江苏省盐城市2018中考数学试题与答案

合集下载

2018年江苏省盐城中考数学试卷含答案

2018年江苏省盐城中考数学试卷含答案

2018年中考数学试卷<江苏盐城卷)<本试卷满分150分,考试时间120分钟)一、选择题<本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)b5E2RGbCAP1.-2、0、1、-3四个数中,最小的数是【】A. B.0 C.1 D.【答案】D。

2.如果收入50元记作+50元,那么支出30元记作【】A.+30元 B.-30元 C.+80元 D.-80元【答案】B。

3.下面的几何体中,主视图不是矩形的是【】A.B. C. D.【答案】C。

4.若式子在实数范围内有意义,则x的取值范围是【】A.x≥3 B.x≤3 C.x>3 D.x<3【答案】A。

5.下列运算中,正确的是【】A. B.C. D.【答案】D。

6.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是【】A.2400元、2400元 B.2400元、2300元 C.2200元、2200元 D.2200元、2300元p1EanqFDPw【答案】A。

7.如图,直线a∥b,∠1=120°,∠2=40°,则∠3等于【】A.600 B.700 C.800 D.900DXDiTa9E3d【答案】C。

8.如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有【】RTCrpUDGiTA.4种 B.5种 C.6种 D.7种【答案】B。

二、填空题<本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.16的平方根是▲ .【答案】±4。

10.分解因式:=▲ .【答案】。

11.2018年4月20日,四川省雅安市芦山县发生7.0级地震,我市爱心人士情系灾区,积极捐款,截止到5月6日,市红十字会共收到捐款约1400000元,这个数据用科学计数法可表示为▲ .5PCzVD7HxA【答案】1.4×106。

【精品】2018年江苏省盐城市中考数学试卷以及答案(word解析版)

【精品】2018年江苏省盐城市中考数学试卷以及答案(word解析版)

2018年江苏省盐城市中考数学试卷答案与解析一、选择题(本大题共有8小题,每小题3分,共24分。

在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)﹣2018的相反数是()A.2018 B.﹣2018 C.D.﹣【分析】只有符号不同的两个数叫做互为相反数.【解答】解:﹣2018的相反数是2018.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B. C.D.【分析】根据轴对称图形与中心对称图形的概念判断.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,是中心对称图形.故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)下列运算正确的是()A.a2+a2=a4 B.a3÷a=a3C.a2•a3=a5 D.(a2)4=a6【分析】根据合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;对各选项分析判断后利用排除法求解.【解答】解:A、a2+a2=2a2,故A错误;B、a3÷a=a2,故B错误;C、a2•a3=a5,故C正确;D、(a2)3=a8,故D错误.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.(3分)盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A.1.46×105B.0.146×106C.1.46×106D.146×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将146000用科学记数法表示为:1.46×105.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从左面看易得第一层有1个正方形,第二层有2个正方形,如图所示:.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.(3分)一组数据2,4,6,4,8的中位数为()A.2 B.4 C.6 D.8【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:一共5个数据,从小到大排列此数据为:2,4,4,6,8,故这组数据的中位数是4.故选:B.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.(3分)如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°【分析】根据圆周角定理得到∠ABC=∠ADC=35°,∠ACB=90°,根据三角形内角和定理计算即可.【解答】解:由圆周角定理得,∠ABC=∠ADC=35°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠ABC=55°,故选:C.【点评】本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半和半圆(或直径)所对的圆周角是直角是解题的关键.8.(3分)已知一元二次方程x2+k﹣3=0有一个根为1,则k的值为()A.﹣2 B.2 C.﹣4 D.4【分析】根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1﹣3+k=0,然后解一次方程即可.【解答】解:把x=1代入方程得1+k﹣3=0,解得k=2.故选:B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.(3分)根据如图所示的车票信息,车票的价格为77.5元.【分析】根据图片得出价格即可.【解答】解:根据如图所示的车票信息,车票的价格为77.5元,故答案为:77.5.【点评】本题考查了数字表示事件,能正确读出信息是解此题的关键,培养了学生的观察图形的能力.10.(3分)要使分式有意义,则x的取值范围是x≠2.【分析】分式有意义,则分母x﹣2≠0,由此易求x的取值范围.【解答】解:当分母x﹣2≠0,即x≠2时,分式有意义.故答案为:x≠2.【点评】本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.11.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.12.(3分)一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为【分析】首先确定在阴影的面积在整个面积中占的比例,根据这个比例即可求出蚂蚁停在阴影部分的概率.【解答】解:∵正方形被等分成9份,其中阴影方格占4份,∴当蚂蚁停下时,停在地板中阴影部分的概率为,故答案为:.【点评】此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.13.(3分)将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2= 85°.【分析】直接利用三角形外角的性质结合平行线的性质得出答案.【解答】解:∵∠1=40°,∠4=45°,∴∠3=∠1+∠4=85°,∵矩形对边平行,∴∠2=∠3=85°.故答案为:85°.【点评】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.14.(3分)如图,点D为矩形OABC的AB边的中点,反比例函数y=(x>0)的图象经过点D,交BC边于点E.若△BDE的面积为1,则k=4.【分析】设D(a,),利用点D为矩形OABC的AB边的中点得到B(2a,),则C(2a,),然后利用三角形面积公式得到•a•(﹣)=1,最后解方程即可.【解答】解:设D(a,),∵点D为矩形OABC的AB边的中点,∴B(2a,),∴C(2a,),∵△BDE的面积为1,∴•a•(﹣)=1,解得k=4.故答案为4.【点评】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数图象上点的坐标特征.15.(3分)如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分,图2中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图2的周长为cm(结果保留π).【分析】先根据图1确定:图2的周长=2个的长,根据弧长公式可得结论.【解答】解:由图1得:的长+的长=的长∵半径OA=2cm,∠AOB=120°则图2的周长为:=故答案为:.【点评】本题考查了弧长公式的计算,根据图形特点确定各弧之间的关系是本题的关键.16.(3分)如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ=或.【分析】分两种情形分别求解:①如图1中,当AQ=PQ,∠QPB=90°时,②当AQ=PQ,∠PQB=90°时;【解答】解:①如图1中,当AQ=PQ,∠QPB=90°时,设AQ=PQ=x,∵PQ∥AC,∴△BPQ∽△BCA,∴=,∴=,∴x=,∴AQ=.②当AQ=PQ,∠PQB=90°时,设AQ=PQ=y.∵△BQP∽△BCA,∴=,∴=,∴y=.综上所述,满足条件的AQ的值为或.【点评】本题考查勾股定理、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.三、解答题(本大题共有11小题,共102分。

2018年江苏省盐城市中考数学试卷及答案解析

2018年江苏省盐城市中考数学试卷及答案解析

2018年江苏省盐城市初中毕业、升学考试学科(满分150分,考试时间120分钟)一、选择题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018江苏省盐城市,1,3分)-2018的相反数是().A.2018 B.-2018 C.12018D.-12018【答案】A【解析】-2018的相反数是2018,故选A.【知识点】相反数2.(2018江苏省盐城市,2,3分)下列图形中,既是轴对称图形又是中心对称图形的是().D.C.B.A.【答案】D【解析】在平面内,沿一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,这条直线就叫做对称轴.在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.根据轴对称图形和中心对称图形的定义即可作出判断,故选D.【知识点】轴对称图形;中心对称图形3.(2018江苏省盐城市,3,3分)下列运算正确的是().A.a2+a2=a4B.a3÷a=a3C.a2·a3=a2、5D.(a2)4=a6【答案】C【解析】A.a2+a2=2a 2,该选项错误;B.a3÷a=a 2,该选项错误;C.a2·a3=a5,该选项正确;D.(a2)4=a8,该选项错误;故选C.【知识点】合并同类项;同底数幂的除法;同底数幂的乘法;幂的乘方4.(2018江苏省盐城市,4,3分)盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为().A.1.46×105B.0.146×106C.1.46×106D.146×103【答案】A【解析】将数据146000用科学记数法表示为1.46×105,故选A.【知识点】科学记数法(较大数)5.(2018江苏省盐城市,5,3分)如图是由5个大小相同的小正方体组成的几何体,则它的左视图是().D.C.B.A.第5题图【答案】B【解析】左视图是从左面看到的图形,故选B. 【知识点】简单几何体的三视图 6.(2018江苏省盐城市,6,3分)一组数据2,4,6,4,8的中位数为( ). A .2 B .4 C .6 D .8 【答案】B【解析】将这组数据按从小到大的顺序排列为2,4,4,6,8,位于最中间位置的是4,所以这组数据的中位数是4. 故选B.【知识点】中位数 7.(2018江苏省盐城市,7,3分)如图,AB 为⊙O 的直径,CD 为⊙O 的弦,∠ADC =35°,则∠CAB 的度数为( ).A .35°B .45°C .55°D .65°B OAC D【答案】C【解析】∵AB 为⊙O 的直径,∴∠ACB =90°,∵∠ABC =∠ADC =35°,∴∠CAB =65°.故选C. 【知识点】圆的基本性质 8.(2018江苏省盐城市,8,3分)已知一元二次方程x 2+kx -3=0有一根为1,则k 的值为( ). A .-2 B .2 C .-4 D .4 【答案】B【解析】把x =1代入一元二次方程,得12+k -3=0,解得k =2.故选B . 【知识点】一元二次方程的根二、填空题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题中横线上. 9.(2018江苏省盐城市,9,3分)根据如图所示的车票信息,车票的价格为 ___________元.【答案】77.5【解析】根据如图所示的车票信息,车票的价格为77.5元.【知识点】识图;生活中的数学10.(2018江苏省盐城市,10,3分)要使分式12x-有意义,则x的取值范围是___________.【答案】x≠2【解析】要使分式12x-有意义,x-2≠0,则x≠2.【知识点】分式有意义的条件11.(2018江苏省盐城市,11,3分)分解因式:x2-2x+1=___________.【答案】(x-1)2【解析】x2-2x+1=(x-1)2.【知识点】分解因式;完全平方公式12.(2018江苏省盐城市,12,3分)一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下来时,停在地板中阴影部分的概率为___________.【答案】4 9【解析】∵图中共有9个小方格,每个小方格形状大小完全相同,有阴影的小方格有4个,∴蚂蚁停在地板中阴影部分的概率为49.【知识点】几何概率13.(2018江苏省盐城市,13,3分)将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=___________.21【答案】85°【解析】如图,∵矩形的对边平行,∴∠2=∠3.∵∠4=45°,∠1=40°,∴∠2=∠3=85°.4321【知识点】矩形的性质;三角形的外角14.(2018江苏省盐城市,14,3分)如图,点D 为矩形OABC 的边AB 的中点,反比例函数y =kx(x >0)的图象经过点D ,交BC 边于点E .若△BDE 的面积为1,则k =___________. xy EDB OAC【答案】4【解析】设点D 的坐标为(x ,y ),则点E 的坐标为(2x ,12y ). ∵△BDE 的面积=12·x ·12y =1,∴xy =4=k . 【知识点】反比例函数系数k 的意义 15.(2018江苏省盐城市,15,3分)如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径OA =2cm, ∠AOB =120°.则右图的周长为 ___________cm (结果保留π).BAO【答案】83π 【解析】∵半径OA =2cm, ∠AOB =120°∴AB 的长=1202180π⋅⋅=43π,AO 的长+OB 的长=43π,∴右图的周长=43π+43π=83π. 【知识点】弧长公式16.如图,在直角△ABC 中,∠C =90°,AC =6,BC =8,P 、Q 分别为边AC 、AB 上的两个动点,若要使△APQ是等腰三角形且△BPQ 是直角三角形,则AQ =___________.ACBPQ【答案】154或307【解析】在直角△ABC 中,∠C =90°,AC =6,BC =8,∴A B =2268+=10.当QP ⊥AB 时,QP ∥AC .∴AB AC =QB QP .设QP =AQ =x ,则QB =10-x .∴106=10-x x .∴AQ =x =154; 当PQ ⊥AB 时,△APQ 是等腰直角三角形.∵△ABC ∽△PBQ , ∴AC BC =PQ BQ ,∴68=10-x x .∴AQ =x =307.【知识点】勾股定理;平行线分线段成比例定理;分类讨论三、解答题(本大题共9小题,满分72分,解答应写出文字说明、证明过程或演算步骤) 17.(2018江苏省盐城市,17,6分) 计算:π0-(12)-1+38 【思路分析】按零指数幂,负整数指数幂,立方根的运算法则先分别求出π0,(12)-1,38的值,然后进行有理数的运算.【解题过程】解:原式=1-2+2=1.【知识点】零指数幂;负整数指数幂;立方根 18.(2018江苏省盐城市,18,6分) 解不等式:3x -1≥2(x -1),并把它的解集在数轴上表示出来.–1–212【思路分析】类比解方程的步骤解不等式. 【解题过程】解:去括号,得3x -1≥2x -2, 移项,合并同类项,得x ≥-1.把不等式的解集在数轴上表示出来,如下图:–1–2–312【知识点】解不等式;在数轴上表示不等式的解集19.(2018江苏省盐城市,19,8分) 先化简,再求值:(1-11x +)÷21xx -,其中x =2+1 【思路分析】先根据分式运算法则将分式化简,再求值.【解题过程】解:原式=111x x +-+×21x x -=1x x +×11x x x+-()()=x -1.当x =2+1时,原式=2+1-1=2.【知识点】分式的化简求值 20.(2018江苏省盐城市,20,8分)端午节是我国传统佳节,小峰同学带了4个粽子(除粽馅不同外,其它均相同), 其中有两个肉馅粽子、一个红枣粽子和一个豆沙粽子,准备从中任意拿出两个送给他的好朋友小悦. (1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果; (2)请你计算小悦拿到的两个粽子都是肉馅的概率. 【思路分析】(1)根据题意画出树状图或列表. (2)利用概率公式计算可得. 【解题过程】解:(1)画树状图如下,第二次第一次豆沙粽子肉馅粽子2肉馅粽子1豆沙粽子红枣粽子肉馅粽子1豆沙粽子红枣粽子肉馅粽子2肉馅粽子1肉馅粽子2红枣粽子开始豆沙粽子红枣粽子肉馅粽子2肉馅粽子1列表:肉馅粽子1 肉馅粽子2 红枣粽子 豆沙粽子 肉馅粽子1(肉馅1,肉馅2) (肉馅1,红枣) (肉馅1,豆沙) 肉馅粽子2 (肉馅2,肉馅1)(肉馅2,红枣) (肉馅2,豆沙) 红枣粽子 (红枣,肉馅1) (红枣,肉馅2)(红枣,豆沙) 豆沙粽子(豆沙,肉馅1)(豆沙,肉馅2)(豆沙,红枣)(2)从树状图或列表可以得出共有12种等可能的结果,其中小悦拿到的两个粽子都是肉馅的情况有2种结果. 所以P (小悦拿到的两个粽子都是肉馅的)=112=16. 【知识点】概率 21.(2018江苏省盐城市,21,8分)在正方形ABCD 中,对角线BD 所在的直线上有两点E 、F 满足BE =DF ,连接AE 、AF 、CE 、CF ,如图所示.EDAB CF(1)求证:△ABE ≌△ADF ;(2)试判断四边形AECF 的形状,并说明理由. 【思路分析】(1)根据SAS 可证△ABE ≌△ADF ;(2)四边形AECF 是菱形.利用正方形的性质,证△ABE ≌△ADF ,进而可得AE =CF =EC =AF , ∴四边形AECF 是菱形.【解题过程】解:(1)∵四边形ABCD 是正方形,∴∠ABD =45°,∠CDB =45°,AB =CD . ∴∠ABE =∠CDF =135°.∵BE =DF ,∴△ABE ≌△ADF (SAS); (2)∴四边形AECF 是菱形.理由:∵△ABE ≌△ADF ,∴AE =CF . 同理AF =CE ,AE =EC . ∴四边形AECF 是菱形. 【知识点】 22.(2018江苏省盐城市,22,10分)“安全教育平台”是中国教育学会为方便家长和学生参与安全知识活动,接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与B .家长和学生一起参与C .仅家长自己参与D .家长和学生都未参与类别人数806020各类情况扇形统计图各类情况条形统计图A 20%BC DDC B A 40801201602002400请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了___________名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.【思路分析】(1)根据图中提供的信息,得A 类人数有80人,占总调查人数的20%,所以在这次抽样调查中,共调查了学生80÷20%=400(名);(2)C 类所对应扇形的圆心角的度数=360°×C 类人数所占的百分比;(3)2000×D 类人数所占的百分比,可得该校2000名学生中“家长和学生都未参与”的人数. 【解题过程】解:(1)400.(2)C 类所对应扇形的圆心角的度数为360°×60400=54°,同理可得其他A 、B 、D 各类所对应扇形的圆心角的度数.400×B 类人数所占的百分比=B 类人数,补全条形统计图如下.类别人数806020240各类情况条形统计图DC B A 40801201602002400(3)2000×20400=100,所以该校2000名学生中“家长和学生都未参与”的人数约100人. 【知识点】条形统计图;扇形统计图;样本估计总体 23.(2018江苏省盐城市,23,10分) 一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,该店采取了降价措施.在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为___________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元? 【思路分析】(1)由题意得,20+2×3=26,所以若降价3元,则平均每天销售数量为26件; (2)本题中的相等关系:每天每件的盈利×每天的销量=每天销售利润 【解题过程】解:(1)26;(2)设当每件商品降价x 元时,该商店每天销售利润为1200元. 由题意,得(40-x )(20+2x )=1200. 整理,得x 2-30 x +200=0. (x -10)(x -20)=0. x 1=10,x 2=20.又每件盈利不少于25元,∴x =20.不合题意舍去答:当每件商品降价10元时,该商店每天销售利润为1200元. 【知识点】一元二次方程的应用 24.(2018江苏省盐城市,24,10分) 学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y (米)与时间t (分钟)之间的函数关系如图所示.(1)根据图象信息,当t =___________分钟时甲乙两人相遇,甲的速度为___________米/分钟; (2)求出线段AB 所表示的函数表达式. t (分钟)y(米)AB24006024O【思路分析】(1)由图象得当t =24分钟时甲乙两人相遇,甲的速度为240060=40米/分钟; (2)根据题意,先求得点A 的坐标,然后用待定系数法求出线段AB 所表示的函数表达式. 【解题过程】解:(1)24,40; (2)∵甲、乙两人的速度和为240024=100米/分钟,甲的速度为40米/分钟,∴乙的速度为60米/分钟. 乙从图书馆回学校所用的时间为240060=40分钟. 相遇后,乙到达学校时,两人之间的距离y =60×(40-24)=1600(米), ∴点A 的坐标为(40,1600).∵点B 的坐标为(40,1600)∴设线段AB 所表示的函数表达式为y =kx +b . 根据题意,得k b k b ⎧⎨⎩1600=40+,2400=60+,解得40,0.k b =⎧⎨=⎩∴线段AB 所表示的函数表达式为y =40x .【知识点】一次函数的图象的应用;一次函数的表达式 25.(2018江苏省盐城市,25,10分)如图,在以线段AB 为直径的⊙O 上取一点C ,连接AC 、BC .将△ABC 沿AB 翻折得到△ABD .(1)试说明点D 在⊙O 上;BE 为⊙O 的切线;(2)在线段AD 的延长线上取一点E ,使AB 2=AC ·AE ,求证:BE 为⊙O 的切线;(3)在(2)的条件下,分别延长线段AE 、CB 相交于点F ,若BC =2,AC =4,求线段EF 的长.FED OAB C【思路分析】(1)因为AB 为直径,点C 是⊙O 上一点,由圆的对称性得出点D 在⊙O 上; (2)利用相似三角形的判定得出△DAB ∽△BAE ,进而证得∠ABE =90°.(3)证△FCA ∽△FDB .利用相似三角形的性质构建方程,解之可得线段EF 的长. 【解题过程】解:(1)∵AB 为直径,点C 是⊙O 上一点,∴∠ACB =90°.将△ABC 沿AB 翻折得到△ABD ,∴∠ADB =90°,点D 在⊙O 上;(2)∵AB 2=AC ·AE ,∠DAB =∠BAE ,∴△DAB ∽△BAE .∴∠ABE =∠ADB =90°.∴BE 为⊙O 的切线; (3)∵BC =2,AC =4,∴BD =2,AD =4,AB =25.∵AB 2=AC ·AE ,∴AE =5,DE =1.在Rt △BDE 中,∵BD =2,DE =1,∴BF =2221EF ++().∵∠C =∠FDB =90°,∠F =∠F ,∴△FCA ∽△FDB .∴FD FC =DB CA ,即221212EF EF ++++()=24,整理,得3EF 2-2EF -5=0.解得EF =-1(舍去),EF =53.即线段EF 的长为53.【知识点】圆的基本性质;相似三角形的判定与性质 26.(2018江苏省盐城市,26,12分)【发现】如图①,已知等边△ABC ,将直角三角板的60°角顶点D 任意放在BC 边上(点D 不与点B 、C 重合),使两边分别交线段AB 、AC 于点E 、F .(1)若AB =6,AE =4,BD =2,则CF =___________; (2)求证:△EBD ∽△DCF .图①FD A BCE 图②FE A BCD【思考】若将图①中的三角板的顶点D 在BC 边上移动,保持三角板与边ABAC 的两个交点E 、F 都存在,连接EF ,如图②所示.问:点D 是否存在某一位置,使ED 平分∠BEF 且FD 平分∠CFE ?若存在,求出BDBC的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC 中,AB =AC ,点O 为BC 边的中点,将三角形透明纸板的一个顶点放在点O 处(其中∠MON =∠B ),使两条边分别交边AB 、AC 于点E 、F (点E 、F 均不与△ABC 的顶点重合),连接EF .设∠B =α,则△AEF 与△ABC 的周长比为___________(用含α的表达式表示).图③NEO BCAF M【思路分析】 【发现】(1)先求出DC 的值,再证△FDC 是等边三角形即可.(2)根据两角对应相等两三角形相似,只需证∠B =∠C ,∠BED =∠FCD 即可. 【思考】利用角平分线的性质得DM =DG =DN .利用全等三角形的性质得BD =CD . 【探索】类比(2)猜想应用EF =EG +FH .设AB =m ,则OB =m cos α,GB =m cos 2α. ∴AEF ABC CC =1-cos α. 【解题过程】 【发现】(1)∵△ABC 是等边三角形, ∴∠A =∠B =∠C =60°,AB =BC =AC . ∵AB =6,AE =4,∴BE =2.∵BD =2,∴DC =4.∵∠EDF =60°,∴∠FDC =60°.∴△FDC 是等边三角形. ∴CF =4.(2))∵△ABC 是等边三角形, ∴∠B =∠C =60°,∴∠BED +∠BED =120°.∵∠EDF =60°,∴∠BDE +∠FDC =120°.∴∠BED =∠FCD .∴△EBD ∽△DCF .【思考】存在.点D 移动到BC 边的中点时,ED 平分∠BEF 且FD 平分∠CFE ,此时BD BC =12. 理由:如图,作DM ⊥EB , DG ⊥EF , DN ⊥FC ,∵ED 平分∠BEF ,FD 平分∠CFE ,∴DM =DG =DN .∴△DBM ≌△DCN .∴BD =CD .∴点D 移动到BC 边的中点时,ED 平分∠BEF 且FD 平分∠CFE ,此时BD BC =12. NG M E ABC D F【探索】如图,作DM ⊥EB , DG ⊥EF , DN ⊥FC .有∠GOH =2∠EOF =2α.由(2)可猜想应用EF =EG +FH .(通过旋转半角证明)设AB =m ,则OB =m cos α,GB =m cos 2α. ∴AEFABC C C =22()AG AB OB +=AG AB OB+=2cos cos m m m m αα-+=1-cos α. H DG E B CO AF MN【知识点】等边三角形的判定;相似三角形的判定;角平分线的性质;解直角三角形27.(2018江苏省盐城市,27,14分) ,如图①,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +3经过点A (-1,0),B (3,0)两点,且与y 轴交于点C .(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x 轴,并沿x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于P 、Q 两点(点P 在点Q 的左侧),连接PQ ,在线段PQ 上方抛物线上有一动点D ,连接DP 、DQ .(Ⅰ)若点P 的横坐标为-12,求△DPQ 面积的最大值,并求此时点D 的坐标; (Ⅱ)直尺在平移过程中,△DPQ 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由. x y x y x y备用图图②图①O Q P O CB AO D 【思路分析】(1)把A (-1,0),B (3,0)两点代入y =ax 2+bx +3,用待定系数法求抛物线的表达式;(2)(Ⅰ)根据题意先求得P 、Q 两点的坐标,再用待定系数法求直线PQ 的表达式.过点D 作DF ⊥x 轴于E ,交PQ 于F .直尺的宽度一定,当时DF 最长时,△DPQ 面积的最大.设点D 的坐标为(m ,-m 2+2m +3),则点F 的坐标为(m ,-m +32),求得DF 的最大值,然后根据三角形的面积公式,求得△DPQ 面积的最大值. (Ⅱ)同理.设P ( c ,-c 2+2c +3),Q (c +4,-c 2-6c -5),则直线PQ 的表达式可求; 设点D 的坐标为(m ,-m 2+2m +3),则点F 的坐标为(m ,-(2c +2)m +c 2+4c +3),求得DF 的最大值,△DPQ 面积的最大值可得.【解题过程】解:(1)把A (-1,0),B (3,0)两点代入y =ax 2+bx +3, 得 3.0+3 3.a b a b -⎧⎨⎩0=+=9+解得1,2,a b =-⎧⎨=⎩∴抛物线的表达式为y =-x 2+2x +3.(2)(Ⅰ)设直线PQ 的表达式为y =kx +b ,把P (-12,74),Q (72,-94)两点的坐标代入,得 71-4297-42k b k b ⎧⎪⎪⎨⎪⎪⎩=+,=+,解得1,5.4k b =-⎧⎪⎨=⎪⎩ ∴直线PQ 的表达式为y =-x +54. 设点D 的坐标为(m ,-m 2+2m +3),则点F 的坐标为(m ,-m +54), ∴DF =-m 2+2m +3-(-m +54) =-m 2+3m +74=-(m 2-3m )+74. =-(m -32)2+4当m =32时,DF 有最大值,最大值为4. 此时点D 的坐标(32,4). 直尺的宽度一定,所以当DF 最长时,△DPQ 面积的最大. △DPQ 的面积=12×4DF =12×4×4=8 ∴△DPQ 面积的最大值为8; xyEFQ PO D(Ⅱ)设P ( c ,-c 2+2c +3),Q (c +4,-c 2-6c -5),把P 、Q 两点的坐标代入直线PQ 的表达式y =kx +b ,得222365(c 4)c c ck b c c k b ⎧⎪⎨+⎪⎩-++=+,---=+,解得222,4 3.k c b c c =--⎧⎨=++⎩ ∴直线PQ 的表达式为y =-(2c +2)x +c 2+4c +3.设点D 的坐标为(m ,-m 2+2m +3),则点F 的坐标为(m ,-(2c +2)m +c 2+4c +3), ∴DF =-m 2+2m +3-[-(2c +2)m +c 2+4c +3]=-m 2+(2c +4)m -(c 2+4c )=-[m -(c +2)] 2+4当m =c +2时,DF 最长,最长为4.此时,△DPQ 的面积=12×4DF =12×4×4 =8. xyHGQ PO D【知识点】二次函数的表达式;一次函数的表达式;面积最值;由特殊到一般的思想方法。

江苏省盐城市2018年中考数学试卷(含答案)【真题卷】

江苏省盐城市2018年中考数学试卷(含答案)【真题卷】

江苏省盐城市2018年中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.-2018的相反数是( )A .2018B .-2018C .12018 D .12018- 2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 3.下列运算正确的是( )A .224a a a +=B .33a a a ÷=C .235a a a ⋅=D .246()a a =4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为( )A .51.4610⨯B .60.14610⨯C .61.4610⨯D .314610⨯ 5.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是( )A .B .C .D . 6.一组数据2,4,6,4,8的中位数为( )A .2B .4C .6D .87.如图,AB 为O e 的直径,CD 是O e 的弦,35ADC ∠=o ,则CAB ∠的度数为( )A .35oB .45oC .55oD .65o 8.已知一元二次方程230x kx +-=有一个根为1,则k 的值为( ) A .-2 B .2 C .-4 D .4二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.根据如图所示的车票信息,车票的价格为 元.10.要使分式12x -有意义,则x 的取值范围是 . 11.分解因式:221x x -+= .12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为 .13.将一个含有45o 角的直角三角板摆放在矩形上,如图所示,若140∠=o ,则2∠= .14.如图,点D 为矩形OABC 的AB 边的中点,反比例函数(0)ky x x=>的图象经过点D ,交BC 边于点E .若BDE ∆的面积为1,则k = 。

教育课件-2018年江苏省盐城市中考数学试卷含答案(Word版)经典

教育课件-2018年江苏省盐城市中考数学试卷含答案(Word版)经典

16. 如图,在直角 ABC 中, C 90 , AC 6,BC 8,P 、
Q 分别为边 BC 、 AB 上的两个动点,若要使 APQ 是
等腰三角形且 BPQ 是直角三角形,则
AQ

三、解答题(本大题共有 11 小题,共 102 分 . 请在答题卡指定区域内作答,解
上,如图所示,若 1 40 ,则 2

14. 如图,点 D 为矩形 OABC 的 AB 边的中点,反比例
函数 y k (x 0) 的图象经过点 D ,交 BC 边于点 E . 若 x
BDE 的面积为 1,则 k

15. 如图,左图是由若干个相同的图形(右图) 组成的美丽图案的一部分 . 右图中,图形的相关 数据:半径 OA 2cm, AOB 120 . 则右图的周长为 cm (结果保留 ).
2018 年江苏省盐城市中考数学试卷含答案 (Word 版)
江苏省盐城市 2018 年中考数学试卷
一、选择题(本大题共 8 小题,每小题 3 分,共 24 分 . 在每小题给出的四个选项 中,只有一项是符合题目要求的, 请将正确选项的字母代号填涂在答题卡相应位 置上)
1.-2018 的相反数是( )
A.2
B
.4
C.6
D
.8
7. 如图, AB 为 O 的直径, CD 是 O 的弦, ADC 35 ,
则 CAB 的度数为( )
A. 35
B
. 45
C
. 55D. 658. 已知一元二次方程 x2 kx 3 0有一个根为 1,则 k
的值为( )
A.-2
B
.2
C
.-4
D.4
二、填空题(本大题共有 8 小题,每小题 3 分,共 24 分. 不需写出解答过程,请 将答案直接写在答题卡相应位置上)

2018年盐城市中考数学真题及答案 精品

2018年盐城市中考数学真题及答案 精品

2018年中考数学试题(江苏盐城卷)(本试卷满分150分,考试时间120分钟)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.-2、0、1、-3四个数中,最小的数是【】A.2- B.0 C.1 D.3-【答案】D。

2.如果收入50元记作+50元,那么支出30元记作【】A.+30元 B.-30元 C.+80元 D.-80元【答案】B。

3.下面的几何体中,主视图不是..矩形的是【】A.B. C. D.【答案】C。

4.若式子x3-在实数范围内有意义,则x的取值范围是【】A.x≥3 B.x≤3 C.x>3 D.x<3【答案】A。

5.下列运算中,正确的是【】A.2245a2a3-=+ B.222a3a a5=C.326÷=3a a a3a2a2a⨯= D.624【答案】D。

6.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是【】工资(元)2000 2200 2400 2600人数(人)1 3 42A.2400元、2400元 B.2400元、2300元 C.2200元、2200元 D.2200元、2300元【答案】A。

7.如图,直线a∥b,∠1=120°,∠2=40°,则∠3等于【】A.600 B.700 C.800 D.900【答案】C。

8.如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有【】A .4种B .5种C .6种D .7种【答案】B 。

二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.16的平方根是 ▲ .【答案】±4。

盐城市2018年中考数学试卷及答案解析

盐城市2018年中考数学试卷及答案解析

盐城市2018年初中毕业与升学考试数学试题一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.-2018的相反数是()A.2018B.-2018C.12018D.-120182.下列图形中,既是轴对称图形又是中心对称图形的是()3.下列运算正确的是()A.A2+a2=a4B.A3÷a=a3C.A2·a3=a5D.(a2)4=a64.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A.1.46×105B.0.146×106C.1.46×106D.146×1035.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()第5题图6.一组数据2,4,6,4,8的中位数为()A.2B.4C.6D.87.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°第7题图8.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A.-2B.2C.-4D.4二、填空题(本大题共有8小题,每小题3分,共24分,不需写出解答过程,请将答案直接写在答题卡相应位置上)9.根据如图所示的车票信息,车票的价格为______元.第9题图10.要使分式1x-2有意义,则x的取值范围是______.11.分解因式:x2-2x+1=______.12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为______.第12题图13.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=______.第13题图(x>0)的图象经过点D,交BC边于点E.14.如图,点D为矩形OABC的AB边的中点,反比例函数y=kx若△BDE的面积为1,则k=______.第14题图15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分,右图中,图形的相关数据:半径OA=2cm,∠AOB=120°,则右图的周长为______cm(结果保留π).第15题图16.如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ=______.第16题图三、解答题(本大题共有11小题,共100分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(本题满分6分)计算:π0-(12)-1+38.18.(本题满分6分)解不等式:3x -1≥2(x -1),并把它的解集在数轴上表示出来.19.(本题满分8分)先化简,再求值:(1-1x +1)÷x x 2-1,其中x =2+1.20.(本题满分8分)端午节是我国传统佳节,小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.(本题满分8分)在正方形ABCD 中,对角线BD 所在的直线上有两点E 、F 满足BE =DF ,连接AE 、AF 、CE 、CF ,如图所示.(1)求证:△ABE ≌△ADF ;(2)试判断四边形AECF 的形状,并说明理由.第21题图22.(本题满分8分)“安全教育平台”是中国教育协会为方便家长和学生参与安全知识活动、接受安全提醒的一种应用软件,某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与B.家长和学生一起参与C.仅家长自己参与D.家长和学生都未参与第22题图请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了______名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.(本题满分10分)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为______件.(2)当每件商品降价多少元时,该商店每天销售利润为1200元?24.(本题满分10分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地,两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=______分钟时甲乙两人相遇,甲的速度为40米/分钟;(2)求出线段AB所表示的函数表达式.第24题图25.(本题满分10分)如图,在以线段AB 为直径的⊙O 上取一点C ,连接AC 、BC ,将△ABC 沿AB 翻折后得到△AB D.(1)试说明点D 在⊙O 上;(2)在线段AD 的延长线上取一点E ,使AB 2=AC ·AE ,求证:BE 为⊙O 的切线;(3)在(2)的条件下,分别延长线段AE 、CB 相交于点F ,若BC =2,AC =4,求线段EF 的长.第25题图26.(本题满分12分)【发现】如图①,已知等边△ABC ,将直角三角板的60°角顶点D 任意放在BC 边上(点D 不与点B 、C 重合),使两边分别交线段AB 、AC 点于E 、F .(1)若AB =6,AE =4,BD =2,则CF =______;(2)求证:△EBD ∽△DCF .【思考】若将图①中的三角板的顶点D 在BC 边上移动,保持三角板与边AB 、AC 的两个交点E 、F 都存在,连接EF ,如图②所示.问:点D 是否存在某一位置,使ED 平分∠BEF 且FD 平分∠CFE ?若存在,求出BDBC的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC 中,AB =AC ,点O 为BC 边的中点,将三角形透明纸板的一个顶点放在点O 处(其中∠MON =∠B ),使两条边分别交边AB 、AC 于点E 、F (点E 、F 均不与△ABC 的顶点重合),连接EF .设∠B =α,则△AEF 与△ABC 的周长之比为______(用含α的表达式表示).图①图②图③第26题图27.(本题满分14分)如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(-1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.(Ⅰ)若点P的横坐标为-12,求△DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.第27题图2018盐城市2018年初中毕业与升学考试数学解析1.A 【解析】只有符号不同的两个数互为相反数,故选A.2.D 【解析】逐项分析如下:选项逐项分析结论A 不是轴对称图形,是中心对称图形 B 是轴对称图形,不是中心对称图形 C 是轴对称图形,不是中心对称图形 D既是轴对称图形,也是中心对称图形√3.C【解析】逐项分析如下:选项逐项分析结论A a 2+a 2=2a 2≠a 4 B a 3÷a =a 2≠a 3 C a 2·a 3=a 5√D(a 2)4=a 8≠a 64.A 【解析】科学记数法的一般形式为a ×10n ,其中1≤|a |<10,n 为原数整数位数减1,∴a =1.46,n =5,即146000=1.46×105.5.B 【解析】左视图是指自左向右看得到的图形,B 选项符合题意.6.B 【解析】先将2,4,6,4,8从小到大排列为:2,4,4,6,8,由于是5个数,所以中位数是中间的那个数,中位数是4.7.C 【解析】∵在⊙O 中AC ︵所对圆周角为∠ABC ,∠ADC ,∴∠ABC =∠ADC =35°,又∵AB 为直径,∴∠ACB =90°,∴在Rt △ABC 中,∠CAB =90°-35°=55°.8.B 【解析】由根的定义知x =1使方程两边相等,所以把x =1代入原方程,得:1+k -3=0,解得:k =2.9.77.510.x ≠2【解析】要使得分式有意义,需使分母不为零,即x -2≠0,故x ≠2.11.(x -1)212.49【解析】整个方格地板是9格,而阴影部分是4格,∴P (停在地板中阴影部分)=49.13.85°【解析】如解图所示,∵AB ∥CD ,∴∠4=∠2=40°+45°=85°,∴∠2=85.第13题解图14.4【解析】设D (a ,b ),∵点D 为AB 的中点,∴B (2a ,b ),又∵BC ∥AO ,∴点E 的横坐标为2a ,又∵点D 、E 都在反比例函数图象上,∴E (2a ,b 2),∴S △BDE =12BD ·BE =12(2a -a )(b -b 2)=1,即ab4=1,∴ab=4,∵点D 在反比例函数图象上,∴y =4x,k =4.15.83π【解析】由于题中左图是由若干个右图组成的图案,∴如解图,设弧AB 的中点为点C ,连接AC ,OC ,则∠AOC =12∠AOB =60°,OA =OC ,∴△AOC 为等边三角形,∴AO ︵=DB ︵=AC ︵,∴右图的周长为lAO ︵+lOB ︵+lAB ︵=60π×2180+60π×2180+120π×2180=83π.第15题解图16.154或307【解析】由题意可得,AC =6,BC =8,则AC BC =34,且AB =62+82=10,如解图①,当∠QPB =90°,AQ =PQ 时,满足条件,设PQ =3x ,则PB =4x ,∴BQ =(3x )2+(4x )2=5x ,∵PQ =AQ =3x ,∴3x =10-5x ,解得x =54,∴AQ =3x =154;如解图②,当∠PQB =90°,AQ =PQ 时,满足条件,∵tan ∠B =PQ QB =AC BC =34,∴设PQ =3x ,则BQ =4x ,∴AQ =PQ =3x ,∴3x +4x =10,解得x =107,∴AQ =3x =307.综上可知,AQ 的值为154或307.第16题解图17.解:原式=1-2+2=1.18.解:3x -1≥2x -23x -2x ≥1-2x ≥-1.将不等式的解集表示在数轴上如解图所示,第18题解图19.解:原式=x +1-1x +1·(x +1)(x -1)x =x -1当x =2+1时,原式=2+1-1= 2.20.解:(1)列表如下:P (拿到两个肉粽)=212=16.21.(1)证明:如解图,连接AC ,交BD 于点O ,∵四边形ABCD 是正方形,∴AB =AD ,∠ABD =∠ADB =45°,∴∠ABE =∠ADF =135°,∴在△ABE 和△ADF 中,=AD ,ABE =∠ADF ,=DF ,∴△ABE ≌△ADF (SAS);第21题解图(2)解:四边形AECF 是菱形,理由如下:∵四边形ABCD 是正方形,∴OA =OC ,OB =OD ,又∵BE =DF ,∴OB +BE =OD +DF ,∴OE =OF ,∴AC 与EF 互相平分,∴四边形AECF 是平行四边形,∵四边形ABCD 是正方形,∴AC ⊥BD ,∴AC ⊥EF ,∴四边形AECF 是菱形.22.解:(1)80÷20%=400(名),∴在这次调查抽样调查中,共调查了400名学生.(2)C 类共60名学生,总调查人数共有400名学生,∴C 类所对应扇形圆心角度数:60400×360°=54°.补全条形统计图如解图;各类情况条形统计图第22题解图【解法提示】400-80-60-20=240(名),∴B 类共有240名学生(3)∵“家长和学生都未参与”为D 类,∴20400×2000=100(人),答:根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数为100人.23.解:(1)∵每降低1元,平均每天可多售出2件,∴每降价3元,平均每天可多售出6件,共降价3元,则平均每天销售数量为26件;(2)设平均每件商品降低x 元,(40-x )(20+2x )=1200,解得:x =100或x =20,∵每件盈利不少于25元,∴40-x ≥25,解得:x ≤15,∴x =10,答:当每件商品降低10元时,该商品每天销售利润为1200元.24.解:(1)24,40;【解法提示】当y =0时,t =24分钟,甲乙两人相遇,∵乙先到达终点,∴B 点表示甲到达目的地时所用时间为60分钟,∴甲的速度为:2400÷60=40(米/分钟).(2)当t =24分钟时,甲乙两人相遇,∴甲乙的速度和为2400÷24=100(米/分钟),∵甲的速度为40米/分钟,∴乙的速度为60米/分钟,而A 点表示乙到达目的地,∴乙到达目的地所用时间为2400÷60=40(分钟).而此时甲乙两人相距:40×100-2400=1600(米)∴A 点坐标为(40,1600),B 的坐标为(60,2400)设线段AB 解析式为:y =kt +b ,将A ,B 两点代入,得:k +b =1600k +b =2400,∴线段AB 所表示的函数解析式为:y =40t (40≤t ≤60)25.解:(1)如解图,连接OD ,∵AB 是⊙O 的直径,∴∠ACB =90°,∵△ABC 沿AB 翻折后得到△ABD ,∴△ABC ≌△ABD ,第25题解图∴∠ACB =∠ADB =90°,∵OA =OB ,∴OD =12AB =OB ,∴D 在⊙O 上;(2)∵△ABC ≌△ABD ,∴AC =AD 又AB 2=AC ·AE ,∴AB 2=AD ·AE ,即ADAB =ABAE ,在△ABD 和△AEB 中,∵∠BAD =∠BAE ,ADAB =ABAE ,∴△ABD ∽△AEB ,∴∠ADB =∠ABE =90°,(3)在Rt △ABC 中,∠C =90°,∴AB =AB 2+BC 2=25,由(2)得AB 2=AD ·AE ,∴AE =5,∴DE =AE -AD =1,在△BDF 和△ACF 中,∠F =∠F ,∠BDF =∠ACF =90°,∴△BDF ∽△ACF ,设EF =x ,BF =y ,则DF =x +1,CF =y +2,∴DF FC =BDAC =BFAF ,∴x +1y +2=24=yx +5,=53=103,∴EF =53.26.(1)解:4【解法提示】∵△ABC 是等边三角形,∴BC =AB =5,∠B =∠C =60°,∵AB =6,AE =4,∴BE =2,∵BE =2,∠B =60°,BD =2,∴△BDE 是等边三角形,∴∠BDE =60°,∵∠EDF =60°,∴∠FDC =60°,∵∠FCD =60°,∴△FDC 是等边三角形,∴CF =CD =BC -BD =4.(2)证明:∵∠EDF =60°,∴∠BDE +∠CDF =120°,∵∠C =60°,∴∠CDF +∠CFD =120°,∴∠BDE =∠CFD ,又∵∠B =∠C =60°,∴△EBD ∽△DCF ;【思考】存在,D 是中点,此时BD BC =12;第26题解图①【解法提示】如解图①,作DM ⊥AB 于M ,DN ⊥EF 于N ,DG ⊥CF 于G ,∵DE 平分∠BEF ,DF 平分∠CFE ,∴DM =DN =DG ,在△BMD 和△CGD中,B =∠C =60°BMD =∠CGD =90°=GD,∴△BMD ≌△CGD (AAS),∴BD =CD ,则BD BC =12,【探索】(1-cos α)∶1;第26题解图②【解法提示】∵AB =AC ,OB =OC ,∴∠B =∠C ,AO ⊥BC ,∵∠MON =∠B =α,∴易证△BOE ∽△CFO ,∴OB OE =CF OF ,∵OB =OC ,∴OC OE =CF OF,又∵∠EOF =∠C =α,∴△EOF ∽△OCF ∽△EBO ,∴∠BEO =∠OEF =∠COF ,∠BOE =∠EFO =∠CFO ,如解图②,作OP ⊥AB 于P ,OL ⊥EF 于L ,OQ ⊥CF 于Q ,∴OP =OL =OQ ,∴易得△EPO ≌ELO ,△LFO ≌△OFQ ,△APO ≌△AQO ,∴EL =EP ,FL =FQ ,AP =AQ ,∴C△AEF =AE +EF +AF =AE +EL +FL +AF =AE +EP +FQ +AF =AP +AQ =2AP ,C △ABC =2(AB +OB ),C △AEF C △ABC=2AP 2(AB +OB )=AP AB +OB =AP (AB -OB )(AB +OB )(AB -OB )=AP (AB -OB )OA 2=AP (AB -OB )AP ·AB =AB -OB AB =1-cos α,∴C △AEF 与C △NEF 之比为(1-cos α)∶1.27.解:(1)∵抛物线y =ax 2+bx +3经过点A (-1,0),B (3,0),∴把A (-1,0),B (3,0)代入y =ax 2+bx +3-b +3=0a +3b +3=0,=-1=2,∴抛物线表达式为y =-x 2+2x +3;(2)(Ⅰ)∵点P 横坐标为-12,直尺宽为4,点P 在点Q 的左侧,∴点Q 横坐标为72,∵P 、Q 两点都在抛物线y =-x 2+2x +3上,∴点P 坐标为(-12,74),点Q 坐标为(72,-94),设直线PQ 解析式为y =kx +c ,将P (-12,84),点Q (72,-94)-12k +c =74,+c =-94,=-1=54,∴直线PQ 解析式为y =-x +54,第27题解图如解图,过点D 作x 轴垂线,交PQ 于点H ,过点P 、Q 分别作DH 垂线,垂足分别为点M 、N设点D 坐标为(n ,-n 2+2n +3),则点H 坐标为(n ,n +54)∵点D 在线段PQ 上方∴DH =(-n 2+2n +3)-(-n +54)=-n 2+3n +74∵S △DPQ =S △PDH +S △PDH ,其中S △PDH =12DH ·PM ,S △QDH =12DH ·QN ,∴S △DPQ =12DH ·PM +12DH ·QN =12DH ·(PM +QN )=124DH =2DH ,∴S △DPQ =2(-n 2+3n +74)=-2(n -32)2+8∵-2<0,∴当n =32时,S △DPQ 取得最大值8,此时点D 坐标为(32,154).(Ⅱ)设点P 坐标为(m ,-m 2+2m +3).则点Q 横坐标为m +4,故点Q 坐标为(m +4,-m 2-6m -5)设直线PQ 解析式为y =kx +c将P 、Q 坐标代入y =kx +c =-2m -2=m 2+4m +3∴直线PQ 解析式为y =(-2m -2)x +m 2+4m +3如解图,设点D 坐标为(n ,-n 2+2n +3).则点H 坐标为(n ,m 2+4m +3-2mn -2n ).DH =-n 2+2n +3-(m 2+4m +3-2mn -2n )=-m 2-n 2+2mn -4m +4n=-(m -n )2-4(m -n )=-[(m -n )2+4(m -n )]=-[(m -n )2+4(m -n )+4-4]=-(m -n +2)2+4∵-1<0∴当m -n +2=0时DH 取得最大值4由(Ⅰ)得S △DPQ =2DH ,故S △DPQ 存在最大值,最大值为8.。

江苏省盐城市2018中考数学试题及答案

江苏省盐城市2018中考数学试题及答案
答案:由题意可知,抛物线$y = x^{2} - 2x$与$x$轴有交点,所以一元二次方程$x^{2} - 2x = 0$有实数根.再根 据根的判别式$\mathrm{\Delta} = b^{2} - 4ac = 4 - 4 \times 1 \times 0 = 4 > 0$,所以抛物线与$x$轴有两个不同的 交点.
• 答案:$3$ • 解析:增根是分式方程化为整式方程后求得的根,必须满足分式方程的定义域,即$x - 3 = 0$,解得$x = 3$,将$x = 3$代入整式方程即可求得$k$的
值.
• 题目:已知关于$x$的一元二次方程$x^{2} + 4x + k - 1 = 0$有两个不相等的实数根. 答案:$k < 5$ 解析:根据一元二次方程的根的 判别式$\mathrm{\Delta} = b^{2} - 4ac > 0$列出关于$k$的不等式,求出不等式的解集即可得到$k$的范围.
• 题目:若关于$x$的分式方程$\frac{x}{x - 2} - 2 = \frac{k}{x - 2}$有增根,则$k =$____. 答案:$- 2$ 解析:去分母得:$x - 2(x - 2) = k$,由题意得:$x 2 = 0$,解得:$x = 2$,把$x = 2$代入整式方程得:$k = - 2$。 • 答案:$- 2$ • 解析:去分母得:$x - 2(x - 2) = k$,由题意得:$x - 2 = 0$,解得:$x = 2$,把$x = 2$代入整式方程得:$k = - 2$。
添加 标题
解析:根据抛物线的对称性,若抛物线 经过点 (0, 0) 和点 (2, 0),则其对称轴 为直线 x = 1。
添加 标题
易错点:学生可能误认为抛物线的对称 轴是 y 轴,而忽略了抛物线经过的两个 点的对称性。

2018年江苏省盐城市中考数学试卷及答案

2018年江苏省盐城市中考数学试卷及答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前江苏省盐城市2018年初中学业水平考试数学 ...................................................................... 1 江苏省盐城市2018年初中学业水平考试数学答案解析 (5)江苏省盐城市2018年初中学业水平考试数学(满分:150分,考试时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2018-的相反数是( ) A .2018 B .2018-C .12018D .12018-2.下列图形中,既是轴对称图形又是中心对称图形的是( )AB C D 3.下列运算正确的是( ) A .224a a a += B .33a a a ÷=C .235a a a ⋅=D .246a a =()4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146 000米,将数据146 000用科学记数法表示为( )A .51.4610⨯ B .60.14610⨯ C .61.4610⨯D .314610⨯5.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是( )ABCD6.一组数据2,4,6,4,8的中位数为( )A .2B .4C .6D .8(第5题)(第7题)7.如图,AB 为O 的直径,CD 是O 的弦,35ADC ∠=︒,则CAB ∠的度数为( ) A .35︒B .45︒C .55︒D .65︒ 8.已知一元二次方程230x kx +-=有一个根为1,则k 的值为( ) A .2-B .2C .4-D .4二、填空题(本大题共8小题,毎小题3分,共24分.不需写出解答过程)9.根据如图所示的车票信息,车票的价格为 元. 10.要使分式12x -有意义,则x 的取值范围是 . 11.分解因式:221x x -+= .12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为 .13.将一个含有45︒角的直角三角板摆放在矩形上,如图所示,若140∠=︒,则2∠= ︒.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)(第9题)(第12题)(第13题)14.如图,点D 为矩形OABC 的AB 边的中点,反比例函数()0ky x x=>的图象经过点D ,交BC 边于点E .若BDE △的面积为1,则k = .(第14题)(第15题)(第16题)15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径 2 cm OA =,120AOB ∠=︒.则右图的周长为 cm (结果保留π).16如图,在直角ABC △中,90C ∠=︒,6AC =,8BC =,P 、Q 分别为边BC 、AB 上的两个动点,若要使APQ △是等腰三角形且BPQ △是直角三角形,则AQ = . 三、解答题(本大题共11小题,共102分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本题满分6分)计算:11π2-⎛⎫-+ ⎪⎝⎭18.(本题满分6分)解不等式:()3121x x -≥-,并把它的解集在数轴上表示出来.19.(本题满分8分)先化简,再求值:21111x x x ⎛⎫-÷ ⎪+-⎝⎭,其中1x .20.(本题满分8分)端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.(本题满分8分)在正方形ABCD 中,对角线BD 所在的直线上有两点E 、F 满足BE DF =,连接AE 、AF 、CE 、CF ,如图所示.(1)求证:ABE ADF ≌△△;(2)试判断四边形AECF 的形状,并说明理由.数学试卷 第5页(共18页) 数学试卷 第6页(共18页)22.(本题满分10分)“安全教育平台”是中国教育学会为方便家长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形: A .仅学生自己参与; B .家长和学生一起参与; C .仅家长自己参与;D .家长和学生都未参与.各类情况条形统计图各类情况扇形统计图请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了 名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2 000名学生中“家长和学生都未参与”的人数.23.(本题满分10分)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件. (1)若降价3元,则平均每天销售数量为 件;(2)当每件商品降价多少元时,该商店每天销售利润为1 200元?24.(本题满分10分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y (米)与时间t (分钟)之间的函数关系如图所示.(1)根据图象信息,当t = 分钟时甲乙两人相遇,甲的速度为 米/分钟; (2)求出线段AB 所表示的函数表达式.25.(本题满分10分)如图,在以线段AB 为直径的O 上取一点C ,连接AC 、BC .将ABC △沿AB 翻折后得到ABD △.(1)试说明点D 在⊙O 上;(2)在线段AD 的延长线上取一点E ,使2 AB AC AE =⋅.求证:BE 为O 的切线; (3)在(2)的条件下,分别延长线段AE 、CB 相交于点F ,若2BC =,4AC =,求线段-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________。

盐城市2018中考数学试题及答案

盐城市2018中考数学试题及答案

江苏省盐城市二O 一八年初中升学考试 数学试卷一、选择题〔本大题共8小题,每题3分,共24分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上〕1.-2018的相反数是〔 〕A .2018B .-2018C .12018 D .12018- 2.以下图形中,既是轴对称图形又是中心对称图形的是〔 〕A .B .C .D . 3.以下运算正确的选项是〔 〕A .224a a a +=B .33a a a ÷=C .235a a a ⋅=D .246()a a =4.盐通铁路沿线水网密布,河渠纵横,将建立特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为〔 〕A .51.4610⨯B .60.14610⨯C .61.4610⨯D .314610⨯5.如图是由5个大小一样的小正方体组成的几何体,那么它的左视图是〔 〕A .B .C .D . 6.一组数据2,4,6,4,8的中位数为〔 〕 A .2 B .4 C .6 D .8 7.如图,AB 为O 的直径,CD 是O 的弦,35ADC ∠=,那么CAB ∠的度数为〔 〕A .35B .45C .55D .658.一元二次方程230x kx +-=有一个根为1,那么k 的值为〔 〕 A .-2 B .2 C .-4 D .4二、填空题〔本大题共有8小题,每题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上〕9.根据如下图的车票信息,车票的价格为元.10.要使分式12x -有意义,那么x 的取值范围是. 11.分解因式:221x x -+=.12.一只蚂蚁在如下图的方格地板上随机爬行,每个小方格形状大小完全一样,当蚂蚁停下时,停在地板中阴影局部的概率为.13.将一个含有45角的直角三角板摆放在矩形上,如下图,假设140∠=,那么2∠=.14.如图,点D 为矩形OABC 的AB 边的中点,反比例函数(0)ky x x=>的图象经过点D ,交BC 边于点E .假设BDE ∆的面积为1,那么k =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省盐城市2018年中考数学试卷
一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)
1.-2018的相反数是( )
A .2018
B .-2018
C .
12018 D .12018
- 2.下列图形中,既是轴对称图形又是中心对称图形的是( )
A .
B .
C .
D . 3.下列运算正确的是( )
A .224a a a +=
B .33a a a ÷=
C .235a a a ⋅=
D .24
6
()a a =
4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为( )
A .51.4610⨯
B .60.14610⨯
C .61.4610⨯
D .314610⨯ 5.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是( )
A .
B .
C .
D . 6.一组数据2,4,6,4,8的中位数为( )
A .2
B .4
C .6
D .8 7.如图,AB 为
O 的直径,CD 是O 的弦,35ADC ∠=,则CAB ∠的度数为( )
A .35
B .45
C .55
D .65 8.已知一元二次方程230x kx +-=有一个根为1,则k 的值为( ) A .-2 B .2 C .-4 D .4
二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上)
9.根据如图所示的车票信息,车票的价格为 元.
10.要使分式
1
2
x -有意义,则x 的取值范围是 . 11.分解因式:221x x -+= .
12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为 .
13.将一个含有45角的直角三角板摆放在矩形上,如图所示,若140∠=,则
2∠= .
14.如图,点D 为矩形OABC 的AB 边的中点,反比例函数(0)k
y x x
=>的图象经过点D ,交BC 边于点E .若BDE ∆的面积为1,则k = 。

15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径2OA cm =,120AOB ∠=.则右图的周长为 cm (结果保留π).
16.如图,在直角ABC ∆中,90C ∠=,6AC =,8BC =,P 、Q 分别为边BC 、AB 上的两个动点,若要使APQ ∆是等腰三角形且BPQ ∆是直角三角形,则AQ = .
三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)
17.计算:011
()2
π--+18.解不等式:312(1)x x -≥-,并把它的解集在数轴上表示出来.
19.先化简,再求值:2
1(1)11
x
x x -
÷+-,其中1x =. 20.端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友
小悦.
(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;
(2)请你计算小悦拿到的两个粽子都是肉馅的概率.
=,连接AE、21.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE DF
AF、CE、CF,如图所示.
∆≅∆;
(1)求证:ABE ADF
(2)试判断四边形AECF的形状,并说明理由.
22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:
A. 仅学生自己参与;
B. 家长和学生一起参与;
C. 仅家长自己参与;
D. 家长和学生都未参与.
请根据图中提供的信息,解答下列问题:
(1)在这次抽样调查中,共调查了_______名学生;
(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;
(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.
23.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单
价每降低1元,平均每天可多售出2件.
(1)若降价3元,则平均每天销售数量为_______件;
(2)当每件商品降价多少元时,该商店每天销售利润为1200元?
24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y (米)与时间(分钟)之间的函数关系如图所示.
(1)根据图象信息,当t =_______分钟时甲乙两人相遇,甲的速度为_______米/分钟; (2)求出线段AB 所表示的函数表达式. 25.如图,在以线段AB 为直径的O 上取一点,连接AC 、BC .将ABC ∆沿AB 翻折后
得到ABD ∆.
(1)试说明点D 在
O 上;
(2)在线段AD 的延长线上取一点E ,使2AB AC AE =⋅.求证:BE 为
O 的切线;
(3)在(2)的条件下,分别延长线段AE 、CB 相交于点F ,若2BC =,4AC =,求线段EF 的长.
26.【发现】如图①,已知等边ABC ∆,将直角三角形的60角顶点D 任意放在BC 边上(点D 不与点B 、C 重合)
,使两边分别交线段AB 、AC 于点E 、F .
(1)若6AB =,4AE =,2BD =,则CF =_______; (2)求证:EBD
DCF ∆∆.
【思考】若将图①中的三角板的顶点D 在BC 边上移动,保持三角板与AB 、AC 的两个交点E 、F 都存在,连接EF ,如图②所示.问点D 是否存在某一位置,使ED 平分BEF ∠且FD 平分CFE ∠?若存在,求出
BD
BC
的值;若不存在,请说明理由. 【探索】如图③,在等腰ABC ∆中,AB AC =,点O 为BC 边的中点,将三角形透明纸板的一个顶点放在点O 处(其中MON B ∠=∠),使两条边分别交边AB 、AC 于点E 、F (点E 、F 均不与ABC ∆的顶点重合),连接EF .设B α∠=,则AEF ∆与ABC ∆的周长之比为________(用含α的表达式表示).
27.如图①,在平面直角坐标系xOy 中,抛物线2
3y ax bx =++经过点(1,0)A -、(3,0)B 两点,且与y 轴交于点C .
(1)求抛物线的表达式;
(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.
(Ⅰ)若点P的横坐标为
1
2
-,求DPQ
∆面积的最大值,并求此时点D的坐标;
(Ⅱ)直尺在平移过程中,DPQ
∆面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.
参考答案
1-8、ADCAB BCB
9、77.5 10、 11、 12、 13、 14、4 15、
16、 17、
18、
19、
20、
22、
24、
25、
26、
27、。

相关文档
最新文档