智能农业信息化管控系统项目解决方案
智慧农业视频监控系统解决方案
视频监控系统在智慧农业中应用
视频监控系统的作用
视频监控系统是智慧农业中的重要组成部分,可以实时监测农业生产现场的情况 ,包括作物生长状况、病虫害情况、环境参数等,为农业生产提供科学决策依据 。
视频监控系统的应用场景
视频监控系统可以广泛应用于温室大棚、果园、养殖场等农业生产场所。通过安 装摄像头、传感器等设备,实现对农业生产环境的全方位监测,并通过网络平台 将数据实时传输到管理中心,方便管理人员进行远程监控和管理。
06
CATALOGUE
运营维护与持续升级策略
设备巡检和故障排查机制建立
设立定期巡检制度
对智慧农业视频监控系统 的关键设备进行定期巡检 ,确保设备正常运行。
故障快速响应机制
建立故障快速响应机制, 对设备故障进行及时发现 、报告和处理。
远程技术支持
提供远程技术支持服务, 协助用户解决设备使用过 程中的问题。
智能管理
引入智能化管理平台,实现视频数据的自动 分类、检索和分析。
云存储服务
利用云存储服务,实现视频数据的远程备份 和共享。
04
CATALOGUE
智能分析与报警功能开发
图像识别技术在智慧农业中应用
作物生长状态监测
农业环境监测
利用图像识别技术,实时监测作物的 生长状态,包括叶片颜色、大小、形 状等,为精准农业提供数据支持。
异常行为识别
通过分析农田中的行为模式,识别异常行为,如 偷盗、破坏等,及时采取措施保障农业生产安全 。
数据挖掘与模式识别
利用数据挖掘和模式识别技术,分析历史数据和 实时数据,发现潜在的安全隐患和异常行为模式 。
报警信息处理和反馈机制构建
报警信息分类与处理
对识别出的异常行为进行分类和处理,生成相应的报警信息,如声音、短信、邮件等。
智慧农业一体化平台解决方案
03
智慧农业一体化平台的解 决方案
智能农情监测系统
01
02
03
自动化农情数据采集
实时数据传输与分析
预警与决策支持
利用物联网技术,实现农田环境的自动监 测,包括温度、湿度、光照、土壤肥力等 数据,提高农业生产效率。
技术应用与推广
智慧农业一体化平台需要积极推广和应用新技术,如物联网 、大数据、人工智能等,以提高平台的智能化水平和服务质 量。同时,也需要根据实际情况进行技术选型和应用,以避 免技术浪费和重复建设。
行业合作与协同发展建议
建立合作机制
智慧农业一体化平台需要建立稳定的合作机制,与相关企业、机构等进行合作 ,共同推动智慧农业的发展。同时,也需要制定合作协议和规范,明确各方的 权利和义务。
智慧农业一体化平台 解决方案
汇报人:xx
汇报时间:2023-12-05
目录
• 智慧农业一体化平台概述 • 智慧农业一体化平台的技术架构 • 智慧农业一体化平台的解决方案
目录
• 智慧农业一体化平台的实施与运营 • 智慧农业一体化平台的案例分析 • 智慧农业一体化平台的未来展望与挑
战
01
智慧农业一体化平台概述
提高品牌价值
通过溯源系统,提高农产品的品牌价值,增强消 费者对农产品的信任和认可。
农业大数据分析系统
数据整合与分析
01
整合各类农业数据,包括气象、土壤、生产流程等数
据,进行深入的数据分析。
趋势预测
02 通过大数据分析,预测农产品市场趋势,为农民和农
业企业提供市场导向和建议。
优化生产流程
农业企业信息化解决方案
农业企业信息化解决方案一、背景介绍农业是国民经济的基础产业之一,随着科技的进步和信息化的发展,农业企业也面临着信息化转型的需求。
信息化解决方案是指通过应用信息技术,提高农业企业的管理效率、决策能力和竞争力,实现农业生产、经营和管理的现代化。
二、需求分析1. 生产管理:农业企业需要建立一个全面的生产管理系统,包括土地利用、播种、施肥、病虫害防治等环节的信息化管理。
2. 供应链管理:农业企业需要建立与上下游企业的信息交互平台,实现供应链的高效管理和协同作业。
3. 资源调度:农业企业需要建立一个资源调度系统,通过信息化手段实现农田、农机、农资等资源的合理配置和利用。
4. 市场营销:农业企业需要建立一个市场营销平台,通过信息化手段实现产品的定位、推广、销售和售后服务。
三、解决方案1. 建立农业企业信息化平台:搭建一个集成化的信息化平台,包括数据采集、数据存储、数据处理和数据展示等功能,实现农业企业内部各个环节的信息共享和协同作业。
2. 开辟生产管理系统:根据农业企业的实际需求,开辟一个生产管理系统,包括土地利用管理、作物生长监测、农药施用管理等功能,实现农业生产的全程监控和管理。
3. 构建供应链管理系统:与上下游企业合作,建立供应链管理系统,包括供应商管理、采购管理、库存管理和销售管理等功能,实现供应链的高效运作和信息共享。
4. 设计资源调度系统:通过信息化手段,建立一个资源调度系统,包括农田调度、农机调度和农资调度等功能,实现资源的合理配置和利用,提高农业生产的效益。
5. 搭建市场营销平台:建立一个市场营销平台,包括产品定位、市场推广、销售管理和售后服务等功能,通过信息化手段提升产品的竞争力和市场份额。
四、实施步骤1. 需求调研:与农业企业进行沟通,了解其信息化需求和现有问题。
2. 系统设计:根据需求调研结果,设计农业企业信息化解决方案的整体架构和功能模块。
3. 开辟与测试:根据系统设计,进行软件开辟和测试工作,确保系统的稳定性和可靠性。
辽宁智慧农业解决方案
五、实施方案
1.政策支持与组织保障
(1)制定智慧农业发展政策,明确发展目标、任务和政策措施;
(2)成立智慧农业工作领导小组,统筹协调各方力量;
(3)加大财政投入,引导社会资本投入智慧农业建设。
2.技术研发与创新
(1)加强与科研院所的合作,引进国内外先进技术;
(3)构建农业专家决策支持系统,为农业生产提供科学决策依据。
4.农产品营销与品牌建设
(1)发展农产品电子商务,拓宽销售渠道;
(2)加强农产品质量追溯体系建设,提高农产品品质;
(3)培育农业品牌,提升农业产业竞争力。
四、实施方案
1.政策支持与组织保障
(1)制定智慧农业发展规划,明确发展目标、任务和政策措施;
二、目标定位
1.提高农业生产效率,实现农业产业升级;
2.优化农业资源配置,降低生产成本;
3.提升农产品品质,保障粮食安全;
4.促进农业生态环境改善,实现农业可持续发展。
三、核心措施
1.农业大数据平台建设
(1)建立农业大数据中心,实现农业生产、市场、资源、环境等数据的整合与分析;
(2)搭建农业大数据服务平台,为政府部门、农业企业和农民提供决策支持和信息服务。
五、预期效果
1.农业生产效率显著提升,农业产业竞争力不断增强;
2.农业资源配置优化,生产成本降低,农民收入增加;
3.农产品质量安全得到保障,农业生态环境持续改善;
4.辽宁智慧农业发展水平位居全国前列,为全国农业现代化提供示范。
本方案旨在为辽宁智慧农业发展提供指导性建议,具体实施过程中需根据实际情况进行调整和完善。在合法合规的前提下,充分发挥各方优势,共同推动辽宁智慧农业发展迈上新台阶。
智慧农业监控系统解决方案
智慧农业监控系统解决方案清晨的第一缕阳光透过窗帘的缝隙,洒在键盘上,闪烁着未来农业的希望。
作为一位有着十年方案写作经验的老手,我深知,每一个字的敲击都关乎着农业的未来。
那么,我们就直接进入主题吧。
智慧农业监控系统是什么?它是一套基于物联网、大数据、云计算等现代信息技术的集成应用,目的是实现农业生产过程的智能化、自动化,提高生产效率,减少资源浪费。
下面,我将一步步为大家展开这个方案的细节。
一、系统架构想象一下,整个智慧农业监控系统就像是一个神经网络,农田、气象站、传感器、数据中心,它们都是这个网络中的节点。
农田里安装的各种传感器,就像神经末梢,实时收集土壤湿度、温度、光照强度等数据。
气象站提供的大气数据,则是神经网络中的中枢,指导着整个系统的运作。
1.数据采集层:包括农田、温室、大棚等种植基地的传感器,以及气象站的各种设备。
2.数据传输层:利用无线或有线网络,将采集的数据传输到数据中心。
3.数据处理层:对收集到的数据进行清洗、分析和处理,形成有价值的信息。
4.应用层:根据分析结果,自动调节灌溉、施肥、温湿度等农业生产条件。
二、功能模块1.环境监测模块:实时监测农田的土壤湿度、温度、光照强度等指标,确保作物生长环境的稳定。
2.气象监测模块:收集气象数据,预测未来天气变化,为农业生产提供参考。
3.生长监测模块:通过图像识别技术,实时监测作物生长状况,发现病虫害及时处理。
4.自动控制模块:根据监测数据,自动调节灌溉、施肥、温湿度等生产条件,实现智能化管理。
5.数据分析模块:对历史数据进行分析,找出规律,为农业生产提供决策支持。
三、实施方案1.在农田、温室、大棚等种植基地安装传感器,收集数据。
2.在气象站安装监测设备,收集气象数据。
3.建立数据中心,对收集到的数据进行处理和分析。
4.根据分析结果,制定农业生产计划,实现智能化管理。
5.定期对系统进行维护和升级,确保系统稳定运行。
四、效益分析1.提高生产效率:通过智能化管理,减少人力投入,降低生产成本。
农业行业农业信息化与智能化农业方案
农业行业农业信息化与智能化农业方案第一章:引言 (2)1.1 农业信息化概述 (2)1.2 智能化农业发展背景 (3)1.3 研究目的与意义 (3)第二章:农业信息化技术概述 (4)2.1 农业物联网技术 (4)2.2 农业大数据技术 (4)2.3 农业云计算技术 (4)第三章:智能化农业装备与技术 (5)3.1 智能农业传感器 (5)3.1.1 传感器种类及功能 (5)3.1.2 传感器布局与优化 (5)3.2 农业无人机应用 (6)3.2.1 精准施肥 (6)3.2.2 病虫害防治 (6)3.2.3 农田遥感监测 (6)3.3 智能农业 (6)3.3.1 种植 (6)3.3.2 施肥 (6)3.3.3 除草 (6)3.3.4 收割 (6)第四章:农业信息化管理平台 (7)4.1 农业信息管理系统 (7)4.2 农业电子商务平台 (7)4.3 农业大数据分析平台 (7)第五章:智能化农业生产管理 (8)5.1 智能农业生产监测 (8)5.2 智能农业生产决策 (8)5.3 智能农业病虫害防治 (9)第六章:农业信息化与智能化政策法规 (9)6.1 农业信息化政策法规体系 (9)6.1.1 法律法规 (9)6.1.2 政策文件 (9)6.1.3 行业标准 (9)6.2 智能化农业政策法规体系 (10)6.2.1 法律法规 (10)6.2.2 政策文件 (10)6.2.3 技术规范 (10)6.3 农业信息化与智能化政策实施 (10)6.3.1 加强政策宣传和解读 (10)6.3.2 完善政策体系 (10)6.3.3 强化政策执行 (10)6.3.4 优化政策环境 (10)第七章:农业信息化与智能化应用案例 (11)7.1 粮食作物智能化种植案例 (11)7.1.1 项目背景 (11)7.1.2 技术方案 (11)7.1.3 应用效果 (11)7.2 蔬菜水果智能化种植案例 (11)7.2.1 项目背景 (11)7.2.2 技术方案 (11)7.2.3 应用效果 (12)7.3 畜牧业智能化养殖案例 (12)7.3.1 项目背景 (12)7.3.2 技术方案 (12)7.3.3 应用效果 (12)第八章:农业信息化与智能化发展趋势 (12)8.1 农业信息化发展趋势 (12)8.2 智能化农业发展趋势 (13)8.3 农业信息化与智能化融合发展 (13)第九章:农业信息化与智能化区域发展 (13)9.1 东部地区农业信息化与智能化发展 (13)9.1.1 发展现状 (14)9.1.2 发展策略 (14)9.2 中部地区农业信息化与智能化发展 (14)9.2.1 发展现状 (14)9.2.2 发展策略 (14)9.3 西部地区农业信息化与智能化发展 (14)9.3.1 发展现状 (14)9.3.2 发展策略 (14)第十章:农业信息化与智能化发展策略与建议 (15)10.1 加强农业信息化基础设施建设 (15)10.2 促进智能化农业技术研发与应用 (15)10.3 完善农业信息化与智能化政策体系 (15)第一章:引言1.1 农业信息化概述农业信息化是指在农业生产、管理和服务过程中,充分利用现代信息技术,实现农业生产要素的信息化、农业生产过程的信息化以及农业市场服务的信息化。
2023-智慧农业整体技术解决方案-1
智慧农业整体技术解决方案随着科技的不断发展,农业行业也在逐步地转型升级,从传统的人工耕种,逐渐向着智慧农业的方向发展。
智慧农业是指借助物联网、人工智能、大数据等先进技术,对传统的农业生产进行智能化、自动化、数字化改造,提升农业生产效率、降低成本和提高农产品的品质和安全性。
那么,我们为您介绍一种智慧农业的整体技术解决方案。
一、传感器网络智慧农业的第一步就是建立传感器网络。
传感器网络是指依靠传感器设备,以无线通信为手段,实现农业数据的自动采集和传输。
通过搭建传感器网络,我们可以实现对农业母体的监控,对土壤、气象等条件进行实时的数据采集和分析,进而提高农作物生产效率。
二、大数据应用在建立好传感器网络后,它就会源源不断地向我们传输数据。
然而,这些农业数据对我们来说是相当庞大的,如何将它们变成有价值的信息,以更好地指导我们的农业生产?这就需要应用大数据技术。
大数据技术利用这些数据进行分析、预测等,从而实现科学农业生产和管理。
比如,利用大数据技术,我们可以对土壤质量进行预判,进行灌水量的调控,实现更加精准的农作物管理。
三、智能控制系统智能控制系统是指我们利用人工智能等技术,对农业生产过程进行智能化管理。
通过对大量的农业数据进行深度学习和分析,我们可以建立智能预测模型,分析、预报农业生产的各种风险。
同时,我们可以制定出更加精细的作业计划、降低水肥用量,实现精细化农业生产。
四、农业机器人应用在智慧农业中,机器人应用是非常重要的。
机器人可以在节省人工成本的同时实现更加高效、精准的农业生产。
比如,利用机器人的自动化技术,可以实现种植、除草、喷洒等各种农业生产环节的自动化,提高农业生产效率、降低劳动强度。
五、智能物流系统智能物流系统是指我们利用现代的物流技术,通过物联网等技术手段,实现农产品供应链的信息化、智能化。
物联网技术可以对物流运输环节进行全程监控,而区块链技术可以对农产品的质量、安全性进行全程追溯。
这些技术的应用,不仅可以提高农业生产效率,还可以提高农产品的品质和安全性。
智慧农业管理系统方案(详细版)
智慧农业管理系统方案(详细版)随着物联网技术的发展,智慧农业已经开始颠覆传统农业。
托普物联网开发的智慧农业管理系统方案实现了作物种植、培育、成熟、销售等环节一体化管理。
传统农业需要很多个农业工作者奔波在田间地里头,而现代农业中有了该系统,用户只需要一部可以上网的手机,就可以轻松实现“无人化”的操作与管理。
本文将详细介绍智慧农业管理系统方案及其解决方案。
一、智慧农业管理系统方案是什么?智慧农业管理系统方案是___研发的一套农业物联网解决方案,充分应用现代信息技术成果。
该方案集成了计算机与网络技术、物联网技术、音视频技术、传感器技术、无线通信技术及专家智慧与知识平台。
它可以实现农业可视化远程诊断、远程控制、灾变预警等智能管理、远程诊断交流、远程咨询、远程会诊,逐步建立农业信息服务的可视化传播与应用模式,还可以实现对农业生产环境的远程精准监测和控制,提高设施农业建设管理水平。
二、智慧农业管理系统方案主要组成部分是什么?智慧农业管理系统方案主要组成部分有精准农业生产管理系统、农产品质量溯源系统和农业专家服务系统。
三、智慧农业管理系统方案的优势有哪些?1、打通农场到餐桌全产业链业务流,实现集财务、采购、销售、生产、库存等诸多业务单元的精细化管控。
2、建立完善、规范、精确、协同的信息化管理平台,在提升运营效率的同时,使企业的管理模式具有可扩展性和可复制性。
3、生产效率的精细化分析,可细化到每个种植、养殖基地、每个生产、生长阶段、每个产品批次的投入产出及人员绩效。
4、实现精准科学的成本和利润核算体系,可针对每个产品、基地、生长阶段的成本和利润进行多维度分析和构成分析。
5、实现全产业链的“三层”质量追溯体系,可实现信息实时查询,实时响应。
6、实现销售预测、生产计划和库存管理三个环节的高效循环,加快周转率降低损耗,保证高投入产出比,降低经营风险。
7、实时计划、实时报表、实时分析,系统内外部业务数据透明,管理决策更科学便捷。
智能农业信息化管控系统解决方案
智能农业信息化管控系统解决方案智能农业信息化管控系统解决方案,将通过应用无线传感器网络技术,使用大量的传感器节点构成监控和执行网络,通过各种传感器采集各种相关农业信息,以帮助人们及时发现问题、准确地确定发生问题的位置并及时远程处置。
这样农业将有可能逐渐地从以人力为中心、依赖于孤立机械的生产模式转向以信息和软件为中心的生产模式,从而大量使用各种自动化、智能化、远程控制的生产设备。
一、项目功能及目标在传统农业中。
人们获取农田信息的方式非常有限,主要手段是人工测量,获取过程需要消耗大量的人力物力。
同时传统农业中,大量农田设施的操作也多凭借经验、依靠人工完成,这样的方式不但操作不便,而且无法实现大规模地、准确地、标准化地操作。
本项目将通过应用无线传感器网络技术,使用大量的传感器节点构成监控和执行网络,通过各种传感器采集各种相关农业信息,以帮助人们及时发现问题、准确地确定发生问题的位置并及时远程处置。
这样农业将有可能逐渐地从以人力为中心、依赖于孤立机械的生产模式转向以信息和软件为中心的生产模式,从而大量使用各种自动化、智能化、远程控制的生产设备。
具体地,本项目将针对一定区域农田监控及管理的应用,通过ZigBee、wifi等无线传感器网络技术,将大量的无线传感器节点构成大型监控和执行网络,通过各种传感器采集诸如温度、空气湿度、光照度、土壤湿度、pH值等相关农业信息,以帮助管理人员及时发现问题并确定发生问题的位置,并通过无线节点控制执行机构远程完成相应的农田管理功能。
此外,本系统还具有实时视频采集、传输的功能,能根据管理人员需要在远程随时查看农田现场视频信息,以获得直观、准确的现场情况。
本项目采用标准化、模块化、可裁剪的思想进行研发,研发的技术和产品可用于农田、温室、苗圃等的远程监控和管理,并在数据采集和自动远程控制上具有很好的适用性和推广性。
二、系统构成该系统主要由无线传感网络、监控中心、农业环境调控设备网组成:无线传感网络:该网主要由土壤水分自动检测仪、温湿度传感器、光照度传感器、CO2浓度传感器、土壤养分分析仪等多种传感器及音视频设备组成,主要对作物生长所需的综合环境的数据信息进行采集。
智慧农场解决方案
智慧农场解决方案第1篇智慧农场解决方案一、项目背景随着现代农业的快速发展,农业生产效率与品质成为关键竞争因素。
为提高农业生产水平,降低人力成本,引入智能化技术与设备成为必然趋势。
智慧农场解决方案旨在运用现代信息技术、物联网、大数据分析等手段,实现农业生产自动化、智能化,提高农场经济效益。
二、项目目标1. 提高农业生产效率,降低人力成本。
2. 提升农产品品质,增加市场竞争力。
3. 实现农业生产环境实时监控,为决策提供数据支持。
4. 促进农业可持续发展,降低对环境的影响。
三、解决方案(一)智能化基础设施1. 传感器部署:在农田、温室等生产环境中部署温湿度、光照、土壤湿度等传感器,实时监测农业生产环境。
2. 自动控制系统:根据传感器数据,自动调整灌溉、施肥、通风等设备,确保农业生产环境稳定。
3. 视频监控系统:安装高清摄像头,实时监控作物生长状况,为农业生产提供直观依据。
(二)数据采集与分析1. 数据采集:通过传感器、摄像头等设备,实时收集农业生产数据。
2. 数据传输:利用物联网技术,将采集到的数据传输至云端服务器。
3. 数据分析:运用大数据分析技术,对农业生产数据进行深入挖掘,为决策提供依据。
(三)农业生产管理1. 农业生产计划:根据作物生长周期和市场需求,制定合理的农业生产计划。
2. 农业生产指导:结合数据分析结果,为农业生产提供科学指导。
3. 农业生产记录:详细记录农业生产过程,为质量追溯和持续改进提供数据支持。
(四)农产品质量追溯1. 建立农产品质量追溯体系:从种子、肥料、农药等投入品采购、使用到农产品销售,实现全程监控。
2. 追溯信息查询:为消费者提供便捷的追溯信息查询服务,提高消费者信任度。
(五)农业金融服务1. 农业保险:引入农业保险机制,降低农业生产风险。
2. 农业信贷:为农业生产提供金融支持,助力农业发展。
四、实施步骤1. 调研与规划:深入了解农场现状,制定智慧农场建设规划。
2. 设备采购与部署:根据规划,采购相关设备并进行部署。
智慧农业的解决方案及市场走向
智慧农业的解决方案及市场走向智慧农业是指利用现代科技手段改进传统农业的生产方式,提高农业生产效能、优化资源配置,以实现可持续农业发展的一种现代农业经营模式。
随着信息技术、传感技术和人工智能的不断发展,智慧农业成为未来农业发展的重要方向。
本文将探讨智慧农业的解决方案及市场走向。
一、智慧农业解决方案1、农业管理信息系统农业管理信息系统是智慧农业的基础设施,它可以实现从数据采集、存储、分析到决策执行的全过程,帮助农民实现更高效、可持续的农业生产。
2、传感器技术对于种植业来说,传感器技术可以实时监测土壤温度、湿度、光照强度等因素,并通过农业管理信息系统进行分析,精准地调节灌溉、施肥和病虫害等问题,从而提高农作物产量和品质。
而对于养殖业来说,传感器技术可以监测饲料、水质、空气温度等因素,更好地管理动物健康状况。
3、机器人技术机器人技术在智慧农业中应用广泛。
比如自动化播种、喷洒、收割等作业,人工智能技术可以实现精准作业,减少浪费和损失。
4、无人机技术无人机技术可以完成植保、测绘、物流等工作。
同时,无人机还可以采集农田数据,比如监测农作物生长情况、土壤质量等参数,帮助农民更好地决策。
5、区块链技术区块链技术可以为智慧农业提供安全、透明的流通环境。
通过区块链,消费者可以追溯到食品的生产、流通和销售过程,提高了食品安全性和交易可信度。
二、智慧农业市场走向当前,全球智慧农业市场规模逐年增加,预计到2025年市场规模将达到1700亿美元。
在国内,智慧农业发展已被列入“十三五”规划,政府出台多项政策支持农业信息化、农业科技人才培育和市场开拓等。
随着智慧农业的科技手段越来越成熟,智慧农业的市场前景也越来越广阔。
未来,随着人工智能、大数据、5G等技术的发展,智慧农业的广度和深度将会更大,而且可能涉及到更多的农业领域。
同时,为了更好地推进智慧农业的发展,需要推广现代农业技术,加强人才培养,完善现代化农业基础设施,加强合作共赢。
智慧农业信息系统建设方案
智慧农业信息系统建设方案智慧农业信息系统是指利用信息技术,以数据为核心,整合农业生产、管理、销售等各个环节,实现农业智能化、信息化、精准化和高效化,提供智能化农业服务的系统,是农业生产转型升级的重要手段。
本文将介绍智慧农业信息系统建设方案。
一、需求分析1. 提高农业生产效率:智慧农业信息系统的建设旨在提高农业生产效率,包括农作物生产、畜牧业养殖、渔业养殖等各个方面。
2. 精准施肥:通过智慧农业信息系统,对土地进行土壤分析,结合气象数据、施肥规律等得出精准施肥方案,提高作物生长效益。
3. 智能配种:对畜禽进行DNA检测,结合数据分析得出最佳配种方案,提高畜禽繁殖效益。
4. 预警预测:通过数据分析和信息互通,系统能在生产、销售和管理等各个环节提供实时预警和预测,对农业生产各环节进行管控,提高作物和动物养殖的受灾能力和物种适应力。
二、核心模块1. 生产管理模块该模块主要包括土地、肥料、水源、作物、农药等农业生产管理数据的收集、处理和展示。
2. 养殖管理模块该模块主要包括畜禽、水产等养殖管理数据的收集、处理和展示。
3. 销售管理模块该模块主要包括销售数据的收集、处理和展示。
可以实现农产品交易、供需平台、物流配送管理等农产品销售的全流程管理。
4. 数据分析模块该模块是整个系统的核心,主要通过数据采集和处理,运用人工智能和机器学习等技术对农业生产全流程进行分析和预测,提供科学决策支持。
三、系统实施1. 系统联网和数据统一存储:在系统实施前,需要按照需求和模块进行系统分析和设计,并将各模块的数据采集、处理和展示进行统一设计。
统一对接农业信息平台,实现农业数据网络化和系统整合,保证数据的正确性和完整性。
2. 统一编制运维规范:根据不同区域、不同农业特点和不同作物周期等因素,制定系统的维护和运营规范,保证系统有效运行并持续改进。
3. 人员培训:培训管理员、值班人员和用户的操作和使用技能,确保系统的正常运行和数据流通。
智慧农业——农业物联网监控系统解决方案
智慧农业——农业物联网监控系统解决方案智慧农业(Smart Agriculture)是运用物联网技术、大数据分析等新兴技术手段,实现农业生产全流程的智能化和自动化管理的一种农业生产新模式。
农业监控系统作为智慧农业中的关键组成部分,可以实时监测和控制农作物、土壤、气候等环境信息,提供精确的农业生产管理指导,提高农业生产效率和质量。
农业物联网监控系统解决方案主要包括以下几个方面:1.传感器感知及数据采集:通过搭建物联网传感器网络,实时获取农田的土壤湿度、温度、光照等环境参数信息,同时还可采集气象数据、作物生长状况等关键参数信息。
这些传感器可以部署在农田各个方位和不同深度,以形成全面的监测网络,并将采集到的数据上传到云平台进行处理和分析。
2.云平台数据处理与分析:将传感器采集到的数据传输到云平台,通过大数据分析和机器学习算法对数据进行分析和处理,并实时生成预测模型和决策支持系统。
通过分析土壤湿度、温度、作物生长状况、气象数据等多个指标,可以及时发现和预防病虫害等问题,并根据实际情况调整灌溉、施肥等农业生产措施。
3.农业控制与自动化:根据云平台的分析结果和农田的实际情况,对农业生产环境进行监控和控制。
通过智能灌溉系统、智能喷洒系统、智能温室控制系统等,可以自动控制灌溉、施肥、喷洒等农业生产活动,提高转产效率,降低劳动成本。
4.移动终端与用户界面:通过移动终端设备,用户可以实时接收和查看农田环境信息、作物生长状况、病虫害预警等信息。
同时,用户还可以在移动终端上设置相关参数,如灌溉策略、施肥计划等,实现远程控制农业设备的功能。
5.数据安全与隐私保护:在智慧农业物联网监控系统中,涉及到大量的农田环境信息、农业生产数据等重要信息,必须确保数据的安全和隐私保护。
采用数据加密、身份认证、权限控制等技术手段,保证数据传输的安全性;同时,加强系统的防火墙设置、访问控制等,防止非法入侵和数据泄露。
智慧农业物联网监控系统解决方案的实施,可以大大提高农业的生产效率和质量,降低资源浪费,减少人工成本。
智慧农业的解决方案
智慧农业的解决方案智慧农业是指将现代科技与农业相结合,利用各种信息技术和智能设备提高农业生产效率、质量和可持续发展能力的一种农业发展模式。
随着科技的发展和人类对农业生产效率和质量的不断追求,智慧农业正逐渐成为农业领域的热门话题。
今天,我们将介绍一些智慧农业的解决方案。
一、智能传感技术智慧农业的关键之一是通过智能传感技术实时监测农田环境和植物生长情况。
智能传感器可以测量土壤的湿度、温度和养分含量等关键指标,帮助农民科学调控农田灌溉和施肥,提高作物产量和质量。
此外,智能传感器还可以监测气象因素、病虫害情况等,及时预警和阻止疫病的蔓延,减少农业损失。
二、无人机技术无人机技术在智慧农业中的应用正在日益增多。
无人机可以从空中进行高分辨率的遥感图像和视频采集,提供农田的详细信息。
这些数据可以用于制定精确的农业管理计划,例如精确施肥、病虫害监测等。
同时,无人机可以快速地覆盖大面积的农田,大大提高农业巡查和监控的效率。
三、大数据分析智慧农业需要处理大量的农业数据,包括气象数据、土壤数据、作物生长数据等。
通过大数据分析技术,可以将这些数据进行整合和分析,提取有价值的信息。
利用大数据分析,农民可以更好地了解作物的需求和生长状况,及时采取措施,提高农作物的产量和质量。
同时,大数据分析还可以帮助农民预测市场需求,合理安排农产品生产和销售,提升农业经济效益。
四、物联网技术物联网技术是实现智慧农业的关键基础设施。
通过连接农田中的各种传感器和设备,物联网技术可以实现实时数据的收集、传输和分析。
例如,农田中的温湿度传感器、水位传感器等可以实时监测农田的环境变化;智能灌溉系统可以根据土壤湿度自动进行灌溉;智能风机可以根据温度和湿度自动调节风量。
通过物联网技术的应用,农民可以实现对农田的远程监控和控制,提高生产效率和资源利用效率。
总结:智慧农业的解决方案涵盖了智能传感技术、无人机技术、大数据分析和物联网技术等多个方面。
这些解决方案的应用可以提高农业生产效率和质量,减少资源浪费,实现可持续发展。
农业信息化项目解决方案1
农业信息化解决方案1.农业信息化建设中的定位•以农业信息服务为中心;•以农业行政主管部门为依托;•建立健全信息需求调研、信息采集、信息处理、信息发布等有机联系的信息流转系统;•为促进农业和农村经济的战略性结构调整、增加农产品有效供给和增加农民收入提供强有力的信息支持。
2.农业信息化解决方案农业信息化系统工程建设的目标是:建设各地(州、市)农业局局域网并实现与省农业厅信息网络系统和地方各级政府部门的网络互联,围绕本地的优势产业和优势资源,实现农业系统高效、便捷、畅通的数据及信息传输,农业系统信息资源实现最大程度的共享。
建立一个基于Internet的信息发布平台——外部,实现行政机关办公自动化、信息化、传输网络化和管理科学化。
推动农业系统的战略目标的实现以及经济发展。
•农业信息化解决方案总体框图如下:•三网一库结构•部办公业务网---农业主管部门网应用结构图•办公业务专网----专网数据交换平台结构•农业公众信息网----农业信息网结构•农业信息资源数据库结构2.1 计算机网络集成方案2.1.1 系统设计原则:◇坚持实用性与技术先进性相结合的原则,充分满足当前及将来一段时间各种服务的需求。
坚持开放性、兼容性和可互连性;◇坚持高可靠性,便于进行管理和维护;◇采用容错设计,尽可能少地中断系统服务;◇充分利用现有网络,利于网络扩展和技术升级,为将来系统的扩充留有充分的余地;◇实现系统统一性;◇系统采用统一规划、可集中或分步实施的原则设计,在今后网络升级、扩充时避免出现设备的淘汰等浪费现象,充分保护投资的回报。
2.1.2 网络设计的技术规根据客户需求和资金安排,公司按技术规在网络设计上可以做到:•网络设计采用千兆以太网和快速以大网技术,具备开放性、先进性、可扩充性、可靠性及实用性。
采用符合国际标准的结构化综合布线技术及产品,中心系统主干达到1000M的速率的能力,局域网实现100M交换,100/10M自适应到桌面;•网络中心具有网络管理的功能、INTERNET网接入功能。
智慧农业信息化整体解决方案
利用大数据和人工智能技术,精准分析土壤、气候等条 件,制定科学的种植计划,提高产量和品质。
03 自动化作业
引入自动化设备和技术,减轻农民的劳动强度,提高作 业效率和准确性。
提升农业管理水平
01 智慧农业信息化整体解决方案
通过智慧农业信息化整体解决方案,农业管理水平得到全面提升,实现精细化、智能化管理。
方案内容
方案目标
通过智慧农业信息化整体 解决方案,实现农业生产 智能化、高效化、可持续 化发展。
方案实施
方案包括农业物联网、大 数据、云计算等技术的应 用,实现农业生产全过程 的信息采集、分析和控制。
方案优势
方案能够提高农业生产效 率,降低生产成本,提升 农产品品质和安全性,促 进农业可持续发展。
2
3
应用场景
物联网技术应用于农业生产的各个环节, 如种植、养殖、灌溉、施肥等,提高生 产效率,降低成本,增加收益。
未来发展
随着物联网技术的不断发展和完善,智 慧农业信息化整体解决方案将更加成熟 和普及,为农业生产带来更多的创新和 变革。
03
应用场景
农业资源管理
通过信息化技术,实现土地资源的精准管 理,包括土地规划、利用、监测和保护等。
02 方案优势
该方案具备多种优势,如提高生产效率、降低成本、优化资源配置等,可有效提升农业管理水平。
03 技术应用
通过先进技术的应用,实现智能化监测、预测和决策,进一步提升了农业管理水平。
促进农业可持续发展
提高生产效率
智慧农业信息化整体解决方案通过智能化管理,提 高农业生产效率,降低成本。
改善生态环境
利用信息化手段,对农业用水进行科学管 理和优化配置,提高水资源的利用效率和 效益。
农业现代化智能种植数字化管理系统开发方案
农业现代化智能种植数字化管理系统开发方案第1章项目概述 (4)1.1 项目背景 (4)1.2 项目目标 (4)1.3 项目意义 (4)第2章市场需求分析 (5)2.1 农业现代化现状 (5)2.2 智能种植市场需求 (5)2.3 竞争对手分析 (5)第3章系统功能规划 (6)3.1 基本功能需求 (6)3.1.1 农业数据采集与管理 (6)3.1.2 智能决策支持 (6)3.1.3 设备控制与自动化 (6)3.1.4 农业电子商务 (6)3.2 高级功能需求 (6)3.2.1 人工智能与机器学习 (6)3.2.2 大数据分析与云计算 (7)3.2.3 物联网与传感器技术 (7)3.3 系统扩展性 (7)3.3.1 技术升级与兼容性 (7)3.3.2 业务拓展与定制化 (7)第4章技术路线及架构设计 (7)4.1 技术选型 (7)4.1.1 数据采集与传输技术 (7)4.1.2 大数据分析技术 (7)4.1.3 云计算技术 (7)4.1.4 人工智能技术 (8)4.1.5 Web GIS技术 (8)4.2 系统架构设计 (8)4.2.1 数据采集层 (8)4.2.2 数据传输层 (8)4.2.3 数据处理层 (8)4.2.4 应用服务层 (8)4.2.5 用户界面层 (8)4.3 关键技术分析 (8)4.3.1 物联网技术 (8)4.3.2 大数据分析技术 (8)4.3.3 人工智能技术 (8)4.3.4 Web GIS技术 (9)第5章数据采集与处理 (9)5.1 数据采集方案 (9)5.1.1 采集目标 (9)5.1.2 采集设备 (9)5.1.3 采集频率 (9)5.2 数据处理与分析 (9)5.2.1 数据预处理 (9)5.2.2 数据分析 (10)5.3 数据存储与管理 (10)5.3.1 数据存储 (10)5.3.2 数据管理 (10)5.3.3 数据接口 (10)第6章智能种植决策支持系统 (10)6.1 决策模型构建 (10)6.1.1 数据收集与处理 (10)6.1.2 决策模型设计 (10)6.1.3 模型验证与优化 (11)6.2 智能算法应用 (11)6.2.1 机器学习算法 (11)6.2.2 深度学习算法 (11)6.2.3 强化学习算法 (11)6.3 决策支持系统实现 (11)6.3.1 系统架构设计 (11)6.3.2 系统功能实现 (11)6.3.3 系统测试与优化 (11)第7章系统集成与测试 (12)7.1 系统集成方案 (12)7.1.1 系统集成概述 (12)7.1.2 硬件集成 (12)7.1.3 软件集成 (12)7.1.4 数据接口集成 (12)7.2 系统测试策略 (12)7.2.1 测试概述 (12)7.2.2 测试范围 (12)7.2.3 测试方法 (13)7.2.4 测试工具 (13)7.3 测试结果分析 (13)7.3.1 功能测试分析 (13)7.3.2 功能测试分析 (13)7.3.3 兼容性测试分析 (13)7.3.4 安全测试分析 (13)7.3.5 稳定性测试分析 (13)第8章用户界面设计 (13)8.1.1 直观性原则 (13)8.1.2 一致性原则 (14)8.1.3 易用性原则 (14)8.1.4 灵活性原则 (14)8.1.5 容错性原则 (14)8.2 系统界面布局 (14)8.2.1 导航栏 (14)8.2.2 工作区 (14)8.2.3 边栏 (14)8.2.4 底部栏 (14)8.3 用户体验优化 (14)8.3.1 界面交互优化 (14)8.3.2 数据展示优化 (14)8.3.3 功能模块设计优化 (15)8.3.4 用户个性化设置 (15)8.3.5 帮助与支持 (15)第9章系统安全与稳定性保障 (15)9.1 系统安全策略 (15)9.1.1 认证与授权 (15)9.1.2 数据加密 (15)9.1.3 防火墙与入侵检测 (15)9.2 数据安全保护 (15)9.2.1 数据备份与恢复 (15)9.2.2 数据完整性校验 (16)9.2.3 数据隐私保护 (16)9.3 系统稳定性分析 (16)9.3.1 系统架构稳定性 (16)9.3.2 负载均衡 (16)9.3.3 系统监控与预警 (16)9.3.4 系统优化与升级 (16)第10章项目实施与推广 (16)10.1 项目实施计划 (16)10.1.1 实施目标 (16)10.1.2 实施步骤 (16)10.1.3 实施时间表 (17)10.2 技术培训与支持 (17)10.2.1 培训内容 (17)10.2.2 培训方式 (17)10.2.3 技术支持 (17)10.3 项目评估与推广策略 (17)10.3.1 项目评估 (17)10.3.2 推广策略 (17)第1章项目概述1.1 项目背景全球经济一体化的发展,我国农业正处于由传统农业向现代农业转型的关键阶段。
农业智能种植园区智能化管理系统实施方案
农业智能种植园区智能化管理系统实施方案第一章综述 (2)1.1 项目背景 (2)1.2 项目目标 (3)1.3 实施原则 (3)第二章系统架构设计 (3)2.1 系统框架 (3)2.2 硬件设施布局 (4)2.3 软件架构设计 (4)第三章数据采集与处理 (5)3.1 数据采集设备 (5)3.2 数据传输方式 (5)3.3 数据处理与分析 (6)第四章智能监测与控制 (6)4.1 环境监测 (6)4.2 设备控制 (7)4.3 异常报警与处理 (7)第五章作物生长管理 (7)5.1 作物生长模型 (7)5.2 肥水管理 (8)5.3 病虫害防治 (8)第六章人力资源与培训 (8)6.1 人员配置 (8)6.1.1 管理团队 (9)6.1.2 技术人员 (9)6.1.3 运营人员 (9)6.2 培训计划 (9)6.2.1 新员工培训 (9)6.2.2 在职员工培训 (9)6.3 人员考核与激励 (10)6.3.1 考核体系 (10)6.3.2 激励措施 (10)第七章安全生产与环境保护 (10)7.1 安全生产管理 (10)7.1.1 安全生产目标 (10)7.1.2 安全生产制度 (10)7.1.3 安全生产措施 (10)7.2 环境保护措施 (11)7.2.1 环保政策与法规 (11)7.2.2 环保设施与技术 (11)7.2.3 环保管理 (11)7.3 应急预案 (11)7.3.1 应急预案编制 (11)7.3.2 应急预案演练 (11)7.3.3 应急处置与救援 (11)第八章信息管理与决策支持 (11)8.1 信息管理体系 (11)8.1.1 建立目标 (12)8.1.2 体系架构 (12)8.1.3 体系实施 (12)8.2 决策支持系统 (12)8.2.1 建立目标 (12)8.2.2 系统架构 (12)8.2.3 系统实施 (13)8.3 信息资源共享 (13)8.3.1 建立目标 (13)8.3.2 实施措施 (13)第九章项目实施与进度管理 (13)9.1 项目实施计划 (13)9.2 进度监控与调整 (14)9.3 项目验收与评估 (14)第十章持续优化与升级 (14)10.1 系统优化策略 (14)10.1.1 数据分析优化 (14)10.1.2 系统模块优化 (15)10.1.3 系统功能优化 (15)10.2 技术更新与升级 (15)10.2.1 硬件设备更新 (15)10.2.2 软件系统升级 (15)10.2.3 人工智能技术应用 (15)10.3 持续改进与反馈 (15)10.3.1 用户反馈收集 (15)10.3.2 内部审计与评估 (15)10.3.3 培训与指导 (15)10.3.4 合作与交流 (16)第一章综述1.1 项目背景我国农业现代化进程的推进,智能化管理成为农业产业升级的重要方向。
智慧农业综合管理系统建设方案
物联网技术:实现农业生产全过程的智能化管理 大数据技术:对农业生产数据进行实时分析,为决策提供支持 人工智能技术:提升农业生产的效率和品质,降低成本 5G通信技术:实现快速、高效的农业信息传递与处理
农业数字化:利用大数据、物联网等技术提高农业生产效率 农业智能化:实现自动化、远程控制等,提高生产精准度 农业绿色化:推广环保农业、有机农业等,保障食品安全 农业融合发展:促进一二三产业融合,提升农业附加值
优化资源配置, 降低生产成本
提高农业工作效率 降低农业投入成本 提升农产品品质和产量 增强农业抗风险能力
调研和立项:对农业需求进行 调研,明确建设目标,制定项 目计划
系统设计和开发:设计系统架 构,开发软件和硬件
测试和修改:对系统进行测试, 发现并修改问题
上线和运行:将系统上线运行, 并进行监控和维护
促进农业现代化
提高农业生产效 率
降低农业资源消 耗
改善农业生态环 境
系统涉及的领域:农业信息 化、农业物联网、农业大数 据等
系统涉及的内容:智能监控、 精准种植、智能管理、智能 决策等
架构设计:采用 分层设计思想, 分为数据采集层、 数据处理层和应 用层
数据采集层:通 过各种传感器、 摄像头等设备采 集数据,实现数 据采集功能
实现农产品溯源 监控农产品生产全过程 提高农产品质量安全水平 保障消费者权益
收集并整合农业市场信息 分析农业市场趋势和价格预测 提供实时数据和信息,帮助农民做出更好的决策 促进农业市场的透明度和公平性,提高农业价值链的效率
自动化程度高, 节省人力成本
智能化管理,提 高生产效率
实时监控,确保 农产品质量安全
数据处理层:对 采集到的数据进 行处理,包括数 据清洗、数据分 析等,实现数据 挖掘和智能化管 理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能农业信息化管控系统解决方案
智能农业信息化管控系统解决方案,将通过应用无线传感器网络技术,使用大量的传感器节点构成监控和执行网络,通过各种传感器采集各种相关农业信息,以帮助人们及时发现问题、准确地确定发生问题的位置并及时远程处置。
这样农业将有可能逐渐地从以人力为中心、依赖于孤立机械的生产模式转向以信息和软件为中心的生产模式,从而大量使用各种自动化、智能化、远程控制的生产设备。
一、项目功能及目标
在传统农业中。
人们获取农田信息的方式非常有限,主要手段是人工测量,获取过程需要消耗大量的人力物力。
同时传统农业中,大量农田设施的操作也多凭借经验、依靠人工完成,这样的方式不但操作不便,而且无法实现大规模地、准确地、标准化地操作。
本项目将通过应用无线传感器网络技术,使用大量的传感器节点构成监控和执行网络,通过各种传感器采集各种相关农业信息,以帮助人们及时发现问题、准确地确定发生问题的位置并及时远程处置。
这样农业将有可能逐渐地从以人力为中心、依赖于孤立机械的生产模式转向以信息和软件为中心的生产模式,从而大量使用各种自动化、智能化、远程控制的生产设备。
具体地,本项目将针对一定区域农田监控及管理的应用,通过ZigBee、wifi 等无线传感器网络技术,将大量的无线传感器节点构成大型监控和执行网络,通过各种传感器采集诸如温度、空气湿度、光照度、土壤湿度、pH值等相关农业信息,以帮助管理人员及时发现问题并确定发生问题的位置,并通过无线节点控制执行机构远程完成相应的农田管理功能。
此外,本系统还具有实时视频采集、传输的功能,能根据管理人员需要在远程随时查看农田现场视频信息,以获得直观、准确的现场情况。
本项目采用标准化、模块化、可裁剪的思想进行研发,研发的技术和产品可用于农田、温室、苗圃等的远程监控和管理,并在数据采集和自动远程控制上具有很好的适用性和推广性。
二、系统构成
该系统主要由无线传感网络、监控中心、农业环境调控设备网组成:
无线传感网络:该网主要由土壤水分自动检测仪、温湿度传感器、光照度传感器、CO2浓度传感器、土壤养分分析仪等多种传感器及音视频设备组成,主要对作物生长所需的综合环境的数据信息进行采集。
示系统网络结构图
无线传感器网络是系统的基础,传感器网络采用无线组网技术。
其中协调器充当某块农田区域现场总控制器,管理该区域的无线网络,负责区域网络的建立和维护,接收区域传感器数据以及设备状态等信息,同时发送控制命令,管理区域的执行机构。
协调器还具有路由功能,负责转发其他区域协调器发往网关的数据信息。
传感器网络中的终端设备包括无线传感器节点和无线执行器控制节点,它们分别负责采集、发送传感器数据并发送给本区域网络协调器并接收来自协调器的控制命令驱动控制本节点执行机构完成控制任务。
多协议网关作为本地无线
传感器网络的汇聚节点,将来自各区域协调器的传感数据信息汇总并通过Ethernet或串口或USB口上传至本地控制中心计算机。
监控中心:本地监控中心是一台集成专家系统的管理计算机(工控机),它通过远程传输网络(可以是Internet或GPRS或3G等公共固定或移动网络)将数据传送到远程服务器。
本地控制中心还可以给用户提供数据管理、专家咨询和辅助决策等高级处理功能。
远程用户则可通过Internet远程访问本地控制中心,了解温室群的相关情况。
在视频监控网络中,带有无线传输功能的摄像头将采集到的实时视频数据通过星形的WIFI网络传输至多协议网关,再由网关上传至本地控制主机,实现视频监控功能。
远程主机同样可以通过网络访问获得实时视频数据。
监控软件是监控中心的核心组成部分,可实现如下功能:
1、界面友好,操作方便;
2、实现对相关环境检测数据的存储;
3、实现对相关环境检测数据的历史查询;
4、实时显示检测参数的曲线图;
5、实现Internet远程查看、传递数据及显示检测参数;
6、对采集的数据进行专家分析,并根据分析判断结果发送控制命令。
农业环境调控设备网:该网主要实现监控中心根据数据分析的结果对设备进行智能控制,其主要由调节土壤含水量、空气湿度、光照度、CO2浓度、土壤养分的相关设备组成,如自动灌溉装置、水帘装置、通风机、光帘装置、自动加肥器等。
该系统网络结构示意图如下:
1、传感器节点在采集传感器数据的同时通过无线或者有线的通信网络将数据传输到物联网网关。
2、物联网网关可根据实际情况选择有线或者无线的方式连接监控中心,监控中心将汇总数据进行处理.
3、监控中心将根据处理信息传输给interent网或者根据需要控制调控设备。
三、系统功能
该系统主要实现的是对精准农业的智能感知和控制功能,其主要功能就是通过传感网络采集农业信息数据并对采集到的数据进行分析处理,根据处理后的结果由系统的智能控制器对其调控设备进行智能控制,该系统除主要功能外还需具备演示功能,以满足农业示中特殊环境的演示以满足该项目的示演示作用。
1、智能控制功能
精准农业控制系统框架图
(1)温度控制模块
降温功能:夏季采用自然和强制通风降温的方式进行降温。
由控制器根据目标温度与实际室温的偏差以及室温的变化率进行模糊计算。
首先开启顶开窗系统进行自然通风调整温室的温度,经过时间判断后,如果温度值还不能降低,再开启侧窗系统。
如自然通风不能降低温室的温度值,则由电脑关闭自然通风,采用强制通风的方式来控制室温度。
如果温度还下不来,则开启湿帘水泵,如温度还降不下来,则计算机会开启温度过高报警,提示用户需增加降温设备。
自动升温功能:冬季采用暖气加温的方式,由控制器根据目标温度与实际室温的偏差以及室温的变化率进行模糊计算,通过调节暖气恒温阀的开合度来控制室温度。
温度控制围及精度分别为 20-30℃,±1℃。
(2)通风控制模块
由室传感器采集室部的上,中,下三部温度值来进行模糊计算出室的温差值,如果温差值过大,则自动开启循环风机。
同时采集室的湿度值,如果湿度值偏差过大,也自动开启循环风机,以平衡室的湿度偏差值。
还可以根据二氧化碳浓度选择开启或者关闭循环风机。
新风换气机可由电脑操作人员通过控制进行人工操作,也可以进行定时通风来达到通风换气的目的。
(3)光照控制模块
遮光控制功能:在光照较高时,计算机通过室外气象站系统采集的高灵敏度光照值,与计算机设定的控制目标进行对比,如高于计算机设定目标值,则自动展开外拉幕,进行遮光。
如低于计算机设定目标值,则自动收拢外拉幕。
也可以由控制器定时进行遮阳,或者由工作人员通过控制器操作。
补光控制功能:计算机通过室数据采集器传回来的高灵敏度的光照值,与设定目标值进行对比,如高于设定目标值,则自动关闭补光灯。
如低于设定目标值,则自动打开补光灯。
同时,部有一个光照累积时间的设置值,如累积时间不够的话,则补光灯会在选定时间打开补光灯,进行补光。
可通过 30组定时器,来设置不同时间,开启补光灯,开多长时间。
(4)水分控制模块
自动控制:计算机部有一套根据土壤湿度传感器采集的值,与设定目标值进行对比,如高于设定目标值,则自动关闭灌溉阀门。
如低于设定目标值,则自动打开灌溉阀门。
定时控制:轮灌方式,可设定在某个时间段,进行灌溉的方式,可每个小时,灌溉一次,同时也可设定灌溉的次数。
有效的保护了水泵,同时也使土壤更好的吸收水分。
(5)湿度控制模块
自动控制:计算机部有一套根据室湿度传感器的值,与设定目标值进行对比,如高于设定目标值,则自动关闭喷雾阀门。
如低于设定目标值,则自动打开喷雾阀门,将其湿度调整到最佳状态。
定时控制:轮灌方式,可设定在某个时间段,进行喷灌的方式,可每个小时喷灌一次,同时也可设定喷灌的次数。
有效的保护了水泵,同时也使土壤更好的吸收水分。
(6)视频监控模块
该功能模块可用于探测农作物的生长情况,病虫害情况,并可以监管其他环境调控设备是否在正常执行命令等。
(7)其他控制模块
该系统设计了多个节点,以便随时可以添加所需的传感器和调控设备,从而完成多种功能融合。
说明:上面所有的控制过程都配有延时和稳定判断时间和动作稳定时间,以保证设备不频繁进行开启关闭动作。
更好的保护设备。
2、演示功能
演示设备包括降水演示、自然风演示、光强度演示等;
降水演示:由喷灌设备完成,在实验区配置带支架的喷嘴,模拟降雨,提供道面状况监测仪,土壤水分自动监测仪、雨量计、湿度传感器的演示;
自然风演示:配备小型高度可调移动设备架和小型鼓风机,模拟不同大小、方向的自然风;
光强度演示:利用小型高度可调移动设备架加遮光帘完成光照强度大小调节,供光照强度传感设备的演示。