一篇 PCB布线
pcb布线规则及技巧
使用自动布线工具需 要合理设置参数,以 确保布线的质量和效 果。
自动布线工具可以自 动优化线路布局,减 少线路交叉和干扰。
考虑电磁兼容性
在布线过程中需要考虑电磁兼容 性,避免线路之间的干扰和冲突。
合理选择线宽和间距,以降低电 磁干扰的影响。
考虑使用屏蔽、接地等措施,提 高电磁兼容性。
04 PCB布线中的挑战及应对 策略
模拟电路板布线
总结词:模拟电路板布线需要特别关注信号的 连续性和稳定性。
01
确保信号的连续性和稳定性,避免信号的 突变和噪声干扰。
03
02
详细描述:在模拟电路板布线中,应遵循以 下规则和技巧
04
考虑信号的带宽和频率,以选择合适的传 输线和端接方式。
优化布线长度和布局,以减小信号的延迟 和失真。
05
1 2
高速信号线应进行阻抗匹配
高速信号线的阻抗应与终端负载匹配,以减小信 号反射和失真。
敏感信号线应进行隔离
敏感信号线应与其他信号线隔离,以减小信号干 扰和噪声。
3
大电流信号线应进行散热设计
大电流信号线应考虑散热问题,以保证电路的正 常运行。
03 PCB布线技巧
优化布线顺序
01
02
03
先电源后信号
3. 解决策略:对于已存 在的电磁干扰问题,可 以尝试优化PCB布局、 改进屏蔽设计、增加滤 波器或调整接地方式等 技术手段进行改善。
05 PCB布线实例分析
高速数字电路板布线
在此添加您的文本17字
总结词:高速数字电路板布线需要遵循严格的规则和技巧 ,以确保信号完整性和可靠性。
在此添加您的文本16字
考虑电磁兼容性
布线过程中需要考虑电磁兼容性,通过合理的布线设计减小电磁干扰和辐射,提 高电路板的电磁性能。
PCB布线的技巧及注意事项
PCB布线的技巧及注意事项1.确定信号的类型与分类:首先需要明确信号的类型,如模拟信号、数字信号、高频信号等。
不同类型的信号在布线时需要采取不同的方式和策略。
此外,还需要将信号进行分类,根据其功能和特性确定合适的布线规则。
2.分层布线:为了降低互穿干扰和提高信号完整性,可以采用分层布线的方式。
将信号分散在不同的层次,如将地平面和电源平面分开,通过适当的间隔和规则来设计信号路径,能够有效减少信号串扰和辐射噪声。
3.地线与电源线的布线:地线是PCB布线中非常重要的一条线路,它负责回流电流和信号的引用。
在布线中,需要确保地线的连续性和低阻抗,避免开环和电流浪涌。
电源线的布线也需要注意稳定性和电流传输的需求,尽量避免电源线与信号线相互干扰。
4.信号线的长度匹配:如果需要传输同步或高速信号,信号线的长度匹配是十分重要的。
对于时序敏感的信号,如DDR总线,需要确保信号线的长度尽量相等,以避免信号的延迟差异影响其同步性能。
5.信号线的走线规则:对于高速信号,需要遵循规范的匹配走线方式,如使用直线、星形或者差分线走线等。
避免使用锯齿形的走线方式,以降低信号的串扰和辐射。
6.分区布线:如果电路较为复杂,可以将电路划分为不同的区域进行布线,以降低信号干扰和简化布线的复杂性。
每个区域可以独立进行布线并进行适当的隔离。
7.路径优化:在布线过程中,需要考虑信号的传输路径和相互之间的交叉。
尽量采用最短路径和避免交叉的方式来优化布线,以减少信号的延迟和干扰。
8.保护地线和信号线的距离:在布线中,需要保持地线和信号线的一定距离,避免信号线受到地线干扰。
一般情况下,地线和信号线的距离应大于5倍的线宽。
9.避免锯齿形走线:尽量避免使用锯齿形走线,如信号线多次转弯或穿越。
这样的走线方式容易导致信号串扰和辐射噪声。
10.引脚分配与走线规划:在进行PCB布线之前,需要进行引脚分配和走线规划。
将输入/输出端口、复位线、时钟线等关键信号的引脚安排在合适的位置,以提高布线的可行性和稳定性。
PCB布局布线要点
PCB布局布线要点1.尽量减少线路长度:线路长度过长会导致信号延迟和互相干扰。
在布局时,应尽量将相关信号线放在一起,尽量减少线路的长度。
2.分隔高频和低频信号:高频信号和低频信号在传输特性和干扰问题上有很大差异。
在布线时,应尽量将高频信号和低频信号分开布局,以避免互相干扰。
3.避免信号线和电源线相交:信号线和电源线的交叉会导致互相干扰,产生噪声。
在布线时,应尽量避免信号线和电源线相交。
4.保持信号线的对称布局:对称布局可以使信号线的长度保持一致,从而减少互相干扰。
在布局时,应尽量保持信号线的对称布局。
5.地线的布局:地线是整个电路的共用参考点,它承载着回流电流和抑制噪声的功能。
在布线时,应尽量保持地线的宽度一致,减小回流电流的路径阻抗。
6.电源线的布局:电源线应尽量靠近地线布局,以减小回流电流路径的阻抗。
同时,电源线应避免与信号线相交,以减少互相干扰。
7.信号线与地线的配对布局:在高速传输中,差分信号线的布局对信号的传输质量有很大影响。
应尽量将差分信号线与地线配对布局,以减小信号之间的干扰。
8.规避信号线和边缘的平行布局:信号线和边缘平行布局会导致辐射噪声和电磁干扰。
在布线时,应尽量规避信号线和边缘的平行布局。
9.PCB层次布局:PCB可以分为多个逻辑层次,在布局时应尽量将相关的电路模块放在同一层次上,以减少信号线的跨层穿越。
10.确保足够的间距和间隙:在布线时,应确保信号线之间和信号线与其他元件之间有足够的间距和间隙,以避免互相干扰和产生串扰。
11.使用规范的信号线宽度和间距:信号线宽度和间距的设置直接影响信号传输的质量和速度。
在布线时,应使用规范的信号线宽度和间距,以满足设计要求。
12.使用较好的布线工具和规则检查:在布线过程中,可以使用专业的布线工具和规则检查功能,以提高布线效率和准确性。
总之,PCB布局布线的核心目标是尽量减小信号传输的延迟和干扰,以保证系统的性能和可靠性。
通过合理的布局和布线,可以提高产品的性能和降低故障率。
PCB布线基本规则
PCB布线基本规则PCB(Printed Circuit Board)是电子设备中最基本的组成部分之一,它通过导线、电路和元件等连接,起到电气信号传导和支持电子元器件的作用。
PCB布线是指在PCB上进行导线和元件布局的过程,它的设计和布线方案对整个电子设备功能和性能有着重要影响。
为了确保PCB的正常工作和稳定性,有一些基本的布线规则需要遵守。
下面是一些常见的PCB布线基本规则:1.布局规则:-合理布局:将元件、信号和电源布置在合理的位置,以减少干扰和噪声。
-划分区域:将电路板划分为不同区域,例如,将模拟和数字电路分开,以减少相互干扰。
-选择合适的层次:根据电路的复杂性和布线密度,选择合适的PCB板层次,如单面、双面或多层板。
-保留充足的过孔和通孔空间:确保在布线过程中留有足够的过孔和通孔空间,以确保布线的正常进行。
2.导线布线规则:-信号同方向布线:将信号线和地线平行布线,以减少互相干扰。
-异方向布线:将时钟线和其他信号线垂直布线,以降低串扰。
-避免冗余布线:避免导线交叉和冗余布线,以减少互相干扰和飞线。
-控制走线的长度:尽量控制导线的长度短,以减少信号时延和信号损耗。
3.为高频信号和低频信号做不同处理:-高频信号布线:使用短而直的导线布线,以减少信号的延迟和损耗。
-低频信号布线:使用较宽的导线布线,以增加信号的稳定性和可靠性。
4.过孔和通孔规则:-过孔布局规则:过孔应尽量集中布置,以减少PCB板空间的占用并提高布线的自由度。
-避免与元件冲突:过孔位置应避免与元件的引脚冲突,以确保元件的正确安装和连接。
-保持通孔通畅:在布线过程中,保持通孔的畅通,以确保信号和电源的正常传导。
5.地线规则:-分离数字和模拟地:将数字和模拟地面隔离开,以减少互相干扰。
-回路规划:在PCB上布置完善的地回路,以确保信号和电源的正常回路。
最后,为了确保布线的可靠性和性能,可以使用电磁仿真软件对布线进行检查和优化。
同时,对于特定的高速或高频电路,可以参考相关的PCB设计规范和标准,以确保布线的正确和稳定。
非常实用的PCB布局布线规则,画出美而高性能的板子
非常实用的PCB布局布线规则,画出美而高性能的板子01布局元器件布局的10条规则:1. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.2. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.3. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。
4. 相同结构电路部分,尽可能采用“对称式”标准布局;5. 按照均匀分布、重心平衡、版面美观的标准优化布局;6. 同类型插装元器件在X或Y方向上应朝一个方向放置。
同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。
7. 发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。
8. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分。
9、去偶电容的布局要尽量靠近IC的电源管脚,并使之与电源和地之间形成的回路最短。
10、元件布局时,应适当考虑使用同一种电源的器件尽量放在一起, 以便于将来的电源分隔。
02布线(1)布线优先次序键信号线优先:摸拟小信号、高速信号、时钟信号和同步信号等关键信号优先布线密度优先原则:从单板上连接关系最复杂的器件着手布线。
从单板上连线最密集的区域开始布线注意点:a、尽量为时钟信号、高频信号、敏感信号等关键信号提供专门的布线层,并保证其最小的回路面积。
必要时应采取手工优先布线、屏蔽和加大安全间距等方法。
保证信号质量。
b、电源层和地层之间的EMC环境较差,应避免布置对干扰敏感的信号。
c、有阻抗控制要求的网络应尽量按线长线宽要求布线。
(2)四种具体走线方式1 、时钟的布线:时钟线是对EMC 影响最大的因素之一。
在时钟线上应少打过孔,尽量避免和其它信号线并行走线,且应远离一般信号线,避免对信号线的干扰。
射频电路PCB设计布线规范
射频电路PCB设计布线规范1.地面平面布线规范:射频电路的地面平面应尽可能连续,尽量避免划分为多个独立的区域。
如果必须划分地面平面,应使用稳定的参考平面连接它们。
同时,避免地面平面上存在孔洞。
2.射频组件布局规范:高频组件(如射频放大器、射频滤波器等)应尽可能靠近射频天线或射频输入/输出端口。
此外,不同射频组件之间应保持一定的间距,以防止互相的干扰。
3.射频线宽规范:射频线的宽度应根据设计的频率和所使用的介质来确定。
通常,较高的频率需要更宽的线宽,以减小线路的损耗。
具体的线宽可以根据射频设计手册或仿真工具来计算。
4.射频线与地面的连接规范:射频线应尽可能与地面平面接触,以提供一个低阻抗的返回路径。
为了实现这一点,可以采用地面孔和连续的焊盘等设计。
此外,应避免射频线与其他信号线和电源线的交叉。
5.射频线的走线路径规范:射频线应尽量避免在长距离内平行走线,以减小串扰的可能性。
同时,应避免射频线与其他信号线和电源线的交叉,以减小互相的干扰。
6.射频线和射频组件的焊盘设计规范:射频线和射频组件的焊盘应尽可能保持积极的接触,以减小传输信号时的损耗。
可以使用大面积的焊盘和合适的焊料来提高焊接质量。
7.射频电路的屏蔽设计规范:对于敏感的射频电路,应采取屏蔽措施以减小干扰的影响。
可以使用金属屏蔽罩、屏蔽接地平面等方式来实现屏蔽设计。
8.射频电路的电感和电容布局规范:射频电路中的电感和电容元件的位置应遵循尽可能短的连接原则,以减小这些元件的串扰和互相干扰的可能性。
综上所述,射频电路PCB设计布线规范主要包括地面平面布线规范、射频组件布局规范、射频线宽规范、射频线和地面的连接规范、射频线的走线路径规范、射频线和射频组件的焊盘设计规范、射频电路的屏蔽设计规范、射频电路的电感和电容布局规范等。
遵循这些规范可以提高射频电路的性能和可靠性,减小电路的信号损耗和干扰问题。
PCB布局布线基本规则
PCB布局布线基本规则1.尽量减少电路板的层数。
每增加一层电路板的层数会增加制造成本和设计复杂度,同时也会增加信号传输的延迟。
因此,尽量保持电路简单,减少层数。
2.分离高频和低频信号。
高频信号容易受到干扰,因此应当尽量与低频信号分离。
可以采用不同的层或区域来布置高频和低频信号的元件,或者使用地平面分离高频和低频信号。
3.分割地平面和电源平面。
电路板上应该有专门的地平面和电源平面,以提供良好的电源和地引线。
这样可以减少信号线和引线的长度,降低电磁干扰。
4.保持信号线和供电线的最小间隔。
信号线和供电线之间的间隔越小,电磁干扰就越小。
因此,在布局时要尽量将信号线和供电线保持一定的距离,避免相互干扰。
5.将相互影响的元件放在一起。
相互影响的元件包括开关、驱动器、传感器等。
将它们放在相邻的位置可以减少互相作用产生的干扰。
6.避免产生环形信号线。
环形信号线会产生反射和干扰,影响信号传输稳定性。
因此,布线时应尽量避免产生环形信号线。
7.避免交叉布线。
交叉布线会产生互相干扰,影响信号传输质量。
因此,布线时应尽量避免信号线交叉。
如果无法避免,可以采用信号线层间的穿越或使用防干扰技术。
8.尽量使用直线布线。
直线布线可以减小信号的传输延迟和损耗。
此外,直线布线还可以提高电子产品的散热性能,提高整体性能。
9.保持信号线、供电线和地线的长度一致。
信号线、供电线和地线的长度一致可以减少信号的传输延迟和损耗,提高信号质量。
10.避免布线在电源和地线附近。
电源和地线附近会有较高的电磁干扰和噪声。
因此,布线时应尽量避免信号线在电源和地线附近。
以上是PCB布局布线的一些基本规则,通过遵循这些规则可以提高电路的可靠性和稳定性,减少噪声和电磁干扰,提高电子产品的整体品质。
当然,不同的电路和产品可能有更具体的规格和要求,设计者还需要根据具体情况进行布局和布线。
PCB设计布线过程经验分享
PCB设计布线过程经验分享说到PCB板,很多朋友会想到它在我们周围随处可见,从一切的家用电器,电脑内的各种配件,到各种数码产品,只要是电子产品几乎都会用到PCB板,那么到底什么是PCB板呢?PCB板就是PrintedCircuitBlock,即印制电路板,供电子组件安插,有线路的基版。
通过使用印刷方式将镀铜的基版印上防蚀线路,并加以蚀刻冲洗出线路。
PCB板可以分为单层板、双层板和多层板。
各种电子元件都是被集成在PCB板上的,在最基本的单层PCB上,零件都集中在一面,导线则都集中在另一面。
这么一来我们就需要在板子上打洞,这样接脚才能穿过板子到另一面,所以零件的接脚是焊在另一面上的。
因为如此,这样的PCB的正反面分别被称为零件面(ComponentSide)与焊接面(SolderSide)。
双层板可以看作把两个单层板相对粘合在一起组成,板的两面都有电子元件和走线。
有时候需要把一面的单线连接到板的另一面,这就要通过导孔(via)。
导孔是在PCB上,充满或涂上金属的小洞,它可以与两面的导线相连接。
现在很多电脑主板都在用4层甚至6层PCB板,而显卡一般都在用了6层PCB板,很多高端显卡像nVIDIAGeForce4Ti系列就采用了8层PCB板,这就是所谓的多层PCB板。
在多层PCB板上也会遇到连接各个层之间线路的问题,也可以通过导孔来实现。
由于是多层PCB板,所以有时候导孔不需要穿透整个PCB板,这样的导孔叫做埋孔(Buriedvias)和盲孔(Blindvias),因为它们只穿透其中几层。
盲孔是将几层内部PCB与表面PCB连接,不须穿透整个板子。
埋孔则只连接内部的PCB,所以光是从表面是看不出来的。
在多层板PCB中,整层都直接连接上地线与电源。
所以我们将各层分类为信号层(Signal),电源层(Power)或是地线层(Ground)。
如果PCB上的零件需要不同的电源供应,通常这类PCB会有两层以上的电源与电线层。
PCB板布局布线基本规则
PCB板布局布线基本规则PCB布局布线是电子产品设计中十分重要的一环,正确的布局布线可以提高电路的性能和稳定性,减少电磁干扰和信号串扰。
以下是一些PCB 布局布线的基本规则。
1.分离模拟和数字信号:模拟信号和数字信号应尽量分离布局,以防止数字信号干扰模拟信号。
这样可以提高模拟信号的准确性和稳定性。
2.分离高频和低频信号:高频信号和低频信号应分离布局,以防止高频信号对低频信号造成干扰。
低频信号线应尽量远离高频信号线,或者采用屏蔽和隔离措施。
3.最短路径:信号线应尽可能短,以减少信号传输的延迟和损耗。
同时,信号线的长度应保持一致,以避免传输过程中的信号失真。
4.信号线的宽度和间距:信号线的宽度和间距应根据其电流大小和信号速度来设计。
较大的电流需要较宽的信号线来降低电阻,而高速信号需要较小的间距来减少串扰。
5.地线的布局:地线在PCB设计中极为重要,它是信号返回路径的重要一部分。
因此,应该确保地线宽度足够,以降低电阻,同时应尽量减少地线的串扰。
6.电源线的布局:电源线应尽量短,以减少电源波动对其他线路的影响。
此外,电源线应远离敏感信号线,以避免电源干扰。
8.组件标记和编号:对于复杂的PCB设计,正确的标记和编号可以帮助设计师更好地理解电路,并提高调试和维护的效率。
9.PCB层次和分区:复杂的电路可以使用多层PCB来布局布线,以降低信号干扰。
同时,可以将电路分区,将不同的功能电路分别布局,以提高整体性能和维护的便利性。
10.热管理:在布局中要考虑到发热元件的散热,避免将发热元件放在敏感的电路部分附近,以免影响其性能。
综上所述,正确的PCB布局布线可以提高电路的性能和稳定性,减少电磁干扰和信号串扰。
但以上仅是一些基本规则,实际设计中还需要考虑具体的应用环境和要求,因此在布局布线前,建议结合具体需求进行综合分析和优化设计。
《pcb布线规则及技巧》
交叉,二者距离应至少保证2W,3W为宜(因为I2C串行数据线的工作频率大概是 400K,而时钟线的工作频率在1M以上,易产生干扰)
电路或设备中,也往往要用到EMI电路或采取其它措施防止和抑制EMI的发生,以防 止和抑制干扰,如通讯电缆的终端电阻,电脑的机箱,变压器的屏蔽罩,用顺磁材 料或抗磁材料来疏导或阻止电磁场的穿行等等。EMI是产品投放市场前电工认证的 一个必检内容。 我们平时经常见到一些产品由于EMI不过关的报告或投诉。我 们常见 的开关电源入口处,有一个两个绕组的电感,这个电感是共模抑制电感,也起到减 少EMI的作用。另外,一些数据线的两头,会鼓出来一个大包包(例如电脑
13. 金手指布线时过孔只能打在补强以下。 14. 布线过程中,过孔的大小为硬板0.4/0.2,其余板0.35/0.15或0.3/0.1 15. MIPI接口是指串行差分接口,DVP接口是指并行传输接口
布线时发现边上布线空间不足,不够包地 ,除了可以换层之外,可以把过孔上移
当发现电源线(如左图 DOVDD)引脚在内部时, 0.2 粗细的电源线会超出安全距 离,此时可以打过孔布线或 者将电源线一分为二走向芯 片引脚,左图一分为二影响 DVDD走线,否则不应在 芯 片内部打过孔
(一分为二)
当电源线或地线引脚成排时,可采用图 示方法布线
当电源线走线与其他走线相交,若 走外围绕圈将导致空间不足以包地 时,可打过孔布线
MIPI线对间包地,当其中一组MIPI线S型 走线时,需对地线进行布线,便于散热
该图布线有误,MIPI线布线时应注意等 长,布线过程中应使MIPI线尽量紧靠, 间距保持在2W以内,长度无法实现等长 时,应使MIPI线集中在一个区域绕线改 变长度
pcb布局布线实验总结(汇总10篇)
pcb布局布线实验总结第1篇1.过孔的种类尽可能的少,不能太多,最好提前确定好过孔的种类,不然生成Gerber文件的时候,会提示钻孔超限。
提示:过孔的大小可以和直插元件的焊盘过孔设置相同尺寸,这样可以减小过孔种类。
2.过孔不能放置到焊盘上,不能离焊盘太近,避免回流焊时焊料流失,造成焊接不可靠;3.过孔比例一般按照1:2进行设置;4.过孔在检查完元器件位号丝印后,遮盖绿油;5.过孔应该行对齐或者列对齐;6.整板画完后,需要打地孔;7.最小的过孔与厂家联系;8.过孔镀层较薄,经不起大电流,可通过增大孔径,增加过孔数量的方法,透过0欧直插电阻,0欧直插磁珠的方式增大载流量。
9.推荐1000mil打地过孔,地孔过多,会影响电源的完整性。
pcb布局布线实验总结第2篇1.本来没有使用的接口引出来,便于使用。
2.将容值相同,封装不同的个数较少的电容种类合并;3.将JTECK接口改到顶层;4.对封装相同的的比如DSP的封装换成能够兼容增强型散热封装,便于芯片更换。
提高PCB的升级可能性。
(例如:TMS320F28335PGFA为铺铜DSP,TMS320F28335PTPQ为散热增强型DSP,后者增加了散热焊盘,其余两个芯片完全一样。
)5.圆形敷铜,大粗线将改为圆弧角;pcb布局布线实验总结第3篇1.先添加泪滴,再铺地;2.注意晶振同层铺地,背面不能走线;3.注意铺地不能出现直角或者锐角;可以多铺几次,选择最合理的铺地;4.隔离芯片输出需要铺隔离地;5.大功率器件,慎重使用敷铜,避免增大散热面积,而使焊接不良;6.设计规则改变,铺地可以刷新;7.低频实心铜,高频网格铜;8.铺地间距:单独设置。
例如:(InPolygon) toOnLa yer(‘KeepOutLayer’)设置距离板边禁止布线层的距离;(InPolygon) toAll设置铺铜距离其他的一切的距离;9.铺地,采用热风焊盘格式,用直连焊盘会导致SMD焊盘出现只连接几个点,而出现许多锐角。
PCB主线布线规范—IO
PCB主线布线规范—I/O
一、PS/2
1.布线顺序CONNECTOR→电容→电感→电容→电阻→IC;2.正背面尽量铺GND铜箔,多打VIA连通,减少EMI;3.信号线一起走,不要穿插其他线;
4.尽量不要跨内层切割线,少打VIA。
二、COM
1.电容(或排容)尽量靠近CONNECTOR;
2.布线顺序CONNECTOR→电容→IC;
3.正背面尽量铺GND铜箔,多打VIA连通,减少EMI;4.信号线一起走,不要穿插其他线;
5.尽量不要跨内层切割线,少打VIA。
三、VGA
1.布线顺序CONNECTOR→电容→电感→电容→电阻→IC;
2.R、G、B布线走differential,必须同时换层,尽量包地且至少隔100mil打GND孔,减少EMI;
3.HSYNC、VSYNC等间距大于10mil;
4.尽量不要跨内层切割线,少打VIA。
四、PRINTER
1.布线顺序CONNECTOR→电容→电阻→IC;
2.电容尽量靠近CONNECTOR;
3.正背面尽量铺GND铜箔,多打VIA连通,减少EMI;4.信号线一起走,不要穿插其他线;
5.尽量不要跨内层切割线,少打VIA。
五、USB
1.布线顺序CONNECTOR→电容→电感→电容→电阻→IC;
2.同组布线走differential,等长,同时换层,尽量不要跨内层切割线;
3.根据guideline设置线宽间距,组之间间距大于20mil。
和其他高频线大于40mil;
4.正背面尽量铺GND铜箔,多打VIA连通,减少EMI。
PCB布线PPT
14.1 自动布线 14.2 删除布线 14.3 交互式布线 14.4 多走线布线 14.5 差分对布线 14.6 调整布线
所谓的自动布线就是根据用户设定的布线 规则,利用布线算法,自动在各个元件间 进行连线,实现元件之间的电气连接关系, 进而快速完成PCB的布线工作。
布线相关的设计规则很多,包括Width、 Clearance、Short Circuit、Unrouted Net、 Routing Vias、Routing Layers、SMD Fanout Control、Routing Priority、Routing Corners 等
布线过程中的所有操作都必须遵守设计规则 约束。如违反,则操作不会成功或者会显示 违规报警。默认情况下,违规部位呈现绿色
执行菜单命令Place ≫ Interactive Routing或 者单击Wiring工具栏上的 按钮 或者按下快 捷键P + T,光标变为十字形,进入交互式 布线状态。
在此模式下,当未固定的走线部分包含转 角时,直接与光标相连的走线段为空心部 分,其余走线段填充有交叉线.
在布线过程中,按下Shift + R可以在这几种冲突解决方案 中进行切换
Oritacles
Push Obstacles
Hug and Push Obstacles
Ignore obstacles
Stop at the first obstacles
在布线过程中,如果有些走线的形状、长 度是完全相同的,可以先绘制一条走线, 然后采用复制的方法快速粘贴放好的走线, 既省时又省力。
例14-7
Ctrl + Z取消前一步布线操作
选中布线(选择走线的方法详见14.6.1节), 然后Del删除
PCB布线(明显诚)
PCB各层定义:Mechnical:一般多指板型机械加工尺寸标注层;Keepoutlayer:定义不能走线、打穿孔或摆零件的区域;Topoverlayer:表面丝印层;Bottomoverlayer:地面丝印层,用于绘制PCB元件的外形轮廓、标示符号或者其他文本注释信息;Toppaste:顶层需要露出铜皮上锡膏的部分;Bottompaste:底层需要露出铜皮上锡膏的部分;Topsolder:顶层阻焊层,避免短路;Bottomsolder:底层阻焊层,针对表面贴装元件;Drillguide:对不同孔径大小对应表;Drilldrawing:指孔位图;Multilayer:多层;旁路或去耦电容:在布线时,模拟器件和数字器件都需要这类型的电容;都需要靠近其电源引脚连接一个电容,此电容值通常为0.1mf,系统供电电源侧需要另一类电容,通常此电容值为10mf。
这些电容的位置如图1所示。
电容取值范围为推荐值的1/10至10倍之间。
但引脚需较短;且要尽量靠近器件(对于0.1mf电容)或供电电源(对于10mf 电容)。
在电路板上加旁路或去耦电容,以及这些电容在板上的位置,对于数字和模拟设计来说都属于常识。
但有趣的是,其原因却有所不同。
1、在模拟布线设计中,旁路电容通常用于旁路电源上的高频信号;如果不加旁路电容,这些高频信号可能通过电源引脚进入敏感的模拟芯片。
2、一般来说,这些高频信号的频率超出模拟器件抑制高频信号的能力,如果在模拟电路中不使用旁路电容的话,就可能在信号路径上引入噪声,更严重的情况可能引起振动。
进直流电源的开关位置必须加滤波电容,这样滤波效果比较好。
图1所示,在模拟和数字PCB设计中,旁路和去耦电容应尽量靠近器件放置。
供电电源的去耦电容应放置在电路板的电源线入口处。
所有情况下,这些电容的引脚都应较短。
图1 旁路电容和去耦电容图2所示(单面板设计),此电路板上,使用不同的路线来布电源线和地线,这种不恰当的配合,电路板的电子元件和线路受电磁干扰的可能性比较大图2,电源线、地线环路1图3,电源线、地线2图3所示,在此单面板中,到电路板上器件的电源线和地线彼此靠近。
PCB手动布线规则
PCB手动布线规则在PCB(Printed Circuit Board)的手动布线中,有许多规则和技巧可以帮助设计师实现高性能、低噪音和可靠性的电路板布线。
下面介绍一些重要的手动布线规则。
1.克服布线密度限制:当布线密度较高时,必须仔细考虑线路的走向和安排。
相邻元件之间的间距应保持足够的空间,以免发生短路。
布线时,可以通过改变引脚顺序或组合元件来降低布线密度。
2.保持信号完整性:布线时应注意信号完整性,特别是高速信号。
可以采用不同的技术来降低信号的传输延迟、串扰和反射。
保持信号走线路径的匹配性和对称性,使用正确的差分对,控制信号长度和层间跳距,以降低信号失真和抖动。
3.分离高频和低频信号:为了避免高频信号对低频信号的干扰,应将它们的走线路径尽量分离。
可以使用地平面和电源平面来提供屏蔽,减少干扰。
同时,在布线中要避免信号线和电源线、地线的交叉。
4.绕过敏感区域:在布线时,要避免将信号线通过敏感区域,如模拟和数字地区的交叉。
这样做可以减少干扰和串音的可能性。
如果不可避免,可以使用地平面间隔或屏蔽隔离来减少干扰。
5.控制天线效应:天线效应指布线中信号线的辐射或接收到其他信号线的干扰。
为了控制天线效应,可以选择适当的线宽和线间距,使其匹配电气规范。
在敏感区域周围,可以保持较大的缝隙,减少辐射和互相之间的耦合。
6.管理地平面和电源平面:在PCB布线中,地平面和电源平面的设计非常重要。
地平面可以减少信号的回流路径,提供低阻抗的返线回路。
电源平面可以提供稳定的电源供应,减小电源线的阻抗和噪音。
在布线时,要确保地平面和电源平面的连续性、一致性和低阻抗。
7.考虑阻抗控制:在高速信号传输中,阻抗控制非常重要。
布线时要注意控制差分对信号的阻抗一致性,以减少信号反射和串扰。
要根据所使用的信号线类型和材料选择适当的线宽和线间距。
8.减少盲穿孔:盲穿孔是绕过板上其中一层而连接到其他层的通孔。
当布线中需要使用盲穿孔时,要注意控制盲孔的直径和深度,以减小信号的损耗和串扰。
PCB走线总结
PCB走线总结PCB走线总结:元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开。
2.遵照“先大后小,先难后易”等的布置原则,即重要的单元电路、核心元器件应当优先布局。
3.布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件。
4.布局应该尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流、低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分。
5.相同结构电路部分,尽可能采用“对称式”标准布局。
6.器件布局栅格的设置,一般IC器件布局时,栅格应为50-100mil、小型表面安装器件,如表面贴装元件布局时,栅格设置应不少于25mil.7.同类型插装元器件在X或Y方向上应朝一个方向防止同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。
8.IC去耦电容的布局要尽量靠近IC的电源管脚,并使之与电源和地之间形成的回路最短。
9.元件布局时,应适当考虑使用同一种电源的器件尽量放在一起,以便于将来的电源分割。
10.用于阻抗匹配目的阻容器件的布局,要根据其属性合理布置。
串联匹配电阻的布局要靠近该信号的驱动端,距离一般不超过500mil。
匹配电阻、电容的布局一定要分清信号的源端和终端,对于多负载的终端匹配一定要在信号的最远端匹配。
11.表面贴装器件(SMD)相互间距离要大于0.7mm。
12.表面贴装器件焊盘外侧同相邻插件外形边缘距离要大于2mm。
13.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件。
14. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路。
15. 元器件的外侧距板边的距离为5mm。
16.BGA与相邻元件的距离>5mm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一篇 PCB布线在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。
PCB布线有单面布线、双面布线及多层布线。
布线时要注意输入端与输出端的连线,应避免相邻平行,以免产生反射干扰。
必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。
PCB 板的设计过程是一个复杂的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。
一、电源、地线的处理既使在整个 PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。
所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。
对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述:(1)加上去耦电容。
(2)A、加宽电源、地线;B、数字电路的地用网状连接,模拟电路的地则一点连接。
(3)做成多层板,使用电源,地线平面层。
二、数字电路与模拟电路的共地处理现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。
因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。
数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整个PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。
数字地与模拟地有一点短接,请注意,只有一个连接点。
也有在PCB上不共地的,这由系统设计来决定。
从表面上看,这样做是比较合理,然而在实际的电路中,数字电路和模拟电路并没有绝对的分开,对于这种情况就不能这样简单的处理了。
三、信号线布在电(地)层上(不建议这样做)在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。
首先应考虑用电源层,其次才是地层。
因为最好是保留地层的完整性。
四、大面积导体中连接腿的处理在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就电气性能而言,元件腿的焊盘与铜面满接为好,但对元件的焊接装配就存在一些不良隐患如:①焊接需要大功率加热器。
②容易造成虚焊点。
所以兼顾电气性能与工艺需要,做成十字花焊盘,称之为热隔离(heat shield)俗称热焊盘(Thermal),这样,可使在焊接时因截面过分散热而产生虚焊点的可能性大大减少。
多层板的接电(地)层腿的处理相同。
五、布线中网络系统的作用在许多CAD系统中,布线是依据网络系统决定的。
网格过密,通路虽然有所增加,但步进太小,图场的数据量过大,这必然对设备的存贮空间有更高的要求,同时也对象计算机类电子产品的运算速度有极大的影响。
而有些通路是无效的,如被元件腿的焊盘占用的或被安装孔、定们孔所占用的等。
网格过疏,通路太少对布通率的影响极大。
所以要有一个疏密合理的网格系统来支持布线的进行。
标准元器件两腿之间的距离为0.1英寸(2.54mm),所以网格系统的基础一般就定为0.1英寸(2.54 mm)或小于0.1英寸的整倍数,如:0.05英寸、0.025英寸、0.02英寸等。
六、设计规则检查(DRC)布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查有如下几个方面:(1)线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。
(2)电源线和地线的宽度是否合适,电源与地线之间是否紧耦合(低的波阻抗)?在PCB中是否还有能让地线加宽的地方。
(3)对于关键的信号线是否采取了最佳措施,如长度最短,加保护线,输入线及输出线被明显地分开。
(4)模拟电路和数字电路部分,是否有各自独立的地线。
(5)后加在PCB中的图形(如图标、注标)是否会造成信号短路。
(6)在PCB上是否加有工艺线?阻焊是否符合生产工艺的要求,阻焊尺寸是否合适,字符标志是否压在器件焊盘上,以免影响电装质量。
(7)多层板中的电源地层的外框边缘是否缩小,如电源地层的铜箔露出板外容易造成短路。
第二篇 PCB布局在设计中,布局是一个重要的环节。
布局结果的好坏将直接影响布线的效果,因此可以这样认为:合理的布局是PCB设计成功的第一步。
在布局时可根据走线的情况对门电路进行再分配,将两个门电路进行交换,使其成为便于布线的最佳布局。
在布局完成后,还可对设计文件及有关信息进行返回标注于原理图,使得PCB板中的有关信息与原理图相一致,以便在今后的建档、更改设计能同步起来, 同时对模拟的有关信息进行更新,使得能对电路的电气性能及功能进行板级验证。
--考虑整体美观一个产品的成功与否,一是要注重内在质量,二是兼顾整体的美观,两者都较完美才能认为该产品是成功的。
在一个PCB板上,元件的布局要求要均衡,疏密有序,不能头重脚轻或一头沉。
--布局的检查印制板尺寸是否与加工图纸尺寸相符?能否符合PCB制造工艺要求?有无定位标记?元件在二维、三维空间上有无冲突?元件布局是否疏密有序,排列整齐?是否全部布完?需经常更换的元件能否方便的更换?插件板插入设备是否方便?热敏元件与发热元件之间是否有适当的距离?调整可调元件是否方便?在需要散热的地方,装了散热器没有?空气流是否通畅?信号流程是否顺畅且互连最短?插头、插座等与机械设计是否矛盾?线路的干扰问题是否有所考虑?第三篇高速PCB设计(一)、电子系统设计所面临的挑战随着系统设计复杂性和集成度的大规模提高,电子系统设计师们正在从事100MHZ以上的电路设计,总线的工作频率也已经达到或者超过50MHZ,有的甚至超过100MHZ。
目前约50% 的设计的时钟频率超过50MHz,将近20% 的设计主频超过120MHz。
当系统工作在50MHz时,将产生传输线效应和信号的完整性问题;而当系统时钟达到120MHz时,除非使用高速电路设计知识,否则基于传统方法设计的PCB 将无法工作。
因此,高速电路设计技术已经成为电子系统设计师必须采取的设计手段。
只有通过使用高速电路设计师的设计技术,才能实现设计过程的可控性。
(二)、什么是高速电路通常认为如果数字逻辑电路的频率达到或者超过45MHZ~50MHZ,而且工作在这个频率之上的电路已经占到了整个电子系统一定的份量(比如说1/3),就称为高速电路。
实际上,信号边沿的谐波频率比信号本身的频率高,是信号快速变化的上升沿与下降沿(或称信号的跳变)引发了信号传输的非预期结果。
因此,通常约定如果线传播延时大于1/2数字信号驱动端的上升时间,则认为此类信号是高速信号并产生传输线效应。
信号的传递发生在信号状态改变的瞬间,如上升或下降时间。
信号从驱动端到接收端经过一段固定的时间,如果传输时间小于1/2的上升或下降时间,那么来自接收端的反射信号将在信号改变状态之前到达驱动端。
反之,反射信号将在信号改变状态之后到达驱动端。
如果反射信号很强,叠加的波形就有可能会改变逻辑状态。
(三)、高速信号的确定上面我们定义了传输线效应发生的前提条件,但是如何得知线延时是否大于1/2驱动端的信号上升时间?一般地,信号上升时间的典型值可通过器件手册给出,而信号的传播时间在PCB设计中由实际布线长度决定。
下图为信号上升时间和允许的布线长度(延时)的对应关系。
PCB 板上每单位英寸的延时为 0.167ns.。
但是,如果过孔多,器件管脚多,网线上设置的约束多,延时将增大。
通常高速逻辑器件的信号上升时间大约为0.2ns。
如果板上有GaAs芯片,则最大布线长度为7.62mm。
设Tr 为信号上升时间, Tpd 为信号线传播延时。
如果Tr≥4Tpd,信号落在安全区域。
如果2Tpd≥Tr≥4Tpd,信号落在不确定区域。
如果Tr≤2Tpd,信号落在问题区域。
对于落在不确定区域及问题区域的信号,应该使用高速布线方法。
(四)、什么是传输线PCB板上的走线可等效为下图所示的串联和并联的电容、电阻和电感结构。
串联电阻的典型值0.25-0.55 ohms/foot,因为绝缘层的缘故,并联电阻阻值通常很高。
将寄生电阻、电容和电感加到实际的PCB连线中之后,连线上的最终阻抗称为特征阻抗Zo。
线径越宽,距电源/地越近,或隔离层的介电常数越高,特征阻抗就越小。
如果传输线和接收端的阻抗不匹配,那么输出的电流信号和信号最终的稳定状态将不同,这就引起信号在接收端产生反射,这个反射信号将传回信号发射端并再次反射回来。
随着能量的减弱反射信号的幅度将减小,直到信号的电压和电流达到稳定。
这种效应被称为振荡,信号的振荡在信号的上升沿和下降沿经常可以看到。
(五)、传输线效应基于上述定义的传输线模型,归纳起来,传输线会对整个电路设计带来以下效应。
· 反射信号Reflected signals· 延时和时序错误Delay & Timing errors· 多次跨越逻辑电平门限错误False Switching· 过冲与下冲Overshoot/Undershoot· 串扰Induced Noise (or crosstalk)·电磁辐射EMI radiation5.1 反射信号如果一根走线没有被正确终结(终端匹配),那么来自于驱动端的信号脉冲在接收端被反射,从而引发不预期效应,使信号轮廓失真。
当失真变形非常显著时可导致多种错误,引起设计失败。
同时,失真变形的信号对噪声的敏感性增加了,也会引起设计失败。
如果上述情况没有被足够考虑,EMI将显著增加,这就不单单影响自身设计结果,还会造成整个系统的失败。
反射信号产生的主要原因:过长的走线;未被匹配终结的传输线,过量电容或电感以及阻抗失配。
5.2 延时和时序错误信号延时和时序错误表现为:信号在逻辑电平的高与低门限之间变化时保持一段时间信号不跳变。
过多的信号延时可能导致时序错误和器件功能的混乱。
通常在有多个接收端时会出现问题。
电路设计师必须确定最坏情况下的时间延时以确保设计的正确性。
信号延时产生的原因:驱动过载,走线过长。
5.3 多次跨越逻辑电平门限错误信号在跳变的过程中可能多次跨越逻辑电平门限从而导致这一类型的错误。
多次跨越逻辑电平门限错误是信号振荡的一种特殊的形式,即信号的振荡发生在逻辑电平门限附近,多次跨越逻辑电平门限会导致逻辑功能紊乱。