ADCAD转换器基本应用专业技术

合集下载

AD转换器的主要技术指标

AD转换器的主要技术指标

AD转换器的主要技术指标AD转换器(Analog-to-Digital Converter)是将模拟信号转换成数字信号的电子器件,广泛应用于测量、通信、控制和信号处理等领域。

主要技术指标是指影响AD转换器性能的关键参数。

下面将介绍AD转换器的主要技术指标。

1. 位数(Resolution):位数是指转换结果的二进制位数,也可理解为ADC的精度。

位数越高,转换结果的精度越高。

常见的位数有8位、10位、12位、16位等。

常见的高精度应用需要12位以上的位数。

2. 采样率(Sampling Rate):采样率是指ADC在单位时间内完成采样的次数,常用单位为千赫兹(kHz)或兆赫兹(MHz)。

采样率决定了ADC对信号的处理能力,即ADC能够处理多快的信号。

高速应用需要高采样率的ADC。

3. 信噪比(Signal-to-Noise Ratio, SNR):信噪比表示转换后的数字信号与输入模拟信号之间的噪声水平差异。

信噪比越高,ADC的抗干扰能力越强,输出结果越准确。

4. 有效比特数(Effective Number of Bits, ENOB):有效比特数表示ADC输出二进制数据的有效位数,与信噪比有关。

一般来说,ENOB比位数小,这是由于ADC的非线性误差、噪声和失配等因素导致的。

5. 误差(Error):误差是指ADC转换结果与输入信号之间的差异。

常见的误差包括非线性误差、积分非线性误差、增益误差、失配误差等。

误差越小,ADC的准确度越高。

6. 电源电压(Supply Voltage):ADC的电源电压指使用电路所需的电源电压。

一般来说,工作电压越低,功耗越小,对系统电源需求越低。

7. 噪声(Noise):噪声是指ADC输出结果中包含的非期望信号。

噪声可由转换器内部电路、供电电压和输入信号引起。

噪声影响了ADC对小信号的测量准确性,因此较低的噪声水平对高精度测量至关重要。

8. 温度效应(Temperature Coefficient):温度效应衡量ADC对温度变化的敏感程度。

第8章DA与AD转换电路

第8章DA与AD转换电路

10 28
7
Di
i0
2i
当输入的数字量在全0和全1之间变化时,输出模拟电压的 变化范围为0~9.96V。
8.3 A/D转换器
一、A/D转换器的基本原理
四个步骤:采样、保持、量化、编码。
模拟电子开关S在采样脉冲CPS的控制下重复接通、断开 的过程。S接通时,ui(t)对C充电,为采样过程;S断开时,C
I0
VREF 8R
I1
VREF 4R
I2
VREF 2R
I3
VREF R
i I0d0 I1d1 I2d2 I3d3
VREF 8R
d0
VREF 4R
d1
VREF 2R
d2
VREF R
d3
VREF 23 R
(d3
23
d2
22
d1
21
d0
20)
uo
RFiF
R i 2
VREF 24
(d3 23
可推得n位倒T形权电流D/A转换器的输出电压
vO
VREF R1
Rf 2n
n1
Di
2i
i0
❖ 该电路特点为,基准电流仅与基准电压VREF和电 阻R1有关,而与BJT、R、2R电阻无关。这样,电 路降低了对BJT参数及R、2R取值的要求,对于集
成化十分有利。
❖ 由于在这种权电流D/A转换器中采用了高速电子 开关,电路还具有较高的转换速度。采用这种权 电流型D/A转换电路生产的单片集成D/A转换器有 AD1408、DAC0806、DAC0808等。这些器件都采用 双极型工艺制作,工作速度较高。
三、D/A转换器的主要技术指标
1.转换精度 D/A转换器的转换精度通常用分辨率和转换误差来描述。 (1)分辨率——D/A转换器模拟输出电压可能被分离的等级数。 N位D/A转换器的分辨率可表示为 1

AD转换

AD转换
007 006 005 004 003 002 001 000 数字输出 007 006 005 004 003 002 001 000 数字输出
模拟电压输入 1LSB
模拟电压输入 1/2LSB
5
3、偏移误差
偏移误差是指输入信号为零时,输出信号不为零的 值,所以有时又称为零值误差。假定ADC没有非线 性误差,则其转换特性曲线各阶梯中点的连线必定 是直线,这条直线与横轴相交点所对应的输入电压 值就是偏移误差。
积分器输出
VIN
时钟
T1 T T2
t
3
三、A/D转换器的主要技术指标 1、分辨率 ADC的分辨率是指使输出数字量变化一个 相邻数码所需输入模拟电压的变化量。常用 二进制的位数表示。例如12位ADC的分辨率 就是12位,或者说分辨率为满刻度FS的 1/2 1 2 。一个10V满刻度的12位ADC能分辨输 入电压变化最小值是10V×1/ 2 1 2 =2.4mV。
ADC_CONTR寄存器
ADC_RES、 ADC_RESL寄存器
ADC中断控制寄存器
ADC典型应用电路
电压基准源
ADC实现按键输入功能
10VIN 20VIN AG
CE STS
-5V~+5V -10V~+10V
23
采用双极性输入方式,可对±5V或±10V的模拟信号
进行转换。当AD574A与80C31单片机配置时,由于 AD574A输出12位数据,所以当单片机读取转换结果 时,应分两次进行:当A0=0时,读取高8位;当A 0=1时,读取低4位。
需三组电源:+5V、VCC(+12V~+15V)、
VEE(-12V~-15V)。由于转换精度高,所 提供电源必须有良好的稳定性,并进行充分滤波, 以防止高频噪声的干扰。 低功耗:典型功耗为390mW。

电路中的AD转换与DA转换

电路中的AD转换与DA转换

电路中的AD转换与DA转换在当今信息时代,电子设备已经渗透到我们生活的方方面面。

而这些电子设备的运作离不开AD转换(模数转换)和DA转换(数模转换)这两个关键环节。

本文将介绍AD转换和DA转换的原理、应用以及相关技术发展。

一、AD转换AD转换是模拟信号转换为数字信号的过程。

在电子设备中,传感器等设备输出的信号多为模拟信号,需要通过AD转换将其转换成数字信号,才能由电子器件进行处理和存储。

AD转换器通常由采样器、量化器和编码器组成。

采样器的作用是将模拟信号在一定的时间间隔内取样,量化器将取样的模拟信号分成有限个离散值进行量化,编码器将量化后的离散值转换成二进制数字信号。

通过这一过程,AD转换器能够将连续变化的模拟信号转换为离散的数字信号。

AD转换器广泛应用于各个领域,如音频、视频、电力系统等。

在音频领域,AD转换器用于将声音等模拟信号转换为数字信号,实现录音、播放等功能。

在电力系统中,AD转换器用于电能计量、监测等方面。

二、DA转换DA转换是数字信号转换为模拟信号的过程。

数字信号由计算机或其他数字系统处理和存储,而大部分外围设备如音箱、显示器等则需要模拟信号进行驱动。

DA转换器通常由数字信号输入端和模拟输出端组成。

数字信号输入端接收来自计算机或其他数字系统的数字信号,将数字信号按照一定的波形进行放大、滤波等处理后,经过模拟输出端输出为模拟信号。

这样,数字系统生成的数字信号便可以控制外围设备的模拟输出。

DA转换器广泛应用于音频设备、显示设备等领域。

在音频设备中,DA转换器用于将计算机中存储的音频文件转换为模拟信号,通过音箱输出高质量的音乐。

在显示设备中,DA转换器则将计算机生成的数字图像信号转换为模拟信号,驱动显示器显示各种图像。

三、技术发展随着科技的不断进步,AD转换与DA转换技术也得到了快速的发展与创新。

目前,高速、高精度、低功耗、小型化是AD转换与DA转换技术的发展方向。

在AD转换技术方面,新型的Delta-Sigma调制技术、超大规模集成电路技术等被广泛应用,提高了AD转换器的精度和信噪比。

AD转换器主要技术指标

AD转换器主要技术指标

AD转换器主要技术指标AD转换器(Analog-to-Digital Converter,简称ADC)是将模拟信号转换为数字信号的电子器件或电路。

在许多应用领域中,如通信、控制系统、嵌入式电子系统等,AD转换器起着关键的作用。

下面将详细介绍AD转换器的主要技术指标,包括分辨率、采样率、动态范围、非线性和信噪比等。

1. 分辨率(Resolution):分辨率是指ADC能够分辨的电压或电流变化的能力。

它通常以比特(Bit)来表示,用于衡量数字输出和输入之间的差异。

具有更高分辨率的AD转换器可以精确地采样和表示输入信号的细微变化。

2. 采样率(Sampling Rate):采样率是指AD转换器每秒钟可以进行的采样次数。

它通常以赫兹(Hz)来表示,用于衡量AD转换器对模拟信号的抽样频率。

较高的采样率可以准确地重构输入信号,并捕捉到高频成分和快速变化的信号。

3. 动态范围(Dynamic Range):4. 非线性(Nonlinearity):非线性是指AD转换器输出与输入之间的非线性关系。

这种非线性关系可能导致一些失真,如谐波失真或由非线性转换引起的非线性误差。

AD 转换器的非线性通常通过非线性度(Linearity)参数来表示,其中最常用的是完美度(Differential Nonlinearity,DNL)和积分非线性度(Integral Nonlinearity,INL)。

5. 信噪比(Signal-to-Noise Ratio,SNR):信噪比是指AD转换器输出信号与输入信号之间的比率。

它用于衡量AD转换器对信号的测量准确性和抗干扰性能。

较高的信噪比表示AD转换器输出的数字信号较少受到噪声的影响,从而提高了信号的可靠性和准确性。

除了以上主要技术指标之外,还有一些其他的重要参数需要考虑,如功耗、工作电压、接口类型等。

这些参数根据具体应用的要求来选择,以满足系统的需求和性能要求。

总之,AD转换器的主要技术指标包括分辨率、采样率、动态范围、非线性和信噪比等。

ad转换课程设计

ad转换课程设计

a d转换课程设计一、课程目标知识目标:1. 学生能够理解AD转换的基本概念,掌握其工作原理和转换过程。

2. 学生能够掌握AD转换器的类型、性能指标及其在电子系统中的应用。

3. 学生能够运用AD转换知识解决实际问题,如传感器信号采集等。

技能目标:1. 学生能够运用所学知识,设计简单的AD转换电路,并进行调试。

2. 学生能够运用AD转换软件进行数据采集、处理和分析,提高实践操作能力。

3. 学生能够通过课程学习,培养解决实际电子工程问题的能力。

情感态度价值观目标:1. 学生通过学习AD转换,培养对电子技术的兴趣,提高学习积极性。

2. 学生在学习过程中,培养团队合作意识,学会分享和交流。

3. 学生能够认识到AD转换技术在现实生活中的重要性,增强科技改变生活的意识。

课程性质:本课程为电子技术基础课程,以理论教学与实践操作相结合的方式进行。

学生特点:学生处于高中阶段,具备一定的电子技术基础,对新鲜事物充满好奇,动手实践能力较强。

教学要求:结合学生特点和课程性质,注重理论与实践相结合,提高学生的实际操作能力和解决问题的能力。

通过课程目标分解,确保学生在知识、技能和情感态度价值观方面取得具体的学习成果。

二、教学内容1. AD转换基本概念:包括模拟信号与数字信号的转换关系,AD转换的作用及其在电子系统中的应用。

教材章节:第一章第二节内容:模拟信号、数字信号、AD转换原理。

2. AD转换器类型及性能指标:介绍不同类型的AD转换器,如逐次逼近型、积分型等,以及其主要性能指标,如分辨率、转换精度等。

教材章节:第二章内容:AD转换器类型、工作原理、性能指标。

3. AD转换电路设计及调试:学习AD转换电路的设计方法,进行实际电路搭建和调试。

教材章节:第三章内容:AD转换电路设计原理、电路搭建、调试方法。

4. 数据采集与处理:学习使用AD转换软件进行数据采集、处理和分析,掌握相关技术。

教材章节:第四章内容:数据采集、处理与分析、AD转换软件应用。

AD转换器的基本概念及基本结构DA转换器的工作原理及其

AD转换器的基本概念及基本结构DA转换器的工作原理及其
本章主要教学内容
➢D/A、A/D转换器的基本概念及基本结构 ➢D/A转换器的工作原理及其特点 ➢A/D转换器的工作原理
实用文档
1
第10章
模拟量输入/输出接口技术
10.1 典型D/A转换器芯片
控制系统中传感器所检测的信号如温度、压力、流 量、速度、湿度等物理量都是随着时间连续变化的模拟 量,为了能用计算机对模拟量进行采集、加工和输出, 就需要把模拟量转换成便于计算机存储和加工的数字量 (称为A/D转换);同样经过计算机处理后的数字量必须 转换成模拟量(称为D/A转换)才能控制外部设备。
实用文档
6
第10章
模拟量输入/输出接口技术
10.1.2 DAC0832及其应用 DAC0832是8位分辨率的D/A转换集成芯片,其明显特
点是与微机连接简单、转换控制方便、价格低廉,在微 机系统中得到了广泛的应用。D/A转换器的输出一般都要 接运算放大器,微小信号经放大后才能驱动执行机构的 部件。
AC0832的主要技术指标有:分辨率为8位;转换速度 约为1μs;非线性误差为 0.20%FSR;温度系数为2×106/℃;工作方式为双缓冲、单缓冲和直通方式;逻辑输 入与TTL电平兼容;功耗为20mW;单电源供电。
模拟量输入/输出接口技术
(2)梯形电阻 D/A转换器:如图 10-2所示,该电阻 网络中仅有R和2R 两种电阻,切换开 关的工作原理与二 进制加权电阻网络 D/A转换工作原理 相同。
2R
d n 1
2R
K1
Rf
R
d n2
2R
K2
d1
+
2R
R 2R
VREF
K -2 梯形电阻D/A转换器的结构
实用文档

AD转换器(8)

AD转换器(8)

A/D转换器一.主要技术指标1.分辨率能分辨出的最小模拟输入量的能力。

即输出变化一个LSB所对应的模拟输入电压的变化量。

例:8位数据输出,满度5V的A/D转换器,其分辨率是:5/255=19.5mv更多是直接采用数据位数来表示A/D分辨率。

例如8位、10位、12位等。

也有采用10进制位来表示分辨率。

例如3位半(0000—1999),4位半(00000-19999)等。

2.精度A/D转换后所得结果相对实际值的准确程度。

由于量化效应,设模拟量在一个Δ范围内只对应一个数字量输出。

这个Δ理论上应等于分辨率(一个LSB)。

但实际上,由于误差的存在,这个范围一般大于分辨率Δ(一个LSB)。

超出一个LSB部分即为精度的大小。

3.转换时间.完成一次A/D转换所需要的时间.快的:几个ns—几百个ns慢的:几个ms—几百个ms4. 温度系数和增益系数5.对电源电压变化的抑制比常见A/D转换器见表10-3二.A/D转换器的工作原理1.A/D转换的4个步骤采样—保持—量化—编码a.采样是将时间上连续的模拟量,以一定的时间间隔取其值,使其变为时间上离散,但大小仍然连续的模拟量.实际采样保持过程分析采样原理框图及实际采样电路图.b.保持即将采样得到的模拟信号保持下来。

即使在S(t)=0时,输出不变为0,而是保持采样瞬间的最后值。

分析保持电路原理。

实际上,采样过程与保持过程一样均需一定时间。

见上图。

c.量化和编码量化即用基本的量化电平个数来表示采—保所得的模拟电压。

(见上4图中的量化、编码图)由于模拟量的值不可能刚好为0q、1q、2q、……等,在量化时会产生误差—量化误差。

编码就是把已经量化的模拟值,用二进制、BCD码等来表示三.常见A/D转换方法速度最快的是直接比较法,常见AD转换有逐次逼近、双积分、计数法及电压-频率转换法等。

1.逐次逼近三部分:1。

比较器 2。

控制输出 3。

D/A转换分析逐次逼近AD原理,这种方法A/D转换时间是固定的,与输入电压无关。

AD转换器介绍

AD转换器介绍

D/A 转换器是将输入的二进制数字量转换成模拟量,以电压或电流的形式输出。

D/A 转换器实质上是一个译码器〔解码器〕。

一般常用的线性D/A 转换器,其输出模拟电压uO 和输入数字量Dn 之间成正比关系。

UREF 为参考电压。

uO =DnUREF将输入的每一位二进制代码按其权值大小转换成相应的模拟量,然后将代表各位的模拟量相加,那么所得的总模拟量就与数字量成正比,这样便实现了从数字量到模拟量的转换。

D/A 转换器一般由数码缓冲存放器、模拟电子开关、参考电压、解码网络和求和电路等组成。

数字量以串行或并行方式输入,并存储在数码缓冲存放器中;存放器输出的每位数码驱动对应数位上的电子开关,将在解码网络中获得的相应数位权值送入求和电路;求和电路将各位权值相加,便得到与数字量对应的模拟量。

开关Si 的位置受数据锁存器输出的数码di 控制:当di=1时,Si 将对应的权电阻接到参考电压UREF 上;当di=0时,Si 将对应的权电阻接地。

权电阻网络D/A 转换器的特点①优点:构造简单,电阻元件数较少;②缺点:阻值相差较大,制造工艺复杂。

2. 倒T 型电阻网络D/A 转换器3. 电阻解码网络中,电阻只有R 和2R 两种,并构成倒T 型电阻网络。

当di=1时,相应的开关Si 接到求和点;当di=0时,相应的开关Si 接地。

但由于虚短,求和点和地相连,所以不管开关如何转向,电阻2R 总是与地相连。

这样,倒T 型网络的各节点向上看和向右看的等效电阻都是2R ,整个网络的等效输入电阻为R 。

倒T 型电阻网络D/A 转换器的特点:①优点:电阻种类少,只有R 和2R ,提高了制造精度;而且支路电流流入求和点不存在时间差,提高了转换速度。

②应用:它是目前集成D/A 转换器中转换速度较高且使用较多的一种,如8位D/A 转换器DAC0832,就是采用倒T 型电阻网络。

三、D/A 转换器的主要技术指标1. 分辨率分辨率用于表征D/A 转换器对输入微小量变化的敏感程度。

ad转换器课程设计

ad转换器课程设计

a d转换器课程设计一、课程目标知识目标:1. 学生能理解AD转换器的基本概念,掌握其工作原理;2. 学生能掌握AD转换器的转换方法,了解不同类型AD转换器的优缺点;3. 学生能了解AD转换器在现实生活中的应用,认识到其在工程技术领域的重要性。

技能目标:1. 学生能够运用所学知识,分析并设计简单的AD转换电路;2. 学生能够运用AD转换器进行模拟信号与数字信号之间的转换实验,并处理实验数据;3. 学生能够通过实践操作,掌握AD转换器的调试与优化方法。

情感态度价值观目标:1. 学生通过学习AD转换器,培养对电子技术的兴趣,提高学习积极性;2. 学生在学习过程中,养成合作、探究的学习习惯,增强团队协作能力;3. 学生能够认识到科技发展对社会进步的重要性,激发对科技创新的热情。

课程性质:本课程为电子技术基础课程,旨在使学生掌握AD转换器的基本原理、应用及实验方法。

学生特点:学生具备一定的电子技术基础知识,具有较强的动手能力和探究精神。

教学要求:结合理论教学与实验操作,注重培养学生的实际操作能力和创新意识,提高学生的综合素质。

通过分解课程目标为具体学习成果,使学生在课程学习中获得全面、深入的理解。

二、教学内容1. AD转换器基本概念:包括模拟信号与数字信号的区别,AD转换器的作用及其在电子系统中的应用。

教材章节:第一章 电子技术基础2. AD转换器工作原理:重点讲解逐次逼近法、双积分法等常见AD转换方法。

教材章节:第二章 模拟电子技术3. AD转换器类型及优缺点:介绍并行AD转换器、串行AD转换器等不同类型,对比分析其性能特点。

教材章节:第三章 数字电子技术4. AD转换器的应用:举例说明AD转换器在医疗、工业、通信等领域的应用。

教材章节:第四章 电子技术应用5. AD转换器电路设计与实践:结合Multisim等软件,设计简单的AD转换电路,并进行仿真实验。

教材章节:第五章 电子电路设计与实践6. AD转换器实验操作:包括实验步骤、实验数据处理,以及实验现象分析。

AD_DA原理及主要技术指标

AD_DA原理及主要技术指标

AD_DA原理及主要技术指标AD(模数转换器)与DA(数模转换器)是数字信号处理中常用的模拟转换器。

AD将模拟信号转换为数字信号,而DA则将数字信号转换为模拟信号。

两者在数字系统与模拟系统之间起着重要的桥梁作用。

本文将介绍AD_DA的原理及主要技术指标。

AD原理:AD原理基于采样定理,即将连续时间的模拟信号转换为离散时间的数字信号。

在AD转换过程中,首先通过取样器获取模拟信号的离散样点,然后由量化器将取样点量化为离散的数字信号。

主要技术指标:1.量化精度:量化精度决定了AD转换器的分辨率,以位数表示,常见的有8位、10位、12位、16位等。

位数越大,分辨率越高,对信号的重建越精准。

2.采样率:采样率指的是AD转换器每秒采样的次数,常用单位为Hz。

采样率要满足采样频率大于信号频率两倍以上的采样定理,否则会产生混叠效应。

3.带宽:AD转换器的带宽是指转换器能够正确采样和重建信号的频率范围。

带宽越大,能够处理的信号频率范围越宽。

4.功耗:功耗是指AD转换器在工作过程中消耗的电能。

低功耗的AD转换器具有节能环保的特点。

5.采样保持电路:采样保持电路对模拟信号进行采样并保持,以确保量化器能够准确对信号进行量化,有利于提高AD转换器的性能。

DA原理:DA原理是将数字信号转换为模拟信号的过程。

在DA转换过程中,首先通过数值控制器获得数字信号,然后由DA转换器将数字信号转换为模拟信号输出。

主要技术指标:1.分辨率:分辨率是指DA转换器的数字输入可以表示的最小幅度变化。

分辨率越高,输出模拟信号的精度越高。

2.采样率:采样率指的是DA转换器每秒从数字输入读取的次数,常用单位为Hz。

采样率决定了DA转换器能够输出多少个模拟信号样本。

3.输出精度:输出精度指的是DA转换器输出模拟信号与所期望模拟信号之间的偏差。

输出精度越高,输出模拟信号的准确性越高。

4.失真度:失真度是指DA转换器输出的模拟信号与原始模拟信号之间的差异。

电子设计创新训练(基础)第四章 常用AD、DA转换器应用介绍

电子设计创新训练(基础)第四章 常用AD、DA转换器应用介绍

此程序仅为一个采样示例, 主函数实际没有使用意义。
(二)8路8位分辨率ADC0809及与MCU的直接I/O接口
1、简介
ADC0809芯片有28条引脚,采用双列直 插式封装,如图3-13所示。下面说明各引脚功 能。IN0~IN7:8路模拟量输入端。2-1~2-8: 8位数字量输出端。ADDA、ADDB、ADDC:3 位地址输入线,用于选通8路模拟输入中的一路。 ALE:地址锁存允许信号,输入,高电平有效。 START: A/D转换启动信号,输入,高电平 有效。 EOC: A/D转换结束信号,输出, 当A/D转换结束时,此端输出一个高电平(转 换期间一直为低电平)。 OE:数据输出允许 信号,输入,高电平有效。当A/D转换结束时, 此端输入一个高电平,才能打开输出三态门, 输出数字量。CLK:时钟脉冲输入端。要求时 钟频率不高于640KHZ(典型500KHZ,转换时 间小于100μs)。 REF(+)、REF(-):基 准电压。 Vcc:电源,单一+5V。GND:地。 图4-13 ADC0809引脚图
图4-8 AD57A的管脚图
A0 :字节地址/短周期,高为8位变换/输出低4位,低为12位变换/输出高8位; STS :变换状态,高为正在变换,低为变换结束.STS总共有三种接法:(1)空着:只 能在启动变换,25 μ s以后读A/D结果;(2)接静态端口线:可用查询方法,待STS为 低后再读A/D变换结果;(3)接外部中断线:可引起中断后,读A/D变换结果; REFIN :基准输入. REFOUT :内部10V基准输出; BIP OFF :双极性方式时,偏置电压输入端(10V基准);
ADC0809的工作过程是:首先输入3位地址,并使ALE=1,将地址存 入地址锁存器中。此地址经译码选通8路模拟输入之一到比较器。START上 升沿将逐次逼近寄存器复位。下降沿启动 A/D转换,之后EOC输出信号变 低,指示转换正在进行。直到A/D转换完成,EOC变为高电平,指示A/ D转换结束,结果数据已存入锁存器,这个信号可用作中断申请。当OE输 入高电平 时,输出三态门打开,转换结果的数字量输出到数据总线上。

AD转换器使用

AD转换器使用

.基本知识ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。

它是逐次逼近式A/D转换器,可以和单片机直接接口。

(1).ADC0809的内部逻辑结构由上图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D 转换器和一个三态输出锁存器组成。

多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。

三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。

(2).引脚结构IN0-IN7:8条模拟量输入通道ADC0809对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。

地址输入和控制线:4条ALE为地址锁存允许输入线,高电平有效。

当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。

A,B和C为地址输入线,用于选通IN0-IN7上的一路模拟量输入。

通道选择表如下表所示。

C B A 选择的通道0 0 0 IN00 0 1 IN10 1 0 IN20 1 1 IN31 0 0 IN41 0 1 IN51 1 0 IN61 1 1 IN7数字量输出及控制线:11条ST为转换启动信号。

当ST上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A/D转换;在转换期间,ST应保持低电平。

EOC为转换结束信号。

当EOC为高电平时,表明转换结束;否则,表明正在进行A/D转换。

OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。

OE=1,输出转换得到的数据;OE=0,输出数据线呈高阻状态。

D7-D0为数字量输出线。

CLK为时钟输入信号线。

因ADC0809的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ,VREF(+),VREF(-)为参考电压输入。

AD转换及其原理ppt课件

AD转换及其原理ppt课件
2. 量化误差
• 量化误差是由于ADC 的有限分辨率引起的误差,这是连 续的模拟信号在整数量化后的固有误差。对于四舍五入的 量化法,量化误差在±1/2 LSB之间。
整理ppt
6
二.ADC的主要技术参数
3. 绝对精度
• 绝对精度是指在输出端产生给定的数字代码所表示的实际 需要的模拟输入值与理论上要求的模拟输入值之差。
路使开关S1与UI相接,重复第一步。
T2
T1 VREF
UI
D
N1 VREF
U
I
N1
T1 TCP
其中TCP是脉冲时钟信号,D是计数脉冲数
整理ppt
24
双积分AD转换器
计数器中的数值 就是AD转换器转 换后数字量,至 此即完成了VT转 换。
整理ppt
25
双积分型A/D转换器的特点
➢ 因有积分器的存在,积分器的输出只对输入信 号的平均值有所响应,保证了工作性能比较稳 定且抗干扰能力强。
4. 相对精度
• 它与绝对精度相似,所不同的是把这个偏差表示为满刻度 模拟电压的百分数。
5. 转换时间
• 转换时间是ADC完成一次转换所需要的时间,即从启动信 号开始到转换结束并得到稳定的数字输出量所需要的时间, 通常为微秒级。
6.量程
• 量程是指能转换的输入电压范围。
整理ppt
7
三.A/D转换的一般步骤和基本原理
模拟输 入信号
uI
ADC

Dn-1 Dn-2
D1 n 位二进制数输出 D0 D = Dn-1 Dn-2 D1 D0
D
uI
“[ ]”表示取整。
基本原理
△ 称为 ADC 的单位量化电压或量化单位,它 是 ADC 的最小分辨电压。

AD转换器的技术指标

AD转换器的技术指标

A /D 转换器的技术指标D A 转换器的转换精度与转换速度一、 A /D 转换器的转换精度在单片集成的D A 转换器中也采用分辨率(又称分解度)和转换误差来描述转换精度。

分辨率以输出二进制数或十进制数的位数表示,它说明D A 转换器对输入信号的分辨能力。

从理论上讲,n 位二进制数字输出的D A 转换器应能区分输入模拟电压的n 2个不同等级大小,能区分输入电压的最小差异为n 21FSR (满量程输入的n 21)。

例如D A 转换器的输出为10位二进制数,最大输入信号为5V ,那么这个转换器的输出应能区分出输入信号的最小差异为1025v =4.88mV .转换误差通常以输出误差最大值的形式给出,它表示实际输出的数字量和理论上应有的输出数字量之间的差别,一般多以最低有效位的倍数给出。

例如给出转换误差<±21LSB,这就表明实际输出的数字量和理论上应得到的输出数字量 之际的误差小于最低有效位的半个字。

有时也用满量程输出的百分数给出转换误差。

例如D A 转换器的输出为十进制的321位(即所谓的三位半),转换误差为±0.005%FSR ,则满量程输出为1999,最大输出误差小于最低位的1。

通常单片集成D A 转换器的转换误差已经综合的反映了电路内部各个元、器件及单元电路偏差对转换精度的影响,所以无须再分别讨论这些因素各自对转换精度的影响了。

还应指出,手册上给出的转换精度都是在一定的电源电压和环境温度下得到的数据。

如果这些条件改变了,将引起附加的转换误差。

例如10位二进制输出的D A 转换器AD571在室温(+25℃)和标准电源电压(+V =+5V 、+V =-15V )下转换误差21±≤LSB ,而当环境温度从0℃变到70℃时,可能产生±1LSB 的附加误差。

如果正电源电压在+4.5V~+5.5V 范围内变化,或者负电源电压在-16V~-13.5V 范围内变化时,最大的转换误差可达到±2LSB 。

ad转换器的基本原理

ad转换器的基本原理

ad转换器的基本原理AD转换器的基本原理一、引言AD转换器(Analog-to-Digital Converter)是将模拟信号转换为数字信号的一种设备或电路。

在现代电子技术中,AD转换器被广泛应用于各种领域,如通信、测量、控制、图像处理等。

本文将详细介绍AD转换器的基本原理。

二、AD转换器的作用在很多应用中,我们需要将模拟信号转换为数字信号进行处理和分析。

模拟信号是连续变化的,可以有无限个取值;而数字信号是离散的,只能取有限个值。

AD转换器的作用就是将模拟信号的连续变化转换为离散的数字信号,从而方便存储、处理和传输。

三、AD转换器的基本原理AD转换器的基本原理是将模拟信号按照一定的规则进行采样、量化和编码。

1. 采样(Sampling)模拟信号是连续变化的,为了进行转换,首先需要对其进行采样。

采样就是在一定的时间间隔内,对模拟信号进行离散采样,取样值表示该时间段内的模拟信号的近似值。

2. 量化(Quantization)采样得到的模拟信号值是连续的,为了将其转换为离散的数字信号,需要对其进行量化。

量化是指将连续的模拟信号值映射为离散的数字信号值。

在量化过程中,需要确定离散信号值的范围和步长。

范围决定了数字信号值的最大和最小值,步长决定了数字信号值之间的间隔。

3. 编码(Encoding)量化后的模拟信号值仍然是连续的,为了将其转换为离散的数字信号,还需要对其进行编码。

编码是指将量化后的模拟信号值表示为二进制形式的数字信号值。

常用的编码方式有二进制编码、格雷码等。

四、AD转换器的类型AD转换器根据转换方式的不同可以分为逐次逼近型AD转换器、逐次逼近型型AD转换器和闪存型AD转换器等多种类型。

1. 逐次逼近型AD转换器逐次逼近型AD转换器是一种常见的AD转换器类型。

它通过逐次逼近的方式,根据比较结果决定下一次比较的范围,直到获得最终的数字信号值。

逐次逼近型AD转换器具有较高的精度和较低的功耗,广泛应用于各种领域。

第9章 AD与DA转换器接口

第9章 AD与DA转换器接口
15
9.2 D/A转换器的接口电路设计

DAC0832适合要求多片DAC同时进行转换的系统。
分别输入数据:利 用各自DAC0832的 CS与WR1先将各自 的数据输入到输入 寄存器; 同时触发转换:将 各片的XFER和WR2 连在一起,同时触 发,实现同时转换。

CS
WR1
WR2
微机接口技术
VREF D/A 转 换 器 A IOUT1 IOUT2 RFB AGND VCC DGND
;初始化8255A MOV DX,303H ;8255A的命令口, MOV AL,10000000B ;8255A的A、B组均为输出 OUT DX,AL ;写方式字 ;设置B口控制DAC的转换 MOV DX,301H ;8255A的B口地址 MOV AL,00010000B ;DAC0832为直通工作方式 OUT DX,AL
2. D/A转换器的连接特性

输入缓冲能力,表示能否与数据总线直接连接。
输入数据的宽度,即分辨率。 输入码制,表示能接受不同码制的数字量输入。 输出模拟量的类型,有电流型和电压型。 输出模拟量的极性,有正负电压极性。
8
9.1 D/A转换器的接口方法
二、D/A转换器与微处理器的接口方法
8
2
7
2 6 25 2 4 23 2 2 21 2 0 9.96 V 10 V

所以输出电压的范围是0~10V。
(4)当输入数字10010001B时:
V0 10 2
8
2
7
2 4 2 0 5.66V
7

9.1 D/A转换器的接口方法
微机接口技术
;第一个数据取入AL ;第一片0832输入寄存器地址送DX ;将第一个数据输出到第一片0832输入寄存器

AD转换器技术参数

AD转换器技术参数

AD转换器技术参数集成A/D转换器因为模拟信号在时间上是连续的,所以,在将模拟信号转换成数字信号时,必须在选定的一系列时间点上对输入的模拟信号进行采样,然后将这些采样值转换成数字量输出。

通常A/D转换的过程包括采样、保持和量化、编码两大步骤。

采样:是指周期地获取模拟信号的瞬时值,从而得到一系列时间上离散的脉冲采样值。

保持:是指在两次采样之间将前一次采样值保存下来,使其在量化编码期间不发生变化。

采样保持电路一般由采样模拟开关、保持电容和运算放大器等几个部分组成。

经采样保持得到的信号值依然是模拟量,而不是数字量。

任何一个数字量的大小,都是以某个最小数字量单位的整数倍来表示的。

量化:将采样保持电路输出的模拟电压转化为最小数字量单位整数倍的转化过程称为量化。

所取的最小数量单位叫做量化单位,其大小等于数字量的最低有效位所代表的模拟电压大小,记作ULSB。

编码:把量化的结果用代码(如二进制数码、BCD码等)表示出来,称为编码。

?A/D转换过程中的量化和编码是由A/D转换器实现的。

一.A/D转换器的类型A/D转换器的类型很多,根据转换方法的不同,最常用的A/D转换器有如下几种类型。

1.并行比较型A/D转换器并行比较型A/D转换器由电阻分压器、电压比较器、数码寄存器及编码器4个部分组成。

这种A/D转换器最大的优点是转换速度快,其转换时间只受电路传输延迟时间的限制,最快能达到低于20ns。

缺点是随着输出二进制位数的增加,器件数目按几何级数增加。

一个n位的转换器,需要2n-1个比较器。

例如,n=8时,需要28-1=255个比较器。

因此,制造高分辨率的集成并行A/D转换器受到一定限制。

显然,这种类型的A/D转换器适用于要求转换速度高、但分辨率较低的场合。

2.逐次比较型A/D转换器逐次比较型A/D转换器是集成ADC芯片中使用最广泛的一种类型。

它由电压比较器、逻辑控制器、D/A转换器及数码寄存器组成。

逐次比较型A/D转换器的特点是转换速度较快,且输出代码的位数多,精度高。

(完整)AD转换器的介绍

(完整)AD转换器的介绍

在仪器仪表系统中,常常需要将检测到的连续变化的模拟量如:温度、压力、流量、速度、光强等转变成离散的数字量,才能输入到计算机中进行处理.这些模拟量经过传感器转变成电信号(一般为电压信号),经过放大器放大后,就需要经过一定的处理变成数字量。

实现模拟量到数字量转变的设备通常成为模数转换器(ADC),简称A/D。

随着集成电路的飞速发展,A/D转换器的新设计思想和制造技术层出不穷。

为满足各种不同的检测及控制需要而设计的结构不同、性能各异的A/D转换器应运而生.下面讲讲A/D转换器的基本原理和分类根据A/D转换器的原理可将A/D转换器分成两大类。

一类是直接型A/D转换器,将输入的电压信号直接转换成数字代码,不经过中间任何变量;另一类是间接型A/D转换器,将输入的电压转变成某种中间变量(时间、频率、脉冲宽度等),然后再将这个中间量变成数字代码输出。

尽管A/D转换器的种类很多,但目前广泛应用的主要有三种类型:逐次逼近式A/D转换器、双积分式A/D转换器、V/F变换式A/D转换器.另外,近些年有一种新型的Σ—Δ型A/D转换器异军突起,在仪器中得到了广泛的应用。

逐次逼近式A/D转换器的基本原理是:将待转换的模拟输入信号与一个推测信号进行比较,根据二者大小决定增大还是减小输入信号,以便向模拟输入信号逼进.推测信号由D/A转换器的输出获得,当二者相等时,向D/A转换器输入的数字信号就对应的时模拟输入量的数字量.这种A/D转换器一般速度很快,但精度一般不高。

常用的有ADC0801、ADC0802、AD570等。

双积分式A/D转换器的基本原理是:先对输入模拟电压进行固定时间的积分,然后转为对标准电压的反相积分,直至积分输入返回初始值,这两个积分时间的长短正比于二者的大小,进而可以得出对应模拟电压的数字量。

这种A/D转换器的转换速度较慢,但精度较高.由双积分式发展为四重积分、五重积分等多种方式,在保证转换精度的前提下提高了转换速度.常用的有ICL7135、ICL7109等Σ-Δ型A/D转换的具体技术细节不详,这种转换器的转换精度极高,达到16到24位的转换精度,价格低廉,弱点是转换速度比较慢,比较适合用于对检测精度要求很高但对速度要求不是太高的检验设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CLK为时钟输入信号线。因ADC0809的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ,
VREF(+),VREF(-)为参考电压输入。
2. ADC0809应用说明
(1). ADC0809内部带有输出锁存器,可以与AT89S51单片机直接相连。
(2). 初始化时,使ST和OE信号全为低电平。
ADCA-D转换器基本应用技术
———————————————————————————————— 作者:
———————————————————————————————— 日期:

27. ADC0809A/D转换器基本应用技术
1. 基本知识
ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。它是逐次逼近式A/D转换器,可以和单片机直接接口。
(1). ADC0809的内部逻辑结构
由上图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。
4. 电路原理图
图1.27.1
5. 系统板上硬件连线
(1). 把“单片机系统板”区域中的P1端口的P1.0-P1.7用8芯排线连接到“动态数码显示”区域中的A B C D E F G H端口上,作为数码管的笔段驱动。
(2). 把“单片机系统板”区域中的P2端口的P2.0-P2.7用8芯排线连接到“动态数码显示”区域中的S1 S2 S3 S4 S5 S6 S7 S8端口上,作为数码管的位段选择。
(10). 把“分频模块”区域中的CK IN端子用导线连接到“单片机系统”区域中的 ALE 端子上;
(11). 把“模数转换模块”区域中的IN3端子用导线连接到“三路可调压模块”区域中的 VR1 端子上;
6. 程序设计内容
(1). 进行A/D转换时,采用查询EOC的标志信号来检测A/D转换是否完毕,若完毕则把数据通过P0端口读入,经过数据处理之后在数码管上显示。
(6). 把“模数转换模块”区域中的ST端子用导线连接到“单片机系统”区域中的P3.0端子上;
(7). 把“模数转换模块”区域中的OE端子用导线连接到“单片机系统”区域中的P3.1端子上;
(8). 把“模数转换模块”区域中的EOC端子用导线连接到“单片机系统”区域中的P3.2端子上;
(9). 把“模数转换模块”区域中的CLK端子用导线连接到“分频模块”区域中的 /4 端子上;

B

选择的通道
0
0

IN0
0

1
IN1
0

0
IN2
0
1

IN3
100I来自4101
IN5
1

0
IN6
1
1
1
IN7
数字量输出及控制线:11条
ST为转换启动信号。当ST上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A/D转换;在转换期间,ST应保持低电平。EOC为转换结束信号。当EOC为高电平时,表明转换结束;否则,表明正在进行A/D转换。OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。OE=1,输出转换得到的数据;OE=0,输出数据线呈高阻状态。D7-D0为数字量输出线。
(3). 把“单片机系统板”区域中的P0端口的P0.0-P0.7用8芯排线连接到“模数转换模块”区域中的D0D1D2D3D4D5D6D7端口上,A/D转换完毕的数据输入到单片机的P0端口
(4). 把“模数转换模块”区域中的VREF端子用导线连接到“电源模块”区域中的VCC端子上;
(5). 把“模数转换模块”区域中的A2A1A0端子用导线连接到“单片机系统”区域中的P3.4 P3.5 P3.6端子上;
MOV @R0,#00H
INC R0
MOV @R0,#00H
INC R0ﻫMOV @R0,#00H
MOV TMOD,#01H
MOV TH0,#(65536-4000)/256
MOV TL0,#(65536-4000) MOD 256ﻫSETB TR0
SETB ET0
SETB EA
WT: CLR ST
(2). 进行A/D转换之前,要启动转换的方法:
ABC=110选择第三通道
ST=0,ST=1,ST=0产生启动转换的正脉冲信号
7. 汇编源程序ﻫCH EQU 30HﻫDPCNT EQU 31HﻫDPBUF EQU 33HﻫGDATA EQU 32HﻫST BIT P3.0
OE BIT P3.1ﻫEOC BIT P3.2
(3). 送要转换的哪一通道的地址到A,B,C端口上。
(4). 在ST端给出一个至少有100ns宽的正脉冲信号。
(5). 是否转换完毕,我们根据EOC信号来判断。
(6). 当EOC变为高电平时,这时给OE为高电平,转换的数据就输出给单片机了。
3. 实验任务
如下图所示,从ADC0809的通道IN3输入0-5V之间的模拟量,通过ADC0809转换成数字量在数码管上以十进制形成显示出来。ADC0809的VREF接+5V电压。
(2). 引脚结构
IN0-IN7:8条模拟量输入通道
ADC0809对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。
地址输入和控制线:4条
ALE为地址锁存允许输入线,高电平有效。当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。A,B和C为地址输入线,用于选通IN0-IN7上的一路模拟量输入。通道选择表如下表所示。
SETB ST
CLR ST
WAIT: JNB EOC,WAITﻫSETB OEﻫMOV GDATA,P0
ﻫORG 00HﻫLJMP START
ORG 0BH
LJMP T0X
ORG 30H
START: MOV CH,#0BCHﻫMOV DPCNT,#00HﻫMOV R1,#DPCNTﻫMOV R7,#5
MOV A,#10
MOV R0,#DPBUFﻫLOP: MOV @R0,AﻫINC R0ﻫDJNZ R7,LOP
相关文档
最新文档