Observability of Linear Hybrid Systems
SPSS术语中英文对照
SPSS术语中英文对照【常用软件】SPSS术语中英文对照Absolute deviation, 绝对离差Absolute number, 绝对数Absolute residuals, 绝对残差Acceleration array, 加速度立体阵Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可接受假设Accumulation, 累积Accuracy, 准确度Actual frequency, 实际频数Adaptive estimator, 自适应估计量Addition, 相加Addition theorem, 加法定理Additivity, 可加性Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Aggregation, 聚集性Alternative hypothesis, 备择假设Among groups, 组间Amounts, 总量Analysis of correlation, 相关分析Analysis of covariance, 协方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Analysis of variance, 方差分析Angular transformation, 角转换ANOVA (analysis of variance), 方差分析ANOVA Models, 方差分析模型Arcing, 弧/弧旋Arcsine transformation, 反正弦变换Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation, 艾恩尼斯关系Assessing fit, 拟合的评估Associative laws, 结合律Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Attributable risk, 归因危险度Attribute data, 属性资料Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart, 条形图Bar graph, 条形图Base period, 基期Bayes' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population, 双变量正态总体Biweight interval, 双权区间Biweight M-estimator, 双权M估计量Block, 区组/配伍组BMDP(Biomedical computer programs), BMDP统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation, 典型相关Caption, 纵标目Case-control study, 病例对照研究Categorical variable, 分类变量Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Automatic Interac tion Detector, 卡方自动交互检测Chance, 机遇Chance error, 随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解Circle chart, 圆图Class interval, 组距Class mid-value, 组中值Class upper limit, 组上限Classified variable, 分类变量Cluster analysis, 聚类分析Cluster sampling, 整群抽样Code, 代码Coded data, 编码数据Coding, 编码Coefficient of contingency, 列联系数Coefficient of determination, 决定系数Coefficient of multiple correlation, 多重相关系数Coefficient of partial correlation, 偏相关系数Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数Coefficient of variation, 变异系数Cohort study, 队列研究Column, 列Column effect, 列效应Column factor, 列因素Combination pool, 合并Combinative table, 组合表Common factor, 共性因子Common regression coefficient, 公共回归系数Common value, 共同值Common variance, 公共方差Common variation, 公共变异Communality variance, 共性方差Comparability, 可比性Comparison of bathes, 批比较Comparison value, 比较值Compartment model, 分部模型Compassion, 伸缩Complement of an event, 补事件Complete association, 完全正相关Complete dissociation, 完全不相关Complete statistics, 完备统计量Completely randomized design, 完全随机化设计Composite event, 联合事件Composite events, 复合事件Concavity, 凹性Conditional expectation, 条件期望Conditional likelihood, 条件似然Conditional probability, 条件概率Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confirmatory research, 证实性实验研究Confounding factor, 混杂因素Conjoint, 联合分析Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically normal estimate, 相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布Contaminated Gausssian, 污染高斯分布Contaminated normal distribution, 污染正态分布Contamination, 污染Contamination model, 污染模型Contingency table, 列联表Contour, 边界线Contribution rate, 贡献率Control, 对照Controlled experiments, 对照实验Conventional depth, 常规深度Convolution, 卷积Corrected factor, 校正因子Corrected mean, 校正均值Correction coefficient, 校正系数Correctness, 正确性Correlation coefficient, 相关系数Correlation index, 相关指数Correspondence, 对应Counting, 计数Counts, 计数/频数Covariance, 协方差Covariant, 共变Cox Regression, Cox回归Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则Critical ratio, 临界比Critical region, 拒绝域Critical value, 临界值Cross-over design, 交叉设计Cross-section analysis, 横断面分析Cross-section survey, 横断面调查Crosstabs , 交叉表Cross-tabulation table, 复合表Cube root, 立方根Cumulative distribution function, 分布函数Cumulative probability, 累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve fit , 曲线拟和Curve fitting, 曲线拟合Curvilinear regression, 曲线回归Curvilinear relation, 曲线关系Cut-and-try method, 尝试法Cycle, 周期Cyclist, 周期性D test, D检验Data acquisition, 资料收集Data bank, 数据库Data capacity, 数据容量Data deficiencies, 数据缺乏Data handling, 数据处理Data manipulation, 数据处理Data processing, 数据处理Data reduction, 数据缩减Data set, 数据集Data sources, 数据来源Data transformation, 数据变换Data validity, 数据有效性Data-in, 数据输入Data-out, 数据输出Dead time, 停滞期Degree of freedom, 自由度Degree of precision, 精密度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度Derivative matrix, 导数矩阵Derivative-free methods, 无导数方法Design, 设计Determinacy, 确定性Determinant, 行列式Determinant, 决定因素Deviation, 离差Deviation from average, 离均差Diagnostic plot, 诊断图Dichotomous variable, 二分变量Differential equation, 微分方程Direct standardization, 直接标准化法Discrete variable, 离散型变量DISCRIMINANT, 判断Discriminant analysis, 判别分析Discriminant coefficient, 判别系数Discriminant function, 判别值Dispersion, 散布/分散度Disproportional, 不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布Distribution shape, 分布形状Distribution-free method, 任意分布法Distributive laws, 分配律Disturbance, 随机扰动项Dose response curve, 剂量反应曲线Double blind method, 双盲法Double blind trial, 双盲试验Double exponential distribution, 双指数分布Double logarithmic, 双对数Downward rank, 降秩Dual-space plot, 对偶空间图DUD, 无导数方法Duncan's new multiple range method, 新复极差法/Duncan新法Effect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution, 经验分布Empirical probability, 经验概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares, 估计误差平方和Euclidean distance, 欧式距离Event, 事件Event, 事件Exceptional data point, 异常数据点Expectation plane, 期望平面Expectation surface, 期望曲面Expected values, 期望值Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explanatory variable, 说明变量Exploratory data analysis, 探索性数据分析Explore Summarize, 探索-摘要Exponential curve, 指数曲线Exponential growth, 指数式增长EXSMOOTH, 指数平滑方法Extended fit, 扩充拟合Extra parameter, 附加参数Extrapolation, 外推法Extreme observation, 末端观测值Extremes, 极端值/极值F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查Field survey, 现场调查Finite population, 有限总体Finite-sample, 有限样本First derivative, 一阶导数First principal component, 第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value, 拟合值Fitting a curve, 曲线拟合Fixed base, 定基Fluctuation, 随机起伏Forecast, 预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error, 相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数Gini's mean difference, 基尼均差GLM (General liner models), 一般线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误Gross-error sensitivity, 大错敏感度Group averages, 分组平均Grouped data, 分组资料Guessed mean, 假定平均数Half-life, 半衰期Hampel M-estimators, 汉佩尔M估计量Happenstance, 偶然事件Harmonic mean, 调和均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不同质Heterogeneity of variance, 方差不齐Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法High-leverage point, 高杠杆率点HILOGLINEAR, 多维列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing, 假设检验Hypothetical universe, 假设总体Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Index, 指标/指数Indirect standardization, 间接标准化法Individual, 个体Inference band, 推断带Infinite population, 无限总体Infinitely great, 无穷大Infinitely small, 无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition, 初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距Interval estimation, 区间估计Intervals of equal probability, 等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matrix, 逆矩阵Inverse probability, 逆概率Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function, 分布函数Joint probability, 联合概率Joint probability distribution, 联合概率分布K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度Kaplan-Merier chart, Kaplan-Merier图Kendall's rank correlation, Kendall等级相关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test, 大样本检验Latin square, 拉丁方Latin square design, 拉丁方设计Leakage, 泄漏Least favorable configuration, 最不利构形Least favorable distribution, 最不利分布Least significant difference, 最小显著差法Least square method, 最小二乘法Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L估计量L-estimator of scale, 尺度L估计量Level, 水平Life expectance, 预期期望寿命Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation, 直线相关Linear equation, 线性方程Linear programming, 线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logit转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数Low correlation, 低度相关Lower limit, 下限Lowest-attained variance, 最小可达方差LSD, 最小显著差法的简称Lurking variable, 潜在变量Main effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数Marginal probability, 边缘概率Marginal probability distribution, 边缘概率分布Matched data, 配对资料Matched distribution, 匹配过分布Matching of distribution, 分布的匹配Matching of transformation, 变换的匹配Mathematical expectation, 数学期望Mathematical model, 数学模型Maximum L-estimator, 极大极小L 估计量Maximum likelihood method, 最大似然法Mean, 均数Mean squares between groups, 组间均方Mean squares within group, 组内均方Means (Compare means), 均值-均值比较Median, 中位数Median effective dose, 半数效量Median lethal dose, 半数致死量Median polish, 中位数平滑Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量Minimum distance estimation, 最小距离估计Minimum effective dose, 最小有效量Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量MINITAB, 统计软件包Minor heading, 宾词标目Missing data, 缺失值Model specification, 模型的确定Modeling Statistics , 模型统计Models for outliers, 离群值模型Modifying the model, 模型的修正Modulus of continuity, 连续性模Morbidity, 发病率Most favorable configuration, 最有利构形Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison, 多重比较Multiple correlation , 复相关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution, 多元T分布Mutual exclusive, 互不相容Mutual independence, 互相独立Natural boundary, 自然边界Natural dead, 自然死亡Natural zero, 自然零Negative correlation, 负相关Negative linear correlation, 负线性相关Negatively skewed, 负偏Newman-Keuls method, q检验NK method, q检验No statistical significance, 无统计意义Nominal variable, 名义变量Nonconstancy of variability, 变异的非定常性Nonlinear regression, 非线性相关Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验Nonparametric tests, 非参数检验Normal deviate, 正态离差Normal distribution, 正态分布Normal equation, 正规方程组Normal ranges, 正常范围Normal value, 正常值Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设Numerical variable, 数值变量Objective function, 目标函数Observation unit, 观察单位Observed value, 观察值One sided test, 单侧检验One-way analysis of variance, 单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics, 顺序统计量Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件ORTHOPLAN, 正交设计Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Overshoot, 迭代过度Paired design, 配对设计Paired sample, 配对样本Pairwise slopes, 成对斜率Parabola, 抛物线Parallel tests, 平行试验Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Partial correlation, 偏相关Partial regression, 偏回归Partial sorting, 偏排序Partials residuals, 偏残差Pattern, 模式Pearson curves, 皮尔逊曲线Peeling, 退层Percent bar graph, 百分条形图Percentage, 百分比Percentile, 百分位数Percentile curves, 百分位曲线Periodicity, 周期性Permutation, 排列P-estimator, P估计量Pie graph, 饼图Pitman estimator, 皮特曼估计量Pivot, 枢轴量Planar, 平坦Planar assumption, 平面的假设PLANCARDS, 生成试验的计划卡Point estimation, 点估计Poisson distribution, 泊松分布Polishing, 平滑Polled standard deviation, 合并标准差Polled variance, 合并方差Polygon, 多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population, 总体Population attributable risk, 人群归因危险度Positive correlation, 正相关Positively skewed, 正偏Posterior distribution, 后验分布Power of a test, 检验效能Precision, 精密度Predicted value, 预测值Preliminary analysis, 预备性分析Principal component analysis, 主成分分析Prior distribution, 先验分布Prior probability, 先验概率Probabilistic model, 概率模型probability, 概率Probability density, 概率密度Product moment, 乘积矩/协方差Profile trace, 截面迹图Proportion, 比/构成比Proportion allocation in stratified random sampling, 按比例分层随机抽样Proportionate, 成比例Proportionate sub-class numbers, 成比例次级组含量Prospective study, 前瞻性调查Proximities, 亲近性Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudosigma, 伪标准差Purposive sampling, 有目的抽样QR decomposition, QR分解Quadratic approximation, 二次近似Qualitative classification, 属性分类Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q图Quantitative analysis, 定量分析Quartile, 四分位数Quick Cluster, 快速聚类Radix sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计Random event, 随机事件Randomization, 随机化Range, 极差/全距Rank correlation, 等级相关Rank sum test, 秩和检验Rank test, 秩检验Ranked data, 等级资料Rate, 比率Ratio, 比例Raw data, 原始资料Raw residual, 原始残差Rayleigh's test, 雷氏检验Rayleigh's Z, 雷氏Z值Reciprocal, 倒数Reciprocal transformation, 倒数变换Recording, 记录Redescending estimators, 回降估计量Reducing dimensions, 降维Re-expression, 重新表达Reference set, 标准组Region of acceptance, 接受域Regression coefficient, 回归系数Regression sum of square, 回归平方和Rejection point, 拒绝点Relative dispersion, 相对离散度Relative number, 相对数Reliability, 可靠性Reparametrization, 重新设置参数Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方和Resistance, 耐抗性Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R估计量R-estimator of scale, 尺度R估计量Retrospective study, 回顾性调查Ridge trace, 岭迹Ridit analysis, Ridit分析Rotation, 旋转Rounding, 舍入Row, 行Row effects, 行效应Row factor, 行因素RXC table, RXC表Sample, 样本Sample regression coefficient, 样本回归系数Sample size, 样本量Sample standard deviation, 样本标准差Sampling error, 抽样误差SAS(Statistical analysis system ), SAS统计软件包Scale, 尺度/量表Scatter diagram, 散点图Schematic plot, 示意图/简图Score test, 计分检验Screening, 筛检SEASON, 季节分析Second derivative, 二阶导数Second principal component, 第二主成分SEM (Structural equation modeling), 结构化方程模型Semi-logarithmic graph, 半对数图Semi-logarithmic paper, 半对数格纸Sensitivity curve, 敏感度曲线Sequential analysis, 贯序分析Sequential data set, 顺序数据集Sequential design, 贯序设计Sequential method, 贯序法Sequential test, 贯序检验法Serial tests, 系列试验Short-cut method, 简捷法Sigmoid curve, S形曲线Sign function, 正负号函数Sign test, 符号检验Signed rank, 符号秩Significance test, 显著性检验Significant figure, 有效数字Simple cluster sampling, 简单整群抽样Simple correlation, 简单相关Simple random sampling, 简单随机抽样Simple regression, 简单回归simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布Skewness, 偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test, 斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级相关Specific factor, 特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution, 球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation, 标准差Standard error, 标准误Standard error of difference, 差别的标准误Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布Standardization, 标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计控制Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor, 步长因子Stepwise regression, 逐步回归Storage, 存Strata, 层(复数)Stratified sampling, 分层抽样Stratified sampling, 分层抽样Strength, 强度Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t化残差Sub-class numbers, 次级组含量Subdividing, 分割Sufficient statistic, 充分统计量Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regression, 回归平方和Sum of squares between groups, 组间平方和Sum of squares of partial regression, 偏回归平方和Sure event, 必然事件Survey, 调查Survival, 生存分析Survival rate, 生存率Suspended root gram, 悬吊根图Symmetry, 对称Systematic error, 系统误差Systematic sampling, 系统抽样Tags, 标签Tail area, 尾部面积Tail length, 尾长Tail weight, 尾重Tangent line, 切线Target distribution, 目标分布Taylor series, 泰勒级数Tendency of dispersion, 离散趋势Testing of hypotheses, 假设检验Theoretical frequency, 理论频数Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion, 扰率Total sum of square, 总平方和Total variation, 总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验Trial and error method, 试错法Tuning constant, 细调常数Two sided test, 双向检验Two-stage least squares, 二阶最小平方Two-stage sampling, 二阶段抽样Two-tailed test, 双侧检验Two-way analysis of variance, 双因素方差分析Two-way table, 双向表Type I error, 一类错误/α错误Type II error, 二类错误/β错误UMVU, 方差一致最小无偏估计简称Unbiased estimate, 无偏估计Unconstrained nonlinear regression , 无约束非线性回归Unequal subclass number, 不等次级组含量Ungrouped data, 不分组资料Uniform coordinate, 均匀坐标Uniform distribution, 均匀分布Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计Unit, 单元Unordered categories, 无序分类Upper limit, 上限Upward rank, 升秩Vague concept, 模糊概念Validity, 有效性VARCOMP (Variance component estimation), 方差元素估计Variability, 变异性Variable, 变量Variance, 方差Variation, 变异Varimax orthogonal rotation, 方差最大正交旋转Volume of distribution, 容积W test, W检验Weibull distribution, 威布尔分布Weight, 权数Weighted Chi-square test, 加权卡方检验/Cochran检验Weighted linear regression method, 加权直线回归Weighted mean, 加权平均数Weighted mean square, 加权平均方差Weighted sum of square, 加权平方和Weighting coefficient, 权重系数Weighting method, 加权法W-estimation, W估计量W-estimation of location, 位置W估计量Width, 宽度Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验Wild point, 野点/狂点Wild value, 野值/狂值Winsorized mean, 缩尾均值Withdraw, 失访Youden's index, 尤登指数Z test, Z检验Zero correlation, 零相关Z-transformation, Z变换。
Linear Systems and Control
Linear Systems and Control Linear systems and control are essential concepts in the field of engineering, particularly in the areas of electrical, mechanical, and aerospace engineering. These concepts play a crucial role in designing and analyzing systems to ensure stability, performance, and robustness. Linear systems are characterized by their linearity, which means that they obey the principle of superposition and homogeneity. This allows engineers to use mathematical tools such as Laplace transforms and transfer functions to model and analyze the behavior of these systems. Control theory, on the other hand, deals with the design of systems that can manipulate the behavior of a dynamic system to achieve a desired outcome. This can involve stabilizing unstable systems, tracking reference signals, or rejecting disturbances. Control systems can be classified into two main categories: open-loop and closed-loop systems. Open-loop systems do not take feedback into account, while closed-loop systems use feedback to adjust the system's behavior based onits output. This feedback mechanism is crucial for ensuring that the system performs as desired in the presence of uncertainties and disturbances. One of the key challenges in designing control systems for linear systems is ensuring stability. A system is said to be stable if its output remains bounded for any bounded input. This is a critical requirement for ensuring that the system does not exhibit erratic behavior or become uncontrollable. Engineers use tools such as the Routh-Hurwitz criterion and the Nyquist stability criterion to analyze the stability of linear systems and design controllers that guarantee stability under various operating conditions. In addition to stability, control systems must also meet performance specifications such as speed of response, accuracy, and robustness. Performance specifications are often conflicting, requiring engineers to make trade-offs between different criteria. For example, increasing the speed of response may lead to a decrease in stability margins, while improving accuracy may require more complex control algorithms. Engineers must carefully balance these trade-offs to design control systems that meet the desired performance specifications. Robustness is another important aspect of control system design, especially in the presence of uncertainties and disturbances. Robust control systems are able to maintain stability and performance even in the face of varyingoperating conditions and uncertainties in the system model. Engineers usetechniques such as H-infinity control and robust control design to ensure that the system remains stable and performs satisfactorily under a wide range of conditions. Overall, linear systems and control play a crucial role in the design and analysis of engineering systems. By understanding the principles of linearity, stability, performance, and robustness, engineers can develop control systems that meet the desired specifications and ensure the reliable operation of complex systems. The field of linear systems and control continues to evolve, with new techniques and algorithms being developed to address the challenges of modern engineering systems. It is an exciting and dynamic field that offers endless opportunities forinnovation and discovery.。
2. Linear Systems of Equations and Gaussian Elimination
(2.2)
amn
The steps of Gaussian elimination are carried out by elementary row operations applied to the augmented matrix. These are:
3
(1) Any row of the matrix may be multiplied throughout by any nonzero number. (2) Any two rows of the matrix may be interchanged. (3) Any multiple of one row may be added to another row.
Linear Algebra and Matrix Theory
Chapter 1 - Linear Systems, Matrices and Determinants
This is a very brief outline of some basic definitions and theorems of linear algebra. We will assume that you know elementary facts such as how to add two matrices, how to multiply a matrix by a number, how to multiply two matrices, what an identity matrix is, and what a solution of a linear system of equations is. Hardly any of the theorems will be proved. More complete treatments may be found in the following references.
线性控制系统-现代控制理论基础
第1章 现代控制理论基础
1.1 线性系统的状态空间描述 State Space Description
设系统动态方程为
x Ax Bu y Cx Du
u Rm yRp
状态解:x(t) eA(tt0 ) x(t0 )
t e A(t ) Bu( )d
t0
转移矩阵(定义):(t t0 ) e A(tt0 )
, rank0 n (矩阵及秩)
CAn1
(2)
rank
sI
C
A
n,
s
(复域)
输出能控:线性定常系统输出完全能控的充分必要 条件是:
rank[D CB CAB
CAn1B]m(nrr) m
1.4 标准形 Standard form, Canonical form
x(t
)
xc xc
(t) (t)
A11 0
A12 A22
xc xc
(t ) (t)
B1 0
u(t
)
y(t) C1
C2
xc xc
(t ) (t)
例1: x1 1 0 0 x1 1
P1
Pc1
P1 A
,
P1 0
0
P1
An1
1
U
1 c
0
0
1 b Ab
An1b1
x Pc x Ac Pc1 APc bc Pc1b cc cPc
New Lyapunov–Krasovskii functionals for stability of linear retarded and neutral type systems
x ˙(t ) = y(t );
y(t ) =
i=1
Di y(t − hi ) +
i=0
Ai x(t − hi ):
(2)
The latter can be represented in the form of descriptor system with discrete and distributed delay in the “fast variable” y:
i=1
x(t ) y(t )
+ V 1 + V2 ;
(4)
I 0 ; 0 0
m t t −hi
P=
P1 P2
0 ; P3
T P1 = P1 ¿0;() (6)yT (s)Qi y(s) d s;
Qi ¿0
and
m
V2 =
i=1
0 −hi
t t +Â
yT (s)Ri y(s) d s d Â;
Ri ¿0:
E. Fridman ∗
Department of Electrical Engineering-Systems, Tel Aviv University, Tel Aviv 69978, Israel Received 10 September 2000; received in revised form 14 February 2001
m m m
x ˙(t ) = y(t );
0 = − y(t ) +
i=1
D i y (t − h i ) +
i=0
Ai
x(t ) −
i=1
Ai
t t −hi
y(s) d s:
2Stochastic averaging of quasi-generalized Hamiltonian systems
ABSTRACT
A stochastic averaging method for generalized Hamiltonian systems (GHS) subject to light dampings and weak stochastic excitations is proposed. First, the GHS are briefly reviewed and classified into five classes, i.e., non-integrable GHS, completely integrable and non-resonant GHS, completely integrable and resonant GHS, partially integrable and non-resonant GHS and partially integrable and resonant GHS. Then, the averaged Itoˆ and FPK equations and the drift and diffusion coefficients for the five classes of quasi-GHS are derived. Finally, the stochastic averaging for a nine-dimensional quasi-partially integrable GHS is given to illustrate the application of the proposed procedure, and the results are confirmed by using those from Monte Carlo simulation.
1-s2.0-S0024379513004217-main
Contents lists available at SciVerse ScienceDirect
Linear Algebra and its Applications
/locate/laa
where i = 1, . . . , n. Then we have |x| = T z x, where z = sign x ∈ Y n . For a given interval matrix A = [ A c − A , A c + A ] ∈ IRm×n , and for each vector y ∈ Y m and each vector z ∈ Y n , we introduce the matrices
m
b
b ,
where b, b ∈ R , and b b . The set of all m-by-n interval matrices will be denoted by IRm×n and the set of all m-dimensional interval vectors by IRm . Denote by A c and A the center and radius matrices given by
Ac =
1 2 1 2
( A + A ),
A
= ( A − A ),
2
1
respectively. Then A = [ A c − A , A c + A ]. Similarly, the center and radius vectors are defined as
T.W. ANDERSON (1971). The Statistical Analysis of Time Series. Series in Probability and Ma
425 BibliographyH.A KAIKE(1974).Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes.Annals Institute Statistical Mathematics,vol.26,pp.363-387. B.D.O.A NDERSON and J.B.M OORE(1979).Optimal rmation and System Sciences Series, Prentice Hall,Englewood Cliffs,NJ.T.W.A NDERSON(1971).The Statistical Analysis of Time Series.Series in Probability and Mathematical Statistics,Wiley,New York.R.A NDRE-O BRECHT(1988).A new statistical approach for the automatic segmentation of continuous speech signals.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-36,no1,pp.29-40.R.A NDRE-O BRECHT(1990).Reconnaissance automatique de parole`a partir de segments acoustiques et de mod`e les de Markov cach´e s.Proc.Journ´e es Etude de la Parole,Montr´e al,May1990(in French).R.A NDRE-O BRECHT and H.Y.S U(1988).Three acoustic labellings for phoneme based continuous speech recognition.Proc.Speech’88,Edinburgh,UK,pp.943-950.U.A PPEL and A.VON B RANDT(1983).Adaptive sequential segmentation of piecewise stationary time rmation Sciences,vol.29,no1,pp.27-56.L.A.A ROIAN and H.L EVENE(1950).The effectiveness of quality control procedures.Jal American Statis-tical Association,vol.45,pp.520-529.K.J.A STR¨OM and B.W ITTENMARK(1984).Computer Controlled Systems:Theory and rma-tion and System Sciences Series,Prentice Hall,Englewood Cliffs,NJ.M.B AGSHAW and R.A.J OHNSON(1975a).The effect of serial correlation on the performance of CUSUM tests-Part II.Technometrics,vol.17,no1,pp.73-80.M.B AGSHAW and R.A.J OHNSON(1975b).The influence of reference values and estimated variance on the ARL of CUSUM tests.Jal Royal Statistical Society,vol.37(B),no3,pp.413-420.M.B AGSHAW and R.A.J OHNSON(1977).Sequential procedures for detecting parameter changes in a time-series model.Jal American Statistical Association,vol.72,no359,pp.593-597.R.K.B ANSAL and P.P APANTONI-K AZAKOS(1986).An algorithm for detecting a change in a stochastic process.IEEE rmation Theory,vol.IT-32,no2,pp.227-235.G.A.B ARNARD(1959).Control charts and stochastic processes.Jal Royal Statistical Society,vol.B.21, pp.239-271.A.E.B ASHARINOV andB.S.F LEISHMAN(1962).Methods of the statistical sequential analysis and their radiotechnical applications.Sovetskoe Radio,Moscow(in Russian).M.B ASSEVILLE(1978).D´e viations par rapport au maximum:formules d’arrˆe t et martingales associ´e es. Compte-rendus du S´e minaire de Probabilit´e s,Universit´e de Rennes I.M.B ASSEVILLE(1981).Edge detection using sequential methods for change in level-Part II:Sequential detection of change in mean.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-29,no1,pp.32-50.426B IBLIOGRAPHY M.B ASSEVILLE(1982).A survey of statistical failure detection techniques.In Contribution`a la D´e tectionS´e quentielle de Ruptures de Mod`e les Statistiques,Th`e se d’Etat,Universit´e de Rennes I,France(in English). M.B ASSEVILLE(1986).The two-models approach for the on-line detection of changes in AR processes. In Detection of Abrupt Changes in Signals and Dynamical Systems(M.Basseville,A.Benveniste,eds.). Lecture Notes in Control and Information Sciences,LNCIS77,Springer,New York,pp.169-215.M.B ASSEVILLE(1988).Detecting changes in signals and systems-A survey.Automatica,vol.24,pp.309-326.M.B ASSEVILLE(1989).Distance measures for signal processing and pattern recognition.Signal Process-ing,vol.18,pp.349-369.M.B ASSEVILLE and A.B ENVENISTE(1983a).Design and comparative study of some sequential jump detection algorithms for digital signals.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-31, no3,pp.521-535.M.B ASSEVILLE and A.B ENVENISTE(1983b).Sequential detection of abrupt changes in spectral charac-teristics of digital signals.IEEE rmation Theory,vol.IT-29,no5,pp.709-724.M.B ASSEVILLE and A.B ENVENISTE,eds.(1986).Detection of Abrupt Changes in Signals and Dynamical Systems.Lecture Notes in Control and Information Sciences,LNCIS77,Springer,New York.M.B ASSEVILLE and I.N IKIFOROV(1991).A unified framework for statistical change detection.Proc.30th IEEE Conference on Decision and Control,Brighton,UK.M.B ASSEVILLE,B.E SPIAU and J.G ASNIER(1981).Edge detection using sequential methods for change in level-Part I:A sequential edge detection algorithm.IEEE Trans.Acoustics,Speech,Signal Processing, vol.ASSP-29,no1,pp.24-31.M.B ASSEVILLE, A.B ENVENISTE and G.M OUSTAKIDES(1986).Detection and diagnosis of abrupt changes in modal characteristics of nonstationary digital signals.IEEE rmation Theory,vol.IT-32,no3,pp.412-417.M.B ASSEVILLE,A.B ENVENISTE,G.M OUSTAKIDES and A.R OUG´E E(1987a).Detection and diagnosis of changes in the eigenstructure of nonstationary multivariable systems.Automatica,vol.23,no3,pp.479-489. M.B ASSEVILLE,A.B ENVENISTE,G.M OUSTAKIDES and A.R OUG´E E(1987b).Optimal sensor location for detecting changes in dynamical behavior.IEEE Trans.Automatic Control,vol.AC-32,no12,pp.1067-1075.M.B ASSEVILLE,A.B ENVENISTE,B.G ACH-D EVAUCHELLE,M.G OURSAT,D.B ONNECASE,P.D OREY, M.P REVOSTO and M.O LAGNON(1993).Damage monitoring in vibration mechanics:issues in diagnos-tics and predictive maintenance.Mechanical Systems and Signal Processing,vol.7,no5,pp.401-423.R.V.B EARD(1971).Failure Accommodation in Linear Systems through Self-reorganization.Ph.D.Thesis, Dept.Aeronautics and Astronautics,MIT,Cambridge,MA.A.B ENVENISTE and J.J.F UCHS(1985).Single sample modal identification of a nonstationary stochastic process.IEEE Trans.Automatic Control,vol.AC-30,no1,pp.66-74.A.B ENVENISTE,M.B ASSEVILLE and G.M OUSTAKIDES(1987).The asymptotic local approach to change detection and model validation.IEEE Trans.Automatic Control,vol.AC-32,no7,pp.583-592.A.B ENVENISTE,M.M ETIVIER and P.P RIOURET(1990).Adaptive Algorithms and Stochastic Approxima-tions.Series on Applications of Mathematics,(A.V.Balakrishnan,I.Karatzas,M.Yor,eds.).Springer,New York.A.B ENVENISTE,M.B ASSEVILLE,L.E L G HAOUI,R.N IKOUKHAH and A.S.W ILLSKY(1992).An optimum robust approach to statistical failure detection and identification.IFAC World Conference,Sydney, July1993.B IBLIOGRAPHY427 R.H.B ERK(1973).Some asymptotic aspects of sequential analysis.Annals Statistics,vol.1,no6,pp.1126-1138.R.H.B ERK(1975).Locally most powerful sequential test.Annals Statistics,vol.3,no2,pp.373-381.P.B ILLINGSLEY(1968).Convergence of Probability Measures.Wiley,New York.A.F.B ISSELL(1969).Cusum techniques for quality control.Applied Statistics,vol.18,pp.1-30.M.E.B IVAIKOV(1991).Control of the sample size for recursive estimation of parameters subject to abrupt changes.Automation and Remote Control,no9,pp.96-103.R.E.B LAHUT(1987).Principles and Practice of Information Theory.Addison-Wesley,Reading,MA.I.F.B LAKE and W.C.L INDSEY(1973).Level-crossing problems for random processes.IEEE r-mation Theory,vol.IT-19,no3,pp.295-315.G.B ODENSTEIN and H.M.P RAETORIUS(1977).Feature extraction from the encephalogram by adaptive segmentation.Proc.IEEE,vol.65,pp.642-652.T.B OHLIN(1977).Analysis of EEG signals with changing spectra using a short word Kalman estimator. Mathematical Biosciences,vol.35,pp.221-259.W.B¨OHM and P.H ACKL(1990).Improved bounds for the average run length of control charts based on finite weighted sums.Annals Statistics,vol.18,no4,pp.1895-1899.T.B OJDECKI and J.H OSZA(1984).On a generalized disorder problem.Stochastic Processes and their Applications,vol.18,pp.349-359.L.I.B ORODKIN and V.V.M OTTL’(1976).Algorithm forfinding the jump times of random process equation parameters.Automation and Remote Control,vol.37,no6,Part1,pp.23-32.A.A.B OROVKOV(1984).Theory of Mathematical Statistics-Estimation and Hypotheses Testing,Naouka, Moscow(in Russian).Translated in French under the title Statistique Math´e matique-Estimation et Tests d’Hypoth`e ses,Mir,Paris,1987.G.E.P.B OX and G.M.J ENKINS(1970).Time Series Analysis,Forecasting and Control.Series in Time Series Analysis,Holden-Day,San Francisco.A.VON B RANDT(1983).Detecting and estimating parameters jumps using ladder algorithms and likelihood ratio test.Proc.ICASSP,Boston,MA,pp.1017-1020.A.VON B RANDT(1984).Modellierung von Signalen mit Sprunghaft Ver¨a nderlichem Leistungsspektrum durch Adaptive Segmentierung.Doctor-Engineer Dissertation,M¨u nchen,RFA(in German).S.B RAUN,ed.(1986).Mechanical Signature Analysis-Theory and Applications.Academic Press,London. L.B REIMAN(1968).Probability.Series in Statistics,Addison-Wesley,Reading,MA.G.S.B RITOV and L.A.M IRONOVSKI(1972).Diagnostics of linear systems of automatic regulation.Tekh. Kibernetics,vol.1,pp.76-83.B.E.B RODSKIY and B.S.D ARKHOVSKIY(1992).Nonparametric Methods in Change-point Problems. Kluwer Academic,Boston.L.D.B ROEMELING(1982).Jal Econometrics,vol.19,Special issue on structural change in Econometrics. L.D.B ROEMELING and H.T SURUMI(1987).Econometrics and Structural Change.Dekker,New York. D.B ROOK and D.A.E VANS(1972).An approach to the probability distribution of Cusum run length. Biometrika,vol.59,pp.539-550.J.B RUNET,D.J AUME,M.L ABARR`E RE,A.R AULT and M.V ERG´E(1990).D´e tection et Diagnostic de Pannes.Trait´e des Nouvelles Technologies,S´e rie Diagnostic et Maintenance,Herm`e s,Paris(in French).428B IBLIOGRAPHY S.P.B RUZZONE and M.K AVEH(1984).Information tradeoffs in using the sample autocorrelation function in ARMA parameter estimation.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-32,no4, pp.701-715.A.K.C AGLAYAN(1980).Necessary and sufficient conditions for detectability of jumps in linear systems. IEEE Trans.Automatic Control,vol.AC-25,no4,pp.833-834.A.K.C AGLAYAN and R.E.L ANCRAFT(1983).Reinitialization issues in fault tolerant systems.Proc.Amer-ican Control Conf.,pp.952-955.A.K.C AGLAYAN,S.M.A LLEN and K.W EHMULLER(1988).Evaluation of a second generation reconfigu-ration strategy for aircraftflight control systems subjected to actuator failure/surface damage.Proc.National Aerospace and Electronic Conference,Dayton,OH.P.E.C AINES(1988).Linear Stochastic Systems.Series in Probability and Mathematical Statistics,Wiley, New York.M.J.C HEN and J.P.N ORTON(1987).Estimation techniques for tracking rapid parameter changes.Intern. Jal Control,vol.45,no4,pp.1387-1398.W.K.C HIU(1974).The economic design of cusum charts for controlling normal mean.Applied Statistics, vol.23,no3,pp.420-433.E.Y.C HOW(1980).A Failure Detection System Design Methodology.Ph.D.Thesis,M.I.T.,L.I.D.S.,Cam-bridge,MA.E.Y.C HOW and A.S.W ILLSKY(1984).Analytical redundancy and the design of robust failure detection systems.IEEE Trans.Automatic Control,vol.AC-29,no3,pp.689-691.Y.S.C HOW,H.R OBBINS and D.S IEGMUND(1971).Great Expectations:The Theory of Optimal Stop-ping.Houghton-Mifflin,Boston.R.N.C LARK,D.C.F OSTH and V.M.W ALTON(1975).Detection of instrument malfunctions in control systems.IEEE Trans.Aerospace Electronic Systems,vol.AES-11,pp.465-473.A.C OHEN(1987).Biomedical Signal Processing-vol.1:Time and Frequency Domain Analysis;vol.2: Compression and Automatic Recognition.CRC Press,Boca Raton,FL.J.C ORGE and F.P UECH(1986).Analyse du rythme cardiaque foetal par des m´e thodes de d´e tection de ruptures.Proc.7th INRIA Int.Conf.Analysis and optimization of Systems.Antibes,FR(in French).D.R.C OX and D.V.H INKLEY(1986).Theoretical Statistics.Chapman and Hall,New York.D.R.C OX and H.D.M ILLER(1965).The Theory of Stochastic Processes.Wiley,New York.S.V.C ROWDER(1987).A simple method for studying run-length distributions of exponentially weighted moving average charts.Technometrics,vol.29,no4,pp.401-407.H.C S¨ORG¨O and L.H ORV´ATH(1988).Nonparametric methods for change point problems.In Handbook of Statistics(P.R.Krishnaiah,C.R.Rao,eds.),vol.7,Elsevier,New York,pp.403-425.R.B.D AVIES(1973).Asymptotic inference in stationary gaussian time series.Advances Applied Probability, vol.5,no3,pp.469-497.J.C.D ECKERT,M.N.D ESAI,J.J.D EYST and A.S.W ILLSKY(1977).F-8DFBW sensor failure identification using analytical redundancy.IEEE Trans.Automatic Control,vol.AC-22,no5,pp.795-803.M.H.D E G ROOT(1970).Optimal Statistical Decisions.Series in Probability and Statistics,McGraw-Hill, New York.J.D ESHAYES and D.P ICARD(1979).Tests de ruptures dans un mod`e pte-Rendus de l’Acad´e mie des Sciences,vol.288,Ser.A,pp.563-566(in French).B IBLIOGRAPHY429 J.D ESHAYES and D.P ICARD(1983).Ruptures de Mod`e les en Statistique.Th`e ses d’Etat,Universit´e deParis-Sud,Orsay,France(in French).J.D ESHAYES and D.P ICARD(1986).Off-line statistical analysis of change-point models using non para-metric and likelihood methods.In Detection of Abrupt Changes in Signals and Dynamical Systems(M. Basseville,A.Benveniste,eds.).Lecture Notes in Control and Information Sciences,LNCIS77,Springer, New York,pp.103-168.B.D EVAUCHELLE-G ACH(1991).Diagnostic M´e canique des Fatigues sur les Structures Soumises`a des Vibrations en Ambiance de Travail.Th`e se de l’Universit´e Paris IX Dauphine(in French).B.D EVAUCHELLE-G ACH,M.B ASSEVILLE and A.B ENVENISTE(1991).Diagnosing mechanical changes in vibrating systems.Proc.SAFEPROCESS’91,Baden-Baden,FRG,pp.85-89.R.D I F RANCESCO(1990).Real-time speech segmentation using pitch and convexity jump models:applica-tion to variable rate speech coding.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-38,no5, pp.741-748.X.D ING and P.M.F RANK(1990).Fault detection via factorization approach.Systems and Control Letters, vol.14,pp.431-436.J.L.D OOB(1953).Stochastic Processes.Wiley,New York.V.D RAGALIN(1988).Asymptotic solutions in detecting a change in distribution under an unknown param-eter.Statistical Problems of Control,Issue83,Vilnius,pp.45-52.B.D UBUISSON(1990).Diagnostic et Reconnaissance des Formes.Trait´e des Nouvelles Technologies,S´e rie Diagnostic et Maintenance,Herm`e s,Paris(in French).A.J.D UNCAN(1986).Quality Control and Industrial Statistics,5th edition.Richard D.Irwin,Inc.,Home-wood,IL.J.D URBIN(1971).Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov test.Jal Applied Probability,vol.8,pp.431-453.J.D URBIN(1985).Thefirst passage density of the crossing of a continuous Gaussian process to a general boundary.Jal Applied Probability,vol.22,no1,pp.99-122.A.E MAMI-N AEINI,M.M.A KHTER and S.M.R OCK(1988).Effect of model uncertainty on failure detec-tion:the threshold selector.IEEE Trans.Automatic Control,vol.AC-33,no12,pp.1106-1115.J.D.E SARY,F.P ROSCHAN and D.W.W ALKUP(1967).Association of random variables with applications. Annals Mathematical Statistics,vol.38,pp.1466-1474.W.D.E WAN and K.W.K EMP(1960).Sampling inspection of continuous processes with no autocorrelation between successive results.Biometrika,vol.47,pp.263-280.G.F AVIER and A.S MOLDERS(1984).Adaptive smoother-predictors for tracking maneuvering targets.Proc. 23rd Conf.Decision and Control,Las Vegas,NV,pp.831-836.W.F ELLER(1966).An Introduction to Probability Theory and Its Applications,vol.2.Series in Probability and Mathematical Statistics,Wiley,New York.R.A.F ISHER(1925).Theory of statistical estimation.Proc.Cambridge Philosophical Society,vol.22, pp.700-725.M.F ISHMAN(1988).Optimization of the algorithm for the detection of a disorder,based on the statistic of exponential smoothing.In Statistical Problems of Control,Issue83,Vilnius,pp.146-151.R.F LETCHER(1980).Practical Methods of Optimization,2volumes.Wiley,New York.P.M.F RANK(1990).Fault diagnosis in dynamic systems using analytical and knowledge based redundancy -A survey and new results.Automatica,vol.26,pp.459-474.430B IBLIOGRAPHY P.M.F RANK(1991).Enhancement of robustness in observer-based fault detection.Proc.SAFEPRO-CESS’91,Baden-Baden,FRG,pp.275-287.P.M.F RANK and J.W¨UNNENBERG(1989).Robust fault diagnosis using unknown input observer schemes. In Fault Diagnosis in Dynamic Systems-Theory and Application(R.Patton,P.Frank,R.Clark,eds.). International Series in Systems and Control Engineering,Prentice Hall International,London,UK,pp.47-98.K.F UKUNAGA(1990).Introduction to Statistical Pattern Recognition,2d ed.Academic Press,New York. S.I.G ASS(1958).Linear Programming:Methods and Applications.McGraw Hill,New York.W.G E and C.Z.F ANG(1989).Extended robust observation approach for failure isolation.Int.Jal Control, vol.49,no5,pp.1537-1553.W.G ERSCH(1986).Two applications of parametric time series modeling methods.In Mechanical Signature Analysis-Theory and Applications(S.Braun,ed.),chap.10.Academic Press,London.J.J.G ERTLER(1988).Survey of model-based failure detection and isolation in complex plants.IEEE Control Systems Magazine,vol.8,no6,pp.3-11.J.J.G ERTLER(1991).Analytical redundancy methods in fault detection and isolation.Proc.SAFEPRO-CESS’91,Baden-Baden,FRG,pp.9-22.B.K.G HOSH(1970).Sequential Tests of Statistical Hypotheses.Addison-Wesley,Cambridge,MA.I.N.G IBRA(1975).Recent developments in control charts techniques.Jal Quality Technology,vol.7, pp.183-192.J.P.G ILMORE and R.A.M C K ERN(1972).A redundant strapdown inertial reference unit(SIRU).Jal Space-craft,vol.9,pp.39-47.M.A.G IRSHICK and H.R UBIN(1952).A Bayes approach to a quality control model.Annals Mathematical Statistics,vol.23,pp.114-125.A.L.G OEL and S.M.W U(1971).Determination of the ARL and a contour nomogram for CUSUM charts to control normal mean.Technometrics,vol.13,no2,pp.221-230.P.L.G OLDSMITH and H.W HITFIELD(1961).Average run lengths in cumulative chart quality control schemes.Technometrics,vol.3,pp.11-20.G.C.G OODWIN and K.S.S IN(1984).Adaptive Filtering,Prediction and rmation and System Sciences Series,Prentice Hall,Englewood Cliffs,NJ.R.M.G RAY and L.D.D AVISSON(1986).Random Processes:a Mathematical Approach for Engineers. Information and System Sciences Series,Prentice Hall,Englewood Cliffs,NJ.C.G UEGUEN and L.L.S CHARF(1980).Exact maximum likelihood identification for ARMA models:a signal processing perspective.Proc.1st EUSIPCO,Lausanne.D.E.G USTAFSON, A.S.W ILLSKY,J.Y.W ANG,M.C.L ANCASTER and J.H.T RIEBWASSER(1978). ECG/VCG rhythm diagnosis using statistical signal analysis.Part I:Identification of persistent rhythms. Part II:Identification of transient rhythms.IEEE Trans.Biomedical Engineering,vol.BME-25,pp.344-353 and353-361.F.G USTAFSSON(1991).Optimal segmentation of linear regression parameters.Proc.IFAC/IFORS Symp. Identification and System Parameter Estimation,Budapest,pp.225-229.T.H¨AGGLUND(1983).New Estimation Techniques for Adaptive Control.Ph.D.Thesis,Lund Institute of Technology,Lund,Sweden.T.H¨AGGLUND(1984).Adaptive control of systems subject to large parameter changes.Proc.IFAC9th World Congress,Budapest.B IBLIOGRAPHY431 P.H ALL and C.C.H EYDE(1980).Martingale Limit Theory and its Application.Probability and Mathemat-ical Statistics,a Series of Monographs and Textbooks,Academic Press,New York.W.J.H ALL,R.A.W IJSMAN and J.K.G HOSH(1965).The relationship between sufficiency and invariance with applications in sequential analysis.Ann.Math.Statist.,vol.36,pp.576-614.E.J.H ANNAN and M.D EISTLER(1988).The Statistical Theory of Linear Systems.Series in Probability and Mathematical Statistics,Wiley,New York.J.D.H EALY(1987).A note on multivariate CuSum procedures.Technometrics,vol.29,pp.402-412.D.M.H IMMELBLAU(1970).Process Analysis by Statistical Methods.Wiley,New York.D.M.H IMMELBLAU(1978).Fault Detection and Diagnosis in Chemical and Petrochemical Processes. Chemical Engineering Monographs,vol.8,Elsevier,Amsterdam.W.G.S.H INES(1976a).A simple monitor of a system with sudden parameter changes.IEEE r-mation Theory,vol.IT-22,no2,pp.210-216.W.G.S.H INES(1976b).Improving a simple monitor of a system with sudden parameter changes.IEEE rmation Theory,vol.IT-22,no4,pp.496-499.D.V.H INKLEY(1969).Inference about the intersection in two-phase regression.Biometrika,vol.56,no3, pp.495-504.D.V.H INKLEY(1970).Inference about the change point in a sequence of random variables.Biometrika, vol.57,no1,pp.1-17.D.V.H INKLEY(1971).Inference about the change point from cumulative sum-tests.Biometrika,vol.58, no3,pp.509-523.D.V.H INKLEY(1971).Inference in two-phase regression.Jal American Statistical Association,vol.66, no336,pp.736-743.J.R.H UDDLE(1983).Inertial navigation system error-model considerations in Kalmanfiltering applica-tions.In Control and Dynamic Systems(C.T.Leondes,ed.),Academic Press,New York,pp.293-339.J.S.H UNTER(1986).The exponentially weighted moving average.Jal Quality Technology,vol.18,pp.203-210.I.A.I BRAGIMOV and R.Z.K HASMINSKII(1981).Statistical Estimation-Asymptotic Theory.Applications of Mathematics Series,vol.16.Springer,New York.R.I SERMANN(1984).Process fault detection based on modeling and estimation methods-A survey.Auto-matica,vol.20,pp.387-404.N.I SHII,A.I WATA and N.S UZUMURA(1979).Segmentation of nonstationary time series.Int.Jal Systems Sciences,vol.10,pp.883-894.J.E.J ACKSON and R.A.B RADLEY(1961).Sequential and tests.Annals Mathematical Statistics, vol.32,pp.1063-1077.B.J AMES,K.L.J AMES and D.S IEGMUND(1988).Conditional boundary crossing probabilities with appli-cations to change-point problems.Annals Probability,vol.16,pp.825-839.M.K.J EERAGE(1990).Reliability analysis of fault-tolerant IMU architectures with redundant inertial sen-sors.IEEE Trans.Aerospace and Electronic Systems,vol.AES-5,no.7,pp.23-27.N.L.J OHNSON(1961).A simple theoretical approach to cumulative sum control charts.Jal American Sta-tistical Association,vol.56,pp.835-840.N.L.J OHNSON and F.C.L EONE(1962).Cumulative sum control charts:mathematical principles applied to their construction and use.Parts I,II,III.Industrial Quality Control,vol.18,pp.15-21;vol.19,pp.29-36; vol.20,pp.22-28.432B IBLIOGRAPHY R.A.J OHNSON and M.B AGSHAW(1974).The effect of serial correlation on the performance of CUSUM tests-Part I.Technometrics,vol.16,no.1,pp.103-112.H.L.J ONES(1973).Failure Detection in Linear Systems.Ph.D.Thesis,Dept.Aeronautics and Astronautics, MIT,Cambridge,MA.R.H.J ONES,D.H.C ROWELL and L.E.K APUNIAI(1970).Change detection model for serially correlated multivariate data.Biometrics,vol.26,no2,pp.269-280.M.J URGUTIS(1984).Comparison of the statistical properties of the estimates of the change times in an autoregressive process.In Statistical Problems of Control,Issue65,Vilnius,pp.234-243(in Russian).T.K AILATH(1980).Linear rmation and System Sciences Series,Prentice Hall,Englewood Cliffs,NJ.L.V.K ANTOROVICH and V.I.K RILOV(1958).Approximate Methods of Higher Analysis.Interscience,New York.S.K ARLIN and H.M.T AYLOR(1975).A First Course in Stochastic Processes,2d ed.Academic Press,New York.S.K ARLIN and H.M.T AYLOR(1981).A Second Course in Stochastic Processes.Academic Press,New York.D.K AZAKOS and P.P APANTONI-K AZAKOS(1980).Spectral distance measures between gaussian pro-cesses.IEEE Trans.Automatic Control,vol.AC-25,no5,pp.950-959.K.W.K EMP(1958).Formula for calculating the operating characteristic and average sample number of some sequential tests.Jal Royal Statistical Society,vol.B-20,no2,pp.379-386.K.W.K EMP(1961).The average run length of the cumulative sum chart when a V-mask is used.Jal Royal Statistical Society,vol.B-23,pp.149-153.K.W.K EMP(1967a).Formal expressions which can be used for the determination of operating character-istics and average sample number of a simple sequential test.Jal Royal Statistical Society,vol.B-29,no2, pp.248-262.K.W.K EMP(1967b).A simple procedure for determining upper and lower limits for the average sample run length of a cumulative sum scheme.Jal Royal Statistical Society,vol.B-29,no2,pp.263-265.D.P.K ENNEDY(1976).Some martingales related to cumulative sum tests and single server queues.Stochas-tic Processes and Appl.,vol.4,pp.261-269.T.H.K ERR(1980).Statistical analysis of two-ellipsoid overlap test for real time failure detection.IEEE Trans.Automatic Control,vol.AC-25,no4,pp.762-772.T.H.K ERR(1982).False alarm and correct detection probabilities over a time interval for restricted classes of failure detection algorithms.IEEE rmation Theory,vol.IT-24,pp.619-631.T.H.K ERR(1987).Decentralizedfiltering and redundancy management for multisensor navigation.IEEE Trans.Aerospace and Electronic systems,vol.AES-23,pp.83-119.Minor corrections on p.412and p.599 (May and July issues,respectively).R.A.K HAN(1978).Wald’s approximations to the average run length in cusum procedures.Jal Statistical Planning and Inference,vol.2,no1,pp.63-77.R.A.K HAN(1979).Somefirst passage problems related to cusum procedures.Stochastic Processes and Applications,vol.9,no2,pp.207-215.R.A.K HAN(1981).A note on Page’s two-sided cumulative sum procedures.Biometrika,vol.68,no3, pp.717-719.B IBLIOGRAPHY433 V.K IREICHIKOV,V.M ANGUSHEV and I.N IKIFOROV(1990).Investigation and application of CUSUM algorithms to monitoring of sensors.In Statistical Problems of Control,Issue89,Vilnius,pp.124-130(in Russian).G.K ITAGAWA and W.G ERSCH(1985).A smoothness prior time-varying AR coefficient modeling of non-stationary covariance time series.IEEE Trans.Automatic Control,vol.AC-30,no1,pp.48-56.N.K LIGIENE(1980).Probabilities of deviations of the change point estimate in statistical models.In Sta-tistical Problems of Control,Issue83,Vilnius,pp.80-86(in Russian).N.K LIGIENE and L.T ELKSNYS(1983).Methods of detecting instants of change of random process prop-erties.Automation and Remote Control,vol.44,no10,Part II,pp.1241-1283.J.K ORN,S.W.G ULLY and A.S.W ILLSKY(1982).Application of the generalized likelihood ratio algorithm to maneuver detection and estimation.Proc.American Control Conf.,Arlington,V A,pp.792-798.P.R.K RISHNAIAH and B.Q.M IAO(1988).Review about estimation of change points.In Handbook of Statistics(P.R.Krishnaiah,C.R.Rao,eds.),vol.7,Elsevier,New York,pp.375-402.P.K UDVA,N.V ISWANADHAM and A.R AMAKRISHNAN(1980).Observers for linear systems with unknown inputs.IEEE Trans.Automatic Control,vol.AC-25,no1,pp.113-115.S.K ULLBACK(1959).Information Theory and Statistics.Wiley,New York(also Dover,New York,1968). K.K UMAMARU,S.S AGARA and T.S¨ODERSTR¨OM(1989).Some statistical methods for fault diagnosis for dynamical systems.In Fault Diagnosis in Dynamic Systems-Theory and Application(R.Patton,P.Frank,R. Clark,eds.).International Series in Systems and Control Engineering,Prentice Hall International,London, UK,pp.439-476.A.K USHNIR,I.N IKIFOROV and I.S AVIN(1983).Statistical adaptive algorithms for automatic detection of seismic signals-Part I:One-dimensional case.In Earthquake Prediction and the Study of the Earth Structure,Naouka,Moscow(Computational Seismology,vol.15),pp.154-159(in Russian).L.L ADELLI(1990).Diffusion approximation for a pseudo-likelihood test process with application to de-tection of change in stochastic system.Stochastics and Stochastics Reports,vol.32,pp.1-25.T.L.L A¨I(1974).Control charts based on weighted sums.Annals Statistics,vol.2,no1,pp.134-147.T.L.L A¨I(1981).Asymptotic optimality of invariant sequential probability ratio tests.Annals Statistics, vol.9,no2,pp.318-333.D.G.L AINIOTIS(1971).Joint detection,estimation,and system identifirmation and Control, vol.19,pp.75-92.M.R.L EADBETTER,G.L INDGREN and H.R OOTZEN(1983).Extremes and Related Properties of Random Sequences and Processes.Series in Statistics,Springer,New York.L.L E C AM(1960).Locally asymptotically normal families of distributions.Univ.California Publications in Statistics,vol.3,pp.37-98.L.L E C AM(1986).Asymptotic Methods in Statistical Decision Theory.Series in Statistics,Springer,New York.E.L.L EHMANN(1986).Testing Statistical Hypotheses,2d ed.Wiley,New York.J.P.L EHOCZKY(1977).Formulas for stopped diffusion processes with stopping times based on the maxi-mum.Annals Probability,vol.5,no4,pp.601-607.H.R.L ERCHE(1980).Boundary Crossing of Brownian Motion.Lecture Notes in Statistics,vol.40,Springer, New York.L.L JUNG(1987).System Identification-Theory for the rmation and System Sciences Series, Prentice Hall,Englewood Cliffs,NJ.。
A comparison between several circuits
Abstract This paper presents a comparison between four vibration-powered generators designed to power standalone systems, such as wireless transducers. Ambient vibrations are converted into electrical energy using piezoelectric materials. The originality of the proposed approaches is based on a particular processing of the voltage delivered by the piezoelectric material, which enhances the electromechanical conversion. The principle of each processing circuit is detailed. Experimental results confirm the predictions given by an electromechanical model: compared to usual generators, the proposed approaches dramatically increase the power of the generators. © 2005 Elsevier B.V. All rights reserved.
Sensors and Actuators A 126 (2006) 405–416
A comparison between several vibration-powered piezoelectric generators for standalone systems
OpenText NetIQ产品说明说明书
Case StudyAt a Glance IndustryChallengeCreate a seamless end-user experience and streamline backend services while moving business-critical solutions to AWS cloud environmentProducts and ServicesNetIQ Identity Manager NetIQ Access Manager NetIQ Identity GovernanceNetIQ Advanced AuthenticationSuccess Highlights• E nriched functionality and seamless access across hybrid environment • Reduced business complexity with seamless end-user experience • Introduced Cloud Bridge for full bi-directional communication in hybrid environment • Increased scalability, flexibility, and cost-predictability with AWS deploymentOpenTextNetIQ supports global digital transformation totransparently bridge business-critical solutions hosted on premises and in AWS cloud environment.Who is OpenText?OpenText™ is one of the world’s largest enterprise software providers. It delivers mission-critical technology and supporting services that help thousands of customers worldwide manage core IT elements of their business so they can run and transform— at the same time. Cyberscurity is an OpenT ext™ line of business.Digital Transformation Drives Move to a SaaS Application ModelOpenText, like many of its customers, is a large organization grown significantly through acquisition. This strategy brought a plethora of tools used in different divisions. T o standardize its corporate identity management, OpenText trusts its own suite of identity and access solutions, under the NetIQ banner. NetIQ Identity Manager by OpenText™ and Access Manager by OpenText™ wereIT-managed in an on-premises environment and evolved more recently to include NetIQ Advanced Authentication by OpenText™ for multi-factor authentication as well as effective website protection.The merger between Micro Focus and HPE Software tripled the size of the organization and introduced new challenges around data hygiene, audit compliance, and security in general. At the same time, there was a definite market move towards a preference forSaaS-based solutions, to relieve the burden and cost of maintaining an on-premises IT environment. Jon Bultmeyer, CTO,Cybersecurity, runs the engineering teams involved in building Cybersecurity SaaS offerings. He works closely with other OpenText teams on the customer delivery model as well as the internal delivery of SaaS versions. He explains: “We found that we were lagging a little in version-currency, just because of the workload involved in an upgrade. To secure, run, and operate a large-scale identity management operation for over 12,000 staff is labor-intensive and time-consuming. This seemed a good opportunity to embrace the digital transformation at the heart of Micro Focus (now part of OpenText) and move our identity and access architecture to an AWS-hosted cloud environment.”“Cloud Bridge really streamlines the transition to SaaS and gives us the observability we need to ensure effective data flows between different systems.”Jon Bultmeyer CTOCyberResOpenTextIntroduce New Functionality and Comprehensive Access Reviewsin Hybrid EnvironmentOpenText took a wider view and introduced the SaaS Center of Excellence (CoE) organization, headed up by David Gahan, Senior Director, Cybersecurity SaaS. Rather than just make a ‘like for like’ move, the team chose to enhance the platform with NetIQ Identity Governance by OpenText™,as well as expanding the NetIQ Advanced Authentication by OpenText™ capability into a SaaS model. Pivoting from a ‘governance first’ principle with a focus on application access reviews, the project aimed to move via automated application access and approval to fully automated application access request and enablement.The full solution would provide seamless connectivity to the company’s key applications: Salesforce to manage customer interactions and order processing; Workday as an integrated HR solution; and NetSuite, which manages business finances and operational support, as well as other business-critical applications. It would also provide the capability to conduct certification reviews. This automated process builds a comprehensive directory of who has access to what. Periodically, all process and solution owners are asked to review their access list for accuracy. Job roles determine the level of access to specific solutions required for individuals. This ‘least privilege’ principle ensures that only colleagues with the right access level can configure the finance platform, for instance, or reach confidential personnel data in Workday.The project was part of the corporate digital transformation and as such had an executive spotlight on it, coupled with a tight delivery deadline of no more than 12 months. Cloud Bridge: Managing FullyIntegrated Identity Governancein a Hybrid EnvironmentOpenText’s own Professional Services skillsand their specific expertise in building thesesystems for Cybersecurity customers wasinvaluable. The SaaS CoE team workedon creating the SaaS infrastructure, andBultmeyer’s engineering teams werebuilding the SaaS applications. Meanwhile,Professional Services implemented NetIQIdentity Governance on premises to kickstartthe application integration, which relied onmany interconnected parts. Because theday-to-day business running takes ultimatepriority, this was a ‘run and transform’ scenariowith a hybrid approach. Key business systemsmoved in phases to the SaaS environmentwhile others remained on premises fornow. It is a challenge to integrate identitygovernance between on-premises and SaaS-based systems, and Cybersecurity wantedfully automated event-driven integration—they recognized that the manual process ofeither CSV file transfers or site-to-site VPNconnections that are offered by some marketalternatives can cause firewall complexities.As this, again, is not a challenge that isunique to OpenText, Bultmeyer’s teamturned its attention to creating the OpenTextCloud Bridge, as he explains: “Cloud Bridgeis a singular communication bridge for allour Cybersecurity SaaS solutions. It allowssecure bi-directional communication betweenon-premises and SaaS systems via a Dockercontainer. There are no special rules whenconfiguring the Cloud Bridge agent,so communication between on-premisesand cloud-based systems can be up andrunning within just an hour. There is just asingle location to monitor, so any issuesare resolved quickly. Cloud Bridge reallystreamlines the transition to SaaS and gives usthe observability we need to ensure effectivedata flows between different systems.”Reduced Business ComplexityWhile Navigating COVID-19Working PracticesOnce the CoE SaaS infrastructure wasoperational, the Professional Services teamtransitioned the on-premises NetIQ IdentityGovernance implementation to the AWSenvironment. The identity governanceenvironment now includes end-to-endintegrated workflows between key systems,integrated password management, singlesign-on, full visibility through Cloud Bridge,and advanced analytics leveraging OpenText™Vertica™ capabilities. Gahan says: “Leveragingour own NetIQ [by OpenText] solutions in aSaaS environment has allowed us to createa seamless end-user experience wherewe were once living in a world made up ofdifferent islands of access. The solutions ouremployees use to service our customers’needs and our own internal needs have beenstandardized, drastically reducing businesscomplexity across the board. It’s given usterrific backend benefits as well by helpingsimplify and standardize the concepts ofidentity and access acrossall of our business units.”“The project timelines coincided with theCOVID-19 pandemic, which presented uswith the same challenges our customersexperienced around the world,” addsBultmeyer. “Suddenly we could no longergather around a whiteboard to brainstorm,and we had to quickly adjust to workingremotely. Thankfully, this didn’t deter ourdetermination, and many teams—includingour Micro Focus (now part of OpenText) ITteam, the dedicated project implementationteam, our product management teams,backline engineering teams, the newlyformed CoE team, and our Customer Successteams—worked seamlessly together toadjust the implementation and manage anyproblems we encountered along the way.”2Enriched Functionalityand Cost Predictability in Flexible AWS DeploymentGahan spearheads the SaaS CoE, a new global organization dedicated to supporting SaaS customers. Leveraging expertise on defining governance policies, designingthe solution, and configuring this in a SaaS environment, the team created a truly hybrid identity governance platform where the end user does not know, nor need to care, whether the data they access resides on-premises or in the cloud. “And this is just how it should be,” Gahan says. “Our end users now benefit from much richer functionality such as seamless multi-factor authentication and sophisticated access review processes, drastically reducing manual processes.”Bultmeyer concludes: “NetIQ [by OpenText™] solutions have simplified our identity governance and shortened our communication lines. We were excited to leverage our strategic partnership with AWS, giving us a scalable and cost-predictable model as we grow, and allowing us to roll out additional functionality much faster than we otherwise could have done.”“NetIQ [by OpenText™] solutions have simplified our identitygovernance and shortened our communication lines.We were excited to leverage our strategic partnership withAWS, giving us a scalable and cost-predictable model aswe grow, and allowing us to roll out additional functionalitymuch faster than we otherwise could have done.”Jon BultmeyerCTOCyberResOpenText Cybersecurity provides comprehensive security solutions for companies and partners of all sizes. From prevention, detection and response to recovery, investigation and compliance, our unified end-to-end platform helps customers build cyber resilience via a holistic security portfolio. Powered by actionable insights from our real-time and contextual threat intelligence, OpenText Cybersecurity customers benefit from high efficacy products, a compliant experience and simplified security to help manage business risk.768-000087-003 | O | 11/23 | © 2023 Open Text。
HASSE DIAGRAM AND DYNAMIC FEEDBACK OF LINEAR SYSTEMS
HASSE DIAGRAM AND DYNAMIC FEEDBACK OFLINEAR SYSTEMSXiaochang Wang ∗Joachim Rosenthal †Department of MathematicsDepartment of Mathematics Texas Tech UniversityUniversity of Notre Dame Lubbock,TX 79409Notre Dame,IN 46556In Computation and Control III ,K.Bowers and J.Lund editors,pages 391–398.c Birkh¨a user Verlag,Boston,1993.1IntroductionThe output feedback pole placement problem of linear systems with static or dynamic compensators belongs to the classical problems in control theory and many theoretical and numerical research papers were already devoted to this problem.Although the considered systems are linear,the problem requires the solution of an over determined system of quadratic polynomial equations.A lot of progress has been made on the static feedback problem.It was Brockett and Byrnes [1]who explained first the pole placement problem with static compensators as an intersection problem in a compactified set of static compensators,the Grassmannian Grass(p,m +p ).In making the connection to the classical Schubert calculus they were able to show that there ared (p,m )=deg Grass(p,m +p )=1!2!···(p −1)!(mp )!m !(m +1)!···(m +p −1)!(1.1)complex static output feedback laws which assign each set of poles for a nondegenerate m -input,p -output linear system of McMillan degree n =mp .In particular if the number d (p,m )is odd,pole assignment by real static feedback is always possible.It follows that the generic system has the arbitrary pole assignability by static output feedback if d (p,m )is odd and mp ≥n .Although this is not true for even d (p,m )as showed by Willems and Hesselink [13],the first author proved in [11]using geometric techniques that a real solution exists for the generic system as soon as mp >n .People have been looking for similar results for the dynamic pole place-ment problem for a long time.Willems and Hesselink [13]proved in 1978thatq (m +p −1)+mp ≥n (1.2)is a necessary condition for generic pole placement by output feedback with dynamic compensator of order q .It had been a conjecture for a long∗Supportedin part by the Research Enhancement Fund from College of Art andSciences,Texas Tech University.†Supported in part by NSF grant DMS-9201263.X.WANG AND J.ROSENTHALtime that (1.2)is also sufficient over C .This conjecture was proved by the second author recently in [8].In [7,8]the second author explained the pole placement problem with dynamic compensators again as an intersection problem in a compactified space of dynamic compensators which we like todenote with K q p,m .It was also proved in [8]that if a plant has McMillandegree n =q (m +p −1)+mp and is q -nondegenerate then there existd (p,m,q )=deg K q p,m (1.3)different complex dynamic feedback compensator of order q which places a set of n +q closed loop poles at a desired location.It follows that if d (p,m,q )is odd and q (m +p −1)+mp ≥n the generic system has the arbitrary pole assignability by dynamic feedback of order q .Unlike the Grassmannian which has been studied over a century,K q p,m islittle known.The formula for deg K q p,m and therefore the number d (p,m,q )has not been found in general.The main result of this paper is that the variety K q p,m has associated aHasse diagram,a certain partially ordered set determined by m ,p and q .In this diagram the number d (p,m,q )can be identified with the number of totally ordered subsets.2Pole Placement Map and the Compactification K q p,m Consider a linear system˙x =Ax +Bu,y =Cx (2.1)where u ,x and y are m ,n and p -vectors.Denote with z a q -vector.Then˙z =F z −Gy,u =Hz −Ky (2.2)describes a dynamic compensator of order q .The closed loop system then becomes ˙ x z = A −BKC BH −GC F x zy =Cx.(2.3)If the realizations of system and compensator are irreducible,the closed loop characteristic polynomial can be written as [6,7,8]p (s )=det sI −A +BKC −BH GC sI −F=det(D (s )F 2(s )+N (s )F 1(s ))=det[F 1(s )F 2(s )] N (s )D (s )392DYNAMIC FEEDBACKwhere D−1(s)N(s)=C(sI−A)−1B and F1(s)F−12(s)=K+H(sI−F)−1Gare left and right coprime fractions of the transfer functions of the system and compensator,respectively.Notice that[F1(s)F2(s)]is a curve in Grass(p,m+p).Leti=(i1,...,i p),1≤i1<···<i p≤m+pand denote withf i(s)=z qi s q+z q−1is q−1+···+z0ithe full size minor of[F1(s)F2(s)]consisting of the i1th through i p th columns.Note that for each number s,f i(s)is exactly the i-the Pl¨u cker co-ordinate of the plane rowsp[F1(s)F2(s)].In addition the set of Pl¨u cker coor-dinates{f i(s)}satisfies a set of quadratic equations defining Grass(p,m+p) in P(m+p p)−1[3]for all s.Equating polynomial coefficients we obtain a set of quadratic equations satisfied by the coordinates{z d i}.As shown in[8] this set of equations defines a projective variety in P N,N=(q+1)m+pp−1,(2.4)which we will denote with K q p,m.Example2.1[7]Grass(2,4)is defined byx12x34−x13x24+x14x23=0(2.5) in P5.Let f ij(s)=z1ij s+z0ij andf12(s)f34(s)−f13(s)f24(s)+f14(s)f23(s)=0.(2.6) The defining equations of K12,2in P11are then given by three quadratic equationsz112z134−z113z124+z114z123=0(2.7) z112z034−z113z024+z114z023+z012z134−z013z124+z014z123=0(2.8)z012z034−z013z024+z014z023=0.(2.9) Because dim K12,2=8one sees in this case that K12,2is a complete inter-section.From B´e zout’s theorem then follows that deg K12,2=8.The closed loop characteristic polynomial p(s)can be written asp(s)=i f i(s)g i(s)=idz d i g i(s)s d(2.10) 393X.WANG AND J.ROSENTHALwhere g i (s )is the full size minor ofN (s )D (s )consisting of the i 1th through i p th rows.Let z =(z d i )∈P N and defineχ(z )= i dz d i g i (s )s d .(2.11)Then χ:K q p,m −E →P n +q is a central projection [9]where E ={z ∈P N |χ(z )=0}(2.12)is the center of χand a polynomial b 0+b 1s +···+b n +q s n +q is identified with the point (b 0,b 1,...,b n +q )∈P n +q .Definition 2.1[8]A system is called q -nondegenerate ifK q p,m ∩E =∅.(2.13)It is proved in [8]that the generic system of degree n is q -nondegenerate ifq (m +p )+mp =n +q.(2.14)For a q -nondegenerate system of McMillan degree n =q (m +p −1)+mp ,the central projection χ:K q p,m →P n +q is a finite morphism [9],andtherefore is onto and there are deg K q p,m points (counted with multiplicity)in χ−1(y )for each y ∈P n +q .Furthermore,since g m +1,m +2,...,m +p (s )isthe only minor of N (s )D (s )having degree n ,all the points in χ−1(y )must have the form [F 1(s ),F 2(s )]with det F 2(s )a polynomial of degree q if yis a polynomial of degree n +q .Therefore there are deg K q p,m dynamiccompensators assigning each characteristic polynomial of degree n +q .If the degree is an odd number,then we can always find a real compensator.3Main ResultWe re-index the coordinates of P N first.Definition 3.1For any i =(i 1,...,i p ),1≤i 1<···<i p ≤m +p and any positive integer d ,d =kp +r ,0≤r <p ,definez d i =z αwhere α=(α1,...,αp )withαl = k (m +p )+i l +r ,for l =1,2,...,p −r (k +1)(m +p )+i l −p +r ,for l =p −r +1,...,p.(3.1)394DYNAMIC FEEDBACK Example3.1z0i=z i.z1i=z(i2,...,i p,i1+m+p).z2i=z(i3,...,i p,i1+m+p,i2+m+p).z p i =z(i1+m+p,...,i p+m+p).z p+1 i =z(i2+m+p,...,i p+m+p,i1+2(m+p)).Definition3.2I(p,m)={α=(α1,...,αp)|1≤α1<···<αp,αp−α1<m+p}.(3.2) On the set I(p,m)we define a partial order:(α1,...,αp)≤(β1,...,βp)if and only ifαl≤βl for all l.Denote in the following with Z(α)the algebraic set defined byZ(α)={z∈K q p,m|zβ=0for allβ≤α}(3.3) and let|α|=l(αl−l).(3.4)Using the cell decomposition of the set of autoregressive systems introduced in[12],one can prove:Proposition3.1Z(α)is a subvariety of dimension|α|.LetLα={z∈P N|zα=0}(3.5) be a linear subspace of P N.Then one has the following Proposition. Proposition3.2Z(α)∩Lα=β≤α,|β|=|α|−1Z(β)(3.6) and the intersection multiplicityι(Z(α)∩Lα;Z(β))=1.(3.7) From B´e zout’s theorem[2,10]then follows395X.WANG AND J.ROSENTHALProposition3.3deg Z(α)=β≤α,|β|=|α|−1deg Z(β)(3.8) Letα(p,m,q)=(α1,...,αp)be defined byαl=k(m+p)+m+l+r,for l=1,2,...,p−r(k+1)(m+p)+m+l−p+r,for l=p−r+1,...,p(3.9)where k and r are the two integers such thatq=kp+r,0≤r<p(3.10) andI(p,m,q)={α∈I(p,m)|α≤α(p,m,q)}.(3.11) In particular one hasK q p,m=Z(α(p,m,q))(3.12) and by Proposition3.3it follows:Theorem3.4The degree of K q p,m is equal to the number of totally ordered subsets of elements in I(p,m,q).4The partially ordered set I(p,m,q)In this section we illustrate the counting procedure for the number of totally ordered subsets on two examples.Recallfirst some standard definitions in combinatorics:Definition4.1[5]αis said to coverβifα>βand there exists noγsuch thatα>γ>β.Definition4.2[5]The Hasse diagram of a partially ordered set is a di-rected graph whose vertices are elements of the set and whose directed edgesα→βare precisely those ordered pairs such thatαcoversβ.Consider the Hasse diagram of I(p,m,q).It has a unique maximum elementα(p,m,q)and a unique minimum element(1,...,p).If we label the vertices in such a way that the number onα(p,m,q)is1and the number on the vertexαis the sum of the numbers on the vertices which cover α.Then the number on(1,2,...,p)is d(p,m,q).The following examples show,how it is possible to calculate the degree of the varieties K12,2and K12,3using elementary counting methods.We want to mention at this point that those numbers agree with the results obtained by the second author using software programs in commutative algebra.(Compare with[7]).396DYNAMIC FEEDBACKExample 4.1The Hasse diagram of K 12,2is given by (4,7)?(4,6) +Q Qs (3,6)(4,5) +Q Q s 2(3,5) +Q Qs 2(2,5)2(3,4) +Q Q s 4(2,4) +Q Qs 4(1,4)4(2,3)Q Q s +8(1,3)?8(1,2)i.e.deg K 12,2=8.Example 4.2The Hasse diagram of K 12,3is given by (5,9)?(5,8) +Q Q s (5,7)(4,8)+Q Qs +2(4,7)(5,6) +Q Qs Q Q s 3(4,6)2(3,7) +Q Qs +5(3,6)3(4,5)Q Q s +Q Qs 8(3,5)5(2,6)Q Q s + +13(2,5)8(3,4)Q Q s +Q Qs 13(1,5)21(2,4)Q Q s + +34(1,4)21(2,3)Q Q s +55(1,3)?55(1,2)i.e.deg K 12,3=55.397X.WANG AND J.ROSENTHALReferences[1]R.W.BROCKETT and C.I.BYRNES,“Multivariable Nyquist Criteria,Root Loci and Pole Placement:A geometric viewpoint,”IEEE Trans.Aut.Control AC-26,1981,pp.271–284.[2]R.HARTSHORNE,Algebraic Geometry,Springer-Verlag,Berlin,1977.[3]W.V.D.HODGE and D.PEGOE,Methods of Algebraic Geometry,Vol.II,University Press,Cambridge,1952.[4]S.L.KLEIMAN,“Problem15.Rigorous Foundation of Schubert’s Enu-merative Calculus,”Proceedings of Symposia in Pure Mathematics,vol.28,1976,pp.445–482.[5]V.KRISHNAMURTHY,Combinatorics:Theory and Applications,El-lis Horwood Limited,England,1986.[6]J.ROSENTHAL,Geometric Methods for Feedback Stabilization of Mul-tivariable Linear Systems,Ph.D.–Thesis,Arizona State University, 1990.[7]J.ROSENTHAL,“On Minimal Order Dynamical Compensators ofLow Order Systems,”Proc.of European Control Conference,Grenoble, France,1991,pp.374–378.[8]J.ROSENTHAL,“On Dynamic Feedback Compensation and Com-pactification of Systems,”SIAM J.Control Optim.,to appear.[9]I.R.SHAFAREVICH,Basic Algebraic Geometry,Springer-Verlag,Berlin,New York,1974.[10]W.VOGEL,Results on B´e zout’s Theorem,Tata Institute of Funda-mental Research,Springer-Verlag,Berlin,New York,1981.[11]X.WANG,“Pole Placement by Static Output Feedback,”Journal ofMath.Systems,Estimation,and Control,vol.2no.2,1992,pp.205–218.[12]X.WANG and J.ROSENTHAL,“A Cell Structure for the Set of Au-toregressive Systems”,preprint.[13]J.C.WILLEMS and W.H.HESSELINK,“Generic Properties of thePole Placement Problem”,Proc.of the IFAC,Helsinki,Finland,1978, pp.1725–1729.398。
自动化专业专业外语单词
abound v. 大量存在accelerate v. 加速active network 有源网络ad hoc 尤其,特定地admissible adj. 允许的advent n. 出现aforementioned adj. 上述的airgap = air gap 气隙algebraic equation 代数方程alignment n. 组合alleviate v. 减轻,缓和altitude n. 海拔amortisseur n. 阻尼器amplifier n. 放大器amplify v. 放大amplitude n. 振幅apparatus n. 装置approach n. 途径方法研究aptness n. 恰当arbitrary adj. 任意的argument n. 辐角,相位armature n. 电枢,衔铁,加固arrival angle 入射角arrival point 汇合点assembly n. 装置,构件assumption n. 假设asymmetric adj. 不对称的asymptote n. 渐进线asymptotically stable渐近稳定at rest 处于平衡状态attain v. 达到,实现autonomous adj.自激的bandwidth n. 带宽become adept in 熟练binary adj. 二进制的bipolar adj. 双向的Boolean algebra 布尔代数bound v. 限制break frequency 转折频率breakdown n. 击穿,雪崩breakover n. 导通brush n. 电刷building blocks 积木cage n. 笼子,笼形capacitor n. 电容器carrier n. 载波,载体cascade n., v. 串联characteristic adj. 特性(的)n. 特性曲线characteristicequation特方程circuitry n. 电路closed-loop n. 闭环coefficient n. 系数coil n. 绕组,线圈;v. 盘绕coincide v. 一致common logarithm 常对数complex adj. 复数的n.复数comprise v. 包含conduction n. 导电,传导configuration n. 构造,结构confine v. 限制…范围内conjugate adj. 共轭的constant matrix 常数矩阵constitute v. 构造,组织constraint n. 强迫,约束constraint n. 约束条件continuum n. 连续controllabillity n. 能控性converge v. 集中,汇聚,收敛core n. 铁心corresponding adj. 相应的criteria n. 判据critically damped 临界阻尼crystal n. 晶体cumulative adj. 累积的damp v. 阻尼,减幅,衰减damping n. 阻尼;adj. 阻尼的decay v. 衰减decibel n. 分贝decouple v. 解耦,退耦deduce v. 演绎demagnetization 去磁,退磁denominator n. 分母dependent variable 应变量depict v. 描述derivation n. 导数deteriorate v. 恶化,变坏deterministic adj. 确定的develop v. 导出,引入difference equation 差分方程differential 差别的,微分的differentiate v. 微分diode n. 二极管discrete adj. 离散的distributed 分散的分布的disturbance n. 扰动,干扰domain n. 域,领域dominate v. 支配,使服从dominating pole 主极点dual adj. 双的,对偶的dutyratio 占空比,功率比dynamic response 动态响应eigenvalue n. 特征根elastic adj. 有弹性的electric charge 电荷eliminate v. 消除,对消elongate v. 延长,拉长emf(electromotive force )电动势emitter n. 发射极encircle v. 环绕enclose v. 围绕encompass v. 包含entail v., n. 负担,需要equation 方程even adj. 偶数的excitation n. 激励exponential adj. 指数的extreme adj. 极端的facilitatev. 使容易,促进factor n. 因子;v. 分解因式factored adj. 可分解的feedback n. 反馈fictitious adj. 假想的field winding n. 励磁绕组field-weakening n. 弱磁filter n. 滤波器,滤波final value 终值firing angle 触发角flip-flop n. 触发器force commutated 强制换向forcing frequency 强制频率formulation n. 公式化forward biased 正向偏置fractional adj. 分数的fractional adj. 小数的fundamental n. 基本原理gate n. 门,门电路general form 一般形式generalize v. 一般化,普及generator n. 发生器,发电机geometry 几何学几何形状globally stable 全局稳定gouge v. 挖gross national product 国民生产总值GTO 门极可关断晶闸管guarantee v., n. 保证,担保hardware n. 硬件harmonics n. 谐波holding current 保持电流homogeneous solution 通解horizontally adv. 水平地horsepower n. 功率horsepower n. 马力,功率Hurwitz criterion 赫尔维茨据hybrid n. 混合identify v. 确认,识别,辨识identity n. 一致性,等式igit n. 位数imaginary axis 虚轴implement v. 实现implementation 实现履行impulse v. 冲激in series 串联incidentally adv. 偶然地increment n. 增量indentation n. 缺口independent variable 自变量inductor n. 电感器infinitesimal adj. 无限小的inhibit v. 抑制initial condition 初始条件initial value 初值insofar as 到这样的程度在……范围内integer n. 整数integral / integrate 积分integrated circuit 集成电路intersect v. 相交interval n. 间隔intrinsic adj. 固有的,本征intrinsic adj. 内在的intuition n. 直觉intuitively adv. 直观地inverse transform 反(逆)变换Kirchhoff’s first law 基尔霍夫第一定律lag v., n. 延迟lagging n. 滞后Laplace transformation拉变换lead n. 导线leading adj. 超前的leakage current 漏电流linearazation n. 线性化locally stable 局域稳定loop current 回路电流lumped adj. 集中的magnitude n. 幅值manipulate v. 处理matrix n. 模型,矩阵matrix algebra 矩阵代数mechanize v. 使机械化merit n. 优点;指标,准则mesh n. 网孔minimize v. (使)最小化minimum phase 最小相位misinterpretation 曲解误译model n. 模型v. 建模modification n. 修正,修改multiplication n. 复合性multiply v. 加倍,倍增multivariable adj. 多变量的multivariable n. 多变量n-dimensional n维的net n. 净值;adj. 净值的network n. 网络,电路neutral adj. 中性的;n. 中性线nonlinear adj. 非线性的notch n. 换相点,换级点numerator n. 分子numerical adj. 数字的observability n. 能观性observable adj. 可观测的odd multiple 奇数倍omit v. 省略on the order of 约为open-loop n. 开环optimal control 最优控制order n. 阶origin n. 原点oscillation n. 振荡outline n. 轮廓;v. 提出……的要点overdamped adj. 过阻尼的overshoot n. 超调量,超调package n. 包parallel n. 类似parameter n. 参数partial fraction expansion 部分分式展开式particular solution 特解passive adj. 被动的,无源的passive network 无源网络peak time 峰值时间performance criteria 性能指标performance index 性能指标periodic adj. 周期性的phase n. 状态,相位phase sequence 相序phase-lag n. 相位滞后phase-plane equation相平面方程pilot n. 飞行员plant n. 机器,设备被控对象plot v. 绘图n. 曲线图polar plot 极坐标图polarity n. 极性polynomial n. 多项式portrait n. 描述positive definite 正定potential n. (电)势power factor 功率因数predictable adj. 可断定的predominance n. 优势prevalent adj. 流行的prevent…from doing 使……不……principal adj. 主要的probability theory 概率论procedure n. 程序,过程product n. 乘积property n. 性质proportional to 与…成正比Pulsate v. 脉动,跳动,振动quadrant n. 象限quadratic adj. 二次的;n. 二次方程qualitatively adv. 定性地quasi adj. 近似的radically adv. 完全地radius n. 半径radix n. 权random adj. 随机的rated adj. 额定的,设计的,适用的rationale n. 理论real axis 实轴recovery n. 恢复rectification n. 整流rectifier n. 整流器regulate v. 调整relay n. 继电器relevance n. 关联remainder n. 余数represent v. 代表,表示resistance n. 阻抗resistor n. 电阻器reveal v. 显现,揭示reverse 反转变换极性的reverse biased 反向偏置rheostat n. 变阻器ripple n. 波纹,波动rise time 上升时间rms = root-mean-square 有效值,方均根rotor n. 转子Routh criterion 劳斯判据rugged adj. 结实的,耐用的sampled-data n. 采样数据saturation n. 饱和scalar adj. 数量的,标量的;n.数量,标量scheme n. 方法,形式,示意图schottky diode 肖基特二极管semicircle n. 半圆形semiconductor n. 半导体sensor n. 传感器settling time 调节时间shaft n. 转轴shifting theorem 平移定理shutdown v. 关闭sign n. 符号significance n. 意义simplicity n. 简单simultaneously adv. 同时地sketch v., n. (绘)草图,素描slip n. 转差(率)slop n. 斜率slot n. 槽SMPS 开关电源snubber n. 缓冲器,减震器spatial adj. 空间的spring n. 弹簧square-wave n. 方波stability n. 稳定性startup n. 启动state variable 状态变量state-controllable 状态可控的stationary adj. 静态的stator n. 定子steady-state n. 稳态step n. 阶跃(信号)stepper motor 步进电动机stimulus n. 刺激,鼓励stochastic adj. 随机的straight-forward 直截了当的,简单的strategy n. 方法superposition n. 叠加supersede v. 取代suppress v. 抑制symbolic 符号的,记号的symmetrical adj. 对称的terminology n. 术语threshold n. 门限,阈限,极限thyratron n. 闸流管thyristor n. 晶闸管time-invariant adj. 时不变的tip n. 顶端tolerant adj. 容许的,容忍的trade deficit 贸易赤字trade off 换取trail-and-error n. 试凑法trajectories n. 轨迹,弹道transient adj. 暂态的,瞬态的,过渡的transient response 暂态响应transistor n. 晶体管triangular adj. 三角的turn n. 匝数tutorial adj. 指导性的underdampted 欠阻尼的undergo v. 经历uniform adj. 一致的variable n. 变量vector n. 矢量vertically adv. 垂直地violently adv. 激烈地voltage drop 电压降winding 缠绕的,线圈,绕组with respect to 相对于workhorse n. 重载,重负荷wound-rotor n. 绕线转子yield v. 推导出,得出。
model bilayer system
Model Bilayer SystemIntroductionThe model bilayer system is a theoretical framework used to study the behavior and properties of a bilayer structure composed of two distinct layers. This system is employed in various fields such as physics, chemistry, and materials science to understand phenomena occurring at the interface between two materials or phases. In this document, we will discuss the key features, applications, and modeling techniques employed in studying the model bilayer system.Key Featuresyer Composition: The model bilayer systemconsists of two layers, each with its own unique properties.These layers can be made up of different materials orphases, enabling the study of interfacial effects andinteractions between diverse substances.2.Interface: The interface between the two layers is ofparticular interest in the model bilayer system. It is at this interface that novel properties and phenomena can arisedue to the differing nature of the adjacent layers.Understanding and characterizing this interface is crucial in comprehending the behavior of the bilayer system as awhole.3.Mechanical Properties: The model bilayer systemallows for the investigation of mechanical properties such as stiffness, flexibility, and deformation behavior. Byvarying the materials in each layer, researchers can probe the effects of different mechanical properties on the overall system.4.Electrical and Optical Properties: Anothersignificant aspect of the model bilayer system is itselectrical and optical properties. By choosing appropriate materials for each layer, researchers can study conductivity, dielectric properties, and light-matter interactions at theinterface.ApplicationsThe model bilayer system finds applications in several scientific and technological domains. Some of the key applications include:1.Thin-Film Solar Cells: Studying the model bilayersystem can provide insights into the behavior of thin-filmsolar cells. By designing a bilayer structure withappropriate materials, researchers can explore ways tooptimize efficiency and light-trapping capabilities.2.Gas Sensing: The model bilayer system can beutilized in the development of gas sensors. By tailoring the composition of each layer, the system’s sensitivity tospecific gases can be controlled, allowing for the selectivedetection of various analytes.3.Membrane Separation: Understanding thebehavior of a bilayer system is crucial in membraneseparation processes. By studying the interactions between two different layers, researchers can improve theselectivity and permeability of membranes for applications such as water purification and gas separation.4.Electronic Devices: The model bilayer system playsa role in the field of electronic devices. By combiningmaterials with different electrical properties, researchers can design and optimize transistors, capacitors, and other electronic components.Modeling TechniquesTo study the model bilayer system, various modeling techniques are employed. These techniques allow researchers to simulate and analyze t he system’s behavior under different conditions. Some commonly used modeling techniques include:1.Molecular Dynamics Simulations: Moleculardynamics simulations employ numerical methods toinvestigate the interaction between atoms and molecules in the bilayer system. This technique is particularly useful for studying the dynamics, structure, and thermodynamicproperties of the system.2.Density Functional Theory: Density functionaltheory is a quantum mechanical modeling approach used to calculate electronic properties and understand theelectronic structure of materials in the bilayer system. This technique provides insights into the system’s electronicbehavior and influences on optical properties.3.Continuum Mechanics Modeling: Continuummechanics modeling treats the bilayer system as acontinuous medium rather than focusing on the atomic andmolecular details. This approach allows for analysis of the system’s mechanical behavior, such as deformation, stress distribution, and fracture properties.4.Monte Carlo Simulations: Monte Carlo simulationsutilize random sampling techniques to model the statistical behavior of the bilayer system. This technique is useful for studying thermodynamic properties, phase transitions, and equilibrium behavior.ConclusionThe model bilayer system provides a versatile framework for studying the properties and behavior of two-layer structures in various scientific disciplines. Its unique features, such as layer composition and interface characteristics, make it a valuable tool for understanding interfacial phenomena and guiding the design of novel materials and devices. By employing diverse modeling techniques, researchers can gain insights into the mechanical, electrical, and optical properties that arise in the model bilayer system.。
Hybrid-lattice系统的精确解
Hybrid-lattice系统的精确解
套格图桑
【期刊名称】《工程数学学报》
【年(卷),期】2008(025)002
【摘要】本文在试探函数法的基础上,给出由指数函数所组成的试探函数法,将其应用于非线性离散系统,借助符号计算系统Mathematica构造了Hybrid-Lattice系统的新的精确孤波解.该方法在构造mKdV差分微分方程、Ablowitz-Ladik-Lattice系统等其它的离散差分微分方程的精确解方面具有普遍意义.
【总页数】4页(P369-372)
【作者】套格图桑
【作者单位】内蒙古师范大学数学科学学院,呼和浩特,010022
【正文语种】中文
【中图分类】O175.29
【相关文献】
1.定态量子系统跃迁几率的微扰近似解与精确解对比研究① [J], 齐若杉;崔久波;张海丰;肖逍;赵森;庞福荣;龚闻斌
2.一类非线性时间分数阶耦合型扩散系统的精确解研究 [J], 张慧; 谢绍龙
3.(1+1)维经典Boussinesq-Burgers系统的相容Riccati展开可解性和精确解 [J], 呼星汝
4.非线性麦克斯韦方程最优系统及精确解 [J], 郭增鑫;胡彦鑫;辛祥鹏
5.二项式光场与Ⅴ型三能级原子相互作用系统量子特性的精确解 [J], 丛红璐;王林杰;王健莹;任学藻
因版权原因,仅展示原文概要,查看原文内容请购买。
线性系统理论中英文对照解析
[Linear system theory and design] Absolutely integrable 绝对可积Adder 加法器Additivity 可加性Adjoint 伴随Aeronautical航空的Arbitrary 任意的Asymptotic stability渐近稳定Asymptotic tracking 渐近跟踪Balanced realization 平衡实现Basis 基BIBO stability 有界输入有界输出稳定Black box 黑箱Blocking zero 阻塞零点Canonical decomposition 规范分解Canonical规范Capacitor 电容Causality 因果性Cayley-Hamilton theorem 凯莱-哈密顿定理Characteristic polynominal 特征多项式Circumflex 卷积Coefficient 系数Cofactor 余因子Column degree 列次数Column-degree-coefficient matrix 列次数系数矩阵Column echelon form 列梯形Column indices 列指数集Column reduced 列既约Common Divisor公共因式Companion-form matrix 规范型矩阵Compensator 调节器,补偿器Compensator equation补偿器方程Control configuration 控制构型Controllability 能控性Convolution 卷积Conventional常规的Coprimeness互质Corollary推论Cyclic matrix 循环矩阵Dead beat design 有限拍设计Decoupling 解耦Degree of rational function有理矩阵的次数Description of system系统描述Derivative 导数Determinant 行列式Diagonal对角型Discretization 离散化Disturbance rejectionDivisor 因式Diverge分叉Duality 对偶Eigenvalue特征值Eigenvextor 特征向量Empirical 经验Equivalence 等价Equivalence transformation等价变换Exhaustive 详细的Exponential function 指数函数Extensively广泛地Filter 滤波Finite time有限时间Finite 有限的Fraction 分式Polynomial fraction 多项式分式Fundamental cutest 基本割集Fundamental loop 基本回路Fundamental matrix 基本解阵Gramian 格拉姆Geometric几何的Hankel matrix Hankel 矩阵Hankel singular valueHomogeneity奇次性Hurwitz polynomial Hurwitz 多项式Implementable transfer function 可实现的传递函数Impulse response 脉冲响应Impulse response matrix 脉冲响应矩阵Impulse response sequence 脉冲响应序列Index指数Inductance 自感系数Inductor 电感Integrator 积分器Internal model principle 内模原理Intuitively 直观的Inverse 逆Jacobian 雅可比Jordan block约当块Jordan form matrix 约当型矩阵Lapalace expansion 拉普拉斯展开Lapalace transform 拉普拉斯变换Left multiple 左倍式Linear algebraic equation线性代数方程Linear space 线性空间Linearity 线性性Linearization 线性化Linearly dependent 线性相关Linearly independent 线性无关Lumpedness 集中(参数)性Lyapunov equation Lyapunov方程Lyapunov theorem Lyapunov定理Lyapunov transform Lyapunov变换Markov parameter 马尔科夫参数Magnitude 模Manuscript 手稿,原稿Marginal stability 稳定Matrix 矩阵Minimal polynomial 最小多项式Minimal realization 最小实现Minimum energy control 最小能量控制Minor 子行列式Model matching 模型匹配Model reduction 模型降维Monic 首1的Monic polynomial首1的多项式Multiple 倍式Multiplier 乘法器Nilpotent matrix 幂为零的矩阵Nominal equation 标称(名义)方程Norm 范数Nonsingular非奇异Null space 零空间Nullity 零度(零空间的维数)Observability 能观性Observer 观测器Op-amp circuit 运算发大器Orthogonal 正交的Orthogonal matrix正交矩阵Orthogonality of vectors 向量的正交性Orthonormal set 规范正交集Orthonormalization 规范正交化Oscillator振荡器Parenthesis圆括号Parameterization 参数化Pendulum钟摆Periodic 周期的Periodic state system 周期状态系统Pertinent 相关的Plant被控对象Pole 极点Pole placement 极点配置Pole-zero cancellation 零极点对消Pole-zero excess inequalityPolynomial多项式Polynomial matrix 多项式矩阵Column degree 列次数Column degree 列次数Column-degree-coefficient matrix 列次数系数矩阵Column echelon form 列梯形Column indices 列指数集Column reduced 列既约Echelon formLeft divisor 左因式Left multiple 左倍式Right divisor 右因式Right multiple 右倍式Row degree 行次数Row-degree-coefficient matrix 行次数系数矩阵Row reduced行既约Unimodular 幺模Positive正的Positive definite matrix正定矩阵Positive semidefinite matrix正定矩阵Power series 幂级数Primary dependent column 主相关列Primary dependent column 主相关行Prime素数的Principal minor 主子行列式Pseudoinverse 伪逆Pseudostate 伪状态QR decomposition QR 分解Quadratic二次的Quadratic form二次型Range space 值域空间Rank秩Rational function 有理函数Biproper双真Improper 不真Proper 真Strictly proper 严格真Rational matrix 有理矩阵Biproper双真Improper 不真Proper 真Strictly proper 严格真Reachability 可达性Realization 状态空间可实现性Balanced 平衡的(实现)Companion form 规范型(实现)Controllable form能控型(实现)Input-normal 输入规范(实现)Minimal 最小(实现)Observable-form能控型(实现)Output-normal 输出规范(实现)Time-varying 时变(实现)Reduced 既约的Regulator problem 调节器问题Relaxedness 松弛Response 响应Impulse 脉冲Zero-input 零输入Zero-state 零状态Remainder 余数Resistor 电阻Resultant 结式Generalized Resultant 广义结式Sylvester Resultant Sylvester(西尔维斯特)结式Right divisor右因子Robust design 鲁棒设计Robust tracking 鲁棒跟踪Row indices 行指数集Saturate 使饱和Scalar 标量Schmidt orthonormalizationSemidefinite 半正定的Similar matrices 相似矩阵Separation property 分离原理Servomechanism 司服机制Similar transformation 相似变换Singular value 奇异值Singular value decomposition奇异值分解Spectrum 谱Stability 稳定Asymptotic stability 渐近稳定BIBO stability 有界输入有界输出稳定Stability in the sense of Lyapunov 李雅普诺夫意义下的稳定Marginal stability 临界稳定Total stability 整体稳定Stabilization镇定(稳定化)State 状态State variable 状态变量State equation 状态方程Discrete-time State equation 离散时间状态方程Discretization State equation 离散化状态方程Equivalent State equation 等价状态方程Periodic State equation 周期状态方程Reduction State equation 状态方程Solution of State equation 状态方程的解Time-varying State equation 时变状态方程State estimator 状态估计器Asymptotic State estimator 渐近状态估计器Closed-loop State estimator 闭环状态估计器Full-dimentional State estimator 全维状态估计器Open-loop State estimator 开环状态估计器Reduced-dimentional State estimator 降维状态估计器State feedback 状态反馈State-space equation 状态空间模型State transition matrix 状态转移矩阵Superposition property 叠加性Sylvester resultant (西尔维斯特)结式Sylvester’s inequality (西尔维斯特)不等式System 系统Superposition叠加Terminology 术语Total stability 整体稳定Trace of matrix 矩阵的迹Tracking 跟踪Transfer function 传递函数Discrete Transfer function离散传递函数Pole of Transfer function传递函数的极点Zero of Transfer function传递函数的零点Transfer matrix 传递函数矩阵Blocking zero of matrix 传递函数矩阵的阻塞零点Pole of Transfer function传递函数矩阵的极点Transmission Zero of Transfer function传递函数矩阵的传输零点Transistor 晶体管Transmission zero 传输零点Tree 树Truncation operator 截断算子Trajectory 轨迹Transpose 转置Triangular 三角形的Unimodular matrix 么模阵Unit-time-delay element 单位时间延迟单元Unity-feedback 单位反馈Vandermonde matrix Vandermonde矩阵Vector 向量well posed 适定的well-posedness 适定性Yield 等于,得出Zero 零点Blocking zero 阻塞零点Minimum-phase zero 最小相位零点nonminimum-phase zero 非最小相位零点transmission zero 传输零点zero-input response 零输入响应zero-pole-gain form 零极点增益形式zero-state equivalence零状态等价zero-state response零状态响应z-transform z-变换。
随机扰动下混合时滞混沌系统自适应同步
随机扰动下混合时滞混沌系统自适应同步李杰;阳平华;杨思【摘要】Based on adaptive synchronization principle, adaptive synchronization of mixed time-delays chaotic neural network with stochastic perturbation and parameter uncertainty was investigated. By using stochastic differential equation theory, lyapunov stability theory and LMI approach, a new adaptive controller was designed. The proposed method can overcome effectively the disruption of perturbation, and make the chaotic systems keep synchronous well. At last, numerical simulations show the effectiveness of the method.%基于自适应同步原理,同时考虑系统内部参数不确定性和系统外部随机扰动,研究了一类具有混合时变时滞的混沌神经网络的同步问题.利用随机微分方程理论,lyapunov稳定性理论和线性矩阵不等式(LMI)的方法,设计自适应控制器.研究表明本方法能有效地克服干扰对同步所造成的破坏,实现良好的同步效果.最后,数据仿真证明了所给方法的有效性.【期刊名称】《河北大学学报(自然科学版)》【年(卷),期】2012(032)006【总页数】7页(P576-582)【关键词】混沌神经网络;自适应同步;混合时变时滞;参数不确定;随机扰动【作者】李杰;阳平华;杨思【作者单位】石家庄军械工程学院基础部,河北石家庄050003;石家庄军械工程学院基础部,河北石家庄050003;石家庄陆军指挥学院战役战术系,河北石家庄050084【正文语种】中文【中图分类】N949混沌同步理论在保密、通信等的巨大应用前景正在吸引越来越多的人的注意.近十几年来各种同步理论相继提出,自适应法、脉冲控制法、变结构控制等.神经网络表现出的复杂动态行为,甚至混沌的特性,正在成为一种新的热点.1994年John和Amrikar给出了一种自适应控制技术来调整系统的某些参数以达到混沌同步的方法.自适应控制的主要思想是利用自适应控制项来弥补参数不确定造成的影响.在许多实际应用中,系统的参数部分甚至全部是未知的,系统的参数也可能随时间的演化而发生变化.自适应同步法对于实现参数不确定的混沌系统的同步及参数识别有重要意义和不可替代的作用.在实际的工作中,由于建模误差和环境改变等因素的影响,系统的参数可能会发生变化,即许多混沌系统具有参数不确定性;另一方面,系统可能会受到各种外界随机噪声的干扰,这些不确定性和随机扰动可能会对混沌系统的同步造成影响.此外,分布时滞在神经网络中普遍存在.一般而言,时滞分为2类:分布时滞和离散时滞.神经网络中的时滞产生于节点中信息传输的时滞,它广泛存在于神经网络中,由于各种神经轴突大小和长度的平行路径的存在,使得神经网络通常具有一种空间特性,而这种空间特性一般用分布时滞来描述.因此考虑分布时滞对于神经网络建模非常有必要[1-6].目前为止,关于分布时滞的神经网络的研究大多是停留在稳定性研究上,关于同步研究比较少,而利用相关的混沌同步控制理论实现同步的就更少.文献[7]研究了参数未知的混合时变时滞神经网络的同步问题.文献[8]研究的神经网络模型没有考虑分布时滞的影响.文献[9]没有考虑随机扰动的影响.基于上述讨论本文同时考虑系统内部参数不确定性和系统外部随机扰动,研究了一类具有混合时变时滞的混沌神经网络的同步问题.模型建立更为普遍和实用,具有更好的现实意义和实用价值.1 问题描述考虑如下参数不确定带有混合时滞的混沌神经网络写成矩阵形式为其中,x(t)=(x1(t),x2(t),…表示神经元的状态向量,C=diag(c1,c2,…,cn)为正的对角矩阵A=(aij)n×n,B=(bij)n×n和D=(dij)n×n分别表示与时滞无关、与时变时滞相关和与分布时滞相关的神经元连接权矩阵;τ1(t)表示时变时滞,τ2(t)表示分布时滞,J=(J1,J2,…,Jn)T∈Rn表示外部常值偏置;f(·),g(·),h(·)为神经元的激励函数,则公式中的f(x(t)),g(x(t-τ1(t))),h(x(t))可以表示为:公式(1)所示的系统的初始条件为xi(t)=φi(t)∈C([-τ,0],R),C ([-τ,0],R)表示[-τ,0]到R的所有连续函数的集合.ΔC,ΔA,ΔB是n×n维的参数不确定项,它们是时变的,且假设满足1)[ΔAΔBΔCΔD]=EF[HAHBHCHD],其中E,HA,HB,HC,HD为适当维数的常数矩阵,F为不确定的时变矩阵且有FFT≤I.2)ΔA,ΔB,ΔC不改变系统吸引子的区域.下面为表述方便,令=C+ΔC=A+ΔA=B+ΔB=D+ΔD.将公式(1)所示的系统作为驱动系统,本文将对2个具有相同结构的混沌神经网络来实现混沌同步控制,因为结构相同,所以假设两者的内在参数不确定性也相同,设计带随机扰动的响应系统如下:其中,初始条件为y2(t)-x2(t-δ),…,yn(t)-xn(t-δ)T∈Rn表示系统的同步误差;ε=(ε1,ε2,…表示系统的反馈增益,符号*定义为ε*e(t)=(ε1e1(t),ε2e2(t),…,εnen(t));σ(t,e(t),eτ(t))dωt表示随机扰动,ω(t)=[ω1(t),ω2(t),…是定义在完备概率空间(Ω,F,Ft,P)上具有自然滤波{Ft}t≥0(即Ft=σ{ω(s):t0≤s≤t})的n维Brown运动,且满足E{dωt}=0和E{[dωt]2}=dt.定义同步误差信号e(t)=y(t)-x(t),则驱动公式(1)所示的系统与响应公式(2)所示的系统的误差动态系统为其中,在文中假设以下条件成立:1)激励函数fi(x),gi(x)满足Lipschitz条件,对于任何i=1,2,…,n,存在一个固定的常数L1>0,L2>0使之满足2)激励函数hi(x)满足向量形式的Lipschitz条件其中,H∈Rn×n是一个正矩阵.3)σ(t,u,v)满足Lipschitz条件,且存在适当维数的矩阵G1,G2使得下式成立:4)τ1(t)和τ2(t)是有界连续可微函数定义如果对于任意的初始条件则称公式(1)所示的系统和公式(2)所示的系统实现同步.引理1[10]如果Ω1,Ω2,Ω3是适当维数的实矩阵,那么对于任意给定的向量x,y使得下式成立引理2[10]对于任意的常数矩阵W∈Rm×m,WT=W>0,标量h>0和向量函数ω:[0,h]→Rm,2 主要结果定理在假设1),2),3)与4)下,若响应系统的动态反馈强度的自适应率为,则公式(2)所示的响应系统与公式(1)所示的驱动系统达到同步.证明令C1,2(R+×Rn;R+)表示对t一次连续可微且对x二次连续可微的非负函数V(t,x)的全体.对于任意V(t,x)∈C1,2(R+×Rn;R+),根据误差系统(3),定义微分算子如下满足方程其中构造如下的Lyapunov函数其中,P,Q是正的常数矩阵,l是一个常数.根据著名的式,沿误差系统(3)的转迹求导得其中,由εi(t)=)得由引理1知由假设1)知其中,Λ=max;i=1,2,…,n},Φ=max;i=1,2,…,n}. 由假设2)知:由此可知由假设4)知由假设3)知由式(7-16)可得令Q=,则式(17)可得令由上式可得将式(21)代入式,可得根据式(22)和式,可得由V(t,e(t))的定义可知其中,λPmin是矩阵P的最小特征值.根据式(23)和(24)可知由式(25)和文献[10]可知,误差系统是全局渐进稳定的,根据定义1可知公式(1)所示的系统和公式(2)所示的系统实现同步.证毕.3 数值仿真考虑如下的参数不确定的混沌神经网络其中并且设计带有随机扰动的响应系统如下:其中ω(t)是2维Brown运动,且满足E{dωt}=0和E{[dωt]2}=dt.由假设A2可知G1=diag(|a1|,|a2|),G2=diag(|b1|,|b2|).其同步误差曲线如图1所示.图1 同步误差ei曲线Fig.1 State curve of synchronization error ei4 结论基于自适应同步原理,同时考虑系统内部参数不确定性和系统外部随机扰动,研究了一类具有混合时变时滞的混沌神经网络的同步问题.利用随机微分方程理论,Lyapunov稳定性理论和线性矩阵不等式(LMI)的方法,设计自适应控制器.研究表明本方法能有效地克服干扰对同步所造成的破坏,实现良好的同步效果.最后,数据仿真证明了所给方法的有效性.参考文献:[1] HE Wangli,CAO Jinde.Adaptive synchronization of a class of chaotic neural networks with known or unknown parameters[J].Physics Letters A,2008,372(4):408-416.[2] WANG Kai,TENG Zhidong,JIANG Haijun.Adaptive synchronizationof neural networks with time-varying delay and distributed delay[J].Physica A,2008,387(2-3):631-642.[3] LIU Zhaobing,ZHENG Huaguang,YANG Dongsheng.Adaptive synchronization of a class of chaotic neural networks with mixed time-varying delays[J].Journal of Northeastern University:Natural Science,2009,30(4):475-478.[4] ZHANG Huaguang,XIE Yinghui,WANG Zhiliang,et al.Adaptive synchronization between two different chaotic neural networks with time delay[J].IEEE Trans Neural Network,2007,18(6):1841-1845.[5] XIE Yinghui,ZHANG Huaguang.Adaptive synchronization for a classof delayed Ikeda chaotic systems[J].Journal of Northeastern University:Natural Science,2007,28(4):481-484.[6] LI Zhi,JIAO Licheng,LEE Jujang.Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength[J].Physica A,2008,387(5-6):1369-1380.[7] TANG Yang,QIU Runhe,FANG Jian'an,et al.Adaptive lag synchronization in unknown stochastic chaotic neural networks with discrete and disturbed time-varying delays[J].Physics Letters A,2008,372(24):4425-4433.[8] 盛力,杨慧中.带随机扰动的参数不确定混沌神经网络的同步[J].系统仿真学报,2009,21(22):7109-7117.SHENG Li,YANGHuizhong.Synchronization of Chaotic Neural Networks with stochastic perturbation and parameter uncertainty[J].Journal of System Simulation.2009,21(22):7109-7117.[9] 唐漾,方建安.离散和分布时变时滞混沌神经网络广义投影同步[J].复杂系统与复杂性科学,2009,6(2):56-63.TANG Yang,FANGJian'an.Generalized projective synchronization of chaotic neural networks with discrete and distributed time-varying delays[J].Complex Systems and Complexity Science,2009,6(2):56-63.[10] SCHUSS Z.Theory and application of stochastic differential equations [M].New York:John Wiley &Sons Inc,1980.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
Introduction
Observability refers to the study of the conditions under which it is possible to uniquely infer the state of a dynamical system from measurements of its output. For discrete-event systems, the definition of current-location observability was proposed in [12] as the property of being able to estimate the location of the system after a finite number of steps. A similar definition was given in [11] together with a polynomial test for observability, the so-called current-location tree, which depends on properties of the nodes of a finite state machine associated with the discrete-event system. For continuous systems with linear dynamics, it is well known that the observability problem can be reduced to that of analyzing the rank of the so-called observability matrix. This is the well known Popov-BelevicHautus rank test for linear systems [10]. For nonlinear systems with smooth dynamics, different definitions of observability have been proposed. We refer interested readers to [8] and references therein for a recent comparison of different definitions of observability. For hybrid systems, most of the previous work has concentrated on the areas of modeling, stability, controllability and verification (see previous workshop proceedings). Relatively little attention, however, has been devoted to the study of the observability of both the continuous and discrete states of a hybrid system.
Abstract. We analyze the observability of the continuous and discrete states of continuous-time linear hybrid systems. For the class of jumplinear systems, we derive necessary and sufficient conditions that the structural parameters of the model must satisfy in order for filtering and smoothing algorithms to operate correctly. Our conditions are simple rank tests that exploit the geometry of the observability subspaces. For linear hybrid systems, we derive weaker rank conditions that are sufficient to guarantee the uniqueness of the reconstruction of the state trajectory, even when the individual linear systems are unobservable the best of our knowledge, the first attempt to characterize the observability of hybrid systems can be found in [15], where a definition of observability is proposed. [14] gives conditions for the observability of a particular class of linear time-varying systems where the system matrix is a linear combination of a basis with respect to time-varying coefficients. [6] addresses the observability and controllability of switched linear systems with known and periodic transitions. [13] gives a condition for the observability of switched linear systems in terms of the existence of a discrete state trajectory. [3] proposes the notion of incremental observability for piecewise affine systems. Such a notion requires the solution of a mixed-integer linear program in order to be tested. [16] derives necessary and sufficient conditions for the observability of discrete-time jump-linear systems. The conditions can be tested using simple simple rank tests on the structural parameters of the model. [5] derives different rank tests for the weak observability of jump-Markov linear systems. [9] gives observability conditions for stochastic linear hybrid systems in terms of the covariances of the outputs. A problem related to observability that has been recently considered is the design of observers for linear hybrid systems. [1] considers the case in which the discrete state is known and proposes a Luenberger observer for the continuous state. [2] combines location observers with Luenberger observers to design a hybrid observer that identifies the discrete location in a finite number of steps and converges exponentially to the continuous state. 1.2 Contributions
In this paper we study the observability of a class of linear hybrid systems known as jump- (or switched-) linear systems, i.e., systems whose evolution is determined by a collection of linear models with continuous state x t ∈ Rn connected by switches among a number of discrete states λt ∈ {1, 2, . . . , N }. In Section 2 we introduce a notion of observability for jump-linear systems. We define the observability index ν of a jump-linear system and use it to derive rank conditions that the structural parameters of the model must satisfy in order for filtering and smoothing algorithms to operate correctly. We show that the state trajectory is observable if and only if the pairwise intersection of different observable subspaces is trivial. We also show that the switching times are observable if and only if the difference between any pair of observability matrices is nonsingular. The rank conditions we derive are simpler than their discrete-time counterparts [16] and can be thought of as an extension of the Popov-Belevic-Hautus rank test for linear systems. Our conditions only depend on the geometry of the observability subspaces, and therefore they are applicable also to the case of hybrid models where the switching mechanism depends on the continuous state. In Section 3 we derive weaker rank conditions that guarantee the observability of a linear hybrid system, even if the individual linear systems are unobservable. In this case, observability is gained by requiring that the output switches at least once in the given observability interval. Section 4 concludes the paper with a discussion about the role of the inputs in the observability of the discrete state.