中考数学二模试卷带答案

合集下载

中考二模测试《数学试题》含答案解析

中考二模测试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1. 下列图标,是轴对称图形的是( )A. B.C. D.2. 如图,若A、B分别是实数a、b在数轴上对应的点,则下列式子的值一定是正数的是()A. b+aB. b-aC. a bD. b a3. 关于代数式x+2的结果,下列说法一定正确的是()A. 比2大B. 比2小C. 比x大 D. 比x小4. 如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A. ①②B. ①③C. ②③D. ①②③5. 计算999-93的结果更接近()A. 999B. 998C. 996D. 9336. 如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的( )A. 三条高线的交点B. 三条中线的交点C. 三个角的角平分线的交点D. 三条边的垂直平分线的交点二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 13的相反数是______,13的倒数是______.8. 若△ABC∽△DEF,请写出2个不同类型的正确的结论:______,______.9. 如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是_____.10. 分解因式2x2y-4xy+2y的结果是_____.11. 已知x1、x2是一元二次方程x2+x-3=0的两个根,则x1+x2-x1x2=______.12. 用半径为4的半圆形纸片恰好折叠成一个圆锥侧面,则这个圆锥的底面半径为______.13. 如图,点A在函数y=kx(x>0)的图像上,点B在x轴正半轴上,△OAB是边长为2的等边三角形,则k的值为______.14. 如图,在□ABCD中,E、F分别是AB、CD的中点.当□ABCD满足____时,四边形EHFG是菱形.15. 如图,一次函数y=-43x+8的图像与x轴、y轴分别交于A、B两点.P是x轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是______.16. 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.三、解答题(本大题共11小题,共88分.请在答题..卡指定区域.....内作答,解答时应写出文字说明、证明过程或演算步骤)17. 求不等式3x ≤1+12x -的负整数解. 18. (1)化简:244x --12x -;(2)解方程244x --12x -=12. 19. 小莉妈妈支付宝用来生活缴费和网购.如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因.(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月消费水平,你认为合理吗?为什么?20. 转转盘和摸球是等可能概率下的经典模型.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.21. 春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用时200天.(1)根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:小莉:___128_____x yx y+=⎧⎨+=⎩小刚:________128x yx y+=⎧⎪⎨+=⎪⎩根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示.(2)求甲、乙两工程队分别出新改造步行道多少米.22. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是100 m,如果爸爸的眼睛离地面的距离(AB)为1.6 m,小莉的眼睛离地面的距离(CD)为1.2 m,那么气球的高度(PQ)是多少?(用含α、β的式子表示)23. 南京、上海相距约300 km,快车与慢车速度分别为100 km/ h和50 km/ h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的路程为y1、y2 km.(1)求y1、y2与x之间的函数关系式,并在下列平面直角坐标系中画出它们的图像;(2)若镇江、南京相距约80 km,求两车经过镇江的时间间隔;(3)直接写出出发多长时间,两车相距100 km.24. 如图,△ABC中,AD⊥BC,垂足是D.小莉说:当AB+BD=AC+CD时,则△ABC是等腰三角形.她说法正确吗,如正确,请证明;如不正确,请举反例说明.25. 某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.26. 如图1,点O为正方形ABCD 的中心,E为AB 边上一点,F为BC边上一点,△EBF的周长等于BC 的长.(1)求∠EOF 的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=52OF,求AECF的值.27. 在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.从特殊入手】我们不妨设定圆O的半径是R,⊙O的内接四边形ABCD中,AC⊥BD.请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.【问题解决】已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:答案与解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1. 下列图标,是轴对称图形的是( ) A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的定义逐项进行分析判断即可得.【详解】A 、不是轴对称图形,故不符合题意;B 、不是轴对称图形,故不符合题意;C 、不是轴对称图形,故不符合题意;D 、是轴对称图形,故符合题意,故选D.【点睛】本题考查了轴对称图形,熟知轴对称图形是一定要沿某直线折叠后直线两旁的部分互相重合的图形是解题的关键.2. 如图,若A 、B 分别是实数a 、b 在数轴上对应的点,则下列式子的值一定是正数的是( )A. b +aB. b -aC. a bD. b a【答案】B【解析】 分析:根据数轴上数的大小以及各种计算法则即可得出答案.详解:根据数轴可得:a+b <0;b -a >0;0b a;计算b a 时,如果b 为偶数,则结果为正数,b 为奇数时,结果为负数.故本题选B.点睛:本题主要考查的是数轴以及各种计算法则,属于基础题型.理解各种计算法则是解决这个问题的关键.3. 关于代数式x+2结果,下列说法一定正确的是()A. 比2大B. 比2小C. 比x大 D. 比x小【答案】C【解析】【分析】分情况讨论:当x<0时;当x>0时;x取任何值时,就可得出答案.【详解】当x<0时,则x+2比2小,则A不符合题意;当x>0时,则x+2比2大,则B不符合题意;x取任何值时,x+2比x大,则D不符合题意,故选C.【点睛】本题考查了实数大小的比较,正确地分类讨论是解题的关键.4. 如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A. ①②B. ①③C. ②③D. ①②③【答案】B【解析】分析:根据二次函数的开口方向、对称轴与y轴的交点得出①、根据对称性得出②、根据函数图像得出③.详解:根据图像可得:a<0,b>0,c<0,故正确;∵对称轴大于1.5,∴x=2时的值大于x=1的函数值,故错误;根据图像可得:当x>3时,y的值小于0,故正确;故选B.点睛:本题主要考查的是二次函数的图象与系数之间的关系,属于中等难度的题型.理解函数图像与系数之间的关系是解题的关键.5. 计算999-93的结果更接近()A. 999B. 998C. 996D. 933【答案】A【解析】分析:根据幂的大小进行求值,从而得出答案.详解:根据幂的性质可得:999-93最接近于999,故选A.点睛:本题主要考查的是幂的计算法则,属于中等难度的题型.明白幂的定义是解决这个问题的关键.6. 如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的( )A. 三条高线的交点B. 三条中线的交点C. 三个角的角平分线的交点D. 三条边的垂直平分线的交点【答案】C【解析】【分析】连接OM、ON,NK,根据切线的性质及角平分线的判定定理,可得出答案.【详解】如图,连接OM、ON,NK,∵PM、PN分别是⊙O的切线,∴ON⊥PN,OM⊥PM,MN⊥OP,∠OPN=∠OPM,∴∠1+∠ONK=90°,∠2+∠OKN=90°,∵OM=ON,∴∠OPN=∠OPM,∠ONK=∠OKN,∴∠1=∠2,∴点K是△PMN的角平分线的交点,故选C.【点睛】本题考查了切线长定理、角平分线定义,熟练掌握切线长定理的内容是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 13的相反数是______,13的倒数是______.【答案】(1). -13(2). 3【解析】分析:当两数只有符号不同时,则两数互为相反数;当两数的积为1时,则两数互为倒数.根据定义即可得出答案.详解:13的相反数是13-,13的倒数是3.点睛:本题主要考查的是相反数和倒数的定义,属于基础题型.理解定义是解决这个问题的关键.8. 若△ABC∽△DEF,请写出2个不同类型的正确的结论:______,______.【答案】(1). ∠A=∠D (2). ∠B=∠E【解析】分析:相似三角形的对应角相等,对应边成比例.详解:∵△ABC∽△DEF,∴∠A=∠D,∠B=∠E,∠C=∠F,AB AC BC DE DF EF==.点睛:本题主要考查的是相似三角形的性质,属于基础题型.明白相似三角形的性质是解决这个问题的关键.9. 如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是_____.【答案】-1【解析】【分析】同类项是指所含的字母相同,且相同字母的指数相同的单项式.根据定义求出m和n的值,从而得出答案.【详解】根据题意可得:m=1,n=3,∴2m-n=2×1-3=-1.故答案是:-1.【点睛】本题主要考查的是同类项的定义,属于基础题型.理解定义是解决这个问题的关键.10. 分解因式2x 2y -4xy +2y 的结果是_____.【答案】2y(x -1)2【解析】分析:首先提取公因式2y ,然后利用完全平方公式得出答案.详解:原式=2y(22x 1x -+)=()22y x 1-.点睛:本题主要考查的是因式分解,属于基础题型.因式分解的方法有:提取公因式、公式法和十字相乘法等,有公因式我们都需要进行提取公因式.11. 已知x 1、x 2是一元二次方程x 2+x -3=0的两个根,则x 1+x 2-x 1x 2=______.【答案】2【解析】分析:首先根据韦达定理求出两根之和和两根之积,从而得出答案.详解:∵121b x x a +=-=-,123c x x a==-, ∴原式=-1-(-3)=-1+3=2. 点睛:本题主要考查的是一元二次方程的韦达定理,属于基础题型.明白韦达定理的计算公式是解决这个问题的关键.12. 用半径为4的半圆形纸片恰好折叠成一个圆锥侧面,则这个圆锥的底面半径为______.【答案】2【解析】分析:根据圆锥的侧面展开图的圆心角的计算公式即可得出答案.详解:∵设圆锥的半径为r ,母线长为4,∴θ360r l =⨯︒,即1803604r ︒=⨯︒,解得:r=2. 点睛:本题主要考查的是圆锥的侧面展开图,属于中等难度题型.明白展开图的圆心角计算公式即可得出答案.13. 如图,点A 在函数y =k x(x >0)的图像上,点B 在x 轴正半轴上,△OAB 是边长为2的等边三角形,则k 的值为______.【答案】3【解析】【分析】首先过点A作AC⊥OB,根据等边三角形的性质得出点A的坐标,从而得出k的值.【详解】分析:解:过点A作AC⊥OB,∵△OAB为正三角形,边长为2,∴OC=1,AC=3,∴k=1×3=3.故答案为:3【点睛】本题主要考查的是待定系数法求反比例函数解析式以及等边三角形的性质,属于基础题型.得出点A的坐标是解题的关键.14. 如图,在□ABCD中,E、F分别是AB、CD的中点.当□ABCD满足____时,四边形EHFG是菱形.【答案】答案不唯一,如:∠ABC=90°等【解析】分析:首先根据题意得出四边形EHFG为平行四边形,然后根据直角三角形斜中线的性质得出EH=HF,从而得出菱形.详解:∵E、F为AB、CD的中点,∴EG∥HF,EH∥FG,∴四边形EHFG为平行四边形,当∠ABC=90°时,∴BH=EH=HF,∴四边形EHFG为菱形.点睛:本题主要考查的是平行四边形的性质以及菱形的判定定理,属于基础题型.理解菱形的判定定理是解决这个问题的关键.15. 如图,一次函数y =-43x +8图像与x 轴、y 轴分别交于A 、B 两点.P 是x 轴上一个动点,若沿BP 将△OBP 翻折,点O 恰好落在直线AB 上的点C 处,则点P 的坐标是______.【答案】(83,0),(-24,0) 【解析】【分析】根据题意得出OA ,OB 和AB 的长度,然后根据折叠图形的性质分两种情况来进行,即点P 在线段OA 上和点P 在x 轴的负半轴上,然后根据Rt △APC 的勾股定理求出点P 的坐标.【详解】根据题意可得:OA=6,OB=8,则AB=10,①、当点P 在线段OA 上时,设点P 的坐标为(x ,0),则AP=6-x ,BC=OB=8,CP=OP=x ,AC=10-8=2,∴根据勾股定理可得:()22226x x +=-,解得:x=83, ∴点P 的坐标为(83,0);②、当点P 在x 轴的负半轴上时,设OP 的长为x ,则AP=6+x ,BC=8,CP=OP=x ,AC=10+8=18,∴根据勾股定理可得:()222186x x +=+,解得:x=24,∴点P 的坐标为(-24,0);∴综上所述,点P 的坐标为(83,0),(-24,0). 【点睛】本题主要考查的是折叠图形的性质以及直角三角形的勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是根据题意画出图形得出直角三角形.16. 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.【答案】15°、30°、60°、120°、150°、165° 【解析】分析:根据CD ∥AB ,CE ∥AB 和DE ∥AB 三种情况分别画出图形,然后根据每种情况分别进行计算得出答案,每种情况都会出现锐角和钝角两种情况.详解:①、∵CD ∥AB , ∴∠ACD=∠A=30°, ∵∠ACD+∠ACE=∠DCE=90°, ∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD ∥AB 时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°②如图1,CE ∥AB ,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;CE ∥AB 时,∠ECB=∠B=60°.③如图2,DE ∥AB 时,延长CD 交AB 于F , 则∠BFC=∠D=45°,在△BCF 中,∠BCF=180°-∠B-∠BFC ,=180°-60°-45°=75°, ∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.点睛:本题主要考查的是平行线的性质与判定,属于中等难度的题型.解决这个问题的关键就是根据题意得出图形,然后分两种情况得出角的度数.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17. 求不等式3x ≤1+12x -的负整数解. 【答案】-3、-2、-1.【解析】【分析】 首先根据解不等式的方法求出不等式的解,从而得出不等式的负整数解.【详解】解: 2x≤6+3(x - 1),2x≤6+3x -3,解得:x≥-3.所以这个不等式的负整数解为-3、-2、-1.【点睛】本题主要考查的是解不等式,属于基础题型.在解不等式的时候,如果两边同时乘以或除以一个负数时,不等符号需要改变.18. (1)化简:244x --12x -;(2)解方程244x --12x -=12. 【答案】(1)12x -+;(2)-4. 【解析】分析:(1)、首先将分式进行通分,然后进行减法计算得出答案;(2)、首先进行去分母将其转化为整式方程,从而求出方程的解,最后需要对方程的解进行检验.详解:(1)、解:-= - = = = =- .(2)、去分母可得:8-2(x+2)=(x+2)(x -2), 化简可得:22x 80x +-=,解得:1242x x =-=,,经检验:x=2是方程的增根,x=-4是方程的解.点睛:本题主要考查的是分式的化简以及解分式方程,属于基础题型.解决这个问题的关键就是学会将分式的分子和分母进行因式分解.19. 小莉妈妈的支付宝用来生活缴费和网购.如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因.(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月消费水平,你认为合理吗?为什么?【答案】(1)见解析;(2)848元;(3)不合理,理由见解析.【解析】分析:(1)、这个只要回答的合情合理即可得出答案;(2)、根据平均数的计算法则得出答案;(3)、11月份出现了极端值,会较大的影响平均每月消费水平.详解:解:(1)、答案不唯一,学生说法只要合理均给分.如双11淘宝购物花费较多等.(2)、这4个月小莉妈妈支付宝每月平均消费为:=×(488.40+360.20+1942.60+600.80)= 848(元).(3)、用这个平均数来估计小莉妈妈支付宝平均每月消费水平不合理.因为这个平均数受极端值(11月数据)影响较大,不能代表平均每月消费水平.点睛:本题主要考查的是平均数的计算法则,属于基础题型.明白计算法则是解决这个问题的关键.20. 转转盘和摸球是等可能概率下的经典模型.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.【答案】(1)P(指针2次都落在黑色区域)=49;(2)事件A为摸得黄球.【解析】分析:(1)、根据题意列出所有可能出现的情况,然后得出概率;(2)、根据概率的计算法则得出所有情况的概率,然后得出答案.详解:解:(1)如图,把黑色扇形等分为黑1、黑2两个扇形,转盘自由转动2次,指针所指区域的结果如下:(白,白),(白,黑1),(白,黑2),(黑1,白),(黑1,黑1),(黑1,黑2),(黑2,白),(黑2,黑1),(黑2,黑2).所有可能的结果共9种,它们是等可能的,其中指针2次都落在黑色区域的结果有4种.所以P(指针2次都落在黑色区域)=.(2)事件A为摸得黄球.点睛:本题主要考查的是概率的计算法则,属于基础题型.理解概率的计算公式是解题的关键.21. 春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用时200天.(1)根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:小莉:___128_____x yx y+=⎧⎨+=⎩小刚:________128x yx y+=⎧⎪⎨+=⎪⎩根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示.(2)求甲、乙两工程队分别出新改造步行道多少米.【答案】(1)见解析;(2)甲、乙两工程队分别出新改造600米、1200米.【解析】分析:(1)、小莉:x表示甲工程队改造的天数,y表示乙工程队改造的天数;小刚:x表示甲工程队改造的长度,y表示乙工程队改造的长度;(2)、根据题意解方程组,从而得出答案.详解:解:(1)、小莉:小刚:小莉:x表示甲工程队改造的天数,y表示乙工程队改造的天数;小刚:x表示甲工程队改造的长度,y表示乙工程队改造的长度.(2)、解小莉方程组得所以12x=600,8y=1200.答:甲、乙两工程队分别出新改造600米、1200米.点睛:本题主要考查的是二元一次方程组的实际应用问题,属于基础题型.解决应用题的关键在于找出等量关系,列出方程组.22. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是100 m,如果爸爸的眼睛离地面的距离(AB)为1.6 m,小莉的眼睛离地面的距离(CD)为1.2 m,那么气球的高度(PQ)是多少?(用含α、β的式子表示)【答案】气球高度是100tan tan 1.2tan 1.6tantan tanαβαββα-+-m.【解析】分析:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F,设PQ=x m,根据Rt△PEA的三角形函数得出AE的长度,根据Rt△PCF的三角函数得出CF的长度,最后根据BD=AE-CF求出x的值,得出答案.详解:解:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F.设PQ=x m,则PE=(x-1.6)m,PF=(x-1.2)m.在△PEA中,∠PEA=90°.则tan∠PAE=.∴ AE=.在△PCF中,∠PFC=90°.则tan∠PCF=.∴ CF=.∵ AE-CF=BD.∴-=100.解得x=.答:气球的高度是m.点睛:本题主要考查的是解直角三角形的实际应用,属于基础题型.解决这个问题的关键在于构造出直角三角形.23. 南京、上海相距约300 km,快车与慢车的速度分别为100 km/ h和50 km/ h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的路程为y1、y2 km.(1)求y1、y2与x之间的函数关系式,并在下列平面直角坐标系中画出它们的图像;(2)若镇江、南京相距约80 km,求两车经过镇江的时间间隔;(3)直接写出出发多长时间,两车相距100 km.【答案】(1)画图见解析;(2)两车经过镇江的时间间隔为0.8 h或3.6 h;(3)出发2 h或103h或143h后,两车相距100 km.【解析】分析:(1)、根据待定系数法求出函数解析式,然后再图中画出函数图像;(2)、将y=80代入函数解析式,分别求出x的值,从而得出时间差;(3)、根据函数值相差100列出一元一次方程(分三段来进行解答),从而得出答案.详解:解:(1)当0≤x≤3时,y1=100x,当3≤x≤6时,y1=600-100x;当0≤x≤6时,y2=50x.y1、y2与x的函数图像如下:(2)、当y1=80时,100x=80或600-100x=80.解得x=0.8或5.2;当y2=80时,50x=80.解得x=1.6.所以1.6-0.8=0.8,5.2-1.6=3.6.两车经过镇江的时间间隔为0.8 h或3.6 h.(3)、出发2 h或h或h后,两车相距100 km.点睛:本题主要考查的是一次函数的实际应用,属于中等难度的题型.得出函数解析式是解决这个问题的关键.24. 如图,△ABC中,AD⊥BC,垂足是D.小莉说:当AB+BD=AC+CD时,则△ABC是等腰三角形.她的说法正确吗,如正确,请证明;如不正确,请举反例说明.【答案】小莉说法正确,证明见解析.【解析】分析:延长CB至E,使AB=EB,延长BC至F,使AC=FC,连接AE、AF,然后证明△ADE和△ADF 全等,从而得出∠E=∠F,结合∠E=∠EAB=∠F=∠FAC得出∠ABC=∠ACB,从而得出答案.详解:小莉说法正确.证明:延长CB至E,使AB=EB,延长BC至F,使AC=FC,连接AE、AF.则∠E=∠EAB,∠F=∠FAC.∵ AB+BD=AC+CD,∴ DE=DF.∵ AD⊥BC,∴∠ADE=∠ADF=90°.∵ DE=DF,∠ADE=∠ADF=90°,AD=AD,∴△ADE≌△ADF(SAS).∴∠E=∠F.∴∠E=∠EAB=∠F=∠FAC.∴∠ABC=∠ACB.∴ AB=AC.即△ABC是等腰三角形.点睛:本题主要考查的是等腰三角形的判定与三角形全等,属于基础题型.解决这个问题的关键就是作出辅助线得出三角形全等.25. 某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.【答案】(1)y= x2-14x+48(0<x<6);(2)1;(3)改造后剩余油菜花地所占面积的最大值为41.25m2.【解析】【分析】(1)、利用三角形的面积计算公式得出y与x的函数关系式;(2)、将y=35代入函数解析式求出x的值;(3)、利用配方法将函数配成顶点式,然后根据函数的增减性得出最值.【详解】解:(1)y=(8-x)(6-x)=x2-14x+48.(2)由题意,得x2-14x+48=6×8-13,解得:x1=1,x2=13(舍去).所以x=1.(3)y=x2-14x+48=(x-7)2-1.因为a=1>0,所以函数图像开口向上,当x<7时,y随x增大而减小.所以当x=0.5时,y最大.最大值为41.25.答:改造后油菜花地所占面积的最大值为41.25 m2.【点睛】本题主要考查的是二次函数的实际应用问题,属于中等难度题型.根据题意列出函数解析式是解决这个问题的关键.26. 如图1,点O为正方形ABCD 的中心,E为AB 边上一点,F为BC边上一点,△EBF的周长等于BC 的长.(1)求∠EOF 的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=52OF,求AECF的值.【答案】(1)45°;(2)证明见解析;(3)5 4【解析】【分析】(1).在BC上取一点G,使得CG=BE,连接OB、OC、OG,然后证明△OBE和△OCG全等,从而得出∠BOE=∠COG,∠BEO=∠CGO,OE=OG,根据三角形的周长得出EF=GF,从而得出△FOE和△GOF 全等,得出∠EOF的度数;(2)、连接OA,根据点O为正方形ABCD的中心得出∠OAE=∠FCO=45°,结合∠BOE=∠COG得出∠AEO=∠COF,从而得出三角形相似;(3)、根据相似得出线段比,根据相似比求出AE和CO的关系,CF和AO的关系,从而得出答案.【详解】解:(1).如图,在BC上取一点G,使得CG=BE,连接OB、OC、OG.∵点O为正方形ABCD的中心,∴ OB=OC,∠BOC=90°,∠OBE=∠OCG=45°.∴△OBE≌△OCG(SAS).∴∠BOE=∠COG,∠BEO=∠CGO,OE=OG.∴∠EOG=90°,∵△BEF的周长等于BC的长,∴ EF=GF.∴△EOF≌△GOF(SSS).∴∠EOF=∠GOF=45°.(2).连接OA.∵点O为正方形ABCD的中心,∴∠OAE=∠FCO=45°.∵∠BOE=∠COG,∠AEO=∠BOE+∠OBE=∠BOE+45°,∠COF=∠COG+∠GOF=∠COG+45°.∴∠AEO=∠COF,且∠OAE=∠FCO.∴△AOE∽△CFO.(3).∵△AOE∽△CFO,∴AOCF=OEFO=AECO.即AE=OEFO×CO,CF=AO÷OEFO.∵OE OF,∴ OEFO.∴AECO,CF.∴AECF=54.点睛:本题主要考查的是正方形的性质、三角形全等的判定与性质、三角形相似的判定与性质,综合性非常强,难度较大.熟练掌握正方形的性质是解决这个问题的关键.27. 在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆的内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.【从特殊入手】我们不妨设定圆O的半径是R,⊙O的内接四边形ABCD中,AC⊥BD.请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.【问题解决】已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:。

初中二模数学试题及答案

初中二模数学试题及答案

初中二模数学试题及答案一、选择题(本题共8小题,每小题3分,共24分。

每小题只有一个选项符合题意)1. 下列各数中,最小的数是()A. -3B. -2C. 0D. 22. 已知一个角的补角是120°,则这个角的度数是()A. 60°B. 120°C. 180°D. 240°3. 计算下列代数式的值:(x-2)^{2}-(x+2)^{2},其中x=1()A. 0B. 4C. 6D. 84. 若a、b、c是三个连续的自然数,且a<b<c,那么下列不等式中正确的是()A. a-b<0B. b-c>0C. b-a>0D. c-b<05. 已知等腰三角形的两边长分别为5和10,则该三角形的周长为()A. 20B. 25C. 30D. 无法确定6. 一个不透明的袋子中有3个红球和2个白球,随机摸出一个球,摸到红球的概率是()A. 0.3B. 0.4C. 0.5D. 0.67. 已知函数y=-2x+3,当x=2时,y的值为()A. -1B. 1C. 3D. 58. 一个圆柱的底面半径为2cm,高为6cm,其体积为()A. 75.36cm^{3}B. 150.72cm^{3}C. 251.2cm^{3}D. 376.8cm^{3}二、填空题(本题共4小题,每小题3分,共12分)9. 一个等腰三角形的底角为45°,则其顶角为_90°_。

10. 已知一个直角三角形的两条直角边长分别为3和4,则其斜边长为_5_。

11. 一个数的相反数是-5,则这个数为_5_。

12. 一个数的绝对值是3,则这个数可以是_±3_。

三、解答题(本题共6小题,共64分)13. 解方程:2x-3=7。

(6分)解:移项得2x=7+3,即2x=10,所以x=5。

14. 已知一个三角形的两边长分别为6和8,且这两边的夹角为60°,求该三角形的面积。

(6分)解:根据三角形面积公式S=1/2×底×高,其中底为6,高为8×sin60°=4√3,所以S=1/2×6×4√3=12√3。

中考二模数学试卷答案

中考二模数学试卷答案

1. 若a,b,c是等差数列,且a+b+c=12,a+c=8,则b的值为()A. 2B. 4C. 6D. 8答案:A解析:由等差数列的性质,得b=(a+c)/2=8/2=4。

2. 已知函数f(x)=2x-3,若f(x+y)=f(x)f(y),则x+y的值为()A. 1B. 2C. 3D. 4答案:C解析:将f(x+y)=f(x)f(y)代入f(x)=2x-3,得2(x+y)-3=2x-3×2y,化简得x+y=3。

3. 在△ABC中,若a=5,b=7,c=8,则△ABC的面积S为()A. 14B. 15C. 16D. 17答案:A解析:由海伦公式,得S=sqrt(p(p-a)(p-b)(p-c)),其中p=(a+b+c)/2=10。

代入数值计算得S=14。

4. 若log2(x+3)+log2(x-1)=3,则x的值为()A. 2B. 4C. 8D. 16答案:C解析:由对数运算法则,得log2[(x+3)(x-1)]=3,化简得x^2+2x-3=8,解得x=±3。

因为x+3>0,x-1>0,所以x=3。

5. 已知函数f(x)=x^3-3x+2,若f'(x)=0,则x的值为()A. -1B. 0C. 1D. 2答案:C解析:由导数的定义,得f'(x)=3x^2-3,令f'(x)=0,解得x=±1。

因为f'(x)在x=1时为正,在x=-1时为负,所以x=1。

6. 已知等差数列{an}的公差为d,且a1+a5+a9=24,则a3的值为______。

答案:12解析:由等差数列的性质,得a5=a1+4d,a9=a1+8d。

代入a1+a5+a9=24,得3a1+12d=24,化简得a1+4d=8,即a3=8。

7. 若log2(x+1)+log2(x-1)=3,则x的值为______。

答案:8解析:同第3题解析。

8. 已知函数f(x)=x^2+2x-3,若f(x)在x=1处的切线斜率为2,则f'(1)的值为______。

2024年辽宁省沈阳市九年级中考二模数学试题(解析版)

2024年辽宁省沈阳市九年级中考二模数学试题(解析版)

2024年沈阳市初中学业水平考试模拟测试数学试卷(本试卷共23小题满分120分 考试时长120分钟)第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 如图,比数轴上的点A 表示的数大1的数是( )A. B. 0 C. 1 D. 2【答案】B【解析】【分析】本题主要考查了有理数与数轴,有理数的加法计算,根据题意可得点A 表示的数是,再根据有理数加法计算法则求解即可.【详解】解:由数轴可知,点A 表示的数是,∴比数轴上的点A 表示的数大1的数是,故选:B .2. 如图是一个由6个相同的小立方块组成的几何体,它的主视图是( )A. B. C. D.【答案】D【解析】【分析】本题主要考查了小正方体堆砌成的几何体的三视图,根据主视图是从正面看看到的图形进行求解即可.【详解】解:从正面看,看到他图形分为上下两层,共4列,从左数,下面一层每一列都有一个小正方形,上面一层第三列有一个小正方形,即看到的图形如下:1-1-1-110-+=,故选:D .3. 下列四个图形中,对称轴最多的图形是( )A. B. C. D.【答案】A【解析】【分析】本题主要考查了轴对称图形的识别,根据轴对称图形的定义进行逐一判断即可:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.【详解】解:A 选项图形有4条对称轴,B 选项图形有3条对称轴,C 选项图形有3条对称轴,D 选项图形有两条对称轴,故选:A .4. 下列运算中,正确的是( )A. B. C. D. 【答案】C【解析】【分析】本题主要考查了单项式除以单项式,积的乘方,完全平方公式和合并同类项,熟知相关计算法则是解题的关键.【详解】解:A 、与不是同类项,不能合并,原式计算错误,不符合题意;B 、,原式计算错误,不符合题意;C 、,原式计算正确,符合题意;D 、,原式计算错误,不符合题意;故选:C .5. 下列命题正确的是( )A. 平行四边形的对角线相等B.对角线相等的四边形是平行四边形3232a a a-=()222a b a b +=+3222a b a ab ÷=()224a b a b =33a 2a ()2222a b a ab b +=++3222a b a ab ÷=()2242a b a b =C. 平行四边形的对角互补D. 对角线互相平分的四边形是平行四边形【答案】D【解析】【分析】本题主要考查平行四边形的判定与性质,根据平行四边形的判定与性质定理直接判断即可【详解】解:A.矩形平行四边形的对角线相等,而平行四边形的对角线互相平分,故选项A 说法错误;B. 对角线相等的四边形是等腰梯形或平行四边形,故选项B 说法错误;C. 平行四边形的对角相等,故选项C 说法错误;D. 对角线互相平分的四边形是平行四边形,说法正确,故选:D6. 化简的结果是( )A. 0B. 1C. aD. 【答案】B【解析】【分析】根据同母的分式加法法则进行计算即可.【详解】解:,故选:B .【点睛】本题考查同分母的分式加法,熟练掌握运算法则是解决问题的关键.7. 若关于x 的方程有两个相等的实数根,则c 的值是( )A. 36B. C. 9 D. 【答案】C【解析】【分析】根据判别式的意义得到,然后解关于c 的一次方程即可.【详解】解:∵方程有两个相等的实数根∴解得故选:C .【点睛】本题考查了根的判别式:一元二次方程的跟与的关系,关键11a a a -+2a -11111a a a a a a a--++===260x x c ++=36-9-2640c ∆=-=260x x c ++=26410c ∆=-⨯⨯=9c =20(0)ax bx c a ++=≠24b ac ∆=-是分清楚以下三种情况:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.8. 《九章算术》是中国传统数学最重要的著作之一,书中记载:“今有人共买兔,人出九,盈六;人出七.不足十四.问人数几何?”意思是:“有若干人共同出钱买兔,如果每人出九钱,那么多了六钱;如果每人出七钱,那么少了十四钱,问:共有几个人?”设共有个人共同出钱买兔,根据题意,可列一元一次方程为()A. B. C. D. 【答案】B【解析】【分析】设有x 个人共同出钱买兔,根据买兔需要的总钱数不变,即可得出关于x 的一元一次方程,此题得解.【详解】解:设有x 个人共同出钱买兔,根据题意得:9x -6=7x +14.故选:B .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9. 如图,C 岛在A 岛的北偏东方向,C 岛在B 岛的北偏西方向,则的度数是( )A. B. C. D. 【答案】B【解析】【分析】本题主要考查了方位角的计算,平行线的性质,过点C 作,根据平行公理得出,根据平行线的性质得出结果即可.【详解】解:过点C 作,如图所示:0∆>Δ0=Δ0<x 96714x x +=-96714x x -=+96714x x -=-96714x x +=+50︒35︒ACB ∠90︒85︒80︒75︒CF AD ∥AD CF BE ∥∥CF AD ∥根据题意得:,,∵,∴,∴,,∴,故选:B .10. 如图,在中,,,点D 在边上,,连接,在上截取,使,分别以点E ,F为圆心,大于长为半径画弧,两弧交于点G ,作射线,交边于点H ,则的长为( )A. 2B. C. 1 D. 【答案】B【解析】【分析】本题主要考查了相似三角形的性质与判定,等边三角形的性质与判定,角平分线的尺规作图,平行线的性质与判定,先证明是等边三角形推出,由作图方法可知,平分,则,证明,进而证明,再利用相似三角形的性质列出比例式求解即可.【详解】解:∵,,∴是等边三角形,∴,∴,50DAC ∠=︒35CBE ∠=︒AD BE ∥AD CF BE ∥∥50ACF DAC ∠=∠=︒35BCF CBE ∠=∠=︒ACB ACF BCF ∠=∠+∠=︒+︒=︒503585ABC 60BAC ∠=︒5AB =AB 2AD AC ==CD DC DB ,DE DF ,DE DF =12EF DG BC DH 6523ACD 120BDC ∠=︒DH BDC ∠60BDH A ==︒∠∠DH AC BDH BAC ∽60BAC ∠=︒2AD AC ==ACD 60ADC ∠=︒120BDC ∠=︒由作图方法可知,平分,∴,∴,∴,∴,∴,即,∴,故选:B .第二部分 非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11. 不等式组的解集为______.【答案】##【解析】【分析】本题考查了求不等式组的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到,即可确定不等式组的解集,掌握求不等式组解集的口诀是解题的关键.【详解】解:由不等式组可得,不等式组的解集为,故答案为:.12. 将点沿轴向右平移个单位,平移后的点恰好在反比例函数的图象上,则常数的值为______.【答案】【解析】【分析】本题考查了点的平移,反比例函数图象上点的坐标特征,根据平移的性质求出平移后点的坐标,再把平移后点的坐标代入反比例函数解析式计算即可求解,掌握平移的性质及反比例函数图象上点的坐标特征是解题的关键.【详解】解:将点沿轴向右平移个单位,得到的点的坐标为,∵平移后的点恰好在反比例函数的图象上,DH BDC ∠1602BDH BDC ==︒∠∠BDH A =∠∠DH AC BDH BAC ∽DH BD AC AB =5225DH -=65DH =12x x >-⎧⎨>⎩2x >2x<2x >2x >()1,3A -x 2()0k y k x =≠k 3()1,3A -x 2()1,3()0k y k x=≠∴,∴,故答案为:.13. 如图,某一时刻停车场内有序号为的三个空车位顺次排成一排,现有甲、乙两车需要随机停放到其中一个车位,则甲、乙两车停放在不相邻的位置的概率是______.【答案】【解析】【分析】本题考查了用树状图或列表法求概率,画出树状图,根据树状图即可求解,掌握树状图或列表法是解题的关键.【详解】解:画树状图如下:由树状图可得,共有种等结果,其中甲、乙两车停放在不相邻的位置的有种结果,∴甲、乙两车停放在不相邻的位置的概率是,故答案为:.14. 如图,在平面直角坐标系中,二次函数的图象与x 轴的一个交点坐标是,对称轴为直线,则这个二次函数图象与x 轴另一个交点的坐标是__________.31k =3k =3123,,13622163=132y ax bx c =++()30-,=1x -【答案】【解析】【分析】本题考查了二次函数的图象性质以及对称性,因为与x 轴的一个交点坐标是,对称轴为直线,则,解出,即可作答.【详解】解:依题意,设这个二次函数图象与x 轴另一个交点的横坐标为,∵二次函数的图象与x 轴的一个交点坐标是,对称轴为直线,∴,解饿,则这个二次函数图象与x 轴另一个交点的坐标是,故答案为:,15. 如图,在菱形中,,,点为直线上方一点,且,分别作点关于直线和直线的对称点,,连接,当与菱形的边平行时,的面积为_________.【答案】或()10,()30-,=1x -()2312x +--=2x 2x 2y ax bx c =++()30-,=1x -()2312x +--=21x =()10,()10,ABCD 1AB =+60ABC ∠=︒1P BC 115PBC ∠=︒1P AB AD 2P 3P 23PP 23P P ABCD 123PP P3+【解析】【分析】本题主要考查菱形的性质,垂直平分线的判定与性质,三角形中位线性质定理等知识,分和两种情况,在时先证明点F 与点A 重合,求出的长,再由中位线定理求出的长,再根据三角形面积公式求解即可;同理可求出时的结论.【详解】解:①当时,∵∴如图,设与交于点E ,交于点F ,则有连接又由对称性可知,垂直平分,垂直平分,∴为的中位线,,又点F 在直线上,也在直线上,∴与点重合,设∴为等腰直角三角形,∴又,∴23P P AB ∥23P P AD ∥23PP AB ∥,BE AE 23P P 23P P AD ∥23P P AB ∥,AB CD ∥23,P P AB CD ∥∥12PP AB 13PPAD 23,P P AE ∥,EF AB 12PP AD 13PPEF 123PP P 23EF P P ∴∥AB AD F A ,BE x =1145,EBP ABC PBC ∠=∠-∠=︒1BEP △1,EP BE x ==180********BAD ABC ∠=︒-∠=︒-︒=︒111209030,EAP BAD P AD ∠=∠-∠=︒-︒=︒在中,∴∴∴∵,∴在中,,∴②当时,如图,设与交于点M ,交于点N ,连接同理可得为的中位线,∴,又,∴点 在直线上,重合,则垂直平分于点A ,又∴是等腰直角三角形,∴,1Rt EAP 1,AE ==)11,AB BE AE x =+==+1,x =12122,PP EP==23P P AB ∥3211231190,30,P P P AEP P P P EAP ∠=∠=︒∠=∠=︒321Rt P P P 2321P P P ==123122312P P P S PP P P =⨯= 23P P AD BC ∥∥12PP AB 13PP AD ,MN MN 123PP P 23MN P P ∥23AN P P ∥M AN ,M A BA 12PP 1145,ABP ABC PBC ∠=∠-∠=︒1BAP 11211,22AP AB PP AP ==+==+1130,DAP BAD BAP ∠=∠-∠=︒又垂直平分,∴在中,∴∴;综上,的面积为故答案为:.三、解答题(本题共8小题,共75分.解答题应写出文字说明、演算步骤或推理过程)16. 计算(1);(2)【答案】(1)(2)【解析】【分析】()利用有理数的运算法则计算即可求解;()利用完全平方公式、平方差公式展开,再合并同类项即可求解;本题考查了有理数的混合运算,整数的混合运算,掌握有理数和整式的运算法则是解题的关键.【小问1详解】解:原式,,;小问2详解】解:原式.17. 某汽车租赁公司决定采购型和型两款新能源汽车.已知每辆型汽车的进价是每辆型汽车的进价【23,P P AD ∥AD 13PP 2313,P P PP ⊥321130,P P P DAP ∠=∠=︒321Rt P P P 32130,P P P ∠=︒131211,2PP PP ==+23133P P ==)(12313231113322P P P S PP P P =⨯=++=+ 123PP P 3+3+231139⎛⎫--⨯- ⎪⎝⎭()()()2122x x x +++-225x +1211279⎛⎫=--⨯- ⎪⎝⎭()13=---13=-+2=22214x x x =+++-25x =+A B A B的倍,若用万元购进型汽车的数量比用万元购进型汽车的数量少辆,求每辆型汽车和每辆型汽车的进价分别为多少万元.【答案】每辆型汽车的进价为万元,每辆型汽车的进价为万元【解析】【分析】本题考查了分式方程的应用,设每辆型汽车的进价为万元,则每辆型汽车的进价为万元,根据题意,列出方程解答即可求解,根据题意,找到等量关系,正确列出分式方程是解题的关键.【详解】解:设每辆型汽车的进价为万元,则每辆型汽车的进价为万元,依题意得,,解得,经检验,是原方程的解,且符合题意,∴,答:每辆型汽车的进价为万元,每辆型汽车的进价为万元.18. 从“冬日雪暖阳”到“春天花正开”,沈阳魅力更加迷人.相关数据显示,五一小长假期间,南方“小土豆”到沈阳旅游的人数大幅增加.乐乐一家计划暑假来沈阳游玩,为了更好的了解沈阳的景点,乐乐对网友进行了线上调查,想根据调查的数据制定自己一家人的沈阳游玩计划,调查的过程及不完整的统计结果如下表.调查目的了解网友最喜爱的沈阳景点调查方式抽样调查调查对象部分网友调查内容你最喜爱的沈阳景点(每名网友只能从下列五个选项中选择一个景点)A .沈阳故宫B .张学良旧居C .沈阳世博园D .中街步行街E .工业博物馆调查结果请回答下列问题:(1)本次线上调查共有多少名网友参与?(2)根据上表的调查结果,若有9000名网友参与调查,请你估计最喜爱“沈阳故宫”的人数;1.2240A 240B 4A B A 12B 10B x A 1.2x B x A 1.2x 24024041.2x x-=10x =10x =1.2=1.210=12x ⨯A 12B 10(3)若返程当天还有景点F ,景点G ,景点H 可以去游玩,各景点建议游玩时间和景点间路程用时情况见下图.乐乐一家人打算上午到达第一个景点开始游玩,下午坐飞机回家,需要最晚在下午到达机场,如果按图中景点建议游玩时间选择两个景点游玩,请你帮助乐乐设计一个游玩路线.先游玩__________,再游玩__________,然后16:40前到达机场.【答案】(1)本次线上调查共有1000名网友参与(2)估计最喜爱“沈阳故宫”的人数为3600人(3)G ;F (或G ,H )【解析】【分析】本题主要考查条形统计图,扇形统计图以及用样本估计总体:(1)用B 的人数除以所占百分比即可得出被调查的人数;(2)用样本估计总体即可;(3)根据参观时间加路程用时不大于7时40分进行设计游玩路线即可.【小问1详解】解:(名)答:本次线上调查共有1000名网友参与【小问2详解】解:(名)答:估计最喜爱“沈阳故宫”的人数为3600人;【小问3详解】解:因为上午到达第一个景点开始游玩,下午坐飞机回家,需要最晚在下午到达机场,共需用时7时40分,方案一:从景点G 开始,再至景点F ,最后到达机场需用时:时7时40分,故设计的路线为先游玩G ,再游玩F ,方案二:从景点G 开始,再至景点H ,最后至到达机场需用时:时7时40分,900:1830:1640:30030%=1000÷100010005%1501003009000=36001000-⨯---⨯900:1830:1640:3+1.5+2+1=7.5<3+1+2.5+1=7.5<故设计的路线为先游玩G ,再游玩H ,故答案为:G ;F (或G ,H )19. 某超市的消费卡做促销活动.消费卡售价y (元)与面值x (元)之间满足一次函数关系,其图象经过原点和点A ,如图所示,小张购买了该超市的一张面值是1000元的消费卡.使用这张消费卡,在该超市可以购买任意商品.(1)求小张购买这张消费卡实际花费的钱数为多少元;(2)小张使用这张消费卡在该超市购买了某种大米20公斤,超市规定这种大米使用消费卡购买,每公斤在原价的基础上还可以优惠元.设小张购买的大米原价为m 元/公斤,小张购买的20公斤大米实际花费的钱数为w 元,求w 与m 的函数关系式.【答案】(1)小张购买这张消费卡实际花费的钱数为850元;(2)【解析】【分析】本题主要考查了一次函数的实际应用:(1)设,把代入中,利用待定系数法求出对应的解析式,进而求出当时,y 的值即可得到答案;(2)先求出大米实际的单价,再乘以20即可得到答案.【小问1详解】解:设,把代入中得:,解得,∴,当时,,答:小张购买这张消费卡实际花费的钱数为850元;0.417 6.8w m =-y kx b =+()()00500425,,,y kx b =+1000x =y kx b =+()()00500425,,,y kx b =+5004250k b b +=⎧⎨=⎩0.850k b =⎧⎨=⎩0.85y x =1000x =850y =【小问2详解】解:由题意得,.20. 某校“综合与实践”活动小组的同学要测量与地面垂直的两栋楼与的高度之差,他们借助无人机设计了如下测量方案:如图,无人机悬停在,两楼之间上方的点O 处,此时测出到楼顶部点A 处的俯角为,,测出到楼顶部点C 处的俯角为,已知两栋楼之间的距离(点A ,B ,C ,D ,O 在同一平面内).(1)求点O 到楼的距离的长;(2)求两栋楼与的高度之差.(结果精确到),,,)【答案】(1)(2)【解析】【分析】本题考查了解直角三角形的应用-仰角俯角问题,等腰三角形的判定:(1)根据直角三角形性质求得;(2)过C 作于H ,根据矩形的性质得到,解直角三角形即可得到结论.【小问1详解】解:∵,∴,∴,答:点O 到楼的距离的长为;小问2详解】解:过C 作于H ,则四边形是矩形,∴,的【()200.40.8517 6.8w m m =-⨯=-CD AB AB CD AB 60︒40m OA =CD 53︒30m BD =AB OE CD AB 1m 1.73≈sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈20m 21.3m114020m 22OE OA ==⨯=CH OE ⊥30m EH BD ==906040m AEO AOE OA ∠=︒∠=︒=,,30OAE ∠=︒114020m 22OE OA ==⨯=AB OE 20m CH OE ⊥EBDH 30m EH BD ==在中,∵,∴,在中,,∴两栋楼与的高度之差为.21. 如图,与相切于点B ,交于点F ,延长交于点C ,连接,点D 为上一点,且,连接.(1)求证:是的切线;(2)若,,求的半径的长.【答案】(1)证明见解析(2)【解析】【分析】本题主要考查了切线的性质与判定, 等弧所对的圆心角相等,全等三角形的性质与判定,勾股定理等等:(1)如图所示,连接,由切线的性质得到,再由得到,证明,得到,据此可证明结论;(2)设的半径为r ,则,在中利用勾股定理建立方程求解即可.Rt OCH ()9053302010m CHO COH OH EH OE ∠=︒∠=︒=-=-=,,()tan5310 1.3313.3m CH OH =⋅︒=⨯≈Rt OEA ()sin 604034.6m AE AO =⋅︒==≈CD AB ()34.613.321.3m -=AB O AO O AO O BC O»»DFBF =AD AD O 6AB =8AC =O 74OD OB ,90∠=︒ABO »»DFBF =AOD AOB ∠=∠()SAS AOD AOB ≌90ADO ABO ∠=∠=︒O 8OB r OA AC OC r ==-=-,Rt ABO △【小问1详解】证明:如图所示,连接,∵与相切于点B ,∴ ,∵,∴,又∵,∴,∴,∵是的半径,∴是的切线;【小问2详解】解:设的半径为r ,则,在中,由勾股定理得,∴,解得,∴的半径为.22. 【问题初探】()在数学活动课上,张老师给出如下问题:如图,在中,,,点是边上一点,连接,在右侧作,使,,连接,求证:;OD OB ,AB O 90∠=︒ABO »»DFBF =AOD AOB ∠=∠OD OB OA OA ==,()SAS AOD AOB ≌90ADO ABO ∠=∠=︒OD O AD O O 8OB r OA AC OC r ==-=-,Rt ABO △222OA OB AB =+()22286r r -=+74r =O 7411ABC AB BC =90ABC ∠=︒D BC AD AB ADE V DE AD =90ADE ∠=︒CE 135DCE ∠=︒小创同学从与均为等腰直角三角形这个条件出发给出如下解题思路:通过证明,将转化为;小新同学从结论的角度出发给出另一种解题思路:如图,在线段上截取,连接,通过证明,将转化为;请你选择一名同学的解题思路,写出证明过程.【类比分析】()张老师发现之前两名同学都运用了转化思想,为了帮助学生更好地感悟转化思想,张老师将图进行变换并提出了下面问题,请你解答.如图,在中,,点是边上一点,连接,在右侧作,使,,连接,过点作交于点,探究与的数量关系;()如图,在()的条件下,当时,若,,求的长.【答案】()证明见解析;();().【解析】【分析】()选择小创同学解题思路:由等腰直角三角形的性质可得,,,,进而得到,,得到,即可求证;选择小新同学的解题思路:在线段上截取,连接,可得,又根据等腰直角三的①ABC ADE V ABD ACE ∽DCE ∠ABD ACB ∠+∠②2AB BP BD =DP APD DCE ≌DCE ∠APD ∠213ABC AB BC =D BC AD AB ADE V DE AD =()90ADE ABC αα∠=∠=>︒CE C CF AB ∥AE F ECF ∠α342120α=︒AB BC ==CF =CD 123902ECF α∠=-︒3CD =145BAC BCA ∠=∠=︒AC =45DAE DEA ∠=∠=︒AE =BAC DAE ∠=∠AB AD AC AE ==ABD ACE ∽90ACE ABD ∠=∠=︒AB BP BD =DP AP DC =角形的性质可得,进而得,,由得,得到,即可证明,得到;()同理()小新同学的解题思路解答即可求解;()延长,相交于点,过点作的延长线于点,过点作于,在在线段上截取,连接,过点作于,则,,由得,,,解直角三角形得,,由可得,得到,由得到,得,,设,则,,由得,得,由()知,可证,得到,解直角三角形求出,得到,即可求解.【详解】解:()选择小创同学的解题思路:∵,,∴,,∵,,∴,,∴,∴,∴,∴,45BPD BDP ∠=∠=︒45PAD ADP ∠+∠=︒135APD ∠=︒90ADE ∠=︒180459045ADP CDE ∠+∠=︒-︒-︒=︒PAD CDE ∠=∠()SAS APD DCE ≌135APD DCE ∠=∠=︒213AE BC 、G A AM CB ⊥M E EN CG ⊥N AB BP BD =DP P PH BM ⊥H EN AM ∥90ENC AMB PHB ∠=∠=∠=︒120α=︒60ABM ∠=︒312090902ECF ∠=⨯︒-︒=︒30PDB ∠=︒92AM =BM =CF AB ∥30ECN ∠=︒30PDH ECN ∠=∠=︒FCG ABG ∽△△CF CG AB BG =CG =MG =CN a =tan 30EN CN =︒=NG a =ENG AMG ∽EN NG AM MG =a =CN =95EN ==2DP CE =()AAS DHP CNE ≌95PH EN ==sin 60PH BP ==︒AP AB BP =-=1AB BC =90ABC ∠=︒45BAC BCA ∠=∠=︒AC =DE AD =90ADE ∠=︒45DAE DEA ∠=∠=︒AE =BAC DAE ∠=∠AB AD AC AE ==BAD CAE ∠=∠ABD ACE ∽90ACE ABD ∠=∠=︒∴;选择小新同学的解题思路:如图,在线段上截取,连接,∵,,∴,∵,∴,∴,,∵,∴,∴,又∵,∴,∴,即;()如图,在线段上截取,连接,∵,,∴,∵,∴,∴,,∵,4590135DCE ∠=︒+︒=︒2AB BP BD =DP AB BC =BP BD =AP DC =90ABC ∠=︒45BPD BDP ∠=∠=︒45PAD ADP ∠+∠=︒135APD ∠=︒90ADE ∠=︒180459045ADP CDE ∠+∠=︒-︒-︒=︒PAD CDE ∠=∠AD DE =()SAS APD DCE ≌135APD DCE ∠=∠=︒135DCE ∠=︒23AB BP BD =DP AB BC =BP BD =AP DC =ABC α∠=18019022BPD BDP αα︒-∠=∠==︒-1902PAD ADP α∠+∠=︒-1902APD α∠=︒+ADE α∠=∴,∴,又∵,∴,∴,即,∵,∴,∴,∴,即;()如图,延长,相交于点,过点作的延长线于点,过点作于,在线段上截取,连接,过点作于,则,,∵,∴,,,∴,,∵,∴,11180909022ADP CDE ααα⎛⎫∠+∠=︒-︒--=︒- ⎪⎝⎭PAD CDE ∠=∠AD DE =()SAS APD DCE ≌1902APD DCE α∠=∠=︒+1902DCE α∠=︒+CF AB ∥180ABC DCF ∠+∠=︒180DCF α∠=︒-()13901809022ECF DCE DCF ααα∠=∠-∠=︒+-︒-=-︒3902ECF α∠=-︒34AE BC 、G A AM CB ⊥M E EN CG ⊥N AB BP BD =DP P PH BM ⊥H EN AM ∥90ENC AMB PHB ∠=∠=∠=︒120α=︒60ABM ∠=︒312090902ECF ∠=⨯︒-︒=︒30PDB ∠=︒9sin 602AM AB =︒==1cos 602BM AB =︒==CF AB ∥18012060BCF ∠=︒-︒=︒∴,∴,∵,∴,∴,,解得,∴设,则,,∵,∴,∴,,解得∴,又由()知,∴,∴,∴,180906030ECN ∠=︒-︒-︒=︒30PDH ECN ∠=∠=︒CF AB ∥FCG ABG ∽△△CF CGAB BG ==CG =MG BM BC CG =++=++=CN a =tan 30EN CN =︒=NG a =EN AM ∥ENG AMG ∽EN NGAM MG=92=a =CN =95EN ==2APD DCE ≌DP CE =()AAS DHP CNE ≌95PH EN ==∴,∴又由()知,,∴.【点睛】本题考查了等腰直角三角形的性质,勾股定理,等腰三角形的性质,三角形的外角性质和内角和定理,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,解直角三角形,正确作出辅助线是解题的关键.23. 【问题情境】如图,正方形,点是边上一动点,点由点运动到点,动点在边上,且,连接,以为一边,在正方形内部作等边,连接,设的长为,的面积为.【初步感知】()经探究发现是关于的二次函数,并绘制成如图所示的图象,其顶点坐标是,请根据图象信息,求关于的函数表达式;【延伸探究】()当的周长为时,求线段的长度;()当是以为底的等腰三角形时,小智同学根据学习函数的经验,想尝试结合函数相关知识求线段的长度.根据点在上的不同位置,通过画图软件画出相应的图形,并测量线段的长度(同一单位),得到下表的几组对应的近似值:将线段的长度作为自变量,和的长度分别为,,发现,都是的函数,在平面直sin 60PH BP ===︒AP AB BP =-==2AP DC =CD =1ABCD E AB E A B F AD DF AE =EF EF ABCD EFG GB AE x AEF △S 1S x 2()2,2S x 2EFG AE 3BEG BE ①AE E AB EG BG ,AEL 1.5 1.61.7 1.8 1.9L 4EG 4.00L2.92 2.882.86 2.842.83L 4.00BG2.07L2.772.822.872.912.96L4.00AE x EG BG 1y 2y 1y 2y x角坐标系中画出这两个函数的图象,如图所示,请结合表格和图象信息,当是以为底的等腰三角形时,直接写出线段的长度;(结果精确到)因为的方法得到的是线段长度的近似值,所以小慧同学还想求出线段长度的准确值,请你帮助小慧同学求出线段长度的准确值.【答案】();()或;();.【解析】【分析】()用顶点式假设函数的解析式,利用待定系数法解答即可求解;()由图可知正方形的边长为,得,再利用等边三角形的性质得,根据勾股定理得,即,解方程即可求解;()由图可知,有两个交点,可排除当时,;又根据图象知之间两图象还有一个交点,由表可知,当时,,,据此即可由求解;以点为原点,所在的直线为轴,所在的直线为轴,建立如图所示的平面直角坐标系,可得,,,,过交的延长线于点,作轴于点,由等边三角形的性质可得,进而得为的中点,利用三角函数得,再证明,得到,,即得,得到,利用中点坐标公式得,得到,又可得,根据在xOy 3BEG BE AE0.1②①AEAE AE 12122S x x =-+2133①1.7②412244AF x =-EF FG EG ===222AE AF EF +=()22410x x +-=3①312y y 、4x =4BG EG ==12x <<1.7x = 2.86EG = 2.87BG =BG EG =②B BC x AB y ()0,0B ()0,4A ()0,4E x -()4,4F x -ENEF ⊥FG N NM y ⊥M30GEN GNE ∠=∠=︒G FN EN =AEF MNE ∽AF AE EF EM MN EN ===MN ==)4EM x ==-)()14BM EM BE x =-=-)()),14Nx --G ⎝⎭(()2221232BG x x =+-+-()2222224EG EF AE AF x x ==+=+-构建方程,解方程即可求解.【详解】解:()设,∵抛物线经过,∴,解得,∴;()∵,由图可知正方形的边长为,∴,∵的周长为,为等边三角形,∴,∵,∴,∴,解得,,∴的长为或;()由图可知,有两个交点,当时,,但不存在,故此种情况不符,舍去;在之间两图象还有一个交点,由表可知,当时,,,∴时,的长度为;以点为原点,所在的直线为轴,所在的直线为轴,建立如图所示的平面直角坐标系,22BGEG =1()222S a x =-+()0,0()20022a =-+12a =-()221122222S x x x =--+=-+2AE DF x ==244AF x =-EFG EFG EF FG EG ===90BAD ∠=︒222AE AF EF +=()22410x x +-=11x =23x =AE 133①312y y 、4x =4BG EG ==BEG 12x << 1.7x = 2.86EG = 2.87BG =BG EG =AE 1.7②B BC x AB y则,,,,过交的延长线于点,作轴于点,则,∵,∴,∴,∴为的中点,∵∴,∵,∴,∵,∴,∴∴,,∴,∴,∵为的中点,∴,()0,0B ()0,4A ()0,4E x -()4,4F x-EN EF ⊥FG N NM y ⊥M 90FEN ∠=︒60EFGFEG ∠=∠=︒30GENGNE ∠=∠=︒EG GN FG ==G FN tan 30EF EN =︒=EN=121390∠+∠=∠+∠=︒23∠∠=90EAF EMN ∠=∠=︒AEF MNE∽AF AE EF EM MN EN ===MN ==)4EM x ==-)())()4414BM EM BE x x x =-=---=--)()),14Nx ---G FN G ⎝⎭即,∴,∵,又∵,∴,整理得,∴,∴(不合,舍去),,∴【点睛】本题考查了二次函数的图象和性质,待定系数法求二次函数解析式,正方形的性质,等边三角形的性质,等腰三角形的性质,相似三角形的判定和性质,解直角三角形三角形,勾股定理,坐标与图形,正确作出辅助线及看懂函数图象是解题的关键.G ⎝⎭(()222221232BG x x =+=+-+-⎣⎦⎣⎦()2222224EG EF AE AF x x ==+=+-22BG EG =(()()222212324x x x x -++-=+-())440x --=40x -=40-+=14x =24x =4AE =。

九年级二模数学试题及答案

九年级二模数学试题及答案

九年级二模数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax + bx + cC. y = ax^2 + bxD. y = ax + b答案:A2. 已知圆的半径为5,圆心在原点,那么该圆的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B3. 如果一个角的正弦值是0.5,那么这个角可能是多少度?A. 30°B. 45°C. 60°D. 90°答案:A4. 以下哪个选项是不等式2x - 3 > 5的解?A. x > 4B. x < 4C. x > 2D. x < 2答案:A5. 计算下列哪个表达式的值等于0?A. (x - 2)(x + 2)B. (x + 2)(x - 2)C. x^2 - 4D. x^2 + 4答案:C6. 一个等腰三角形的两边长分别为5和8,那么第三边的长度是多少?A. 3B. 5C. 8D. 无法确定答案:C7. 计算下列哪个表达式的值等于1?A. (2/3)^2B. (3/2)^2C. √(2/3)D. √(3/2)答案:A8. 以下哪个选项是方程x^2 - 5x + 6 = 0的解?A. x = 2 或 x = 3B. x = 1 或 x = 6C. x = 2 或 x = -3D. x = -2 或 x = -3答案:A9. 一个长方体的长、宽、高分别为3、4、5,那么它的体积是多少?A. 60B. 48C. 36D. 24答案:A10. 计算下列哪个表达式的值等于-1?A. (-1)^3B. (-1)^2C. (-1)^1D. (-1)^0答案:A二、填空题(每题2分,共20分)11. 一个数的立方根是2,那么这个数是______。

答案:812. 一个等差数列的首项是3,公差是2,那么第5项是______。

中考二模检测《数学试卷》含答案解析

中考二模检测《数学试卷》含答案解析

一、选择题(每小题3分,共计36分) 1.下列计算正确的是( ) A .(﹣a +b )(﹣a ﹣b )=b 2﹣a 2 B .x +2y =3xyC =0D .(﹣a 3)2=﹣a 52.在中考复习中,老师出了一道题”化简23224x xx x +-++-“.下列是甲、乙、丙三位同学的做法,下列判断正确的是( )甲:原式2222232232284444x x x x x x x x x x x +--+----=-==----()()()(); 乙:原式=(x +3)(x ﹣2)+(2﹣x )=x 2+x ﹣6+2﹣x =x 2﹣4 丙:原式323131222222x x x x x x x x x x +-++-=-=-==++-+++()() 1 A .甲正确 B .乙正确 C .丙正确D .三人均不正确3.如图,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始移动,甲按顺时针方向环形,乙按逆时针方向环行,若乙的速度是甲的3倍,那么它们第一次相遇在AD 边上,请问它们第2015次相遇在( )边上.A .ADB .DC C .BCD .AB4..方程70050020x x =-的解为( ) A .x =0B .x =20C .x =70D .x =505.下列结论正确的是( ) A .如果a >b ,c >d ,那么a ﹣c >b ﹣dB .如果a >b ,那么1a b>C .如果a >b ,那么11a b<D .如果22a b c c<,那么a <b 6.在一次函数y =kx +2中,若y 随x 的增大而增大,则它的图象不经过第( )象限. A .一B .二C .三D .四7.一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,则∠BCF 度数为( )A .15°B .18°C .25°D .30°8.如图,▱ABCD 的对角线AC 与BD 相交于点O ,过点O 作OE ⊥AD 于点E ,若AB =4,∠ABC =60°,则OE 的长是( )A B .C .2 D .589.如图,线段BC 的两端点的坐标分别为B (3,8),C (6,3),以点A (1,0)为位似中心,将线段BC 缩小为原来的12后得到线段DE ,则端点D 的坐标为( )A.(1,4) B.(2,4) C.(32,4) D.(2,2)10.知正六边形的边心距是,则正六边形的边长是A.B.C.D.11.如图,将△ABC沿BC边上的高线AD平移到△A′B′C′的位置,已知△ABC的面积为18,阴影部分三角形的面积为2,若AA′=4,则AD的长度为A.2 B.6C.4 D.812.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有( )A .①③④B .②④⑤C .①②⑤D .②③⑤二、填空题(每小题3分,共计12分)13.25的平方根是__________,16的算术平方根是__________,﹣8的立方根是__________. 14.设α、β是方程x 2﹣x ﹣2018=0的两根,则α3+2019β﹣2018的值为__________.15.在平面直角坐标系xOy 中,点A (4,3)为⊙O 上一点,B 为⊙O 内一点,请写出一个符合条件要求的点B 的坐标__________.16.如图,在△A 1B 1C 1中,已知A 1B 1=8,B 1C 1=6,A 1C 1=7,依次连接△A 1B 1C 1的三边中点,得到△A 2B 2C 2,再依次连接△A 2B 2C 2的三边中点,得到△A 3B 3C 3,…,按这样的规律下去,△A 2019B 2019C 2019的周长为__________.三、简答题(17-21每题8分,22-23每题10分,24题12分)17.先化简再求值:24)44222(22--÷+----+x x x x x x x x ,其中x=4tan45°+2cos30°.18.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O.(1)求证:△DBC△△ECB;(2)求证:OB=OC.19.我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).(1)此次共调查了名学生.(2)将条形统计图补充完整.(3)”数学兴趣与培优”所在扇形的圆心角的度数为.(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?(5)学校将从喜欢”A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园”金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.20.如图所示,某施工队要测量隧道长度BC,AD=600米,AD⊥BC,施工队站在点D处看向B,测得仰角45°,再由D 走到E 处测量,DE ∥AC,DE=500米,测得仰角为53°,求隧道BC 长.(sin53°≈54,cos53°≈53,tan53°≈34).21.如图,一次函数与反比例函数的图象交于点A (﹣4,﹣2)和B (a ,4),直线AB 交y 轴于点C ,连接QA 、O B . (1)求反比例函数的解析式和点B 的坐标:(2)根据图象回答,当x 的取值在什么范围内时,一次函数的值大于反比例函数的值; (3)求△AOB 的面积.22.”莓好河南,幸福家园”,2019年河南省草莓旅游文化节期间,甲、乙两家草莓采摘园草莓品质相同,销售价格也相同,且推出了如下的优惠方案:甲园游客进园需购买20元/人的门票,采摘的草莓六折优惠乙园游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠活动期间,小雪与爸爸妈妈决定选一个周末一同去采摘草莓,若设他们的草莓采摘量为x(千克)(出园时欲将自己采摘的草莓全部购买),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.(1)求y1、y2与x之间的函数关系式;(2)请在图中画出y1与x之间大致的函数图象;(3)若小雪和爸爸妈妈当天所采摘的草莓不少于10千克,则选择哪个草莓园更划算?请说明理由.23.四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结A C.B D.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交与点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.24.如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A.B两点,过A.B两点分别作x轴的垂线,垂足分别为点D.点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A.E.F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.答案与解析一、选择题(每小题3分,共计36分) 1.下列计算正确的是( ) A .(﹣a +b )(﹣a ﹣b )=b 2﹣a 2 B .x +2y =3xyC =0D .(﹣a 3)2=﹣a 5【答案】C【解析】A .原式=a 2﹣b 2,故A 错误;B .x 与2y 不是同类项,不能合并,原式=x +2y ,故B 错误;C .原式=0,故C 正确;D .原式=a 6,故D 错误.2.在中考复习中,老师出了一道题”化简23224x xx x +-++-“.下列是甲、乙、丙三位同学的做法,下列判断正确的是( )甲:原式2222232232284444x x x x x x x x x x x +--+----=-==----()()()(); 乙:原式=(x +3)(x ﹣2)+(2﹣x )=x 2+x ﹣6+2﹣x =x 2﹣4 丙:原式323131222222x x x x x x x x x x +-++-=-=-==++-+++()() 1 A .甲正确 B .乙正确 C .丙正确 D .三人均不正确【答案】C【解析】原式2222223226244444x x x x x x x x x x x +--+-+--=+===----()()1,则丙正确.3.如图,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲按顺时针方向环形,乙按逆时针方向环行,若乙的速度是甲的3倍,那么它们第一次相遇在AD边上,请问它们第2015次相遇在( )边上.A.AD B.DC C.BC D.AB【答案】C【解析】设正方形的边长为a,因为甲的速度是乙的速度的3倍,时间相同,甲乙所行的路程比为1:3,把正方形的每一条边平均分成2份,由题意知:①第一次相遇甲乙行的路程和为2a,乙行的路程为2a33a132⨯=+,甲行的路程为2a11132⨯=+a,在AD边的中点相遇;②第二次相遇甲乙行的路程和为4a,乙行的路程为4a313⨯=+3a,甲行的路程为4a113⨯=+a,在CD边的中点相遇;③第三次相遇甲乙行的路程和为4a,乙行的路程为4a313⨯=+3a,甲行的路程为4a113⨯=+a,在BC边的中点相遇;④第四次相遇甲乙行的路程和为4a,乙行的路程为4a313⨯=+3a,甲行的路程为4a113⨯=+a,在AB边的中点相遇;⑤第五次相遇甲乙行的路程和为4a,乙行的路程为4a313⨯=+3a,甲行的路程为4a113⨯=+a,在AD边的中点相遇;…四次一个循环,因为2015=503×4+3,所以它们第2015次相遇在边BC上.故选C .4..方程70050020x x =-的解为( ) A .x =0 B .x =20C .x =70D .x =50【答案】C【解析】去分母得:700x ﹣14000=500x , 移项合并得:200x =14000, 解得:x =70,经检验x =70是分式方程的解. 5.下列结论正确的是( ) A .如果a >b ,c >d ,那么a ﹣c >b ﹣dB .如果a >b ,那么1ab>C .如果a >b ,那么11a b<D .如果22a b c c<,那么a <b 【答案】D【解析】∵c >d ,∴﹣c <﹣d ,∴如果a >b ,c >d ,那么a ﹣c >b ﹣d 不一定成立,∴选项A 不符合题意;∵b =0时,ab 无意义, ∴选项B 不符合题意;∵a >0>b 时,11ab>,∴选项C 不符合题意;∵如果22a b c c<,那么a <b ,∴选项D 符合题意.6.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第( )象限.A.一B.二C.三D.四【答案】D【解析】∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.7.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠BCF度数为( )A.15°B.18°C.25°D.30°【答案】D【解析】由题意可得:∠ABC=30°,∵AB∥CF,∴∠BCF=∠ABC=30°.8.如图,▱ABCD的对角线AC与BD相交于点O,过点O作OE⊥AD于点E,若AB=4,∠ABC=60°,则OE的长是( )A B.C.2 D.5 8【答案】A【解析】作CF⊥AD于F,如图所示:∵四边形ABCD是平行四边形, ∴∠ADC=∠ABC=60°,CD=AB=4,OA=OC,∴∠DCF=30°,∴DF 12=CD =2,∴CF =∵CF ⊥AD ,OE ⊥AD ,CF ∥OE ,∵OA =OC ,∴OE 是△ACF 的中位线,∴OE 12=CF =9.如图,线段BC 的两端点的坐标分别为B (3,8),C (6,3),以点A (1,0)为位似中心,将线段BC 缩小为原来的12后得到线段DE ,则端点D 的坐标为( )A .(1,4)B .(2,4)C .(32,4) D .(2,2)【答案】B【解析】∵将线段BC 缩小为原来的12后得到线段DE , ∴△ADE ∽△ABC ,∴12AD DE AB BC ==, ∴点D 是线段AB 的中点,∵A (1,0),B (3,8), ∴点D 的坐标为(2,4),10.知正六边形的边心距是,则正六边形的边长是A .B .C .D .【答案】A【解析】∵正六边形的边心距为,∴OB ,∠OAB =60°,∴ABtan60OB ===︒,∴AC =2AB11.如图,将△ABC 沿BC 边上的高线AD 平移到△A ′B ′C ′的位置,已知△ABC 的面积为18,阴影部分三角形的面积为2,若AA ′=4,则AD 的长度为A .2B .6C .4D .8【答案】B【解析】设AD =x ,则A ′D =x ﹣4,根据平移性质可知△ABC 与阴影部分三角形相似,则222418x x-=(),解得x =6. 12.在平面直角坐标系中,二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,现给出下列结论:①ab <0;②b 2﹣4ac >0;③9a ﹣3b +c <0;④b ﹣4a =0;⑤ax 2+bx =0的两个根为x 1=0,x 2=﹣4,其中正确的结论有( )A .①③④B .②④⑤C .①②⑤D .②③⑤【答案】B【解析】∵抛物线开口向下,∴a <0, ∵2ba-=-2,∴b =4a ,ab >0,∴b ﹣4a =0,∴①错误,④正确, ∵抛物线与x 轴交于﹣4,0处两点,∴b 2﹣4ac >0,方程ax 2+bx =0的两个根为x 1=0,x 2=﹣4, ∴②⑤正确,∵当x =﹣3时y >0,即9a ﹣3b +c >0,∴③错误, 故正确的有②④⑤.故选B . 二、填空题(每小题3分,共计12分)13.25的平方根是__________,16的算术平方根是__________,﹣8的立方根是__________. 【答案】±5,4,﹣2. 【解析】25的平方根是±5,16的算术平方根是4,﹣8的立方根是﹣2.14.设α、β是方程x 2﹣x ﹣2018=0的两根,则α3+2019β﹣2018的值为__________. 【答案】2019【解析】由根与系数关系α+β=1, α3+2019β﹣2018=α3﹣2019α+(2019α+2019β)﹣2018=α3﹣2019α+2019(α+β)﹣2018=α3﹣2019α+2019﹣2018=α3﹣2019α+1=α(α2﹣2019)+1=α(α+2018﹣2019)+1=α(α﹣1)+1=α2﹣α+1=2018+1=2019.15.在平面直角坐标系xOy中,点A(4,3)为⊙O上一点,B为⊙O内一点,请写出一个符合条件要求的点B的坐标__________.【答案】故答案为:(2,2).【解析】如图,连结OA,OA=5,∵B为⊙O内一点,∴符合要求的点B的坐标(2,2)答案不唯一.16.如图,在△A1B1C1中,已知A1B1=8,B1C1=6,A1C1=7,依次连接△A1B1C1的三边中点,得到△A2B2C2,再依次连接△A2B2C2的三边中点,得到△A3B3C3,…,按这样的规律下去,△A2019B2019C2019的周长为__________.【答案】2018212【解析】∵A 1B 1=8,B 1C 1=6,A 1C 1=7,∴△A 1B 1C 1的周长是8+6+7=21,依次连接△A 1B 1C 1的三边中点,得到△A 2B 2C 2, ∴A 2B 212=A 1B 1=4,B 2C 212=B 1C 1=3,A 2C 212=A 1C 1=3.5, ∴△A 2B 2C 2的周长为4+3+3.5=10.512=⨯21, 同理△A 3B 3C 3的周长1122=⨯⨯21214=,… 所以,△A 2019B 2019C 2019的周长为(12)2018×212018212=.三、简答题(17-21每题8分,22-23每题10分,24题12分)17.先化简再求值:24)44222(22--÷+----+x x x x x x x x ,其中x=4tan45°+2cos30°. 【答案】见解析.【解析】先根据分式的混合运算顺序和运算法则化简原式,再据特殊锐角三角函数值求得x 的值,代入计算可得.原式=[22x x +-﹣2(2)(2)x x x --]÷42x x -- =(22x x +-﹣2x x -)•24x x --=2x x -•24x x -- =4x x -当x =4tan45°+2cos30°=4×1+2=时,18.如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O . (1)求证:△DBC △△ECB ; (2)求证:OB =OC .【答案】见解析.【解析】(1)根据等腰三角形的性质得到△ECB =△DBC 根据全等三角形的判定定理即可得到结论; 证明:△AB =AC , △△ECB =△DBC ,在△DBC 与△ECB 中,△△DBC △△ECB (SAS );(2)根据全等三角形的性质得到△DCB =△EBC 根据等腰三角形的判定定理即可得到OB =OC证明:由(1)知△DBC△△ECB,△△DCB=△EBC,△OB=OC.19.我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).(1)此次共调查了名学生.(2)将条形统计图补充完整.(3)”数学兴趣与培优”所在扇形的圆心角的度数为.(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?(5)学校将从喜欢”A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园”金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.【答案】见解析.【解析】(1)此次调查的总人数为40÷20%=200(人),故答案为:200;(2)D类型人数为200×25%=50(人),B类型人数为200﹣(40+30+50+20)=60(人),补全图形如下:(3)”数学兴趣与培优”所在扇形的圆心角的度数为360°×=108°,故答案为:108°;(4)估计该校喜欢A、B、C三类活动的学生共有2000×=1300(人);(5)画树状图如下:,由树状图知,共有12种等可能结果,其中一男一女的有8种结果,∴刚好一男一女参加决赛的概率=.20.如图所示,某施工队要测量隧道长度BC,AD=600米,AD ⊥BC,施工队站在点D 处看向B,测得仰角45°,再由D 走到E 处测量,DE ∥AC,DE=500米,测得仰角为53°,求隧道BC 长.(sin53°≈54,cos53°≈53,tan53°≈34).【答案】隧道BC 的长度为700米.【解析】作EM ⊥AC 于点M,构建直角三角形,解直角三角形解决问题. 如图,△ABD 是等腰直角三角形,AB=AD=600. 作EM ⊥AC 于点M,则AM=DE=500,∴BM=100.在Rt △CEM 中,tan53°=CM EM ,即600CM =43, ∴CM=800,∴BC=CM -BM=800-100=700(米), ∴隧道BC 的长度为700米. 答:隧道BC 的长度为700米.21.如图,一次函数与反比例函数的图象交于点A (﹣4,﹣2)和B (a ,4),直线AB 交y 轴于点C ,连接QA 、O B . (1)求反比例函数的解析式和点B 的坐标:(2)根据图象回答,当x 的取值在什么范围内时,一次函数的值大于反比例函数的值; (3)求△AOB 的面积.【解析】(1)设反比例函数的解析式为y kx =(k ≠0), ∵反比例函数图象经过点A (﹣4,﹣2),∴﹣24k =-, ∴k =8,∴反比例函数的解析式为y 8x=, ∵B (a ,4)在y 8x =的图象上,∴48a=, ∴a =2,∴点B 的坐标为B (2,4);(2)根据图象得,当x >2或﹣4<x <0时,一次函数的值大于反比例函数的值; (3)设直线AB 的解析式为y =ax +b ,∵A (﹣4,﹣2),B (2,4),∴24a b ⎨+=⎩,解得2b ⎨=⎩,∴直线AB 的解析式为y =x +2,∴C (0,2),∴S △AOB =S △AOC +S △BOC 12=⨯2×41222+⨯⨯=6. 22.”莓好河南,幸福家园”,2019年河南省草莓旅游文化节期间,甲、乙两家草莓采摘园草莓品质相同,销售价格也相同,且推出了如下的优惠方案: 甲园 游客进园需购买20元/人的门票,采摘的草莓六折优惠乙园游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠活动期间,小雪与爸爸妈妈决定选一个周末一同去采摘草莓,若设他们的草莓采摘量为x (千克)(出园时欲将自己采摘的草莓全部购买),在甲采摘园所需总费用为y 1(元),在乙采摘园所需总费用为y 2(元),图中折线OAB 表示y 2与x 之间的函数关系.(1)求y 1、y 2与x 之间的函数关系式;(2)请在图中画出y 1与x 之间大致的函数图象;(3)若小雪和爸爸妈妈当天所采摘的草莓不少于10千克,则选择哪个草莓园更划算?请说明理由. 【解析】(1)根据题意,结合图象可知:甲乙两园的草莓单价为:300÷10=30(元/千克), y 1=30×0.6x +20×3=18x +60; 由图可得,当0≤x ≤10时,y 2=30x ,当x >10时,设y 2=kx +b ,将(10,300)和(20,450)代入y 2=kx +b ,20450k b ⎨+=⎩,解得150b ⎨=⎩, ∴当x >10时,y 2=15x +150,∴2300101515010x x y x x ≤≤⎧=⎨+>⎩()();(2)y 2与x 之间大致的函数图象如图所示:(3)y 1<y 2(x ≥10),即18x +60<15x +150,解得x <30; y 1=y 2,即18x +60=15x +150,解得x =30; y 1>y 2,即18x +60>5x +150,解得x >30,答:当草莓采摘量x 的范围为:10≤x <30时,甲采摘园更划算; 当草莓采摘量x =30时,两家采摘园所需费用相同; 当草莓采摘量x 的范围为x >30时,乙采摘园更划算.23.四边形ABCD 是⊙O 的圆内接四边形,线段AB 是⊙O 的直径,连结A C.B D .点H 是线段BD 上的一点,连结AH 、CH ,且∠ACH =∠CBD ,AD =CH ,BA 的延长线与CD 的延长线相交与点P .(1)求证:四边形ADCH 是平行四边形; (2)若AC =BC ,PB =PD ,AB +CD =2(+1)①求证:△DHC 为等腰直角三角形; ②求CH 的长度.【答案】见解析.【解析】本题是圆的综合题,考查了圆的有关知识,平行四边形的判定和性质,相似三角形的判定和性质等知识,求CD的长度是本题的关键.(1)由圆周角的定理可得∠DBC=∠DAC=∠ACH,可证AD∥CH,由一组对边平行且相等的是四边形是平行四边形可证四边形ADCH是平行四边形;(2)①由平行线的性质可证∠ADH=∠CHD=90°,由∠CDB=∠CAB=45°,可证△DH为等腰直角三角形;②通过证明△ADP∽△CBP,可得,可得,通过证明△CHD∽△ACB,可得,可得AB=CD,可求CD=2,由等腰直角三角形的性质可求CH的长度.证明:(1)∵∠DBC=∠DAC,∠ACH=∠CBD∴∠DAC=∠ACH,∴AD∥CH,且AD=CH∴四边形ADCH是平行四边形(2)①∵AB是直径∴∠ACB=90°=∠ADB,且AC=BC∴∠CAB=∠ABC=45°,∴∠CDB=∠CAB=45°∵AD∥CH∴∠ADH=∠CHD=90°,且∠CDB=45°∴∠CDB=∠DCH=45°,∴CH=DH,且∠CHD=90°∴△DHC为等腰直角三角形;②∵四边形ABCD是⊙O的圆内接四边形,∴∠ADP=∠PBC,且∠P=∠P,∴△ADP∽△CBP∴,且PB=PD,∴,AD=CH,∴∵∠CDB=∠CAB=45°,∠CHD=∠ACB=90°∴△CHD∽△ACB∴AB=CD∴,∵AB+CD=2(+1),∴CD+CD=2(+1)∴CD=2,且△DHC为等腰直角三角形,∴CH=24.如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A.B两点,过A.B两点分别作x轴的垂线,垂足分别为点D.点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A.E.F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.【答案】见解析.【解析】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、正方形的性质、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用正方形的性质,找出关于m的方程;(3)分0<t≤4,4<t≤7,7<t≤8三种情况,利用平行四边形的性质找出关于t的一元二次方程.(1)将(0,0),(8,0)代入y=﹣x2+bx+c,得:,解得:,∴该二次函数的解析式为y=﹣x2+x.(2)当y=m时,﹣x2+x=m,解得:x1=4﹣,x2=4+,∴点A的坐标为(4﹣,m),点B的坐标为(4+,m),∴点D的坐标为(4﹣,0),点C的坐标为(4+,0).∵矩形ABCD为正方形,∴4+﹣(4﹣)=m,解得:m1=﹣16(舍去),m2=4.∴当矩形ABCD为正方形时,m的值为4.(3)以A.E.F、Q四点为顶点构成的四边形能为平行四边形.由(2)可知:点A的坐标为(2,4),点B的坐标为(6,4),点C的坐标为(6,0),点D的坐标为(2,0).设直线AC的解析式为y=kx+a(k≠0),将A(2,4),C(6,0)代入y=kx+a,得:,解得:,∴直线AC的解析式为y=﹣x+6.当x=2+t时,y=﹣x2+x=﹣t2+t+4,y=﹣x+6=﹣t+4,∴点E的坐标为(2+t,﹣t2+t+4),点F的坐标为(2+t,﹣t+4).∵以A.E.F、Q四点为顶点构成的四边形为平行四边形,且AQ∥EF,∴AQ=EF,分三种情况考虑:①当0<t≤4时,如图1所示,AQ=t,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t=﹣t2+t,解得:t1=0(舍去),t2=4;②当4<t≤7时,如图2所示,AQ=t﹣4,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t﹣4=﹣t2+t,解得:t3=﹣2(舍去),t4=6;③当7<t≤8时,AQ=t﹣4,EF=﹣t+4﹣(﹣t2+t+4)=t2﹣t,∴t﹣4=t2﹣t,解得:t5=5﹣(舍去),t6=5+(舍去).综上所述:当以A.E.F、Q四点为顶点构成的四边形为平行四边形时,t的值为4或6.。

2024北京二中初三二模数学试卷和答案

2024北京二中初三二模数学试卷和答案

2024北京二中初三二模数 学一、选择题(每题均有四个选项,符合题意的选项只有一个.)1. 下列图形是中心对称图形的是( )A. B. C. D.2. 将抛物线25y x =先向右平移2个单位,再向上平移3个单位后,得到新抛物线的表达式是( )A. 25(2)3y x =++B. 25(2)3y x =-+C. 25(2)3y x =--D. 25(2)3y x =+-3. 已知O 的半径为 r ,点P 到圆心的距离为d .如果d r ≥,那么点P ( )A. 在圆外B. 在圆外或圆上C. 在圆内或圆上D. 在圆内4. 一个多边形的内角和等于1260︒,则它是( )A. 五边形B. 七边形C. 九边形D. 十边形5. 正比例函数y=kx 和反比例函数2k 1y x+=-(k 是常数且k≠0)在同一平面直角坐标系中的图象可能是A. B. C. D.6. 若13a a -=-,则221a a +的结果是( )A. 7 B. 9 C. ﹣9 D. 117. 如图是30名学生A ,B 两门课程成绩的统计图,若记这30名学生A 课程成绩的方差为21S ,B 课程成绩的方差为22S ,则21S ,22S 的大小关系为( )A. 2212s s <B. 2212s s =C. 2212S s >D. 不确定8. 如图①,底面积为230cm 的空圆柱容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度()cm h 与注水时间()s t 之间的关系如图②.若“几何体”的下方圆柱的底面积为215cm ,求“几何体”上方圆柱体的底面积为( )2cmA. 24B. 12C. 18D. 21二、填空题(本大题共8小题)9. 分解因式:32232x y x y xy -+-= ______10. 如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB =3米,AC =10米,则旗杆CD 的高度是_________米.11. 若分式67x--的值为正数,则x 满足______12. 请写出一个解为34x y =⎧⎨=-⎩,的二元一次方程组,这个方程组可以是_________.13. 若点P 是△ABC 角平分线的交点,且S △ABC =30,C △ABC =30,则点P 到边AB 的距离是 _____.14. 如图,在ABC 中,AB 的垂直平分线DE 交AC 于点E ,AB AC =,72C ∠=︒,若4AB =,则CE 的长度为________.15. 正六边形内接于圆,则它的边所对的圆周角的度数为______.16. 某超市现有n 个人在收银台排队等候结账.设结账人数按固定的速度增加,收银员结账的速度也是固定的.若同时开放2个收银台,需要20分钟可使排队等候人数为0;若同时开放3个收银台,需要12分钟可使排队等候人数为0.为减少顾客等待结账的时间,需要6分钟内使排队等候人数为0,则需要至少同时开放_______个收银台.三.解答题(共12小题,满分68分)17. 计算:2cos45°﹣|1|+(13)﹣118. 解不等式组243(2)312x x x +≤+⎧⎨-<⎩.19. 已知关于x 的一元二次方程2(21)20mx m x m --+-=有两个不相等的实数根.(1)求m 的取值范围;(2)若方程有一个根是0,求方程的另一个根.20. 有趣的倍圆问题:校园里有个圆形花坛,春季改造,负责该片花园维护的某班同学经过协商,想把该花坛的面积扩大一倍.他们在图纸上设计了以下施工方案:①在⊙O 中作直径AB ,分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧在直径AB 上方交于点C ,作射线OC 交⊙O 于点D ;②连接BD ,以O 为圆心BD 长为半径画圆;③大⊙O 即为所求作.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成如下证明:证明:连接CA 、CB在△ABC 中,∵CA =CB ,O 是AB 的中点,∴CO ⊥AB ( )(填推理的依据)设小O 半径长为r∵OB =OD ,∠DOB =90°∴BD r∴S 大⊙O =πr )2= S 小⊙O .21. 如图,在ABC 中,点D 为AC 边上一点,连结BD 并延长到点E ,过点E 作EF BC ∥交AC 于点F ,交AB 于点G .(1)若BD DE =,求证:CD DF =;(2)若7025BG GE ACB E =∠=︒∠=︒,,,求∠A 的度数.22. 在平面直角坐标系xOy 中,已知抛物线()230y ax bx a =+-≠,经过点()1,0A -,()4,5B .(1)求该抛物线的解析式.(2)点P 是x 轴上的动点,过点P 作垂直于x 轴的直线l ,直线l 与该抛物线交于点M ,与直线AB 交于点N ,当PM PN >时,求点P 的横坐标p x 的取值范围.23. 小彬在今年的篮球联赛中表现优异.下表是他在这场联赛中,分别与甲队和乙队各四场比赛中的技术统计.场次对阵甲队对阵乙队得分篮板失误得分篮板失误第一场2110225172第二场2910231150第三场2414316124第四场261052282平均值a 11223.5132(1)小彬在对阵甲队时的平均每场得分a 的值是______分;(2)小彬在这8场比赛的篮板统计数据中,众数是______,中位数是______;(3)如果规定“综合得分”为:平均每场得分1⨯+平均每场篮板 1.2⨯+平均每场失误()1⨯-,且综合得分越高表现越好.利用这种方式,我们可以计算得出小彬在对阵乙队时的“综合得分”是37.1分.请你比较小彬在对阵哪一个队时表现更好,并说明理由.24. 如图1,直线AB 与直线1l ,2l 分别交于C ,D 两点,点M 在直线k 上,射线DE 平分ADM ∠交直线1l 于点Q ,2AC Q C D Q ∠=∠.(1)证明:12l l ∥;(2)如图2,点P 是CD 上一点,射线QP 交直线2l 于点F ,70ACQ ∠=︒.①若15QFD ∠=︒,求出FQD ∠的度数.②点N 在射线DE 上,满足QCN QFD ∠=∠,连接CN ,请补全图形,探究CND ∠与PQD ∠的等量关系,并写出证明过程.25. 小云在学习过程中遇到一个函数21||(1)(2)6y x x x x =-+≥-.下面是小云对其探究的过程,请补充完整:(1)当20x -≤<时,对于函数1||y x =,即1y x =-,当20x -≤<时,1y 随x 的增大而 ,且10y >;对于函数221y x x =-+,20x -≤<当时,2y 随x 的增大而 ,且20y >;结合上述分析,进一步探究发现,对于函数y ,当20x -≤<时,y 随x 的增大而 .(2)当0x ≥时,对于函数y ,当0x ≥时,y 与x 的几组对应值如下表:x 0121322523L y 0116167161954872L综合上表,进一步探究发现,当0x ≥时,y 随x 的增大而增大.在平面直角坐标系xOy 中,画出当0x ≥时的函数y 的图象.(3)过点(0,)(0)m m >作平行于x 轴的直线l ,结合(1)(2)的分析,解决问题:若直线l 与函数21||(1)(2)6y x x x x =-+≥-的图象有两个交点,则m 的最大值是_________.26. 小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:a .小云所住小区5月1日至30日的厨余垃圾分出量统计图:b .小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段1日至10日11日至20日21日至30日平均数100170250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为 (结果取整数)(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的 倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为21,s 5月11日至20日的厨余垃圾分出量的方差为22s ,5月21日至30日的厨余垃圾分出量的方差为23s .直接写出222123,,s s s 的大小关系.27. 如图,在等腰△ABC 中,AC =BC ,D ,E 分别为AB ,BC 上一点,∠CDE =∠A .(1)如图1,若BC =BD ,∠ACB =90°,则∠DEC 度数为_________°;(2)如图2,若BC =BD ,求证:CD =DE ;(3)如图3,过点C 作CH ⊥DE ,垂足为H ,若CD =BD ,EH =1,求DE -BE 的值.28. 问题探究:(1)如图1,在等边ABC 中,3AB =,点P 是它的外心,则PB = ;(2)如图2,在矩形ABCD 中,3AB =,边BC 上存在点P ,使90APD ∠=︒,求矩形ABCD 面积的最小值;问题解决:(3)如图3,在四边形ABCD 中,3AB =,90A B ∠=∠=︒,45C ∠=︒,边CD 上存在点P ,使60APB ∠=︒,在此条件下,四边形ABCD 的面积是否存在最大值?若存在,求出最大值;若不存在,请说明理由.参考答案一、选择题(每题均有四个选项,符合题意的选项只有一个.)1. 【答案】B【分析】本题主要考查了中心对称图形的识别,根据中心对称图形的定义进行逐一判断即可:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.【详解】解:A.不是中心对称图形,故此选项不符合题意;B.是中心对称图形,故此选项符合题意;C.不是中心对称图形,故此选项不符合题意;D.不是中心对称图形,故此选项不符合题意;故选B.2. 【答案】B【分析】按照“左加右减,上加下减”的规律,即可得出平移后抛物线的解析式.【详解】解:抛物线y=5x2先向右平移2个单位得到解析式:y=5(x-2)2,再向上平移3个单位得到抛物线的解析式为:y=5(x-2)2+3.故选:B.【点睛】此题考查了二次函数图象与几何变换,掌握抛物线解析式的变化规律:左加右减,上加下减是解题的关键.3. 【答案】B【分析】直接根据点与圆的位置关系即可得出结论.设⊙O的半径为r,点P到圆心的距离OP=d,则有点P 在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.【详解】解:∵⊙O的半径为r,点P到圆心的距离为d.如果d≥r,∴P点在圆外或圆上.故选B.【点睛】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.4. 【答案】Cn-⨯=,然后解方程即【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(2)1801260可.【详解】解:设这个多边形的边数为n,n-⨯=,(2)1801260n=,解得9故这个多边形为九边形.故选:C .【点睛】本题考查了多边形的内角和定理,解题的关键是掌握n 边形的内角和为2180()n -⨯︒.5. 【答案】C【分析】首先判断出反比例函数所在象限,再分情况讨论正比例函数y=kx 所过象限,进而选出答案.【详解】反比例函数2k 1y x+=-(k 是常数且k≠0)中,()2k 1-+<0,图象在第二、四象限,故A 、D 不合题意,当k >0时,正比例函数y=kx 的图象在第一、三象限,经过原点,故C 符合;当k <0时,正比例函数y=kx 的图象在第二、四象限,经过原点,故B 不符合;.故选C .6. 【答案】D【分析】根据完全平方的特征对式子进行整理,即(a-1a )2+2,最后整体代入进行计算可得结果.【详解】解:∵13a a -=-,∴221a a +=(a ﹣1a )2+2=(﹣3)2+2=9+2=11,故选:D .【点睛】本题主要考查了代数式的求值,解题的关键是掌握完全平方公式.7. 【答案】A【分析】根据方差的意义求解.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】方差体现了某组数据的波动情况,波动越大,方差越大,由图可知,B 课程成绩的波动大,A 课程成绩的波动小,∴2212s s <;故选:A .【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8. 【答案】A【分析】根据图像,分三个部分:满过“几何体”下方圆柱需18s ,满过“几何体”上方圆柱需()24186s -=,注满“几何体”上面的空圆柱形容器需()422418s -=,再设匀速注水的水流速度为3cm /s x ,根据圆柱的体积公式列方程可得匀速注水的水流速度;设“几何体”下方圆柱的高为cm a ,根据圆柱的体积公式得()3015185a ⋅-=⨯,解得6a =,于是得到“几何体”上方圆柱的高为5cm ,设“几何体”上方圆柱的底面积为2cm S ,根据圆柱的体积公式得()()53052418S ⋅-=⨯-,再解方程即可求解.【详解】解:根据函数图像得到圆柱形容器的高为14cm ,两个实心圆柱组成的“几何体”的高度为11cm ,水从刚满过由两个实心圆柱组成的“几何体”到注满用了:()422418s -=,这段高度为:)14113m (c -=,设匀速注水的水流速度为3cm /s x ,则18303x ⋅=⨯,解得5x =,即匀速注水的水流速度为35cm /s ;“几何体”下方圆柱的高为cm a ,则3015185()a ⋅-=⨯,解得6a =,所以“几何体”上方圆柱的高为)1165m (c -=,设“几何体”上方圆柱的底面积为2cm S ,根据题意得()()53052418S ⋅-=⨯-,解得24S =,即“几何体”上方圆柱的底面积为224cm ,故选:A .【点睛】本题考查了函数图像的应用:把分段函数图像中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题是解决本题的关键.二、填空题(本大题共8小题)9. 【答案】()2xy x y --【分析】本题考查了因式分解,运用提公因式法和完全平方公式即可作答.【详解】32232x y x y xy -+-()222xy x xy y =--+()2xy x y =--,故答案为:()2xy x y --.10. 【答案】6【分析】由题意得90ABE ACD ∠=∠=︒,则△ABE ∽△ACD ,根据相似三角形的性质得BE AB CD AC =,即可得.【详解】解:如图:∵BE ⊥AC ,CD ⊥AC ,∴90ABE ACD ∠=∠=︒,∴△ABE ∽△ACD ,∴BE ABCD AC =,∴1.8310CD =,解得:CD =6.故答案为:6.【点睛】本题考查了相似三角形,解题的关键是掌握相似三角形的判定与性质.11. 【答案】7x >【分析】本题考查了分式,解不等式,要使得分数为正数,则分子、分母必须同号,据此作答即可.【详解】根据题意有:67x ->0-,∵60-<,∴70x -<,∴7x >,故答案为:7x >.12. 【答案】17x y x y +=-⎧⎨-=⎩【分析】由题意知,可组的二元一次方程组不唯一,加减是最简单的,所以可给出17x y x y +=-⎧⎨-=⎩的形式.【详解】解:∵1x y +=-,7x y -=∴最简单的二元一次方程组可为17x y x y +=-⎧⎨-=⎩故答案为:17x y x y +=-⎧⎨-=⎩.【点睛】本题考查了二元一次方程组.解题的关键在于按照方程组的解给出正确的方程组的形式.13. 【答案】2【分析】由角平分线的性质可得,点P 到三角形三边的距离相等,即三个三角形的AB 、BC 、CA 的高相等,利用面积公式即可求解.【详解】解:过点P 作PD ⊥AC 于D ,PE ⊥AB 于E ,PF ⊥BC 于F ,∵P 是三角形三条角平分线的交点,∴PD =PE =PF ,∵S △ABC =30,C △ABC =30,∴点P 到边AB 的距离23030⨯==2.故答案为:2.【点睛】本题主要考查了角平分线的性质和三角形面积的求法,作辅助线是解题的关键.角平分线的性质:角的平分线上的点到角的两边的距离相等.14. 【答案】6-【分析】先根据等边对等角和三角形内角和定理得到36A ∠=︒,再根据线段垂直平分线的性质得到AE BE =,推出36EAB EBA ∠=∠=︒,进而求出36EBC ∠=︒,则72BEC ∠=︒,即可得到BE BC =,证明ABC BCE ∽,设CE x =,则4AE BE BC x ===-,利用相似三角形的性质建立方程444x x x-=-,解方程即可得到答案.【详解】解:∵AB AC =,72C ∠=︒,∴72ABC C ∠=∠=︒,∴18036A ABC C =︒--=︒∠∠∠,∵AB 的垂直平分线DE 交AC 于点E ,∴AE BE =,∴36EAB EBA ∠=∠=︒,∴36EBC ABC EBA A =-=︒=∠∠∠∠,∴18072BEC C EBC C ∠=︒-∠-∠=︒=∠,∴BE BC =,又∵C C ∠=∠,∴ABC BCE ∽,∴BE CE AC BC=,设CE x =,则4AE BE BC AC CE x ===-=-,∴444x x x-=-,∴28164x x x -+=,解得6x =-(不合题意的值舍去),∴6CE =-故答案为:6-.【点睛】本题主要考查了相似三角形的性质与判定,线段垂直平分线的性质,等腰三角形的性质与判定,三角形内角和定理等等,灵活运用所学知识是解题的关键.15. 【答案】30︒或150︒【分析】画出图形,连接,,,OA OB BE AE ,在 AB 上取点G ,连接,AG BG ,由正六边形的性质得出,60AB BC CD DE AE EF AOB =====∠=︒,由圆周角定理得出3120AEB AOB ∠=∠=︒,由圆内接四边形的性质得出180150AGB AEB ∠=︒-∠=︒,即可得出结论.【详解】解:连接,,,OA OB BE AE ,在 AB 上取点G ,连接,AG BG ,如图所示:∵六边形ABCDEF 是正六边形,∴360,=606AB BC CD DE AE EF AOB ︒=====∠=︒,∴3120AEB AOB ∠=∠=︒,∵四边形AEBG 是圆内接四边形,∴180150AGB AEB ∠=︒-∠=︒,即在正六边形的外接圆中,任一边所对的圆周角的度数为30︒或150︒;故答案为:30︒或150︒.【点睛】本题考查了正多边形和圆、圆周角定理、圆内接四边形的性质;熟练掌握正六边形的性质和圆周角定理是解题的关键.16. 【答案】6【分析】设每分钟增加结账人数x 人,每分钟收银员结账y 人,根据题意,得y =2x ,n =60x .根据为减少顾客等待结账的时间,需要6分钟内使排队等候人数为0的要求,可设开放a 个收银台,则6ay ≥6x +n ,将y 和n 代入,即可求得a 的取值,从而请求解.【详解】解:设每分钟增加结账人数x 人,每分钟收银员结账y 人,根据题意,得2022012312x n y x n y +=⨯⎧⎨+=⨯⎩化简,得y =2x ,n =60x ,∴为减少顾客等待结账的时间,需要6分钟内使排队等候人数为0,设开放a 个收银台,则6ay ≥6x +n ,即6a ·2x ≥6x +60x ,12a ≥66,∵x >0,∴.a ≥112,∵a 是正整数,∴.a ≥6,∴需要至少同时开放6个收银台.故答案为:6.【点睛】本题考查了二元一次方程组和不等式的应用,弄清题意,正确设未知数找到相等关系是解题的关键.三.解答题(共12小题,满分68分)17. 【答案】1【分析】根据特殊角的三角函数值,绝对值的性质、负整数指数幂以及立方根的概念计算即可求解.【详解】2cos45°﹣|1|+(13)﹣12133=++-133=++-1=.【点睛】本题考查了特殊角的三角函数值,绝对值的性质、负整数指数幂以及立方根的定义,解题的关键是灵活运用所学知识解决问题.18. 【答案】-2≤ x <1【分析】先求出每个不等式的解集,然后求出不等式组的解集即可得到答案.【详解】解:243(2)312x x x +≤+⎧⎨-<⎩①②,解不等式①得:2x ≥-,解不等式②得:1x <,∴不等式组的解集为:21x -£<.【点睛】本题主要考查了解不等式组,解题的关键在于能够熟练掌握解一元一次不等式的方法.19. 【答案】(1)14m -> 且0m ≠ (2)另一个根为32【分析】(1)由一元二次方程定义和根的判别式与根之间的关系,列不等式组求解即可.(2)将x =0代入原方程,求出m ,再解方程即可.【小问1详解】解:∵2(21)20mx m x m --+-=是一元二次方程,0m ∴≠ ,∵一元二次方程2(21)20mx m x m --+-=有两个不相等的实数,240b ac \D=-> ,即:[]2(21)4(2)0m m m ----> ,整理得:410m +> ,14m \-> ,综上所述:14m -> 且0m ≠.【小问2详解】∵方程有一个根是0,将x =0代入方程得:20m -= ,2m ∴= ,则原方程为:2230x x -= ,解得:1230,2x x == ,∴方程的另一个根为32.【点睛】本题考查了一元二次方程的定义以及一元二次方程根的判别式与根的关系:0D Û>方程有两个不相等的实数根 , =0D Û方程有两个相等的实数根,0D Û<方程没有实数根,0D³Û方程有实数根.熟练掌握根的判别式与根的关系是解题关键,一元二次方程的二次项系数不能为0是易错点.20. 【答案】(1)见解析 (2)见解析【分析】(1)按照题意作图即可;(2)先根据三线合一定理得到CO ⊥AB ,然后证明BD r 即可得到S 大⊙O =πr )2=2S 小⊙O .【小问1详解】解:如图所示,即为所求;【小问2详解】证明:连接CA 、CB在△ABC 中,∵CA =CB ,O 是AB 的中点,∴CO ⊥AB (三线合一定理)(填推理的依据)设小O 半径长为r∵OB =OD ,∠DOB =90°∴BD r∴S 大⊙O =πr )2=2S 小⊙O .【点睛】本题主要考查了线段垂直平分线的性质与尺规作图,三线合一定理,勾股定理,圆的尺规作图等等,正确理解题意作出图形是解题的关键.21. 【答案】(1)见解析 (2)60︒【分析】(1)根据平行线的性质(两直线平行,内错角相等)可知DBC E ∠=∠,结合已知,BD DE BDC EDF =∠=∠(对顶角相等),可证得BDC EDF ≌ (ASA ),即可根据全等三角形的性质定理证得CD DF =.(2)根据平行线的性质、等腰三角形的性质及三角形内角和定理解答即可.【小问1详解】证明:∵EF BC∥∴E DBC∠=∠在Rt BDC Rt EDF 和中,DBC E BD DEBDC EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴EDF BDC ≌ (ASA )∴CD DF =;【小问2详解】解:∵EF BC∥∴25E DBC ∠=∠=︒又∵BG GE=∴25GBE E ∠=∠=︒∴50ABC GBE DBC ∠=∠+∠=︒在ABC中,∵70ACB ∠=︒∴180180507060A ABC ACB ∠=︒-∠-∠=︒-︒-︒=︒【点睛】本题考查了全等三角形的判定和性质,平行线的性质,等腰三角形的性质,三角形的内角和定理,掌握并熟练运用相关的性质定理是解题的关键.22. 【答案】(1)2=23y x x --(2)4p x >或2p x <【分析】(1)将点()1,0A -,()4,5B 代入解析式,利用待定系数法求解;(2)先求出直线AB 的解析式,设()223p p p M x ,x x --,()1p p N x ,x +,则223p p P x M x =--,1p PN x =+,根据PM PN >列出不等式,即可求解.【小问1详解】解: 抛物线()230y ax bx a =+-≠经过点()1,0A -,()4,5B ,∴ 3016435a b a b --=⎧⎨+-=⎩,解得12a b =⎧⎨=-⎩,∴该抛物线的解析式为2=23y x x --.【小问2详解】解:设直线AB 的解析式为y kx t =+.将点()1,0A -,()4,5B 代入,可得045k t k t -+=⎧⎨+=⎩,解得11k t =⎧⎨=⎩,∴直线AB 的解析式为1y x =+.设()223p p p M x ,x x --,()1p p N x ,x +,则223p p P x M x =--,1p PN x =+,PM PN >,∴2231p p p x x x -->+,∴()1310p p x x +⋅-->,10p x +>,∴310p x -->,∴31p x ->或31p x -<-,∴4p x >或2p x <.即点P 的横坐标p x 的取值范围是4p x >或2p x <.【点睛】本题考查待定系数法求一次函数、二次函数解析式,一次函数和二次函数图象上点的坐标的特征,利用绝对值的性质解不等式等,第2问有一定难度,正确求解不等式是解题的关键.23. 【答案】(1)25 (2)10,11(3)小彬在对阵乙队时表现更好,理由见解析【分析】(1)根据平均数的计算方法求解即可;(2)根据众数,中位数的概念求解即可;(3)根据“综合得分”的计算方法求出小彬在对称甲队时的得分,然后比较求解即可.【小问1详解】()21292426425a =+++÷=∴小彬在对阵甲队时的平均每场得分a 的值是25分,故答案为:25.【小问2详解】在这8场比赛的篮板统计数据中,10出现的次数最多,∴众数是10,从小到大排列为:8,10,10,10,12,14,15,17,∴在中间的两个数为10,12∴中位数为1012112+=,故答案为:10,11;【小问3详解】小彬在对称甲队时的“综合得分”为:()25111 1.22136.2⨯+⨯+⨯-=,∵36.237.1<∴小彬在对阵乙队时表现更好.【点睛】此题考查了平均数,众数,中位数,加权平均数的计算,解题的关键是熟练掌握以上计算方法.24. 【答案】(1)见详解 (2)①20︒;②CND PQD ∠=∠或70CND PQD ∠+∠=︒,证明见解答.【分析】(1)根据角平分线的定义以及平行线的判定进行解答即可;(2)①根据平行线的性质,角平分线的定义以及三角形的外角性质进行计算即可;②分两种情况画出相应的图形,根据图形中角的大小关系得出结论.【小问1详解】证明:如图1,DE 平分ADM ∠,12ADE EDM ADM ∴∠=∠=∠,∵2AC Q C D Q ∠=∠,ACQ ADM ∴∠=∠,12l l ∴∥;【小问2详解】解:①12l l ∥,70ADM ACQ ∴∠=∠=︒,DE 平分ADM ∠,1352ADE EDM ADM ∴∠=∠=∠=︒,EDM QFD FQD ∠=∠+∠ ,351520FQD ∴∠=︒-︒=︒;②证明:CND PQD ∠=∠或70CND PQD ∠+∠=︒,理由如下:如图3,12l l ∥,NCQ CTD ∴∠=∠,QCN QFD ∠=∠ ,CTD QFD ∴∠=∠,NT FQ ∴∥,CND PQD ∴∠=∠;如图4,由①可得1352CDQ CQD ACQ ∠=∠=∠=︒,CND CQN QCN ∠=∠+∠ ,QCN QFD ∠=∠,CND CQN QFD ∴∠=∠+∠,35CND QFD ∴∠=︒+∠,即:35CND QFD ︒∠-∠=,35QFD FQC CQD PQD QDM FQD PQD ∠=∠=∠-∠=∠-∠=︒-∠ ,(35)35CND QFD CND PQD ∴∠-∠=∠-︒-∠=︒,70CND PQD ∴∠+∠=︒,综上所述,CND ∠与FQD ∠满足的等量关系为CND PQD ∠=∠或70CND PQD ∠+∠=︒.【点睛】本题考查平行线的性质与判断,掌握平行线的性质和判断方法是解决问题的关键.25. 【答案】(1)减小,减小,减小;(2)见解析; (3)73.【分析】本题考查二次函数与不等式,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.(1)利用一次函数或二次函数的性质解决问题即可.(2)利用描点法画出函数图象即可.(3)观察图象可知,2x =-时,m 的值最大.【小问1详解】当20x -≤<时,对于函数1||y x =,即1y x =-,当20x -≤<时,1y 随x 的增大而减小,且10y >;对于函数221y x x =-+,当20x -≤<时,2y 随x 的增大而减小,且20y >;结合上述分析,进一步探究发现,对于函数y ,当20x -≤<时,y 随x 的增大而减小.故答案为:减小,减小,减小;【小问2详解】函数图象如图所示:【小问3详解】观察图象可知,2x =-时,m 的值最大,最大值172(421)63m =⨯⨯++=,故答案为:73.26. 【答案】(1)173;(2)2.9倍;(3)222123s s s >>【分析】(1)利用加权平均数的计算公式进行计算,即可得到答案;(2)利用5月份的平均数除以4月份的平均数,即可得到答案;(3)直接利用点状图和方差的意义进行分析,即可得到答案.【详解】解:(1)平均数:1[(10010)(17010)(25010)]17330⨯⨯+⨯+⨯=(千克);故答案为:173;(2)17360 2.9÷=倍;故答案为:2.9;(3)方差反应数据的稳定程度,即从点状图中表现数据的离散程度,所以从图中可知:222123s s s >>;【点睛】本题考查了方差的意义,平均数,以及数据的分析处理,解题的关键是熟练掌握题意,正确的分析数据的联系.27. 【答案】(1)67.5;(2)证明见解析;(3)DE -BE=2.【分析】(1)先根据等腰三角形的性质,得出∠A=∠B=45°=∠CDE ,再根据BC=BD ,可得出∠BDC 的度数,然后可得出∠BDE 的度数,最后根据三角形外角的性质可得出∠DEC 的度数;(2)先根据条件得出∠ACD=∠BDE ,BD=AC ,再根据ASA 判定△ADC ≌△BED ,即可得到CD=DE ;(3)先根据条件得出∠DCB=∠CDE ,进而得到CE=DE ,再在DE 上取点F ,使得FD=BE ,进而判定△CDF ≌△DBE (SAS ),得出CF=DE=CE ,再根据CH ⊥EF ,运用三线合一即可得到FH=HE ,最后得出CE-BE=DE-DF=EF=2HE ,即可得出结论.【详解】(1)解:∵AC=BC ,∠ACB=90°,∴∠A=∠B=45°=∠CDE ,又BC=BD ,∴∠BDC=∠BCD=12(180°-∠B)=67.5°,∴∠BDE=∠BDC-∠CDE=67.5°-45°=22.5°,∴∠DEC=∠B+∠BDE=67.5°;故答案为:67.5;(2)证明:∵AC=BC ,∠CDE=∠A ,∴∠A=∠B=∠CDE ,∵∠CDB=∠A+∠ACD=∠CDE+∠BDE ,∴∠ACD=∠BDE ,又∵BC=BD ,∴BD=AC ,在△ADC 和△BED 中,ACD BDEAC BD A B∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC ≌△BED (ASA ),∴CD=DE ;(3)解:∵CD=BD ,∴∠B=∠DCB ,由(2)知:∠CDE=∠B ,∴∠DCB=∠CDE ,∴CE=DE ,如图,在DE 上取点F ,使得FD=BE ,在△CDF 和△DBE 中,DF BECDE B CD BD=⎧⎪∠=∠⎨⎪=⎩,∴△CDF ≌△DBE (SAS ),∴CF=DE=CE,又∵CH ⊥EF ,∴FH=HE ,∴DE -BE=DE -DF=EF=2HE=2.【点睛】本题主要考查了全等三角形的判定与性质,以及等腰三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形以及等腰三角形.28. 【答案】(1(2)18(3+【分析】(1)画出图形,根据等边三角形的性质和外心的性质即可作答;(2)如图2中,当以AD 为直径的O 与BC 相切时,切点为P ,此时90APD ∠=︒,AD 的长最小,求出AD 的长即可解决问题;(3)存在.如图3中,如图作等边三角形ABM 的外接圆O ,当直线CD 与O 相切与P 时,四边形ABCD 的面积最大,此时满足条件60APB AMB ∠=∠=︒.想办法求出AD 、AB 即可解决问题.【小问1详解】如图,∵在等边ABC 中,3AB =,∴60B BC AB CW AB ∠=︒====,,,∵点P 是等边ABC 的外心,∴23PB PC WC ==,∴2233PB PC WC ====,【小问2详解】如图,当以AD 为直径的O 与BC 相切时,切点为P ,此时90APD ∠=︒,AD 的长最小.连接OP .∵O 与BC 相切,∴OP BC ⊥,∵在矩形ABCD 中,OA OP OD ==,∴四边形ABPO ,四边形CDOP 都是正方形,∴AB OP=∴3AB CD AO ===,6BC AD ==,∴矩形ABCD 面积的最小值为:18BC AB ⋅=.【小问3详解】存在.如图,在AB 的右边作等边三角形ABM 的外接圆O ,当直线CD 与O 相切与P 时,四边形ABCD 的面积最大,此时根据圆周角定理可知:满足条件60APB AMB ∠=∠=︒.延长MO 交AB 于E ,过点O 作OF AD ⊥于F ,过点P 作PT BC ⊥于T ,连接OP ,PT 交OM 于R .TP 的延长线交AD 的延长线于点N ,∵90A B ∠=∠=︒∴180A B ∠+∠=︒,∴AD BC ∥,又∵3AB =,45C ∠=︒,∴CD ==.∵ABM 是等边三角形,圆O 外接等边三角形ABM ,∴EM AB ⊥,结合OF AD ⊥、PT BC ⊥、90A B ∠=∠=︒,即四边形AEOF 、四边形AERN 、四边形BERT 、四边形FORN 是矩形,∴32AE EB NR RT ====,AF EO ==,OM OP ==∵45C ∠=︒,AD BC ∥,90N ∠=︒,∴45NDP C ∠=∠=︒,∴45NPD ∠=︒,即DNPN =,∵OP CD ⊥,∴90DPO ∠=︒,∴18045OPR DPO DPN ∠=︒-∠-∠=︒,∴OR PR ===,∴BT AN ==,32DN PN NR PR ==-==∴AD AN DN =-==,32BC BT CT =+=++=,∴2ABCD AD BC S AB +=⋅=四边形.【点睛】本题考查了四边形综合题、等腰三角形的判定和性质、勾股定理、直线与圆的位置关系、四边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用辅助圆解决问题,属于中考压轴题.。

中考数学二模试卷含答案

中考数学二模试卷含答案

中考数学二模试卷一.选择题(每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,将符合题目要求的选项填入答题卡)1.2020﹣1的相反数是()A.﹣2020B.﹣C .D.20202.23000000用科学记数法表示应为()A.2.3×103B.23×106C.2.3×107D.23×1023.下列所给图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .4.如图,含45°角的三角板的直角顶点A在直线a上,顶点C在直线b上.若a∥b,∠1=58°,则∠2的度数为()A.85°B.110°C.103°D.118°5.下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+1C.(3m2)3=9m6D.2a3•a4=2a76.一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形7.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同.设每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=108B.168(1﹣x)2=108C.168(1﹣2x)=108D.168x2(1﹣x2)=1088.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式﹣2m2+2m+2020的值为()A.2018B.2019C.2020D.20219.对于一组数据:x1,x2,x3,…x10,若去掉一个最大值和一个最小值,则下列统计量一定不会发生变化的是()A.中位数B.平均数C.众数D.方差10.如图,反比例函数y1=经过矩形ABCD的顶点D,反比例函数y2=经过矩形ABCD 的顶点C.矩形ABCD的顶点A在x轴的负半轴上运动,矩形ABCD的顶点B在x轴的正半轴运动上,如果矩形ABCD的面积为定值,下列哪个值不变()A.a+b B.a﹣b C .D.ab二、填空题(每小题4分,共28分,将正确答案填入答题卡相应的位置)11.分解因式:9m2﹣n2=.12.不等式组:的解集为.13.如图,在△ABC中,∠C=90°,AC=6,若cos A =,则BC的长为.14.如图,在矩形ABCD中,E是边CD的延长线上一点,连接BE交边AD于点F,若AB =40,BC=60,DE=20,则AF的长为.15.如图,A,B,C,D是圆O上的四个点,点B是弧ABC的中点,如果∠ABC=72°,那么∠ADB=.16.如图,在扇形OAB中,∠AOB=90°,半径OA=2.将扇形OAB沿过点B的直线折叠.点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为.17.在Rt△AOB中,∠AOB=90°,OA=3,sin B =.动点M从点B出发,沿BO以1单位/秒的速度向点O运动;动点P从点B出发,沿BA以1单位/秒的速度向点A运动;P、M两点同时出发,任意一点先到达终点时,两点停止运动.设运动的时间为t.△PMO的面积为S,则s的最大值是.三、解答题(一)(3小题,每小题6分,共18分).18.(6分)计算:|1﹣|+(2020+π)0﹣2sin60°+2﹣2.19.(6分)先化简,再求值:,其中x =﹣3.20.(6分)如图,点A是∠MON边OM上一点,AE∥ON.(1)尺规作图:作∠MON的角平分线OB,交AE于点B(保留作图痕迹,不写作法);(2)若∠MAE=48°,直接写出∠OBE的大小.四、解答题(二)(8小题,每小题8分,共24分)21.(8分)某校九年级举行了“中国梦”演讲比赛活动,学校团委根据学生的成绩划分为A,B,C,D四个等级,并绘制了如下两个不完整的两种统计图.根据图中提供的信息,回答下列问题(1)参加演讲比赛的学生共有人,并把条形图补充完整;(2)扇形统计图中,m=;C等级对应的扇形的圆心角为度.(3)学校准备从获得A等级的学生中随机选取2人,参加全市举办的演讲比赛,请利用列表法或树状图法,求获得A等级的小明参加市比赛的概率.22.(8分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?23.(8分)如图所示,在四边形ABCD中,AC与BD交于O,AB=AD,CB=CD.BE⊥CD 于E,BE与AC交于F.CF=2BO.(1)求证:△BEC是等腰直角三角形;(2)求tan∠ACD的值.五、解答题(三)(2小题,每小题10分,共20分)24.(10分)如图,AB为⊙O的直径,点D为⊙O上任意一点,点C为劣弧BD的中点,连BD,BC并延长BC至P使得∠BDP=2∠CDP;(1)求证:DP为⊙O的切线;(2)若BC=DP时,求证:∠ABD =∠ABC;(3)在(2)的条件下,求DC:BD值.25.(10分)把一块含有30°的三角板△ABC,∠C=90°,∠B=30°,绕C点顺时针旋转,若A点落在AB边上时,得到△ODC,如图①所示,E为OD的中点,连CE.(1)求证:四边形ACEO是菱形;(2)如图②,以O为原点,AB所在直线为x轴,建立直角坐标系,若A(2,0),求经过点D、O、A三点的抛物线的关系式,并求出其的顶点坐标;(3)在(2)的条件下,如图③P(m,0)是x的正半轴上一点,过点P作y轴的平行线l,与直线DC交于点M,与抛物线交于点N,连接OM,ON.在图③中探究:是否存在点P,使△OMN是直角三角形;若存在,请直接写出P的坐标;若不存在,请说明理由.参考答案一.选择题(每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,将符合题目要求的选项填入答题卡)1.B.2.C.3.D.4.C.5.D.6.C.7.B.8.A.9.A.10.B.二、填空题(每小题4分,共28分,将正确答案填入答题卡相应的位置)11.(3m+n)(3m﹣n).12.1<x<3.13.8.14.40.15.54°.16.π﹣.17..三、解答题(一)(3小题,每小题6分,共18分). 18.解:原式=﹣1+1﹣2×+=﹣1+1﹣+=.19.解:当x =﹣3时,原式=÷[﹣]=÷=•==20.解:(1)如图,OB为所作;(2)∵AE∥ON,∴∠MON=∠MAE=48°,∵OB平分∠MON,∴∠NOB =∠MON=24°,∵AB∥ON,∴∠OBA=∠NOB=24°,∴∠OBE=180°﹣∠OBA=180°﹣24°=156°.四、解答题(二)(8小题,每小题8分,共24分)21.解:(1)参加演讲比赛的学生共有:8÷25%=32(人),B等级的人数为:32﹣4﹣12﹣8=8,补全的条形统计图如右图所示;(2)m%=×100%=37.5%,即m=37.5,C等级对应的扇形的圆心角为:360°×=135°,故答案为:37.5,135;(3)设小明用a表示,另外三名学生用b、c、d表示,树状图如下图所示,则获得A 等级的小明参加市比赛的概率是,即获得A等级的小明参加市比赛的概率是.22.解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得,解得.答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元;(2)①根据题意得,y=100x+150(100﹣x),即y=﹣50x+15000;②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,此时最大利润是y=﹣50×34+15000=13300.即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是13300元.23.证明:(1)∵AB=AD,CB=CD,∴AC垂直平分BD,∴BD=2BO,∵CF=2BO,∴CF=BD,∵∠DBE+∠BDE=90°,∠BDE+∠DCO=90°,∴∠DBE=∠FCE,又∵∠BED=∠CEF,∴△BDE≌△CFE(AAS),∴BE=CE,又∵BE⊥CD,∴△BEC是等腰直角三角形;(2)如图,连接DF,∵△BDE≌△CFE,∴DE=EF,∴DF=EF,∵AC垂直平分BD,∴BF=DF=EF,∴BE=BF+EF =(+1)EF,∴CE =(+1)EF,∴tan∠ACD==﹣1.五、解答题(三)(2小题,每小题10分,共20分)24.(1)证明:连接OD .∵点C为劣弧BD的中点,∴BC=CD,∴∠DBC=∠CDB,∵∠BDP=2∠CDP,∴∠BDC=∠CDP=∠DBC,∵∠OBD=∠ODB,∠BAC=∠CDB,∴∠ODB+∠CDB+∠CDP=∠OBD+∠BAC+∠DBC,∵AB为⊙O的直径,∴∠OBD+∠BAC+∠DBC=90°,∴∠ODB+∠CDB+∠CDP=90°,∴OD⊥DP,∴DP为⊙O的切线;(2)证明:∵BC=DP,BC=DC,∴CD=DP.设∠BDC=x,则∠DBC=∠PDC=x,∴∠P=∠DCP=2x=∠BDP,∵∠P+∠DBC+∠BDP=180°,∴5x=180°,解得x=36°,∴∠BDP=72°,∴∠ABD=∠ODB=90°﹣∠BDP=18°,∴∠ABC=∠ABD+∠DBP=18°+36°=54°,∴∠ABD =∠ABC;(3)解:过点作CH⊥BD于H,∵BC=CD,∴DH =BD,在DB上截取DM=DC,作∠DCM的平分线CN交DB于N,设DM=DC=a,DN=x,∴∠DCM=∠DMC=72°,∠MCN=∠DCN=36°,∴∠MNC=72°,∠CDN=∠DCN=36°,∴MC=NC=DN=x,MN=a﹣x,∵∠MCN=∠CDN=36°,∠DMC=∠CMN,∴△MCN∽△MDC,∴,即,解得x =,∵MC=NC,CH⊥BD,∴NH=,在直角三角形DCH中,DH=DN+NH=x +=,∴cos36°==,∴BD =,∴DC:BD=1:=.25.(1)证明:∵∠C=90°,∠B=30°,∴∠A=60°,∵OC=AC,∴△OCA为等边三角形,∵点E为OD的中点,∴CE=EO =OD =AB=OA=AC,∴四边形ACEO是菱形.(2)解:过点D作DM⊥x轴于点M,∵OD=AB=2OA=4,∠DOB=60°,∴OM=OB=2,DM=2,∴点M与点B重合,∴点D的坐标为(﹣2,2),设过点D、O、A三点的抛物线的关系式为y=ax(x﹣2),把点D的坐标代入解析式得﹣2a×(﹣4)=2,解得a =,∴抛物线解析式为y ==,∴抛物线的顶点坐标为(1,).(3)由点C(1,),D(﹣2,2)得直线CD的解析式为y =,∵MN⊥OA,∴∠NOP=∠NMO,∴△MOP∽△ONP,则OP:NP=MP:OP,∴OP2=MP•NP,则,解得,此时,,当∠OMN=90°时,如图2,M,P两点重合时,此时P3的坐标为(4,0)当∠ONM=90°,如图3,N,P,A三点重合时,此时点P4(2,0),综上所述,当△OMN为直角三角形时点P的坐标为(5+或(5﹣,0)或(4,0)或(2,0).。

中考数学二模试题(有答案解析)

中考数学二模试题(有答案解析)

中考仿真模拟测试数学试卷学校________ 班级________ 姓名________ 成绩________时间100分钟满分150分一.选择题(共6小题,满分24分,每小题4分)1.下列代数式中,为单项式的是()A .B .AC .D .x2+y22.已知x>y,那么下列正确的是()A .x+y>0B .A x>A yC .x﹣2>y+2D .2﹣x<2﹣y3.将抛物线y=(x﹣2)2+1向上平移3个单位,得到新抛物线的顶点坐标是()A .(2,4)B .(﹣1,1)C .(5,1)D .(2,﹣2)4.在平面直角坐标系中,以点A (2,1)为圆心,1为半径的圆与x轴的位置关系是()A .相离B .相切C .相交D .不确定5.如图,反映的是某中学九(3)班学生外出方式(乘车、步行、骑车)的频数(人数)分布直方图(部分)和扇形分布图,那么下列说法正确的是()A .九(3)班外出的学生共有42人B .九(3)班外出步行的学生有8人C .在扇形图中,步行的学生人数所占的圆心角为82°D .如果该校九年级外出学生共有500人,那么估计全年级外出骑车的学生约有140人6.如图,在△A B C 中,点D 、E分别是边B C 、A C 的中点,A D 和B E交于点G,设=,=,那么向量用向量、表示为()A .B .C .D .二.填空题(共12小题,满分48分,每小题4分)7.分解因式:x2﹣4x=.8.计算:A 3•A ﹣1=.9.已知函数f(x)=,那么f(10)=.10.如果关于x的方程x2﹣6x+m﹣1=0有一个根为2,那么m=.11.某品牌旗舰店将某商品按进价提高40%后标价,在一次促销活动中,按标价的8折销售,售价为2240元,那么这种商品的进价为元.12.某校200名学生一次数学测试的分数均大于75且小于150,分数段的频数分布情况如下:75~90有15人,90~105有42人,105~120有58人,135~150有35人(其中每个分数段可包括最小值,不包括最大值),那么测试分数在120~135分数段的频率是.13.用换元法解方程=3时,设=y,那么原方程化成关于y的整式方程是.14.如果正六边形的半径是1,那么它的边心距是.15.如果从方程x+1=0,x2﹣2x﹣1=0,x+=3中任意选取一个方程,那么取到的方程是整式方程的概率是.16.已知,在Rt△A B C 中,∠C =90°,A C =9,B C =12,点D 、E分别在边A C 、B C 上,且C D :C E =3:4.将△C D E绕点D 顺时针旋转,当点C 落在线段D E上的点F处时,B F恰好是∠A B C 的平分线,此时线段C D 的长是.17.如图,某人在山坡坡脚A 处测得电视塔塔尖点P的仰角为60°,沿山坡向上走200米到达B 处,在B 处测得点P的仰角为15°.已知山坡A B 的坡度i=1:,且H、A 、B 、P在同一平面内,那么电视塔的高度PH为米.(结果保留根号形式)18.如图,已知在等边△A B C 中,A B =4,点P在边B C 上,如果以线段PB 为半径的⊙P与以边A C 为直径的⊙O外切,那么⊙P的半径长是.三.解答题(共7小题,满分78分)19.(10分)先化简,再求值:,其中.20.(10分)解不等式组:,并将解集在数轴上表示出来.21.(10分)如图,是一个地下排水管的横截面图,已知⊙O的半径OA 等于50C m,水的深度等于25C m(水的深度指的中点到弦A B 的距离).求:(1)水面的宽度A B .(2)横截面浸没在水中的的长(结果保留π).22.(10分)一辆汽车从甲地出发前往相距350千米的乙地,在行驶了100千米后,因降雨,汽车每行驶1千米的耗油量比降雨前多0.02升.如图中的折线A B C 反映了该汽车行驶过程中,油箱中剩余的油量y(升)与行驶的路程x(千米)之间的函数关系.(1)当0≤x≤100时,求y关于x的函数解析式(不需要写出定义域);(2)当汽车到达乙地时,求油箱中的剩余油量.23.(12分)如图,已知在直角梯形A B C D 中,A D ∥B C ,∠A B C =90°,A E⊥B D ,垂足为E,联结C E,作EF ⊥C E,交边A B 于点F.(1)求证:△A EF∽△B EC ;(2)若A B =B C ,求证:A F=A D .24.(12分)已知直线交x轴于点A ,交y轴于点C (0,4),抛物线经过点A ,交y轴于点B (0,﹣2),点P为抛物线上一个动点,设P的横坐标为m(m>0),过点P作x轴的垂线PD ,过点B 作B D ⊥PD 于点D ,联结PB .(1)求抛物线的解析式;(2)当△B D P为等腰直角三角形时,求线段PD 的长;(3)将△B D P绕点B 旋转得到△B D ′P′,且旋转角∠PB P′=∠OA C ,当点P对应点P′落在y轴上时,求点P的坐标.25.(14分)如图,已知扇形A OB 的半径OA =4,∠A OB =90°,点C 、D 分别在半径OA 、OB 上(点C 不与点A 重合),联结C D .点P是弧A B 上一点,PC =PD .(1)当C ot∠OD C =,以C D 为半径的圆D 与圆O相切时,求C D 的长;(2)当点D 与点B 重合,点P为弧A B 的中点时,求∠OC D 的度数;(3)如果OC =2,且四边形OD PC 是梯形,求的值.参考答案一.选择题(共6小题,满分24分,每小题4分)1.下列代数式中,为单项式的是()A .B .AC .D .x2+y2【解答】解:A 、分母中含有字母,不是单项式;B 、符合单项式的概念,是单项式;C 、分母中含有字母,不是单项式;D 、不符合单项式的概念,不是单项式.故选:B .2.已知x>y,那么下列正确的是()A .x+y>0B .A x>A yC .x﹣2>y+2D .2﹣x<2﹣y【解答】解:∵x>y,∴x﹣y>0,A x>A y(A >0),x+2>y+2,2﹣x<2﹣y.故选:D .3.将抛物线y=(x﹣2)2+1向上平移3个单位,得到新抛物线的顶点坐标是()A .(2,4)B .(﹣1,1)C .(5,1)D .(2,﹣2)【解答】解:将抛物线y=(x﹣2)2+1向上平移3个单位,得y=(x﹣2)2+1+3,即y=(x﹣2)2+4,顶点坐标为(2,4),故选:A .4.在平面直角坐标系中,以点A (2,1)为圆心,1为半径的圆与x轴的位置关系是()A .相离B .相切C .相交D .不确定【解答】解:∵点A (2,1)到x轴的距离为1,圆的半径=1,∴点A (2,1)到x轴的距离=圆的半径,∴圆与x轴相切;故选:B .5.如图,反映的是某中学九(3)班学生外出方式(乘车、步行、骑车)的频数(人数)分布直方图(部分)和扇形分布图,那么下列说法正确的是()A .九(3)班外出的学生共有42人B .九(3)班外出步行的学生有8人C .在扇形图中,步行的学生人数所占的圆心角为82°D .如果该校九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人【解答】解:A 、由题意知乘车的人数是20人,占总人数的50%,所以九(3)班有20÷50%=40人,故此选项错误;B 、步行人数为:40﹣12﹣20=8人,故此选项正确;C 、步行学生所占的圆心角度数为×360°=72°,故此选项错误;D 、如果该中学九年级外出的学生共有500人,那么估计全年级外出骑车的学生约为500×=150人,故此选项错误;故选:B .6.如图,在△A B C 中,点D 、E分别是边B C 、A C 的中点,A D 和B E交于点G,设=,=,那么向量用向量、表示为()A .B .C .D .【解答】解:∵=,=,∴=+=﹣+,∵A D ,B E是△A B C 的中线,∴G是△A B C 的重心,∴B G= B E,∴=﹣+,故选:A .二.填空题(共12小题,满分48分,每小题4分)7.分解因式:x2﹣4x=x(x﹣4).【解答】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).8.计算:A 3•A ﹣1= A 2.【解答】解:原式=A 3+(﹣1)=A 2.故答案为:A 2.9.已知函数f(x)=,那么f(10)=2.【解答】解:∵f(x)=,∴f(10)==2.故答案为:2.10.如果关于x的方程x2﹣6x+m﹣1=0有一个根为2,那么m=9.【解答】解:把x=2代入方程得:22﹣6×2+m﹣1=0.解得m=9.故答案是:9.11.某品牌旗舰店将某商品按进价提高40%后标价,在一次促销活动中,按标价的8折销售,售价为2240元,那么这种商品的进价为2000元.【解答】解:设这种商品的进价是x元,根据题意可以列出方程:由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为:2000.12.某校200名学生一次数学测试的分数均大于75且小于150,分数段的频数分布情况如下:75~90有15人,90~105有42人,105~120有58人,135~150有35人(其中每个分数段可包括最小值,不包括最大值),那么测试分数在120~135分数段的频率是0.25.【解答】解:120~135分数段的频数=200﹣15﹣42﹣58﹣35=50人,则测试分数在120~135分数段的频率==0.25.故答案为:0.25.13.用换元法解方程=3时,设=y,那么原方程化成关于y的整式方程是y2﹣3y+2=0.【解答】解:设=y,则.所以原方程可变形为:.方程的两边都乘以y,得y2+2=3y.即y2﹣3y+2=0.故答案为:y2﹣3y+2=0.14.如果正六边形的半径是1,那么它的边心距是.【解答】解:∵A B C D D EF为正六边形,∴∠B OC =360°÷6=60°,OG⊥B C .∴∠B OG=∠B OC =30°.在Rt△B OG中,C os∠B OG=.∵OB =1,∴OG=OB •C os∠B OG=1×=.故答案为:.15.如果从方程x+1=0,x2﹣2x﹣1=0,x+=3中任意选取一个方程,那么取到的方程是整式方程的概率是.【解答】解:∵在所列的6个方程中,整式方程有x+1=0,x2﹣2x﹣1=0,x4﹣1=0这3个,∴取到的方程是整式方程的概率是=,故答案为:.16.已知,在Rt△A B C 中,∠C =90°,A C =9,B C =12,点D 、E分别在边A C 、B C 上,且C D :C E =3:4.将△C D E绕点D 顺时针旋转,当点C 落在线段D E上的点F处时,B F恰好是∠A B C 的平分线,此时线段C D 的长是6.【解答】解:如图所示,设C D =3x,则C E=4x,B E=12﹣4x,∵=,∠D C E=∠A C B =90°,∴△A C B ∽△D C E,∴∠D EC =∠A B C ,∴A B ∥D E,∴∠A B F=∠B FE,又∵B F平分∠A B C ,∴∠A B F=∠C B F,∴∠EB F=∠EFB ,∴EF=B E=12﹣4x,由旋转可得D F=C D =3x,∵Rt△D C E中,C D 2+C E2=D E2,∴(3x)2+(4x)2=(3x+12﹣4x)2,解得x1=2,x2=﹣3(舍去),∴C D =2×3=6,故答案为:6.17.如图,某人在山坡坡脚A 处测得电视塔塔尖点P的仰角为60°,沿山坡向上走200米到达B 处,在B 处测得点P的仰角为15°.已知山坡A B 的坡度i=1:,且H、A 、B 、P在同一平面内,那么电视塔的高度PH为100米.(结果保留根号形式)【解答】解:过B 作B M⊥HA 于M,过B 作B N∥A M,如图所示:则∠A MB =90°,∠A B N=∠B A M,由题意得:A B =200米,∠PB N=15°,∠P A H=60°,∵山坡A B 的坡度i=1:,∴tA n∠B A M=1:=,∴∠B A M=30°,∴∠A B N=30°,∴∠P A B =180°﹣∠P A H﹣∠B A M=90°,∠A B P=∠A B N+∠PB N=45°,∴△P A B 是等腰直角三角形,∴P A =A B =200米,在Rt△P A H中,sin∠P A H==sin60°=,∴PH=P A =100(米),故答案为:100.18.如图,已知在等边△A B C 中,A B =4,点P在边B C 上,如果以线段PB 为半径的⊙P与以边A C 为直径的⊙O外切,那么⊙P的半径长是.【解答】解:如图,连接OP,过点O作OH⊥B C 于P,在等边△A B C 中,A B =4,∴A C =B C =A B =4,∠A C B =60°,∵点O是A C 的中点,∴A O=OC =2,∵以线段PB 为半径的⊙P与以边A C 为直径的⊙O外切,∴PO=2+B P,∵OH⊥B C ,∴∠C OH=30°,∴HC =1,OH=,∵OP2=OH2+PH2,∴(2+B P)2=3+(4﹣1﹣B P)2,∴B P=,故答案为.三.解答题(共7小题,满分78分)19.(10分)先化简,再求值:,其中.【解答】解:原式==﹣=,当x=﹣1时,原式==.20.(10分)解不等式组:,并将解集在数轴上表示出来.【解答】解:解不等式3(x+2)>x﹣2,得:x>﹣4,解不等式x﹣≤,得:x≤,则不等式组的解集为﹣4<x≤,将不等式组的解集表示在数轴上如下:21.(10分)如图,是一个地下排水管的横截面图,已知⊙O的半径OA 等于50C m,水的深度等于25C m(水的深度指的中点到弦A B 的距离).求:(1)水面的宽度A B .(2)横截面浸没在水中的的长(结果保留π).【解答】解:(1)过O作OH⊥A B 于H,并延长交⊙O于D ,∵OH⊥A B ,OH过O,∴∠OHA =90°,A H= A B ,=,∵水的深度等于25C m,∴HD =25(C m),∵OA =OD =50C m,∴OH=OD ﹣HD =25(C m),∴A H===25(C m),∴A B =50 C m;(2)连接OB ,∵OA =50C m,OH=25C m,∴OH=OA ,∵∠OHA =90°,∴∠OA H=30°,∴∠A OH=60°,∵OA =OB ,OH⊥A B ,∴∠B OH=∠A OH=60°,即∠A OB =120°,∴的长是=(C m).22.(10分)一辆汽车从甲地出发前往相距350千米的乙地,在行驶了100千米后,因降雨,汽车每行驶1千米的耗油量比降雨前多0.02升.如图中的折线A B C 反映了该汽车行驶过程中,油箱中剩余的油量y(升)与行驶的路程x(千米)之间的函数关系.(1)当0≤x≤100时,求y关于x的函数解析式(不需要写出定义域);(2)当汽车到达乙地时,求油箱中的剩余油量.【解答】解:(1)设当0≤x≤100时,y关于x的函数解析式为y=kx+B ,根据题意,得:,解得,∴y=﹣x+50;(2)由题意可知,前100千米耗油量为10升,后250千米的耗油量为:250×(0.1+0.02)=30(升),油箱中的剩余油量为:50﹣10﹣30=10(升).23.(12分)如图,已知在直角梯形A B C D 中,A D ∥B C ,∠A B C =90°,A E⊥B D ,垂足为E,联结C E,作EF ⊥C E,交边A B 于点F.(1)求证:△A EF∽△B EC ;(2)若A B =B C ,求证:A F=A D .【解答】解:(1)证明:∵A E⊥B D ,EF⊥C E,∴∠A EB =∠C EF=∠A B C =90°,∴∠A B E+∠EA F=∠A B E+∠C B E=90°,∴∠EA F=∠C B E,∵∠A EF+∠B EF=∠B EC +∠B EF=90°,∴∠A EF=∠B EC ,∴△A EF∽△B EC ;(2)证明:∵A D ∥B C ,∠A B C =90°,∴∠B A D =180°﹣∠A B C =90°,∵A E⊥B D ,∴∠A EB =90°=∠B A D ,∵∠A B E=∠D B A ,∴△A B E∽△D B A ,∴=,∵△A EF∽△B EC ,∴=,∴=,∵A B =B C ,∴A F=A D .24.(12分)已知直线交x轴于点A ,交y轴于点C (0,4),抛物线经过点A ,交y轴于点B (0,﹣2),点P为抛物线上一个动点,设P的横坐标为m(m>0),过点P作x轴的垂线PD ,过点B 作B D ⊥PD 于点D ,联结PB .(1)求抛物线的解析式;(2)当△B D P为等腰直角三角形时,求线段PD 的长;(3)将△B D P绕点B 旋转得到△B D ′P′,且旋转角∠PB P′=∠OA C ,当点P对应点P′落在y轴上时,求点P的坐标.【解答】解:(1)∵点C (0,4)在直线y=﹣x+n上,∴n=4,∴y=﹣x+4,令y=0,∴x=3,∴A (3,0),∵抛物线y=x2+B x+C 经过点A ,交y轴于点B (0,﹣2),∴C =﹣2,6+3B ﹣2=0,∴B =﹣,∴抛物线解析式为y=x2﹣x﹣2;(2)∵P的横坐标为m(m>0),且点P在抛物线上,∴P(m,m2﹣m﹣2),∵PD ⊥x轴,B D ⊥PD ,∴点D 坐标为(m,﹣2),若△B D P为等腰直角三角形,则PD =B D ,①当点P在直线B D 上方时,PD =m2﹣m﹣2﹣(﹣2)=m2﹣m,如图1,B D =m.∴m2﹣m=m,解得:m1=0,m2=,∵m>0,∴m=;②当点P在直线B D 下方时,如图2,m>0,B D =m,PD =﹣m2+m,∴﹣m2+m=m,解得:m1=0,m2=,∵m>0,∴m=;综上所述,m=或;即当△B D P为等腰直角三角形时,线段PD 的长为或.(3)∵∠PB P'=∠OA C ,OA =3,OC =4,∴A C =5,∴sin∠PB P'=,C os∠PB P'=,若点P在y轴右侧,①当△B D P绕点B 逆时针旋转,且点P'落在y轴上时,如图3,过点D ′作D ′M⊥x轴,交B D 于M,过点P′作P′N⊥y轴,交MD '的延长线于点N,∴∠D B D ′=∠ND ′P′=∠PB P′,由旋转知,P′D ′=PD =m2﹣m,在Rt△P′D ′N中,sin∠ND ′P′==sin∠PB P′=,∴P′N=P′D ′=(m2﹣m),在Rt△B D ′M中,B D ′=m,C os∠D B D ′==C os∠PB P′=,∴B M= B D ′=m,∵P′N=B M,∴(m2﹣m)=m,∴m=,∴P(,);②当△B D P绕点B 顺时针旋转,且点P'落在y轴上时,如图4,过点P作PT⊥y轴于点T,∴PT=m,B T=OT﹣OB =﹣(m2﹣m﹣2)﹣2=﹣m2+m,∵∠PB P′=∠OA C ,∴tA n∠PB P′=tA n∠OA C ==,∴=,∴PT= B T,∴m=(﹣m2+m),解得:m=0(舍去)或m=,∴P(,﹣);若点P在y轴左侧,仿照上述方法讨论均不存在满足条件的点P;综上所述,点P的坐标为(,)或(,﹣).25.(14分)如图,已知扇形A OB 的半径OA =4,∠A OB =90°,点C 、D 分别在半径OA 、OB 上(点C 不与点A 重合),联结C D .点P是弧A B 上一点,PC =PD .(1)当C ot∠OD C =,以C D 为半径的圆D 与圆O相切时,求C D 的长;(2)当点D 与点B 重合,点P为弧A B 的中点时,求∠OC D 的度数;(3)如果OC =2,且四边形OD PC 是梯形,求的值.【解答】解:(1)如图1中,∵∠C OD =90°,C ot∠OD C ==,∴可以假设OD =3k,OC =4k,则C D =5k,∵以C D 为半径的圆D 与圆O相切,∴C D =D B =5k,∴OB =OD +D B =3K+5K=4,∴k=,∴C D =.(2)如图2中,连接OP,过点P作PE⊥OA 于E,PF⊥OB 于F.∵=,∴∠A OP=∠POB ,∵PE⊥OA ,PF⊥OB ,∴PE=PF,∵∠PEC =∠PFB =90°,PD =PC ,∴Rt△PEC ≌Rt△PFB (HL),∴∠EPC =∠FPB ,∵∠PEO=∠EOF=∠OFP=90°,∴∠EPF=90°,∴∠EPF=∠C PB =90°,∴∠PC B =∠PB C =45°,∵OP=OB ,∠POB =45°,∴∠OB P=∠OPB =67.5°,∴∠C B O=67.5°﹣45°=22.5°,∴∠OC D =90°﹣22.5°=67.5°.(3)如图3﹣1中,当OC ∥PD 时,∵OC ∥PD ,∴∠PD O=∠A OD =90°,∵C E⊥PD ,∴∠C ED =90°,∴四边形OC ED 是矩形,∴OC =D E=2,C E=OD ,设PC =PD =x,EC =OD =y,则有,可得x=2﹣2(不合题意的已经舍弃),∴PD =2﹣2,∴==﹣1.如图3﹣2中,当PC ∥OD 时,∵PC ∥OD ,∴∠C OD =∠OC E=∠C ED =90°,∴四边形OC ED 是矩形,∴OC =D E=2,C E=OD ,∵OP=4,OC =2,∴PC ===2,∴PD =PC =2,∴PE===2,∴EC =OD =2﹣2,∴===3+,综上所述,的值为﹣1或3+.。

初三数学二模试题及答案

初三数学二模试题及答案

初三数学二模试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(3循环)B. 根号2C. 22/7D. 3.1416答案:B2. 一个二次函数的图像开口向上,且经过点(1,0),则下列哪个选项是正确的?A. 函数的顶点在x轴上方B. 函数的顶点在x轴下方C. 函数的顶点在x轴上D. 无法确定答案:A3. 如果一个等腰三角形的底边长为6,腰长为5,那么它的高是多少?A. 4B. 3C. 2根号7D. 根号7答案:C4. 下列哪个选项是不等式2x-3>5的解集?A. x>4B. x<4C. x>1D. x<1答案:A5. 一个圆的半径为3,那么它的面积是多少?A. 9πB. 18πC. 27πD. 36π答案:C6. 一个数列的前三项为2,4,8,那么它的第四项是多少?A. 16B. 32C. 64D. 128答案:B7. 一个直角三角形的两条直角边长分别为3和4,那么它的斜边长是多少?A. 5B. 7C. 根号7D. 根号13答案:A8. 下列哪个选项是方程x^2-5x+6=0的解?A. 2和3B. 1和6C. 2和-3D. -2和-3答案:A9. 一个正方体的体积为27立方厘米,那么它的棱长是多少?A. 3厘米B. 6厘米C. 9厘米D. 27厘米答案:A10. 下列哪个选项是函数y=x^2-4x+4的最小值?A. 0B. 4C. -4D. 无法确定答案:A二、填空题(每题3分,共15分)11. 一个数的相反数是-5,那么这个数是______。

答案:512. 一个数的绝对值是8,那么这个数可以是______或______。

答案:8或-813. 一个二次函数的图像与x轴交于两点,这两点的横坐标之和为-3,那么这个二次函数的对称轴是______。

答案:x=-3/214. 一个等差数列的前三项为3,7,11,那么它的第五项是______。

2024年中考数学二模试卷(山西卷)(全解全析)

2024年中考数学二模试卷(山西卷)(全解全析)

2024年中考第二次模拟考试(山西卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)-+-⨯的结果等于()1.计算5(2)3A.11-B.1-C.1D.11【答案】A-+-⨯【解析】解:5(2)3=--56=-,11故选:A.2.以下是“双减”背景下学校社团拓展课程的相关图片,其中是中心对称图形的是()A.剪纸B.琵琶C.钢笔D.乒乓球拍【答案】A【解析】A、是中心对称图形,符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意;故选:A.3.下列是一位同学在课堂小测中做的四道题,如果每道题10分,满分40分,那么他的测试成绩是()(1)01π=(2)22(2)4x x +=+(3)2(2)(2)4x x x -+--=-(4)232824a b ab ab-÷=-A .40分B .30分C .20分D .10分【答案】B【解析】第(1)题,01π=,正确,得10分;第(2)题,22(2)44x x x +=++,原题解答错误,得0分;第(3)题,2(2)(2)4x x x -+--=-,正确,得10分;第(4)题,232824a b ab ab -÷=-,正确,得10分;所以这位同学的测试成绩是30分.故选B .4.如图,三位学生在做投圈游戏.他们分别站在Rt ABC △的三个顶点处,目标物放在斜边AC 的中点处.仅从数学的角度看这样的队形哪个位置的学生投中的可能性最大()A .A 处学生投中的可能性最大B .B 处学生投中的可能性最大C .C 处学生投中的可能性最大D .三位学生投中的可能性一样大【答案】D 【解析】解:依题意,他们分别站在Rt ABC △的三个顶点处,目标物放在斜边AC 的中点处.设AC 的中点为D ,则BD AD DC ==,∴三位学生投中的可能性一样大,故选:D .5.《海底两万里》是法国著名作家儒勒·凡尔纳的一部著名作品,他在小说中塑造了尼摩船长这个反对沙皇专制统治的高大形象,赋予其强烈的社会责任感和人道主义精神,以此来表达对现实的批判.如图所示是《海底两万里》中尼摩船长所发明的潜水头盔的示意图.这种头盔具有良好的抗水压性能,能使潜水工作者在水下数百米深处作业而行动自如.现将其抽象为图示的立体图形,则该头盔的俯视图为()A .B .C .D .【答案】D【解析】解:根据俯视图是由从上往下看得到的图形可得,该头盔的俯视图为故选:D .6.随着新能源电动汽车的快速增加,绵阳市正在快速推进全市电动汽车的充电桩建设,已知到2023年底,绵阳全市约有3.5万个充电桩,根据规划到2025年底,全市的充电桩数量将会达到5.04万个,则从2023年底到2025年底,全市充电桩数量的年平均增长率为()A .10%B .15%C .20%D .25%【答案】C【解析】解:设全市充电桩数量的年平均增长率为x ,根据题意得23.5(1) 5.04x +=,解得120.2, 2.2x x ==-(舍去),故全市充电桩数量的年平均增长率为20%.故选C .7.如图是物体AB 在焦距为cm a (即cm OE OF a ==)的凸透镜下成倒立放大实像的光路示意图.从点A 发出的平行于BD 的光束折射后经过右焦点F ,而经过光心O 点的光束不改变方向,最后A 点发出的光汇聚于点C ,B 点发出的光汇聚于点D ,从而得到最清晰的实像.若物距cm OB b =,则像距OD 为()cm .A .2a b a-B .2b b a -C .2b a D .ab b a-【答案】D 【解析】解:由题意得:AB OG CD ∥∥,AB OG =,ABO GOF CDO ∴∠=∠=∠,AOB COD ∠=∠,GFO CDF ∠=∠,ABO CDO ∴ ∽,GFO CDO ∽,AB OB CD OD ∴=,OG OF CD DF=, AB OG =,AB OG OB OF CD CD OD DF ∴===,设cm DF x =,则()cm OD x a =+,b a x a x∴=+,解得:2a xb a=-,经检验2a xb a=-为原分式方程的解,222a a ab a ab OD x a a b a b a b a+-∴=+===---,故选:D .8.如图,A ,B ,C ,D 是电路图中的四个接线柱,闭合开关后,灯泡不发光.小明同学用一根完好导线的两端随机触连A ,B ,C ,D 中的两个接线柱,若电流表有示数或灯泡发光,说明两个接线柱之间的电路元件存在故障.已知灯泡存在断路故障,其他元件完好,则小明触连一次找到故障(用导线触连接线柱BC )的概率为()A .12B .13C .14D .16【答案】D 【解析】解:根据题意列出表格如下:AB C D A (),A B (),A C (),A D B (),B A (),B C (),B D C (),C A (),C B (),C D D (),D A (),D B (),D C 由表可知,一共有12种情况,小明触连一次找到故障的有2种情况,∴小明触连一次找到故障的概率21126==,故选:D .9.创新驱动发展,也使人们的生活更加便捷.如图是一款手机支撑架,我们可以通过改变面板张角的大小来调节视角舒适度.小明将该支撑架放置在水平桌面上,并调节面板CD 的张角至视角舒适,若张角70BCD ∠=︒,支撑杆CB 与桌面夹角65B ∠=︒,那么此时面板CD 与水平方向夹角1∠的度数为().A .45︒B .55︒C .65︒D .70︒【答案】A 由题意可得:DE AB ∥,则65DEC B ∠=∠=︒;然后根据三角形内角和定理即可解答.【解析】解:由题意可得:DE AB ∥,∴65DEC B ∠=∠=︒,∵70BCD ∠=︒,∴118045BCD CED ∠=︒-∠-∠=︒.故选:A .10.已知四个正六边形如图摆放在图中,顶点A ,B ,C ,D ,E ,F 在圆上.若两个大正六边形的边长均为2,则小正六边形的边长是()A .33B .2312C .312D .1312-【答案】D 【解析】解:如图,连接AD 交PM 于O ,则点O 是圆心,过点O 作ON ⊥DE 于N ,连接MF ,取MF 的中点G ,连接GH ,GQ ,由对称性可知,OM =OP =EN =DN =1,由正六边形的性质可得ON =3∴OD 2213DN ON =+==OF ,∴MF 13=-1,由正六边形的性质可知,△GFH 、△GHQ 、△GQM 都是正三角形,∴FH 12=MF 1312-=,故选:D .第Ⅱ卷二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:(3622÷3312-【解析】解:原式331331 362222222-===;故答案为:331 2.12.园林设计师为公园设计了种植月季花的正方形造型:最外层种黄花,用○表示;里面种红花,用●表示.请你观察下图,当红花列数为n时,红花有()朵,黄花有()朵.【答案】2n8n【解析】解:第1个图形中红花的朵数是1,黄花的朵数是8,第2个图形中红花的朵数是4=22,黄花的朵数是16=8×2,,第3个图形中红花的朵数是9=32,黄花的朵数是24=8×3,第4个图形中红花的朵数是16=42,黄花的朵数是32=8×4,…,所以,第n个图形中红花的朵数是n2,黄花的朵数是8n,故答案为:2n,8n.13.商店里的自动扶梯在2 min内可把人送上楼.若扶梯不动,人沿扶梯走上楼需3 min.现在人沿运动的扶梯以同样的速度走上楼,则所需的时间是.【答案】1.2min【解析】解:设人走的速度为1v ,自动扶梯的速度为2v ,设人沿运动的扶梯以同样的速度走上楼,所需的时间是min t ,根据距程=速度×时间,得:自动扶梯在2min 内可把人送上楼,人通过的距离为:22s v =,扶梯不动,人沿扶梯走上楼需3min ,人通过的距离为:13s v =,人沿运动的扶梯以同样的速度走上楼,所需的时间是min t ,人通过的距离为:()12s v v t =+,2123v v ∴=,2132v v ∴=,()1123v v v t =+ ,111332v v v t ⎛⎫∴=+ ⎪⎝⎭,解得 1.2t =.故答案为:1.2min .14.如图,已知ABC 的面积为12,结合尺规作图痕迹所提供的条件可知,APC △的面积为.【答案】4【解析】连MN ,由作图知M ,N 分别为,AB BC 的中点,∴1,2MN AC MN AC = ,由等底同高三角形面积相等得1112622ACM BCM ABC S S S ==⨯=⨯= 又∵MN AC∥∴,,PAC PNM PCA PMN ∠=∠∠=∠∴ACP NMP∴12MP MN PC AC ==∴22123PC CM ==+∴226433APC ACM S S ==⨯= 故答案为:415.如图,在正方形ABCD 内有一点E ,90AEB ∠=︒.以CE ,DE 为邻边作CEDF ,连结EF ,若A ,E ,F 三点共线,且ADF △的面积为10,则CF 的长为.10【解析】解:设EF 、CD 的交点为G ,过E 作EH AD ⊥交于H ,∵四边形ECFD 是平行四边形,∴12DG CG DG ==,DE CF =,EG FG =,设正方形的边长为2x ,则2AD AB CD x ===,DG CG x ==,在Rt ADG 中,5AG x =,∵90AEB ∠=︒,∴90BAE ABE ∠+∠=︒,∵90BAE DAE ∠+∠=︒,∴ABE DAE ∠=∠,又90AEB ADG ∠=∠=︒,∴ABE GAD ∽ ,∴AB AEAG DG =5x AE x x =,∴255AE =,∴355EG x =,∴35EGAG =,∴53ADG DEGSS = ,设5ADG S m = ,则3DEG S m = ,∵EG FG =,∴3DGF DEG S S m == ,∴538ADF S m m m =+= ,∵10ADF S =△,∴810m =,∴54m =,∴22554ADG S m x === ,∴52x =,∴5AD =,5EA =∵15522ADE S HE =⨯⨯= ,∴1HE =,在Rt AHE △中,222AH AE HE =-=,∴3HD =,在Rt HED 中,10ED ∴10CF .10.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(10分)(1(2011832123-⎛⎫--- ⎪⎝⎭;(2)下面是王亮同学解方程2358224x x x +=-+-的过程,请阅读并完成相应任务.解:方程两边同乘以24x -,得()()32528x x ++-=第一步36528x x ++-=.第二步2862x =-+第三步6x =第四步经检验:6x =是原方程的解.第五步∴原方程的解是6x =第六步任务一:①以上求解过程中,第一步的依据是______;②王亮同学的求解过程从第______步开始出现错误,整个解答过程.从前一步到后一步的变形共出现______处错误:③分式方程检验的目的是______.任务二:请你直接写出这个方程的正确解______.【解析】解:(1(211832123-⎛⎫--- ⎪⎝⎭329321=--10=-;(2)任务一:①方程两边同乘以24x -,得()()32528x x ++-=,依据是等式的性质;②第二步,()()32528x x ++-=,漏乘了项,应为365108x x ++-=∴王亮同学的求解过程从第二步开始出现错误,第三步,左边35x x +应为8x 不是2x ,第四步,计算错误,应为2x =不是6x =,∴整个解答过程,从前一步到后一步的变形第二步、第三步、第四步共出现3处错误;③分式方程检验的目的是判定解是否是增根.任务二:解:方程两边同乘以24x -,得()()32528x x ++-=,365108x x ++-=.,88106x =+-,32x =,经检验:32x =是原方程的解.∴原方程的解是32x =.17.(7分)如图,在O 中,AC 是直径,DC DE EA AB BE 、、、、是弦,BE 的延长线交AF 于点F ,且,DE EA FBA FAE =∠=∠.(1)试说明直线AF 与O 的位置关系,并说明理由;(2)若2,6DE EA DC ===,求tan CAE ∠的值.【解析】(1)解:直线AF 与O 相切,理由如下:连接CE ,AC 是直径,90AEC ∴∠=︒,90EAC ECA ∴∠+∠=︒,AE AE = ,FBA ECA ∴∠=∠,90EAC FBA ∴∠+∠=︒FBA FAE ∠=∠ ,90EAC FAE ∴∠+∠=︒,即OA AF ⊥,∴直线AF 与O 相切;(2)解:连接OE ,AD 交于点G ,DE EA = ,DE EA ∴=,OG AD ∴⊥,AG DG =,OA OC = ,116322OG CD ∴==⨯=,设O 半径为r ,则3EG OE OG r =-=-,在Rt OAG △中,22222239AG OA OG r r =-=-=-,在Rt EAG △中,()()2222222343AG EA EG r r =-=--=--,()22943r r ∴-=--,解得3172r =或3172r =(舍),2317AC r ∴==+在Rt ACE 中,()2222317222617CE AC EA =-+-=+22617tan 2CE CAE EA +∴∠==18.(8分)为有效落实双减政策,切实做到减负提质,某学校在课外活动中增加了球类项目.学校计划用1800元购买篮球,在购买时发现,每个篮球的售价可以打六折,打折后购买的篮球总数量比打折前多10个.(1)求打折前每个篮球的售价是多少元?(2)由于学生的需求不同,该学校决定增购足球.学校决定购买篮球和足球共50个,每个足球原售价为100元,在购买时打八折,且购买篮球的数量不超过总数量的一半,请问学校预算的1800元是否够用?如果够用,请设计一种最节省的购买方案;如果不够用,请求出至少需要再添加多少元?【解析】(1)设打折前每个篮球的售价是x 元,则打折后每个篮球的售价是0.6x 元,由题意,得180********.6x x-=,解得120x =经检验,120x =是原方程的解,且符合题意答:打折前每个篮球的售价是120元;(2)设购买篮球m 个,则购买足球()50m -个设购买50个篮球和足球的总费用为w 元由题意,得()1200.61000.85084000w m m m =⨯+⨯-=-+80-< ∴w 随着m 的增大而减小又 150252m ≤⨯=∴当25m =时,w 取得最小值,最小值为82540003800-⨯+= 38001800>∴学校预算的1800元不够用380018002000-=(元)∴该学校至少还需要再添加2000元.19.(9分)为增强同学们的环保意识,某校八年级举办“垃圾分类知识竞赛”活动,分为笔试和展演两个阶段.已知年级所有学生都参加了两个阶段的活动.首先将成绩分为以下六组(满分100分,实际得分用x 表示):A :7075x ≤<,B :7580x ≤<,C :8085x ≤<,D :8590x ≤<,E :9095x ≤<,F :95100x ≤≤随机抽取n 名学生,将他们两个阶段的成绩均按以上六组进行整理,相关信息如下:已知笔试成绩中,D 组的数据如下:85,85,85,85,86,87,87,88,89.请根据以上信息,完成下列问题:(1)在扇形统计图中,“E 组”所对应的扇形的圆心角是________︒;(2)n =_____,并补全图2中的频数分布直方图;(3)在笔试阶段中,n 名学生成绩的中位数是_______分;(4)已知笔试和展演两个阶段的成绩是按照2:3的权重计入总成绩,总成绩在91分以上的将获得“环保之星”称号,以下为甲、乙两位同学的成绩,最终谁能获得“环保之星”称号?请通过计算说明理由.【解析】(1)“E 组”所对应的扇形的圆心角是:()360145%20%5%5%10%54︒⨯-----=︒,故答案为:54;(2)945%20n =÷=,并补全频数分布直方图如图,故答案为:20;(3)由(2)得:20n =,即抽取20名学生,即中位数排在第10,11位的平均数,为85.528586=+,故答案为:85.5;(4)甲:92289390.223⨯+⨯=+,乙:9029539323⨯+⨯=+,∵90.293<,∴乙将获得“环保之星”称号.20.(8分)山西省首座独塔悬索桥——通达桥,全长1.54公里,主桥横跨汾河,全长416m ,宽45m ,是太原新建成的一座跨河大桥,桥的主塔由曲线形拱门组成,取意“时代之门”.某数学“综合与实践”小组把“测量通达桥拱门的高度”作为一项课题活动,他们制订了测量方案,并利用课余时间完成了实地测量.测量结果如表:项目内容测量通达桥拱门的高度测量示意图及说明说明:他们利用无人机技术进行测量,AB 代表通达桥拱门,C ,D 是两个观测点,已知CD BM AB BM ⊥⊥,,A ,B ,C ,D 在同一平面内,BM 为桥面测量数据C 处的仰角D 处的俯角观测点C 距桥面的高度DC 之间的距离30︒45︒50m 200m ……任务一:请运用你所学的知识,根据上表中的测量数据,帮助“综合与实践”小组求出通达桥拱门的高度AB ;3 1.73≈2 1.41≈)任务二:请你根据所学的知识,再设计一种方案,画出示意图,并写出需要测量的量.【解析】解:任务一:如图①,延长DC 与BM 交于点N ,过点A 作AP DC ⊥于点P ,∵CDBM AB BM ⊥⊥,,∴90APN PNB ABN ∠=∠=∠=︒,∴四边形APNB 为矩形,∴AB PN =,根据题意可得903060ACP ∠=︒-︒=︒,904545ADP ∠=︒-︒=︒,50m CN =,200m DC =,在Rt APC △中,tan tan 603APACP PC ∠=︒==∴3AP =,在Rt APD 中,tan tan 451APADP DP ∠=︒==,∴3DP AP PC ==,∵200m DC =,∴200m PC PD +=,∴3200m PC PC +=,∴)2001003173m13PC ==-≈+∵50m CN =,∴7350123m AB PN PC CN ==+=+=,∴通达桥拱门的高度AB 约为123m;任务二:测量方案如图②所示,需要测量的数据有ACB ∠的度数,ADC ∠的度数,DC 之间的距离.解Rt ABC △可得tan AB BC ACB =∠,解Rt △ABD 可得tan AB BD ADB =∠,则tan tan AB AB CD BC BD ACB ADB=+=+∠∠,∴需要测量的数据有ACB ∠的度数,ADC ∠的度数,DC之间的距离.21.(8分)阅读以下材料,并按要求完成相应的任务.数学对物理学的发展起着重要的作用,物理学也对数学的发展起着重要的作用,莫尔斯所说:“数学是数学,物理是物理,但物理可以通过数学的抽象而受益,而数学则可以通过物理的见识而受益.”以下是数学中常见的一个问题:若2a b +=,则ab 的最大值是多少?设1a x =+,1b x =-,则22(1)(1)11ab x x x x =+-=-=-+.……以下是物理中的一个问题:物理学中的电路分为串联电路和并联电路,已知电路中有大小分别为1R 和2R 的两个电阻,串联电路的电阻公式为12R R R =+,并联电路的电阻公式为12111R R R =+.在某一段电路上测得两个电阻的和为15kΩ.若根据实际需要把这两个电阻并联在一起,则并联后总电阻的最大值是多少?任务:(1)按照上面的解题思路,完成数学问题的剩余部分.(2)若a ,b 两数的和为定值,则a ,b 满足______时,ab 的值最大.(3)解决这个物理问题主要体现的数学思想是______.(填序号即可)A .统计思想B .分类思想C .模型思想(4)物理问题中并联后总电阻的最大值是______k Ω.【解析】(1)解:按照上面的解题思路,完成数学问题的剩余部分如下:∵10-<,∴当1x =时,ab 取最大值,最大值为1;(2)令a ,b 两数的和为定值m ,设2m a x =+,2m b x =-,则22224m m m ab x x x ⎛⎫⎛⎫=+-=-+ ⎪⎪⎝⎭⎝⎭,∴当0x =时,ab 取最大值为24m ,此时2m a b ==,∴若a ,b 两数的和为定值,则a ,b 满足a b =时,ab 的值最大.故答案为:a b =;(3)解决这个物理问题主要体现的数学思想是模型思想.故选:C ;(4)由以上结论可知,当12R R =时,12R R 取最大值,∴1221212121111515415152R R R R R R R R R +=+====⎛⎫ ⎪⎝⎭,∴15 3.75k 4R ==Ω.故答案为:3.75.22.(12分)问题背景:点E ,F 分别在正方形ABCD 的边BC ,CD 上,45EAF ∠=︒,试判断BE ,EF ,DF之间的数量关系.小云同学的思路是过点A 作AG AE ⊥,交CD 的延长线于点G ,如图1,通过这种证明方法,可发现上述线段BE ,EF ,DF 的数量关系为________(直接写出结果);变式迁移:如图2,在菱形ABCD 中,=60B ∠︒,点E ,F 分别在BC ,CD 上,且1BE =,3DF =,若60EAF ∠=︒,求EF 的长;拓展应用:如图3,在ABC 中,45BAC ∠=︒,AD BC ⊥于D ,6BD =,4CD =,直接写出AD 的长为________.【解析】解:EF BE DF =+;证明:如图1,过点A 作AG AE ⊥,交CD 的延长线于点G .∵四边形ABCD 为正方形,AG AE ⊥,∴90B BAD EAG ADC ∠=∠=∠=∠=︒,AB AD =,∴,90BAE DAG B ADG ∠=∠∠=∠=︒,∴ABE ADG △≌△,∴AE AG =,BE DG =,∵90EAG ∠=︒,45EAF ∠=︒,∴45EAF GAF ∠=∠=︒,∵AF AF =,∴EAF GAF △≌△,∴EF GF =,∴EF GF GD DF BE DF ==+=+,即EF BE DF =+.故答案为:EF BE DF=+变式迁移:如图2,连AC ,过点A 作AM CD ⊥于点M .∵四边形ABCD 为菱形,∴AB BC =,180B BCD ∠+∠=︒,∵=60B ∠︒,∴ABC 为等边三角形,∴AB AC =,60BAC ACB ∠=∠=︒,∴60BAE EAC CAF ∠=︒-∠=∠,60ACF ∠=︒,∴ABE ACFV V ≌∴1BE CF ==,AE AF =,∴4AD AC CD CF DF ===+=,∵AM CD ⊥,∴122CM CD ==,在Rt ACM 中,2223AM AC CM =-=∵2,1CM CF ==,∴1MF =,在Rt ACM 中,2213AF AM FM =+,又∵AE AF =,60EAF ∠=︒,∴AEF △为等边三角形,∴13EF AF ==拓展应用:如图3,以AB 为对称轴作ABD △的轴对称图形ABE ,以AC 为对称轴作ACD 的轴对称图形ACF △,延长EB 、FC 交于点G .∵AD BC ⊥,由轴对称的性质得90,E ADB F ADC AE AD AF ∠=∠=∠=∠=︒==,,EAB DAB FAC DAC ∠=∠∠=∠,6,4BE BD CF CD ====,∵45BAC ∠=︒,∴90EAF ∠=︒,∴四边形AEGF 是正方形,∴90G ∠=︒,设AD x =,则AE AF EG FG x ====,∴6,4BG x CG x =-=-,在Rt BGC △中,根据勾股定理得()()()2226464x x -+-=+,解得1212,2x x ==-(不合题意,舍去),∴12AD =.故答案为:1223.(13分)如图,抛物线294y ax x c =++与x 轴相交于点()1,0A -和点B ,与y 轴相交于点()0,3C ,作直线BC.(1)求抛物线的解析式;(2)若在直线BC 上方的抛物线上有一动点P ,连接OP 交直线BC 于点D ,若:3:4PCD OCD S S =△△,求点P 的坐标;(3)若在直线BC 上方的抛物线上存在点Q ,使2QCB ABC ∠=∠,求点Q 的坐标.【解析】(1)解:把()1,0A -,()0,3C 代入抛物线解析式294y ax x c =++中得9043a c c ⎧=-+⎪⎨⎪=⎩,解得343a c ⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为239344y x x =-++.(2)解:如图所示,过点D 作DE x ⊥轴于E ,过点P 作PF x ⊥轴于F ,∵:3:4PCD OCD S S =△△,∴:4:7OCD OCP S S =△△,∴142172OC DE OC PF ⋅=⋅,∴47DEPF =;在239344y x x =-++中,当2393044y x x =-++=时,解得=1x -或4x =,∴()40B ,,设直线BC 解析式为y kx b '=+,∴403k b b ''+=⎧⎨=⎩,∴343k b ⎧=-⎪⎨⎪=⎩',∴直线BC 解析式为334y x =-+,设()433D m m -+,,∴4337DE m OE m PF m ==-+=,,,∴2147637344P m m m ⎛⎫-++ ⎪⎝⎭,,∴214763344OF m m =-++,∵DE OF PF OF ⊥,⊥,∴DE PF ∥,∴OED OFP △∽△,∴47OEDE OF PF ==,∴2334147637344m m m -+=-++,∴214763122121m m m -++=-+,∴21478490m m -+=,∴()()732130m m --=,解得37m =或17m =,∴点P 的坐标为()33,或912⎛⎫⎪⎝⎭,;(3)解:如图,过点C 作CE x ∥轴交抛物线与点E ,过点Q 作QH CE ⊥与于点H ,CE x ∥ 轴,ABC BCE ∴∠=∠,2QCB QCE BCE ABC ∠=∠+∠=∠ ,QCE ABC ∴∠=∠,90QHC BOC ∠=∠=︒ ,CHQ BOC ∴ ∽,QHCHOC OB ∴=,设239,344Q t t x ⎛⎫-++ ⎪⎝⎭,()0,3C ,3OC ∴=,23944QH t t ∴=-+,2394434t t t -+∴=,解得:2t =或0=t (舍)23993442t x ∴-++=,∴点Q 的坐标为92,2⎛⎫⎪⎝⎭.。

初三数学二模试卷及答案

初三数学二模试卷及答案

考试时间:120分钟满分:100分一、选择题(每题5分,共30分)1. 下列各数中,不是有理数的是()A. -πB. 3/4C. 0.1010010001…D. 12. 若a,b是实数,且a+b=0,则a与b互为()A. 相等B. 相反C. 正负D. 无法确定3. 下列方程中,解为整数的是()A. 3x-2=7B. 2x+1=5C. 5x-3=2D. 4x+3=74. 下列函数中,y是x的一次函数的是()A. y=2x^2+3B. y=3x+5C. y=x^2+2x+1D. y=3/x5. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数是()A. 75°B. 105°C. 120°D. 135°二、填空题(每题5分,共25分)6. 若x=2,则2x+3的值为______。

7. 下列各数中,最小的有理数是______。

8. 若m=3,n=-2,则2m-3n的值为______。

9. 下列各数中,绝对值最大的是______。

10. 若a=5,b=-3,则|a-b|的值为______。

三、解答题(共45分)11. (15分)解下列方程:(1)3x-2=5(2)2(x+1)-3=712. (15分)解下列不等式:(1)2x-3>5(2)3(x+2)≤4x+613. (15分)已知:a,b,c是△ABC的三边,且a+b+c=12,求证:a+b>c。

四、附加题(10分)14. (10分)已知:函数f(x)=2x+3,求证:f(x+y)=f(x)+f(y)。

答案一、选择题1. C2. B3. B4. B5. B二、填空题6. 77. -π8. 219. -π10. 8三、解答题11. (1)x=3(2)x=212. (1)x>4(2)x≤613. 证明:∵a+b+c=12∴a+b=12-c∴a+b>c四、附加题14. 证明:f(x+y)=2(x+y)+3=2x+2y+3 f(x)+f(y)=2x+3+2y+3=2x+2y+6∴f(x+y)=f(x)+f(y)。

初三数学二模试卷(含详细答案)

初三数学二模试卷(含详细答案)

初三二模数学试卷一.选择题(本大题共6题,每题4分,共24分)1.下列实数中,是无理数的是()A. 3.14B. 1C.、3D. , 92.下列二次根式中,与ja是同类二次根式的是()A. 3aB. \ 2a2C. a3D. . a43.函数y kx 1 (常数k 0)的图像不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.某幢楼10户家庭某月的用电量如下表所示:用电量(度)140 160 180 200户数 1 3 4 2那么这10户家庭该月用电量的众数和中位数分别是()A. 180、180B.180、160C.160、180D.160、1605.已知两圆的半径分别为1和5,圆心距为4,那么两圆的位置关系是()A.外离B.外切C.相交D.内切6.如图,已知^ ABC和^ DEF,点E在BC边上,点A在DE边上,边EF和边AC交于点G ,如果AE EC , AEG B.那么添加下列一个条件后,仍无法判定△ DEF与^ ABC一定相似的是( )AB DE_ AD G.BC EF . AE GAG EG ED E.AC EF . EF [二.填空题一,, 27.计算:a a ____________2 _8.因式分解:x 2x ___________9.方程比2x x的根是 ______________3x ...... . 10.函数f(x) 的7E 乂域是—x 211.如果关于x的方程x22x m r 1 rr12.计算:2a 3(a b) ___________E0有两个实数根,那么m的取值范围是___________ 4个单位后,所得新抛物线的顶点坐标是___________(1)这个反比例函数的解析式; (2)四边形OABC 的面积.14 . 一个不透明的袋子里装有 3个白球、1个红球,这些球除颜色外无其他的差异,从袋子中随机摸出1个球,恰好是白球的概率是15 .正五边形的中心角是16 .如图,圆弧形桥拱的跨度 AB 16米,拱高CD17 .如果一个三角形一边上的中线的长与另两边中点的连线段的长相等,我们称这个三角形为“等线三角形",这条边称为“等线边”.解答题2 — 形OABC 是平行四边形, OC 2J5, sin AOC -V 5 5 C 以及边AB 的中点D.求:19. 计算:|2 ,一 2|8320. 解不等式组: 3(2x 3x 121) 4x 5 CL21. 如图,在平面直角坐标系xOy 中,点A 在x 轴正半轴上,点 B 、C 在第一象限,且四边4米,那么圆弧形桥拱所在圆的半径在等线三角形ABC 中,AB 为等线边,且AB 3,AC 2 ,那么 BC18.如图,矩形ABCD 中,ABE 、F 分别在边 AD 、BC 上,且点B 、F关于过点E 的直线对称,如果以CD 为直径的圆与EF 相切,那么 AE.... k .............,反比例函数y -的图像经过点x22.某文具店有一种练习簿出售,每本的成本价为 2元,在销售的过程中价格有调整,按原价格每本 8.25元,卖出36本,后经两次涨价,按第二次涨价后的价格卖出了25本.发现按原价格和第二次涨价后的价格销售,分别获得的销售利润恰好相等.(1)求第二次涨价后每本练习簿的价格;(2)在两次涨价过程中,假设每本练习簿平均获得利润的增长率完全相同,求这个增长率 ^23 .如图,在直角梯形 ABCD 中,AD//BC, C 90 , BC CD ,点E 、F 分别在边BC 、CD 上, 且BE DF AD ,联结DE ,联结AF 、BF 分别与DE 交于点G 、P.(1)求证:AB BF ;(2)如果 BE 2EC,求证:DG GE .24 .已知抛物线y ax 2bx 3经过点A(7, 3),与x 轴正半轴交于 B(m,0)、C(6m,0)两点,与y 轴交于点D.(1)求m 的值;,川(2)求这条抛物线的表达式;(注: 利润增长率=(后一次的利润-前一次的利润)一 前一次的利润100% )(3)点P在抛物线上,点Q在x轴上,当PQD 90 且PQ 2DQ,求P、Q 坐标.25.如图所示,MON 45 ,点P是MON内一点,过点P作PA OM于点A、PB ON于点B,且PB 2& ,取OP的中点C,联结AC并延长,交OB于点D.(1)求证:ADB OPB;(2)设PA x , OD y ,求y关于x的函数解析式;(3)分别联结AB、BC,当4ABD与4CPB相似时,求PA的长.2019年第二学期初三教学质量检测数学参考答案及评分说明一、选择题:(本大题共6题,每题4分,,茜分24分)1. C; 2, C; 3. B; 4, A; 5. D; 6. C.二、填空题:(本大题共12题,每题4分,满分48分)3 7 1 7. a;8.xx2;9. x 4; 10. x 2; 11. m 1 ; 12.—a—b;3 3313. 1,2 ;14. —;15. 72 ;16. 10; 17,中'5 ;18. 3.4三、解答题:(本大题共7题,,茜分78分)19.(本题满分10分) 1 . .解:原式=2 J2 2 1<2 1 (2)4=3 . ................................................................. 2 分420.(本题满分10分)解:由①得:6x 3 4x 5 . ............................................. 2分2x 2. ............................................. 2 分x 1 . ............................................. 1 分由②得:3x 2 x . ............................................... 2分2x 2. ............................................... 1 分x 1 . .............................................. 1 分・•・原不等式组的解集是1 x 1 . ................................... 2分21.(本题满分10分,每小题各5分)解:(1)过点C作CH,OA于点H. .......................................... 1分在ACOH 中,/ CHO= 90° , /.sinZ AOC= CH 275 • ........................ 1 分OC 5••• OC 2而,CH= 4. ................................................ 1 分在ACOH 中,/ CHO= 90° , •. OH vOC 2CH 2 2 .•・•点C在第一象限,,点C的坐标是(2, 4). ........................... 1分k (8)••.反比例函数y —的图像过点C (2, 4) ,k = 8.即y - . .................. 1分x x(2)过点D作DG ±OA于点G. ............................................. 1分••・四边形ABCD是平行四边形,,AB=OC=2J5. ............................... 1分••,点D是边AB的中点,,AD=<5. ....................................... 1分在4DAG 中,Z DGA= 90 ° , ,sin/DAG =sin / AOC= _DG_ 2Jg.DA 5••.DG=2, AG=1 . .•・设点D 的坐标为(a, 2).••.反比例函数y '的图像过点D (a, 2), a = 4.即OG=4 . ............ 1分x••.OA=OG —AG=3.,四边形OABC的面积为12. .............................. 1分22.(本题满分10分,其中第(1)小题4分,第(2)小题6分)解:(1)设第二次涨价后每本练习簿的价格为x 元. ............................. 1分由题意得:8.25 2 36 x 2 25. ................................... 2分解得:x 11 .答:第二次涨价后每本练习簿的价格为11元. .......................... 1分(2)设每本练习簿平均获得利润的增长率为 y. ............................ 1分2 由题意得:8.25 2 1 y 11 2. .......... 2分解得:y 0.2或y 2.2 (不合题意,舍去). ............................ 2分 答:每本练习簿平均获彳#利润的增长率为20%. ......................... 1分23.(本题满分12分,每小题各6分)证明:(1) ,「AD//BC, AD=BE,,四边形 ABED 是平行四边形. ..................... 1分• . AB=DE . ........................................................... 1 分 ••• BE=DF , BC=CD,CE=CF. .............................................. 1 分又・. / BCF= / DCE= 90o, BC=CD. /.A BCF^A DCE . .......................... 2 分DE=BF. ............................................................. 1 分 AB=BF.(2)延长AF 与BC 延长线交于点 H. .......................................... 1分••• BE=2CE, BE=DF=AD , CE=CF,DF =2CF , AD= 2CE. .................................................. 1 分AD= 2CE=2CH .又「 EH=CE+CH. AD=EH . .................................................. 1 分DG=GE .24.(本题满分12分,其中第(1)小题3分,第(2)小题4分,第(3)小题5分)解:(1)抛物线y ax 2bx 3与y 轴的交点D (0,3).••• AD //BC,AD DF CH CF••• AD // BC,DG AD GE EH•••抛物线经过点 A (7,3), •♦・抛物线的对称轴为直线 x - . ............... 1分2m 6m工.解得m 1. ..................................................... 1分2 2(2)由 m 1得 B (1, 0).将A (7,3)、B (1, 0)代入抛物线解析式得:49a 7b 33,........ 2分a b 3 0.1a5, 解得: 2 ......................................... b 7.2.......... 1 c 7这条抛物线的表达式为: y -x 27x 3. ................................2 2(3)①当点Q 在原点时,抛物线与 x 轴的交点(6,0)即为点P,••• P (6,0) , Q (0,0) . ...................................... 1 分②当点Q 不在原点时,过点 P 作PH x 轴于点H . • : DOQ QHP 90 , DQO QPH ,• .△ DOQ st QHP . ................................................ 1 分QH 2OD 6, PH 2OQ .由题意,设Q (k,0),那么P(6 k, 2k).1 2 7 c• .•点P(6 k, 2k)在抛物线y -x -x 3上,2 21 /2 7- 6 k)2(6 k) 3 2k 2 2解得k 0 , k 21 . ........................................ 1分当k 0时,点Q 与点O 重合,舍去.••• P (5,2) , Q ( 1,0) . .......................................... 1 分 ••• P (6,0), Q (0,0)或 P (5,2) , Q ( 1,0).25.(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4分)(1)证明:记 COA• •• PA OM , C 是 OP 的中点,,AC OC PC . ......................... 1 分PQD 90 且 PQ=2DQ.PQ=2DQ,ODQH OQ DQ PHQP• •• COA CAO . .................................................... 1 分 又.• MON 45 ,ADB AOD CAO 45o. .................................................................................. 1 分POB MON COA 45o . .................................................................................. 1 分又• PB ON ,• ♦・在△ POB 中,/ PBO=90° , OPB 90oPOB 450. ..................1 分ADB OPB .(2)解:延长 AP,交ON 于点E,过点A 作AF ON 于点F. ......................... 1分••• PA OM , / MON= 45° , PB ON , ・ ./ AEO= 45即^ AOE 、△ PBE 均为等腰直角三角形.(3) ••• PB ON , C 是 OP 的中点,・•. CB CP .CPB CBP ,即^ CBP 为等腰三角形.又ABD 与^ CBP 相似,且 ADB CPB .••• ABD ADB 或 DAB ADB.即 AB AD 或 AB BD . ......................................... 1 分CA CO CP CB , ACP 2 COA , BCP 2 BOC . ••• ACB 2 AOB 90 .又.. CA CB, •. DAB 45 . ....................................... 1 分, e力1800 450c①如果 AB AD ,那么 ADB ABD ------------------- 67.5°.2OPB 67.5o . AOP BOP 22.5o.又「 PA OM 于点A 、PB ON 于点B, PA PB 2<2 . .................... 1分 ② 如果BA BD ,那么 ABD 90o.PBD 90,,点A 在直线PB 上.又 PA=x, PB=2>/2 ,PE=4, AO=AE= x 4 . ...........................•.OE=^/2x 4在.2 2 • .OF=EF=AF =—x 2短,OB= 72x 2J2, DF=——x 2<22 2ADB OPB , cot ADB cot OPB .DF PBAF OB二x 2 2 y22x 2 5 22 2 2x 2 2.2x 2 4.2x y --2x 41分1分1分1分11 / 又「 PA OM 于点A, ••・点P 与点A 重合.而点P 是 MON 内一点,,点P 与点A 不重合.此情况不成立. .............. 1分综上所述,当^ ABD 与△ CBP 相似时,PA 2/2 . 参考答案.填空题三.简答题3 . .19. ―; 20. 1 x 1 ;423.略;1 2 7… , 一 -x 2 -x 3; (3) P(6,0)、Q(0,0)或 P(5,2)、Q( 1,0); 2 237. a 8. x(x 2) ” . 仆 7rir 11. m 1 12. a b3 3 9. x10. x 13.(1,2) 14. 15. 72 16. 10 17. 518. 3 25. (1) 略; (2) 2x 2 4.2x2x 4 ⑶4.一.选择题1. C2. C3. B4. A5. D6. C 8 21. (1) y - ; (2) 12; 22. (1) 11; (2) 20%; 24. (1) m 1 ; (2) y。

2024年广东省深圳市中考二模数学试题(解析版)

2024年广东省深圳市中考二模数学试题(解析版)

2024年广东省深圳市中考数学二模练习试卷满分100分,考试时长90分钟第一部分 选择题一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1. 2025的相反数是( )A. 2025−B. 12025−C. 2025D. 12025【答案】A【解析】【分析】根据相反数的定义进行求解即可.【详解】解:2025的相反数是2025−,故选A .【点睛】本题主要考查了求一个数的相反数,熟知只有符号不同的两个数互为相反数,0的相反数是0是解题的关键.2. 下列四个手机应用图标中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.【答案】A【解析】【分析】A 既是轴对称图形,又是中心对称图形;B 是轴对称图形,不是中心对称图形;C 既不是轴对称图形,也不是中心对称图形;D 既不是轴对称图形,也不是中心对称图形;【详解】请在此输入详解!3. 第19届亚运会将于2023年9月23日至10月8日在中国浙江省杭州市举行,杭州奥体博览城游泳馆区建筑总面积272000平方米,将数272000用科学记数法表示为( )A. 70.27210×B. 62.7210×C. 52.7210×D. 427210×【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ×,其中110a ≤<,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:5272000 2.7210=×,故选:C .【点睛】本题考查了科学记数法的表示方法,用科学记数法表示较大的数时,一般形式为10n a ×,其中110a ≤<,n 为整数,且n 比原来的整数位数少1,解题的关键是要正确确定a 和n 的值. 4. 如图.直线//a b ,将一块含有45°角的直角三角板的两个顶点放在直线a ,b 上,如果220∠°.那么1∠度数为( )A. 15°B. 20°C. 25°D. 30°【答案】C【解析】 【分析】根据平行线的性质即可得到结论.【详解】解:如图,过E 作EF ∥直线a ,则EF ∥直线b ,∴∠3=∠1,∠4=∠2=20°,∴∠1=45°-∠2=25°;故选:C .【点睛】本题考查了平行线的性质,熟记两直线平行内错角相等是解题的关键.5. 实数a ,b ,c 在数轴上的对应点的位置如图所示,下列结论正确的是( )A. a c b >>B. c a b a −>−C. 0a b +<D. 22ac bc <【答案】D【解析】【分析】根据a b c ,,对应的点在数轴上的位置,利用不等式的性质逐一判断即可.【详解】解:由数轴得:0a c b <<<,a b <,故选项A 不符合题意;∵c b <,∴c a b a −<−,故选项B 不符合题意; ∵a b <,a b <,∴0a b +>,故选项C 不符合题意;∵a b <,0c ≠,∴22ac bc <,故选项D 符合题意;故选:D .【点睛】本题考查的是实数与数轴,绝对值的概念,不等式的性质,掌握以上知识是解题的关键. 6. 如图,点O 是ABC 的外接圆的圆心,若80A ∠=°,则BOC ∠为( )A. 100°B. 160°C. 150°D. 130°【答案】B【解析】 【分析】根据圆周角定理即可得到BOC ∠的度数.【详解】解:∵点O 是ABC 的外接圆的圆心,∴A ∠、BOC ∠同对着 BC, ∵80A ∠=°,∴2160BOC A ∠°=∠=,故选:B .【点睛】此题考查了圆周角定理,熟练掌握圆周角定理是解答本题的关键,同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.7. 《九章算术》中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?其译文是 :今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现有30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x 斗,行酒为y 斗,则可列二元一次方程组为( )A. 2501030x y x y += +=B. -2501030x y x y = +=C. 2105030x y x y += +=D. 2103050x y x y += +=【答案】A【解析】 【分析】设醇酒为x 斗,行酒为y 斗,根据两种酒共用30钱,共2斗的等量关系列出方程组即可.【详解】设醇酒为x 斗,行酒为y 斗,由题意,则有2501030x y x y += +=, 故选A .【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系列出相应的方程是解题的关键. 8. 甲、乙两地相距120km ,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了30km /h ,并继续匀速行驶至乙地,汽车行驶的路程()km y 与时间()h x 之间的函数关系如图所示,该车到达乙地的时间是当天上午( )A. 10:35B. 10:40C. 10:45D. 10:50【答案】B【解析】 【分析】根据路程、速度和时间的关系结合函数图像解答即可.【详解】解:∵汽车匀速行驶了一半的路程后将速度提高了30km /h ,甲、乙两地相距120km ,∴汽车1小时行驶了60km ,汽车的速度为60km /h ,∴1小时以后的速度为90km /h , 汽车行驶完后面的路程需要的时间为60604090×=分钟, 故该车到达乙地的时间是当天上午10:40;故选:B .【点睛】本题考查了函数的图像,正确理解题意、灵活应用数形结合思想是解题的关键.9. 如图,在ABC 中,90C ∠=°,30B ∠=°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,以下结论错误的是( )A. AD 是BAC ∠的平分线B. 60ADC ∠=°C. 点D 在线段AB 的垂直平分线上D. :1:2ABD ABC S S =△△【答案】D【解析】 【分析】本题考查的是角平分线的含义,线段的垂直平分线的判定,含30°的直角三角形的性质,A 根据作图的过程可以判定AD 是BAC ∠的角平分线;B 利用角平分线的定义可以推知30CAD ∠=°,则由直角三角形的性质来求ADC ∠的度数;C 利用等角对等边可以证得AD DB =,由线段垂直平分线的判定可以证明点D 在AB 的垂直平分线上;D 利用30°角所对的直角边是斜边的一半求出1122CD AD DB ==,进而可得:1:2DAC ABD S S =△△,则:2:3ABD ABC S S = . 【详解】解:根据作图方法可得AD 是BAC ∠的平分线,故A 正确,不符合题意;∵9030C B ∠=°∠=°,,∴60CAB ∠=°,∵AD 是BAC ∠的平分线,∴30DAC DAB ∠=∠=°,∴60ADC ∠=°,故B 正确,不符合题意;∵3030B DAB ∠=°∠=°,,∴AD DB =,∴点D 在AB 的垂直平分线上,故C 正确,不符合题意;∵30CAD ∠=°, ∴12CD AD =, ∵AD DB =, ∴12CD DB =, ∴:1:2DAC ABD S S =△△,则:2:3ABD ABC S S = ,故D 错误,符合题意,故选:D .10. 定义:在平面直角坐标系中,对于点()11,P x y ,当点()22,Q x y 满足()12122x x y y +=+时,称点()22,Q x y 是点()11,P x y “倍增点”,已知点()11,0P ,有下列结论:①点()13,8Q ,()22,2Q −−都是点1P 的“倍增点”;②若直线2y x =+上的点A 是点1P 的“倍增点”,则点A 的坐标为()2,4;③抛物线223y x x =−−上存在两个点是点1P 的“倍增点”;④若点B 是点1P 的“倍增点”,则1PB其中,正确结论的个数是( )A. 1B. 2C. 3D. 4 【答案】C【解析】【分析】①根据题目所给“倍增点”定义,分别验证12,Q Q 即可;②点(),2A a a +,根据“倍增点”定义,列出方程,求出a 的值,即可判断;③设抛物线上点()2,23D t t t −−是点1P 的“倍增点”,根据“倍增点”定义列出方程,再根据判别式得出该方程根的情况,即可判断;④设点(),B m n ,根据“倍增点”定义可得()21m n +=,根据两点间距离公式可得()22211PB m n =−+,把()21n m =+代入化简并配方,即可得出21PB 的最小值为165,即可判断. 【详解】解:①∵()11,0P ,()13,8Q ,的∴()()121282288103,x x y y +=+=++×==, ∴()12122x x y y +=+,则()13,8Q 是点1P 的“倍增点”;∵()11,0P ,()22,2Q −−,∴()()121222212202,x x y y +==−×−=−=−+, ∴()12122x x y y +=+,则()22,2Q −−是点1P 的“倍增点”;故①正确,符合题意;②设点(),2A a a +,∵点A 是点1P 的“倍增点”,∴()2102a a ×+=++,解得:0a =,∴()0,2A ,故②不正确,不符合题意;③设抛物线上点()2,23D t t t −−是点1P 的“倍增点”,∴()22123t t t +=−−,整理得:2450t t −−=, ∵()()24415360∆=−−××−=>,∴方程有两个不相等实根,即抛物线223y x x =−−上存在两个点是点1P 的“倍增点”;故③正确,符合题意;④设点(),B m n ,∵点B 是点1P 的“倍增点”,∴()21m n +=, ∵(),B m n ,()11,0P ,∴()22211PB m n =−+ ()()22121m m =−++2565m m =++2316555m =++, ∵50>,∴21PB 的最小值为165,∴1PB = 故④正确,符合题意;综上:正确的有①③④,共3个.故选:C .【点睛】本题主要考查了新定义,解一元一次方程,一元二次方程根的判别式,两点间的距离公式,解题的关键是正确理解题目所给“倍增点”定义,根据定义列出方程求解.第二部分 非选择题二、填空题(本大题共5小题,每小题3分,共15分)11. 若226m n −=−,且m ﹣n =﹣3,则m +n =_____.【答案】2【解析】【详解】解:∵()()226m n m n m n −=+−=−,m ﹣n =﹣3, ∴﹣3(m +n )=﹣6,∴m +n =2,故答案为:2【点睛】本题考查代数式求值,解题的关键是熟练运用平方差公式,本题属于基础题型.12. 一只不透明的袋中装有2个白球和n 个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到白球的概率为14,那么黑球的个数是______. 【答案】6【解析】【分析】根据概率公式建立分式方程求解即可【详解】∵袋子中装有2个白球和n 个黑球,摸出白球的概率为14,∴22n+=14,解得n=6,经检验n=6是原方程的根,故答案为:6【点睛】本题考查了概率公式,根据概率,运用公式建立起分式方程是解题的关键.13. 如图,正六边形ABCDEF的边长为2,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为______.【答案】43π##43π【解析】【分析】延长F A交⊙A于G,如图所示:根据六边形ABCDEF是正六边形,AB=2,利用外角和求得∠GAB=360606°=°,再求出正六边形内角∠F AB=180°-∠GAB=180°-60°=120°,利用扇形面积公式代入数值计算即可.【详解】解:延长F A交⊙A于G,如图所示:∵六边形ABCDEF是正六边形,AB=2,∴∠GAB=360606°=°,∠F AB=180°-∠GAB=180°-60°=120°,∴2120443603603 FABn rSπππ××===扇形,故答案为43π. 【点睛】本题主要考查扇形面积计算及正多边形的性质,熟练掌握扇形面积计算及正多边形的性质是解题的关键.14. 如图,在矩形OABC 和正方形CDEF 中,点A 在y 轴正半轴上,点C ,F 均在x 轴正半轴上,点D 在边BC 上,2BC CD =,3AB =.若点B ,E 在同一个反比例函数的图象上,则这个反比例函数的表达式是__________.【答案】18y x= 【解析】【分析】设正方形CDEF 的边长为m ,根据2BC CD =,3AB =,得到()3,2B m ,根据矩形对边相等得到3OC =,推出()3,E m m +,根据点B ,E 在同一个反比例函数的图象上,得到()323m m m ×=+,得到3m =,推出18y x=. 【详解】解:∵四边形OABC∴3OC AB ==,设正方形CDEF 的边长为m ,∴CD CF EF m ===,∵2BC CD =,∴2BC m =,∴()3,2B m ,()3,E m m +,设反比例函数表达式为k y x=, ∴()323m m m ×=+,解得3m =或0m =(不合题意,舍去), ∴()3,6B ,的∴3618=×=k , ∴这个反比例函数的表达式是18y x =, 故答案为:18y x=.【点睛】本题主要考查了反比例函数,解决问题的关键是熟练掌握矩形性质,正方形性质,反比例函数性质,k 的几何意义.15. 如图,在矩形ABCD 中,E 是AB 的中点,过点E 作ED 的垂线交BC 于点F ,对角线AC 分别交DE ,DF 于点G ,H ,当DH AC ⊥时,则GH EF的值为______.【解析】【分析】设AD a =,AB b =,根据矩形性质和勾股定理可得AC =,再证得ADE BEF ∽,可得AD AE BE BF=,24b BF a =,进而可得24b CF a a =−,再由tan tan CDF CAD ∠=∠,可得CF CD CD AD =,得出2b CF a =,联立得224b b a a a −=,求得a =,再证得DGH DFE △∽△,即可求得答案. 【详解】解: 四边形ABCD 是矩形,设AD a =,AB b =,90BAD B ADC ∴∠=∠=∠=°,AD BC a ==,AB CD b ==,AC ∴==,EF DE ⊥ ,90DEF ∴∠=°,90ADE AED AED BEF ∴∠+∠=∠+∠=°,ADE BEF ∠∠∴=,ADE BEF ∴ ∽, ∴AD AE BE BF=, E 是AB 的中点, 1122AE BE AB b ∴===, 24b BF a∴=, 24b CF BC BF a a∴=−=−, DH AC ⊥ ,90ADH CAD ∴∠+∠=°,90ADH CDF ∠+∠=° ,CDF CAD ∴∠=∠,tan tan CDF CAD ∴∠=∠, ∴CF CD CD AD=,即CF b b a =, 2b CF a∴=, 224b b a a a∴−=,a ∴, 在Rt ADE △中,DE , DH AC AD CD ⋅=⋅ ,AD CD DH AC ⋅∴==, 90DHG DEF ∠=∠=° ,GDH FDE ∠=∠,DGH DFE ∴△∽△,∴GH DH EF DE ==. 【点睛】本题考查了矩形的性质,相似三角形的性质与判定,直角三角形的性质,勾股定理等知识的综合运用,熟练掌握相似三角形的判定与性质是解题的关键.三、解答题(本题共7小题,共55分,解答应写出文字说明、证明过程或演算步骤.) 16. 计算:(1)()2014cos3032π− −+°−−− (2)()()()332a a a a +−−−.【答案】(1)3(2)29a −【解析】【分析】本题考查含特殊角三角函数值的混合运算和整式的乘法.(1)先计算负指数幂,零指数幂,特殊角的三角函数值和二次根式,再进行加减计算;(2)根据平方差公式和单项式乘多项式法则计算,再合并同类项即可.【小问1详解】解: ()2014cos3032π− −+°−−441=+−41=+−−3=【小问2详解】()()()332a a a a +−−−2292a a a −−+29=−a17. 某校为加强书法教学,了解学生现有的书写能力,随机抽取了部分学生进行测试,测试结果分为优秀、良好、及格、不及格四个等级,分别用A ,B ,C ,D 表示,并将测试结果绘制成如下两幅不完整的统计图.请根据统计图中信息解答以下问题;(1)本次抽取的学生共有_______人,扇形统计图中A 所对应扇形的圆心角是______°,并把条形统计图补充完整;(2)依次将优秀、良好、及格、不及格记为90分、80分、70分、50分,则抽取的这部分学生书写成绩的众数是_______分,中位数是_______分,平均数是_______分;(3)若该校共有学生2800人,请估计一下,书写能力等级达到优秀的学生大约有_____人:(4)A 等级的4名学生中有3名女生和1名男生,现在需要从这4人中随机抽取2人参加电视台举办的“中学生书法比赛”,请用列表或画树状图的方法,求被抽取的2人恰好是1名男生1名女生的概率.【答案】(1)40;36;见解析(2)70;70;66.5(3)280 (4)12【解析】【分析】(1)由C 等级人数及其所占百分比可得总人数,用360°乘以A 等级人数所占比例即可得; (2)由中位数,众数,平均数的定义结合数据求解即可;(3)利用总人数乘以样本中A 等级人数所占比例即可得;(4)列表或画树状图得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【小问1详解】本次抽取的学生人数是1640%40÷=(人), 扇形统计图中A 所对应扇形圆心角的度数是43603640°×=°, 故答案为40人、36°;B 等级人数为()40416146−++=(人),的补全条形图如下:【小问2详解】由条形统计图可知众数为:70由A 、B 、C 的人数相加得:4+6+16=26>20,所以中位数为:70平均数:4906801670145066.540×+×+×+×= 【小问3详解】 等级达到优秀的人数大约有4280028040×=(人); 【小问4详解】画树状图为:∵共有12种等可能情况,1男1女有6种情况,∴被选中的2人恰好是1男1女的概率为12.【点睛】本题考查了扇形统计图,条形统计图,中位数,众数,平均数,树状图等知识点,解题时注意:概率=所求情况数与总情况数之比.18. “母亲节”来临之际,某花店打算使用不超过30000元的进货资金购进百合与康乃馨两种鲜花共1200束进行销售.百合与康乃馨的进货价格分别为每束30元、18元,百合每束的售价是康乃馨每束售价的1.6倍,若消费者用3200元购买百合的数量比用2400元购买康乃馨的数量少10束.(1)求百合与康乃馨两种鲜花的售价分别为每束多少元;(2)花店为了让利给消费者,决定把百合售价每束降低4元,康乃馨的售价每束降低2元.求花店应如何进货才能获得最大利润.(假设购进的两种鲜花全部销售完)为的【答案】(1)康乃馨的售价为每束40元,百合的售价为每束64元;(2)购进百合700束,购进康乃馨500束.【解析】【分析】本题考查了分式方程,一次函数的应用,解题的关键是读懂题意,列出方程和函数关系式. (1)设康乃馨的售价为每束x 元,根据消费者用3200元购买百合的数量比用2400元购买康乃馨的数量少10束得:32002400101.6x x+=,解方程并检验可得答案; (2)设购进百合m 束,根据使用不超过30000元的进货资金购进百合与康乃馨两种鲜花,有()3018120030000m m +−≤,700m ≤,设花店获得利润为w 元,可得:()()()644304021812001024000w m m m =−−+−−−=+,再根据一次函数性质可得答案;【小问1详解】设康乃馨的售价为每束x 元,则百合的售价为每束1.6x 元; 根据题意得:32002400101.6x x+=, 解得:40x =,经检验,40x =是原方程的解,∴1.6 1.64064x =×=,答:康乃馨的售价为每束40元,百合的售价为每束64元;【小问2详解】设购进百合m 束,则购进康乃馨()1200−m 束,∵使用不超过30000元的进货资金购进百合与康乃馨两种鲜花,∴()3018120030000m m +−≤,解得700m ≤,设花店获得利润为w 元,根据题意得:()()()644304021812001024000w m m m =−−+−−−=+,∵100>,∴w 随m 的增大而增大,∴当700m =时,w 取最大值107002400031000×+=(元), 此时12001200700500m −=−=,答:购进百合700束,购进康乃馨500束.19. 如图1为放置在水平桌面l 上的台灯,底座的高AB 为5cm ,长度均为20cm 的连杆BC ,CD 与AB 始终在同一平面上.(1)转动连杆BC ,CD ,使BCD ∠成平角,150ABC ∠=°,如图2,求连杆端点D 离桌面l 的高度DE .(2)将(1)中的连杆CD 再绕点C 逆时针旋转,使165BCD ∠°=,此时连杆端点D 离桌面l 的高度是增加还是减少?增加或减少了多少?(精确到0.1cm 1.41≈ 1.73≈)【答案】(1)39.6cm(2)减少了3.2cm【解析】【分析】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题. (1)如图2中,作BO DE ⊥于O .解直角三角形求出OD 即可解决问题.(2)作DF ⊥l 于F ,CP DF ⊥P ,BG DF ⊥于G ,CH BG ⊥于H .则四边形PCHG 是矩形,求出DF ,再求出DF DE −即可解决问题.【小问1详解】如图2中,作BO DE ⊥于O .∵90OEA BOE BAE ∠=∠=∠=°,∴四边形ABOE 是矩形,∴90OBA ∠=°,∴1509060DBO °−°∠==°,∴)sin 60cm ODBD =⋅°=,∴()539.6cm DE OD OE OD AB =+=+=+≈.【小问2详解】作DF ⊥l 于F ,CP DF ⊥于P ,BG DF ⊥于G ,CH BG ⊥于H .则四边形PCHG 是矩形,∵6090CBH CHB ∠=°∠=°,,∴30BCH ∠=°,∵165BCD ∠=°,∴45DCP ∠=°, )sin 60cm CH BC ∴=⋅°=,)sin 45cm DPCD =⋅°=, ∴DF DP PG GF DP CH AB =++=++()()5cm =++,∴下降高度:55DE DF −=+−−− ()3.2cm =−≈.20. 如图,在ABC 中,90C ∠=°,O 是AB 上一点,以OA 为半径的O 与BC 相切于点D ,与AB 相交于点E .(1)求证:AD 是BAC ∠的平分线;(2)若2BE =,4BD =,求AE 的长.【答案】(1)见解析 (2)6【解析】【分析】(1)根据切线的性质得OD BC ⊥,再由90C ∠=°,得OD AC ∥,由平行线的性质得ODA DAC ∠=∠,又因为等腰三角形得ODA OAD ∠=∠,等量代换即可得证;(2)在Rt BOD 中222BD OD BO +=,由勾股定理即可求半径.【小问1详解】证明:连接OD ;∵O 与BC 相切于点D∴OD BC ⊥∴90ODB ∠=°∵90C ∠=°,∴ODB C ∠=∠∴OD AC ∥∴ODA DAC ∠=∠∵OD OA =∴ODA OAD ∠=∠∴OAD DAC ∠=∠∴AD 是BAC ∠的平分线;【小问2详解】解:∵90C ∠=°∴在Rt BOD 中222BD OD BO +=;∵2BE =,4BD =,设圆的半径为r ,∴()22242r r +=+解得3r =:,∴圆的半径为3∴6AE =.【点睛】本题考查了切线的性质、角平分线的性质、勾股定理,熟悉角平分线的定义与性质是解决本题的关键.21. 如图,BC 是O 的直径,点A 在O 上,OD AC ⊥于点G ,交O 于点D ,过点D 作EF AB ⊥,分别交BA ,BC 的延长线于点E ,F .(1)求证:EF 是O 的切线;(2)若2AE =,4tan 3B =,求O 的半径. 【答案】(1)见解析 (2)5【解析】【分析】(1)由BC 是O 的直径,点A 在O 上,可得90BAC ∠=°,证明EF AC ∥,则OD EF ⊥,进而结论得证;(2)证明四边形AGDE 是矩形,则2DG AE ==,由OD AB ∥,可得tan tan COG B ∠=∠,即43CG OG =,设4CG a =,则3OG a =,勾股定理得,5OC a =,由OG DG OD +=,可得325a a +=,解得1a =,则5OC =,进而可得结果.【小问1详解】证明:∵BC 是O 的直径,点A 在O 上,∴90BAC ∠=°,即AC AB ⊥,∵EF AB ⊥,∴EF AC ∥,∵OD AC ⊥,∴OD EF ⊥,又∵OD 是半径,∴EF 是O 的切线;【小问2详解】解:∵90BAC ∠=°,EF AB ⊥,OD EF ⊥, ∴四边形AGDE 是矩形, ∴2DG AE ==,∵OD AC ⊥,AC AB ⊥, ∴OD AB ∥, ∴COG B ∠=∠, ∴tan tan COG B ∠=∠,即43CG OG =, 设4CG a =,则3OG a =,由勾股定理得,5OC a =,∵OG DG OD +=, ∴325a a +=,解得1a =, ∴5OC =, ∴O 的半径为5.【点睛】本题考查了切线的判定,平行线的判定与性质,直径所对的圆周角为直角,勾股定理,正切,矩形的判定与性质等知识.解题的关键在于对知识的熟练掌握与灵活运用.22. (1)【探究发现】如图①所示,在正方形ABCD 中,E 为AD 边上一点,将AEB △沿BE 翻折到BEF △处,延长EF 交CD 边于G 点.求证:BFG BCG △≌△(2)【类比迁移】如图②,在矩形ABCD 中,E 为AD 边上一点,且8,6,AD AB ==将AEB △沿BE 翻折到BEF △处,延长EF 交BC 边于点,G 延长BF 交CD 边于点,H 且,FH CH =求AE 的长.(3)【拓展应用】如图③,在菱形ABCD 中,6AB =,E 为CD 边上的三等分点,60,D ∠=°将ADE 沿AE 翻折得到AFE △,直线EF 交BC 于点,P 求CP 的长.【答案】(1)见解析;(2)92;()CP 的长为32或65【解析】【分析】(1)根据将AEB ∆沿BE 翻折到∆BEF 处,四边形ABCD 是正方形,得AB BF =,90BFE A ∠=∠=°,即得90BFG C ∠=°=∠,可证()Rt BFG Rt BCG HL ≌;(2)延长BH ,AD 交于Q ,设FH HC x ==,在Rt BCH 中,有2228(6)x x +=+,得73x =,113DH DC HC =−=,由BFG BCH ∆∆∽,得6778633BG FG=+,254BG =,74FG =,而//EQ GB ,//DQ CB ,可得BC CH DQ DH =,即783763DQ =−,887DQ =,设AE EF m ==,则8DE m =−,因EQ EF BG FG =,有144725744m m −=,即解得AE 的长为92;(3)分两种情况:(Ⅰ)当123DE DC ==时,延长FE 交AD 于Q ,过Q 作QH CD ⊥于H ,设DQ x =,QE y =,则6AQ x =−,2CP x =,由AE 是AQF ∆的角平分线,有662x y−=①,在Rt ΔHQE中,2221(1))2x y −+=②,可解得34x =,322CPx ==; (Ⅱ)当123CE DC ==时,延长FE 交AD 延长线于Q ′,过D 作DN AB ⊥交BA 延长线于N ,同理解得125x =,65CP =.【详解】证明:(1) 将AEB ∆沿BE 翻折到∆BEF 处,四边形ABCD 是正方形,AB BF ∴=,90BFE A ∠=∠=°, 90BFG C ∴∠=°=∠,AB BC BF == ,BG BG =,()Rt BFG Rt BCG HL ∴ ≌;(2)解:延长BH ,AD 交于Q ,如图:设FH HC x ==,在Rt BCH 中,222BC CH BH +=,2228(6)x x ∴+=+,解得73x =, 113DH DC HC ∴=−=, 90BFG BCH ∠=∠=° ,HBC FBG ∠=∠,BFG BCH ∴∆∆∽,∴BF BG FG BC BH HC==,即6778633BG FG =+,254BG ∴=,74FG =,//EQ GB ,//DQ CB ,EFQ GFB ∴∆∆∽,DHQ CHB ∆∆∽,∴BC CH DQ DH =,即783763DQ =−, 887DQ ∴=,设AE EF m ==,则8DE m =−, 88144877EQ DE DQ m m ∴=+=−+=−, EFQ GFB ∆∆ ∽,∴EQ EF BG FG=,即144725744m m−=, 解得92m =,AE ∴的长为92;(3)(Ⅰ)当123DE DC ==时,延长FE 交AD 于Q ,过Q 作QH CD ⊥于H ,如图:设DQ x =,QE y =,则6AQ x =−, //CP DQ ,CPE QDE ∴∆∆∽,∴2CP CEDQ DE ==, 2CP x ∴=,ADE ∆ 沿AE 翻折得到AFE ∆,2EF DE ∴==,6AF AD ==,QAE FAE ∠=∠, AE ∴是AQF ∆的角平分线,∴AQ QEAF EF=,即662x y −=①, 60D ∠=° ,1122DH DQ x ∴==,122HE DE DH x =−=−,HQx =, 在Rt HQE △中,222HE HQ EQ +=,2221(1))2x y ∴−+=②, 联立①②可解得34x =, 322CP x ∴==; (Ⅱ)当123CE DC ==时,延长FE 交AD 延长线于Q ′,过D 作DN AB ⊥交BA 延长线于N ,如图:同理Q AE EAF ′∠=∠, ∴AQ Q EAF EF ′′=,即664x y +=,由222HQ HD Q D ′′+=得:2221)(4)2x y ++=, 可解得125x =, 1625CP x ∴==, 综上所述,CP 的长为32或65.【点睛】本题考查四边形的综合应用,涉及全等三角形的判定,相似三角形的判定与性质,三角形角平分线的性质,勾股定理及应用等知识,解题的关键是方程思想的应用.23. 如图,在平面直角坐标系中,经过点()4,0A 的直线AB 与y 轴交于点()0,4B .经过原点O 的抛物线2y x bx c =−++交直线AB 于点A ,C ,抛物线的顶点为D .(1)求抛物线2y x bx c =−++的表达式;(2)M 是线段AB 上一点,N 是抛物线上一点,当MN y ∥轴且2MN =时,求点M 的坐标;(3)P 是抛物线上一动点,Q 是平面直角坐标系内一点.是否存在以点A ,C ,P ,Q 为顶点的四边形是矩形?若存在,直接写出点Q 的坐标;若不存在,请说明理由. 【答案】(1)24y x x =−+(2)或()2,2或()3,1(3)存在,()5,1或()4,2−−或或【解析】【分析】(1)利用待定系数法求出抛物线的解析式;(2)求出直线AB 的表达式为4y x =−+,设(),4M t t −+,()2,4N t t t −+,分当M 在N 点上方时,()2244542MN t t t t t =−+−−+=−+=.和当M 在N 点下方时,()2244542MN t t t t t =−+−−+=−+−=,即可求出M 的坐标;(3)画出图形,分AC 是四边形的边和AC 是四边形的对角线,进行讨论,利用勾股定理、相似三角形的判定与性质、函数图像的交点、平移等知识点进行解答即可得出答案. 【小问1详解】解:∵抛物线2y x bx c =−++过点()4,0A ,()0,0O∴16400.b c c −++= = ,解得40b c = =,∴抛物线的表达式为24y x x =−+. 【小问2详解】设直线AB 的解析式为:y kx b =+′, ∵直线AB 经过()4,0A ,()0,4B ,∴404k b b +′=′= ,∴14k b =− ′=, ∴直线AB 的表达式为4y x =−+.∵MN y ∥轴,可设(),4M t t −+,()2,4N t t t −+,其中04t ≤≤.当M 在N 点上方时,()2244542MN t t t t t =−+−−+=−+=.解得1t =,2t =(舍去).∴1M . 当M 在N 点下方时, ()2244542MN t t t t t =−+−−+=−+−=.解得32t =,43t =. ∴()22,2M ,()33,1M .综上所述,满足条件的点M 的坐标有三个,()2,2,()3,1.【小问3详解】存在.满足条件的点Q 的坐标有4个.()5,1,()4,2−−,,. 理由如下:①如图,若AC 是四边形的边.当2x =时,242y =−+= ∴拋物线的对称轴与直线AB 相交于点()2,2R . 过点C ,A 分别作直线AB 的垂线交抛物线于点1P ,2P , ∵()1,3C ,()2,4D ,∴CD =,CR =2RD =.∵2222+=,∴222CD CR DR +=. ∴90RCD ∠=°. ∴点1P 与点D 重合.当1111CP AQ CP AQ =∥,时,四边形11ACPQ 是矩形. ∵()1,3C 向右平移1个单位,向上平移1个单位得到()12,4P . ∴()4,0A 向右平移1个单位,向上平移1个单位得到()15,1Q . 此时直线1PC 的解析式为2y x =+. ∵直线2P A 与1PC 平行且过点()4,0A , ∴直线2P A 的解析式为4y x =−.∵点2P 是直线4y x =−与拋物线24y x x =−+的交点, ∴244x x x −+=−.解得11x =−,24x =(舍去). ∴()21,5P −−.当2222AC P Q AC P Q ,∥=时,四边形22ACQ P 是矩形. ∵()4,0A 向左平移3个单位,向上平移3个单位得到()1,3C . ∴()21,5P −−向左平移3个单位,向上平移3个单位得到()24,2Q −−. ②如图,若AC 是四边形的对角线,当390APC ∠=°时.过点3P 作3P H x ⊥轴,垂足为H ,过点C 作3CK P H ⊥,垂足为K . 可得3390P KC AHP ∠=∠=°,33PCK AP H ∠=∠. ∴33PCK AP H ∽△△. ∴33P K AHCK P H=.∴2243414t t t t t t −+−−=−−+. ∵点P 不与点A ,C 重合, ∴1t ≠和4t ≠. ∴2310t t −+=.∴3,4t =.∴如图,满足条件的点P 有两个.即3P ,4P .当3333PC AQ PC AQ ∥=,时,四边形33APCQ是矩形.∵3P ()1,3C .∴()4,0A 3Q . 当4444P C AQ P C AQ ∥=,时,四边形44AP CQ 是矩形.∵4P 个单位得到()1,3C .∴()4,0A 个单位得到4Q .综上,满足条件的点Q 的坐标为()5,1或()4,2−−或或. 【点睛】本题主要考查的是二次函数的综合应用,本题主要涉及了待定系数法求函数的解析式、勾股定理,矩形的性质,相似三角形的判定与性质,点的平移等知识,根据题意画出符合条件的图形、进行分类讨论是解题的关键.第31页/共31页。

2024年河南省中考二模数学试题(解析版)

2024年河南省中考二模数学试题(解析版)

2024年河南省初中第二次学业水平测试数学(A )注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟.请用蓝、黑色水笔或圆珠笔直接答在答题卡上.2.答卷前将装订线内的项目填写清楚.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确选项的代号字母填入题后括号内.1. 下列四个数中,最大的数是( )A. B. C. D. 【答案】A 【解析】【分析】本题考查实数的大小比较,根据两个负数比较大小,绝对值大的反而小求解即可.【详解】解:∵,∴,∴最大的数是,故选:A .2. 国家统计局1月30日发布,2023年,全国规模以上文化及相关产业企业实现营业收入129515亿元,比上年增长,文化企业发展持续回升向好.其中数据“129515亿”用科学记数法可表示为( )A. B. C. D. 【答案】B 【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【详解】解:,1-3-2-321>>>321-<-<<-1-8.2%140.12951510⨯131.2951510⨯121.2951510⨯812951510⨯10n a ⨯1||10a ≤<n a n 10n a ⨯1||10a ≤<n n a n 10≥n 1<n 1312951500000000 1.2951510=⨯3. 如图,是由10个相同的小正方体搭成的几何体,它的主视图是( )A. B. C. D.【答案】A 【解析】【分析】根据三视图的画法,确定从正面看时每列正方形的个数,即可正确解答.【详解】从正面看易得第一列有3个正方形,第二列最下面一层有1个正方形,第三列有2个正方形,所以该几何体的主视图为选项A 所示图形.故选:A.【点睛】此题考查简单几何体的三视图.错因分析 容易题.失分的原因是:不会判断小正方体组合体的三视图.4. 下列运算正确的是( )A.B. C. D. 【答案】B 【解析】【分析】本题考查了二次根式的加法运算和乘法运算,幂的乘方,同底数幂的乘法,熟练掌握运算法则和公式是解题的关键.依次利用二次根式的加法,幂的乘方,同底数幂的乘法,二次根式的乘法运算进行化简即可.【详解】解:A不是同类二次根式,不能合并,故本选项不符合题意;B 、,故本选项符合题意;C 、,故本选项不符合题意;D 、,故本选项不符合题意.+=()5210x x =5630x x x ⋅==()5210x x =5611x x x ⋅=6a =5. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A. 66°B. 104°C. 114°D. 124°【答案】C 【解析】【分析】根据平行四边形性质和折叠性质得∠BAC =∠ACD =∠B′AC=∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B′AC ,∴∠BAC =∠ACD =∠B′AC =∠1=22°,∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°,故选C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC 的度数是解决问题的关键.6. 甲,乙,丙,丁四人进行射击测试,他们在相同条件下各射击10次,成绩(单位:环)统计如下表:甲乙丙丁平均数9.69.59.59.6方差0.270.250.270.25如果从这四人中选出一位成绩较好且状态稳定的选手参加比赛,那么应该选( )A 甲B. 乙C. 丙D. 丁【答案】D.1212【分析】本题考查平均数和方差,根据平均数越大,方差越小则成绩越好且状态越稳定求解即可.【详解】解:根据表格数据,甲和丁成绩的平均数为9.6,均高于乙和丙,说明甲和丁的成绩较好;又甲成绩的方差是0.27,大于丁成绩的方差0.25,说明丁的成绩较稳定,综上,丁的成绩较好且状态稳定,故应该选丁,故选:D .7. 下列方程中,无实数根的是( )A. B. C. D. 【答案】D 【解析】【分析】本题考查了根的判别式,牢记“当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根”是解题的关键.根据方程的系数结合根的判别式,可分别找出四个选项中方程的根的判别式△的值,取的选项即可得出结论.【详解】解:A 、,方程有两个不相等的实数根,故本选项不符合题意;B 、,方程有两个不相等的实数根,故本选项不符合题意;C 、,方程有两个相等的实数根,故本选项不符合题意;D 、,方程没有实数根,故本选项符合题意.故选:D .8. 如图,正方形的对角线相交于点O ,点E 在边上,点F 在上,过点E 作,垂足为点G ,若,,,则的长为( )230x x +=2210x x +-=2210x x ++=230x x -+=0∆>Δ0=Δ0<24b ac ∆=-Δ0< 2341090∆=-⨯⨯=>∴230x x += 2241(1)80∆=-⨯⨯-=>∴2210x x +-= 224110∆=-⨯⨯=∴2210x x ++= 2(1)413110∆=--⨯⨯=-<∴230x x -+=ABCD AB OD EG BD ⊥FE FC =EF FC ⊥3OF =BEA. 3B.C.D. 【答案】B 【解析】【分析】证明,可得,再利用等腰直角三角形即可解决问题.【详解】解:∵四边形是正方形,∴,,∵,∴,∴,∵,∴,在和中,,∴,∴,∵,∴是等腰直角三角形,∴故选:B .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,解决本题的关键是得到.9. 河南是中原粮仓,粮食的水分含量是评价粮食品质的重要指标,粮食水分检测对粮食的收购、运输、储存等都具有十分重要的意义.其中,电阻式粮食水分测量仪的内部电路如图甲所示,将粮食放在湿敏电阻上,使的阻值发生变化,其阻值随粮食水分含量的变化关系如图乙所示.观察图象,下列说法不正确的是( )()ASA EFG CFO ≌3EG OF ==ABCD AC BD ⊥=45ABC ∠︒EF CF ⊥90COF EFC ∠=∠=︒90EFG CFO FCO ∠=︒-∠=∠EG BD ⊥90EGF FOC ∠=∠=︒EFG FCO 90EGF FOC EFG FCO FE CF ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()ASA EFG CFO ≌3EG OF ==45ABD ∠=︒EBG BE ==EFG CFO ≌1R 1RA. 当没有粮食放置时,的阻值为B.的阻值随着粮食水分含量的增大而减小C. 该装置能检测的粮食水分含量的最大值是D. 湿敏电阻与粮食水分含量之间是反比例关系【答案】D 【解析】【分析】本题考查了物理与数学的跨学科综合,成反比例关系的概念,从函数图象获取信息,是解题的关键.根据图象对每一个选项逐一判断即可.【详解】解:A 、当没有粮食放置时,即水分含量为0,由图象可知的阻值为,故本选项不符合题意;B 、由图象可知,的阻值随着粮食水分含量的增大而减小,故本选项不符合题意;C 、由图象可知,该装置能检测的粮食水分含量的最大值是,故本选项不符合题意;D 、如果两个变量的每一组对应值的乘积是一个不等于0的常数,那么就说这两个变量成反比例,从图象中得到当水分含量为0时,的阻值为,此时这水分含量的阻值为0,不符合成反比例关系的定义,故本选项符合题意.故选:D .10. 如图,平面直角坐标系中,的顶点O 为原点,,,分别以A ,B 为圆心,以大于的长为半径作弧,两弧交于P ,Q 两点,作直线,交于点C,交y 轴于点D ,交x 轴于点E ,点M 从点A 出发,沿x 轴负方向以每秒N 从点O 出发,沿以每秒1个单位长度的速度运动,当时,点M 的坐标为( )1R 40Ω1R 12.5%1R 1R 40Ω1R 12.5%1R 40Ω⨯1R Rt OAB )A()0,1B 12AB PQ AB OB MN CD ∥A. B. C. D. 【答案】B 【解析】【分析】本题考查了锐角三角函数,平行线的性质,线段的垂直平分线,熟练掌握知识点是解题的关键.先求出,再根据互余关系及平行关系得到,继而设运动时间为t ,则,由得,求出时间t ,即可求得坐标.【详解】解:如图所示,∵,,∴,∴在中,∴,由题意得垂直平分,∴,∴,⎛⎫ ⎪ ⎪⎝⎭⎛⎫⎪ ⎪⎝⎭⎛⎫⎪ ⎪⎝⎭⎛⎫⎪ ⎪⎝⎭30A ∠=︒30MNO ODE ∠=∠=︒OM =ON t =ON =t =)A()0,1B 1OA OB ==Rt OAB tan OB BAO OA ∠==30A ∠=︒CD AB 90A CEA ODE OED ∠+∠=∠+∠=︒30A ODE ∠=∠=︒∵,∴,由得,设运动时间为t ,则,∴,解得:,∴∴,故选:B .二、填空题(每小题3分,共15分)11. 原价为m 元的商品,现打八折销售,售价为___元.【答案】0.8m 【解析】【分析】现价=原价×打折,从而可列出代数式.【详解】解:根据题意得:m •0.8=0.8m .故答案为:0.8m .【点睛】本题考查理解题意的能力,关键是知道现价=原价×打折.12. 不等式组的最大整数解是________.【答案】3【解析】【分析】分别求出两个不等式的解集,然后再求出不等式组的解集,最后求出最大整数解即可.详解】解:由,得:;由,得:,∴不等式组的解集为:;∴最大整数解是3;故答案为:3.【MN CD ∥30MNO ODE ∠=∠=︒tan 30OMON︒=ON =OM =ON t =t =35t =OM ==M ⎛⎫ ⎪ ⎪⎝⎭20260x x +>⎧⎨-≤⎩20x +>2x >-260x -≤3x ≤23x -<≤【点睛】本题主要考查了求不等式组的解集及其最大整数解,正确求出不等式组的解集是解题的关键.13. 春节前夕,哈尔滨旅游市场火爆全国,河南文旅局也及时调整政策,吸引全国游客入豫观光旅游.小明想在清明上河园、龙门石窟、云台山和商丘芒砀山四个旅游景点中选择两个去旅游,则他刚好选到“清明上河园”和“龙门石窟”的概率是______.【答案】【解析】【分析】本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果,再从中选出符合事件A 结果数目,然后利用概率公式求出事件A 的概率.用A 、B 、C 、D 分别表示清明上河园、龙门石窟、云台山和商丘芒砀山四个旅游景点,画树状图表示出所有的等可能结果,再找出选到A 、B 的结果数,用概率公式即可求解.【详解】解:用A 、B、C 、D 分别表示清明上河园、龙门石窟、云台山和商丘芒砀山四个旅游景点,画树状图为:共有12种等可能的结果,其中选到A 、B 的结果数为2,∴他刚好选到“清明上河园”和“龙门石窟”的概率是,故答案:.14. 如图,在中,,,,以的中点O 为圆心,的长为半径作半圆交于点D ,再以点B 为圆心,以的长为半径作,交半圆于点D ,交于点E ,则图中阴影部分的周长为______.为1621126=16Rt ABC △90ABC ∠=︒6AB =BC =AB OA AC OB DEBC【答案】【解析】【分析】本题考查弧长公式、等边三角形的判定与性质,先证明是等边三角形,则,进而求得,,然后利用弧长公式求解即可.【详解】解:连接、,由题意知,,∴是等边三角形,∴,∵在中,,,∴,,∴图中阴影部分的周长为,故答案为:.15. 如图,中,,,点P 为边上不与端点重合的一个动点,点P 关于的对称点为点Q ,连接,射线与射线交于点M ,当为直角三角形时,的长为______.【答案】或##或【解析】【分析】本题考查了直角三角形的分类讨论,等腰三角形的性质,三角形内角和定理,轴对称图形的性质,3π32+BOD 60BOD OBD ∠=∠=︒30DBE ∠=︒3OBBD BE ===OD BD BE BD OB OD OA ====BOD 60BOD OBD ∠=∠=︒Rt ABC △90ABC ∠=︒6AB =906030DBE Ð=°-°=°3OB BD BE ===60π330π333π31801802⨯⨯++=+3π32+ABC 45A ∠=︒2AB AC ==AB BC CQ CP QB CQM BM 2-2-相似三角形的判定与性质,熟练掌握知识点,正确添加辅助线是解题的关键.①当时,过点P 作交于点F ,即,先证明出,则设,那么,解得,先通过三角形内角和定理和轴对称的性质证出,那么可证明,再利用对应边成比例即可求解;②当,可得为等腰直角三角形,解即可.【详解】解:①当时,过点P 作交于点F ,即,∵,,∴,∵P 关于的对称点为点Q ,∴,∴,,∵,,∴,则为等腰直角三角形,∵,∴,∴,∴,设,则,,解得,∴ 90MCQ ∠=︒PF AP ⊥AC 90APF ∠=︒FPFC =FP FC AP x ===AF =2x +=2x =AC BM ∥APC BPM △∽△90Q ∠=︒PMB △PMB △90MCQ ∠=︒PF AP ⊥AC 90APF ∠=︒2AB AC ==45A ∠=︒1804567.52ACB ABC ︒-︒∠=∠==︒BC 45PCB QCB ∠=∠=︒67.5PBC QBC ∠=∠=︒67.54522.5PCF ∠=︒-︒=︒18067.567.545PBM ∠=︒-︒-︒=︒90APF ∠=︒45A ∠=︒45AFP ∠=︒FPA V AFP ACP FPC ∠=∠+∠4522.522.5FPC ∠=︒-︒=︒FPC PCF ∠=∠FP FC =FP FC AP x ===AF =2x +=2x =()224BP =--=-∵,∴,∴,∴,∴,解得:;②当,如图,∵P 关于的对称点为点Q,∴,由①得,∴,∴,∴,在中,,∴,∴在中,,综上所述,或,故答案为:.三、解答题(本大题8个小题,共75分)16. (145A PBM ∠=∠=︒AC BM ∥APC BPM △∽△BM BP AC AP=2BM =BM =90Q ∠=︒BC 90BPC Q BPM ∠=∠=∠=︒45PBM ∠=︒45M ∠=︒M PBM ∠=∠PB PM =Rt PAC △cos 45AP AC =⋅︒=2BP =Rt PBM △2sin PB BM M==-BM =2=BM 2-()0133π---+(2)化简:【答案】(1)(2)【解析】【分析】(1)根据立方根,零指数幂,负整数指数幂,实数的混合运算进行计算即可;(2)根据分式的混合运算进行求解即可.【详解】(1(2)解:【点睛】本题考查了立方根,零指数幂,负整数指数幂,实数的混合运算,分式的混合运算等,熟练掌握以上运算法则是解题的关键.17. 某校举行了“校园安全周”活动,并根据防火防溺水安全知识对全体学生进行了测试,校团委从八(1)班和八(2)班各随机抽取10份试卷进行统计分析,根据以下数据,请解决以下问题:收集数据:八(1)班 80 74 83 63 90 91 74 61 82 62八(2)班 74 61 83 91 60 85 46 84 74 82注:满分100分,90分及以上为优秀,80~89分为良好,60~79分为及格,59分及以下为不及格.(1)整理数据:等级频数年级优秀良好及格不及格八(1)班23a 0八(2)班1441()22111x x x +⎛⎫+÷ ⎪⎝⎭1331x x +()0133π---+1413=-+133=()22111x x x +⎛⎫+÷ ⎪⎝⎭()2211x x x x +=⨯+1xx =+表中______.(2)分析数据:年级平均数众数中位数八(1)班b c 77八(2)班7474d表中______;______;______.(3)描述数据:①若该校八年级共600人,其中八(1)班和八(2)班各有50人,请估计八(1)班和八(2)以及整个八年级本次测试达到优秀的人数;②结合上述数据信息,你认为八(1)班和八(2)班中哪个班学生本次测试的成绩更好?并说明理由.【答案】(1)5 (2)76,74,78(3)①估计八(1)班本次测试达到优秀的人数约有10人,八(2)班本次测试达到优秀的人数约有5人,整个八年级本次测试达到优秀的人数约有90人;②八(1)班学生本次测试的成绩更好,理由见详解.【解析】【分析】本题考查众数、平均数及中位数、用样本估计总体,解答本题的关键是明确题意,熟练掌握知识点.(1)根据收集的数据求解即可;(2)根据众数、平均数及中位数的定义求解即可;(3)①用总人数乘以样本中七、八年级成绩合格的人数和所占比例即可;②比较平均数、优秀率,即可求解.【小问1详解】解:由表可知,八(1)班及格的人数为5,故答案为:5;【小问2详解】解:八(1)班的平均数;由表格知74出现了两次,因此八(1)班的众数;将八(2)班成绩从小到大排列46 60 61 74 74 82 83 84 85 91,因此八(2)班的中位数,=a b =c =d =1(80748363909174618262)7610b =⨯+++++++++=74c =7482782d +==故答案为:76,74,78;【小问3详解】解:①八(1)班本次测试达到优秀的人数约有(人,八(2)班本次测试达到优秀的人数约有(人,整个八年级本次测试达到优秀的人数约有(人;②八(1)班学生本次测试的成绩更好,理由:因为八(1)班的平均成绩高于八(2)班,八(1)班的优秀率高于八(2)班,所以八(1)班学生本次测试的成绩更好.18. 如图,矩形的顶点均在格点(网格线的交点)上,双曲线经过格点B .(1)求双曲线的解析式;(2)经过点B 的直线将矩形分为面积比为的两部分,求该直线的解析式.【答案】(1) (2)或【解析】【分析】此题考查了矩形的性质,待定系数法求反比例函数解析式,待定系数法求一次函数解析式.(1将点代入求解即可;(2)分为过点B 的直线与线段相交和过点B 的直线与线段相交,根据三角形的面积分两种情况求出交点的坐标,再利用待定系数法求一次函数解析式求出直线解析式即可.【小问1详解】解:根据题意得:,,,2501010⨯=)150510⨯=)36009020⨯=)OABC ()0k y x x=>()0k y x x=>y ax b =+OABC 1:2()180y x x=>3342y x =-113y x =+()6,3B ()0k y x x=>OA OC ()6,3B 36k ∴=18k ∴=双曲线的解析式为:;【小问2详解】解:如图,当过点B 的直线与线段相交时,设交点为F ,,由题意得:,∵矩形的面积分成的两部分,∴为或,∵,∴①若,解得:,,,此时点F 的坐标为,∴当时,解得:,此时直线的解析式为,②若,解得:,,此时,过点B 的直线与线段没有交点,如图,当过点B 的直线与线段相交时,设交点为F ,∴()180y x x=>OA 6318ABCD S =⨯=矩形OABC 1:2ABF S △11863⨯=218123⨯=()6,3B 1263AF ⨯=4AF =6OA = 642OF ∴=-=()2,0()()6,3,2,0B F 3602a b a b=+⎧⎨=+⎩3432a b ⎧=⎪⎪⎨⎪=-⎪⎩3342y x =-21132AF ⨯=8AF =68OA =< ∴OA OC∵矩形的面积分成的两部分,∴为或,∵,∴①若,解得:,,,此时点F 的坐标为,∴当时,解得:,此时直线的解析式为,②若,解得:,,此时,过点B 的直线与线段没有交点,综上,此时直线的解析式为或.19. 在一次课外实践活动中,九年级数学兴趣小组准备测量学校旁边的一座古塔的高度,同学们设计了两个测量方案如下:课题测量古塔的高度测量工具测角仪,1.5m 标杆,皮尺等测量小组第一组第二组OABC 1:2BCF S 11863⨯=218123⨯=()6,3B 1266CF ⨯=2CF =3OC = 321OF ∴=-=()0,1()()6,3,0,1B F 361a b b=+⎧⎨=⎩131a b ⎧=⎪⎨⎪=⎩113y x =+21162CF ⨯=4CF =34OC =< ∴OC 3342y x =-113y x =+()AB测量方案示意图说明点C 、E 、B 在同一直线上,、为标杆为古塔旁边的两层小楼测量数据从点D 处测得A 点的仰角为,从点F 处测得A 点的仰角为,=10m 从点D 处测得A 点的仰角为,=10m(1)根据以上数据请你判断,第______小组无法测量出古塔的高度?原因是____________;(2)请根据表格中的数据,依据正确的测量方案求出古塔的高度.(精确到0.1m ,参考数据:,,)【答案】(1)二;没有测量的长度;(2)古塔的高度为24.8m .【解析】【分析】(1)第二组没有测量有关线段长度;(2)根据第一组的测量数据,延长交于点,可得是等腰直角三角形,得,在中,由锐角三角函数定义求解即可.【小问1详解】第二组的数据无法算出大楼高度,理由如下:第二小组测量了从点D 处测得A 点的仰角为,=10m ,没有测量的长度,无法算出大楼高度.故答案为:二;没有测量的长度;【小问2详解】根据第一组测量的数据,CD EF CD 35︒45︒CE 35︒CD sin 350.57︒≈cos350.82︒≈tan 350.70︒≈BC DF AB G AFG AG FG =Rt ADG 35︒CD BC BC过点D 作交于点G ,m ,点F 在上,则m ,在中,,是等腰直角三角形,,设m ,则在中,m ,m ,,,解得:m ,m .故答案为:此古塔的高度为24.8m .【点睛】本题考查了解直角三角形的应用—仰角俯角问题中仰角问题,等腰直角三角形的判定与性质,解决本题的关键是熟练掌握仰角俯角定义,根据锐角三角函数解决实际问题.20. 开学初,某校准备购进一批白色无尘粉笔和彩色无尘粉笔用于教学,经市场调研,一箱彩色无尘粉笔的价格是一箱白色无尘粉笔价格的1.5倍,若花费9000元,则购买的白色无尘粉笔比彩色无尘粉笔多50箱.(1)求该校购买这两种无尘粉笔的单价;(2)该校计划购买这两种无尘粉笔共300箱,根据实际情况,其中彩色无尘粉笔的购买数量不少于50箱,且彩色无尘粉笔数量不超过白色无尘粉笔的,由于该校订购数量较多,厂家决定给予优惠,彩色无尘粉笔的价格在打七折的基础上再降低m 元(),求该校购买这两种无尘粉笔的总费用最低时m 的值.DG AB ⊥AB 1.5CD EF == ∴DG 1.5BG =Rt AGF 45AFG ∠=︒AGF ∴V AG FG ∴==AG FG x =Rt AGD AG x =()10DG DF FG x =+=+tan tan 350.70AG ADG DG∴∠==︒≈0.7010x x∴≈+23.3x ≈23.3 1.524.8AB AG BG ∴=+=+=1315m ≤≤【答案】(1)一箱白色无尘粉笔价格是60元,一箱彩色无尘粉笔的价格是90元;(2)当时,购买这两种无尘粉笔的最低费用为17850元【解析】【分析】本题考查分式方程的应用,一元一次不等式组的应用、一次函数的应用,理解题意,正确列出方程和函数关系式是解答的关键.(1)设一箱白色无尘粉笔价格是x 元,则一箱彩色无尘粉笔的价格是元,根据购买的白色无尘粉笔比彩色无尘粉笔多50箱列方程求解即可;(2)设购买彩色无尘粉笔a 箱,购买这两种无尘粉笔的总费用W 元,根据题意求得a 的取值范围和W 关于a 的一次函数关系式,根据一次函数的性质分、、分别求解即可.【小问1详解】解:设一箱白色无尘粉笔价格是x 元,则一箱彩色无尘粉笔的价格是元,根据题意,得,解得,经检验,是所列方程的解,,答:一箱白色无尘粉笔价格是60元,一箱彩色无尘粉笔的价格是90元;【小问2详解】解:设购买彩色无尘粉笔a 箱,则购买白色无尘粉笔箱,根据题意,得,解得,设该校购买这两种无尘粉笔总费用W 元,则,当时,W 随a 的增大而增大,∴当时,W 最小,最小值为;当时,;当时,W 随a 的增大而减小,∴当时,W 最小,最小值为;∴当时,W 最小,购买这两种无尘粉笔的最低费用为17850元.的5m = 1.5x 13m ≤<3m =35m <≤1.5x 90009000501.5x x-=60x =60x =1.5 1.56090x =⨯=()300a -()5013003a a a ≥⎧⎪⎨≤-⎪⎩5075a ≤≤()()()60300900.7318000W a m a m a =-+⨯-=-+13m ≤<50a =()35018000181505018000m m -⨯+=->3m =18000W =35m <≤75a =()37518000182257517850m m -⨯+=-≥5m =21. 《几何原本》是古希腊数学家欧几里得所著的一部数学著作.它是欧洲数学的基础,被广泛地认为是历史上最成功的教科书.欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品.欧几里得使用了公理化的方法,这一方法后来成了建立任何知识体系的典范,在差不多二千年间,被奉为必须遵守的严密思维的范例.这本著作是欧几里得几何的基础,在西方是仅次于《圣经》而流传最广的书籍.小明在研究《几何原本》时,对定理4.2展开分析研讨:定理4.2 在一个已知圆内作一个与已知三角形等角的内接三角形.原书作法如下:如图1,为已知三角形,为已知圆,过上一点P 作的切线,作,交于点F ,作,交于点E ,连接,即为所求.小明准备将原命题证明并进行拓展研究,请分析并帮助小明完成.(1)已知:直线切于点P ,点E ,F 为上一点,若______,求证:____________.请将已知和求证补充完整并证明.(2)若,,,求的半径.【答案】(1),,,证明过程见解析(2)【解析】【分析】本题考查了圆周角定理、垂径定理以及相似三角形的判定与性质等知识点,掌握相关几何结论是解题关键.(1)连接并延长交于点,连接,根据、即可求证;(2)连接交于点,连接,根据可得;根据题意推出即可求解.ABC O O O MN FPM ABC ∠=∠O EPN ACB ∠=∠O EF PEF !MN O O 5AB AC ==8BC =16EF =O FPM ABC ∠=∠EPN ACB ∠=∠ABC PEF ∽!253PO O Q ,QE QF 90PFQ PFE EFQ ∠=∠+∠=︒90QPN EPN EPQ ∠=∠+∠=︒PO EF D OE ABC PEF ∽!10PE PF ==1,82PD EF ED FD EF ⊥===【小问1详解】证明:连接并延长交于点,连接,如图所示:由题意得:∵为的直径∴∵∴∵∴同理可得∴【小问2详解】解:连接交于点,连接,如图所示:则∵,∴∵,,,∴由题意得:∵PO O Q ,QE QF 90QPN EPN EPQ ∠=∠+∠=︒PQ O 90PFQ PFE EFQ ∠=∠+∠=︒EPQ EFQ∠=∠EPN PFE∠=∠EPN ACB∠=∠PFE ACB∠=∠PEF ABC∠=∠ABC PEF∽!PO EF D OE 90OPM OPN ∠=∠=︒ABC PEF ∽!:::AB PE AC PF BC EF==5AB AC ==8BC =16EF =10PE PF ==EPN FPM∠=∠90OPM OPN ∠=∠=︒∴∴∴设的半径为,在中:,解得:22. 如图,矩形中,,,抛物线顶点为M .(1)若抛物线对称轴左侧部分图象交y 轴于点.①求此时抛物线的表达式;②设直线的解析式为,求当时x 的取值范围.(2)若矩形的边与抛物线恰好有2个交点,直接写出此时m 的取值范围.【答案】(1)①;②(2【解析】【分析】(1)把代入解方程即可;(2)先求直线表达式,再与二次函数解析式联立,求出交点坐标,再根据函数图像确定的解集;(3)找到两个临界状态,经过点C 时,代入点C 坐标,求出此时的m 值,随着m 的增大,当经过点B 时,代入点B 坐标,求出此时的m 值即可.【小问1详解】解:①把代入得:,EPO FPO∠=∠1,82PD EF ED FD EF ⊥===6PD ==O r Rt ODE △()22286r r =+-253r =ABCO ()8,0A ()0,4C 22444y x mx m =--+()0,12AC y kx b =+22444x mx m kx b --+>+ABCO 2812y x x =-+x <x >4m ≤≤()0,1222444y x mx m =--+AC 22444x mx m kx b --+>+()0,1222444y x mx m =--+21244m =-+解得:或,由题意得,对称轴在y 轴右侧,∴,即,∴,∴抛物线的表达式为;②将,代入得:,解得:,∴直线表达式为:,联立,可得,解得:,∴的解集为:;【小问2详解】解:,∴抛物线开口方向不变,且顶点在直线上运动,而对称轴为直线,随着m 的增大,当抛物线经过点C 时,代入点得:,解得:或(舍),此时,∴此时抛物线与边有两个交点,当抛物线经过点B 时,代入点得:,2m =2m =-4202m m --=>0m >2m =2812y x x =-+()8,0A ()0,4Cy kx b=+804kb b +=⎧⎨=⎩124k b ⎧=-⎪⎨⎪=⎩AC 142y x =-+2142812y x y x x ⎧=-+⎪⎨⎪=-+⎩2215160x x -+=x =22444x mx m kx b --+>+x <x >()22244424y x mx m x m =--+=--4y =-2x m =()0,4C 2444m -=m =m =48m BC =<=BC ()8,4B ()28244m --=解得:,∴时,矩形的边与抛物线恰好有2个交点.【点睛】本题是一道二次函数综合题,待定系数法求二次函数解析式,一次函数解析式,根据函数图像求不等式的解集,矩形的性质,熟练掌握知识点,正确理解题意是解题的关键.23. 中考前,复习完《四边形》后,刘老师给出一个问题情境让同学们探讨:问题情境:如图1,矩形中,,,点O 为对角线和的交点,点M 为上一个动点,连接并延长交于点N .小明:我可以得出.理由:∵,∴.又∵,,∴,∴.请仔细阅读问题情境及小明的研讨,完成下述任务.任务:(1)小明得出的依据是______(填序号).① ② ③ ④ ⑤小明得出的依据是______(填理由).(2)如图2,将四边形沿方向平移得到四边形,当点与点M 重合时,由(1)可得点与点D 重合,求证:四边形是平行四边形.(3)①如图3,将四边形沿折叠,当点B 与点D 重合时,求的长.②如图4,当点M 在直线上运动时,若交于点P ,连接,将三角形沿折叠,点C 的对应点为点Q ,连接,当为直角三角形时,直接写出线段的长.【答案】(1)④;对顶角相等(2)证明见解析(3)①;②或【解析】【分析】(1)根据所给证明过程结合对顶角相等即可得到答案;4m =4m =4m ≤≤-ABCO ABCD AB =2BC =AC BD BC MO AD BM ND =AD BC ∥OBM ODN ∠=∠BO DO =BOM DON ∠=∠BOM DON ≌△△BM DN =BOM DON ≌△△SSS SAS AAS ASA HLBOM DON ∠=∠ABMN BC A B M N ''''B 'N 'B M DN ''ABMN MN BM BC MN CD BP BCP BP DQ PQD △DP 222DM CM CD =+DP =DP =(2)由平移的性质可得,再由,即可证明四边形是平行四边形;(3)①由矩形的性质可得,由折叠的性质可得,设,则,在中,由勾股定理得,解方程即可得到答案;②如图所示,当点M 在延长线上时,可证明只存在这种情况,当点M 在延长线上时,可证明只存在这种情况,据此讨论求解即可.小问1详解】解:由证明过程可知,小明得出的依据是,其中小明得出的依据是对顶角相等,故答案为:④;对顶角相等;【小问2详解】证明:由平移的性质可得,又∵,∴四边形是平行四边形;【小问3详解】解:①∵四边形是矩形,∴,,由折叠的性质可得,设,则,在中,由勾股定理得,∴,解得,∴;②如图所示,当点M 在延长线上时,由折叠的性质可得,,,,【B M DN ''=B M DN ''∥B M DN ''==CD AB 90C ∠=︒BM DM =BM DM x ==2CM x =-Rt CDM △()2222x x =-+BC 90PQD ∠=︒CB 90QDP ∠=︒BOM DON ≌△△ASA BOM DON ∠=∠B M DN ''=B M DN ''∥B M DN ''ABCD ==CD AB 90C ∠=︒BM DM =BM DM x ==2CM x =-Rt CDM △222DM CM CD =+()2222x x =-+74x =74BM =BC 12QP CP CD DP =<<QPB CPB =∠∠90BQP BCP ==︒∠∠2BQ BC ==∴点Q 不可能落在上,即,∵,∴,∴,∴当为直角三角形时,只存在这种情况,∴,∴三点共线,在中,由勾股定理得∴,在中,,∴在中,∴如图所示,当点M 在延长线上时,由折叠的性质可得,∴,∴,同理可得,∴当为直角三角形时,只存在这种情况,∴此时点Q 落在上,AD 90PQD ≠︒∠BC CP >45QPB CPB CBP =>>︒∠∠∠90QPD <︒∠PQD △90PQD ∠=︒180PQD PQB +=︒∠∠B Q D 、、Rt DBC △BD ==2DQ BD BQ =-=-Rt DBC △cos CD BDC BD ==∠Rt PDQ △cos DQ QDP DP ==∠DP =CB 12PQ PC CD DP =>>QDP DQP >∠∠90DQP <︒∠90DPQ <︒∠PQD △90QDP ∠=︒AD在中,由勾股定理得,∴,设,则,在中,由勾股定理得,∴,解得,∴;综上所述,.【点睛】本题主要考查了矩形与折叠问题,勾股定理,解直角三角形,全等三角形的性质与判定,平移的性质,平行四边形的判定等等,熟练掌握相关知识是解题的关键.Rt ABQ1AQ ==1DQ =DP m =CP QP m ==-Rt PDQ △222QP DQ DP =+)2221m m =+m =DP =DP =DP =。

初三数学二模试卷答案

初三数学二模试卷答案

一、选择题(每题4分,共40分)1. 下列选项中,不是一元二次方程的是()A. x^2 + 2x + 1 = 0B. x^2 - 4x + 4 = 0C. x^2 + 2x - 3 = 0D. x^2 - 3x + 2 = 0答案:C解析:一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c为常数,且a≠0。

C选项中,a=0,不符合一元二次方程的定义。

2. 已知函数f(x) = x^2 - 4x + 4,则f(2)的值为()A. 0B. 2C. 4D. 8答案:A解析:将x=2代入函数f(x) = x^2 - 4x + 4中,得到f(2) = 2^2 - 42 + 4 = 0。

3. 下列不等式中,正确的是()A. -3 < -2B. -3 > -2C. -3 ≤ -2D. -3 ≥ -2答案:A解析:在不等式中,负数越小,其值越大。

因此,-3比-2小,故-3 < -2。

4. 已知三角形ABC中,∠A = 90°,∠B = 45°,则∠C的度数为()A. 45°B. 90°C. 135°D. 180°答案:C解析:三角形内角和为180°,∠A = 90°,∠B = 45°,则∠C = 180° - 90° - 45° = 135°。

5. 已知等腰三角形ABC中,AB = AC,AD为高,则∠ADB的度数为()A. 45°B. 60°C. 90°D. 120°答案:C解析:在等腰三角形中,底角相等,即∠BAD = ∠CAD。

又因为AD为高,所以∠ADB = ∠ADC。

在三角形ADC中,∠ADC = 90°,所以∠ADB = 90°。

二、填空题(每题5分,共20分)6. 已知方程x^2 - 5x + 6 = 0,则该方程的解为x1 = ,x2 = 。

2024年江苏省南京市鼓楼区中考二模数学试卷+答案解析

2024年江苏省南京市鼓楼区中考二模数学试卷+答案解析

2024年江苏省南京市鼓楼区中考二模数学试卷一、选择题:本题共6小题,每小题3分,共18分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列四个数中,最小的数是()A. B.0 C.2 D.2.如图,一辆汽车的轮胎因为漏气瘪掉了,将轮胎外轮廓看作一个圆,则这个圆和与它在同一平面内的地面看作一条直线的位置关系是()A.相交B.相切C.相离D.包含3.刚刚过去的“五一”假期,南京全市景区景点、文博场馆、乡村旅游等监测点接待游客量约为108250000人次.用科学记数法表示108250000是()A. B. C. D.4.计算的结果是()A. B. C. D.5.若一个正n边形的内角和为,则它的每个外角度数是()A. B. C. D.6.如图,O是的外心,,垂足分别为D,E,F,连接的中点H,I,J,则与的面积之比是()A. B. C. D.二、填空题:本题共9小题,每小题3分,共27分。

7.16的平方根是______,27的立方根是______.8.式子在实数范围内有意义,则x的取值范围是______.9.分解因式:__________.10.计算的结果是__.11.无人机正在飞行,某时刻控制界面显示“H:14m,D:48m”代表无人机离起飞点的垂直距离,D代表无人机离起飞点的水平距离,则此时无人机到起飞点的距离为_____12.如图,四边形ABCD是的内接四边形,BE是的直径,连接CE,若,则____13.用图中两块相同的含的三角板拼成一个四边形,在所有拼成的四边形中,两条对角线的所有比值的最大值为___.14.在平面直角坐标系中,直线与双曲线交于,两点,则的值为_____.15.如图,正方形ABCD边长为12,E为BC上一点,动点P,Q从E出发,分别向点B,C运动,且若PD和AQ交于点F,连接BF,则BF的最小值为_____.三、计算题:本大题共2小题,共12分。

16.计算:17.解方程:;解不等式组:四、解答题:本题共10小题,共80分。

2024年中考数学二模试卷(北京卷)(全解全析)

2024年中考数学二模试卷(北京卷)(全解全析)

2024年中考第二次模拟考试数学·全解全析第Ⅰ卷选择题一、选择题(共16分,每小题2分)第1~8题均有四个选项,符合题意的只有一个.1.截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为()A .723.910⨯B .82.3910⨯C .92.3910⨯D .90.23910⨯【答案】B【分析】用科学记数法表示绝对值较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:8239000000 2.3910=⨯,故选:B .【点睛】本题考查了科学记数法的表示方法,用科学记数法表示绝对值较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,且n 比原来的整数位数少1,解题的关键是要正确确定a 和n 的值.2.下列图形中,既是中心对称图形也是轴对称图形的是()A .B .C .D .【答案】D【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】A.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此项不合题意;D.既是中心对称图形,又是轴对称图形,故此项符合题意.故选:D .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为()A .100︒B .110︒C .130︒D .140︒【答案】B 【分析】根据∠AOC 和∠BOC 的度数得出∠AOB 的度数,从而得出答案.【详解】∵∠AOC =70°,∠BOC =30°,∴∠AOB =70°-30°=40°,∴∠AOD =∠AOB +∠BOD =40°+70°=110°.故选:B .【点睛】本题主要考查的是角度的计算问题,属于基础题型.理解各角之间的关系是解题的关键.4.如图,数轴上的点A 和点B 分别在原点的左侧和右侧,点A 、B 对应的实数分别是a 、b ,下列结论一定成立的是()A .0a b +<B .0b a -<C .22a b >D .22a b +<+【答案】D 【分析】依据点在数轴上的位置,不等式的性质,绝对值的意义,有理数大小的比较法则对每个选项进行逐一判断即可得出结论.【详解】解:由题意得:a <0<b ,且a <b ,∴0a b +>,∴A 选项的结论不成立;0b a ->,∴B 选项的结论不成立;22a b <,∴C 选项的结论不成立;22a b +<+,∴D 选项的结论成立.故选:D .【点睛】本题主要考查了不等式的性质,有理数大小的比较法则,利用点在数轴上的位置确定出a ,b 的取值范围是解题的关键.5.若正多边形的内角和是540︒,则该正多边形的一个外角为()A .45︒B .60︒C .72︒D .90︒【答案】C【分析】根据多边形的内角和公式()2180n -∙︒求出多边形的边数,再根据多边形的外角和是固定的360︒,依此可以求出多边形的一个外角.【详解】 正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,多边形的外角和都是360︒,∴多边形的每个外角360572÷︒==.故选:C .【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.6.已知关于x 的一元二次方程220x x a -+=有两个相等的实数根,则实数a 的值是()A .1-B .1C .2D .3【答案】B 【分析】本题考查一元二次方程根与判别式的关系,根据方程有两个相等的实数根,判别式等于0列式求解即可得到答案;【详解】解:∵一元二次方程220x x a -+=有两个相等的实数根,∴2(2)410a --⨯⨯=,解得:1a =,故选:B .7.不透明的袋子中装有2个红球和3个黄球,两种球除颜色外无其他差别,从中随机摸出一个小球,摸到黄球的概率是()A .23B .34C .25D .35【答案】D【分析】根据概率计算公式进行求解即可.【详解】解:∵不透明的袋子里装有2个红球,3个黄球,∴从袋子中随机摸出一个,摸到黄球的概率为33235=+;故选:D .【点睛】本题考查的是概率公式,熟知随机事件A 的概率P (A )=事件A 可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.8.如图,点A 、B 、C 在同一条线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,AB BC <,90A C ∠=∠=︒,EAB BCD ≌△△,连接DE ,设AB a =,BC b =,DE c =,给出下面三个结论:①a b c +<;②22a b a b +>+;)2a b c +>;上述结论中,所有正确结论的序号是()A .①②B .①③C .②③D .①②③【答案】D 【分析】如图,过D 作DF AE ⊥于F ,则四边形ACDF 是矩形,则DF AC a b ==+,由DF DE <,可得a b c +<,进而可判断①的正误;由EAB BCD ≌△△,可得BE BD =,CD AB a ==,AE BC b ==,ABE CDB ∠=∠,则90EBD ∠=︒,BDE △是等腰直角三角形,由勾股定理得,2222BE AB AE a b =+=+,由AB AE BE +>,可得22a b a b +>+,进而可判断②的正误;由勾股定理得222DE BD BE =+,即()2222c a b =+,则()2222c a b a b =⨯+<+,进而可判断③的正误.【详解】解:如图,过D 作DF AE ⊥于F ,则四边形ACDF 是矩形,∴DF AC a b ==+,∵DF DE <,∴a b c +<,①正确,故符合要求;∵EAB BCD ≌△△,∴BE BD =,CD AB a ==,AE BC b ==,ABE CDB ∠=∠,∵90CBD CDB ∠+∠=︒,∴90∠+∠=︒CBD ABE ,90EBD ∠=︒,∴BDE △是等腰直角三角形,由勾股定理得,2222BE AB AE a b =+=+,∵AB AE BE +>,∴22a b a b +>+,②正确,故符合要求;由勾股定理得222DE BD BE =+,即()2222c a b =+,∴()2222c a b a b =⨯+<+,③正确,故符合要求;故选:D .【点睛】本题考查了矩形的判定与性质,全等三角形的性质,勾股定理,等腰三角形的判定,不等式的性质,三角形的三边关系等知识.解题的关键在于对知识的熟练掌握与灵活运用.第Ⅱ卷非选择题二、填空题(共16分,每小题2分)93x -有意义,则x 可取的一个数是.【答案】如4等(答案不唯一,3x ≥)【分析】根据二次根式的开方数是非负数求解即可.【详解】解:∵式子3x -有意义,∴x ﹣3≥0,∴x ≥3,∴x 可取x ≥3的任意一个数,故答案为:如4等(答案不唯一,3x ≥.【点睛】本题考查二次根式、解一元一次不等式,理解二次根式的开方数是非负数是解答的关键.10.将2327m n n -因式分解为.【答案】()()333n m m +-【分析】先提公因式,再利用平方差公式可进行因式分解.【详解】解:2327m n n-=()239n m -=()()333n m m +-故答案为:()()333n m m +-.【点睛】本题考查了提公因式法、公式法分解因式,掌握平方差公式的结构特征是正确应用的前提.11.方程12131x x =的解为.【答案】x =3【分析】根据分式方程的解法解方程即可;【详解】解:去分母得:3x ﹣1=2x +2,解得:x =3,检验:把x =3代入得:(x +1)(3x ﹣1)≠0,∴分式方程的解为x =3.故答案为:x =3.【点睛】本题考查了解分式方程:先将方程两边乘最简公分母将分式方程化为整式方程,再解整式方程,最后需要检验整式方程的解是不是分式方程的解.12.在平面直角坐标系xOy 中,点(A 1-1)y ,,()22B y ,在反比例函数()0y k x =≠的图象上,且12y y >,请你写出一个符合要求的k 的值.【答案】2-(答案不唯一)【分析】由题可知A ,B 在两个象限,根据12y y >得到图象位于二、四象限,即0k <给出符合题意的k 值即可.【详解】由题可知A ,B 在两个象限,∵12y y >,∴反比例函数()0k y k x=≠的图象位于二、四象限,∴0k <,即2k =-,故答案为:2-.【点睛】本题考查反比例函数的图象和性质,熟练掌握反比例函数的性质是解题关键.13.如图,在O 中,AB 是直径,CD AB ⊥,ACD ∠=60︒,2OD =,那么DC 的长等于.【答案】23【分析】此题考查了圆的垂径定理,勾股定理,圆周角定理;根据垂径定理得到CE DE =, BDBC =,90DEO AEC ∠=∠=︒,利用圆周角定理求出求出260DOE A ∠=∠=︒,得出30ODE ∠=︒,进而根据含30度角的直角三角形的性质,求得1OE =,勾股定理即可得DE ,垂径定理即可求得DC 的长.【详解】解:如图所示,设,AB CD 交于点E ,AB 是直径,CD 丄AB ,CE DE ∴=, BDBC =,90DEO AEC ∠=∠=︒,ACD ∠ =60︒,30A ∴∠=︒,260DOE A ∴∠=∠=︒,30ODE ∴∠=︒,∴112OE OD ==,DE ∴=3,2CD DE ∴==23,故答案为:23.14.如图,《九章算术》是中国古代数学专着,是《算经十书》(汉唐之间出现的十部古算书)中最重要的一种.该著作记载了“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽”,大意是:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?(椽,装于屋顶以支持屋顶盖材料的木杆)设这批椽有x 株,根据题意可列分式方程为.【答案】()621031x x-=【分析】根据实际问题列分式方程即可,关键是对“那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱”的理解.【详解】解:由题意可列方程:62103(1)-=x x;故答案为:62103(1)-=x x .【点睛】本题考查根据题意列分式方程,解题关键是熟练运用单价计算公式:单价=总价÷数量,结合题意即可得出分式方程.15.如图,在矩形ABCD 中,4AB =,5BC =,E 点为BC 边延长线一点,且3CE =.连接AE 交边CD 于点F ,过点D 作DH AE ⊥于点H ,则DH =.【答案】5【分析】利用相似三角形的判定与性质求得线段FC 的长,进而求得DF 的长,利再用勾股定理求出AF 的长,最后根据三角形的面积公式,即可求出DH 的长.【详解】解: 四边形ABCD 为矩形,CD AB ∴∥,4DC AB ==,5AD BC ==,90ADC ∠=︒,EFC EAB ∴∠=∠,E E ∠=∠ ,EFC EAB ∴∽V V ,CE FC EB AB ∴=,3354FC ∴=+,32FC ∴=,52DF DC FC ∴=-=,在Rt ADF V 中,2222555522AF AD DF ⎛⎫=+=+= ⎪⎝⎭,DH AE ⊥ ,1122ADF S AD DF AF DH ∴=⋅=⋅V ,1515552222DH ∴⨯⨯=⨯⨯,5DH ∴=,故答案为:5.【点睛】本题矩形的性质,相似三角形的判定和性质,勾股定理,三角形面积公式,熟练掌握相似三角形的判定和性质是解题关键.16.有黑、白各6张卡片,分别写有数字1至6把它们像扑克牌那样洗过后,数字朝下,如图排成两行,排列规则如下:①左至右,按数字从小到大的顺序排列;②黑、白卡片数字相同时,黑卡片放在左边.将第一行卡片用大写英文字母按顺序标注,第二行卡片用小写英文字母按顺序标注,则白卡片数字1摆在了标注字母的位置,标注字母e 的卡片写有数字.【答案】B ;4【分析】根据排列规则依次确定白1,白2,白3,白4的位置,即可得出答案.【详解】解:第一行中B 与第二行中c 肯定有一张为白1,若第二行中c 为白1,则左边不可能有2张黑卡片,∴白卡片数字1摆在了标注字母B 的位置,∴黑卡片数字1摆在了标注字母A 的位置,;第一行中C 与第二行中c 肯定有一张为白2,若第二行中c 为白2,则a ,b 只能是黑1,黑2,而A 为黑1,矛盾,∴第一行中C 为白2;第一行中F 与第二行中c 肯定有一张为白3,若第一行中F 为白3,则D ,E 只能是黑2,黑3,此时黑2在白2右边,与规则②矛盾,∴第二行中c 为白3,∴第二行中a 为黑2,b 为黑3;第一行中F 与第二行中e 肯定有一张为白4,若第一行中F 为白4,则D ,E 只能是黑3,黑4,与b 为黑3矛盾,∴第二行中e 为白4.故答案为:①B ,②4.【点睛】本题考查图形类规律探索,解题的关键是理解题意,根据所给规则依次确定出白1,白2,白3,白4的位置.三、解答题(共68分,17~22题,每题5分,23~26题,每题6分,27~28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(本题5分)计算:()2021112π 3.144cos302-⎛⎫-+--︒+ ⎪⎝⎭【答案】4【分析】先计算特殊角三角函数值,再计算零指数幂,负整数指数幂和化简二次根式,再根据二次根式的加减计算法则求解即可.【详解】解:原式31231442=-++-⨯+1231234=-++-+4=.【点睛】本题主要考查了求特殊角三角函数值,零指数幂,负整数指数幂,化简二次根式等等,熟知相关计算法则是解题的关键.18.(本题5分)解不等式组:352x x +<-⎧⎪⎨-<⎪.【答案】35x <<【分析】先求出每个不等式的解集,再根据夹逼原则求出不等式组的解集即可.【详解】解:221352x x x x +<-⎧⎪⎨-<⎪⎩①②,解不等式①得:3x >,解不等式②得:5x <,∴不等式组的解集为35x <<.【点睛】本题主要考查了解一元一次不等式组,正确求出每个不等式的解集是解题的关键.19.(本题5分)先化简,再求值:21221121x x x x x x --⎛⎫+-÷ ⎪+++,其中31x =-.【答案】2x x --,33-+.【分析】根据分式的混合运算法则进行化简,再代值计算即可.【详解】解:原式22121211(1)x x x x x x ⎛⎫---=+÷ ⎪+++⎝⎭()()22112x x x x x-+=⋅+-()1x x =-+2x x =--,当31x =-时,原式()()3131133=---+=-+.【点睛】本题考查分式的化简求值,二次根式的运算.熟练掌握相关运算法则,正确的进行计算,是解题的关键.20.(本题5分)如图,在ABC 中,60,ACB CD ∠=︒平分ACB ∠,过点D 作DE BC ⊥于点,E DF AC ⊥于点F ,点H 是CD 的中点,连接HE FH 、.(1)判断四边形DFHE 的形状,并证明;(2)连接EF ,若26EF =CD 的长.【答案】(1)菱形,见解析;(2)42【分析】本题考查菱形的性质和判定,关键是利用菱形的判定解答.(1)根据角平分线的性质得出DF DE =,进而利用直角三角形的性质得出FH DH EH ==,进而利用菱形的判定解答即可;(2)根据菱形的性质和含30︒角的直角三角形的性质得出DH ,进而解答即可.【详解】(1)解:四边形DFHE 是菱形,理由如下:CD 平分ACB ∠,过点D 作DE BC ⊥于点E ,DF AC ⊥于点F ,60ACB ∠=︒,DF DE ∴=,30FCD DCE ∠=∠=︒,点H 是CD 的中点,FH CH DH ∴==,EH CH DH ==,FH HE ∴=,30DCE ∠=︒ ,DE CB ⊥,60HDE ∴∠=︒,DHE ∴ 是等边三角形,DE HE DH ∴==,DF DE HE FH ∴===,∴四边形DFHE 是菱形;(2)解:连接EF ,交DH 于点O ,四边形DFHE 是菱形,12OH OD DH ∴==,162OF OE EF ===,EF DH ⊥,60HDE ∠=︒ ,6233OE OD ∴===,2442CD DH OD ∴===.21.(本题5分)已知,图①是一张可以缓解眼睛疲劳的视力远眺回形图,它是由多个大小不等的正方形构成的二维空间平面图,利用心理学空间知觉原理,通过变化图案可不断改变眼睛晶状体的焦距,强烈显示出三维空间的向远延伸的立体图形,调节人们的睫状体放松而保护视力.其中阴影部分是由能够缓解视疲劳的绿色构成,阴影之间的部分是空白区域.某体检中心想定做一张回形图,图②是选取的部分回形图的示意图,其中最大的正方形边长为3m ,且空白区域A B 、两部分的面积相等,若空白区域需要三种不同的护眼浅色贴纸,铺贴用纸费用分别为:A 区域10元2/m ,B 区域15元2/m ,C 区域20元2/m ,铺贴三个区域共花费150元,求C 区域的面积.【答案】25m 【分析】本题考查一元一次方程的应用,设A 区域的面积为m x ,根据题意得出101520(92)150x x x ++-=,解得2x =,再求出C 区域的面积即可.【详解】解:设A 区域的面积为m x ,101520(92)150x x x ++-=,解得2x =,9225-⨯=,答:C 区域的面积是25m .22.(本题5分)在平面直角坐标系xOy 中,一次函数y kx b =+(0k ≠)的图象经过点()0,1,()2,2-,与x 轴交于点A .(1)求该一次函数的表达式及点A 的坐标;(2)当2x >时,对于x 的每一个值,函数2y x m =+的值大于一次函数y kx b =+(0k ≠)的值,直接写出m 的取值范围.【答案】(1)112y x =-+,(2,0)A ;(2)4m >-【分析】本题考查了待定系数法求一次函数解析式:掌握待定系数法求一次函数解析式一般步骤是解决问题的关键.也考查了一次函数的性质.(1)先利用待定系数法求出函数解析式为112y x =-+,然后计算自变量为0时对应的函数值得到A 点坐标;(2)当函数y x n =+与y 轴的交点在点A (含A 点)上方时,当0x >时,对于x 的每一个值,函数2y x m =+的值大于函数(0)y kx b k =+≠的值.【详解】(1)解: 一次函数(0)y kx b k =+≠的图象经过点(0,1),(2,2)-,∴122b k b =⎧⎨-+=⎩,解得121k b ⎧=-⎪⎨⎪=⎩,该一次函数的表达式为112y x =-+,令0y =,得1012x =-+,2x ∴=,(2,0)A ∴;(2)解:当2x >时,对于x 的每一个值,函数2y x m =+的值大于一次函数(0)y kx b k =+≠的值,1212x m x ∴+>-+,4m ∴>-.23.(本题6分)为进一步增强中小学生“知危险会避险”的意识,某校初三年级开展了系列交通安全知识竞赛,从中随机抽取30名学生两次知识竞赛的成绩(百分制),并对数据(成绩)进行收集、整理、描述和分析.下面给出了部分信息.a .这30名学生第一次竞赛成绩和第二次竞赛成绩得分统计图:b .这30名学生两次知识竞赛获奖情况相关统计表:参与奖优秀奖卓越奖第一次竞赛人数101010平均数828795第二次竞赛人数21216平均数848793(规定:分数90≥,获卓越奖;85≤分数90<,获优秀奖:分数85<,获参与奖)c .第二次竞赛获卓越奖的学生成绩如下:90909191919192939394949495959698d .两次竞赛成绩样本数据的平均数、中位数、众数如下表:平均数中位数众数第一次竞赛m 87.588第二次竞赛90n91根据以上信息,回答下列问题:(1)小松同学第一次竞赛成绩是89分,第二次竞赛成绩是91分,在图中用“○”圈出代表小松同学的点;(2)直接写出,m n 的值;(3)哪一次竞赛中初三年级全体学生的成绩水平较高?请说明你的理由(至少两个方面).【答案】(1)见详解;(2)88m =,90n =;(3)第二次【分析】(1)根据30名学生第一次竞赛成绩和第二次竞赛成绩得分情况统计图可得横坐标为89,纵坐标为91,即可获得答案;(2)根据平均数和中位数的定义求解即可;(3)根据平均数、众数和中位数的意义解答即可.【详解】(1)解:如图所示;(2)8210871095108830m ⨯+⨯+⨯==,∵第二次竞赛获卓越奖的学生有16人,成绩从小到大排列为:90,90,91,91,91,91,92,93,93,94,94,94,95,95,96,98,其中第1个和第2个数是30名学生成绩中第15和第16个数,∴1(9090)902n =⨯+=,∴88m =,90n =;(3)第二次竞赛,学生成绩的平均数、中位数和众数均高于第一次竞赛,故第二次竞赛中初三年级全体学生的成绩水平较高.【点睛】本题主要考查了众数、平均数、中位数等知识,理解题意,熟练掌握相关知识是解题关键.24.(本题6分)如图,圆内接四边形ABCD 的对角线AC ,BD 交于点E ,BD 平分ABC ∠,BAC ADB ∠=∠.(1)求证DB 平分ADC ∠,并求BAD ∠的大小;(2)过点C 作CF AD ∥交AB 的延长线于点F .若AC AD =,2BF =,求此圆半径的长.【答案】(1)见解析,90BAD ∠=︒;(2)4【分析】(1)根据已知得出 AB BC =,则ADB CDB ∠=∠,即可证明DB 平分ADC ∠,进而根据BD 平分ABC ∠,得出 AD CD=,推出 BAD BCD =,得出BD 是直径,进而可得90BAD ∠=︒;(2)根据(1)的结论结合已知条件得出,90F ∠=︒,ADC △是等边三角形,进而得出1302CDB ADC ∠=∠=︒,由BD 是直径,根据含30度角的直角三角形的性质可得12BC BD =,在Rt BFC △中,根据含30度角的直角三角形的性质求得BC 的长,进而即可求解.【详解】(1)解:∵BAC ADB∠=∠∴ AB BC =,∴ADB CDB ∠=∠,即DB 平分ADC ∠.∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∴ AD CD=,∴ AB AD BCCD +=+,即 BAD BCD =,∴BD 是直径,∴90BAD ∠=︒;(2)解:∵90BAD ∠=︒,CF AD ∥,∴180F BAD ∠+∠=︒,则90F ∠=︒.∵ AD CD=,∴AD DC =.∵AC AD =,∴AC AD CD ==,∴ADC △是等边三角形,则60ADC ∠=︒.∵BD 平分ADC ∠,∴1302CDB ADC ∠=∠=︒.∵BD 是直径,∴90BCD ∠=︒,则12BC BD =.∵四边形ABCD 是圆内接四边形,∴180ADC ABC ∠+∠=︒,则120ABC ∠=︒,∴60FBC ∠=︒,∴906030FCB ∠=︒-︒=︒,∴12FB BC =.∵2BF =,∴4BC =,∴28BD BC ==.∵BD 是直径,∴此圆半径的长为142BD =.【点睛】本题考查了弧与圆周角的关系,等弧所对的圆周角相等,直径所对的圆周角是直角,含30度角的直角三角形的性质,等边三角形的性质与判定,圆内接四边形对角互补,熟练掌握以上知识是解题的关键.25.(本题6分)兴寿镇草莓园是北京最大的草莓基地,通过一颗颗小草莓,促进了农民增收致富,也促进了农旅融合高质量发展.小梅家有一个草莓大棚,大棚的一端固定在离地面高1m 的墙体A 处,另一端固定在离地面高1m 的墙体B 处,记大棚的截面顶端某处离A 的水平距离为m x ,离地面的高度为m y ,测量得到如下数值:/mx01245/my18311311383小梅根据学习函数的经验,发现y是x的函数,并对y随x的变化而变化的规律进行了探究.下面是小梅的探究过程,请补充完整:(1)在下边网格中建立适当的平面直角坐标系,描出表中各组数值所对应的点(),x y,并画出函数的图象;解决问题:(2)结合图表回答,大棚截面顶端最高处到地面的距离高度为___________m;此时距离A的水平距离为___________m;(3)为了草莓更好的生长需要在大棚内安装补光灯,补光灯采用吊装模式悬挂在顶部,已知补光灯在距离地面1.5m时补光效果最好,若在距离A处水平距离1.5m的地方挂补光灯,为使补光效果最好补光灯悬挂部分的长度应是多少m?(灯的大小忽略不计)【答案】(1)见解析;(2)4;3;(3)为使补光效果最好补光灯悬挂部分的长度应是1.75m.【分析】(1)描点,连线,即可画出函数的图象;(2)结合图表回答,即可解答;(3)利用待定系数法求得抛物线的解析式,令 1.5x=,求得函数值,即可解答.【详解】(1)解:描点,连线,函数的图象如图所示,;(2)解:根据图表知,大棚截面顶端最高处到地面的距离高度为4m ;此时距离A 的水平距离为3m ;故答案为:4;3;(3)解:设抛物线的解析式为2y ax bx c =++,把()01,,813⎛⎫ ⎪⎝⎭,,1123⎛⎫ ⎪⎝⎭,,代入得,18311423c a b c a b c ⎧⎪=⎪⎪++=⎨⎪⎪++=⎪⎩,解得1321a b c ⎧=-⎪⎪=⎨⎪=⎪⎩,∴抛物线的解析式为21213y x x =-++,令 1.5x =,则21331321 3.253224y ⎛⎫=-⨯+⨯+== ⎪⎝⎭,()3.25 1.5 1.75m -=,答:为使补光效果最好补光灯悬挂部分的长度应是1.75m .【点睛】本题考查二次函数的实际应用,根据点的坐标画出函数图象是解题关键.26.(本题6分)在平面直角坐标系xOy 中,已知抛物线()22230y ax a x a =--≠.(1)求该抛物线的对称轴(用含a 的式子表示);(2)若1a =,当23x -<<时,求y 的取值范围;(3)已知()121,A a y -,()2,B a y ,()32,C a y +为该抛物线上的点,若()()13320y y y y -->,求a 的取值范围.【答案】(1)直线x a =;(2)45x -≤<;(3)3a >或1a <-【分析】(1)根据对称轴为直线2b x a=-代入求解即可;(2)根据23x -<<,2x =-比3x =距离对称轴远,分别求得1,2x =-时的函数值即可求解;(3)分两种情况讨论132>y y y >和132y y y <<时.【详解】(1)解:∵抛物线解析式为()22230y ax a x a =--≠,∴对称轴为直线2222b a x a a a---===;(2)解:当1a =时,抛物线解析式为2=23y x x --,∴对称轴2122b x a -=-=-=,抛物线开口向上,∴当1x =时,取得最小值,即最小值为212134y =-⨯-=-,∵2x =-离对称轴更远,∴2x =-时取得最大值,即最大值为()()222235y =--⨯--=,∴当23x -<<时,y 的取值范围是45x -≤<;(3)解:∵()()13320y y y y -->,∴13>0y y -,32>0y y -,即132>y y y >;或130y y -<,320y y -<,即132y y y <<,∵抛物线对称轴2222b a x a a a ---===,∴()2,B a y 是抛物线顶点坐标,若132>y y y >,则抛物线开口向上,0a >,()32,C a y +在对称轴的右侧,当()121,A a y -在对称轴右侧时,21+2a a ->,解得:3a >;当()121,A a y -在对称轴左侧时,()21+2a a a a -->-,解得:1a <-,不符合题意;∴a 的取值范围是3a >;若132y y y <<,则抛物线开口向下,a<0,()32,C a y +在对称轴的右侧,当()121,A a y -在对称轴右侧时,21+2a a ->,解得:3a >,不符合题意,当()121,A a y -在对称轴左侧时,()21+2a a a a -->-,解得:1a <-;∴a 的取值范围是1a <-;综上所述:a 的取值范围是3a >或1a <-.【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键.27.(本题7分)如图,在ABC 中,AB AC =,()24590BAC αα∠=︒<<︒,D 是BC 的中点,E 是BD 的中点,连接AE .将射线AE 绕点A 逆时针旋转α得到射线AM ,过点E 作EF AE ⊥交射线AM 于点F .(1)①依题意补全图形;②求证:B AFE ∠=∠;(2)连接CF ,DF ,用等式表示线段CF ,DF 之间的数量关系,并证明.【答案】(1)①见解析;②见解析;(2)CF DF=【分析】(1)①根据题意画出图形即可求解;②连接AD ,则AD BC ⊥于点D ,AD 平分BAC ∠,根据等腰三角形的性质以及三角形内角和定理得出BAD ∠=α,90B α∠=︒-,根据90AEF ∠=︒,得出90AFE α∠=︒-,则B AFE ∠=∠;(2)延长FE 至点H ,使得EH EF =,连接,BH AH ,CF ,倍长中线法证明HBE FDE ≌,进而证明AHB AFC ≌,即可得证.【详解】(1)解:①如图所示,②连接AD ,∵AB AC =,D 是BC 的中点,∴AD BC ⊥于点D ,AD 平分BAC ∠,∵()24590BAC αα∠=︒<<︒∴BAD ∠=α,90B α∠=︒-,∵EF AE ⊥,∴90AEF ∠=︒,90AFE α∠=︒-,∴B AFE ∠=∠;(2)CF DF =;证明如下,延长FE 至点H ,使得EH EF =,连接,BH AH ,CF ,∵E 为BD 的中点,E 为HF 的中点∴,EH EF EB ED ==,又HEB FED ∠=∠,∴HBE FDE ≌()SAS ,∴BH FD =,∵AE HF ⊥,EH EF =,∴AHF △是等腰三角形,则AH AF =,HAE FAE α∠=∠=,,∵2BAC HAF α∠=∠=,∴HAF BAF BAC BAF ∠-∠=∠-∠,即BAH CAF ∠=∠,∴AHB AFC ≌()SAS ,∴CF BH =,∴CF FD =.【点睛】本题考查了等腰三角形的性质与判定,旋转的性质,全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.28.(本题7分)在平面直角坐标系xOy 中,O 的半径为1,对于直线l 和线段AB ,给出如下定义:若将线段AB 关于直线l 对称,可以得到O 的弦A B ''(A ',B '分别为A ,B 的对应点),则称线段AB 是O 的关于直线l 对称的“关联线段”.例如:在图1中,线段AB 是O 的关于直线l 对称的“关联线段”.(1)如图2,点1A ,1B ,2A ,2B ,3A ,3B 的横、纵坐标都是整数.①在线段11A B ,22A B ,33A B 中,O 的关于直线2y x =+对称的“关联线段”是______;②若线段11A B ,22A B ,33A B 中,存在O 的关于直线y x m =-+对称的“关联线段”,则m =______;(2)已知()30y x b b =+>交x 轴于点C ,在ABC 中,3AC =,2AB .若线段AB 是O 的关于直线()30y x b b =-+>对称的“关联线段”,直接写出b 的最大值和最小值,以及相应的BC 长.【答案】(1)①22A B ;②3或2;(2)b 的最大值为43,17BC =;最小值为23,5BC =【分析】(1)①分别画出线段11A B ,22A B ,33A B 关于直线2y x =+对称线段,运用数形结合思想,即可求解;②从图象性质可知,直线y x m =-+与x 轴的夹角为45°,而线段11A B ⊥直线y x m =-+,线段11A B 关于直线y x m =-+对称线段还在直线11A B 上,显然不可能是O 的弦;线段335A B =,O 的最长的弦为2,得线段33A B 的对称线段不可能是O 的弦,而线段22A B ∥直线y x m =-+,线段222A B =,所以线段22A B 的对称线段22A B '',且线段222A B ''=,平移这条线段,使其在O 上,有两种可能,画出对应图形即可求解;(2)先表示出33OC b =,b 最大时就是CO 最大,b 最小时就是CO 长最小,根据线段AB 关于直线()30y x b b =-+>对称线段A B ''在O 上,得3A C AC ''==,再由三角形三边关系得A C OA OC A C OA ''''-≤≤+,得当A '为()10,时,如图3,OC 最小,此时C 点坐标为()20,;当A '为()10,时,如图3,OC 最大,此时C 点坐标为()40,,分两种情形分别求解.【详解】(1)解:①分别画出线段11A B ,22A B ,33A B 关于直线2y x =+对称线段,如图,发现线段11A B 的对称线段是⊙O 的弦,∴线段11A B ,22A B ,33A B 中,⊙O 的关于直线2y x =+对称的“关联线段”是11A B ,故答案为:11A B ;②从图象性质可知,直线y x m =-+与x 轴的夹角为45°,∴线段11A B ⊥直线y x m =-+,∴线段11A B 关于直线y x m =-+对称线段还在直线11A B 上,显然不可能是O 的弦;∵线段2233215A B =+=,O 的最长的弦为2,∴线段33A B 的对称线段不可能是O 的弦,线段22A B 是⊙O 的关于直线y x m =-+对称的“关联线段”,而线段22A B ∥直线y x m =-+,线段222A B =,∴线段22A B 的对称线段22A B '',且线段222A B ''=,平移这条线段,使其在O 上,有两种可能,第一种情况22A B ''、的坐标分别为()()0110,,,,此时3m =;第二种情况22A B ''、的坐标分别为()()1001--,、,此时2m =,故答案为:3或2;(2)已知()30y x b b =-+>交x 轴于点C ,在ABC 中,3AC =,2AB =.若线段AB 是O 的关于直线()30y x b b =-+>对称的“关联线段”,直接写出b 的最大值和最小值,以及相应的BC 长.解:∵直线()30y x b b =-+>交x 轴于点C ,当0y =时,()030x b b =-+>,解得:33x b =∴33OC b =即b 最大时就是OC 最大,b 最小时就是OC 最小,∵线段AB 是O 的关于直线()30y x b b =-+>对称的“关联线段”,∴线段AB 关于直线()30y x b b =-+>对称线段A B ''在⊙O 上,∴3A C AC ''==在A CO ' 中,A C OA OC A C OA ''''-≤≤+∴当A '为()10-,时,如图,OC 最小,此时C 点坐标为()20,,将点C 代入直线3y x b =-+中,得032b=-⨯+解得:23b =,∵点B B ',关于323y x =-+对称∴22125BC B C '==+=,∴当A '为()10,时,如图,OC 最大,此时C 点坐标为()40,,将点C 代入直线3y x b =-+中,得034b=-⨯+解得:43b =,∵点B B ',关于323y x =-+对称∴221417BC B C '==+=,综上b 的最大值为43,17BC =;最小值为23,5BC =.【点睛】本题考查了以圆为背景的阅读理解题,对称轴的性质、一次函数与坐标轴的交点问题,勾股定理,三角形三边关系,解决问题的关键是找出不同情境下的“关联线段”和阅读理解能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学二模试卷带答案 The document was prepared on January 2, 20212016年中考数学二模试卷一、选择题:本大题共12小题,每题3分,共36分.1.﹣8的立方根是()A.2 B.2C.﹣D.﹣22.统计显示,2013年底某市各类高中在校学生人数约是万人,将万用科学记数法表示应为()A.×104B.×104C.×105D.×1063.函数中自变量x的取值范围是()A.x≥2 B.x≥﹣2 C.x<2 D.x<﹣24.下列计算正确的是()A.a2+a2=2a4B.3a2b2÷a2b2=3abC.(﹣a2)2=a4D.(﹣m3)2=m95.抛物线y=﹣6x2可以看作是由抛物线y=﹣6x2+5按下列何种变换得到()A.向上平移5个单位B.向下平移5个单位C.向左平移5个单位D.向右平移5个单位6.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为()A.12米B.4米C.5米D.6米7.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为()A.4﹣πB.4﹣2πC.8+πD.8﹣2π8.按一定规律排列的一列数:,,,…其中第6个数为()A.B.C.D.9.在一次体育达标测试中,九年级(3)班的15名男同学的引体向上成绩如下表所示:8911121315成绩(个)人数123432这15名男同学引体向上成绩的中位数和众数分别是()A.12,13 B.12,12 C.11,12 D.3,410.下列四个命题:①对角线互相垂直的平行四边形是正方形;②,则m≥1;③过弦的中点的直线必经过圆心;④圆的切线垂直于经过切点的半径;⑤圆的两条平行弦所夹的弧相等;其中正确的命题有()个.A.1 B.2 C.3 D.411.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x 轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C.2D.412.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OAOB=﹣.其中正确结论的个数是()A.4 B.3 C.2 D.1二、填空题:每题3分,共24分.13.计算:(﹣)= .14.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n= .15.= .16.折叠矩形ABCD,使点D落在BC边上的点F处,若折痕AE=5,tan ∠EFC=,则BC= .17.如图,Rt△A′BC′是由Rt△ABC绕B点顺时针旋转而得,且点A、B、C′在同一条直线上,在Rt△ABC中,若∠C=90°,BC=2,AB=4,则斜边AB旋转到A′B所扫过的扇形面积为.18.关于x的不等式组的解集为x<3,那么m的取值范围是.19.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E= .20.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H.给出下列结论:①△ABE≌△DCF;②;③DP2=PHPB;④.其中正确的是.(写出所有正确结论的序号)三、解答题:本大题共6小题,共60分.21.(8分)某校课题研究小组对本校九年级全体同学体育测试情况进行调查,他们随即抽查部分同学体育测试成绩(由高到低分A、B、C、D四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了名同学的体育测试成绩,扇形统计图中B级所占的百分比b= ,D级所在小扇形的圆心角的大小为;(2)请直接补全条形统计图;(3)若该校九年级共有600名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)的人数.22.(8分)海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B 在海船的北偏西45°方向,求此时灯塔B到C处的距离.23.(12分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元若能,求出第二年产品售价;若不能,请说明理由.24.(8分)如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.25.(12分)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA匀速移动,当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动,DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<).解答下列问题:(1)当t为何值时,点A在线段PQ的垂直平分线上(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式,是否存在某一时刻t,使面积y最小若存在,求出y的最小值;若不存在,说明理由;(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上若存在,求出此时t的值;若不存在,说明理由.26.(12分)如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(﹣2,0),B(﹣1,﹣3).(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P 的坐标.2016年内蒙古包头市昆都仑区中考数学二模试卷参考答案与试题解析一、选择题:本大题共12小题,每题3分,共36分.1.﹣8的立方根是()A.2 B.2C.﹣D.﹣2【考点】立方根.【分析】直接利用立方根的定义分析得出答案.【解答】解:﹣8的立方根是:﹣2.故选:D.【点评】此题主要考查了立方根,正确把握立方根的定义是解题关键.2.统计显示,2013年底某市各类高中在校学生人数约是万人,将万用科学记数法表示应为()A.×104B.×104C.×105D.×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:万=×105,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.函数中自变量x的取值范围是()A.x≥2 B.x≥﹣2 C.x<2 D.x<﹣2【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【解答】解:依题意,得x+2≥0,解得x≥﹣2,故选B.【点评】注意二次根式的被开方数是非负数.4.下列计算正确的是()A.a2+a2=2a4B.3a2b2÷a2b2=3abC.(﹣a2)2=a4D.(﹣m3)2=m9【考点】整式的除法;合并同类项;幂的乘方与积的乘方.【分析】分别利用合并同类项法则以及单项式除以单项式运算法则和积的乘方运算法则化简,进而判断得出答案.【解答】解:A、a2+a2=2a2,故此选项错误;B、3a2b2÷a2b2=3,故此选项错误;C、(﹣a2)2=a4,正确;D、(﹣m3)2=m6,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及单项式除以单项式运算和积的乘方运算等知识,正确掌握相关运算法则是解题关键.5.抛物线y=﹣6x2可以看作是由抛物线y=﹣6x2+5按下列何种变换得到()A.向上平移5个单位B.向下平移5个单位C.向左平移5个单位D.向右平移5个单位【考点】二次函数图象与几何变换.【分析】先得到两个抛物线的顶点坐标,然后根据顶点坐标判断平移的方向和单位长度.【解答】解:∵y=﹣6x2+5的顶点坐标为(0,5),而抛物线y=﹣6x2的顶点坐标为(0,0),∴把抛物线y=﹣6x2+5向下平移5个单位可得到抛物线y=﹣6x2.故选B.【点评】本题考查了抛物线的几何变换:抛物线的平移问题可转化为其顶点的平移问题,抛物线的顶点式:y=a(x﹣h)2+k(a≠0),则抛物线的顶点坐标为(h,k).6.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为()A.12米B.4米C.5米D.6米【考点】解直角三角形的应用-坡度坡角问题.【分析】根据迎水坡AB的坡比为1:,可得=1:,即可求得AC 的长度,然后根据勾股定理求得AB的长度.【解答】解:Rt△ABC中,BC=6米, =1:,∴AC=BC×=6,∴AB===12.故选A.【点评】此题主要考查解直角三角形的应用,构造直角三角形解直角三角形并且熟练运用勾股定理是解答本题的关键.7.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为()A.4﹣πB.4﹣2πC.8+πD.8﹣2π【考点】扇形面积的计算;切线的性质.【分析】根据圆周角定理可以求得∠A的度数,即可求得扇形EAF的面积,根据阴影部分的面积=△ABC的面积﹣扇形EAF的面积即可求解.【解答】解:△ABC的面积是: BCAD=×4×2=4,∠A=2∠EPF=90°.则扇形EAF的面积是:=π.故阴影部分的面积=△ABC的面积﹣扇形EAF的面积=4﹣π.故选A.【点评】本题主要考查了扇形面积的计算,正确求得扇形的圆心角是解题的关键.8.按一定规律排列的一列数:,,,…其中第6个数为()A.B.C.D.【考点】算术平方根.【分析】观察这列数,得到分子和分母的规律,进而得到答案.【解答】解:根据一列数:,,,可知,第n个数分母是n,分子是n2﹣1的算术平方根,据此可知:第六个数是,故选C.【点评】此题考查了数字的变化类,从分子、分母两个方面考虑求解是解题的关键,难点在于观察出分子的变化.9.在一次体育达标测试中,九年级(3)班的15名男同学的引体向上成绩如下表所示:8911121315成绩(个)人数123432这15名男同学引体向上成绩的中位数和众数分别是()A.12,13 B.12,12 C.11,12 D.3,4【考点】众数;中位数.【分析】根据中位数与众数的定义,从小到大排列后,中位数是第8个数,众数是出现次数最多的一个,解答即可.【解答】解:第8个数是12,所以中位数为12;12出现的次数最多,出现了4次,所以众数为12,故选B.【点评】本题主要考查众数与中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.10.下列四个命题:①对角线互相垂直的平行四边形是正方形;②,则m≥1;③过弦的中点的直线必经过圆心;④圆的切线垂直于经过切点的半径;⑤圆的两条平行弦所夹的弧相等;其中正确的命题有()个.A.1 B.2 C.3 D.4【考点】命题与定理.【分析】利用正方形的判定方法、垂径定理及其推理、圆的有关性质等知识分别判断后即可确定正确的选项.【解答】解:①对角线互相垂直的平行四边形是菱形,故错误;②,则m≥1,正确;③过弦的中点的且垂直于弦的直线必经过圆心,故错误;④圆的切线垂直于经过切点的半径,正确;⑤圆的两条平行弦所夹的弧相等,正确,正确的有3个,故选C;【点评】本题考查了命题与定理的知识,解题的关键是了解正方形的判定方法、垂径定理及其推理、圆的有关性质等知识,难度不大.11.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x 轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C.2D.4【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】过点A作x轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为3,1,可得出横坐标,即可求得AE,BE,再根据勾股定理得出AB,根据菱形的面积公式:底乘高即可得出答案.【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱形ABCD=底×高=2×2=4,故选D.【点评】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.12.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OAOB=﹣.其中正确结论的个数是()A.4 B.3 C.2 D.1【考点】二次函数图象与系数的关系.【分析】由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1x2=,于是OAOB=﹣,则可对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,而a<0,∴<0,所以②错误;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1x2=,∴OAOB=﹣,所以④正确.故选:B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b 和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y 轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题:每题3分,共24分.13.计算:(﹣)= ﹣.【考点】分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式==﹣=﹣.故答案为:﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.14.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n= 1 .【考点】概率公式.【分析】根据白球的概率公式列出关于n的方程,求出n的值即可.【解答】解:由题意知:,解得n=1.【点评】用到的知识点为:概率=所求情况数与总情况数之比.15.= 5 .【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】分别根据数的开方法则、0指数幂的运算法则、特殊角的三角函数值及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2﹣4×+1+4=2﹣2+5=5.故答案为:5.【点评】本题考查的是实数的运算,熟知数的开方法则、0指数幂的运算法则、特殊角的三角函数值及绝对值的性质是解答此题的关键.16.折叠矩形ABCD,使点D落在BC边上的点F处,若折痕AE=5,tan ∠EFC=,则BC= 10 .【考点】矩形的性质;翻折变换(折叠问题).【分析】根据tan∠EFC=,设CE=3k,在RT△EFC中可得CF=4k,EF=DE=5k,根据∠BAF=∠EFC,利用三角函数的知识求出AF,然后在RT △AEF中利用勾股定理求出k,继而代入可得出答案.【解答】解:设CE=3k,则CF=4k,由勾股定理得EF=DE==5k,∴DC=AB=8k,∵∠AFB+∠BAF=90°,∠AFB+∠EFC=90°,∴∠BAF=∠EFC,∴tan∠BAF=tan∠EFC=,∴BF=6k,AF=BC=AD=10k,在Rt△AFE中,由勾股定理得AE===5k=5,解得:k=1,∴BC=10×1=10;故答案为:10.【点评】此题考查了翻折变换的性质、矩形的性质、勾股定理;解答本题关键是根据三角函数值,表示出每条线段的长度,然后利用勾股定理进行解答,有一定难度.17.如图,Rt△A′BC′是由Rt△ABC绕B点顺时针旋转而得,且点A、B、C′在同一条直线上,在Rt△ABC中,若∠C=90°,BC=2,AB=4,则斜边AB旋转到A′B所扫过的扇形面积为.【考点】扇形面积的计算.【分析】根据题意可知斜边AB旋转到A'B所扫过的扇形面积为扇形ABA′的面积,根据扇形面积公式计算即可.【解答】解:AB=4,∠ABA′=120°,所以s==π.【点评】主要考查了扇形面积的求算方法.面积公式有两种:(1)、利用圆心角和半径:s=;(2)、利用弧长和半径:s=lr.针对具体的题型选择合适的方法.18.关于x的不等式组的解集为x<3,那么m的取值范围是m≥3 .【考点】解一元一次不等式组.【分析】首先解第一个不等式,然后根据不等式组的解集即可确定m的范围.【解答】解:,解①得x<3,∵不等式组的解集是x<3,∴m≥3.故答案是:m≥3.【点评】本题考查了一元一次不等式组的解法,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E= 50°.【考点】切线的性质.【分析】连接DF,连接AF交CE于G,由AB是⊙O的直径,且经过弦CD 的中点H,得到,由于EF是⊙O的切线,推出∠GFE=∠GFD+∠DFE=∠ACF=65°根据外角的性质和圆周角定理得到∠EFG=∠EGF=65°,于是得到结果.【解答】解:连接DF,连接AF交CE于G,∵AB是⊙O的直径,且经过弦CD的中点H,∴,∵EF是⊙O的切线,∴∠GFE=∠GFD+∠DFE=∠ACF=65°,∵∠FGD=∠FCD+∠CFA,∵∠DFE=∠DCF,∠GFD=∠AFC,∠EFG=∠EGF=65°,∴∠E=180°﹣∠EFG﹣∠EGF=50°,故答案为:50°.方法二:连接OF,易知OF⊥EF,OH⊥EH,故E,F,O,H四点共圆,又∠AOF=2∠ACF=130°,故∠E=180°﹣130°=50°【点评】本题考查了切线的性质,圆周角定理,垂径定理,正确的作出辅助线是解题的关键.20.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H.给出下列结论:①△ABE≌△DCF;②;③DP2=PHPB;④.其中正确的是①③.(写出所有正确结论的序号)【考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质;正方形的性质.【分析】①根据等边三角形的性质和正方形的性质,得到∠ABE=∠DCF,∠A=∠ADC,AB=CD,证得△ABE≌△DCF,①正确;②由于∠FDP=∠PBD,∠DFP=∠BPC=60°,推出△DFP∽△BPH,得到===tan∠DCF=,②错误;③由于∠PDH=∠PCD=30°,∠DPH=∠DPC,推出△DPH∽△CPD,得到=,PB=CD,等量代换得到DP2=PHPB,③正确;④设正方形ABCD的边长是3,则PB=BC=AD=3,求得∠EBA=30°,得出AE、BE、EP的长,由S△BED=S ABD﹣S ABE,S△EPD=S△BED,求得=,④错误;即可得出结论.【解答】解:①∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,∵四边形ABCD为正方形,∴AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,在△ABE与△CDF中,,∴△ABE≌△DCF(ASA),故①正确;②∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠FCB=∠BPC=60°,∴△DFP∽△BPH,∴===tan∠DCF=,故②错误;③∵∠FDP=15°,∴∠PDH=30°∴∠PDH=∠PCD,∵∠DPH=∠DPC,∴△DPH∽△CDP,∴=,∴DP2=PHCD,∵PB=CD,∴DP2=PHPB,故③正确;④设正方形ABCD的边长是3,∵△BPC为正三角形,∴∠PBC=60°,PB=BC=AD=3,∴∠EBA=30°,∴AE=ABtan30°=3×=,BE===2,∴EP=BE﹣BP=2﹣3,S△BED=S ABD﹣S ABE=×3×3﹣×3×=,S△EPD=S△BED=×=,∴==,故④错误;∴正确的是①③;故答案为:①③.【点评】本题考查了相似三角形的判定与性质、全等三角形的判定、等边三角形的性质、正方形的性质、三角形面积计算、三角函数等知识;熟练掌握相似三角形的判定与性质、三角形面积计算、三角函数是解决问题的关键.三、解答题:本大题共6小题,共60分.21.某校课题研究小组对本校九年级全体同学体育测试情况进行调查,他们随即抽查部分同学体育测试成绩(由高到低分A、B、C、D四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了80 名同学的体育测试成绩,扇形统计图中B级所占的百分比b= 40% ,D级所在小扇形的圆心角的大小为18°;(2)请直接补全条形统计图;(3)若该校九年级共有600名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据A组人数及其百分比可得抽查总人数,将B级人数除以总人数可得其百分比,用D等级人数占被抽查人数的比例乘以360°即可;(2)总人数减去A、B、D三等级人数可得C等级人数,补全条形图即可;(3)用样本中C等级及其以上(即A、B、C三等级)人数占被抽查人数的比例乘以总人数600可得.【解答】解:(1)课题研究小组共抽查学生:20÷25%=80(名),b=×100%=40%,D级所在小扇形的圆心角的大小为×360°=18°;故答案为:80,40%,18.(2)C等级人数为:80﹣20﹣32﹣4=24(名),补全条形统计图如图:(3)600×=570(人),答:估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)的约有570人.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意,从统计图中得到必要的信息是解决问题的关键.22.海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45°方向,求此时灯塔B到C处的距离.【考点】解直角三角形的应用-方向角问题.【分析】由已知可得△ABC中∠BAC=30°,∠BCA=45°且AC=10海里.要求BC的长,可以过B作BD⊥BC于D,先求出AD和CD的长.转化为运用三角函数解直角三角形.【解答】解:如图,过B点作BD⊥AC于D.∴∠DAB=90°﹣60°=30°,∠DCB=90°﹣45°=45°.设BD=x,在Rt△ABD中,AD==x,在Rt△BDC中,BD=DC=x,BC=,∵AC=5×2=10,∴x+x=10.得x=5(﹣1).∴BC=5(﹣1)=5(﹣)(海里).答:灯塔B距C处海里.【点评】解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23.(12分)(2016包头二模)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元若能,求出第二年产品售价;若不能,请说明理由.【考点】二次函数的应用;一次函数的应用.【分析】(1)设y=kx+b,则由图象可求得k,b,从而得出y与x之间的函数关系式,并写出x的取值范围100≤x≤180;(2)设公司第一年获利W万元,则可表示出W=﹣(x﹣180)2﹣60≤﹣60,则第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)假设两年共盈利1340万元,则﹣x2+36x﹣1800﹣60=1340,解得x的值,根据100≤x≤180,则x=160时,公司两年共盈利达1340万元.【解答】解:(1)设y=kx+b,则由图象知:,解得k=﹣,b=30,∴y=﹣x+30,100≤x≤180;(2)设公司第一年获利W万元,则W=(x﹣60)y﹣1500=﹣x2+36x﹣3300=﹣(x﹣180)2﹣60≤﹣60,∴第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)若两年共盈利1340万元,因为第一年亏损60万元,第二年盈利的为(x﹣60)y=﹣x2+36x﹣1800,则﹣x2+36x﹣1800﹣60=1340,解得x1=200,x2=160,∵100≤x≤180,∴x=160,∴每件产品的定价定为160元时,公司两年共盈利达1340万元.【点评】本题是一道一次函数的综合题,考查了二次函数的应用,还考查了用待定系数法求一次函数的解析式.24.如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.【考点】切线的判定.【分析】(1)利用圆周角定理结合等腰三角形的性质得出∠OCF+∠DCB=90°,即可得出答案;(2)利用圆周角定理得出∠ACB=90°,利用相似三角形的判定与性质得出DC的长.【解答】(1)证明:连接OC,∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC,又∵∠CFD=∠BFO,∴∠DCB=∠BOF,∵CO=BO,∴∠OCF=∠B,∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直线CD为⊙O的切线;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠DCO=∠ACB,又∵∠D=∠B∴△OCD∽△ACB,∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴=,即=,解得;DC=.【点评】此题主要考查了切线的判定以及相似三角形的判定与性质,得出△OCD∽△ACB是解题关键.25.(12分)(2016昆都仑区二模)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA匀速移动,当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动,DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<).解答下列问题:(1)当t为何值时,点A在线段PQ的垂直平分线上(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式,是否存在某一时刻t,使面积y最小若存在,求出y的最小值;若不存在,说明理由;(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上若存在,求出此时t的值;若不存在,说明理由.【考点】三角形综合题.【分析】(1)因为点A在线段PQ垂直平分线上,所以得到线段相等,可得CE=CQ,用含t的式子表示出这两个线段即可得解;(2)作PM⊥BC,将四边形的面积表示为S△ABC﹣S△BPE即可求解;(3)假设存在符合条件的t值,由相似三角形的性质即可求得.【解答】解:(1)∵点A在线段PQ的垂直平分线上,∴AP=AQ;∵∠DEF=45°,∠ACB=90°,∠DEF+∠ACB+∠EQC=180°,∴∠EQC=45°;∴∠DEF=∠EQC;∴CE=CQ;由题意知:CE=t,BP=2t,∴CQ=t;∴AQ=8﹣t;在Rt△ABC中,由勾股定理得:AB=10cm;则AP=10﹣2t;∴10﹣2t=8﹣t;解得:t=2;答:当t=2s时,点A在线段PQ的垂直平分线上;(2)如图1,过P作PM⊥BE,交BE于M,∴∠BMP=90°;在Rt△ABC和Rt△BPM中,sinB=,∴=,∴PM=,∵BC=6cm,CE=t,∴BE=6﹣t,∴y=S△ABC﹣S△BPE=BCAC﹣BEPM=6×8﹣(6﹣t)×t=t2﹣t+24=(t﹣3)2+,∵a=,∴抛物线开口向上;∴当t=3时,y最小=;答:当t=3s时,四边形APEC的面积最小,最小面积为cm2.(3)假设存在某一时刻t,使点P、Q、F三点在同一条直线上;如图2,过P作PN⊥AC,交AC于N∴∠ANP=∠ACB=∠PNQ=90°;∵∠PAN=∠BAC,∴△PAN∽△BAC,∴,。

相关文档
最新文档