最新2019-第九讲CIGS薄膜太阳能电池-PPT课件

合集下载

《薄膜太阳电池》课件

《薄膜太阳电池》课件

在光照下,光子被吸收 并传递给电子,电子和 空穴分别向导带和价带 跃迁,形成光生电流。 随后,电子和空穴分别 被传输到金属电极并收 集起来,形成输出电流 。
薄膜太阳电池的结构和 工作流程决定了其能量 转换效率、开路电压和 短路电流等性能参数。
03 薄膜太阳电池的 材料
硅基薄膜太阳电池
总结词
高效稳定,技术成熟
THANKS
感谢观看
随着移动设备的普及和能源需求的增长,移动能源系 统的发展前景广阔。
未来发展前景与挑战
随着技术的不断进步和应用领域的拓展,薄膜太阳电池的发展前景广阔。
未来,薄膜太阳电池将更加注重提高光电转换效率、降低成本、优化组件制造工艺等方面的 发展。
同时,薄膜太阳电池也面临着市场竞争力、政策支持、并网技术等方面的挑战,需要不断加 强技术创新和市场推广。
在薄膜太阳电池中,光子首先被 吸收并传递给电子,电子从价带
跃迁到导带,形成光生电流。
光电效应是薄膜太阳电池的基本 工作原理之一,它决定了电池的
能量转换效率。
光伏效应
光伏效应是指光生电压或电流的现象 ,即当光照射在半导体材料上时,半 导体的导电性能发生变化,产生电压 或电流。
光伏效应是薄膜太阳电池的基本工作 原理之一,它决定了电池的开路电压 。
真空沉积技术包括真空蒸镀、 电子束蒸镀和离子束溅射等。
真空沉积技术具有较高的沉积 速率和较好的大面积成膜质量 ,适用于制备高性能的薄膜太 阳电池。
化学气相沉积技术
化学气相沉积技术是通过化学反应将气态物质转化为固态薄膜的一种技术。
化学气相沉积技术包括常压化学气相沉积、等离子体增强化学气相沉积和金属有机 化学气相沉积等。
《薄膜太阳电池》PPT课件

CIGS薄膜太阳能电池共22页

CIGS薄膜太阳能电池共22页

CIGS的材料特性
Ga/(Ga+In)比的调整可使CIGS材料的带隙范围覆盖1.0 一l.7eV,CIGS其带隙值随Ga含量x变化满足下列公式:
CuIn1-xGaxSe2能隙: Eg=1.02+0.67x-0.14x(1-x)eV
试验中选择的x既要考虑增加禁带宽度使其更适合于 AM1.5的太阳光谱,也要考虑收集效率以及光谱响应范 围。转换率较高的x范围是0.25<Ga/(Ga+In)<0.33
随着Cu/In比例的增大,薄膜的方块电阻减小
高效率CIGS吸收层特征

高吸收率的Ga分布
CIGS薄膜太阳能电池的结构金属栅电极减反射膜(MgF2) 窗口层ZnO 过渡层CdS 光吸收层CIGS
低阻AZO 高阻ZnO
金属背电极Mo 玻璃衬底
CIGS薄膜太阳能电池的结构
CIGS薄膜太阳能电池异质结能带图
CuInSe2黄铜矿晶格结构
CuInSe2复式晶 格:a=0.577,c=1.154
直接带隙半导体,其光吸收系数高 达105/cm量级
通过掺入适量的Ga以替代部分In, 形成CulnSe2和CuGaSe2的固熔晶体
Ga的掺入会改变晶体的晶格常数, 改变了原子之间的作用力,最终实 现了材料禁带宽度的改变,在1.04 一1.7eV范围内可以根据设计调整, 以达到最高的转化效率
结构原理
孔洞:该缺陷的形成可能与挥发相Il2se的 形成有关,加快元素se在预制膜中的扩散 可以避免该相形成
细小晶粒层:该细小晶粒层的出现与Ga元 素的富集有关
Mo(直流溅射双层膜)
要求: 1.与CIGS形成良好欧姆接触 2.与CIGS的晶格失配较小且
膨胀系数与CIGS比较接近 3.较好的反光性能 4.电阻率小且与玻璃基板的附着性好

非晶硅薄膜太阳能电池PPT课件

非晶硅薄膜太阳能电池PPT课件

• 有机薄膜太阳能电池
2021/8/6
2
• 其他
第2页/共23页
薄膜太阳能电池用导电银胶银浆(一)
• 太阳能电池导电银胶导电银浆型号及用途
• UNINWELL国际作为世界高端光电胶粘剂的领导品牌,公司以“您身边的 高端光电粘结防护专家”为服务宗旨。公司开发的导电银胶、导电银浆、 红胶、底部填充胶、TUFFY胶、LCM密封胶、UV胶、各向异性导电胶、 太阳能电池导电浆料等九大系列光电胶粘剂具有最高的产品性价比,公司 在全球拥有近百家世界五百强客户。最近,UNINWELL国际与上海常祥实 业强强联合,共同开发中国高端光电胶粘剂市场。 UNINWELL国际是全 球贴片胶产品线最齐全的生产企业,其产品性能优异,剪切力强,流变性也很 好,并且吸潮性低,适用于LED、大功率LED、LED数码管、LCD、TR、IC、 COB、PCBA、EL冷光片、显示屏、晶振、石英谐振器、晶体管、太阳能 电池、光伏电池、蜂鸣器、陶瓷电容等各种电子元件和组件的封装以及粘 结等。电子元器件、集成电路、电子组件、电路板组装、液晶模组、触摸 屏、显示器件、照明、通讯、汽车电子、智能卡、射频识别、电子标签、 太阳能电池等领域。
2021/8/6
10
第10页/共23页
• 低成本
• 单结晶硅太阳电池的厚度。
• 主要原材料是生产高纯多晶硅过程中使用的硅烷,这种气体,化学 工业可大量供应,且十分便宜,制造一瓦非晶硅太阳能电池的原材 料本约(效率高于6%)
• 且晶体硅太阳电池的基本厚度为240-270um,相差200多倍,大规模
生产需极大量的半导体级,仅硅片的成本就占整个太阳电池成本的
2021/8/6
13
第13页/共23页
非晶硅太阳能电池存在的问题

薄膜太阳能电池知识培训课件(PPT38页)

薄膜太阳能电池知识培训课件(PPT38页)
P层采用Si C异质结 ,Si C异质结的禁带 宽度很大,通过窗口作用提高透光率,使 到达I层的可用光子增多,同时提高了开路 电压 。
太阳能电池参数
I = Is[exp(qV/kT)-1]-IL • 开路情况:I=0 得 (与内建电场对应)
Voc
kT q
ln( IL Is
1)
• 短路情况:短路电流等于光生电流 ISC=IL
原子能带
原子能级
允带
禁带 允带
禁带
晶体能带的形成
允带
费米能级
• 假设把体系内所有电子按能量由低到高逐个占据能 带中各个能级,则最后一个电子占据的那个能级即 为费米能级。
• 物理意义:电子占据的概率为1/2的能级称为费米能 级。只要知道了它的数值,在一定温度下,电子在 各量子态上的统计分布就完全确定了。
• 绝缘体材料的导带是空的,没有自由 电子,而且禁带的宽度很宽,价带的 电子不可能穿过禁带跃迁到导带上, 导带中始终没有自由电子,条件下,价带的电子可以跃迁 到导带上,在价带中留下空穴,电子 和空穴同时导电。
• 因此,半导体材料的禁带宽度是一个 决定电学和光学性能的重要参数。
薄膜太阳能电池分类
砷化镓薄膜太阳电池
在化合物半导体中,研究最多的是III-V族 的GaAs太阳能电池。由于其带隙比Si大 ,具有与太阳光光谱相当一致的光谱特 性,因而从光谱响应角度来说,更适合 做太阳能电池,目前,在所有太阳能电 池中,GaAs太阳能电池的转换效率最高 。
砷化镓薄膜太阳电池
在制备GaAs太阳电池时,一 般在N型GaAs衬底上首先生长 0.5um左右的N型GaAs缓冲层 ,再生长N型AlGaAs作为背电 场,在此基础上生长N型GaAs 作为基底层,然后生长0.5um 左右的P型GaAs作为发射层, 再利用一层P型AlGaAs薄膜作 为窗口层,便组成了单结 GaAs薄膜太阳电池。

CIGS薄膜太阳能电池幻灯片PPT

CIGS薄膜太阳能电池幻灯片PPT
转换效率:
太阳能电池的工作原理
CIGS薄膜太阳能电池的优点
材料吸收率高,吸收系数高达105量级,直接带隙,适合薄膜化,电池 厚度可做到2~3微米,降低昂贵的材料本钱
光学带隙可调.调制Ga/In比,可使带隙在1.0~1.7eV间变化,可使吸 收层带隙与太阳光谱获得最正确匹配
抗辐射能力强.通过电子与质子辐照、温度交变、振动、加速度 冲击等试验,光电转换效率几乎不变.在空间电源方面有很强的竞 争力
因为存在内建电场, 使得电子在空间电荷区中 各点有附加电势能,从而 使结区的能带发生弯曲。
由于组成异质结的这 三种半导体材料的介电常 数不同,内建电场在不同 半导体材料的交界面是不 连续的,因此导带和价带 在界面处也不连续
CIGS薄膜太阳能电池异质结能带图
在坡型带隙构 造中,梯度带隙层 内存在内电场的作 用,使外表附近被 激发的少数载流子 向结方向漂移,缓 和了外表复合的影 响。
替代物:ZnS / ZnSe/In2S3
构造原理
CIGS(共蒸发法、后硒化法,共建立法〕
作用: 吸收区,弱p型,其空间电荷区为主要工作区
CIGS薄膜技术:单一相,结晶品质好 吸收层与金属有良好的欧姆接触,易制造 CIGS足够的厚度,且厚度小于载子扩散长度 CIGS为多晶构造,故要求缺陷少,降低复合速度 CIGS外表平整性好,促进良好接面状态
CIGS薄膜太阳能电池幻 灯片PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
太阳能电池的工作原理
太阳能电池的工作原理

CIGS薄膜太阳能电池

CIGS薄膜太阳能电池
CIGS薄膜太阳能电池(diànchí)介绍
二、铜铟硒(CIS)薄膜太阳能电池(diànchí)介绍 三、铜铟镓硒(CIGS)薄膜太阳能电池(diànchí)介绍
精品文档
一、第三代太阳能电池(diànchí) 学术界和产业界普遍认为太阳能电池(diànchí)的发展已经进入了
第三代。第一代为单晶硅太阳能电池(diànchí),第二代为多晶硅、非晶 硅等太阳能电池(diànchí),第三代太阳能电池(diànchí)就是铜铟镓硒 CIGS(CIS中掺入Ga)等化合物薄膜太阳能电池(diànchí)及薄膜Si系太阳能 电池(diànchí)。
铜铟镓硒薄膜太阳能电池(diànchí)是多元化合物薄膜电池 (diànchí)的重要一员,由于其优越的综合性能,已成为全球光伏领域研 究热点之一。

硅基太阳能电池 主要:GaAs CdS CIGS


多元化合物薄膜

太阳能电池
料 的
有机聚合物太阳
目前,综合性能最好 的薄膜太阳能电池

能电池

纳米晶太阳能电池
• 大规模地成本发电站
• 1996年美国APS公司在美国加州建了一个400千瓦的 非晶硅电站,引起光伏产业振动。
• Mass公司(欧洲第三大太阳能系统(xìtǒng)公司)去 年从中国进口约5MWp的非晶硅太阳能电池。
• 日本CANECA公司年产25MWp的非晶硅太阳能电池大部 分输往欧洲建大型发电站(约每座500KWp-1000KWp)。
• 上海尤力卡公司曾在中国甘肃省酒泉市安装(ānzhuāng) 一套6500瓦非晶硅太阳能电站,其每千瓦发电量为 1300KWh,而晶体硅太阳电池每千瓦的年发电量约为 1100-1200KWh。非晶硅太阳电池显示出其极大的使用 优势。下图为该电站的现场照片,第一代非晶硅太阳 电池的以上优点已被人们所接受。2003年以来全世界 太阳能市场需求量急剧上升,非晶硅太阳电池也出现 供不应求的局面。

CIGS薄膜太阳能电池的原理及制备 ppt课件

CIGS薄膜太阳能电池的原理及制备 ppt课件

不同溅射功率下制备的CIGS薄膜的SEM表面和截面照片
• (a,d) 80W, (b,e) 120W,
(c,f)160W
CIGS薄膜太阳能电池的原理及制 备
谢谢!
CIGS薄膜太阳能电池的原理及制 备
CIGS薄膜太阳能电池的原理及制 备
太阳能电池的短路电流既 光生电流,是指在一定的 温度和辐照度条件下,光 伏发电器在端电压为零时 的输出电流。分析短路电 流最直接的方法就是对不 同波段的光所产生的光生 电子空穴对数量进行积分 ,并计算出每一波段所产 生的电流,将电流求和, 最终得到的总电流就是其 短路电流。
吸收层CIGS(化学式CuInGaSe2)是 薄膜电池的核心材料,属于正方晶系 黄铜矿结构。具有复式晶格,晶格常 数a=0.577nm,c=1.154nm。作为 直接带隙半导体,其光吸收系数高达 10^5量级(几种薄膜太阳能材料中 较高的)。禁带宽度在室温时是 1.O4eV,电子迁移率和空穴迁移率 分别为3.2X10^2(cm2/V·S)和 1X10(cm2/V·S)
CIGS薄膜太阳能电池的原理及制 备
370℃时制备的CIGS薄膜的XRD图
• 结论:370℃溅射的
CIGS薄膜致密均匀,光 滑平整,结晶性较好,具 有较强的(220)/(204) 面择优取向。在磁控 溅射的过程中,适当的 提高衬底的温度,可以 获得结晶性较好的薄 膜。
CIGS薄膜太阳能电池的原理及制 备
采用玻璃,也有的采用不同材料的柔性箔
片作为材料。
• 背电极:在洁净的衬底上沉积1到1.5um的金属铝 • 吸收层:在铝电极上沉积1.6到2.0um的CIGS • 缓冲层:在吸收层上依次制备厚60一100nm的硫化锡 • 窗口层:在缓冲层上沉积100nm左右的本征氧化锌层 • 减反层和铝电极:沉积厚600nm左右的掺铝氧化锌层和银

《薄膜太阳能电池》幻灯片

《薄膜太阳能电池》幻灯片

地熱
CdTe Film Deposition
CdTe Film Deposition
CdTe Film Deposition
Rooftop CdTe薄膜太陽電池“Cadmium TellurideThin-film Solar Cell”
SAGFirst Solar ----CdTe Rooftop
• CIGS非真空製程技術雖具有降低成本以及提高材料使用率的 優點,但各方式都具有難以克服的關鍵問題皆仍待解決。如 CIGS晶粒成長…等。結
瓶頸
CIGS薄膜太陽能電池雖具有高效率、低本钱、大面積與可撓性等 潛力優勢,但還有許多需要抑制的問題接踵而來: 製程複雜、技術選擇百家爭鳴,且供應練相當分歧,各站並無制 式化設備放大製程之均質性不佳,良率變化大
Need of raw material
Thin-film solar cells
非晶矽薄膜太陽電池製造流程
非晶矽薄膜太陽電池製造流程( 玻璃基材)
非晶矽薄膜太陽電池製造流程 (玻璃基材)
Thin film Si:H challenges
➢Increasing deposition rate (from 0.1 nm/s to 10 nm/s!), including compatible doped layers ➢Enhance the Isc (absorption, light trapping) ➢Improving stabilized device performance ➢Understanding fundamental physics: low Voc, shunt behavior, light-induced defect creation
GaAs Multijuction(多接面砷化 鎵)

CZTS薄膜太阳能电池介绍PPT

CZTS薄膜太阳能电池介绍PPT

Thank you!
参考资料: 陈勤妙. 微纳米化合物Cu-Zn-Sn-S光伏特性与新型薄膜太阳能电池的研究[D]. 上海交通大学, 2012. 曲鹏, 王赫, 乔在祥. 铜锌锡硫薄膜太阳电池研究进展[J]. 电源技术, 2015, 39(7):1550-1553.
一、背景与工作原理
CIGS化合物→CZTS 化合物
• 与太阳光谱非常匹配的能带宽度(约1.5 eV)
• 高的吸收系数(>104/cm)
• CZTS 的组成元素在地壳中的含量极其丰富且无毒
一、背景与工作原理
CZTS 太阳能电池面临的主要问题
• CdS缓冲层是一种具有极高毒性的材料
• 传统印刷法制备化合物薄膜效率低
• 除CZTS薄膜外其他层用真空的方法进行制备,成本高
一、背景与工作原理
一种典型的CZTS薄膜太阳能电池基底结构
CdS与i-ZnO为N型材料 结构 厚度 制备方法 溅射法 溅射法 水浴法 • 导电 ZnO:Ga 500 nm (或ZnO:Al) • 本征氧化锌 • CdS缓冲层 50 nm 50 nm
Cu2ZnSnS4
CZTS薄膜太阳能电池
姓 名 : X X X 学 号 : X X X
一、背景与工作原理
CIGS[CuInxGa(1-x)Se2]太阳能薄膜电池具有稳定性好、抗辐照
性能好、成本低、效率高等优点。
但是其面临三个主要的问题:
(1)制程复杂,投资成本高
(2)关键原料的供应不足 (3)缓冲层CdS具有潜在的毒性
四、现状与展望
• 近十年来,CZTS 薄膜太阳电池技术发展迅速。美国、
日本、德国等国家的研究小组先后提出各种物理气相 沉积工艺和化学沉积工艺,制备了高质量的 CZTS 薄膜。 随着吸收层制备工艺的不断创新和改进,CZTS 薄膜的 光电性质逐渐得到优化,相应的电池性能也有了显著 的提高。2013 年,美国 IBM 公司 Mitzi.D 的研究团队使 用非真空溶液法制备的 CZTS 薄膜太阳电池的光电转换 效率达到12.6%,这主要归功于他们对前驱溶液的改进 和电池结构的优化。

CIGS薄膜太阳能电池的原理及制备ppt

CIGS薄膜太阳能电池的原理及制备ppt

03
cigs薄膜太阳能电池制备工艺
制备步骤及主要设备
准备阶段
选择合适的衬底,进行抛光处理和清洗。
薄膜制备
利用化学气相沉积或物理气相沉积技术,在衬底上制备 吸收层。
制绒处理
通过化学或物理方法,对吸收层表面进行处理,形成绒 面结构。
薄膜层制备
在制绒处理后的吸收层表面上制备薄膜层。
测试与封装
进行性能测试和可靠性验证,封装成完整的太阳能电池 。
高光电转换效率
CIGS薄膜太阳能电池的光电转换效 率较高,可达到15%以上。
长寿命
CIGS薄膜太阳能电池具有长寿命和 稳定的性能表现,可达到20年以上 。
良好的耐候性
CIGS薄膜太阳能电池具有良好的耐 候性,可在各种恶劣环境下使用。
绿色环保
CIGS薄膜太阳能电池生产过程中不 产生有害物质,同时报废后易于回 收利用。
可以利用cigs薄膜太阳能电池为环境监测设 备供电,同时监测设备的传感器可以实时监 测环境参数。
06
结论与展望
主要研究结论
建立了基于MOFs的Cigs薄膜太阳能电池的制备方案 揭示了Cigs薄膜的形貌、结构与光电性能之间的关系
确定了最佳制备条件,包括前驱体浓度、热解温度和 气氛等
发现Cigs薄膜太阳能电池的效率达到10%以上,具有 较高应用前景
压力
化学气相沉积和物理气 相沉积过程中,压力会 影响薄膜的致密性和晶 体结构。
气体流量与组 成
化学气相沉积过程中, 气体流量与组成会影响 薄膜的成分和结构。
沉积时间
化学气相沉积和物理气 相沉积过程中,沉积时 间会影响薄膜的厚度和 晶体结构。
激光功率与扫 描速度
制绒处理过程中,激光 功率与扫描速度会影响 绒面结构和吸收性能。

薄膜太阳能电池课件

薄膜太阳能电池课件
• 薄膜太阳能电池中硅基薄膜电池、碲化镉(CdTe)薄膜电池、砷化镓(GsAs)薄膜电池、 铜铟镓硒(CIGS)薄膜电池属于第二代太阳能电池,起步较早,且技术已经达到较高的成 熟度,不仅在实验室取得丰硕的研究成果,而且已投入使用并占一定的市场份额。
PPT学习交流
5
PPT学习交流
6
铜铟镓硒(CIGS)太阳能电池包括铜铟硒 (CIS)、铜铟镓硒(CIGS)、铜铟镓硒硫(CIGSS) 系列。
由6层薄膜构成,从下到上依次是: 0.5-1.5μm厚的金属钼(Mo)背电极层, 1.5-2μm的CIGS吸收层, 50nm的硫化锌(ZnS)缓冲层, 50nm的本征氧化锌(ZnO)层, 0.5-1.5μm的ZnO:Al(TCO)透明电极 0.1μm的氟化镁(MgF2)薄膜减反层。
CIGS太阳能电池结构示意图
PPT学习交流
7
吸收层CIGS(CuInGaSe2)是薄膜电池的 核心吸光材料,属于正方晶系黄铜矿结 构,为p型半导体,光生载流子主要在这 里生成。 通过掺杂适量Ga到CuInSe,以Ga代替部 分同族In的位置,如果调整Ga的成分比 例,即可形成梯度带隙半导体(而CIS为 直接带隙半导体),产生背表面场, 则获得更多的输出电流,从而大大提高 其性能。 ZnS为n型半导体,与CIGS形成p-n结构。
PPT学习交流
CIGS黄铜矿和ZnS闪锌矿的结构 8
CIGS薄膜太阳能电池的基本工作原理
• 以CIGS薄膜作为P型区,以ZnS、i-ZnO、TCO薄膜共同构成n型区。 • 形成的机理主要是P区和n区多子的相互扩散,最终达到动态平衡形成内建场。E是内建场,使得产生
的空穴-电子对分离的动力。 • 内建场使得P型区的费米能级上移,n型区的费米能级下移,形成p-n结统一的准费米能级。当能量大
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CuInSe2黄铜矿晶格结构
富Cu薄膜始终是p型,而富In薄膜则既可能 为p型,也可能为n型。n型材料在较高Se蒸 气压下退火变为p型传导;相反,p型材料在较 低Se蒸气压下退火则变为n型
CIGS的电学性质及主要缺陷
CIS中存在上述的本征缺陷, 影响薄膜的电学性质 .Ga的 掺入影响很小.
Байду номын сангаас
CIGS的光学性质及带隙
CIGS薄膜太阳能电池的结构
金属栅电极
减反射膜(MgF2)
窗口层ZnO 过渡层CdS 光吸收层CIGS 金属背电极Mo 玻璃衬底
低阻AZO
高阻ZnO
结构原理

减反射膜:增加入射率 AZO: 低阻,高透,欧姆接触 i-ZnO:高阻,与CdS构成n区 CdS: 降低带隙的不连续性,缓 冲晶格不匹配问题 CIGS: 吸收区,弱p型,其空间电 荷区为主要工作区 Mo: CIS的晶格失配较小且热膨 胀系数与CIS比较接近
CIGS太阳能电池研究现状
• 在20世纪90年代, CIGS薄膜太阳能电池得到长足 的发展, 日本NEDO(新能源产业技术开发机构) 的太阳能发电首席科学家东京工业大学的小长井 诚教授认为: 铜铟镓硒薄膜太阳能电池是第三代 太阳能电池的首选, 并且是单位重量输出功率最高 的太阳能电池。 • 所谓第三代太阳能电池就是高效、低成本、可大 规模工业化生产的铜铟镓硒(CIGS)等化合物薄膜 太阳能电池(注:第一代为单晶硅太阳能电池, 第二代为多晶硅、非晶硅等低成本太阳能电池), • 考虑太阳能为绿色的能源和环境驱动因素,发展前 景将会十分广阔。
铜铟镓硒(CIGS)薄膜太阳 能电池
CIGS 薄膜太阳能电池
这种以铜铟镓硒为吸收层的高效薄膜太阳能电池,简称 为铜铟镓硒电池CIGS电池。其典型结构是: Glass/Mo/CIGS/ZnS/ZnO/ZAO/MgF2。(多层膜典型结 构:金属栅/减反膜/透明电极/窗口层/过渡层/光吸收层/背 电极/玻璃) CIGS薄膜电池组成可表示成Cu(In1xGax)Se2的形式,具有黄铜矿相结构,是CuInSe2和 CuGaSe2的混晶半导体。
• CIS材料是直接带隙材料,Cu(In,Ga,Al)Se2,其带隙在 1.02eV-2.7eV范围变化,覆盖了可见太阳光谱

In/Ga比的调整可使CIGS材料的带隙范围覆盖 1.0一l.7eV,CIGS其带隙值随Ga含量x变化满 足下列公式其中,b值的大小为0.15一0.24eV



CIGS的性能不是Ga越多性能越好的,因为短路电流是随 着Ga的增加对长波的吸收减小而减小的。 当x=Ga/(Ga+In)<0.3时,随着的增加,Eg增加, Voc也 增加; x=0.3时带隙为1.2eV;当x>0.3时,随着x的增加,Eg减小, Voc也减小。 G.Hanna等也认为x=0.28时材料缺陷最少,电池性能最 好。
• 材料吸收率高,吸收系数高达105量级,直接带隙,适合薄膜 化,电池厚度可做到2~3微米,降低昂贵的材料成本 • 光学带隙可调.调制Ga/In比,可使带隙在1.0~1.7eV间变化, 可使吸收层带隙与太阳光谱获得最佳匹配 • 抗辐射能力强.通过电子与质子辐照、温度交变、振动、 加速度冲击等试验,光电转换效率几乎不变.在空间电源方 面有很强的竞争力 • 稳定性好,不存在很多电池都有的光致衰退效应 • 电池效率高.小面积可达19.9%,大面积组件可达14.2% • 弱光特性好.对光照不理想的地区犹显其优异性能.

讨论:对负的△Ec而言,由于窗口 层和吸收层界面之间的复合,将降 低开路电压; △Ec>0的能带结构对 提高电池的转换效率有利。当 △Ec>O.5eV以后,开路电压明显 下降,同时短路电流也急剧下降.高 效电池△Ec的理想范围在0-0.4eV 之间,一般以0.2-0.3ev为宜
CIGS薄膜太阳能电池的优点
CIGS薄膜电池的异质结机理
• CIGS电池的实质:窗口-吸收体结构的异质p-n结 太阳能电池
N区
ZnO (n) (3.2eV) CdS (n) (2.4eV) CIGS(弱p) (1.0~1.7eV)

内建电场
光生电流(电压)
CIGS能带的失调值对电池的影 响


电子亲合能不同,产生导带底失调值 △Ec和价带失调值△Ev 禁带宽度可调: △Ec>0或<0
CIGS 薄膜太阳 能电池发 展的历程
太阳能电池的分类
按 制 备 材 料 的 不 同
硅基太阳能电池 多元化合物薄膜 太阳能电池
主要:GaAs CdS CIGS
有机聚合物太阳 能电池
纳米晶太阳能电池
目前,综合性能最好 的薄膜太阳能电池
CIGS的晶体结构
CuInSe2复式晶 格:a=0.577,c=1.154 直接带隙半导体,其光吸收系数高 达105量级 禁带宽度在室温时是1.04eV,电子 迁移率和空穴迁移率分 3.2X102(cm2/V· s)和 1X10(cm2/V· s) 通过掺入适量的Ga以替代部分In, 形成CulnSe2和CuGaSe2的固熔晶 体 Ga的掺入会改变晶体的晶格常数, 改变了原子之间的作用力,最终实现 了材料禁带宽度的改变,在1.04一 1.7eV范围内可以根据设计调整, 以达到最高的转化效率 自室温至810℃保持稳定相,使制膜 工艺简单, 可操作性强.
CIGS电池的发展历史及研究现状
• • • • • • • 70年代Bell实验室Shaly等人系统研究了三元黄铜矿半导体材料CIS的生长机理、电学 性质及在光电探测方面的应用 1974年,Wagner利用单晶ClS研制出高效太阳能电池,制备困难制约了单晶ClS电池发 展 1976年,Kazmerski等制备出了世界上第一个ClS多晶薄膜太阳能电池 80年代初,Boeing公司研发出转换效率高达9.4%的高效CIS薄膜电池 80年代期间,ARCO公司开发出两步(金属预置层后硒化)工艺,方法是先溅射沉积Cu、 In层,然后再在H2Se中退火反应生成CIS薄膜,转换效率也超过10% 1994年,瑞典皇家工学院报道了面积为0.4cm2效率高达17.6%的ClS太阳能电池 90年代后期,美国可再生能源实验室(NREL)一直保持着CIS电池的最高效率记录,并 2019年,将Ga代替部分In的CIGS太阳能电池的效率达到了18.8%,2019年更提高到 19.9%
相关文档
最新文档