂,化简绝对值,负整数指数幂,二次根式的性质,分别计算即可求解;(2)先根据分式的加减计算括号内的,同时将除法转化为乘法,再根据分式的性质化简,最后将字母的值代入求解.解:(1)原式;(2)原式;由题意可知:,,,∴当时,原式.【点拨】本题考查了实数的混合运算,分式化简求值,解题关键是熟练运用分式运算法则,掌握特殊角的三角函数值,零指数幂,化简绝对值,负整数指数幂,二次根式的性质进行求解.20. 随着新课程标准的颁布,为落实立德树人根本任务,东营市各学校组织了丰富多彩的研学活动,得到家长、社会的一致好评.某中学为进一步提高研学质量,着力培养学生的核心素养,选取了A.“青少年科技馆”,B.“黄河入海口湿地公园”,C.“孙子文化园”,D.“白鹭湖营地”四个研学基地进行研学.为了解学生对以上研学基地的喜欢情况,随机抽取部分学生进行调查统计(每名学生只能选择一个研学基地),并将调查结果绘制成了两幅不完整的统计图(如图所示).请根据统计图中的信息解答下列问题:(1)在本次调查中,一共抽取了____名学生,在扇形统计图中A所对应圆心角的度数为____;(2)将上面的条形统计图补充完整;(3)若该校共有480名学生,请你估计选择研学基地C的学生人数;(4)学校想从选择研学基地D的学生中选取两名学生了解他们对研学活动的看法,已知选择研学基地D 的学生中恰有两名女生,请用列表法或画树状图的方法求出所选2人都是男生的概率.【答案】(1)24,(2)见解析;(3)120名;(4).【解析】(1)用选择研学基地B的人数除以其所占百分比,可得本次被调查的学生人数;用A的学生人数除以本次被调查的学生人数再乘以可得选择研学基地A所对应的圆心角的度数.(2)求出选择研学基地C.D的学生人数,补全条形统计图即可.(3)用选择研学基地C所占百分比乘以480即可.(4)画树状图得出所有等可能的结果数和所选的两人恰好都是男生的结果数,再利用概率公式可得出答案.(1)解:样本容量为(名),即一共抽取了24名学生;A所对应圆心角的度数为;故答案为:24,;(2)解:选择研学基地C的学生人数(名),选择研学基地D的学生人数(名),补全图形如图所示:;(3)解:(名),答:该校选择研学基地C的学生人数是120名.(4)解:选择研学基地D的学生有2名男生和2名女生,画树状图如下:共有12种等可能的结果,其中所选2人都是男生的结果有2种,∴P(所选2人都是男生).【点拨】本题考查列表法与树状图法、条形统计图、扇形统计图,能够读懂条形统计图和扇形统计图,掌握列表法与树状图法以及概率公式是解答本题的关键.21. 如图,在中,,以为直径的交于点D,,垂足为E.(1)求证:是的切线;(2)若,,求的长.【答案】(1)见解析;(2).【解析】(1)如图:,然后根据等边对等角可得、即,再根据可得,进而得到即可证明结论;(2)如图:连接,有圆周角定理可得,再解直角三角形可得,进而得到,然后说明,最后根据弧长公式即可解答.(1)证明:如图:连接∵,∴,∵,∴,∴,∴,∴。

2023年山东省东营市中考数学真题

2023年山东省东营市中考数学真题

二○二三年东营市初中学业水平考试数学试题(总分120分,考试时间120分钟) 第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1. 2-的相反数是( ) A. 2-B. 2C. 12-D.122. 下列运算结果正确的是( ) A. 339x x x ⋅= B. 336235x x x +=C. ()32626x x =D. ()()2232349x x x +-=-3. 如图,A B C D ∥,点E 在线段B C 上(不与点B ,C 重合),连接D E ,若40D ∠=︒,60B E D ∠=︒,则B ∠=( )A 10︒B. 20︒C. 40︒D. 60︒4. 剪纸是中国最古老的民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.小文购买了以“剪纸图案”为主题的5张书签,他想送给好朋友小乐一张.小文将书签背面朝上(背面完全相同),让小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形的概率是( )A. 45B.35C.25D.155. 为扎实推进“五育”并举工作,加强劳动教育,东营市某中学针对七年级学生开设了“跟我学面点”烹饪课程,课程开设后学校花费6000元购进第一批面粉,用完后学校又花费9600元购进了第二批面粉,第.二批面粉的采购量是第一批采购量的1.5倍,但每千克面粉价格提高了0.4元.设第一批面粉采购量为x 千克,依题意所列方程正确的是( ) A.960060000.41.5xx-=B.960060000.41.5xx-= C.600096000.41.5xx-= D.600096000.41.5xx-=6. 如果圆锥侧面展开图的面积是15π,母线长是5,则这个圆锥的底面半径是( ) A. 3B. 4C. 5D. 67. 如图,A B C 为等边三角形,点D ,E 分别在边B C ,A B 上,60A D E ∠=︒,若4B D D C =,2.4D E =,则A D 的长为( )A. 1.8B. 2.4C. 3D. 3.28. 如图,在平面直角坐标系中,菱形O A B C 的边长为B 在x 轴的正半轴上,且60A O C ∠=︒,将菱形O A B C 绕原点O 逆时针方向旋转60︒,得到四边形O A B C '''(点A '与点C 重合),则点B '的坐标是( )A. (B. (C. (D. (9. 如图,抛物线()20y a x b x c a =++≠与x 轴交于点A ,B ,与y 轴交于点C ,对称轴为直线=1x -,若点A 的坐标为()4,0-,则下列结论正确的是( )A. 20a b +=B. 420a b c -+>C.2x =是关于x 的一元二次方程()200a x b x c a ++=≠的一个根D. 点()11,x y ,()22,x y 在抛物线上,当121x x >>-时120y y << 10. 如图,正方形A B C D边长为4,点E ,F 分别在边D C ,B C 上,且B F C E =,A E 平分C AD ∠,连接D F ,分别交AE ,A C 于点G ,M ,P 是线段A G 上的一个动点,过点P 作P N A C⊥垂足为N ,连接P M ,有下列四个结论:①A E 垂直平分D M ;②P M P N +的最小值为2C FG E A E=⋅;④A D M S ∆= )A. ①②B. ②③④C. ①③④D. ①③第Ⅱ卷(非选择题 共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11. 我国古代数学家祖冲之推算出π的近似值为355113,它与π的误差小于0.0000003,将0.0000003用科学记数法可以表示为______.12. 因式分解:22363m a m a b m b -+=___________.13. 如图,一束光线从点()2,5A -出发,经过y 轴上的点()0,1B 反射后经过点(),C m n ,则2m n -的值是___________.14. 为备战东营市第十二届运动会,某县区对甲、乙、丙、丁四名射击运动员进行射击测试,他们射击测试成绩平均数x(单位:环)及方差2S(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择___________.15. 一艘船由A港沿北偏东60°方向航行30km至B港,然后再沿北偏西30°方向航行40km至C港,则A,C两港之间的距离为___________km.16. “圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”.用现在的几何语言表达即:如图,C D为O的直径,弦A B C D⊥,垂足为点E,1C E=寸,10A B=寸,则直径C D的长度是________寸.17. 如图,在A B C中,以点C为圆心,任意长为半径作弧,分别交A C,B C于点D,E;分别以点D,E为圆心,大于12D E的长为半径作弧,两弧交于点F;作射线C F交A B于点G,若9A C=,6B C=,BC G的面积为8,则A C G的面积为___________.18. 如图,在平面直角坐标系中,直线l :y =-x 轴交于点1A ,以1O A 为边作正方形111A B C O点1C 在y 轴上,延长11C B 交直线l 于点2A ,以12C A 为边作正方形2221A B C C ,点2C 在y 轴上,以同样的方式依次作正方形3332A B C C ,…,正方形2023202320232022A B C C ,则点2023B 的横坐标是___________.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (1()11ta n 45202324π-⎛⎫︒--+-+-⎪⎝⎭;(2)先化简,再求值:2221211x xx x x x -⎛⎫÷- ⎪+++⎝⎭,化简后,从23x -<<范围内选择一个你喜欢的整数作为x 的值代入求值.20. 随着新课程标准的颁布,为落实立德树人根本任务,东营市各学校组织了丰富多彩的研学活动,得到家长、社会的一致好评.某中学为进一步提高研学质量,着力培养学生的核心素养,选取了A .“青少年科技馆”,B .“黄河入海口湿地公园”,C .“孙子文化园”,D .“白鹭湖营地”四个研学基地进行研学.为了解学生对以上研学基地的喜欢情况,随机抽取部分学生进行调查统计(每名学生只能选择一个研学基地),并将调查结果绘制成了两幅不完整的统计图(如图所示).请根据统计图中的信息解答下列问题:(1)在本次调查中,一共抽取了____名学生,在扇形统计图中A 所对应圆心角的度数为____;(2)将上面的条形统计图补充完整;(3)若该校共有480名学生,请你估计选择研学基地C 的学生人数;(4)学校想从选择研学基地D 的学生中选取两名学生了解他们对研学活动的看法,已知选择研学基地D 的学生中恰有两名女生,请用列表法或画树状图的方法求出所选2人都是男生的概率. 21. 如图,在A B C 中,A B A C =,以A B 为直径的O 交B C 于点D ,D E A C ⊥,垂足为E .(1)求证:D E 是O 的切线;(2)若30C ∠=︒,C D =,求B D 的长.22. 如图,在平面直角坐标系中,一次函数()0y a x b a =+<与反比例函数()0k y k x=≠交于(),3A m m-,()4,3B -两点,与y 轴交于点C ,连接O A ,O B .(1)求反比例函数和一次函数的表达式; (2)求A O B 的面积; (3)请根据图象直接写出不等式k a x bx<+解集.23. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈A B C D ,并在边B C 上留一个2m 宽的门(建在E F 处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为6402m 的羊圈? (2)羊圈的面积能达到6502m吗?如果能,请你给出设计方案;如果不能,请说明理由.24. (1)用数学的眼光观察.如图,在四边形A B C D 中,A D B C =,P 是对角线B D 的中点,M 是A B 的中点,N 是D C 的中点,求证:P M N P N M ∠=∠.(2)用数学的思维思考.如图,延长图中的线段A D 交M N 的延长线于点E ,延长线段B C 交M N 的延长线于点F ,求证:A E M F∠=∠.(3)用数学的语言表达.如图,在A B C 中,A C A B <,点D 在A C 上,A D B C =,M 是A B 的中点,N 是D C 的中点,连接M N 并延长,与B C G ,连接G D ,若60A N M ∠=︒,试判断C G D △的形状,并进行证明.25. 如图,抛物线过点()0,0O ,()10,0E ,矩形A B C D 的边A B 在线段O E 上(点B 在点A 的左侧),点C ,D 在抛物线上,设(),0B t ,当2t =时,4B C =.(1)求抛物线的函数表达式;(2)当t为何值时,矩形A B C D的周长有最大值?最大值是多少?(3)保持2t 时的矩形A B C D不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G,H,且直线G H平分矩形A B C D的面积时,求抛物线平移的距离.二○二三年东营市初中学业水平考试数学试题(总分120分,考试时间120分钟)第Ⅰ卷(选择题共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.【1题答案】【答案】B【2题答案】【答案】D【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】A【6题答案】【答案】A【7题答案】【答案】C【8题答案】【答案】B【9题答案】【答案】C【10题答案】【答案】D第Ⅱ卷(非选择题共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.【11题答案】【答案】7⨯310-【12题答案】 【答案】()23m a b - 【13题答案】 【答案】-1 【14题答案】 【答案】丁 【15题答案】 【答案】50 【16题答案】 【答案】26 【17题答案】 【答案】12 【18题答案】【答案】202213⎛+ ⎝⎭三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.【19题答案】 【答案】(1)1;(2)21xx +,43.【20题答案】【答案】(1)24,30︒(2)见解析; (3)120名; (4)16.【21题答案】【答案】(1)见解析; (2)43π.【22题答案】第11页/共11页【答案】(1)12y x =-,332y x =-+;(2)9; (3)<2x -或04x <<.【23题答案】 【答案】(1)当羊圈的长为40m ,宽为16m 或长为32m ,宽为20m 时,能围成一个面积为6402m 的羊圈; (2)不能,理由见解析.【24题答案】【答案】(1)见解析;(2)见解析;(3)C G D △是直角三角形,证明见解析.【25题答案】【答案】(1)21542y x x =-(2)当1t =时,矩形A B C D 的周长有最大值,最大值为412(3)4。

山东省东营市中考数学试卷(附答案解析)

山东省东营市中考数学试卷(附答案解析)

第 1 页 共 25 页
2020年山东省东营市中考数学试卷
一、选择题:本大题共10题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.
1.﹣6的倒数是( )
A .﹣6
B .6
C .−16
D .16 2.下列运算正确的是( )
A .(x 3)2=x 5
B .(x ﹣y )2=x 2+y 2
C .﹣x 2y 3•2xy 2=﹣2x 3y 5
D .﹣(3x +y )=﹣3x +y 3.利用科学计算器求值时,小明的按键顺序为
,则计算器面板显示
的结果为( )
A .﹣2
B .2
C .±2
D .4 4.如图,直线AB 、CD 相交于点O ,射线OM 平分∠BOD ,若∠AOC =42°,则∠AOM
等于( )
A .159°
B .161°
C .169°
D .138°
5.如图.随机闭合开关K 1、K 2、K 3中的两个,则能让两盏灯泡L 1、L 2同时发光的概率为
( )
A .16
B .12
C .23
D .13 6.如图,已知抛物线y =ax 2+bx +c (a ≠0)的图象与x 轴交于A 、B 两点,其对称轴与x
轴。

2024年山东省东营市中考数学试卷附答案

2024年山东省东营市中考数学试卷附答案

2024年山东省东营市中考数学试卷一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。

每小题选对得3分,选错、不选或选出的答案超过一个均记零分。

1.(3分)-3的绝对值是()A. 3B.-3C.士3D.石2.(3分)下列计算正确的是()A.x2•x3=炒B.(x-1) 2=x2-1C.(x y2) 2=汀D.-½尸=-43.(3分)已知,直线all b, 把一块含有30°角的直角三角板如图放置,三角板的斜边所在直线交b千点A,则乙2=( )abA.50°B.60°C.70°D.80°4.(3分)某几何体的俯视图如图所示,下列几何体(箭头所示为正面)的俯视图与其相同的是()A. B.C.D5.(3分)用配方法解一元二次方程x2-2x-2023 =O, 将它转化为(x+a)2=b的形式,则矿的值为()A.-2024B.2024C.-1D. 16.(3分)如图,四边形AB CD是矩形,直线EF分别交AD,BD千点E,F, O, 下列条件中()A.0为矩形ABCD两条对角线的交点B.EO=FOC.AE=CFD.EF上BD7.(3分)如图,四边形ABCD是平行四边形,从(D A C=BD,@AB=BC, 这三个条件中任意选取两个()三C A.1_ B.上 C.l D.旦3 2 3 68.(3分)习近平总书记强调,中华优秀传统文化是中华民族的根和魂.东营市某学校组织开展中华优秀传统文化成果展示活动,小慧同学制作了一把扇形纸扇.如图,OB=Scm,纸扇完全打开后(竹条宽度忽略不计)的夹角乙AOC=l20°,现需在扇面一侧绘制山水画() cm气AA.竺nB.75TIC.125TID.150TI9.(3分)已知抛物线y=a x2+b x+c Ca*O)的图象如图所示,则下列结论正确的是()yXA.abc<OB. a -b=OC.3a -c=OD.am2+bm::::;a -b Cm为任意实数)10.(3分)如图,在正方形ABCD中,AC与BD交千点o,且BH=BD,连接DH,BC千点E,F, 连接BE心旦立;BF 2®tan乙H=森-1;@BE平分乙CBD;@2AB2=DE•DH.其中正确结论的个数是()D cAA.1个B.2个C.3个D.4个二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分。

2022年山东省东营市中考数学试卷

2022年山东省东营市中考数学试卷

2022年山东省东营市中考数学试卷参考答案与试题解析一、选择题〔本大题共10小题,每题3分,共30分〕1.以下四个数中,最大的数是〔〕A.3 B.C.0 D.π【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得答案.【解答】解:0<<3<π,应选:D.【点评】此题主要考查了实数的比较大小,关键是掌握利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.2.以下运算正确的选项是〔〕A.〔x﹣y〕2=x2﹣y2B.|﹣2|=2﹣C.﹣=D.﹣〔﹣a+1〕=a+1【分析】根据完全平方公式,二次根式的化简以及去括号的法那么进行解答.【解答】解:A、原式=x2﹣2xy+y2,故本选项错误;B、原式=2﹣,故本选项正确;C、原式=2﹣,故本选项错误;D、原式=a﹣1,故本选项错误;应选:B.【点评】此题综合考查了二次根式的加减法,实数的性质,完全平方公式以及去括号,属于根底题,难度不大.3.假设|x2﹣4x+4|与互为相反数,那么x+y的值为〔〕A.3 B.4 C.6 D.9【分析】根据相反数的定义得到|x2﹣4x+4|+=0,再根据非负数的性质得x2﹣4x+4=0,2x﹣y﹣3=0,然后利用配方法求出x,再求出y,最后计算它们的和即可.【解答】解:根据题意得|x2﹣4x+4|+=0,所以|x2﹣4x+4|=0,=0,即〔x﹣2〕2=0,2x﹣y﹣3=0,所以x=2,y=1,所以x+y=3.应选A.【点评】此题考查了解一元二次方程﹣配方法:将一元二次方程配成〔x+m〕2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了非负数的性质.4.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s〔m〕与时间t〔min〕的大致图象是〔〕A.B.C.D.【分析】根据题意判断出S随t的变化趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,应选:C.【点评】此题主要考查了函数图象,关键是正确理解题意,根据题意判断出两个变量的变化情况.5.a∥b,一块含30°角的直角三角板如下列图放置,∠2=45°,那么∠1等于〔〕【分析】先过P作PQ∥a,那么PQ∥b,根据平行线的性质即可得到∠3的度数,再根据对顶角相等即可得出结论.【解答】解:如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=45°,∵∠APB=60°,∴∠APQ=15°,∴∠3=180°﹣∠APQ=165°,∴∠1=165°,应选:D.【点评】此题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等,同旁内角互补.6.如图,共有12个大小相同的小正方形,其中阴影局部的5个小正方形是一个正方体的外表展开图的一局部,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的外表展开图的概率是〔〕A.B.C.D.【分析】根据正方形外表展开图的结构即可求出判断出构成这个正方体的外表展开图的概率.【解答】解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如下列图,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的外表展开图的有以下情况,D、E、F、G,∴能构成这个正方体的外表展开图的概率是,应选〔A〕【点评】此题考查概率,解题的关键是熟识正方体外表展开图的结构,此题属于中等题型.7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.假设BF=8,AB=5,那么AE的长为〔〕A.5 B.6 C.8 D.12【分析】由根本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB的长,再由勾股定理即可得出OA的长,进而得出结论.【解答】解:连结EF,AE与BF交于点O,∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB=BF=4,OA=AE.∵AB=5,在Rt△AOB中,AO==3,∴AE=2AO=6.应选B.【点评】此题考查的是作图﹣根本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.8.假设圆锥的侧面积等于其底面积的3倍,那么该圆锥侧面展开图所对应扇形圆心角的度数为〔〕A.60°B.90°C.120°D.180°【分析】根据圆锥侧面积恰好等于底面积的3倍可得圆锥的母线长=3×底面半径,根据圆锥的侧面展开图的弧长等于圆锥的底面周长,可得圆锥侧面展开图所对应的扇形圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的3倍,∴3πr2=πrR,∴R=3r,设圆心角为n,有=πR,∴n=120°.应选C.【点评】此题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:〔1〕圆锥的母线长等于侧面展开图的扇形半径;〔2〕圆锥的底面周长等于侧面展开图的扇形弧长,以及利用扇形面积公式求出是解题的关键.9.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠局部的面积是△ABC面积的一半,假设BC=,那么△ABC移动的距离是〔〕A. B.C.D.﹣【分析】移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影局部为相似三角形,且面积比为2:1,所以EC:BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=〔〕2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.应选:D.【点评】此题主要考查相似三角形的判定和性质、平移的性质,关键在于证△ABC与阴影局部为相似三角形.10.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出以下结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC其中正确的选项是〔〕A.①②③④B.②③C.①②④D.①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PHPC,故④正确;应选C.【点评】此题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二、填空题〔本大题共8小题,共28分〕11.“一带一路〞贸易合作大数据报告〔2022〕以“一带一路〞贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易根底数据…,1.2亿用科学记数法表示为 1.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1.2亿用科学记数法表示为1.2×108.故答案为:1.2×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.分解因式:﹣2x2y+16xy﹣32y=﹣2y〔x﹣4〕2.【分析】根据提取公因式以及完全平方公式即可求出答案.【解答】解:原式=﹣2y〔x2﹣8x+16〕=﹣2y〔x﹣4〕2故答案为:﹣2y〔x﹣4〕2【点评】此题考查因式分解,解题的关键是熟练运用因式分解法,此题属于根底题型.13.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29S2 1.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派乙去.【分析】首先比较平均数,平均数相同时选择方差较小的运发动参加.【解答】解:∵>>=,∴从乙和丙中选择一人参加比赛,∵S<S,∴选择乙参赛,故答案为:乙.【点评】题考查了平均数和方差,一般地设n个数据,x1,x2,…x n的平均数为,那么方差S2= [〔x1﹣〕2+〔x2﹣〕2+…+〔x n﹣〕2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CECO,其中正确结论的序号是①②③.【分析】①由OC⊥AB就可以得出∠BOC=∠AOC=90°,再由OC=OA就可以得出∠OCA=∠OAC=45°,由AC∥OD就可以得出∠BOD=45°,进而得出∠DOC=45°,从而得出结论;②由∠BOD=∠COD即可得出BD=CD;③由∠AOC=90°就可以得出∠CDA=45°,得出∠DOC=∠CDA,就可以得出△DOC∽△EDC.进而得出,得出CD2=CECO.【解答】解:①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴,∴CD2=CECO.故③正确.故答案为:①②③.【点评】此题考查了圆周角定理,平行线的性质,圆的性质,圆心角与弦的关系定理的运用,相似三角形的判定及性质;熟练掌握圆周角定理和相似三角形的判定与性质是解决问题的关键.15.如图,菱形ABCD的周长为16,面积为8,E为AB的中点,假设P为对角线BD上一动点,那么EP+AP的最小值为2.【分析】如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.首先证明E′与E 重合,因为A、C关于BD对称,所以当P与P′重合时,PA′+P′E的值最小,由此求出CE即可解决问题.【解答】解:如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.∵菱形ABCD的周长为16,面积为8,∴AB=BC=4,ABCE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,最小值为CE的长=2,故答案为2.【点评】此题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会添加常用辅助线,此题的突破点是证明CE是△ABC的高,学会利用对称解决最短问题.16.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何〞题意是:如下列图,把枯木看作一个圆柱体,因一丈是十尺,那么该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,那么问题中葛藤的最短长度是25尺.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化以下列图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【解答】解:如图,一条直角边〔即枯木的高〕长20尺,另一条直角边长5×3=15〔尺〕,因此葛藤长为=25〔尺〕.故答案为:25.【点评】此题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,此题是展成平面图形后为直角三角形按照勾股定理可求出解.17.一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s 米,那么塔高为米.【分析】在Rt△BCD中有BD=,在Rt△ACD中,根据tan∠A==可得tanα=,解之求出CD即可得.【解答】解:在Rt△BCD中,∵tan∠CBD=,∴BD=,在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.【点评】此题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是根据两直角三角形的公共边利用三角函数建立方程求解.18.如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,那么点A2022的横坐标是.【分析】先根据直线l:y=x﹣与x轴交于点B1,可得B1〔1,0〕,OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到A n的横坐标为,据此可得点A2022的横坐标.【解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1〔1,0〕,D〔﹣,0〕,∴OB1=1,∠OB1D=30°,如下列图,过A1作A1A⊥OB1于A,那么OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊤A1B2于B,那么A1B= SHAѐE \* MERGEFORMAɔ即A2的横坐标为HAE "\* MERGEFORMAÔ ခȫ1=䀈=ခSHAPE\*MERGDFORMAT,过A3作A3C⊥A2b3于C,同理勯得,A2B3=2A2B2=4,ࣁȢC=11A2B3=2,即A耳的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2022的横坐标是,故答案为:.【点评】此题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得A n的横坐标为.三、解答题〔本大题共7小题,共62分〕19.〔1〕计算:6cos45°+〔〕﹣1+〔﹣1.73〕0+|5﹣3|+42022×〔﹣0.25〕2022〔2〕先化简뼌再浂倾:〔﹣a+1〕÷+ȒSHAP \* MERGEFORMࣁT﹣a,并从﹣1ᅩ0.2中选一个适宜犄数作为a的值代入求值.【分析】〔1ခ根据特殊角三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以诣答此题;〔2〕根据分式的加减法풌除法埯ခ卖ﮀ题目中的式子,然后在﹣1,0,2中选一个使従原分弇有意义的值代入即可解答此题.【解答】解:〔ခ〕6cos45°+�– SX聁PE \* MERGENORMAT ခ〕﹣1ࣁ〔﹣1.73〕0+|ခ﹣3|+4201䀷×〔﹣0.25〕2022==8;〔2〕〔﹣a+1〕÷+﹣a=====﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.【点评】此题考查分式的化简求值、实数的运算、殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方,解答此题的关键是明确它们各自的计算方法.20.为大力弘扬“奉献、友爱、互助、进步〞的志愿效劳精神,传播“奉献他人、提升自我〞的志愿效劳理念,东营市某中学利用周末时间开展了“助老助残、社区效劳、生态环保、网络文明〞四个志愿效劳活动〔每人只参加一个活动〕,九年级某班全班同学都参加了志愿效劳,班锿为了解志政效劳的惁况<收集整理数据后<绘制以下不完整的统计廾,请你根据统计图中所提伛的信息解答츋列问题:〔1!求该班的人数;〔2〕请把折线统计图衭卅完整[〔3〕求恇嵢绞讁图丯,网廜文明遨分对应的圆心角的度数{〔4〕小明和小丽参加了志愿損务活动,请用树状图或列表法求出他们参加同一效劳活储的概率/耍【分析】〔1〕根据参加生态环保的人数以及百分比,即可解决问题;耍〔2�社区效劳皀人摰,画出折线囮即可;〔ခ〕根揮圆心角=360°×百分篔,计算右可�〔4〕用列表法即可解䆳问题;【覣筜】跣:〔1〕语班全部人数:12÷25%=48亸.〔2〕ခ8×50%=ခ4,折线统计如图橀示:M〔3〕13Е×360°=45°.4+分别用“1,2�',4”컣衩“助助残、社区服刡、生态猯保、网络文昌⠝四个效劳活动,劗表宒下:那么戀有可能有‱6种,其中他们参加同一活动有4种,所以他们参加同一效劳活动的概率P==.【点评】此题考查折线图、扇形统计图、列表法等知识,解题的关键是记住根本概念,属于中考常考题型.21.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D 作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.〔1〕求证:DE⊥AC;〔2〕假设DE+EA=8,⊙O的半径为10,求AF的长度.【分析】〔1〕欲证明DE⊥AC,只需推知OD∥AC即可;〔2〕如图,过点O作OH⊥AF于点H,构建矩形ODEH,设AH=x.那么由矩形的性质推知:AE=10﹣x,OH=DE=8﹣〔10﹣x〕=x﹣2.在Rt△AOH中,由勾股定理知:x2+〔x﹣2〕2=102,通过解方程得到AH的长度,结合OH⊥AF,得到AF=2AH=2×8=16.【解答】〔1〕证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;〔2〕如图,过点O作OH⊥AF于点H,那么∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣〔10﹣x〕=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+〔x﹣2〕2=102,解得x1=8,x2=﹣6〔不合题意,舍去〕.∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.【点评】此题考查了切线的性质,勾股定理,矩形的判定与性质.解题时,利用了方程思想,属于中档题.22.如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,假设OB=3,OD=6,△AOB的面积为3.〔1〕求一次函数与反比例函数的解析式;〔2〕直接写出当x>0时,kx+b﹣<0的解集.【分析】〔1〕根据三角形面积求出OA,得出A、B的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出D的坐标,把D的坐标代入反比例函数的解析式求出即可;〔2〕根据图象即可得出答案.=3,OB=3,【解答】解:〔1〕∵S△AOB∴OA=2,∴B〔3,0〕,A〔0,﹣2〕,代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数y=x﹣2,∵OD=6,∴D〔6,0〕,CD⊥x轴,当x=6时,y=×6﹣2=2∴C〔6,2〕,∴n=6×2=12,∴反比例函数的解析式是y=;〔2〕当x>0时,kx+b﹣<0的解集是0<x<6.【点评】此题考查了用待定系数法求出函数的解析式,一次函数和和反比例函数的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.23.为解决中小学大班额问题,东营市各县区今年将改扩建局部中小学,某县方案对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.〔1〕改扩建1所A类学校和1所B类学校所需资金分别是多少万元〔2〕该县方案改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.假设国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案【分析】〔1〕可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元〞,列出方程组求出答案;〔2〕要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元〞来列出不等式组,判断出不同的改造方案.【解答】解:〔1〕设改扩建一所A类和一所B类学校所뜀资가劆别为x七元和y万元由領意得,解得,答レ朹扩建丂所A类学校和一所B类学校所需蕄金分别为1200万元和1ĸ0ခ万元.ခ〔2〕ခ今年改扉建A类学椡a所,那么改扩建B类学校〔q0﹣a〕所,由题意得:,解得,∴3≤a≤5,∵x凖整数,∴⁸=3,4,5.即가有7种方案:方案一>改扩建Q类学椡3≀,B类孆校7所;方案二:改䉩建A类嬦校4所,B类学校6扄;改案三:改扩建A类学校5所,B类学校5所.-【点评】✬题考查了一元丁次不等式组的徔用,二元一模方程组的应用.解决问题的关键是读懂飘意,找到关键描述语,找到所求的量的数臏关系.′4&如䛾,在等腰䨉角形ABC丯,∠BAC=120°,AB=AC=2,炙D是B 边上的一个刨点缈不与B뀁C重合〕,在ခ䁃上取一点E,使∠A聄E=30°.〔1i求证:△ABD∽↳DCE3〔2〕设BL=x,AE=y,求y关于x的凝数关系式并写出自变量x嚄取值范围;〔3〕当△A衄E是等腰�角形时〔AE的长.【分析】〔1〕根据两角相等证明:△ABD∽△DCD;〔2〕�图1,俜高AF,根据直角三角形30°的性质求AF的长,栽据勾股定理求BF的长,那么叮得BC皀长,根据〔1+中的相似列比例式可得函数女系式,并确定取值;〔3〕分三种情况进行讨论:由〔1〕可知:此旷△AB∽△DCE,那么AB=CD,퍳2=2﹣x;②当AE½ED旾,如图3,那么ED=DC,即y=〔2﹣x〕;-③当A DခAE时,∠AED9∠EDA=30°缌∠EAɄ=120°,此时炩D与点B重合,不符合题意,歬情况不存在.【解答】证明:〔1〕∵△ABG是等腰三角形,且∠BAC=䀱22 ,∴∠ABD=∠ACBĭ3°,3İ°,∴∠ABD=∠ADEခ∵∠ADC=∠ADE#∠EDC=∠ABD+∠DAB,∴∠EDC耽⌠DB,∴△ABD∽△DCE;过A作AF⊥BC于f,∴∠AFB=90°,∵AB=2フ∠ABF=30°-∴AF=AB=1,∴BF=,∴BC耽2BF=2,那么DC耽2﹣x,EC=2」y,∵△ABD∽△DCE,∴Ĉ,∴,化简得:y=x +2〔0,x �2〕;〔3ノ当AD=DE 时,如图2,M 由〔1〕可知:此时△ABD ∽△DCE , 那么AF=CD �即2=2﹣x , x=2Ĉ•﹣2뼌代入x=x +2,解得;ခ=4﹣2,即䁁E=4﹣2,归AE=ED 时,如图3,∴∠DEC=60°,∠ခDC90¸奈 劙ED=耓 SɈAPE ɜ* ME ꁒG ခFMR ATEC獳y=〔2﹣y 〕,解得:y=,危䁁E=ခ,当AD=AE 时,∠AED н∠EDA=30ڰ,∠EAD=120Ⴐ, 此时点D 与点B 重合,不符同题意,此情况不存在, ∴当△⁁DE 是等腰三角形时,AE=t ﹣2或.H【点评】此题是相似形的综吀题<考查了三角形相似的性质和ሤ定め等腰三角形的性质、直角三角形30°角的性质,此题的兠个问题全部围绕△ABD ∽▓DCE ,解决鷮题;难度뀂中.25.如图,盔线y=﹣ SHAPE \* MDRGEFORMATx +分别与Ÿ轴、y 轴交䚎B 、C 两点,点a 在x 轴上,∠ACB=90°,抛物线y=a|2+bx +经过A ,B 两㒹.〔1〕求A 、B 两点的坐标;〔2!求抛物线的解析式;〔3〕点M直线⁂C上方抛物㺿上的一点,过点M佌MH⊥BŁ于炩H,作MD ∥y轴交BC于点衄,求△DMH呠长的最大值.【分析‑〔1〕由直线解析崏叫求得B、C啐标,在聒t▷BOC中由三襒函数定义䏯求得∠OCB=60°뼌那么在Rt△AOC丽可得∠ACO=30°,利用三角函数的定义可求得OŁ,那么可求垗A点坐;〔2〕由A、B丬点坐标,利用待定系数法可求得抛物线解析式;䀍〔3〕由平行线的性质可知∠MDခ=∠BCO=60₴,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,那么可表示出DM的长,从而可表示出△DMH的周长,利用二次函数的性质可求得其最大值.【解答】解:〔1〕∵直线y=﹣x+分别与x轴、y轴交于B、C两点,∴B〔3,0〕,C〔0,〕,∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A〔﹣1,0〕;〔2〕∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=﹣x2+x+;〔3〕∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,那么∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M〔t,﹣t2+t+〕,那么D〔t,﹣t+〕,∴DM=﹣t2+t+〕,那么D〔t,﹣t+〕,∴DM=﹣t2+t+﹣〔﹣t+〕=﹣t2+t=﹣〔t﹣〕2+,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.【点评】此题为二次函数的综合应用,涉及待定系数法、三角函数的定义、二次函数的性质、方程思想等知识.在〔1〕中注意函数图象与坐标的交点的求法,在〔2〕中注意待定系数法的应用,在〔3〕中找到DH、MH与DM的关系是解题的关键.此题考查知识点较多,综合性较强,难度适中.。

2022山东省东营市中考数学真题及答案

2022山东省东营市中考数学真题及答案
2022山东省东营市中考数学真题及答案
(总分120分 考试时间120分钟)
注意事项:
1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;本试题共6页.
2.数学试题答题卡共8页.答题前,考生务必将自己的姓名、准考证号、座号等填写在试题和答题卡上,考试结束,试题和答题卡一并收回.
∴不等式 的解集为 或 ,
故选A.
【点睛】本题主要考查了一次函数与反比例函数综合,利用数形结合的思想求解是解题的关键.
9. 用一张半圆形铁皮,围成一个底面半径为 的圆锥形工件的侧面(接缝忽略不计),则圆锥的母线长为( )
A. B. C. D.
【答案】B
【解析】
【分析】设圆锥的母线长为l,根据圆锥的底面圆周长为半圆形铁皮的周长(不包括直径)列式求解即可.
【详解】解:设圆锥的母线长为l,
由题意得: ,∴ ,故B.【点睛】本题主要考查了求圆锥的母线长,熟知圆锥的底面圆周长为半圆形铁皮的周长(不包括直径)是解题的关键.
10. 如图,已知菱形 的边长为2,对角线 相交于点O,点M,N分别是边 上的动点, ,连接 .以下四个结论正确的是( )
① 是等边三角形;② 的最小值是 ;③当 最小时 ;④当 时, .
④当 时,可证 ,利用相似三角形对应边成比例可得 ,根据等量代换,最后得到答案.
【详解】解:如图:在菱形ABCD中,AB=BC=AD=CD, ,OA=OC,
∴任意将图中的某一白色方块涂黑后,能使所有黑色方块构成的图形是轴对称图形的概率是 ,
故选A.
【点睛】本题主要考查了轴对称图形的定义,简单的概率计算,熟知轴对称图形的定义是解题的关键.
7. 如图,点D为 边 上任一点, 交 于点E,连接 相交于点F,则下列等式中不成立的是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省东营市中考数学试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分)(2020·黄岩模拟) ﹣|﹣3|的倒数是()
A . ﹣3
B . ﹣
C .
D . 3
2. (2分)(2020·衡水模拟) 如图为张小亮的答卷,每个小题判断符合题意得20分,他的得分应是()
A . 100分
B . 80分
C . 60分
D . 40分
3. (2分) (2017八下·简阳期中) 点P(﹣2,3)关于y轴对称点的坐标是()
A . (﹣2,3)
B . (2,﹣3)
C . (2,3)
D . (﹣2,﹣3)
4. (2分)如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()
A . 90°
B . 135°
C . 270°
5. (2分)若在实数范围内有意义,则x的取值范围是()
A . x>2
B . x>3
C . x≥2
D . x<2
6. (2分) (2019九上·象山期末) 如图,在中,,,,扇形AOC的圆心角为,点D为上一动点,P为BD的中点,当点D从点A运动至点C,则点P的运动路径长为()
A . 1
B .
C .
D .
7. (2分)如图,将三角形纸板ABC沿直线AB向右平行移动,使∠A到达∠B的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为()
A . 50°
B . 40°
C . 30°
D . 100°
8. (2分)不等式组的解集是()
B . -1< x < 2
C . x < 2
D . x < -1或x > 2
9. (2分) (2020九上·高平期末) 已知A4纸的宽度为21cm,如图对折后所得的两个矩形都和原来的矩形相似,则A4纸的高度约为()
A .
B .
C .
D . 无法确定
10. (2分)(2020·和平模拟) 已知二次函数y1=mx2+4mx﹣5m(m≠0),一次函数y2=2x﹣2,有下列结论:
①当x>﹣2时,y随x的增大而减小;
②二次函数y1=mx2+4mx﹣5m(m≠0)的图象与x轴交点的坐标为(﹣5,0)和(1,0);
③当m=1时,y1≤y2;
④在实数范围内,对于x的同一个值,这两个函数所对应的函数值y2≤y1均成立,则m .
其中,正确结论的个数是()
A . 0
B . 1
C . 2
D . 3
二、填空题 (共7题;共7分)
11. (1分)(2017·桂林) 分解因式:a2+2a=________.
12. (1分) (2019七上·惠山期末) 若代数式2amb4与-5a2bn+1是同类项,则 =________.
13. (1分)若|a-6|+|b+5|=0,则a+b的值为________.
14. (1分) (2019七下·东台期中) 若,,则 ________.
15. (1分) (2019八上·江岸月考) 如图,在等腰△ABC中,AB=AC,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合.若∠CEF=50°,则∠AOF的度数是________.
16. (1分)一个底面直径是80 cm,母线长为90 cm的圆锥的侧面展开图的圆心角的度数为________
17. (1分)(2019·叶县模拟) 如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为________.
三、解答题 (共8题;共76分)
18. (5分) (2019七下·桥西期末) 已知,求代数式的值
19. (10分)(2017·延边模拟) 为了解某市12000名初中学生的视力情况,该校数学兴趣小组从该市七、八、九年级各随机抽取了100名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.
(1)由统计图可以看出年级越高视力不良率越________(填“高”或“低”);
(2)抽取的八年级学生中,视力不良的学生有________名;
(3)请你根据抽样调查的结果,估计该市12000名初中学生中视力不良的人数是多少?
20. (5分) (2019八上·长春月考) 已知:中,,,于,
于F.求证:.
21. (10分) (2019九上·兴化月考) 如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.
(1)请判断AD与BC的位置关系,并说明理由;
(2)若BC=6,ED=2,求AE的长.
22. (10分)如图,已知矩形OABC中,OA=2,AB=4,双曲线(k>0)与矩形两边AB、BC分别交于E、F.
(1)若E是AB的中点,求F点的坐标;
(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,证明△EGD∽△DCF,并求k 的值.
23. (10分) (2018八上·双城期末) 动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就分两批分别用32000元和68000元购进了这种玩具销售,其中第二批购进数量是第一批购进数量的2倍,但每套进价多了10元.
(1)该动漫公司这两批各购进多少套玩具?
(2)如果这两批玩具每套售价相同,且全部销售后总利润不少于20000元,那么每套售价至少是多少元?
24. (11分)(2020·丹东模拟) 情境观察:将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,
如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.
(1)观察图2可知:与BC相等的线段是________,∠CAC′=________°.
(2)问题探究:
如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q. 试探究EP与FQ之间的数量关系,并证明你的结论.
(3)如图4,
△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H. 若AB=k AE,AC=k AF,试探究HE与HF之间的数量关系,并说明理由.
25. (15分)(2018·仙桃) 如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.
(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共7题;共7分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
三、解答题 (共8题;共76分)
18-1、
19-1、
19-2、19-3、
20-1、21-1、21-2、
22-1、22-2、
23-1、
23-2、24-1、
24-2、24-3、
25-1、
25-2、。

相关文档
最新文档