2018年江苏省盐城市射阳县中考数学二模试卷(含答案)

合集下载

2018年江苏省盐城市射阳县中考数学二模试卷附答案

2018年江苏省盐城市射阳县中考数学二模试卷附答案

15.(3 分)如图,反比例函数 y= 的图象经过矩形 OABC 的边 AB 的中点 D,则矩形 OABC 的面积为 .
16.(3 分)如图,在矩形 ABCD 中,AB=3,AD=4,现有长为 3 的小木棒 EF 紧贴 AD、DC 边滑动(即 EF 的两个 端点始终落在 AD、DC 边上),G 为 EF 的中点,P 为 BC 边上一动点,则 PA+PG 的最小值为 .
A.
B.
C.
D.
二、填空题(共 8 小题,每题 3 分,共 24 分)
9.(3 分)若分式 有意义,则实数 x 的取值范围是 . 10.(3 分)一组数据 3, 1,0,3,10 的极差是 . 11.(3 分)若 m、n 互为倒数,则 mn2 (n 3)的值为 .
12.(3 分)已知
,则 2018+x+y= .
7
一、选择题 1.
参考答案与解析
【解答】解:2> >0> 1, 则比 1 大的数是 2. 故选:D. 2. 【解答】解:A、∵此图形旋转 180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错 误; B、∵此图形旋转 180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确; C、此图形旋转 180°后不能与原图形重合,此图形不是中心对称图形,也不是轴对称图形,故此选项错误; D、∵此图形旋转 180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误. 故选:B. 3. 【解答】A、是三棱锥的展开图,故选项错误; B、是三棱柱的平面展开图,故选项正确; C、两底有 4 个三角形,不是三棱锥的展开图,故选项错误; D、是四棱锥的展开图,故选项错误. 故选:B. 4. 【解答】解:A、对江苏省初中学生每天阅读时间的调查,适合抽样调查,故此选项错误; B、对某校九年级 3 班学生身高情况的调查,最适合采用全面调查,故此选项正确; C、对中山河水质污染情况的调查,适合抽样调查,故此选项错误; D、对端午节期间市场上粽子质量情况的调查,适合抽样调查,故此选项错误; 故选:B. 5.

2018最新试题资料-2018届九年级数学上第二次月考试题(盐城市射阳县附答案)

2018最新试题资料-2018届九年级数学上第二次月考试题(盐城市射阳县附答案)

2018届九年级数学上第二次月考试题(盐城市射阳县附答
案)
5 c 射阳县2018年秋学期第二次综合练习
初三数学试卷
命题分值150分时间120分钟
一、选择题 (每小题3分,共18分)
1.下列式子结果为负数的是()
A. B. c.﹣|﹣3| D.
2.观察下列图形,其中既是轴对称又是中心对称图形的是()
3.下列四个几何体中,左视图为圆的几何体是()
A. B. c. D.
4.下列计算正确的是()
A B c D
5.一组数据5,4,2,5,6的中位数是()
A.5 B.4 c.2 D.6
6.已知抛物线与轴交于A、B两点(点A在点B左侧),顶点为,平移抛物线,使点平移后的对应点落在轴上,点B平移后的对应点落在轴上,则平移后的抛物线的解析式为()
A B c D
二、填空题(每题3分,满分30分)
7.分解因式 = .
8.若式子中实数范围内有意义,则的取值范围是
9.据统计,今年射阳洋马“菊花节”活动期间入园赏菊人数约103万人次,用科学记数法可表示为
人次.
10.若点A(﹣2,3)、B(,﹣6)都在反比例函数(≠0)的图象上,则的值是.。

2018年江苏省盐城市中考数学试卷含答案

2018年江苏省盐城市中考数学试卷含答案

21.(本题满分 8 分)在正方形 ABCD 中,对角线 BD 所在的直线上有两点 E 、 F 满足 BE DF ,连接 AE 、 AF 、 CE 、 CF ,如图所示. (1)求证: △ABE≌△ADF ; (2)试判断四边形 AECF 的形状,并说明理由.
数学试卷第 3页(共 18页)数学试卷第 4页(共 18页)
【考点】一元二次方程的解. 数学试卷第 9页(共 18页)数学试卷第 10页(共 18页)
二、填空题
9.【答案】77.5
【解析】解:根据如图所示的车票信息,车票的价格为 77.5 元,
故答案为:77.5.
【考点】用数字表示事件.
10.【答案】 x 2
【解析】解:当分母
x﹣2

0
,即
x

2
时,分式
(3)在(2)的条件下,分别延长线段 AE 、CB 相交于点 F ,若 BC 2 , AC 4 ,求线段 EF 的长.
26.(本题满分 12 分)
【发现】如图①,已知等边 △ABC ,将直角三角板的 60 角顶点 D 任意放在 BC 边上
(点 D 不与点 B 、 C 重合),使两边分别交线段 AB 、 AC 于点 E 、 F .
将数据 146000 用科学记数法表示为
()
A.1.46 105

C.1.46 106
B. 0.146 106 D.146 103
5.如图是由 5 个大小相同的小正方体组成的几何体,则它的左视图是
()

A
B
6.一组数据 2,4,6,4,8 的中位数为
A.2
B.4
C C.6
D ()
D.8

2018年江苏省盐城市中考数学试卷及答案解析

2018年江苏省盐城市中考数学试卷及答案解析

2018年江苏省盐城市初中毕业、升学考试学科(满分150分,考试时间120分钟)一、选择题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018江苏省盐城市,1,3分)-2018的相反数是().A.2018 B.-2018 C.12018D.-12018【答案】A【解析】-2018的相反数是2018,故选A.【知识点】相反数2.(2018江苏省盐城市,2,3分)下列图形中,既是轴对称图形又是中心对称图形的是().D.C.B.A.【答案】D【解析】在平面内,沿一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,这条直线就叫做对称轴.在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.根据轴对称图形和中心对称图形的定义即可作出判断,故选D.【知识点】轴对称图形;中心对称图形3.(2018江苏省盐城市,3,3分)下列运算正确的是().A.a2+a2=a4B.a3÷a=a3C.a2·a3=a2、5D.(a2)4=a6【答案】C【解析】A.a2+a2=2a 2,该选项错误;B.a3÷a=a 2,该选项错误;C.a2·a3=a5,该选项正确;D.(a2)4=a8,该选项错误;故选C.【知识点】合并同类项;同底数幂的除法;同底数幂的乘法;幂的乘方4.(2018江苏省盐城市,4,3分)盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为().A.1.46×105B.0.146×106C.1.46×106D.146×103【答案】A【解析】将数据146000用科学记数法表示为1.46×105,故选A.【知识点】科学记数法(较大数)5.(2018江苏省盐城市,5,3分)如图是由5个大小相同的小正方体组成的几何体,则它的左视图是().D.C.B.A.第5题图【答案】B【解析】左视图是从左面看到的图形,故选B. 【知识点】简单几何体的三视图 6.(2018江苏省盐城市,6,3分)一组数据2,4,6,4,8的中位数为( ). A .2 B .4 C .6 D .8 【答案】B【解析】将这组数据按从小到大的顺序排列为2,4,4,6,8,位于最中间位置的是4,所以这组数据的中位数是4. 故选B.【知识点】中位数 7.(2018江苏省盐城市,7,3分)如图,AB 为⊙O 的直径,CD 为⊙O 的弦,∠ADC =35°,则∠CAB 的度数为( ).A .35°B .45°C .55°D .65°B OAC D【答案】C【解析】∵AB 为⊙O 的直径,∴∠ACB =90°,∵∠ABC =∠ADC =35°,∴∠CAB =65°.故选C. 【知识点】圆的基本性质 8.(2018江苏省盐城市,8,3分)已知一元二次方程x 2+kx -3=0有一根为1,则k 的值为( ). A .-2 B .2 C .-4 D .4 【答案】B【解析】把x =1代入一元二次方程,得12+k -3=0,解得k =2.故选B . 【知识点】一元二次方程的根二、填空题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题中横线上. 9.(2018江苏省盐城市,9,3分)根据如图所示的车票信息,车票的价格为 ___________元.【答案】77.5【解析】根据如图所示的车票信息,车票的价格为77.5元.【知识点】识图;生活中的数学10.(2018江苏省盐城市,10,3分)要使分式12x-有意义,则x的取值范围是___________.【答案】x≠2【解析】要使分式12x-有意义,x-2≠0,则x≠2.【知识点】分式有意义的条件11.(2018江苏省盐城市,11,3分)分解因式:x2-2x+1=___________.【答案】(x-1)2【解析】x2-2x+1=(x-1)2.【知识点】分解因式;完全平方公式12.(2018江苏省盐城市,12,3分)一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下来时,停在地板中阴影部分的概率为___________.【答案】4 9【解析】∵图中共有9个小方格,每个小方格形状大小完全相同,有阴影的小方格有4个,∴蚂蚁停在地板中阴影部分的概率为49.【知识点】几何概率13.(2018江苏省盐城市,13,3分)将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=___________.21【答案】85°【解析】如图,∵矩形的对边平行,∴∠2=∠3.∵∠4=45°,∠1=40°,∴∠2=∠3=85°.4321【知识点】矩形的性质;三角形的外角14.(2018江苏省盐城市,14,3分)如图,点D 为矩形OABC 的边AB 的中点,反比例函数y =kx(x >0)的图象经过点D ,交BC 边于点E .若△BDE 的面积为1,则k =___________. xy EDB OAC【答案】4【解析】设点D 的坐标为(x ,y ),则点E 的坐标为(2x ,12y ). ∵△BDE 的面积=12·x ·12y =1,∴xy =4=k . 【知识点】反比例函数系数k 的意义 15.(2018江苏省盐城市,15,3分)如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径OA =2cm, ∠AOB =120°.则右图的周长为 ___________cm (结果保留π).BAO【答案】83π 【解析】∵半径OA =2cm, ∠AOB =120°∴AB 的长=1202180π⋅⋅=43π,AO 的长+OB 的长=43π,∴右图的周长=43π+43π=83π. 【知识点】弧长公式16.如图,在直角△ABC 中,∠C =90°,AC =6,BC =8,P 、Q 分别为边AC 、AB 上的两个动点,若要使△APQ是等腰三角形且△BPQ 是直角三角形,则AQ =___________.ACBPQ【答案】154或307【解析】在直角△ABC 中,∠C =90°,AC =6,BC =8,∴A B =2268+=10.当QP ⊥AB 时,QP ∥AC .∴AB AC =QB QP .设QP =AQ =x ,则QB =10-x .∴106=10-x x .∴AQ =x =154; 当PQ ⊥AB 时,△APQ 是等腰直角三角形.∵△ABC ∽△PBQ , ∴AC BC =PQ BQ ,∴68=10-x x .∴AQ =x =307.【知识点】勾股定理;平行线分线段成比例定理;分类讨论三、解答题(本大题共9小题,满分72分,解答应写出文字说明、证明过程或演算步骤) 17.(2018江苏省盐城市,17,6分) 计算:π0-(12)-1+38 【思路分析】按零指数幂,负整数指数幂,立方根的运算法则先分别求出π0,(12)-1,38的值,然后进行有理数的运算.【解题过程】解:原式=1-2+2=1.【知识点】零指数幂;负整数指数幂;立方根 18.(2018江苏省盐城市,18,6分) 解不等式:3x -1≥2(x -1),并把它的解集在数轴上表示出来.–1–212【思路分析】类比解方程的步骤解不等式. 【解题过程】解:去括号,得3x -1≥2x -2, 移项,合并同类项,得x ≥-1.把不等式的解集在数轴上表示出来,如下图:–1–2–312【知识点】解不等式;在数轴上表示不等式的解集19.(2018江苏省盐城市,19,8分) 先化简,再求值:(1-11x +)÷21xx -,其中x =2+1 【思路分析】先根据分式运算法则将分式化简,再求值.【解题过程】解:原式=111x x +-+×21x x -=1x x +×11x x x+-()()=x -1.当x =2+1时,原式=2+1-1=2.【知识点】分式的化简求值 20.(2018江苏省盐城市,20,8分)端午节是我国传统佳节,小峰同学带了4个粽子(除粽馅不同外,其它均相同), 其中有两个肉馅粽子、一个红枣粽子和一个豆沙粽子,准备从中任意拿出两个送给他的好朋友小悦. (1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果; (2)请你计算小悦拿到的两个粽子都是肉馅的概率. 【思路分析】(1)根据题意画出树状图或列表. (2)利用概率公式计算可得. 【解题过程】解:(1)画树状图如下,第二次第一次豆沙粽子肉馅粽子2肉馅粽子1豆沙粽子红枣粽子肉馅粽子1豆沙粽子红枣粽子肉馅粽子2肉馅粽子1肉馅粽子2红枣粽子开始豆沙粽子红枣粽子肉馅粽子2肉馅粽子1列表:肉馅粽子1 肉馅粽子2 红枣粽子 豆沙粽子 肉馅粽子1(肉馅1,肉馅2) (肉馅1,红枣) (肉馅1,豆沙) 肉馅粽子2 (肉馅2,肉馅1)(肉馅2,红枣) (肉馅2,豆沙) 红枣粽子 (红枣,肉馅1) (红枣,肉馅2)(红枣,豆沙) 豆沙粽子(豆沙,肉馅1)(豆沙,肉馅2)(豆沙,红枣)(2)从树状图或列表可以得出共有12种等可能的结果,其中小悦拿到的两个粽子都是肉馅的情况有2种结果. 所以P (小悦拿到的两个粽子都是肉馅的)=112=16. 【知识点】概率 21.(2018江苏省盐城市,21,8分)在正方形ABCD 中,对角线BD 所在的直线上有两点E 、F 满足BE =DF ,连接AE 、AF 、CE 、CF ,如图所示.EDAB CF(1)求证:△ABE ≌△ADF ;(2)试判断四边形AECF 的形状,并说明理由. 【思路分析】(1)根据SAS 可证△ABE ≌△ADF ;(2)四边形AECF 是菱形.利用正方形的性质,证△ABE ≌△ADF ,进而可得AE =CF =EC =AF , ∴四边形AECF 是菱形.【解题过程】解:(1)∵四边形ABCD 是正方形,∴∠ABD =45°,∠CDB =45°,AB =CD . ∴∠ABE =∠CDF =135°.∵BE =DF ,∴△ABE ≌△ADF (SAS); (2)∴四边形AECF 是菱形.理由:∵△ABE ≌△ADF ,∴AE =CF . 同理AF =CE ,AE =EC . ∴四边形AECF 是菱形. 【知识点】 22.(2018江苏省盐城市,22,10分)“安全教育平台”是中国教育学会为方便家长和学生参与安全知识活动,接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与B .家长和学生一起参与C .仅家长自己参与D .家长和学生都未参与类别人数806020各类情况扇形统计图各类情况条形统计图A 20%BC DDC B A 40801201602002400请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了___________名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.【思路分析】(1)根据图中提供的信息,得A 类人数有80人,占总调查人数的20%,所以在这次抽样调查中,共调查了学生80÷20%=400(名);(2)C 类所对应扇形的圆心角的度数=360°×C 类人数所占的百分比;(3)2000×D 类人数所占的百分比,可得该校2000名学生中“家长和学生都未参与”的人数. 【解题过程】解:(1)400.(2)C 类所对应扇形的圆心角的度数为360°×60400=54°,同理可得其他A 、B 、D 各类所对应扇形的圆心角的度数.400×B 类人数所占的百分比=B 类人数,补全条形统计图如下.类别人数806020240各类情况条形统计图DC B A 40801201602002400(3)2000×20400=100,所以该校2000名学生中“家长和学生都未参与”的人数约100人. 【知识点】条形统计图;扇形统计图;样本估计总体 23.(2018江苏省盐城市,23,10分) 一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,该店采取了降价措施.在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为___________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元? 【思路分析】(1)由题意得,20+2×3=26,所以若降价3元,则平均每天销售数量为26件; (2)本题中的相等关系:每天每件的盈利×每天的销量=每天销售利润 【解题过程】解:(1)26;(2)设当每件商品降价x 元时,该商店每天销售利润为1200元. 由题意,得(40-x )(20+2x )=1200. 整理,得x 2-30 x +200=0. (x -10)(x -20)=0. x 1=10,x 2=20.又每件盈利不少于25元,∴x =20.不合题意舍去答:当每件商品降价10元时,该商店每天销售利润为1200元. 【知识点】一元二次方程的应用 24.(2018江苏省盐城市,24,10分) 学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y (米)与时间t (分钟)之间的函数关系如图所示.(1)根据图象信息,当t =___________分钟时甲乙两人相遇,甲的速度为___________米/分钟; (2)求出线段AB 所表示的函数表达式. t (分钟)y(米)AB24006024O【思路分析】(1)由图象得当t =24分钟时甲乙两人相遇,甲的速度为240060=40米/分钟; (2)根据题意,先求得点A 的坐标,然后用待定系数法求出线段AB 所表示的函数表达式. 【解题过程】解:(1)24,40; (2)∵甲、乙两人的速度和为240024=100米/分钟,甲的速度为40米/分钟,∴乙的速度为60米/分钟. 乙从图书馆回学校所用的时间为240060=40分钟. 相遇后,乙到达学校时,两人之间的距离y =60×(40-24)=1600(米), ∴点A 的坐标为(40,1600).∵点B 的坐标为(40,1600)∴设线段AB 所表示的函数表达式为y =kx +b . 根据题意,得k b k b ⎧⎨⎩1600=40+,2400=60+,解得40,0.k b =⎧⎨=⎩∴线段AB 所表示的函数表达式为y =40x .【知识点】一次函数的图象的应用;一次函数的表达式 25.(2018江苏省盐城市,25,10分)如图,在以线段AB 为直径的⊙O 上取一点C ,连接AC 、BC .将△ABC 沿AB 翻折得到△ABD .(1)试说明点D 在⊙O 上;BE 为⊙O 的切线;(2)在线段AD 的延长线上取一点E ,使AB 2=AC ·AE ,求证:BE 为⊙O 的切线;(3)在(2)的条件下,分别延长线段AE 、CB 相交于点F ,若BC =2,AC =4,求线段EF 的长.FED OAB C【思路分析】(1)因为AB 为直径,点C 是⊙O 上一点,由圆的对称性得出点D 在⊙O 上; (2)利用相似三角形的判定得出△DAB ∽△BAE ,进而证得∠ABE =90°.(3)证△FCA ∽△FDB .利用相似三角形的性质构建方程,解之可得线段EF 的长. 【解题过程】解:(1)∵AB 为直径,点C 是⊙O 上一点,∴∠ACB =90°.将△ABC 沿AB 翻折得到△ABD ,∴∠ADB =90°,点D 在⊙O 上;(2)∵AB 2=AC ·AE ,∠DAB =∠BAE ,∴△DAB ∽△BAE .∴∠ABE =∠ADB =90°.∴BE 为⊙O 的切线; (3)∵BC =2,AC =4,∴BD =2,AD =4,AB =25.∵AB 2=AC ·AE ,∴AE =5,DE =1.在Rt △BDE 中,∵BD =2,DE =1,∴BF =2221EF ++().∵∠C =∠FDB =90°,∠F =∠F ,∴△FCA ∽△FDB .∴FD FC =DB CA ,即221212EF EF ++++()=24,整理,得3EF 2-2EF -5=0.解得EF =-1(舍去),EF =53.即线段EF 的长为53.【知识点】圆的基本性质;相似三角形的判定与性质 26.(2018江苏省盐城市,26,12分)【发现】如图①,已知等边△ABC ,将直角三角板的60°角顶点D 任意放在BC 边上(点D 不与点B 、C 重合),使两边分别交线段AB 、AC 于点E 、F .(1)若AB =6,AE =4,BD =2,则CF =___________; (2)求证:△EBD ∽△DCF .图①FD A BCE 图②FE A BCD【思考】若将图①中的三角板的顶点D 在BC 边上移动,保持三角板与边ABAC 的两个交点E 、F 都存在,连接EF ,如图②所示.问:点D 是否存在某一位置,使ED 平分∠BEF 且FD 平分∠CFE ?若存在,求出BDBC的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC 中,AB =AC ,点O 为BC 边的中点,将三角形透明纸板的一个顶点放在点O 处(其中∠MON =∠B ),使两条边分别交边AB 、AC 于点E 、F (点E 、F 均不与△ABC 的顶点重合),连接EF .设∠B =α,则△AEF 与△ABC 的周长比为___________(用含α的表达式表示).图③NEO BCAF M【思路分析】 【发现】(1)先求出DC 的值,再证△FDC 是等边三角形即可.(2)根据两角对应相等两三角形相似,只需证∠B =∠C ,∠BED =∠FCD 即可. 【思考】利用角平分线的性质得DM =DG =DN .利用全等三角形的性质得BD =CD . 【探索】类比(2)猜想应用EF =EG +FH .设AB =m ,则OB =m cos α,GB =m cos 2α. ∴AEF ABC CC =1-cos α. 【解题过程】 【发现】(1)∵△ABC 是等边三角形, ∴∠A =∠B =∠C =60°,AB =BC =AC . ∵AB =6,AE =4,∴BE =2.∵BD =2,∴DC =4.∵∠EDF =60°,∴∠FDC =60°.∴△FDC 是等边三角形. ∴CF =4.(2))∵△ABC 是等边三角形, ∴∠B =∠C =60°,∴∠BED +∠BED =120°.∵∠EDF =60°,∴∠BDE +∠FDC =120°.∴∠BED =∠FCD .∴△EBD ∽△DCF .【思考】存在.点D 移动到BC 边的中点时,ED 平分∠BEF 且FD 平分∠CFE ,此时BD BC =12. 理由:如图,作DM ⊥EB , DG ⊥EF , DN ⊥FC ,∵ED 平分∠BEF ,FD 平分∠CFE ,∴DM =DG =DN .∴△DBM ≌△DCN .∴BD =CD .∴点D 移动到BC 边的中点时,ED 平分∠BEF 且FD 平分∠CFE ,此时BD BC =12. NG M E ABC D F【探索】如图,作DM ⊥EB , DG ⊥EF , DN ⊥FC .有∠GOH =2∠EOF =2α.由(2)可猜想应用EF =EG +FH .(通过旋转半角证明)设AB =m ,则OB =m cos α,GB =m cos 2α. ∴AEFABC C C =22()AG AB OB +=AG AB OB+=2cos cos m m m m αα-+=1-cos α. H DG E B CO AF MN【知识点】等边三角形的判定;相似三角形的判定;角平分线的性质;解直角三角形27.(2018江苏省盐城市,27,14分) ,如图①,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +3经过点A (-1,0),B (3,0)两点,且与y 轴交于点C .(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x 轴,并沿x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于P 、Q 两点(点P 在点Q 的左侧),连接PQ ,在线段PQ 上方抛物线上有一动点D ,连接DP 、DQ .(Ⅰ)若点P 的横坐标为-12,求△DPQ 面积的最大值,并求此时点D 的坐标; (Ⅱ)直尺在平移过程中,△DPQ 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由. x y x y x y备用图图②图①O Q P O CB AO D 【思路分析】(1)把A (-1,0),B (3,0)两点代入y =ax 2+bx +3,用待定系数法求抛物线的表达式;(2)(Ⅰ)根据题意先求得P 、Q 两点的坐标,再用待定系数法求直线PQ 的表达式.过点D 作DF ⊥x 轴于E ,交PQ 于F .直尺的宽度一定,当时DF 最长时,△DPQ 面积的最大.设点D 的坐标为(m ,-m 2+2m +3),则点F 的坐标为(m ,-m +32),求得DF 的最大值,然后根据三角形的面积公式,求得△DPQ 面积的最大值. (Ⅱ)同理.设P ( c ,-c 2+2c +3),Q (c +4,-c 2-6c -5),则直线PQ 的表达式可求; 设点D 的坐标为(m ,-m 2+2m +3),则点F 的坐标为(m ,-(2c +2)m +c 2+4c +3),求得DF 的最大值,△DPQ 面积的最大值可得.【解题过程】解:(1)把A (-1,0),B (3,0)两点代入y =ax 2+bx +3, 得 3.0+3 3.a b a b -⎧⎨⎩0=+=9+解得1,2,a b =-⎧⎨=⎩∴抛物线的表达式为y =-x 2+2x +3.(2)(Ⅰ)设直线PQ 的表达式为y =kx +b ,把P (-12,74),Q (72,-94)两点的坐标代入,得 71-4297-42k b k b ⎧⎪⎪⎨⎪⎪⎩=+,=+,解得1,5.4k b =-⎧⎪⎨=⎪⎩ ∴直线PQ 的表达式为y =-x +54. 设点D 的坐标为(m ,-m 2+2m +3),则点F 的坐标为(m ,-m +54), ∴DF =-m 2+2m +3-(-m +54) =-m 2+3m +74=-(m 2-3m )+74. =-(m -32)2+4当m =32时,DF 有最大值,最大值为4. 此时点D 的坐标(32,4). 直尺的宽度一定,所以当DF 最长时,△DPQ 面积的最大. △DPQ 的面积=12×4DF =12×4×4=8 ∴△DPQ 面积的最大值为8; xyEFQ PO D(Ⅱ)设P ( c ,-c 2+2c +3),Q (c +4,-c 2-6c -5),把P 、Q 两点的坐标代入直线PQ 的表达式y =kx +b ,得222365(c 4)c c ck b c c k b ⎧⎪⎨+⎪⎩-++=+,---=+,解得222,4 3.k c b c c =--⎧⎨=++⎩ ∴直线PQ 的表达式为y =-(2c +2)x +c 2+4c +3.设点D 的坐标为(m ,-m 2+2m +3),则点F 的坐标为(m ,-(2c +2)m +c 2+4c +3), ∴DF =-m 2+2m +3-[-(2c +2)m +c 2+4c +3]=-m 2+(2c +4)m -(c 2+4c )=-[m -(c +2)] 2+4当m =c +2时,DF 最长,最长为4.此时,△DPQ 的面积=12×4DF =12×4×4 =8. xyHGQ PO D【知识点】二次函数的表达式;一次函数的表达式;面积最值;由特殊到一般的思想方法。

2018届中考数学二模试卷(带答案) (3)

2018届中考数学二模试卷(带答案)  (3)

2018年中考数学二模试卷一、选择题(共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.函数的自变量x的取值范围是()A.x>0 B.x≥0 C.x>1 D.x≠12.数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6 B.6 C.﹣6 D.3或﹣33.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A. B.C.D.4.下列说法不正确的是()A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖B.了解一批电视机的使用寿命适合用抽样调查C.若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件5.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.6.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()A.B.C.D.7.下列命题中,真命题是()A.对角线相等的四边形是等腰梯形B.对角线互相垂直平分的四边形是正方形C.对角线互相垂直的四边形是菱形D.四个角相等的四边形是矩形8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C.y=D.y=﹣x2+19.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点10.如图,正方形ABCD的顶点A(0,),B(,0),顶点C,D位于第一象限,直线x=t,(0≤t≤),将正方形ABCD分成两部分,设位于直线l左侧部分(阴影部分)的面积为S,则函数S与t的图象大致是()A.B.C.D.二、填空题.(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.)11.如果与(2x﹣4)2互为相反数,那么2x﹣y=.12.一个圆锥的母线长为4,侧面积为8π,则这个圆锥的底面圆的半径是.13.若关于x的方程无解,则m=.14.如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为.15.如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50度.若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C=度.16.如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是.17.如图,正方形ABCD内接于⊙O,⊙O的半径为2,以圆心O为顶点作∠MON,使∠MON=90°,OM、ON分别与⊙O交于点E、F,与正方形ABCD的边交于点G、H,则由OE、OF、及正方形ABCD的边围成的图形(阴影部分)的面积S=.18.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,则点A2015的坐标为.三.解答题(本大题共10小题,共66分.请在答题卡指定区域内作答、解答时应写出文字说明、证明过程或演算步骤)19.计算:.20.解不等式组,并将解集在数轴上表示.21.先化简,再求值:﹣÷.其中x=.22.如图,已知双曲线,经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D 作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式.23.为了解某区九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:40分;B:39﹣35分;C:34﹣30分;D:29﹣20分;E:19﹣0分)统计如下:根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为,b的值为,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数.”请问:甲同学的体育成绩应在什么分数段内?(填相应分数段的字母)(3)如果把成绩在30分以上(含30分)定为优秀,那么该区今年2400名九年级学生中体育成绩为优秀的学生人数有多少名?24.在一次数学活动课上,数学老师在同一平面内将一副直角三角板如图位置摆放,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.25.在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动.有A、B 两组卡片,每组各3张,A 组卡片上分别写有0,2,3;B组卡片上分别写有﹣5,﹣1,1.每张卡片除正面写有不同数字外,其余均相同.甲从A组中随机抽取一张记为x,乙从B组中随机抽取一张记为y.(1)若甲抽出的数字是2,乙抽出的数是﹣1,它们恰好是ax﹣y=5的解,求a的值;(2)在(1)的条件下,求甲、乙随机抽取一次的数恰好是方程ax﹣y=5的解的概率.(请用树形图或列表法求解)26.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?27.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.28.如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B,C的坐标;(2)判断△CDB的形状并说明理由;(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.函数的自变量x的取值范围是()A.x>0 B.x≥0 C.x>1 D.x≠1【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,x﹣1>0,解得x>1.故选C.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6 B.6 C.﹣6 D.3或﹣3【考点】数轴;绝对值.【专题】计算题.【分析】与原点距离为6的点有两个,分别在原点的左边和右边,左边用减法,右边用加法计算即可.【解答】解:当点A在原点左边时,为0﹣6=﹣6;点A在原点右边时为6﹣0=6.故选A.【点评】主要考查了数的绝对值的几何意义.注意:与一个点的距离为a的数有2个,在该点的左边和右边各一个.3.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A. B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、旋转角是,只是每旋转与原图重合,而中心对称的定义是绕一定点旋转180度,新图形与原图形重合.因此不符合中心对称的定义,不是中心对称图形.D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称及轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.下列说法不正确的是()A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖B.了解一批电视机的使用寿命适合用抽样调查C.若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件【考点】概率公式;全面调查与抽样调查;标准差;随机事件;可能性的大小.【分析】根据抽样调查适用的条件、方差的定义及意义和可能性的大小找到正确答案即可.【解答】解:A、某种彩票中奖的概率是,只是一种可能性,买1000张该种彩票不一定会中奖,故错误;B、调查电视机的使用寿命要毁坏电视机,有破坏性,适合用抽样调查,故正确;C、标准差反映了一组数据的波动情况,标准差越小,数据越稳定,故正确;D、袋中没有黑球,摸出黑球是不可能事件,故正确.故选A.【点评】用到的知识点为:破坏性较强的调查应采用抽样调查的方式;随机事件可能发生,也可能不发生;标准差越小,数据越稳定;一定不会发生的事件是不可能事件.5.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.【解答】解:根据题意,得.故选:C.【点评】理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.6.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】判断出组合体的左视图、主视图及俯视图,即可作出判断.【解答】解:几何体的左视图和主视图是相同的,则不同的视图是俯视图,俯视图是D选项所给的图形.故选D.【点评】本题考查了简单组合体的三视图,属于基础题,注意理解三视图观察的方向.7.下列命题中,真命题是()A.对角线相等的四边形是等腰梯形B.对角线互相垂直平分的四边形是正方形C.对角线互相垂直的四边形是菱形D.四个角相等的四边形是矩形【考点】命题与定理.【分析】根据矩形、菱形、正方形的判定与性质分别判断得出答案即可.【解答】解:A、根据对角线相等的四边形也可能是矩形,故此选项错误;B、根据对角线互相垂直平分的四边形是菱形,故此选项错误;C、根据对角线互相垂直平分的四边形是菱形,故此选项错误;D、根据四个角相等的四边形是矩形,是真命题,故此选项正确.故选:D.【点评】此题主要考查了命题与定理,熟练掌握矩形、菱形、正方形的判定与性质是解题关键.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C.y=D.y=﹣x2+1【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.【解答】解:A、y=﹣x+1,一次函数,k<0,故y随着x增大而减小,故A错误;B、y=x2﹣1(x>0),故当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧(x<0),y随着x 的增大而减小,故B正确.C、y=,k=1>0,在每个象限里,y随x的增大而减小,故C错误;D、y=﹣x2+1(x>0),故当图象在对称轴右侧,y随着x的增大而减小;而在对称轴左侧(x<0),y随着x 的增大而增大,故D错误;故选:B.【点评】本题综合考查二次函数、一次函数、反比例函数的增减性(单调性),是一道难度中等的题目.9.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点【考点】角平分线的性质;线段垂直平分线的性质.【专题】压轴题.【分析】根据角平分线及线段垂直平分线的判定定理作答.【解答】解:∵点P到∠A的两边的距离相等,∴点P在∠A的角平分线上;又∵PA=PB,∴点P在线段AB的垂直平分线上.即P为∠A的角平分线与AB的垂直平分线的交点.故选B.【点评】本题考查了角平分线及线段垂直平分线的判定定理.到一个角的两边距离相等的点在这个角的角平分线上;到一条线段两端距离相等的点在这条线段的垂直平分线上.10.如图,正方形ABCD的顶点A(0,),B(,0),顶点C,D位于第一象限,直线x=t,(0≤t≤),将正方形ABCD分成两部分,设位于直线l左侧部分(阴影部分)的面积为S,则函数S与t的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.【解答】解:根据图形知道,当直线x=t在BD的左侧时,如果直线匀速向右运动,左边的图形是三角形;因而面积应是t的二次函数,并且面积增加的速度随t的增大而增大;直线x=t在B点左侧时,S=t2,t在B点右侧时S=﹣(t﹣)2+1,显然D是错误的.故选C.【点评】读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程.二、填空题.(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.)11.如果与(2x﹣4)2互为相反数,那么2x﹣y=1.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据互为相反数的两个数的和等于0列出等式,再根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:∵与(2x﹣4)2互为相反数,∴+(2x﹣4)2=0,∴y﹣3=0,2x﹣4=0,解得x=2,y=3,∴2x﹣y=2×2﹣3=4﹣3=1.故答案为:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.12.一个圆锥的母线长为4,侧面积为8π,则这个圆锥的底面圆的半径是2.【考点】圆锥的计算.【分析】根据扇形的面积公式求出扇形的圆心角,再利用弧长公式求出弧长,再利用圆的面积公式求出底面半径.【解答】解:解得n=180则弧长==4π2πr=4π解得r=2故答案是:2.【点评】解决本题的关键是根据圆锥的侧面积公式得到圆锥的底面半径的求法.13.若关于x的方程无解,则m=﹣8.【考点】分式方程的解.【专题】计算题.【分析】分式方程去分母转化为整式方程,将x=5代入计算即可求出m的值.【解答】解:分式方程去分母得:2(x﹣1)=﹣m,将x=5代入得:m=﹣8.故答案为:﹣8【点评】此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为.【考点】概率公式.【专题】探究型.【分析】抽出的牌的点数小于9有1,2,3,4,5,6,7,8共8个,总的样本数目为13,由此可以容易知道事件抽出的牌的点数小于9的概率.【解答】解:∵抽出的牌的点数小于9有1,2,3,4,5,6,7,8共8个,总的样本数目为13,∴从中任意抽取一张,抽出的牌点数小于9的概率是:.故答案为:.【点评】此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.15.如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50度.若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C=95度.【考点】翻折变换(折叠问题).【分析】根据折叠前后图形全等和平行线,先求出∠CPR和∠CRP,再根据三角形内角和定理即可求出∠C.【解答】解:因为折叠前后两个图形全等,故∠CPR=∠B=×120°=60°,∠CRP=∠D=×50°=25°;∴∠C=180°﹣25°﹣60°=95°;∠C=95度;故应填95.【点评】折叠前后图形全等是解决折叠问题的关键.16.如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是﹣1≤x≤2.【考点】二次函数与不等式(组).【分析】根据图象可以直接回答,使得y1≥y2的自变量x的取值范围就是直线y1=kx+m落在二次函数y2=ax2+bx+c的图象上方的部分对应的自变量x的取值范围.【解答】解:根据图象可得出:当y1≥y2时,x的取值范围是:﹣1≤x≤2.故答案为:﹣1≤x≤2.【点评】本题考查了二次函数的性质.本题采用了“数形结合”的数学思想,使问题变得更形象、直观,降低了题的难度.17.如图,正方形ABCD内接于⊙O,⊙O的半径为2,以圆心O为顶点作∠MON,使∠MON=90°,OM、ON分别与⊙O交于点E、F,与正方形ABCD的边交于点G、H,则由OE、OF、及正方形ABCD的边围成的图形(阴影部分)的面积S=π﹣2.【考点】扇形面积的计算;全等三角形的判定与性质;正方形的性质.【专题】压轴题;数形结合.【分析】可以作OP⊥AB,OQ⊥BC,利用全等的知识即可证明△OPH≌△OQG,从而可得四边形OHBG与正方形OQBP的面积,从而利用面积差法即可得出阴影部分的面积.【解答】解:过点O 作OP ⊥AB ,OQ ⊥BC ,则OP=OQ ,在△OPH 和△OQG 中,,故可得△OPH ≌△OQG ,从而可得四边形OHBG 与正方形OQBP 的面积, ∵圆的半径为2, ∴OQ=OP=,S 阴影=S 扇形OEF ﹣S OHBG =S 扇形OEF ﹣S OQBP =﹣×=π﹣2.故答案为:π﹣2.【点评】此题考查了扇形的面积及正方形的性质,有一定难度,解答本题的关键是利用全等的知识得出四边形OHBG 与正方形OQBP 的面积.18.如图,已知直线l :y=x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂 线交y 轴于点A 2;…按此作法继续下去,则点A 2015的坐标为 (0,42015)或(0,24030) .【考点】一次函数图象上点的坐标特征. 【专题】规律型.【分析】根据所给直线解析式可得l 与x 轴的夹角,进而根据所给条件依次得到点A 1,A 2的坐标,通过相应规律得到A 2013坐标即可.【解答】解:∵直线l 的解析式为:y=x ,∴l 与x 轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴AB=,∵A1B⊥l,∴∠ABA1=60°,∴AA1=3,∴A1(0,4),同理可得A2(0,16),…,∴A2015纵坐标为:42015,∴A2013(0,42015).故答案为:(0,42015)或(0,24030).【点评】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到A、A1、A2、A3…的点的坐标是解决本题的关键.三.解答题(本大题共10小题,共66分.请在答题卡指定区域内作答、解答时应写出文字说明、证明过程或演算步骤)19.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别进行负整数指数幂、特殊角的三角函数值、绝对值、零指数幂等运算,然后按照实数的运算法则计算即可.【解答】解:原式=+×+5﹣1=6.【点评】本题考查了实数的运算,涉及了负整数指数幂、特殊角的三角函数值、绝对值、零指数幂等知识,属于基础题.20.解不等式组,并将解集在数轴上表示.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】求出每个不等式的解集,找出不等式组的解集即可.【解答】解:∵由①得,x<2,由②得,x≥﹣1,∴不等式组的解集是:﹣1≤x<2,在数轴上表示不等式组的解集为.【点评】本题考查了解一元一次不等式(组),在数轴上表示不等式组的解集的应用,关键是能根据不等式的解集找出不等式组的解集.21.先化简,再求值:﹣÷.其中x=.【考点】分式的化简求值.【专题】计算题.【分析】原式第二项利用除法法则变形,约分后利用同分母分式的减法法则计算得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=﹣•=﹣=,当x=时,原式==﹣1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.如图,已知双曲线,经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D 作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)把点D的坐标代入函数解析式,计算即可求出k值;(2)根据点D的坐标求出BD的长度,再根据△BCD的面积求出点C到BD的长度,然后求出CA的长度,再代入反比例函数解析式求出AC的长度,从而得到点C的坐标,再利用待定系数法求一次函数解析式解答即可.【解答】解:(1)∵y=经过点D(6,1),∴=1,∴k=6;(2)∵点D(6,1),∴BD=6,设△BCD边BD上的高为h,∵△BCD的面积为12,∴BD•h=12,即×6h=12,解得h=4,∴CA=3,∴=﹣3,解得x=﹣2,∴点C(﹣2,﹣3),设直线CD的解析式为y=kx+b,则,解得,所以,直线CD的解析式为y=x﹣2.【点评】本题考查了反比例函数与一次函数的交点问题,主要利用了待定系数法求反比例函数解析式,三角形的面积,比较简单,(2)求出点C的坐标是解题的关键.23.为了解某区九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:40分;B:39﹣35分;C:34﹣30分;D:29﹣20分;E:19﹣0分)统计如下:根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为60,b的值为0.15,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数.”请问:甲同学的体育成绩应在什么分数段内?C(填相应分数段的字母)(3)如果把成绩在30分以上(含30分)定为优秀,那么该区今年2400名九年级学生中体育成绩为优秀的学生人数有多少名?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)首先根据:频率=,由表格A中的数据可以求出随机抽取部分学生的总人数,然后根据B 中频率即可求解a,同时也可以求出b;(2)根据中位数的定义可以确定中位数的分数段,然后确定位置;(3)首先根据频率分布直方图可以求出样本中在30分以上的人数,然后利用样本估计总体的思想即可解决问题.【解答】解:(1)随机抽取部分学生的总人数为:48÷0.2=240,∴a=240×0.25=60,b=84÷240=0.35,如图所示:(2)∵总人数为240人,∴根据频率分布直方图知道中位数在C分数段;(3)∵30分以上(含30分)定为优秀,故优秀的频率为:0.2+0.25+0.35=0.8,∴0.8×2400=1920(名)答:该市九年级考生中体育成绩为优秀的学生人数约有1920名.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.在一次数学活动课上,数学老师在同一平面内将一副直角三角板如图位置摆放,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.【考点】解直角三角形.【分析】过点B作BM⊥FD于点M,解直角三角形求出BC,在△BMC值解直角三角形求出CM,BM,推出BM=DM,即可求出答案.【解答】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=AC tan60°=10,∵AB∥CF,∴∠BCM=∠ABC=30°.∴BM=BC•sin30°=10×=5,CM=BC•cos30°=10×=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM﹣MD=15﹣5.【点评】本题考查了解直角三角形的应用,关键是能通过解直角三角形求出线段CM、MD的长.25.在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动.有A、B 两组卡片,每组各3张,A 组卡片上分别写有0,2,3;B组卡片上分别写有﹣5,﹣1,1.每张卡片除正面写有不同数字外,其余均相同.甲从A组中随机抽取一张记为x,乙从B组中随机抽取一张记为y.(1)若甲抽出的数字是2,乙抽出的数是﹣1,它们恰好是ax﹣y=5的解,求a的值;(2)在(1)的条件下,求甲、乙随机抽取一次的数恰好是方程ax﹣y=5的解的概率.(请用树形图或列表法求解)【考点】列表法与树状图法;二元一次方程的解.【专题】计算题.【分析】(1)将x=2,y=﹣1代入方程计算即可求出a的值;(2)列表得出所有等可能的情况数,找出甲、乙随机抽取一次的数恰好是方程ax﹣y=5的解的情况数,即可求出所求的概率.【解答】解:(1)将x=2,y=﹣1代入方程得:2a+1=5,即a=2;(2)列表得:所有等可能的情况有9种,其中(x,y)恰好为方程2x﹣y=5的解的情况有(0,﹣5),(2,﹣1),(3,1),共3种情况,则P==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.26.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?【考点】二次函数的应用.【分析】(1)根据题意易求y与x之间的函数表达式.(2)已知函数解析式,设y=4800可从实际得x的值.(3)利用x=﹣求出x的值,然后可求出y的最大值.【解答】解:(1)根据题意,得y=(2400﹣2000﹣x)(8+4×),即y=﹣x2+24x+3200;(2)由题意,得﹣x2+24x+3200=4800.整理,得x2﹣300x+20000=0.解这个方程,得x1=100,x2=200.要使百姓得到实惠,取x=200元.∴每台冰箱应降价200元;(3)对于y=﹣x2+24x+3200=﹣(x﹣150)2+5000,当x=150时,=5000(元).y最大值所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.【点评】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.借助二次函数解决实际问题.。

江苏省盐城市射阳实验初中2018-2019年上学期初三第二次月考数学试题

江苏省盐城市射阳实验初中2018-2019年上学期初三第二次月考数学试题

射阳县实验初中2018年秋学期初三数学第二次综合练习分值:150分 时间:120分钟一、选择题(每小题3分,共24分) 1.2018的相反数是( )A .-2018B .2018C .20181D .20181-2.下列四个图形中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .3.下列运算结果正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 5C .x 6÷x 2=x 4D .3a-a=24.如图几何体的主视图是( )5.下列事件是必然事件的是( )A .明天太阳从西边升起B .掷出一枚硬币,正面朝上C .打开电视机,正在播放“新闻联播”D .任意画一个三角形,它的内角和等于180°6.从成都经川南到贵阳的成贵客运专线正在建设中,这项工程总投资约 780亿元,预计2019 年12月建成通车,届时成都到贵阳只要 3 小时,这段铁路被称为“世界第一条山区高速铁路”.将数据780亿用科学记数法表示为( )A .78×109B .7.8×108C .7.8×1010D .7.8×10117. 已知△ABC 相似于△A’B’C’,且21'' B A AB . 则ABC S △:'''C B A S △为( )A. 1:2B. 2:1C. 1:4D. 4:18.如图,A ,B ,C 是⊙O 上的三点,∠ABO=25°,∠ACO=30°, 则∠BOC 的度数为( ) A .100°B .110°C .125°二、填空题(每小题3分,共24分) 9.分解因式:a 2﹣4= .10.一组数据﹣3,﹣1,0,3,10的极差是 . 11.要使分式有意义,则x 的取值范围是.12.甲乙两个芭蕾舞团参加演出的女演员人数相同,平均身高相同.身高的方差分别是5.25.122==乙甲,S S ,则 芭蕾舞团参加演出的女演员身高更整齐.13.如图,斜坡AB 的坡度i=1:3,该斜坡的水平距离AC=6m,则斜坡AB 的长为14.如图,在网格中,小正方形的边长均为1,点A 、B 、C 都在格点上,则∠BAC 的正切为 .15.关于x 的一元二次方程ax 2﹣x ﹣=0有实数根,则a 的取值范围为 .16.如图所示,正方形ABCD 中,BE=EF=FC ,CG=2GD ,BG 分别交AE ,AF 于M ,N ,则MGBM NF BN -=_______. 三、解答题17.(6分)计算:|﹣3|+(π﹣2017)0﹣2sin30°18.(6分)解不等式:3x ﹣1≥2(x ﹣1),并把它的解集在数轴上表示出来. 19.(8分)先化简,再求值:,其中.20.(8分)某中学为了解学生“最适合自己的考前减压方式”,在九年级范围内开展了一次抽样调查,学生必须在四类选项中选择一项,小明根据调查结果绘制了如下尚不完整的统计图.请根据以上信息解答下列问题:(1)这次抽样调查中,抽查的学生人数为人.(2)请补全条形统计图.(3)扇形统计图中“其它”所对应扇形圆心角为度.(4)若该中学九年级有4000人,请估计采用“听音乐”作为减压方式的人数.21.(8分)在盐城市2018年创建全国文明城市活动中,需要60名志愿者担任宣传工作,其中男生28人,女生32人.(1)若从这60人中随机选取一人作为此次活动的讲解员,求选到女生的概率;(2)若“广告策划”只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁担任,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,甲从中抽取一张后放回,乙再抽取一张,若牌面数字之和为偶数,则甲担任,否则乙担任.试问这个游戏公平吗?请用树状图或列表法说明理由.22.(10分)如图,平行四边形ABCD中,AE⊥BD于点E,CF⊥BD于点F,连结AF、CE.(1)求证:四边形AECF是平行四边形;(2)若AB=6,BD=13,∠ABD=30°,求四边形ABCD的面积.23.(10分)如图,已知AC是⊙O的直径,过点C作⊙O的切线BC,E是BC的中点,AB交⊙O于D点.(1)说明ED和EC的数量关系;(2)DE是⊙O的切线吗?若是,给出证明;若不是,说明理由;24.(10分)某商品的进价为每件50元,售价为每件65元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖5件(每件单价不能高于85元),每件商品的售价上涨x元(x为正整数),则每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价在什么范围时,每个月的利润不低于3326元?25.(10分)如图1,是午休时老师们所用的一种折叠椅.把折叠椅完全平躺时如图2,长度MC=150厘米,AM=50厘米,B是CM上一点,现将躺椅如图3倾斜放置时,AM与地面ME成45°角,AB∥ME,椅背BC与水平线成30°角,其中BP是躺椅的伸缩支架,其与地面的夹角不得小于30°.(1)若点B恰好是MC的黄金分割点(MB>BC),人躺在上面才会比较舒适,求此时点C与地面的距离.(结果精确到1厘米)(2)午休结束后,老师会把AM和伸缩支架BP收起紧贴AB,在(1)的条件下,求伸缩支架BP可达到的最大值.(结果精确到1厘米)(参考数据:≈1.4,≈1.7,≈2.2)26.(12分)如图,抛物线y=﹣x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,且点A与点B的坐标分别为A(-1,0),B(5,0),点M是抛物线的顶点(1)求抛物线的解析式;(2)点P的线段MB上一个动点,过点P作PD⊥x轴与点D,若△PCD的面积为S,试判断S有无最大值?若有,求出这个最大值,如果不存在,请说明理由;(3)在(2)的条件下,线段MB上是否存在点P,△PCD为直角三角形?如果存在,请直接写出点D的坐标,如果不存在,请说明理由.27.(14分)如图1,在平行四边形ABCD中,AD=3cm,AB=4cm,∠DAB=120º,射线AE平分∠DAB,动点P以1cm/s的速度从点A出发,沿AD向终点D运动,过点P作PQ⊥AD交AE于点Q,过点P作PM ∥AE,过点Q作QM∥AD,交PM于点M.设点P的运动时间为t(s),四边形APMQ与四边形ABCD重叠部分面积为Scm2.(1)当点M落在CD上时,求t的值.(2)求S与t之间的函数关系式.(3)如图2,连结AM,交PQ于点G,连结AC、BD交于点H,当GH与三角形ABD的一边平行或共线时,求t的值.一、选择题1----8 ABCC DCCB1----8 ABCC DCCB1----8 ABCC DCCB1----8 ABCC DCCB二、填空题9、(a+2)(a-2) 10、13 11、x ≠2 12、甲 13、102 14、21 15、a ≥-1且a ≠0 16、89二、填空题10、(a+2)(a-2) 10、13 11、x ≠2 12、甲 13、102 14、21 15、a ≥-1且a ≠0 16、89二、填空题11、(a+2)(a-2) 10、13 11、x ≠2 12、甲 13、102 14、21 15、a ≥-1且a ≠0 16、89二、填空题12、(a+2)(a-2) 10、13 11、x ≠2 12、甲 13、102 14、21 15、a ≥-1且a ≠0 16、89三、解答题17、3 18、x >-1 19、12-a 332 20、(1)150 (2)图略 51 (3)36 (4)1360人 21、(1)158 (2)列表或画树状图 (共16仲可能) 甲参加的概率是21168= 乙参加的概率是21168=,2121=,所以公平 22、如图,平行四边形ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,连结AF 、CE . (1)求证:四边形AECF 是平行四边形;(2)若AB=6,BD=13,∠ABD=30°,求四边形ABCD 的面积.解:(1)略 (2)3923、略如图,已知AC 是⊙O 的直径,过点C 作⊙O 的切线BC ,E 是BC 的中点,AB 交⊙O 于D 点. (1)说明ED 和EC 的数量关系;(2)DE 是⊙O 的切线吗?若是,给出证明;若不是,说明理由;24、某商品的进价为每件50元,售价为每件65元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖5件(每件单价不能高于85元),每件商品的售价上涨x元(x 为正整数),则每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价在什么范围时,每个月的利润不低于3326元?解:(1)由题意得:y=(210﹣5x)(x+15)=﹣5x2+135x+3150(0<x≤20且x为整数);(2)由(1)中的y与x的解析式配方得:y=﹣5(x﹣13.5)2+4061.25∵a=﹣5<0,∴当x=13..5时,y有最大值4061.25∵0<x≤20,且x为整数,当x=13时,65+13=78,y=4060,当x=14时,65+14=79,y=4060,∴当售价定为每件78或79元,每个月的利润最大,最大的月利润是4060元.(3)当y=3500时,﹣7x2+105x+3150=3326,解得:x1=16,x2=11.∴当x=16时,65+16=81,当x=11时,65+11=76.∴当售价不低于76,不高于81元时,每个月的利润不低于3326元.25、如图1,是午休时老师们所用的一种折叠椅.把折叠椅完全平躺时如图2,长度MC=150厘米,AM=50厘米,B是CM上一点,现将躺椅如图3倾斜放置时,AM与地面ME成45°角,AB∥ME,椅背BC与水平线成30°角,其中BP是躺椅的伸缩支架,其与地面的夹角不得小于30°.(1)若点B恰好是MC的黄金分割点(MB>BC),人躺在上面才会比较舒适,求此时点C与地面的距离.(结果精确到1厘米)(2)午休结束后,老师会把AM和伸缩支架BP收起紧贴AB,在(1)的条件下,求伸缩支架BP可达到的最大值.(结果精确到1厘米)(参考数据:≈1.4,≈1.7,≈2.2)解:(1)∵点B是MC的黄金分割点(MB>BC),∴=≈0.6,=≈1﹣0.6≈0.4,∵MC=150厘米,∴BC≈0.4×150≈60厘米,CE=CD+DE=MA•sin45°+BC•sin30°=50×+60×≈65厘米.答:此时点C与地面的距离约为65厘米.(2)∵30°<∠BPM,且∠BPM<90°(物理力学知识得知),∴sin∠BPM在其取值范围内为单调递增函数,又∵BP=,∴当∠BPM接近30°时,BP最大,此时BP==≈70厘米.答:伸缩支架BP 可达到的最大值约为70厘米.26、如图,抛物线y=﹣x 2+bx+c 与x 轴相交于A ,B 两点,与y 轴相交于点C ,且点A 与点B 的坐标分别为A (-1,0),B (5,0),点M 是抛物线的顶点 (1)求抛物线的解析式;(2)点P 的线段MB 上一个动点,过点P 作PD ⊥x 轴与点D ,若△PCD 的面积为S ,试判断S 有无最大值?若有,求出这个最大值,如果不存在,请说明理由;(3)在(2)的条件下,线段MB 上是否存在点P ,△PCD 为直角三角形?如果存在,请直接写出点P 的横坐标,如果不存在,请说明理由.解:(1)把A (-1,0),B (5,0)抛物线解析式为y=﹣x 2+4x +5;(2)S 有最大值.理由如下: ∵y=﹣x 2+4x +5=﹣(x ﹣2)2+9, ∴M (2,9),设直线BM 的解析式为y=kx +n , 把B (5,0),M (2,9)代入得, 解得直线BM 的解析式为y=﹣3x +15, 设P (m ,﹣3m +15)(2≤m <5), ∴S=•m•(﹣3m +15)=﹣23m 2+215m=﹣23(m ﹣25)2+875, ∵2≤m <5, ∴当m=25时,S 有最大值,最大值为875;(3)存在.2233575-310 或27、如图1,在平行四边形ABCD 中,AD=3cm ,AB=4cm ,∠ ,射线AE 平分∠ 动点P 以 的速度沿AD 向终点D 运动,过点P 作 交AE 于点Q ,过点P 作 ,过点Q 作 ,交PM 于点 设点P 的运动时间为 ,四边形APMQ 与四边形ABCD 重叠部分面积为(1) 当点M 落在CD 上时,求t 的值.(2)求S 与t 之间的函数关系式,并写出自变量的取值范围.(3)如图2,连结AM ,交PQ 于点G ,连结AC 、BD 交于点H ,当GH 与三角形ABD 的一边平行或共线时,求t的值.解:(1)如图2中,∵四边形ABCD 是平行四边形, ∴AB ∥CD ,∴∠D=180°﹣∠DAB=60°, ∵PM ∥AE ,MQ ∥AD ,∴∠DPM=∠DAQ=60°,四边形APMQ是平行四边形,∴△DPM是等边三角形,PM=AQ=2PA=2t,∴DP=PM,∴3﹣t=2t,∴t=1.(3)①当0<t≤1时,如图1中,重叠部分是平行四边形APMQ,S=AP•PQ=t2.②如图3中,当1<t≤1.5时,重叠部分五边形APSTQ,S=t2﹣(3t﹣3)2=﹣t2+239t﹣439.③如图4中,当1.5<t≤3时,重叠部分是四边形PSTA.S=S△DAT﹣S△DSP=×32﹣•(3﹣t)2=﹣t2+233t.综上所述,S=。

江苏省盐城市射阳县2018届数学中考模拟预测试卷

江苏省盐城市射阳县2018届数学中考模拟预测试卷

江苏省盐城市射阳县2018届数学中考模拟预测试卷一、单选题(共6题;共18分)1.下列各对数中,互为相反数的是()A. 2与B. ﹣(﹣3)和+|﹣3|C. ﹣(﹣2)与﹣|﹣2|D. +(﹣5)与﹣(+5)2.下列同一个几何体中,主视图与俯视图不同的是()A. 圆柱B. 正方体C. 圆锥D. 球3.若一组数据3,5,x,5,3,11的众数是3,则这组数据的平均数和中位数分别为()A. 5,4B. 4,5C. 5,3D. 3,54.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.5.下列运算正确的是()A. a3+a3=2a6B. (x2)3=x5C. 2a6÷a3=2a2D. x3•x2=x56.如图,在△ABC中,延长BC至D,使得CD= BC,过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A. 3B. 4C. 2D. 3二、填空题(共10题;共33分)7.计算cos60°=________.8.分解因式:m3n﹣4mn=________ .9.函数y= 中,自变量x的取值范围是________;实数2﹣的倒数是________.10.如图,已知a // b,小亮把三角板的直角顶点放在直线b上.若∠1=35°,则∠2的度数为________.11.某种病毒的长度约为,若请你用科学记数法表示这个数,则可以表示为________mm.12.从“线段,等边三角形,圆,矩形,正六边形”这五个圆形中任取一个,取到既是轴对称图形又是中心对称图形的概率是________.13.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE交AB干点E,且tan∠α= ,有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE 为直角三角形时,BD为12或;④0<BE≤ .其中正确的结论是________(填入正确结论的序号).14.同学们对公园的滑梯很熟悉吧!如图是某公园“六•一”前新增设的一台滑梯,该滑梯高度AC=2m,滑梯AB的坡比是1:2,则滑梯AB的长是________米.15.如图,点A、B、C在半径为9的⊙O上,的长为2π,则∠ACB的大小是 ________.16.如图,用黑白两色正方形瓷砖按一定的规律铺设地图案,第n个图案中白色瓷砖有________块(用含n 的式子表示)三、解答题((共11题;17、18、19、20、21、22、23小题各9分;共99分)共99分)17.计算:(3﹣π)0+4sin45°﹣+|1﹣|.18.先化简,再求值:÷ ,其中.19.已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根为x1,x2,且满足5x1+2x2=2,求实数m的值.20.在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.21.某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了________名学生,其中最喜爱体育的有________人;(2)在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是________.(3)小李和小张在新闻、体育、动画三类电视节目中分别有一类是自己最喜爱的节目,请用树状图或列表法求两人恰好最喜爱同一类节目的概率.22.如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?(sin80°≈0.98,cos80°≈0.17,≈1.41,结果精确到0.1cm)23一块三角形废料如图所示,∠A=30°,∠C=90°,BC=6.用这块废料剪出一个平行四边形AGEF,其中,点G,E,F分别在AB,BC,AC上.设CE=x(1)求x=2时,平行四边形AGEF的面积.(2)当x为何值时,平行四边形AGEF的面积最大?最大面积是多少?24.(1)如图1,点E、F在AC上,AB∥CD,AB=CD,AE=CF,求证:△ABF≌△CDE(2)如图2,方格纸中的每个小方格是边长为1个单位长度的正方形.①画出将Rt△ABC向右平移5个单位长度后的Rt△A1B1C1②再将Rt△A1B1C1绕点C1顺时针旋转90°,画出旋转后的Rt△A2B2C2,并求出旋转过程中线段A1C1所扫过的面积(结果保留π)25.如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.(1)求证:DE=AB.(2)以D为圆心,DE为半径作圆弧交AD于点G.若BF=FC=1,试求弧EG的长.26.如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃.设花圃的一边AB为xm,面积为ym2.(1)求y与x的函数关系式;(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成比63m2更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.参考答案一、单选题1.C2. C3. A4.B5. D6.B二、填空题7.8.mn(m﹣2)(m+2)9. x≥2;2+ 10.55°11.5.612. 13. ②③ 14.15.20°16.3n+2三、解答题17.解:(3﹣π)0+4sin45°﹣+|1﹣|=1+4× ﹣2 + ﹣1=1+ ﹣2 + ﹣1= .18. 解:原式当时,19.(1)解:∵方程有实数根,∴△=(﹣4)2﹣4m=16﹣4m≥0,∴m≤4;(2)解:∵x1+x2=4,∴5x1+2x2=2(x1+x2)+3x1=2×4+3x1=2,∴x1=﹣2,把x1=﹣2代入x2﹣4x+m=0得:(﹣2)2﹣4×(﹣2)+m=0,解得:m=﹣1220.(1)解:从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,刚好是男生的概率= = (2)解:画树状图为:共有12种等可能的结果数,其中刚好是一男生一女生的结果数为6,所以刚好是一男生一女生的概率= =21.(1)50;10(2)72°(3)解:新闻、体育、动画三类电视节目分别记为A、B、C,画树状图如下:共有9种等可能的结果数,两人恰好最喜爱同一类节目的概率为= .22.(1)解:过点F作FN⊥DK于N,过点E作EM⊥FN于M.∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66cos45°= ≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.(2)解:过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66sin45°≈46.53,∴PH≈46.53,∵GN=100cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.23.(1)解:设平行四边形AGEF的面积是S.∵四边形AGEF是平行四边形,∴EF∥AG;∵∠A=30°,∠C=90°,CE=x,BC=6,∴∠A=∠CFE=30°,∴CF= x,AC=6 ,∴AF=6 ﹣x;∴S=AF•CE=(6 ﹣x)x=﹣x2+6 x,即S=﹣x2+6 x;当x=2时,S=﹣4 +12 =8 ,即S=8 .答:平行四边形AGEF的面积为8 (平方单位)(2)解:由S=﹣x2+6 x,得S=- x2+6 x,∴S=- (x-3)2+9 ,∴当x=3时,平行四边形AGEF的面积最大,最大面积是9 (平方单位)24.(1)证明:∵AB∥CD∴∠A=∠C.∵AE=CF∴AE+EF=CF+EF,即AF=CE∵AB=CD∴∴△ABF≌CDE(SAS)(2)解:①如图所示;②如图所示:在旋转过程中,线段A1C1所扫过的面积等于=4π.25.(1)证明:∵四边形ABCD是矩形,∴∠B=90∘,AD=BC,AD∥BC,∴∠DAE=∠AFB,∵DE⊥AF,∴∠AED=90∘=∠B,在△ABF和△DEA中∠AFB=∠DAE∠B=∠DEAAF=AD∴△ABF≌△DEA(AAS),∴DE=AB;(2)解:∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=CD,BC=AD,AD∥BC,∴∠EAD=∠AFB,∵DE⊥AF,∴∠AED=90°,在△ADE和△FAB中,∴△ADE≌△FAB(AAS),∴AE=BF=1∵BF=FC=1∴BC=AD=2故在Rt△ADE中,∠ADE=30°,DE= ,∴弧EG的长= = .26.(1)解:由题意得:y=x(30-3x),即y=-3x2+30x(2)解:当y=63时,-3x2+30x=63.解此方程得x1=7,x2=3.当x=7时,30-3x=9<10,符合题意;当x=3时,30-3x=21>10,不符合题意,舍去;∴当AB的长为7m时,花圃的面积为63m2.(3)解:能.y=-3x2+30x=-3(x-5)2+75而由题意:0<30-3x≤10,即≤x<10又当x>5时,y随x的增大而减小,∴当x= m时面积最大,最大面积为m2.。

盐城市2018年中考数学模拟试卷含答案

盐城市2018年中考数学模拟试卷含答案

盐城市2018年中考数学模拟试卷1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.一、选择题(本大题共6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑.............) 1.-2的相反数是( )A .-2B .2C .21-D .212.下列计算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2)3=a 6D .(ab )2=ab 23.如图1,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其主视图是( )4.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D .5.已知一组数据x 1,x 2,x 3的平均数为8,方差为3.2,那么数据x 1-2, x 2-2,x 3-2的平均数和方差分别是( )A .6,2B .6,3.2C .8,2D .8,3.2 6.根据函数表达式21x y =,下列关于函数21xy =图像特征叙述错误..的是( ) A .图像位于第一、二象限 B .图像既没有最高点,也没有最低点C .图像与直线y=x+2有两个公共点D .图像关于y 轴对称二、填空题(本题共10小题,每题3分,计30分,请将答案写在答题卡上相应横线上)7.请你写出一个大于0且小于3的无理数为 ▲ .8.过度包装既浪费资源又污染环境.据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量.把数据3120000用科学记数法表示为 ▲ . 9.若二次函数y=x 2+2x+m 的图像与 x 轴有公共点,则m 的取值范围是 ▲ .10.如图2,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是 ▲ .11.如图,已知l 1∥l 2,直线l 与l 1、l 2相交于C 、D 两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2= ▲ . 12.如果α、β是方程x 2﹣2x ﹣1=0的两个实数根,那么代数式α2﹣3α-β的值是图2▲ .13.我们规定:当k ,b 为常数,k≠0,b≠0,k≠b 时,一次函数y=kx+b 与y=bx+k 互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx-2与它的交换函数图象的交点横坐标为 ▲ . 14.如图4,扇形AOB 中,OA=5,∠AOB=36°.若将此扇形绕点B 顺时针旋转,得一新扇形A′O′B ,其中A 点在O′B 上,则点O 的运动路径长为 ▲ cm .(结果保留π)15.如图5,在Rt △ABC 中,∠C=90°,∠A=α,分别以点A 、B 为圆心,以大于21AB 的长为半径作弧,交点分别为M 、N ,过M 、N 作直线交AB 于点D ,交AC 于点E .若tanα=31,则tan2α= ▲ .16.如图6,在正方形ABCD 内有一条折线段,其中AE ⊥EF ,EF ⊥FC ,且AE=6,EF=6,FC=2,则正方形与其外接圆之间形成的阴影部分面积为 ▲ . 三、解答题(本题共11小题,共102分,请在答题卡上写出相应的解答过程) 17.(本题满分6分)计算:|﹣tan450|﹣38+(﹣2018)0.18.(本题满分6分)解不等式组⎪⎩⎪⎨⎧-≤+->+x x x x 237121)1(315,并写出所有的整数解.19.(本题满分8分)先化简,再求值:(x ﹣xy xy 22-)÷xyx y x +-222,其中x=23+,y=23-.20.(本题满分8分)如图7,点O 是△ABC 内一点,连结OB 、OC ,并将AB 、OB 、OC 、AC 的中点D 、E 、F 、G 依次连结,得到四边形DEFG . (1)求证:四边形DEFG 是平行四边形;C A图4第16题(2)若M 为EF 的中点,OM =3,∠OBC 和∠OCB 互余,求DG 的长度.21.(本题满分9分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项). (1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率. (3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案) 22.(本题满分9分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下的统计图8①和图8②,请根据相关信息,解答下列问题:(1)图1中a 的值为 ;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛. 23.(本题满分10分)为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台? 24.(本题满分10分)如图9,直线y=k 1x (x ≥0)与双曲线y=22k (x >0)相交于点P (2,4).已知点A (4,0),B (0,3),M 图7图8①图8②连接AB ,将Rt △AOB 沿OP 方向平移,使点O 移动到点P ,得到△A'PB'.过点A'作A'C ∥y 轴交双曲线于点C .(1)求k 1与k 2的值;(2)求直线PC 的表达式;(3)直接写出线段AB 扫过的面积.25.(本题满分10分)如图,在△ABC 中,AB=AC ,AE 是∠BAC 的平分线,∠ABC 的平分线BM 交AE 于点M ,点O 在AB 上,以点O 为圆心,OB 的长为半径的圆经过点M ,交BC 于点G ,交AB 于点F .(1)求证:AE 为⊙O 的切线;(2)当BC=4,AC=6时,求⊙O 的半径; (3)在(2)的条件下,求线段BG 的长.26.(本题满分12分)已知二次函数图像的顶点在原点O ,并且经过点M (2,-1).点A (0,-1)在y 轴上,直线y=1与y 轴交于点B .(1)求二次函数的解析式;(2)点P 是(1)中图象上的点,过点P 作x 轴的垂线与直线y=1交于点C ,求证:AC 平分∠PAB ;(3)当△PAC 是等边三角形时,求点P 的坐标.图10y=1yxB APC图1127.(本题满分14分)如图,在平面直角坐标系中,点A 的坐标为(6,0),点B 的坐标为(0,2),点M 从点A 出发沿x 轴负方向以每秒3cm 的速度移动,同时点N 从原点出发沿y 轴正方向以每秒1cm 的速度移动.设移动的时间为t 秒.(1)若点M 在线段OA 上,试问当t 为何值时,△ABO 与以点O 、M 、N 为顶点的三角形相似? (2)是否存在这样的t 值,使得线段MN 将△ABO 的面积分成1:3的两个部分?若存在,求出t 的值;若不存在,请说明理由.(3)若直线y=x 与△OMN 外接圆的另一个交点是点C .①试说明:当0<t<2时,OM 、ON 、OC 在移动过程满足OM+ON=2OC ; ②试探究:当t>2时,OM 、ON 、OC 之间的数量关系是否发生变化,并说明理由.y xOBA 备用图y xOBA 备用图y xON MB A图12参考答案一、选择题(共6小题,满分18分,每小题3分)二.填空题(共10小题,满分30分,每小题3分)三.解答题(共11小题,满分102分) 17.解:|﹣tan450|﹣38+(﹣2018)0=1﹣2+1 …………………………………………………………3分 =0 …………………………………………………………6分18. 解:解不等式5x+1>3(x-1),得:x >﹣2, ……………………………2分 解不等式21x+1≤7﹣23x ,得:x≤3, ……………………………………4分 则不等式组的解集为﹣2<x≤3,……………………………………5分所有它的整数解是:-1,0,1,2,3. ……………………………6分(x ﹣xy xy 22-)÷xy x y x +-22219. 解:(x ﹣xy xy 22-)÷xyx y x +-222= ()()()y x y x y x x x y xy -+++-*2x 22 =()()()()y x y x y x x x-++*y -x 2……………………………………………4分=x ﹣y …………………………………………………………6分当x=23+,y=23-时,原式= (23+)-(23-)=22.…………………………………………………………8分20.解:(1)证明:∵点D 、E 、F 、G 分别为线段AB 、OB 、OC 、AC 的中点, ∴DG 为△ABC 的中位线,EF 为△OBC 的中位线, ……………………2分 ∴DG ∥BC 且DG =21BC ,EF ∥BC 且EF =21BC , ∴DG ∥EF ,DG =EF ,∴四边形DEFG 是平行四边形. ……………4分(2)解:∵∠OBC 和∠OCB 互余,∴△OBC 是直角三角形,∠BOC =90°. ∵M 为EF 的中点,∴OM 为Rt △OEF 斜边的中线, ……………………6分∴EF =2OM =2×3=6,∴DG =EF =6. ……………………8分 21.解:(1)第一道单选题有3个选项,小明不使用“求助”答对第一道题的概率是31; ……………………2分(2)分别用A ,B ,C 表示第一道单选题的3个选项,a ,b ,c 表示剩下的第二道单选题的3个选项, 画树状图得:……………………5分∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为91; ……………………7分 (3)∵如果在第一题使用“求助”小明顺利通关的概率为81;如果在第二题使用“求助”小明顺利通关的概率为91;∴建议小明在第一题使用“求助”. ……………………9分22.解:(1)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a 的值是25;……………………2分(2)观察条形统计图得:=36542370.1665.1560.1455.1250.1++++⨯+⨯+⨯+⨯+⨯=1.61; ……………………4分∵在这组数据中,1.65出现了6次,出现的次数最多, ∴这组数据的众数是1.65;将这组数据从小到大排列,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60. ……………………6分(3)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m >1.60m ,∴能进入复赛. ……………………9分23.解:(1)设该市这两年投入基础教育经费的年平均增长率为x ,根据题意得:5000(1+x )2=7200, ……………………3分 解得:x 1=0.2=20%,x 2=﹣2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%. ……………………5分 (2)2018年投入基础教育经费为7200×(1+20%)=8640(万元), …………………6分 设购买电脑m 台,则购买实物投影仪(1500﹣m )台, 根据题意得:3500m+2000(1500﹣m )≤86400000×5%, 解得:m≤880.答:2018年最多可购买电脑880台. ……………………10分24.解:(1)把点P (2,4)代入直线y=k 1x ,可得4=2k 1,∴k 1=2, 把点P (2,4)代入双曲线y=22k ,可得k 2=2×4=8; ……4分(2)∵A (4,0),B (0,3),∴AO=4,BO=3,如图,延长A'C 交x 轴于D ,由平移可得,A'P=AO=4, 又∵A'C ∥y 轴,P (2,4),∴点C 的横坐标为2+4=6, 当x=6时,y=68=34,即C (6,34), 设直线PC 的解析式为y=kx+b , 把P (2,4),C (6,34)代入可得 ⎪⎩⎪⎨⎧+=+=b k b k 63424,解得⎪⎪⎩⎪⎪⎨⎧=-=31632b k ,∴直线PC 的表达式为y=﹣32x+316; ……………………6分 (3)如图,延长A'C 交x 轴于D ,由平移可得,A'P ∥AO , 又∵A'C ∥y 轴,P (2,4),∴点A'的纵坐标为4,即A'D=4, 如图,过B'作B'E ⊥y 轴于E , ∵PB'∥y 轴,P (2,4),∴点B'的横坐标为2,即B'E=2, 又∵△AOB ≌△A'PB',∴线段AB 扫过的面积=平行四边形POBB'的面积+平行四边形AOPA'的面积=BO×B'E+AO×A'D=3×2+4×4=22. ……………………10分 25.(1)证明:连接OM ,如图1,∵BM 是∠ABC 的平分线,∴∠OBM=∠CBM ,∵OB=OM ,∴∠OBM=∠OMB ,∴∠CBM=∠OMB ,∴OM ∥BC ,∵AB=AC ,AE 是∠BAC 的平分线,∴AE ⊥BC ,∴OM ⊥AE ,∴AE 为⊙O 的切线;……………………3分(2)解:设⊙O 的半径为r ,∵AB=AC=6,AE 是∠BAC 的平分线,∴BE=CE=21BC=2, ∵OM ∥BE ,∴△AOM ∽△ABE , ∴BE OM =AB AO ,即2r =66r -,解得r=23,即设⊙O 的半径为23; ……………………7分 (3)解:作OH ⊥BE 于H ,如图,∵OM ⊥EM ,ME ⊥BE ,∴四边形OHEM 为矩形,∴HE=OM=23, ∴BH=BE ﹣HE=2﹣23=21, ∵OH ⊥BG ,∴BH=HG=21,∴BG=2BH=1. ……………………10分26.(1)解:∵二次函数图象的顶点在原点O ,∴设二次函数的解析式为y=ax 2. 将点A (2,-1)代入y=ax 2得:a= 41-,∴二次函数的解析式为y= 241x -. ……………………3分(2)证明:∵点P 在抛物线y=241x -上,∴可设点P 的坐标为(x ,241x -). 过点P 作PD ⊥y 轴于点D ,则AD=|﹣1﹣(241x -)|=|1412-x |,PD=|x|,∴Rt △PAD 中,PA=222)141(x x +-=2411x +. ……………………6分∵PC ⊥直线y=1,∴PC=2411x +.∴PA=PC . ∴∠PAC=∠PCA .又∵PC ∥y 轴,∴∠PCA=∠BAC .∴∠PAC=∠BAC . ∴AC 平分∠PAB . ……………………9分 (3)解:当△PAC 是等边三角形时,∠PCA=60°,∴∠ACB=30°. 在Rt △ACB 中,AC=2AB=2×2=4.∵PC=PA=AC ,∴ PC =4,即∴2411x +=4. 解得:x=±23.∴241x -=1241⨯-= -3.y∴满足条件的点P 的坐标为(23,-3)或(﹣23,-3).……………………12分27.解:(1)由题意,得OA=6,OB=2.当0<t<2时,OM=6-3t ,ON=t . 若△ABO ∽△MNO ,则ON OB OM OA =,即t t 2366=-.解得t=1.若△ABO ∽△NMO ,则OM OB ON OA =,即tt 3626-=.解得t=1.8. ……………………3分综上,当t 为1或1.8时,△ABO 与以点O 、M 、N 为顶点的三角形相似.……………………4分(2)由题意得:111(63)26224t t -=⨯⨯⨯.∴2210t t -+=∴121t t ==或者113(63)26224t t -=⨯⨯⨯∴23690t t -+=,此方程无解综上,当t为1时,线段MN 将△ACB 的面积分成1∶3两部分. ……………………7分DNMCy xOBA y =x(3)①当0<t <2时,在ON 的延长线的截取ND =OM . ∵直线y=x 与x 轴的夹角为450,∴OC 平分∠AOB .∴∠AOC =∠BOB . ∴⋂CN =⋂CM .∴C N =C M .又∵ 在⊙O 中∠CNO +∠CMO=180°,∠DNC +∠CNO =180°, ∴∠CND =∠CMO . ∴△CND ≌△CMO .∴CD =CO ,∠DCN =∠OCM . 又∵∠AOB =90°,∴MN 为⊙O 的直径. ∴∠MCN =90°.∴∠OCM +∠OCN =90°. ∴∠DCN +∠OCN =90°.∴∠OCD=90°.又∵CD=CO,∴OD=2OC.∴ON+ND=2OC.∴OM+ON=2OC.……………………10分DNMCyx OBAy=x②当t >2时,ON-OM=2OC.过点C作CD⊥OC交ON于点D.∵∠COD=45°,∴△CDO为等腰直角三角形∴OD=2OC.……………………12分连接MC,NC.∵MN为⊙O的直径,∴∠MCN=90°.又∵在⊙O中,∠CMN=∠CNM=45°,∴MC=NC.又∵∠OCD=∠MCN=90°,∴∠DCN=∠OCM.∴△CDN≌△COM.∴DN=OM.又∵OD=2OC.,∴ON-DN=2OC.∴ON-OM=2OC.……………………14分11。

2018年江苏省盐城市中考数学试卷含答案解析(Word版)(2)

2018年江苏省盐城市中考数学试卷含答案解析(Word版)(2)

江苏省盐城市 2018 年中考数学试卷一、选择题1.-2018的相反数是()A. 2018B. -2018C.D.2.以下图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.以下运算正确的选项)是(A. B. C. D.4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁 6 座,桥梁的总长度约为146000 米,将数据146000 用科学记数法表示为()A. B. C. D.5.如图是由5个大小同样的小正方体构成的几何体,则它的左视图是()A. B. C. D.6.一组数据2, 4, 6, 4, 8 的中位数为()A. 2B. 4C. 6D. 87.如图,为的直径,是的弦,,则的度数为()A. B. C. D.8.已知一元二次方程有一个根为1,则的值为()A.-2B.2C.-4D.4二、填空题9.依据以下图的车票信息,车票的价钱为________元.10.要使分式存心义,则的取值范围是 ________.11.分解因式:________.12.一只蚂蚁在以下图的方格地板上随机爬行,每个小方格形状大小完整同样,当蚂蚁停下时,停在地板中暗影部分的概率为________.13.将一个含有角的直角三角板摆放在矩形上,以下图,若,则________.14.如图,点为矩形的边的中点,反比率函数的图象经过点,交边于点.若的面积为1,则________。

15.如图,左图是由若干个同样的图形(右图)构成的漂亮图案的一部分.右图中,图形的相关数据:半径,.则右图的周长为________(结果保存).16.如图,在直角中,上的两个动点,若要使,,是等腰三角形且,、分别为边、是直角三角形,则________.三、解答题17.计算:.18.解不等式:,并把它的解集在数轴上表示出来.19.先化简,再求值:,此中.20.端午节是我国传统佳节 .小峰同学带了 4 个粽子(除粽馅不一样外,其余均同样),此中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中随意取出两个送给他的好朋友小悦 .(1)用树状图或列表的方法列出小悦拿到两个粽子的全部可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.在正方形中,对角线所在的直线上有两点、知足,连结、、、,以下图.(1)求证:;(2)试判断四边形的形状,并说明原因.22.“安全教育平台”是中国教育学会为方便学长和学生参加安全知识活动、接受安全提示的一种应用软件 .某校为了认识家长和学生参加“防溺水教育”的状况,在本校学生中随机抽取部分学生作检查,把采集的数据分为以下 4 类情况:.仅学生自己参加;.家长和学生一同参加;.仅家长自己参加;.家长和学生都未参加.请依据图中供给的信息,解答以下问题:(1)在此次抽样检查中,共检查了________名学生;(2)补全条形统计图,并在扇形统计图上当算类所对应扇形的圆心角的度数;(3)依据抽样检查结果,预计该校2000名学生中“家长和学生都未参加”的人数 .23.一商铺销售某种商品,均匀每日可售出20件,每件盈余 40 元 .为了扩大销售、增添盈余,该店采纳了降价举措,在每件盈余许多于25元的前提下,经过一段时间销售,发现销售单价每降低 1 元,均匀每日可多售出 2 件 .(1)若降价 3 元,则均匀每日销售数目为________件;(2)当每件商品降价多少元时,该商铺每日销售收益为1200 元?24.学校与图书室在同一条笔挺道路上,甲从学校去图书室,乙从图书室回学校,甲、乙两人都匀速步行且同时出发,乙先抵达目的地.两人之间的距离(米)与时间(分钟)之间的函数关系以下图.(1)依据图象信息,当________分钟时甲乙两人相遇,甲的速度为________米 /分钟;(2)求出线段所表示的函数表达式.25.如图,在以线段为直径的上取一点,连结、.将沿翻折后获得.(1)试说明点在上;(2)在线段的延伸线上取一点,使.求证:为的切线;(3)在(2)的条件下,分别延伸线段、订交于点,若,,求线段的长 .26. ( 1)【发现】如图①,已知等边,将直角三角形的角极点随意放在边上(点不与点、重合),使两边分别交线段、于点、.①若,,,则________;②求证:.________(2)【思虑】若将图①中的三角板的极点在边上挪动,保持三角板与、的两个交点、都存在,连结,如图②所示 .问点能否存在某一地点,使均分且均分?若存在,求出的值;若不存在,请说明原因 .(3)【探究】如图③,在等腰中,,点为边的中点,将三角形透明纸板的一个极点放在点处(此中),使两条边分别交边、于点、(点、均不与的极点重合),连结.设,则与的周长之比为________(用含的表达式表示) .27.如图①,在平面直角坐标系中,抛物线经过点、两点,且与轴交于点.(1)求抛物线的表达式;(2)如图②,用宽为 4 个单位长度的直尺垂直于轴,并沿轴左右平移,直尺的左右两边所在的直线与抛物线订交于、两点(点在点的左边),连结,在线段上方抛物线上有一动点,连结、.(Ⅰ)若点的横坐标为,求面积的最大值,并求此时点的坐标;(Ⅱ)直尺在平移过程中,面积能否有最大值?如有,求出头积的最大值;若没有,请说明原因 .答案分析部分一、选择题1.【答案】 A【考点】相反数及有理数的相反数【分析】【解答】解: -2018 的相反数是2018。

2018届中考数学二模试卷(带答案) (12)

2018届中考数学二模试卷(带答案)  (12)

2018年中考数学二模试卷一、选择题:每小题3分,共36分。

1.下列计算错误的是()A.•=B.+=C.÷=2 D.=22.﹣8的立方根是()A.﹣2 B.±2 C.2 D.﹣3.下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x54.下列函数,其图象经过点(2,2)的是()A.y=3x B.y=1﹣2x C.y=D.y=x2﹣15.如图所示的几何体的主视图是()A.B. C.D.6.函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠07.有19位同学参加歌咏比赛,成绩互不相同,前10名的同学进入决赛.某同学知道自己的分数后,要判断自己能够进入决赛,他只需知道这19位同学成绩的()A.平均数B.中位数C.众数 D.方差8.如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE=60°,则∠BOD的度数为()A.50°B.60°C.65°D.70°9.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥B.x≤3 C.x≤D.x≥310.如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π11.下列判断错误的是()A.对角线相互垂直且相等的平行四边形是正方形B.对角线相互垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线相互平分的四边形是平行四边形12.若不等式组有解,则m的取值范围是()A.m≥2 B.m<1 C.m>2 D.m<2二、填空题:每小题3分,共18分。

13.将0.00305用科学记数法表示为.14.分解因式:x2﹣x+=.15.单项式的系数与次数之积为.16.如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=度.17.已知x、y满足,则x+2y=.18.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D,已知cos∠ACD=,BC=3,则AC的长为.三、解答题:本大题共66分。

2018届中考数学二模试卷(带答案) (18)

2018届中考数学二模试卷(带答案)  (18)

2018年中考数学二模试卷一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b62.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=33.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.20157.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.49.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c11.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.B. C. D.712.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为.16.方程x2﹣2x﹣1=0的解是.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2007•台州)如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B处测得海丰塔最高点P的仰角为45°,又前进了18米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.参考答案与试题解析一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【考点】幂的乘方与积的乘方.【分析】根据积的乘方的性质进行计算,然后直接选取答案即可.【解答】解:(ab2)3=a3•(b2)3=a3b6.故选D.【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.2.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=3【考点】绝对值.【分析】根据绝对值的意义选择.【解答】解:A中|﹣3|=3,正确;B中﹣|3|=﹣3,正确;C中|﹣3|=|3|=3,正确;D中﹣|﹣3|=﹣3,不成立.故选D.【点评】本题考查绝对值的化简:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的三种形式求解.【解答】解:=3,=﹣2,无理数有:,,共2个.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°【考点】圆周角定理.【专题】压轴题.【分析】先根据邻补角的定义求出∠BOC,再利用圆周角定理求解.【解答】解:∵∠AOC=130°,∴∠BOC=180°﹣∠AOC=180°﹣130°=50°,∴∠D=×50°=25°.故选B.【点评】本题利用了圆周角定理和邻补角的概念求解.5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有1个正方形.故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.2015【考点】抛物线与x轴的交点.【分析】把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.【点评】本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.7.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.【考点】三角形的内切圆与内心;切线长定理.【专题】压轴题.【分析】首先根据切线的性质和切线长定理证得四边形OECD是正方形,那么AC+BC﹣AB即为2R(⊙O 的半径R)的值,由此可得到OD、CD的值,进而可在Rt△OBD中求出∠OBD的正切值.【解答】解:∵BC、AC、AB都是⊙O的切线,∴CD=CE、AE=AF、BF=BD,且OD⊥BC、OE⊥AC;易证得四边形OECD是矩形,由OE=OD可证得四边形OECD是正方形;设OD=OE=CD=R,则:AC+BC﹣AB=AE+R+BD+R﹣AF﹣BF=2R,即R=(AC+BC﹣AB)=1,∴BD=BC﹣CD=3﹣1=2;在Rt△OBD中,tan∠OBD==.故选C.【点评】此题考查的是三角形的外切圆,切线长定理以及锐角三角形函数的定义,难度适中.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.4【考点】平行四边形的性质;三角形中位线定理.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OC=OA,又由点E 是BC边的中点,根据三角形中位线的性质,即可求得AB的长.【解答】解:∵四边形ABCD是平行四边形,∴OC=OA,∵点E是BC边的中点,即BE=CE,∴OE=AB,∵OE=1,∴AB=2.故选B.【点评】此题考查了平行四边形的性质与三角形中位线的性质.注意平行四边形的对角线互相平分,三角形的中位线平行于三角形的第三边且等于第三边的一半.9.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.【考点】概率公式.【分析】让不含辣椒的盒饭数除以总盒饭数即为从中任选一盒,不含辣椒的概率.【解答】解:配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒,全部是80盒,不含辣椒的有70盒,所以从中任选一盒,不含辣椒的概率是=.故选A .【点评】本题比较容易,考查等可能条件下的概率.用到的知识点为:概率=所求情况数与总情况数之比.10.定义:如果一元二次方程ax 2+bx+c=0(a ≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax 2+bx+c=0(a ≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ) A .a=c B .a=b C .b=c D .a=b=c 【考点】根的判别式. 【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b 2﹣4ac=0,又a+b+c=0,即b=﹣a ﹣c ,代入b 2﹣4ac=0得(﹣a ﹣c )2﹣4ac=0,化简即可得到a 与c 的关系.【解答】解:∵一元二次方程ax 2+bx+c=0(a ≠0)有两个相等的实数根, ∴△=b 2﹣4ac=0,又a+b+c=0,即b=﹣a ﹣c ,代入b 2﹣4ac=0得(﹣a ﹣c )2﹣4ac=0,即(a+c )2﹣4ac=a 2+2ac+c 2﹣4ac=a 2﹣2ac+c 2=(a ﹣c )2=0, ∴a=c . 故选A【点评】一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根.11.如图,已知△ABC 中,∠ABC=90°,AB=BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是( )A.B. C. D.7【考点】勾股定理;全等三角形的性质;全等三角形的判定.【专题】计算题;压轴题.【分析】过A、C点作l3的垂线构造出直角三角形,根据三角形全等和勾股定理求出BC的长,再利用勾股定理即可求出.【解答】解:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得BC==,在Rt△ABC中,根据勾股定理,得AC=×=2;故选A.【点评】此题要作出平行线间的距离,构造直角三角形.运用全等三角形的判定和性质以及勾股定理进行计算.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③【考点】二次函数图象与系数的关系.【专题】计算题;压轴题.【分析】①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=(x﹣y)2.【考点】因式分解-运用公式法.【专题】计算题.【分析】根据完全平方公式直接解答即可.【解答】解:原式=(x﹣y)2.故答案为(x﹣y)2.【点评】本题考查了因式分解﹣﹣运用公式法,熟悉因式分解是解题的关键.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.【考点】特殊角的三角函数值;平行线的性质.【专题】探究型.【分析】先根据平行线的性质及直角三角板的特点求出∠2的度数,再根据特殊角的三角函数值进行解答即可.【解答】解:由三角板的特点可知,∠D=60°,∵AB∥CD,∴∠D=∠2=60°,∴cos∠2=cos60°=.故答案为:.【点评】本题考查的是直角三角板的特点及平行线的性质、特殊角的三角函数值,熟记特殊角的三角函数值是解答此题的关键.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为45°.【考点】线段垂直平分线的性质.【专题】计算题.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°(已知)∴∠ABC=∠ACB==75°∵DE垂直平分AC,∴AD=CD;∴∠A=∠ACD=30°,∴∠BCD=∠ACB﹣∠ACD,∴∠BCD=45°;故答案为:45°.【点评】本题主要考查了线段垂直平分线的性质以及等腰三角形的性质,难度一般.16.方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.【考点】解一元二次方程-配方法.【分析】首先把常数项2移项后,然后在左右两边同时加上一次项系数﹣2的一半的平方,然后开方即可求得答案.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+1=2,∴(x﹣1)2=2,∴x=1±,∴原方程的解为:x1=1+,x2=1﹣.故答案为:x1=1+,x2=1﹣.【点评】此题考查了配方法解一元二次方程.解题时注意配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是76.【考点】勾股定理;正方形的性质.【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:AB==10,∴正方形的面积是10×10=100,∵△AEB的面积是AE×BE=×6×8=24,∴阴影部分的面积是100﹣24=76,故答案是:76.【点评】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.【考点】规律型:数字的变化类.【分析】根据分数的分子是2n,分母是2n+3,进而得出答案即可.【解答】解:∵分数的分子分别是:2 2=4,23=8,24=16,…分数的分母分别是:2 2+3=7,23+3=11,24+3=19,…∴第n个数是.故答案为:.【点评】此题主要考查了数字变化规律,根据已知得出分子与分母的变化规律是解题关键.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.【考点】解二元一次方程组;解一元一次不等式组.【专题】计算题.【分析】(1)方程组利用加减消元法求出解即可;(2)求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)①+②得:4x=20,即x=5,把x=5代入①得:y=1,则方程组的解为;(2),由①得:x<﹣1,由②得:x≤2,则不等式组的解集为x<﹣1.【点评】此题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用二次根式性质化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣1﹣2×﹣+1=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2)易知选择音乐类的有4人,选择美术类的有3人.记选择音乐类的4人分别是A1,A2,A,小丁;选择美术类的3人分别是B1,B2,小李.可画出树状图如下:由树状图可知共有12种选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是或列表:由表可知共有12中选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是;(3)由(1)可知问卷中最喜欢体育运动的学生占40%,由样本估计总体得得500×40%=200名.所以该年级中最喜欢体育运动的学生约有200名.【点评】本题考查的是条形统计图和扇形统计图及用样本估计总体等知识的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)【考点】切线的判定;扇形面积的计算.【专题】几何综合题.【分析】(1)由已知可证得OC⊥CD,OC为圆的半径所以直线CD与⊙O相切;(2)根据已知可求得OC,CD的长,则利用S阴影=S△COD﹣S扇形OCB求得阴影部分的面积.【解答】解:(1)直线CD 与⊙O 相切, ∵在⊙O 中,∠COB=2∠CAB=2×30°=60°, 又∵OB=OC , ∴△OBC 是正三角形, ∴∠OCB=60°, 又∵∠BCD=30°, ∴∠OCD=60°+30°=90°, ∴OC ⊥CD , 又∵OC 是半径, ∴直线CD 与⊙O 相切.(2)由(1)得△OCD 是Rt △,∠COB=60°, ∵OC=1, ∴CD=,∴S △COD =OC •CD=,又∵S 扇形OCB =,∴S 阴影=S △COD ﹣S 扇形OCB =.【点评】此题主要考查学生对切线的性质及扇形的面积公式的理解及运用.23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B 处测得海丰塔最高点P 的仰角为45°,又前进了18米到达A 处,在A 处测得P 的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).【考点】解直角三角形的应用-仰角俯角问题.【分析】设海丰塔的高OP=x,在Rt△POB中表示出OB,在Rt△POA中表示出OA,再由AB=18米,可得出方程,解出即可得出答案.【解答】解:设海丰塔的高OP=x,在Rt△POB中,∠OBP=45°,则OB=OP=x,在Rt△POA中,∠OAP=60°,则OA==x,由题意得,AB=OB﹣OA=18m,即x﹣x=18,解得:x=27+9,故海丰塔的高度OP=27+9≈42米.答:海丰塔的高度约为42米.【点评】本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质;相似三角形的判定与性质.【专题】证明题.【分析】(1)利用两角对应相等可证出△ABE∽△ADF;(2)利用(1)的结论,先证出△ABG≌△ADH,得到AB=AD,那么平行四边形ABCD是菱形.【解答】证明:(1)∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90度.∵四边形ABCD是平行四边形,∴∠ABE=∠ADF.∴△ABE∽△ADF.(2)∵△ABE∽△ADF,∴∠BAG=∠DAH.∵AG=AH,∴∠AGH=∠AHG,从而∠AGB=∠AHD,∴△ABG≌△ADH,∴AB=AD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.【点评】本题利用了相似三角形的判定和性质,全等三角形的判定和性质以及菱形的判定.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.【考点】二次函数综合题.【分析】(1)易得点A、B的坐标,用交点式设出二次函数解析式,把D坐标代入即可.自变量的取值范围是点A、B之间的数.(2)先设出切线与x轴交于点E.利用直角三角形相应的三角函数求得EM的长,进而求得点E坐标,把C、E坐标代入一次函数解析式即可求得所求的解析式.(3)设出所求函数解析式,让它与二次函数组成方程组,消除y,让跟的判别式为0,即可求得一次函数的比例系数k.【解答】解:(1)如图,设经过点C“蛋圆”的切线CE交x轴于点E,连结CM,∴CM⊥CE,又∵A点坐标为(﹣2,0),B点坐标为(4,0),AB为半圆的直径,点M为圆心,∴M点的坐标为(1,0),∴AO=2,BO=4,OM=1.又因为CO⊥x轴,所以CO2=AO•OB,解得:CO=2,又∵CM⊥CE,CO⊥x轴,∴CO2=EO•OM,解之得:EO=8,∴E点的坐标是(﹣8,0),∴切线CE的解析式为:y=x+2;(2)根据题意可得:A(﹣2,0),B(4,0);则设抛物线的解析式为y=a(x+2)(x﹣4)(a≠0),又∵点D(0,﹣4)在抛物线上,∴a=;∴y=x2﹣x﹣4自变量取值范围:﹣2≤x≤4;(3)设过点D(0,﹣4),“蛋圆”切线的解析式为:y=kx﹣4(k≠0),由题意可知方程组只有一组解.即kx﹣4=x2﹣x﹣4有两个相等实根,∴k=﹣1,∴过点D“蛋圆”切线的解析式y=﹣x﹣4;【点评】本题以半圆与抛物线合成的封闭图形“蛋圆”为背景,考查一次函数、二次函数有关性质,解题过程中涉及解一元一次方程、一元二次方程、方程组相关知识与技能,是一道综合性很强的试题.。

2018年中考二模数学试卷及答案

2018年中考二模数学试卷及答案

EDCB A2018年初中毕业生学业模拟考试数 学 试 卷说明:本试卷共 4页,25小题,满分 120 分.考试用时100 分钟. 注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,再用2B 铅笔把试室号、座位号的对应数字涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、相信你,都能选择对!四个选项中只有一个是正确的.(本大题10小题,每题3分,共30分) 1.﹣4的绝对值是( )A .4B .﹣4C .41 D .41 2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( ) A .44×108 B .4.4×109 C .4.4×108D .4.4×10103.一组数据从小到大排列为2,3,4,x ,6,9.这组数据的中位数是5,那么这组数据的众数为( ) A .4B .5C .5.5D .64.下列四边形中,是中心对称而不是轴对称图形的是( ) A .平行四边形 B .矩形 C .菱形 D .正方形 5.如图,能判定EB ∥AC 的条件是( ) A .∠A=∠ABE B .∠A=∠EBDC .∠C=∠ABCD .∠C=∠ABE 6.下列计算正确的是( )A .a 2+a 2=a 4B .(﹣a )2﹣a 2=0C .a 8÷a 2=a 4D .a 2•a 3=a 6 7.一元二次方程x 2﹣2x+p=0总有实数根,则p 应满足的条件是( ) A .p >1 B . p =1 C .p <1 D .p ≤18.如图,沿AC 方向修隧道,为了加快施工进度,要在小山的另一边同时施工,从AC 上的一点B 取∠ABD=145°,BD=500米,∠D=55°,使A 、C 、E 在一条直线上,那么开挖点E 与D 的距离是( ) A .500sin55°米 B .500cos35°米 C .500cos55°米 D .500tan55°9.如图,在Rt △ABC 中,∠C=90°,∠ABC=60°,AB 的垂直平分线分别交AB 与AC 于点D 和点E ,若CE=2,则AB 的长是( ) A .4B .43C .8D .83P OFEDCBACC10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AC=6,BD=8.动点E 从点B 出发,沿着 B ﹣A ﹣D 在菱形ABCD 的边上运动,运动到点D 停止.点F 是点E 关于BD 的对称点,EF 交 BD 于点P ,若BP=x ,△OEF 的面积为y ,则y 与x 之间的函数图象大致为( )A .B .C .D .二.填空题(本大题6小题,每小题4分,共24分) 11.比较大小:(填“>”或“<”)12.一个多边形的每个外角都是60°,则这个多边形边数为 . 13.若|x +2|+5-y =0,则xy 的值为 .14.分式方程aa 134=-的根是 . 15.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是 . 16.把边长为1的正方形ABCD 绕点A 逆时针旋转45°得到正方形AB′C′D′, 边B′C′与DC 交于点O ,则四边形AB′OD 的周长为 . 三.解答题(一)(本大题3小题,每题6分,共18分) 17.(本题满分6分)计算:()332160tan 3101++-︒-⎪⎭⎫⎝⎛-.18.(本题满分6分)先化简,再求值: ⎪⎭⎫ ⎝⎛--÷+-+x x x x x x 1121222,其中x=3.19.(本题满分6分)在平行四边形ABCD 中,AB=2AD . (1)作AE 平分∠BAD 交DC 于E (2)在(1)的条件下,连接BE ,判定△ABE 的形状 (不要求证明).20.(本题满分7分)中秋佳节我国有赏月和吃月饼的传统,英才学校数学兴趣小组为了了解本校学生喜爱月饼的情况,随机抽取了60名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图.(注:参与问卷调查的每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”的部分所对应的圆心角为度;条形统计图中,“很喜欢”月饼中喜欢“豆沙”月饼的学生有人;(2)若该校共有学生1200人,请根据上述调查结果,估计该校学生中“很喜欢”月饼的有人.(3)李民同学最爱吃莲蓉月饼,陈丽同学最爱吃豆沙月饼,现有重量、包装完全一样的豆沙、莲蓉、蛋黄三种月饼各一个,让李民、陈丽每人各选一个,则李民、陈丽两人都选中自己最爱吃的月饼的概率为.21.(本题满分7分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F.(1)证明:△ADF≌△AB′E;(2)若AD=12,DC=18,求△AEF的面积.22.(本题满分7分)飞马汽车销售公司3月份销售新上市一种新型低能耗汽车8辆,由于该型汽车的优越的经济适用性,销量快速上升,5月份该公司销售该型汽车达18辆.(1)求该公司销售该型汽车4月份和5月份的平均增长率;(2)该型汽车每辆的进价为9万元,该公司的该型车售价为9.8万元/辆.且销售m辆汽车,汽车厂返利销售公司0.04m万元/辆.若使6月份每辆车盈利不低于1.7万元,那么该公司6月份至少需要销售该型汽车多少辆?(盈利=销售利润+返利)E23.(本题满分9分)如图,在平面直角坐标系中,一次函数的图象y 1=kx +b 与反比例函数xny =2的图象交于点A (1,5)和点B (m ,1). (1)求m 的值和反比例函数的解析式; (2)当x >0时,根据图象直接写出不等式xn≥kx +b 的解集; (3)若经过点B 的抛物线的顶点为A ,求该抛物线的解析式.24.(本题满分9分)如图,四边形ABCD 内接于⊙O ,AB=AD ,对角线BD 为⊙O 的直径,AC 与BD 交于点E .点F 为CD 延长线上,且DF=BC . (1)证明:AC=AF ;(2)若AD=2,AF=13+,求AE 的长;(3)若EG ∥CF 交AF 于点G ,连接DG.证明:DG 为⊙O25.(本题满分9分)如图,在矩形ABCD 中,AB=5,AD=4,E 为AD 边上一动点(不与点A 重合), AF ⊥BE ,垂足为F ,GF ⊥CF ,交AB 于点G ,连接EG .设AE=x ,S △BE G =y . (1)证明:△AFG ∽△BFC ;(2)求y 与x 的函数关系式,并求出y 的最大值; (3)若△BFC 为等腰三角形,请直接写出x 的值.2018年初中毕业生学业模拟考试数学参考答案一.选择题(本大题10小题,每题3分,共30分)1.A 2.B 3.D 4.A 5.A 6.B 7.D 8.C 9.B 10.D 二.填空题(本大题6小题,每小题4分,共24分)11.<. 12.6. 13.-10. 14.1-=a . 15.2. 16.. 三.解答题(一)(本大题3小题,每题6分,共18分) 17.解:原式=3-3-1+3 4分 =2. 6分 18.解:原式=()()()11112+-⨯-+x x x x x x 4分=12-x x . 5分当x=3时,原式=291332=-. 19.解:(1)如图,AE 为所求; 3分 (2)△ABE 为直角三角形. 6分四.解答题(二)(本大题3小题,每小题7分,共21分) 20.解:(1)126°, 1分4; 2分 (2)420; 4分 (3)61. 7分 21.(1)证明:∵四边形ABCD 是矩形,∴∠D=∠C=∠B′=90°,AD=CB=AB′, 1分 ∵∠DAF +∠EAF=90°,∠B′AE +∠EAF=90°,∴∠DAF=∠B′AE , 2分 在△ADF 和△AB′E 中,∴△ADF ≌△AB′E . 3分(2)解:由折叠性质得FA=FC ,设FA=FC=x ,则DF=DC -FC=18-x , 4分在Rt △ADF 中,AD 2+DF 2=AF 2, 5分∴()2221812x x =-+.解得13=x . 6分∵△ADF ≌△AB′E ,(已证) ∴AE=AF=13. ∴S △AEF =AD AE ⋅⋅21=131221⨯⨯=78. 7分 22.解:(1)设该公司销售该型汽车4月份和5月份的平均增长率为x , 1分 根据题意列方程:8(1+x )2=18, 3分 解得x 1=﹣250%(不合题意,舍去),x 2=50%.答:该公司销售该型汽车4月份和5月份的平均增长率为50%. 4分 (2)由题意得:0.04m +(9.8﹣9)≥1.7, 5分 解得:m ≥22.5, 6分 ∵m 为整数,∴该公司6月份至少需要销售该型汽车23辆, 7分 答:该公司6月份至少需要销售该型汽车23辆.五.解答题(三)(本大题3小题,每小题9分,共27分) 23.解:(1)∵反比例函数xny =2的图象交于点A (1,5), ∴5=n ,即n=5,∴, 1分∵点B (m ,1)在双曲线上.∴1=, ∴m=5, ∴B (5,1); 2分(2)不等式xn≥kx +b 的解集为0<x ≤1或x ≥5; 6分 (3)∵抛物线的顶点为A (1,5),∴设抛物线的解析式为()512+-=x a y , 8分∵抛物线经过B (5,1),∴()51512+-=a ,解得41-=a . ∴()51412+--=x y . 9分F24.(1)证明:∵四边形ABCD 内接于⊙O ,∴∠ABC+∠ADC=180°. ∵∠ADF+∠ADC=180°,∴∠ABC=∠ADF . 1分在△ABC 与△ADF 中,⎪⎩⎪⎨⎧=∠=∠=DF BC ADF ABC ADAB , 2分∴△ABC ≌△ADF .∴AC=AF ; 3分 (2)解:由(1)得,AC=AF=13+. 4分 ∵AB=AD , ∴⌒⌒AD AB =.∴∠ADE=∠ACD . ∵∠DAE=∠CAD ,∴△ADE ∽△ACD . 5分 ∴ADAEAC AD =. ∴()232213413222-=-=+==AC AD AE . 6分(3)证明:∵EG ∥CF ,∴1==ACAFAE AG . ∴AG=AE . 由(2)得AD AE AC AD =,∴ADAGAF AD =. ∵∠DAG=∠FAD ,∴△ADG ∽△AFD . 7分 ∴∠ADG=∠F .∵AC=AF ,∴∠ACD=∠F . 又∵∠ACD=∠ABD ,∴∠ADG=∠ABD . 8分 ∵BD 为⊙O 的直径, ∴∠BAD=90°.∴∠ABD+∠BDA=90°.∴∠ADG+∠BDA=90°. ∴GD ⊥BD .∴DG 为⊙O 的切线. 9分E 25.(1)证明:在矩形ABCD 中,∠ABC=90°. ∴∠ABF+∠FBC=90°. ∵AF ⊥BE , ∴∠AFB=90°. ∴∠ABF+∠GAF=90°.∴∠GAF=∠FBC . 1分 ∵FG ⊥FC , ∴∠GFC=90°. ∴∠ABF=∠GFC .∴∠ABF-∠GFB =∠GFC-∠GFB . 即∠AFG=∠CFB . 2分 ∴△AFG ∽△BFC ; 3分 (2)解:由(1)得△AFG ∽△BFC , ∴BFAFBC AG =. 在Rt △ABF 中,tan ∠ADF=BF AF, 在Rt △EAB 中,tan ∠EBA=ABEA,∴AB EA BF AF =. ∴ABEA BC AG =. ∵BC=AD=4,AB=5,∴54xAB BC EA AG =⋅=. 4分 ∴BG=AB-AG=5-x 54.∴32125825522552545212122+⎪⎭⎫ ⎝⎛--=+-=⎪⎭⎫ ⎝⎛-=⋅=x x x x x AE BG y . 5分 ∴y 的最大值为32125; 6分 (3)x 的值为25,825或415. 9分。

2018年江苏省盐城市中考数学试卷及答案

2018年江苏省盐城市中考数学试卷及答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前江苏省盐城市2018年初中学业水平考试数学 ...................................................................... 1 江苏省盐城市2018年初中学业水平考试数学答案解析 (5)江苏省盐城市2018年初中学业水平考试数学(满分:150分,考试时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2018-的相反数是( ) A .2018 B .2018-C .12018D .12018-2.下列图形中,既是轴对称图形又是中心对称图形的是( )AB C D 3.下列运算正确的是( ) A .224a a a += B .33a a a ÷=C .235a a a ⋅=D .246a a =()4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146 000米,将数据146 000用科学记数法表示为( )A .51.4610⨯ B .60.14610⨯ C .61.4610⨯D .314610⨯5.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是( )ABCD6.一组数据2,4,6,4,8的中位数为( )A .2B .4C .6D .8(第5题)(第7题)7.如图,AB 为O 的直径,CD 是O 的弦,35ADC ∠=︒,则CAB ∠的度数为( ) A .35︒B .45︒C .55︒D .65︒ 8.已知一元二次方程230x kx +-=有一个根为1,则k 的值为( ) A .2-B .2C .4-D .4二、填空题(本大题共8小题,毎小题3分,共24分.不需写出解答过程)9.根据如图所示的车票信息,车票的价格为 元. 10.要使分式12x -有意义,则x 的取值范围是 . 11.分解因式:221x x -+= .12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为 .13.将一个含有45︒角的直角三角板摆放在矩形上,如图所示,若140∠=︒,则2∠= ︒.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)(第9题)(第12题)(第13题)14.如图,点D 为矩形OABC 的AB 边的中点,反比例函数()0ky x x=>的图象经过点D ,交BC 边于点E .若BDE △的面积为1,则k = .(第14题)(第15题)(第16题)15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径 2 cm OA =,120AOB ∠=︒.则右图的周长为 cm (结果保留π).16如图,在直角ABC △中,90C ∠=︒,6AC =,8BC =,P 、Q 分别为边BC 、AB 上的两个动点,若要使APQ △是等腰三角形且BPQ △是直角三角形,则AQ = . 三、解答题(本大题共11小题,共102分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本题满分6分)计算:11π2-⎛⎫-+ ⎪⎝⎭18.(本题满分6分)解不等式:()3121x x -≥-,并把它的解集在数轴上表示出来.19.(本题满分8分)先化简,再求值:21111x x x ⎛⎫-÷ ⎪+-⎝⎭,其中1x .20.(本题满分8分)端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.(本题满分8分)在正方形ABCD 中,对角线BD 所在的直线上有两点E 、F 满足BE DF =,连接AE 、AF 、CE 、CF ,如图所示.(1)求证:ABE ADF ≌△△;(2)试判断四边形AECF 的形状,并说明理由.数学试卷 第5页(共18页) 数学试卷 第6页(共18页)22.(本题满分10分)“安全教育平台”是中国教育学会为方便家长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形: A .仅学生自己参与; B .家长和学生一起参与; C .仅家长自己参与;D .家长和学生都未参与.各类情况条形统计图各类情况扇形统计图请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了 名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2 000名学生中“家长和学生都未参与”的人数.23.(本题满分10分)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件. (1)若降价3元,则平均每天销售数量为 件;(2)当每件商品降价多少元时,该商店每天销售利润为1 200元?24.(本题满分10分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y (米)与时间t (分钟)之间的函数关系如图所示.(1)根据图象信息,当t = 分钟时甲乙两人相遇,甲的速度为 米/分钟; (2)求出线段AB 所表示的函数表达式.25.(本题满分10分)如图,在以线段AB 为直径的O 上取一点C ,连接AC 、BC .将ABC △沿AB 翻折后得到ABD △.(1)试说明点D 在⊙O 上;(2)在线段AD 的延长线上取一点E ,使2 AB AC AE =⋅.求证:BE 为O 的切线; (3)在(2)的条件下,分别延长线段AE 、CB 相交于点F ,若2BC =,4AC =,求线段-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________。

2018年江苏省盐城市中考数学试卷含答案(Word版)

2018年江苏省盐城市中考数学试卷含答案(Word版)

2018年江苏省盐城市中考数学试卷含答案(Word版)D.4二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.根据如图所示的车票信息,车票的价格为元.10.要使分式1有意义,则x的取值范围2x-是.11.分解因式:221-+=.x x12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为.13.将一个含有45角的直角三角板摆放在矩形上,如图所示,若140∠=,则2∠=.14.如图,点D 为矩形OABC 的AB 边的中点,反比例函数(0)k y x x=>的图象经过点D ,交BC 边于点E .若BDE ∆的面积为1,则k = 。

15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径2OA cm =,120AOB ∠=.则右图的周长为 cm (结果保留π).16.如图,在直角ABC ∆中,90C ∠=,6AC =,8BC =,P 、Q 分别为边BC 、AB 上的两个动点,若要使APQ ∆是等腰三角形且BPQ ∆是直角三角形,则AQ = .三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)17.计算:011()2π--+18.解不等式:312(1)x x -≥-,并把它的解集在数轴上表示出来.19.先化简,再求值:21(1)11x x x -÷+-,其中21x =+.20.端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.在正方形ABCD 中,对角线BD 所在的直线上有两点E 、F 满足BE DF =,连接AE 、AF 、CE 、CF ,如图所示.(1)求证:ABE ADF∆≅∆;(2)试判断四边形AECF的形状,并说明理由.22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A. 仅学生自己参与;B. 家长和学生一起参与;C. 仅家长自己参与;D. 家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了_______名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为_______件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=_______分钟时甲乙两人相遇,甲的速度为_______米/分钟;(2)求出线段AB所表示的函数表达式.25.如图,在以线段AB为直径的O上取一点,连接AC、BC.将ABC∆沿AB翻折后得到ABD∆.(1)试说明点D在O上;(2)在线段AD的延长线上取一点E,使2AB AC AE=⋅.求证:BE为O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若2AC=,求线段EF的长.BC=,426.【发现】如图①,已知等边ABC∆,将直角三角形的60角顶点D任意放在BC边上(点D不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若6AB=,4BD=,则CF=_______;AE=,2(2)求证:EBD DCF∆∆.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与AB、AC的两个交点E、F都存在,连接EF,如图②所示.问点D是否存在某一位置,使ED平分BEF∠?若存在,求∠且FD平分CFE的值;若不存在,请说明理由.出BDBC【探索】如图③,在等腰ABC=,点O为∆中,AB ACBC边的中点,将三角形透明纸板的一个顶点放在点O处(其中MON B∠=∠),使两条边分别交边AB、AC于点E、F(点E、F均不与ABC∆的顶点重合),连接EF.设Bα∆的周长之比为∠=,则AEF∆与ABC________(用含α的表达式表示).27.如图①,在平面直角坐标系xOy 中,抛物线23y ax bx =++经过点(1,0)A -、(3,0)B 两点,且与y 轴交于点C .(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x 轴,并沿x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于P 、Q 两点(点P 在点Q 的左侧),连接PQ ,在线段PQ 上方抛物线上有一动点D ,连接DP 、DQ .(Ⅰ)若点P 的横坐标为12-,求DPQ ∆面积的最大值,并求此时点D 的坐标;(Ⅱ)直尺在平移过程中,DPQ ∆面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.参考答案1-8、ADCAB BCB9、77.5 10、 11、 12、 13、14、4 15、16、 17、18、19、20、21、22、23、24、25、26、27、。

江苏省盐城市2018年中考数学试题(解析版)

江苏省盐城市2018年中考数学试题(解析版)

江苏省盐城市2018年中考数学试卷含答案【精品】一、选择题1. -2018的相反数是()A. 2018B. -2018C.D.【答案】A【解析】分析:根据相反数的意义,可得答案.详解:2018的相反数是-2018,故选:B.点睛:本题考查了有理数的相反数,在一个数的前面加上负号就是这个数的相反数.2. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】D【解析】分析:轴对称图形:沿着一条线折叠能够完全重合的图形;中心对称图形:绕着某一点旋转180°能够与自身重合的图形;根据定义逐个判断即可.详解:A、既不是轴对称图形,也不是中心对称图形,故A不符合题意;B、是轴对称图形,但不是中心对称图形,故B不符合题意;C、是轴对称图形,但不是中心对称图形,故C不符合题意;D、是轴对称图形,也是中心对称图形,故D符合题意;故选:D.点睛:本题考查了中心对称图形的定义:一个图形若绕某一点旋转180度后仍然和原来的图形重合,那么这个图形就是中心对称图形.也考查了轴对称图形的定义.3. 下列运算正确的是()A. B. C. D.【答案】C【解析】分析:根据合并同类项法则、同底数幂的乘除法则进行计算即可.详解:A、,故A不符合题意;B、,故B不符合题意;C.,故C符合题意;D.,故D不符合题意;故选:C点睛:本题考查合并同类项、同底数幂的乘除法以及幂的乘方运算,解答本题的关键是熟悉并灵活运用各法则进行计算.4. 盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A. B. C. D.【答案】A学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...详解:将146000用科学记数法表示为:1.46×105.故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5. 如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A. B. C. D.【答案】B【解析】分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.详解:从左面看易得第一层有2个正方形,第二层有1个正方形,如图所示:.故选:B.点睛:本题考查了三视图的知识,左视图是从物体的左面看得到的图形.6. 一组数据2,4,6,4,8的中位数为()A. 2B. 4C. 6D. 8【答案】B【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.详解:一共5个数据,从小到大排列此数据为:2,4,4,6,8,故这组数据的中位数是4.故选:B.点睛:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7. 如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A. 35°B. 45°C. 55°D. 65°【答案】C【解析】分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得.详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故选C.点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.8. 已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A. -2B. 2C. -4D. 4【答案】B【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选:B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.二、填空题9. 根据如图所示的车票信息,车票的价格为________元.【答案】77.5【解析】分析:根据图片得出价格即可.详解:根据如图所示的车票信息,车票的价格为77.5元,故答案为:77.5.点睛:本题考查了数字表示事件,能正确读出信息是解此题的关键,培养了学生的观察图形的能力.10. 要使分式有意义,则x的取值范围是________.【答案】x≠2【解析】分析:根据分式有意义,分母不等于0列式计算即可得解.详解:由题意得,x−2≠0,解得x≠2.故答案为:x≠2.点睛:此题考查了分式有意义的条件:分式有意义的条件是分母不等于0,分式无意义的条件是分母等于0.11. 分解因式:x2-2x+1=________.【答案】(x-1)2【解析】试题解析:x2-2x+1=(x-1)2.考点:因式分解-运用公式法.12. 一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.【答案】【解析】分析:首先确定阴影的面积在整个面积中占的比例,根据这个比例即可求出蚂蚁停在阴影部分的概率.详解:∵正方形被等分成9份,其中阴影方格占4份,∴当蚂蚁停下时,停在地板中阴影部分的概率为,故答案为:.点睛:此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.13. 将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=________.【答案】85°【解析】分析:直接利用三角形外角的性质结合平行线的性质得出答案.详解:如图,∵∠1=40°,∠4=45°,∴∠3=∠1+∠4=85°,∵矩形对边平行,∴∠2=∠3=85°.故答案为:85°.点睛:此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.14. 如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若△BDE的面积为1,则k =________【答案】4【解析】分析:设D(a,),利用点D为矩形OABC的AB边的中点得到B(2a,),则E(2a,),然后利用三角形面积公式得到•a•(-)=1,最后解方程即可.详解:设D(a,),∵点D为矩形OABC的AB边的中点,∴B(2a,),∴E(2a,),∵△BDE的面积为1,∴•a•(-)=1,解得k=4.故答案为4.点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k的取值.15. 如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径OA=2cm,∠AOB=120°.则右图的周长为________cm(结果保留π).【答案】【解析】分析:先根据图1确定:图2的周长=2个的长,根据弧长公式可得结论.详解:由图1得:的长+的长=的长,∵半径OA=2cm,∠AOB=120°则图2的周长为:.故答案为:.点睛:本题考查了弧长公式的计算,根据图形特点确定各弧之间的关系是本题的关键.16. 如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ 是等腰三角形且△BPQ是直角三角形,则AQ =________.【答案】或【解析】分析:分两种情形分别求解:①如图1中,当AQ=PQ,∠QPB=90°时,②当AQ=PQ,∠PQB=90°时;详解:①如图1中,当AQ=PQ,∠QPB=90°时,设AQ=PQ=x,∵PQ∥AC,∴△BPQ∽△BCA,∴,∴,∴x=,∴AQ=.②当AQ=PQ,∠PQB=90°时,如图2,设AQ=PQ=y.∵△BQP∽△BCA,∴,∴,∴y=.综上所述,满足条件的AQ的值为或.点睛:本题考查勾股定理、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.三、解答题17. 计算:【答案】0【解析】分析:先分别计算0次幂、负整数指数幂和立方根,然后再进行加减运算即可.详解:原式=1-2+2=0点睛:任何非零数的0次幂结果为1;负整数次幂法则:(a≠0,p为正整数).18. 解不等式:3x-1≥2(x-1),并把它的解集在数轴上表示出来.【答案】x≥-1,在数轴上表示见解析.【解析】分析:不等式去括号,移项合并,将x系数化为1,求出解集,表示在数轴上即可.详解:3x-1≥2(x-1),3x-1≥2x-2,3x-2x≥-2+1,x≥-1;将不等式的解集表示在数轴上如下:点睛:此题考查了解一元一次不等式,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解集.19. 先化简,再求值:,其中.【答案】原式=x-1=【解析】分析:先把括号内通分和除法运算化为乘法运算,再约分得到原式=x-1,然后再把x的值代入x-1计算即可.详解:原式===x-1;当x=时,原式=-1=.点睛:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.20. 端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.【答案】(1)树状图见解析;(2)【解析】分析:(1)根据题意可以用树状图表示出所有的可能结果;(2)根据(1)中的树状图可以得到小悦拿到的两个粽子都是肉馅的概率.点睛:本题考查列表法与树状图法,解答本题的关键是明确题意,列出相应的树状图,求出相应的概率.21. 在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.【答案】(1)证明见解析;(2)四边形AECF是菱形,理由见解析.【解析】分析:(1)根据正方形的性质和全等三角形的判定证明即可;(2)四边形AECF是菱形,根据对角线垂直的平行四边形是菱形即可判断;详证明:(1)∵四边形ABCD是正方形,∴AB=AD,∴∠ABD=∠ADB,∴∠ABE=∠ADF,在△ABE与△ADF中,∴△ABE≌△ADF.(2)如图,连接AC,四边形AECF是菱形.理由:在正方形ABCD中,OA=OC,OB=OD,AC⊥EF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.点睛:本题考查正方形的性质、全等三角形的判定和性质、菱形的判定等知识,解题的关键是熟练掌握基本知识.22. “安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与;D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.【答案】(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A类别人数及其所占百分比可得总人数;(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人;(2)B类别人数为400-(80+60+20)=240,补全条形图如下:C类所对应扇形的圆心角的度数为360°×=54°;(3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×=100人.点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.23. 一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?【答案】(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.【解析】分析:(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价3元,则平均每天可多售出2×3=6件,即平均每天销售数量为20+6=26件;(2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可.详解:(1)若降价3元,则平均每天销售数量为20+2×3=26件.(2)设每件商品应降价x元时,该商店每天销售利润为1200元.根据题意,得(40-x)(20+2x)=1200,整理,得x2-30x+200=0,解得:x1=10,x2=20.∵要求每件盈利不少于25元,∴x2=20应舍去,∴x=10.答:每件商品应降价10元时,该商店每天销售利润为1200元.点睛:此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.24. 学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=________分钟时甲乙两人相遇,甲的速度为________米/分钟;(2)求出线段AB所表示的函数表达式.【答案】(1)24;40;(2)线段AB的表达式为:y=40t(40≤t≤60)【解析】分析:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲60分钟行驶2400米,根据速度=路程÷时间可得甲的速度;(2)由t=24分钟时甲乙两人相遇,可得甲、乙两人的速度和为2400÷24=100米/分钟,减去甲的速度得出乙的速度,再求出乙从图书馆回学校的时间即A点的横坐标,用A点的横坐标乘以甲的速度得出A点的纵坐标,再将A、B两点的坐标代入,利用待定系数法即可求出线段AB所表示的函数表达式.详解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40米/分钟.(2)∵甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,t=24分钟时甲乙两人相遇,∴甲、乙两人的速度和为2400÷24=100米/分钟,∴乙的速度为100-40=60米/分钟.乙从图书馆回学校的时间为2400÷60=40分钟,40×40=1600,∴A点的坐标为(40,1600).设线段AB所表示的函数表达式为y=kt+b,∵A(40,1600),B(60,2400),∴,解得,∴线段AB所表示的函数表达式为y=40t(40≤t≤60).点睛:本题考查了一次函数的应用,路程、速度、时间的关系,用待定系数法确定函数的解析式,属于中考常考题型.读懂题目信息,从图象中获取有关信息是解题的关键.25. 如图,在以线段AB为直径的⊙O上取一点,连接AC、BC.将△ABC沿AB翻折后得到△ABD.(1)试说明点D在⊙O上;(2)在线段AD的延长线上取一点E,使AB2=AC·AE.求证:BE为⊙O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.【答案】(1)证明见解析;(2)证明见解析;(3)EF=【解析】分析:(1)由翻折知△ABC≌△ABD,得∠ADB=∠C=90°,据此即可得;(2)由AB=AD知AB2=AD•AE,即,据此可得△ABD∽△AEB,即可得出∠ABE=∠ADB=90°,从而得证;(3)由知DE=1、BE=,证△FBE∽△FAB得,据此知FB=2FE,在Rt△ACF中根据AF2=AC2+CF2可得关于EF的一元二次方程,解之可得.详解:(1)∵AB为⊙O的直径,∴∠C=90°,∵将△ABC沿AB翻折后得到△ABD,∴△ABC≌△ABD,∴∠ADB=∠C=90°,∴点D在以AB为直径的⊙O上;(2)∵△ABC≌△ABD,∴AC=AD,∵AB2=AC•AE,∴AB2=AD•AE,即,∵∠BAD=∠EAB,∴△ABD∽△AEB,∴∠ABE=∠ADB=90°,∵AB为⊙O的直径,∴BE是⊙O的切线;(3)∵AD=AC=4、BD=BC=2,∠ADB=90°,∴AB=,∵,∴,解得:DE=1,∴BE=,∵四边形ACBD内接于⊙O,∴∠FBD=∠FAC,即∠FBE+∠DBE=∠BAE+∠BAC,又∵∠DBE+∠ABD=∠BAE+∠ABD=90°,∴∠DBE=∠BAE,∴∠FBE=∠BAC,又∠BAC=∠BAD,∴∠FBE=∠BAD,∴△FBE∽△FAB,∴,即,∴FB=2FE,在Rt△ACF中,∵AF2=AC2+CF2,∴(5+EF)2=42+(2+2EF)2,整理,得:3EF2-2EF-5=0,解得:EF=-1(舍)或EF=,∴EF=.点睛:本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、翻折的性质、圆内接四边形的性质及相似三角形的判定与性质、勾股定理等知识点.26. (1)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D不与点B、C 重合),使两边分别交线段AB、AC于点E、F.①若AB=6,AE=4,BD=2,则CF =________;②求证:△EBD∽△DCF.(2)【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示.问点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.(3)【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为________(用含α的表达式表示).【答案】(1)①4;②证明见解析;(2)存在;(3)1-cosα.【解析】分析:(1)①先求出BE的长度后发现BE=BD,又∠B=60°,可知△BDE是等边三角形,可得∠BDE=60°,另外∠EDF=60°,可证得△CDF是等边三角形,从而CF=CD=BC-BD;②证明△EBD∽△DCF,这个模型可称为“一线三等角相似模型”,根据“AA”判定相似;(2)【思考】由平分线可联系到角平分线的性质“角平分线上的点到角两边的距离相等”,可过D作DM⊥BE,DG⊥EF,DN⊥CF,则DM=DG=DN,从而通过证明△BDM≅△CDN可得BD=CD;(3)【探索】由已知不难求得C△ABC=AB+BC+CA=2AB+2OB=2(m+mcosα),则需要用m和α的三角函数表示出C△AEF,C△AEF=AE+EF+AF;题中直接已知O是BC的中点,应用(2)题的方法和结论,作OG⊥BE,OD⊥EF,OH⊥CF,可得EG=ED,FH=DF,则C△AEF=AE+EF+AF= AG+AH=2AG,而AG=AB-OB,从而可求得.详解:(1)①∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°,∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BDE=60°,又∵∠EDF=60°,∴∠CDF=180°-∠EDF-∠B=60°,则∠CDF =∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC-BD=6-2=4;②证明:∵∠EDF=60°,∠B=60°∴∠CDF+∠BDE=120°,∠BED+∠BDE=120°,∴∠BED=∠CDF,又∵∠B=∠C,∴△EBD∽△DCF(2)存在.如图,作DM⊥BE,DG⊥EF,DN⊥CF,垂足分别为M,G,N,∵ED平分∠BEF且FD平分∠CFE,∴DM=DG=DN,又∵∠B=∠C=60°,∠BMD=∠CND=90°,∴△BDM≅△CDN,∴BD=CD,即点D是BC的中点,∴;( 3 )连结AO,作OG⊥BE,OD⊥EF,OH⊥CF,垂足分别为G,D,H,则∠BGO=∠CHO=90°,∵AB=AC,O是BC的中点∴∠B=∠C,OB=OC,∴△OBG≅△OCH,∴OG=OH,GB=CH,∠BOG=∠COH=90°−α,则∠GOH=180°-(∠BOG+∠COH)=2α,∵∠EOF=∠B=α,则∠GOH=2∠EOF=2α,由(2)题可猜想应用EF=ED+DF=EG+FH,则C△AEF=AE+EF+AF=AE+EG+FH+AF=AG+AH=2AG,设AB=m,则OB=mcosα,GB=mcos2α,.点睛:本题考查了角平分线的定义,等边三角形的性质,全等三角形以及相似三角形的判定和性质等知识点.难度较大.27. 如图①,在平面直角坐标系xOy 中,抛物线y=ax2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、 Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.①若点P的横坐标为,求△DPQ面积的最大值,并求此时点D 的坐标;②直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.【答案】(1)抛物线y=-x2+2x+3;(2)①点D();②△PQD面积的最大值为8【解析】分析:(1)根据点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I)由点P的横坐标可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,过点D作DE∥y轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+6x+,再利用二次函数的性质即可解决最值问题;(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,进而可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-2(t+1)x+t2+4t+3),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+4(t+2)x-2t2-8t,再利用二次函数的性质即可解决最值问题.详解:(1)将A(-1,0)、B(3,0)代入y=ax2+bx+3,得:,解得:,∴抛物线的表达式为y=-x2+2x+3.(2)(I)当点P的横坐标为-时,点Q的横坐标为,∴此时点P的坐标为(-,),点Q的坐标为(,-).设直线PQ的表达式为y=mx+n,将P(-,)、Q(,-)代入y=mx+n,得:,解得:,∴直线PQ的表达式为y=-x+.如图②,过点D作DE∥y轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+),∴DE=-x2+2x+3-(-x+)=-x2+3x+,∴S△DPQ=DE•(x Q-x P)=-2x2+6x+=-2(x-)2+8.∵-2<0,∴当x=时,△DPQ的面积取最大值,最大值为8,此时点D的坐标为(,).(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,∴点P的坐标为(t,-t2+2t+3),点Q的坐标为(4+t,-(4+t)2+2(4+t)+3),利用待定系数法易知,直线PQ的表达式为y=-2(t+1)x+t2+4t+3.设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-2(t+1)x+t2+4t+3),∴DE=-x2+2x+3-[-2(t+1)x+t2+4t+3]=-x2+2(t+2)x-t2-4t,∴S△DPQ=DE•(x Q-x P)=-2x2+4(t+2)x-2t2-8t=-2[x-(t+2)]2+8.∵-2<0,∴当x=t+2时,△DPQ的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ面积有最大值,面积的最大值为8.点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I)利用三角形的面积公式找出S△DPQ=-2x2+6x+;(II)利用三角形的面积公式找出S△DPQ=-2x2+4(t+2)x-2t2-8t.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年江苏省盐城市射阳县中考数学二模试卷一、选择题(共8小题,每题3分,共24分)1.(3分)下列各数中比1大的数是()A.B.0 C.﹣1 D.22.(3分)下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.3.(3分)下列四个图形中,是三棱柱的平面展开图的是()A.B.C.D.4.(3分)下列调查中,最适合采用全面调查(普查)方式的是()A.对江苏省初中学生每天阅读时间的调查B.对某校九年级3班学生身高情况的调查C.对中山河水质污染情况的调查D.对端午节期间市场上粽子质量情况的调查5.(3分)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是()A.B.C.D.6.(3分)如图,平行四边形ABCD中,点E是边DC的一个三等分点(DE<CE),AE 交对角线BD于点F,则S△DEF:S△ABF等于()A.1:3 B.3:1 C.1:9 D.9:17.(3分)计算=()A.B.C.D.8.(3分)已知△ABC,利用尺规作图,作BC边上的高AD,正确的是()A.B.C.D.二、填空题(共8小题,每题3分,共24分)9.(3分)若分式有意义,则实数x的取值范围是.10.(3分)一组数据﹣3,﹣1,0,3,10的极差是.11.(3分)若m、n互为倒数,则mn2﹣(n﹣3)的值为.12.(3分)已知,则2018+x+y= .13.(3分)如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=120°,则∠AOE= .14.(3分)如图,Rt△ABC的斜边AB=8,Rt△ABC绕点O顺时针旋转后得到Rt△A′B′C′,则Rt△A′B′C′的斜边A′B′上的中线C′D′的长度为.15.(3分)如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC 的面积为.16.(3分)如图,在矩形ABCD中,AB=3,AD=4,现有长为3的小木棒EF紧贴AD、DC边滑动(即EF的两个端点始终落在AD、DC边上),G为EF的中点,P为BC边上一动点,则PA+PG的最小值为.三、解答题(共11小题,共102分)17.(6分)计算:﹣2sin30°+(2018﹣π)018.(6分)先化简,再求值:(2x+y)2+(x+y)(x﹣y)﹣5x(x﹣y),其中x=+1,y=﹣1.19.(8分)已知实数a满足a2﹣6a+9=0,求+÷的值.20.(8分)在4×4的方格内选5个小正方形,让它们组成一个轴对称图形,请在图中画出你的4种方案.(每个4×4的方格内限画一种)要求:(1)5个小正方形必须相连(有公共边或公共顶点视为相连)(2)将选中的小正方形方格用黑色签字笔涂成阴影图形.(若两个方案的图形经过翻折、平移、旋转后能够重合,均视为一种方案)21.(8分)甲、乙、丙3人站成一排合影留念.(1)甲站在中间的概率为;(2)请用画树状图、列表或其他方法求甲、乙两人恰好相邻的概率.22.(10分)为了丰富同学们的课余生活,某学校计划举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是哪里?”的问卷调查,要求学生必须从“A、B、C、D”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请你根据图中所提供的信息,完成下列问题:(1)本次调查的学生人数为;(2)在扇形统计图中,“C”部分所占圆心角的度数为°,m= ;(3)请将两个统计图补充完整;(4)若该校共有1800名学生,估计该校最想去B景点的学生人数为人.23.(10分)一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x 之间的函数关系.根据图象进行以下探究:【信息读取】(1)甲、乙两地相距千米,两车出发后小时相遇;(2)普通列车到达终点共需小时,普通列车的速度是千米/小时.【解决问题】(3)求动车的速度;(4)普通列车行驶t小时后,动车到达乙地,求此时普通列车还需行驶多少千米到达甲地?24.(10分)我市在创建全国文明城市过程中,决定购买A、B两种树苗对某路段道路进行绿化改造,已知购买A种树苗5棵,B种树苗10棵,需要1300元;购买A种树苗3棵,B种树苗5棵,需要710元.(1)求购买A、B两种树苗每棵各需多少元?(2)考虑到绿化效果和资金周转,购进A种树苗不能少于30棵,且用于购买这两种树苗的资金不能超过8650元,现需购进这两种树苗共100棵,则有哪几种购买方案?(3)某包工队承包种植任务,若种好一棵A种树苗可获工钱25元,种好一棵B种树苗可获工钱15元,在第(2)问的各种购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?25.(10分)如图,以O为圆心的的度数为60°,∠BOE=45°,DA⊥OB于点A,EB⊥OB于点B.(1)求的值;(2)若OE与交于点M,OC平分∠BOE,连接CM,说明:CM是⊙O的切线;(3)在(2)的条件下,若BC=2,求tan∠BCO的值.26.(12分)如图,在矩形ABCD中,M为AD边上一点,MB平分∠AMC,G为BM的中点,连接AG、DG,过点M作MN∥AB分别交DG、BC于E、N两点.(1)求证:BC=MC;(2)求证:AG⊥DG;(3)当DG•GE=13时,求BM的长.27.(14分)如图1,在平面直角坐标系中,点A(﹣8,0)、B(2,0),C为y轴正半轴上点,sin∠CAB=,抛物线y=ax2+bx+c经过A、B、C三点.(1)求点C的坐标及抛物线的函数关系式;(2)连接AC,点D在线段AC上方的抛物线上,过点D作DH⊥x轴于点H,交AC于点E,连接DC、AD,设点D的横坐标为m.①当m为何值时,△DEC恰好是以DE为底边的等腰三角形?②若△ACD和△ABC面积满足S△ACD=S△ABC,求点D的坐标;(3)如图2,M为OA中点,设P为线段AC上一点(不含端点),连接MP,动点G从点M出发,沿线段MP以每秒1个单位的速度运动到P,再沿着线段PC以每秒个单位的速度运动到C后停止.若点G在整个运动过程中用时最少,请求出最少时间和此时点P的坐标.四、附加题(10分)28.如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D为PQ 中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ与△ABC重叠部分图形的面积是y(cm2),点P的运动时间为x(s).(1)当点Q在边AC上时,正方形DEFQ的边长为cm(用含x的代数式表示);(2)当点P不与点B重合时,求点F落在边BC上时x的值;(3)当0<x<2时,求y关于x的函数解析式;(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.参考答案与解析一、选择题1.【解答】解:2>>0>﹣1,则比1大的数是2.故选:D.2.【解答】解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,也不是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B.3.【解答】A、是三棱锥的展开图,故选项错误;B、是三棱柱的平面展开图,故选项正确;C、两底有4个三角形,不是三棱锥的展开图,故选项错误;D、是四棱锥的展开图,故选项错误.故选:B.4.【解答】解:A、对江苏省初中学生每天阅读时间的调查,适合抽样调查,故此选项错误;B、对某校九年级3班学生身高情况的调查,最适合采用全面调查,故此选项正确;C、对中山河水质污染情况的调查,适合抽样调查,故此选项错误;D、对端午节期间市场上粽子质量情况的调查,适合抽样调查,故此选项错误;故选:B.5.【解答】解:因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,所以P(飞镖落在黑色区域)==.故选:D.6.【解答】解:设DE=a,EC=2a,则CD=3a,∵四边形ABCD是平行四边形,∴AB=CD=3a,DE∥AB,∴△DEF∽△BAF,∴,∴S△DEF:S△ABF=1:9,故选:C.7.【解答】解:=,故选:C.8.【解答】解:作BC边上的高AD,即过点A作BC的垂线,垂足为D.故选:B.二、填空题(共8小题,每题3分,共24分)9.【解答】解:∵分式有意义,∴x﹣3≠0,则实数x的取值范围是:x≠3.故答案为:x≠3.10.【解答】解:这组数据的极差为10﹣(﹣3)=13,故答案为:13.11.【解答】解:由题意可知:mn=1,∴mn2﹣n+3=n﹣n+3=3故答案为:312.【解答】解:原方程组化简,得,②﹣①,得y=﹣1,把y=﹣1代入①,得x=4,方程组的解为2018+x+y=2018+4﹣1=2021,故答案为:2021.13.【解答】解:在菱形ABCD中,∠ADC=120°,∴∠BAD=180°﹣120°=60°,∴∠BAO=∠BAD=×60°=30°,∵OE⊥AB,∴∠AOE=90°﹣∠BAO=90°﹣30°=60°.故答案为:60°.14.【解答】解:∵Rt△ABC绕点O顺时针旋转后得到Rt△A′B′C′,∴A′B′=AB=8,∵C′D为Rt△A′B′C′的斜边A′B′上的中线,∴C′D=A′B′=4.故答案为:4.15.【解答】解:∵y=,∴OA•AD=3,∵D是AB的中点,∴AB=2AD.∴矩形的面积=OA•AB=2AD•OA=2×3=6.故答案为616.【解答】解:∵EF=3,点G为EF的中点,∴DG=,∴G是以D为圆心,以为半径的圆弧上的点,作A关于BC的对称点A′,连接A′D,交BC于P,交以D为圆心,以为半径的圆于G,此时PA+PG的值最小,最小值为A′G的长;∵AB=3,AD=4,∴AA′=6,∴A′D=2,∴A′G=A′D﹣DG=2﹣,∴PA+PG的最小值为2﹣,故答案为:2﹣.三、解答题(共11小题,共102分)17.【解答】解:﹣2sin30°+(2018﹣π)0=4﹣2×+1=4﹣1+1=4.18.【解答】解:(2x+y)2+(x+y)(x﹣y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy,当x=+1,y=﹣1时,原式=9×()()=9.19.【解答】解:原式=+•=+ =, ∵a 2﹣6a+9=0,∴a=3,则原式=.20.【解答】解:如图..21.【解答】解:(1)∵甲站的位置有3种,位于中间的有1种,∴甲站在中间的概率为;(2分)(2)用树状图分析如下:(5分)∴一共有6种情况,甲、乙两人恰好相邻有4种情况,∴P (甲、乙两人恰好相邻)==(7分).22.【解答】解:(1)66÷55%=120,故答案为:120;(2)在扇形统计图中,“C”部分所占圆心角是:360°×25%=90°,m%=1﹣55%﹣25%﹣5%=15%,故答案为:90,15;(3)选择C的学生有:120×25%=30(人),m%=15%,补全的统计图如右图所示;(4)1800×55%=990(人),即该校最想去B景点的学生有990人,故答案为:990.23.【解答】解:(1)由图象可得,甲、乙两地相距1400千米,两车出发后4小时相遇,故答案为:1400,4;(2)由图象可知,普通列车到达终点共需14小时,普通列车的速度是:1400÷14=100千米/小时,故答案为:14,100;(3)动车的速度为:1400÷4﹣100=350﹣100=250千米/小时,即动车的速度为250千米/小时;(4)t=1400÷250=5.6,动车到达乙地时,此时普通列车还需行驶:1400﹣100×5.6=840(千米),即此时普通列车还需行驶840千米到达甲地.24.【解答】解:(1)设购买A种树苗每棵需要x元,B种树苗每棵需要y元,由题意得:,解得:.答:购买A种树苗每棵需要120元,B种树苗每棵需要70元.(2)设购买A种树苗m棵,则购买B种树苗(100﹣m)棵,根据已知,得,解得:30≤m≤33.故有四种购买方案:方案1、购买A种树苗30棵,B种树苗70棵;方案2、购买A种树苗31棵,B种树苗69棵;方案3、购买A种树苗32棵,B种树苗68棵;方案4、购买A种树苗33棵,B种树苗67棵.(3)设种植工钱为W,由已知得:W=25m+15(100﹣m)=10m+1500,∵10>0,W随x的增大而增大,∴当m=30时,W最小,最小值为1800元.故购买A种树苗30棵、B种树苗70棵时所付的种植工钱最少,最少工钱是1800元.25.【解答】解:(1)∵EB⊥OB,∠BOE=45°,∴∠E=∠EOB,∴BE=BO,在Rt△OAD中,=sin∠DOA=,∴=,∴==;(2)∵OC平分∠BOE,∴∠BOC=∠MOC,在△BOC和△MOC中,,∴△BOC≌△MOC,∴∠OMC=∠OBC=90°,∴CM是⊙O的切线;(3)∵△BOC≌△MOC,∴CM=CB=2,∵∠E=∠EOB=45°,∴CE=CM=2,∴BE=2+2,∴OB=2+2,∴tan∠BCO==+1.26.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠AMB=∠MBC,∵MB平分∠AMC,∴∠AMB=∠BMC,∴∠BMC=∠MBC,∴BC=MC;(2)证明:连接GC,∵CM=CB,G为BM的中点,∴∠BGC=90°,∵∠BAM=90°,G为BM的中点,∴GA=GB=GM,∴∠GAB=∠GBA,∴∠GAD=∠GBC,在△AGD和△BGC中,,∴△AGD≌△BGC,∴∠AGD=∠BGC=90°,即AG⊥DG;(3)解:∵MN∥AB,∴∠MNB=90°,又∵∠BGC=90°,∴∠BM N=∠BCG,∵△AGD≌△BGC,∴∠GDM=∠BCG,∴∠BMN=∠CDM,又∠MGE=∠DGM,∴△MGE∽△DGM,∴=,∴MG2=DG•GE=13,∴MG=,∴BM=2.27.【解答】解:(1)∵A(﹣8,0),∴OA=8,∵sin∠CAB=,∴OC=6,AC=10,即C(0,6).设抛物线的解析式为y=ax2+bx+c,将A,B,C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2﹣x+6;(2)①∵A(﹣8,0),C(0,6),∴AC的解析式为y=x+6,设D(m,﹣m2﹣m+6),E(m,m+6),∴DE═﹣m2﹣m+6﹣(m+6)=﹣m2﹣3m,过点C作CF⊥DH,∵DC=EC,∴DE,∴﹣m2﹣m+6﹣6=(﹣m2﹣3m),解得m1=0(舍)m2=﹣4,当m=﹣2时,△DEC恰好是以DE为底边的等腰三角形,②S△ABC=×10×6=30,∴(﹣m 2﹣3m )×8=×30,化简,得m 2+8m+12=0,∴m 1=﹣2,m 2=﹣6,∴D 1(﹣2,9),D 2(﹣6,6);(3)∵M 为OA 的中点,∴M (﹣4,0),∴t=+=PM+CP ,过C 作CN ∥AB ,过点P 作PE ⊥CN ,∵s in ∠CAB=,∴sin ∠PCE==sin ∠CAB=,∴PE=CP ,∴t=PM+CP=PM+PE ,要使t 最小,只要M ,P ,E 三点共线即可,过点M 作MH ⊥CN ,交AC 于点P 1,此时MH=OC=6,最少时间是6秒,当x=﹣4时,y=×(﹣4)+6=3,P (﹣4,3).四、附加题(10分)28.【解答】解:(1)∵∠ACB=90°,∠A=45°,PQ ⊥AB ,∴∠AQP=45°,∴PQ=AP=2x ,∵D为PQ中点,∴DQ=x,故答案为:x;(2)如图①,延长FE交AB于G,由题意得AP=2x,∵D为PQ中点,∴DQ=x,∴GP=x,∴2x+x+2x=4,∴x=;(3)如图②,当0<x≤时,y=S正方形DEFQ=DQ2=x2,∴y=x2;如图③,当<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=AB=2,∵PQ=AP=2x,CK=2﹣2x,∴MQ=2CK=4﹣4x,FM=x﹣(4﹣4x)=5x﹣4,∴y=S正方形DEFQ﹣S△MN F=DQ2﹣FM2,∴y=x2﹣(5x﹣4)2=﹣x2+20x﹣8,∴y=﹣x2+20x﹣8;如图④,当1<x<2时,PQ=4﹣2x,∴DQ=2﹣x,∴y=S△DEQ=DQ2,∴y=(2﹣x)2,∴y=x2﹣2x+2;(4)当Q与C重合时,E为BC的中点,即2x=2,∴x=1,当Q为BC的中点时,BQ=,PB=1,∴AP=3,∴2x=3,∴x=,∴边BC的中点落在正方形DEFQ内部时x的取值范围为:1<x<.。

相关文档
最新文档