ZNA_PC_CONV_ProjectWeeklyReport_100728

合集下载

后门通信分析实验报告

后门通信分析实验报告

一、实验目的1. 了解后门通信的基本原理和常见方式。

2. 掌握使用网络抓包工具对后门通信过程进行分析的方法。

3. 培养网络安全意识和防御能力。

二、实验环境1. 操作系统:Windows 102. 网络抓包工具:Wireshark3. 后门软件:DinodasRAT Linux后门4. 服务器端:Linux虚拟机三、实验步骤1. 搭建实验环境(1)在Windows 10操作系统上安装Wireshark,用于抓取网络数据包。

(2)在虚拟机中安装Linux操作系统,作为DinodasRAT Linux后门的服务器端。

2. 部署DinodasRAT Linux后门(1)下载DinodasRAT Linux后门源码。

(2)在Linux虚拟机上编译并运行DinodasRAT Linux后门。

3. 模拟攻击场景(1)在Windows 10主机上运行DinodasRAT Linux后门的客户端程序。

(2)通过客户端程序连接到Linux虚拟机上的DinodasRAT Linux后门服务器。

4. 抓取后门通信数据包(1)在Wireshark中设置过滤器,筛选出与DinodasRAT Linux后门通信相关的数据包。

(2)分析抓取到的数据包,了解后门通信的过程和内容。

四、实验结果与分析1. 后门通信过程通过分析抓取到的数据包,我们可以看到DinodasRAT Linux后门通信过程如下:(1)客户端发送一个连接请求,包含客户端的IP地址和端口号。

(2)服务器端接收到连接请求后,生成一个随机端口号,并返回给客户端。

(3)客户端与服务器端建立连接,并开始进行通信。

(4)客户端向服务器端发送一个心跳包,用于保持连接。

(5)服务器端接收到心跳包后,返回一个响应包。

2. 后门通信内容通过分析数据包内容,我们可以了解到DinodasRAT Linux后门的功能如下:(1)文件传输:客户端可以向服务器端上传或下载文件。

(2)命令执行:客户端可以远程执行服务器端的命令。

SignalTEK 10G 10G Ethernet Troubleshooter and Band

SignalTEK 10G 10G Ethernet Troubleshooter and Band

Why do I need a10G Ethernet T ester?ProblemLAN networks are at risk Solution SignalTEK 10G willAvoid network downtimeTroubleshoot Ethernet connectivity issues faster using diagnostic tools.Pinpoint bottlenecks fasterDiscover which part of your network is causing the bottleneck.Validate network upgradesVerify Multi-Gigabit switch upgrades to 1/2.5/5 and 10Gb/s speeds.Prove the maximum bandwidthProvide “proof of performance” PDF reports to the client.The new SignalTEK 10G measures the maximum bandwidth of the network cabling up to 10 Gigabits per second. Bysimulating actual network traffic users can test, troubleshoot and document network and data cable performance up to 10 Gigabit Ethernet standards.SignalTEK 10G has built-in Wi-Fi connectivity to connect seamlessly to the free AnyWARE Cloud test management system. AnyWARE Cloud offers pre-configuration to eliminate errors on-site, label printer connectivity to save time and “proof of performance” PDF reports for the clients.SignalTEK 10G10G Ethernet Troubleshooter and Bandwidth TesterIncrease your network speedfrom 1Gb/s to 10Gb/sProblemThere are 111 billion metres of Cat5e/Cat6 cabling installed globally that is limited to 1Gb/s bandwidth speeds due to the current switches deployed. Upgrading to Multi-Gigabit switches could increase speed but it is unclear what bandwidth the existing cabling will support.SolutionUse SignalTEK 10G to verify what the data cabling will support (up to 10Gb/s) before spending moneyon new Multi-Gigabit switches delivering2.5/5/10Gb/s speeds. Use the SignalTEK 10G again following the upgrade to prove performance to the client with the “proof of performance” PDF reports.As simple as 1-2-3Easy to understand traffic light status - The simple traffic lightindicator displays Good, Marginal or Poor power level based onIEEE 802.3 1G/10G limits.Max throughput test - The SignalTEK 10G will prove the maximumavailable bandwidth over the fibre link up to 10Gb/s.Discover a faulty SFP – The SFP temperature is measured to helpunderstand if it has become faulty.Will my existing cablinginfrastructure supportMulti-Gigabit technology?10G/Multi-Gigabit Performance90W PoE for AV and Digital SignageTest copper and fibrevertical cablingVoIP testing and troubleshootingMeets your network needs today and tomorrow.The SignalTEK 10G will help to increase network bandwidth without replacing expensive cableinfrastructure, troubleshoot PoE and Ethernet issues and prove the maximum bandwidth up to 10 Gigabits per second.6Testing through Network testing andConduct preventative maintenance testing, audit network capabilities and Prove performance of new cableinstallations up to 10GNetwork T estingThe SignalTEK 10G is also a network tester for troubleshooting and maintenance of active and passive copper and fibre networks.Port & network summary info Press the Autotest button to display summary information and allow for detailed inspection of networkparameters.VLAN detection & operationAutomatic detection of VLAN IDsallows the user to configure SignalTEK10G for operation on a VLAN.Custom WiremapUse a list of wiremap templates forcommon Ethernet cable types aswell as non-Ethernet cables, such asProfinet and ISDN.CDP/LLDP/EDP port informationShow port information using Cisco Discovery Protocol (CPD). Link Layer Discovery Protocol (LLDP) and Extreme Discovery Protocol (EDP).NetscanDisplay list of IP and MAC addressesof every device connected tothe network.72-hour event logFind rogue devices and intermittentissues using the 72-hour event log.SignalTEK 10G logs all network eventsover a 72-hour period to help diagnose connectivity issues faster, reducing hours onsite and reducing trips to the site. Leave the tester onsite, connect remotely tomonitor network activity, view the event log and control all functions of the tester from the office.The SignalTEK 10G will log all network eventsover a 72-hour period to help diagnose connectivity issues faster, reducing hoursonsite and reducing trips to site.72-hour event log captures network events down to the second eliminatingguessworkNo more trial and errorAccurately measure the maximum power available Supports PoE up to 90W (PoE++)Test all PoE Classes (0-8) and Types (af/at/bt)Identifies the powered pairsDetermine whether power is from a switch or mid-span injectorVerify the PoE installationPass / Fail indication to IEEE standards Extended power testSome switches may provide power exceeding their IEEE Class rating. Measure the maximum available power up to 90 watts.PoE T esting.Eliminate GuessworkThe SignalTEK 10Geliminates guesswork when installing, maintaining and troubleshooting wherePoE is deployed up to 90W (PoE++).10Adoption of Power over Ethernet (PoE)In just a few short years we have seen many different applications increasing adopt PoE, such as monitors, digital signage, phones, security cameras, lighting and access control.Previously technicians had to understand all the various standards, device power outputs and cable lengths to be sure a device will operate successfully.The SignalTEK 10G identifies the Class of the PoEsource and power available up to 90W to a PoE device regardless of cable length, cable quality or other factors. A clear pass/fail is provided to IEEE 802.3af/at/bt standards.The SignalTEK 10G identifies the Class of the PoE source and power available up to 90W to a PoE deviceregardless of cable length, cablequality or other factors.11Proof of PerformanceCloud software• Operates anywhere with a web browser – AnyWARE Cloud operates on a PC, Mac and tablet devices (Android and iOS)• Free storage – No need for separate servers or backup systems.• Easy to find project files – Attach all project filesincluding cable layout drawings, videos, and photos into the AnyWARE Cloud. Everything you need in one place. • Share reports easier – Use AnyWARE Cloud to share links to the test reports eliminating the need to manually email large attachments.• Reduce training time with WalkMe – AnyWARE Cloud is embedded with the WalkMe digital adoption platform providing proactive, step-by-step guidance on all key tasks.Fleet management• Easily manage the certifier fleet – Fleet manager allows you to see who has the SignalTEK 10G when the software was last updated and when the results were last synced. Allowing you to manage tester downtime and ensuring results are transferred back to the office and not lost or deleted.Professional PDF reporting• Customer profiles – Create a profile for each of thecustomers with their company logo, address and contact details. This information is automatically pulled through to the reports, saving time.Report formats• Summary report – This is a report showing multiple tests per page.• Detailed report – This is a comprehensive report with all the measurement results with one page per test. Reports can be generated on the SignalTEK 10G or on the free IDEAL AnyWARE Cloud.The AnyWARE Cloudmanagement system allows real time collaboration between Project Managers and Field Technicians. There is no need for Field Technicians to setup the SignalTEK 10G, Project Managers pre-configure thejobs and tests in the AnyWARE Cloud, eliminating potential mistakes and compressing the time taken to prepare reports for customers.Test Management SoftwareIDEAL AnyWARE Cloud Jobs screenIDEAL AnyWARE Cloud Test Result report12ax throughput test up to 10GComplete ConnectivityWi-Fi connectivity to the AnyWARE Cloud management system. USB connection for transferring test dataBuilt-in PDF ReportingReports can be generated directly from the SignalTEK 10G as well as the CloudPartner FinderProvides audible tone and visible indicator when connected tothe remote unitTouchscreenHigh resolution impact resistant touchscreenfor ease of useInternal LoadspeakerAudible tones assist theuser when testingIntuitive UserInterfaceSimplified user interfacefor easy setup andoperationRugged DesignRubberised housing, protected screenand protected measurement portLabel Printer ConnectivityEasily send label IDs to printers for fast and accurate labellingSignalTEK 10GPart NoDescriptionUPGRADE10GFIB UPGRADE SignalTEK 10G - Fibre testing option UPGRADE10GNETUPGRADE SignalTEK 10G - Network testing optionSignalTEK 10G is a future-proof investment as additional features can be unlocked with a simple license key when required. There are two upgrade options to choose from: fibre testing and advanced network testing.Future-proof the investment14Who is SignalTEK 10G designed for?SolutionSignalTEK 10GCT R157000SignalTEK 10GFT R157001SignalTEK 10GNT R157002SignalTEK 10GPRO R157003CategoryDisplays voltage and which pairs have PoEPass / Fail to PoE IEEE standardsMax power available (up to 90 watts)Type (af/at/bt) and Class (1 to 8)P o EF i b r eo p t i o n a lC o p p e rUptime efficiency and 72 hour event log Switch Speed - 100M, 1G, 2.5G, 5G, 10G Testing with packet loss, jitter and delay VLAN, PING, TraceRoute, Hub blink, NetScanProve network performance up to 10GCDP/LLDP/EDP port information N e t w o r ko p t i o n a lPass / Fail to fibre IEEE standards Wiremap, distance to fault, length Optical Tx/Rx power indication Max bandwidth test up to 10Gb/s SFP temperature, vendor and model Cable tracing (with compatible probe)Max bandwidth test up to 10Gb/sData transmission test 1/2.5/5/10GbSupports SFP/SFP+ (MM&SM)Pass / Fail to copper IEEE standardsData transmission test 1/10Gb NbaseT/Multi-Gigabit test 1/2.5/5/10Gb 15Proof of PerformanceIDEAL NETWORKS, SignalTEK and the IDEAL AnyWARE logos are trademarks or registered trademarks of IDEAL INDUSTRIES NETWORKS LIMITED.IDEAL INDUSTRIES NETWORKS LIMITEDStokenchurch House, Oxford Road, Stokenchurch, High Wycombe, Buckinghamshire, HP14 3SX, UK.Tel. +44 (0)1925 428 380 | Fax. +44 (0)1925 428 381********************Specification subject to change without notice. E&OE© IDEAL INDUSTRIES NETWORKS LIMITED 2020Publication no.: 157805 Rev.1SignalTEK 10G10G Ethernet Troubleshooterand Bandwidth TesterOrdering informationOptional Accessories。

ZTEPRA工具使用说明

ZTEPRA工具使用说明

ZTEPRA工具使用说明创建数据库技巧:如果所有表都要重新导入,直接选择创建数据库。

技巧:如果只需要重新导入某一类型的表,进行本表删除。

基本表的对应关系导出表的所有文件:表的导出步骤中兴设备L TE内容解析基本数据导出导入如下表:LTESee_EUTRAN邻区关系导出导入如下表:LTESee_EUTRAN_GSM邻区关系导出EUTRAN外部数据核查EURAN错误外部邻区,冗余外部核查EUTRAN小区测量参数GSM配置导出拆分EUTRAN小区测量参数GSM配置导入合并第一步,点击“EUTRAN小区测量参数GSM配置导出拆分”,导入数据库内:第二步,填好以下模板,点击“EUTRAN小区测量参数GSM配置导入合并”,选择xlsx文件导入。

(模板的列不要随便移动,以“EUTRAN小区测量参数GSM配置导出拆分”导出的模板,增加两列即可。

注意:(除了explicitARFCN1~ explicitARFCN31)字段外,其他字段,可以默认不动或修改,合并时,程序会从其他字段自动取值。

EUTRAN小区测量参数异频载频测量配置导出拆分EUTRAN小区测量参数异频载频测量配置导入合并填好模板,点击“EUTRAN小区测量参数异频载频测量配置导入合并”,选择xlsx文件导入。

注意:模板直接采用“EUTRAN小区测量参数异频载频测量配置导出拆分”的模板,列字段不要动。

如下所示:注意:合并模板里,必须包含小区原来已经存在的频点和需要新增的频点的行,否则,生成后,会丢失原来已经存在的频点。

EUTRAN小区重选异频配置导出拆分EUTRAN小区重选异频配置导入合并填好模板,点击“EUTRAN小区重选异频配置导入合并”,选择xlsx文件导入。

注意:模板直接采用“EUTRAN小区重选异频配置导出拆分”的模板,列字段不要动。

如下所示,直接增加一行:注意:合并模板里,必须包含小区原来已经存在的频点和需要新增的频点的行,否则,生成后,会丢失原来已经存在的频点。

一种高吞吐低延迟片上互连网络路由器

一种高吞吐低延迟片上互连网络路由器

第50 卷第 8 期2023年8 月Vol.50,No.8Aug. 2023湖南大学学报(自然科学版)Journal of Hunan University(Natural Sciences)一种高吞吐低延迟片上互连网络路由器李晋文†,申慧毅,齐树波(国防科技大学计算机学院,湖南长沙 410073)摘要:本文提出了一种用于片上互连网络的低延迟高吞吐量动态虚拟输出队列路由器,该路由器可以利用前瞻路由计算和虚拟输出队列方案将路由器延迟减低到两个周期.仿真结果表明,与虫孔路由器和虚通道路由器相比,4×4网格上的网络吞吐量分别提高了46.9%和28.6%,并且在相同输入加速比下,性能比双缓冲虚通道路由器要高1.9%.在随机合成流量下,片上网络的零负载延迟也分别降低了25.6%和41%.设计实现结果表明,路由器的工作频率可以达到2.5 GHz.关键词:片上网络;路由器;吞吐量;延迟中图分类号:TN913.3 文献标志码:AA High-throughpur Low-latency Router for On-chip InterconnectNetworksLI Jinwen†,SHEN Huiyi,QI Shubo(School of Computer Science, National University of Defense Technology, Changsha 410073, China)Abstract:A low-latency high-throughput Dynamic Virtual Output Queues Router for On-chip interconnect networks is proposed in this paper,which can reduce the router latency to two cycles by leveraging look-ahead routing computation and virtual output queues scheme. The simulation results show that,compared with the wormhole router and virtual-channel router, the network throughput on a 4×4 mesh increases by up to 46.9% and 28.6%, respectively, and outperforms doubled buffer virtual channel by 1.9% under the same input speedup. Under random synthetic traffic,the zero-load-latency of the network on chip is also reduced by 25.6% and 41%,respectively. Synthesis results indicate the frequency of router can reach 2.5 GHz.Key words:on-chip network;router;throughput;latency随着半导体技术的飞速发展,越来越多的处理器核(多核和众核)集成在单个芯片上,而随着MOS 管尺寸的不断缩小,门级电路延迟在不断缩小,全局互连线的延迟相对于MOS管延迟还在不断增加.微∗收稿日期:2022-11-03基金项目:HPCL国家重点实验室基金项目(202101-02);国家自然科学基金资助项目(60873212),National Natural Science Foundation of China(60873212)作者简介:李晋文(1975—),男,山西武乡人,国防科技大学研究员,博士† 通信联系人,E-mail:*****************文章编号:1674-2974(2023)08-0141-06DOI:10.16339/ki.hdxbzkb.2023289湖南大学学报(自然科学版)2023 年处理器体系结构设计的重点正在从以提高计算为中心的单核能力设计转向以互连通信为中心的多核设计.由于互连延迟可预测、设计复杂度比较低、易扩展性和结构规整,片上网络已成为CMP和MPSoC中片上众核互连最有前途的选择[1].其中2D mesh互连网络已广泛应用于许多原型芯片,如Intel 80核Tera⁃flop、Tilera 64核和TRIPS[2-4].片上网络的概念来源于多处理器间互连网络,但实际与多芯片间互连网络有着许多不同的特点.最重要的一点,芯片内互连线和引脚比芯片间网络中的互连线和引脚资源更丰富[1].然而,片上网络中缓冲buffer容量不足.网络的延迟对实际多核的计算性能有很大影响.当路由器的每跳延迟从一个周期增加到五个周期时,全系统的性能将下降10%[5].基准的虚通道路由器的流水线级数为4.近年来,业界提出了几种新型架构的低延迟路由器,包括推测虚通道路由器[6]、采用虫孔交换的两虚通道结构路由器[7]、混合电路交换路由器[5]、带bundle的两周期路由器[8]、组合型两周期路由器[9]、无缓存片上路由器[10]、基于时间序列开关分配路由器[11]以及关键路径延迟只有35个FO4[12]的单周期路由器(FO4是指一个反相器驱动四个相同尺寸反相器产生的延迟,高性能微处理器的周期一般约为20个FO4).缓冲buffer的实现对互连网络的性能至关重要.缓冲buffer可以用寄存器或SRAM来实现.在芯片中,通常缓冲buffer的容量相对较小,因此使用低延迟的寄存器实现更为有利,而使用SRAM会存在较大的地址译码延迟以及存储阵列访问延迟,这些延迟与全局位线相关;此外还能节省位线预充电功耗[13].在标准的虚通道路由器中,每个虚通道都需要自带缓冲buffer,一个虚通道无法使用其他虚通道的缓冲buffer[14].DAMQ路由器设立了5个缓冲buffer队列,每个队列对应一个虚通道,多出的一个队列作为共享缓冲buffer,一个报文flit从到达到离开路由器需要3个时钟周期[15].VichaR路由器能够根据数据流量(traffic)来调节和分配每个物理通道的虚通道和缓冲buffer数量,并使用复杂的VC控制表来管理报文flit,能够有效提高缓冲buffer的使用效率,其缺点是路由器延迟会达到四个时钟周期.当路由器中发生拥塞时,无论是采用基于信用还是基于开关的流控策略,通道流水线中的缓冲buffer都不能用于缓冲flit.iDEAL路由器提出用中继器(repeater)电路来缓冲flit报文[16],然而中继器存在较大漏流问题,会导致不可靠.本文提出了一种新型的两周期路由器——动态虚通道输出队列路由器(DVOQR),采用多端口缓冲buffer和虚拟输出队列来消除虚通道路由器中的分配站(allocation stage).采用Ready/Valid握手机制来控制路由器之间的flit流,在这种策略下,流水线通道中的存储器可以用于缓冲flit报文.本文其余部分组织如下,第1节介绍了路由器的微架构.第2节给出了路由器的具体设计实现.第3节分析了模拟结果.最后,第4节对本文工作进行了简要总结.1 路由器微架构1.1 DVOQR路由器微架构本文提出了一种新型动态虚通道输出队列路由器(DVOQR),其微架构如图1所示.路由器包括P个输入端口和P个输出端口.对于二维mesh网络,P= 5;一个端口连接到本地处理器(核),其他端口连接到相邻路由器.输入单元由三个主要模块组成:集中动态缓冲器(Unified Dynamic Buffer,UDB)、集中动态缓冲分配器(Unified Dynamic Buffer Allocation,UDBA)、P个虚拟输出地址队列(Virtual Ouput Address Queue,以下简称VOAQ).输出端口包括一个P选1的仲裁器和一个P输入的多路复用器.由多个flit组成1个数据报文,存储在同一FIFO队列中,路由到同一输出端口.每个输入端口有P个FIFO队列,它们共享一个UDB并各自带一个私有的VOAQ.每个FIFO中flit的地址存储在虚拟输出地址队列(VOAQ)中.这样一来,就可以有效消除队列头阻塞(HOL)延迟问题[17].芯片间网络路由器中的缓冲buffer一般使用SRAM来实现.大容量的多端口SRAM存储器由于需要较大的面积开销、较高的功耗和访问延迟而难以实现,而使用小容量的寄存器来实现多端口缓冲器buffer要容易得多.受片上资源的限制,UDB用低延迟的多端口寄存器实现,具有1个写端口和P个读端口.每个读端口对应1个FIFO队列.尽管使用多个端口会导致面积开销增加,但可以消除虚通道路由器流水线的分配站.连接到输出端口的CDB,由CDB控制器和两项142第 8 期李晋文等:一种高吞吐低延迟片上互连网络路由器寄存器组成,如图2(a )所示.其中一个寄存器负责接收来自路由器的flit ,而另一个寄存器负责将flit 发送到下一个路由器,一收一发.在下一个周期中,两个寄存器交换收发功能.因此CDB 可以同时接收和发送flit ,可以避免流水线产生气泡.图2(b )给出了CDB 控制器的实现电路.state [1:0]表征两个寄存器的状态.读指针rd_ptr 对应发送寄存器,写指针wr_ptr 对应接收寄存器.当路由器之间的线延迟超过一个时钟周期时,可以插入多个CDB.UDBA 用于为队列分配时隙或释放空时隙.使用状态向量来跟踪所有时隙的状态,1表示时隙可用.当时隙分配给flit 时,相应的位将被清掉.采用固定优先级仲裁器以简化分配逻辑,最低可用时隙将被分配最高的优先级.设计了四个物理VOAQ 来缓存同一队列中的flit.当某一个flit 注入UDB 时,UDBA 负责将分配给它的时隙号写入对应的VOAQ ,该VOAQ 还会保存该报文的路由信息以及flit 类型.在UDB 读操作之前,需要首先从VOAQ 中读出UDB 中flit 的地址,这将增加UDB 的访问延迟.本文设计了一种新颖的移位FIFO ,可以有效减少UDB 的读延迟.图3给出了VOAQ 的微架构,使用one-hot 向量来指向FIFO 的尾部,而第一项指向FIFO 的头部.尾向量的宽度比UDB 的深度D 要大1.当tail_vector [0]为1时,FIFO 为空;而tail_vector [D ]等于1时,FIFO 为满.当头数图1 DVOQR 路由器微架构Fig.1 Microarchitecture of DVOQR(a )Architecture of channel double buffer(b ) Channel double buffer controller图2 通道的双缓存控制器Fig.2 Channel double buffer controller143湖南大学学报(自然科学版)2023 年据离开队列时,VOAQ 中的其他数据将向前移一位,而tail_vector 将进行右移.当新数据到达时,数据将被添加到VOAQ 的尾部,并且tail_vector 左移1位.当新数据在同一时钟周期内到达和离开时,tail_vector 将不发生移位.DVOQR 中的交换分配单元使用P 个round-robin 仲裁器实现.交换分配单元只需要一级仲裁,即可实现最大匹配,从而提高路由器吞吐量并降低分配延迟.1.2 DVOQR 流水线设计DVOQR 路由器的流水线由两站组成:flit 交换站(Flit Switch ,FS )和链路传输站(Link Traversal ,LT ).FS 站:完成交叉开关分配、前瞻路由计算、UDB读操作和Crossbar 传输.其中交叉开关分配、前瞻路由计算和UDB 读操作能够并行.当VOAQ 的第一项是head flit 报文片时,会为目的仲裁器产生一个请求信号.同时,发送VOAQ 中的flit 地址到UDB ,启动读操作,根据报文的路由信息,采用维序路由算法进行路由的前瞻计算.如果请求未被批准,将在下一个周期中重试,而不需要再次读取flit 报文.LT 站:在这一站中,flit 通过物理链路发送并写入UDB ,并根据FS 站的前瞻路由计算结果,将分配给flit 的地址写入VOAQ 中.1.3 流控机制DVOQR 使用了一种新的流控机制,称为ready-valid 握手机制(handshake ).ready 输出表示UDB/CDB 有可用的存储来接收flit 报文.valid 信号标识当前的flit 报文是有效的.当ready 和valid 信号在同一个周期内有效时,说明flit 报文已经提交.当下一级路由器发生拥塞时,链路上流水线中的CDB 可以缓冲flit 报文,这等效于增加了缓冲buffer 容量.基于维序路由算法,这种流控机制可以有效避免死锁.2 设计实现基于RTL 设计实现了用于片上2D mesh 网络的DVOQR 路由器,数据位宽128位,带有16项UDB ,评估了路由器的性能和功耗,综合生成门级网表,并对时序进行了详细的分析.FS 站和LT 站的关键路径延迟分别为400 ps (11.4 FO4)和252 ps (7.2 FO4),该工艺下的FO4为35 ps.表1给出了路由器中各功能部件的面积和功耗.3 模拟结果3.1 模拟方法本文采用随机人工合成流量模型评估互连网络的性能.表2给出了模拟实验的参数设置.采用周期精确模拟器Booksim [14]来评估虫孔路由器(Worm⁃hole Router ,WH )和虚通道路由器(Virtual-channel Router ,VC ).本文使用Verilog HDL 设计实现了DVOQR 的RTL 模型.测试程序采用随机通讯的合成程序,进行了仿真模拟,预热时间为1万个时钟周期,测量时间为10万个时钟周期.3.2 模拟结果分析3.2.1 不同缓冲容量的影响图4为带16项UDB 的DVOQR 路由器在随机流量负载下的平均延迟曲线.虫孔路由器和虚信道路由器中的输入缓冲buffer 数量为16~64 flit.与其他两种路由器相比,DVOQR 的吞吐量分别增加了33.2%和12%,而其他路由器缓冲buffer 的容量是DVOQR 的3倍.因此,DVOQR 可以更有效地使用输入缓冲器.其中,三种路由器的零负载延迟分别为10.4、14.0和17.7.表1 路由器中各功能部件的面积和功耗Tab.1 Area and power consumption of each functionalcomponent模块UDBVOAQinput portoutput port CDBrouter 组合逻辑面积/(μm )218 9452 49629 7311 5102 236167,385时序逻辑面积/(μm )231 47531 6844 0931133 065221,595总面积/(μm )250 4205 66473 8241 6235 301403,740功耗/mW58.87.589.30.60312.1507.5数量/个5205551图3 VOAQ 的微架构Fig.3 Microarchitecture of virtual ouput address queue144第 8 期李晋文等:一种高吞吐低延迟片上互连网络路由器3.2.2 相同输入加速比UDB 有四个读端口,因此DVOQR 的输入加速比是4.图5给出了在随机流量负载相同输入加速比时的平均延迟曲线.与VC_4×4和VC_4×8相比,VOQ_16的吞吐率分别增加17.6% 和1.9%,而VC_8×8 和VC_8×16的吞吐率分别比VOQ_16要高2.9%和7.5%.DVOQR 吞吐率比双缓冲虚通道路由器要高1.9%.在相同的输入加速比下,采用动态缓冲buffer分配只需要一半的buffer 容量就能达到相同的吞吐率.3.2.3 UDB 深度的影响图6给出了随机流量下DVOQR 网络性能与UDB 深度的相关性.2项UDB 的网络饱和点约为50%,16项UDB 的饱和点可达到82.4%.当UDB 的深度大于8时,吞吐率的增加随着UDB 深度的增加速度放缓.当注入流量小于0.4时,采用不同深度UDB 的平均延迟几乎是相同的.可以根据网络流量打开或关闭一部分UDB ,这样可以有效减少缓冲buffer 的漏流功耗.事实上,缓冲buffer 产生的漏流功耗是整个NoC 路由器漏流功耗的最主要来源.3.2.4 报文长度的影响图7给出了随机流量下带16项UDB 的DVOQR平均延迟与数据报文长度的关系,报文长度为2~32个flit.吞吐率随着报文长度的增加而降低.报文长度为32 flit 和2 flit 网络的饱和点分别为57.5%和87.5%.报文长度进一步增加将导致阻塞,因此需要占用更多的物理通道,而且竞争增加将导致更大的延迟.图7 对应不同报文长度下DVOQR 平均延迟Fig.7 Average latency of DVOQR under differentmessage lengths表2 模拟参数设置Tab.2 Simulation parameter settingsnetwork路由算法报文长度流量注入DVOQR 路由器虫孔路由器(WH )虚通道路由器(VC )4×4 meshdimension-order routing four flitsBernoulli processtwo-stage pipeline ,the depth of UDB is 16 for VOQ_16three-stage pipeline ,the depth of buffer is 16 for WH_16.four-stage pipeline ,the channel number is 4 and the depth of buffer in channel is 8for VC_4×8.图4 不同buffer 容量的DVOQR 路由器平均延迟Fig.4 Average latency of DVOQR with different buffer capacities图5 相同输入加速比下DVOQR 平均延迟Fig.5 Average latency of DVOQR under the sameinput acceleration ratio图6 不同深度UDB 的DVOQR 的平均延迟Fig.6 Average latency of DVOQR with different UDB145湖南大学学报(自然科学版)2023 年4 结论本文提出了一种基于ready-valid握手流控策略的两级流水线片上互连网络路由器,该路由器采用维序路由可以避免死锁.与虫孔路由器和虚通道路由器相比,4×4 mesh网络中的网络吞吐量分别提高了46.9%和28.6%,并且在相同的输入加速比下,DVOQR路由器比双缓冲虚通道路由器性能提高了1.9%.综合结果表明,路由器的时钟频率可达2.5 GHz.参考文献[1]DALLY W J,TOWLES B.Route packets,not wires:on-chip interconnection networks[C]//Proceedings of the 38th DesignAutomation Conference .Las Vegas,NV,USA:IEEE,2005:684-689.[2]VANGAL S,HOWARD J,RUHL G,et al.An 80-tile 1.28TFLOPS network-on-chip in 65nm CMOS[C]//2007 IEEE InternationalSolid-State Circuits Conference. San Francisco,CA,USA:IEEE,2007:98-589.[3]GRATZ P,KIM C,SANKARALINGAM K,et al.On-chip interconnection networks of the TRIPS chip[J].IEEE Micro,2007,27(5):41-50.[4]WENTZLAFF D,GRIFFIN P,HOFFMANN H,et al.On-chip interconnection architecture of the tile processor[J].IEEE Micro,2007,27(5):15-31.[5]JERGER N E,LIPASTI M,PEH L S.Circuit-switched coherence [J].IEEE Computer Architecture Letters,2007,6(1):5-8.[6]PEH L S,DALLY W J.A delay model and speculative architecture for pipelined routers[C]//Proceedings HPCA SeventhInternational Symposium on High-Performance ComputerArchitecture. Monterrey,Mexico:IEEE,2002:255-266.[7]胡哲琨,陈杰.消息传递型片上多核系统的设计[J].湖南大学学报(自然科学版),2013,40(8):102-109.HU Z K,CHEN J.Design of a message-passing multi-core system[J].Journal of Hunan University (Natural Sciences),2013,40(8):102-109.(in Chinese)[8]KUMARY A,KUNDUZ P,SINGHX A P,et al.A 4.6Tbits/s3.6GHz single-cycle NoC router with a novel switch allocator in65nm CMOS[C]//2007 25th International Conference onComputer Design. Lake Tahoe,CA,USA:IEEE,2008:63-70.[9]TIWARI V , KHARE K , SHANDILYA S . An efficient 4×4 mesh structure with a combination of two NoC router architecture[J].International Journal of Sensors,Wireless Communication andControl, 2021,11(2):169-180.[10]CHIOU S Y . Bufferless routing algorithms:a survey[J].Advances in Computational Sciences and Technology,2018,11(5):381-386.[11]李存禄,董德尊,吴际,等.低延迟路由器中高效开关分配机制的实现与评测[J].湖南大学学报(自然科学版),2015,42(4):78-84.LI C L,DONG D Z,WU J,et al.Design and implementation ofefficient switching in low-latency router[J].Journal of HunanUniversity (Natural Sciences),2015,42(4):78-84.(in Chinese)[12]MULLINS R,WEST A,MOORE S.The design and implementation of a low-latency on-chip network[C]//Proceedings of the 2006Asia and South Pacific Design Automation Conference.New York:ACM,2006:164-169.[13]HU J C,MARCULESCU R.Energy- and performance-aware mapping for regular NoC architectures[J].IEEE Transactions onComputer-Aided Design of Integrated Circuits and Systems,2005,24(4):551-562.[14]MULLINS R,WEST A,MOORE S.The design and implementation of a low-latency on-chip network[C]//Proceedings of the 2006Asia and South Pacific Design Automation Conference.New York:ACM,2006:164-169.[15]TAMIR Y,FRAZIER G L.High-performance multiqueue buffers for VLSI communication switches[C]//[1988]The 15th AnnualInternational Symposium on Computer Architecture.Honolulu,HI,USA: IEEE,2002:343-354.[16]KODI A,SARATHY A,LOURI A.Design of adaptive communication channel buffers for low-power area-efficientnetwork-on-chip architecture[C]//Proceedings of the 3rd ACM/IEEE Symposium on Architecture for Networking andCommunications Systems.New York:ACM,2007:47-56.[17]KAROL M,HLUCHYJ M,MORGAN S.Input versus output queueing on a space-division packet switch[J].IEEE Transactionson Communications,1987,35(12):1347-1356.146。

tcp insar 处理流程

tcp insar 处理流程

tcp insar 处理流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!TCP InSAR 处理流程主要包括以下步骤:1. 数据获取:获取 SAR 影像数据,包括主影像和从影像。

Schlumberger - Well Integrity Program 斯伦贝谢井眼完整性程序

Schlumberger - Well Integrity Program 斯伦贝谢井眼完整性程序
Provide competency requirements, training aቤተ መጻሕፍቲ ባይዱd empowerment for our personnel
Well Integrity Framework
Component of our “Excellence in Execution” Program
Schlumberger Confidential
Schlumberger Well Integrity Program
Hussam Al Quassar MEA WSV Technique Manager
Well Integrity
Recent industry incidents led to an increase focus on Well Integrity.
O
RK
Permanent packer and seal assembly
O
RK
A25 Tubing/Completion String
K
OK
K
A29 Completion String Component
K* K* O
KK
RK
R
Gas lift valves
K
RK
O
Side pocket mandrels
K
OK
A22 Casing Cement
O
K
RKKKK
A24 Cement Plug
O K*
K K*
KKRKKKK
Shoe track
O K*
K K*
KKRKKKK
A33 Surface Production Tree
K*
K

思科聚合组实验报告

思科聚合组实验报告

一、实验目的1. 理解并掌握思科链路聚合(EtherChannel)的基本概念和技术原理。

2. 学习配置思科交换机上的聚合组,包括物理链路的聚合、聚合模式的设置以及链路聚合的配置和验证。

3. 通过实验验证聚合组在提高网络带宽和冗余性方面的作用。

二、实验环境1. 设备:两台思科交换机(如:Catalyst 3560系列)、两台PC终端、网线若干。

2. 软件:思科IOS软件或模拟器(如:GNS3)。

三、实验原理链路聚合(EtherChannel)是一种将多个物理链路捆绑成一个逻辑链路的技术,从而实现更高的带宽和冗余性。

在思科交换机上,可以通过配置聚合组来实现链路聚合。

四、实验步骤1. 物理连接:将两台交换机的指定端口通过网线连接,形成物理链路。

2. 配置交换机:- 进入交换机配置模式。

- 配置端口模式为trunk。

- 创建聚合组,并将物理端口加入到聚合组中。

- 配置聚合模式(如:LACP、PAgP或on)。

- 配置负载均衡策略(如:源MAC地址、目标MAC地址等)。

3. 验证配置:- 使用show etherchannel summary命令查看聚合组的建立情况。

- 使用show etherchannel port命令查看聚合端口的带宽和状态。

- 在PC终端上测试网络连通性,验证聚合组是否正常工作。

五、实验结果与分析1. 聚合组建立情况:通过show etherchannel summary命令,可以看到聚合组的建立情况,包括聚合组ID、端口状态、链路状态等。

2. 聚合端口带宽:通过show etherchannel port命令,可以看到聚合端口的带宽和状态,包括端口聚合状态、带宽利用率等。

3. 网络连通性测试:在PC终端上测试网络连通性,可以发现聚合组正常工作,提高了网络带宽和冗余性。

六、实验总结通过本次实验,我们成功配置了思科交换机上的聚合组,并验证了其在提高网络带宽和冗余性方面的作用。

实验结果表明,链路聚合是一种有效的网络技术,可以满足大型网络对带宽和可靠性的需求。

3GPP TS 36.331 V13.2.0 (2016-06)

3GPP TS 36.331 V13.2.0 (2016-06)

3GPP TS 36.331 V13.2.0 (2016-06)Technical Specification3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access (E-UTRA);Radio Resource Control (RRC);Protocol specification(Release 13)The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP. The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.KeywordsUMTS, radio3GPPPostal address3GPP support office address650 Route des Lucioles - Sophia AntipolisValbonne - FRANCETel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16InternetCopyright NotificationNo part may be reproduced except as authorized by written permission.The copyright and the foregoing restriction extend to reproduction in all media.© 2016, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).All rights reserved.UMTS™ is a Trade Mark of ETSI registered for the benefit of its members3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational PartnersLTE™ is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM AssociationBluetooth® is a Trade Mark of the Bluetooth SIG registered for the benefit of its membersContentsForeword (18)1Scope (19)2References (19)3Definitions, symbols and abbreviations (22)3.1Definitions (22)3.2Abbreviations (24)4General (27)4.1Introduction (27)4.2Architecture (28)4.2.1UE states and state transitions including inter RAT (28)4.2.2Signalling radio bearers (29)4.3Services (30)4.3.1Services provided to upper layers (30)4.3.2Services expected from lower layers (30)4.4Functions (30)5Procedures (32)5.1General (32)5.1.1Introduction (32)5.1.2General requirements (32)5.2System information (33)5.2.1Introduction (33)5.2.1.1General (33)5.2.1.2Scheduling (34)5.2.1.2a Scheduling for NB-IoT (34)5.2.1.3System information validity and notification of changes (35)5.2.1.4Indication of ETWS notification (36)5.2.1.5Indication of CMAS notification (37)5.2.1.6Notification of EAB parameters change (37)5.2.1.7Access Barring parameters change in NB-IoT (37)5.2.2System information acquisition (38)5.2.2.1General (38)5.2.2.2Initiation (38)5.2.2.3System information required by the UE (38)5.2.2.4System information acquisition by the UE (39)5.2.2.5Essential system information missing (42)5.2.2.6Actions upon reception of the MasterInformationBlock message (42)5.2.2.7Actions upon reception of the SystemInformationBlockType1 message (42)5.2.2.8Actions upon reception of SystemInformation messages (44)5.2.2.9Actions upon reception of SystemInformationBlockType2 (44)5.2.2.10Actions upon reception of SystemInformationBlockType3 (45)5.2.2.11Actions upon reception of SystemInformationBlockType4 (45)5.2.2.12Actions upon reception of SystemInformationBlockType5 (45)5.2.2.13Actions upon reception of SystemInformationBlockType6 (45)5.2.2.14Actions upon reception of SystemInformationBlockType7 (45)5.2.2.15Actions upon reception of SystemInformationBlockType8 (45)5.2.2.16Actions upon reception of SystemInformationBlockType9 (46)5.2.2.17Actions upon reception of SystemInformationBlockType10 (46)5.2.2.18Actions upon reception of SystemInformationBlockType11 (46)5.2.2.19Actions upon reception of SystemInformationBlockType12 (47)5.2.2.20Actions upon reception of SystemInformationBlockType13 (48)5.2.2.21Actions upon reception of SystemInformationBlockType14 (48)5.2.2.22Actions upon reception of SystemInformationBlockType15 (48)5.2.2.23Actions upon reception of SystemInformationBlockType16 (48)5.2.2.24Actions upon reception of SystemInformationBlockType17 (48)5.2.2.25Actions upon reception of SystemInformationBlockType18 (48)5.2.2.26Actions upon reception of SystemInformationBlockType19 (49)5.2.3Acquisition of an SI message (49)5.2.3a Acquisition of an SI message by BL UE or UE in CE or a NB-IoT UE (50)5.3Connection control (50)5.3.1Introduction (50)5.3.1.1RRC connection control (50)5.3.1.2Security (52)5.3.1.2a RN security (53)5.3.1.3Connected mode mobility (53)5.3.1.4Connection control in NB-IoT (54)5.3.2Paging (55)5.3.2.1General (55)5.3.2.2Initiation (55)5.3.2.3Reception of the Paging message by the UE (55)5.3.3RRC connection establishment (56)5.3.3.1General (56)5.3.3.1a Conditions for establishing RRC Connection for sidelink communication/ discovery (58)5.3.3.2Initiation (59)5.3.3.3Actions related to transmission of RRCConnectionRequest message (63)5.3.3.3a Actions related to transmission of RRCConnectionResumeRequest message (64)5.3.3.4Reception of the RRCConnectionSetup by the UE (64)5.3.3.4a Reception of the RRCConnectionResume by the UE (66)5.3.3.5Cell re-selection while T300, T302, T303, T305, T306, or T308 is running (68)5.3.3.6T300 expiry (68)5.3.3.7T302, T303, T305, T306, or T308 expiry or stop (69)5.3.3.8Reception of the RRCConnectionReject by the UE (70)5.3.3.9Abortion of RRC connection establishment (71)5.3.3.10Handling of SSAC related parameters (71)5.3.3.11Access barring check (72)5.3.3.12EAB check (73)5.3.3.13Access barring check for ACDC (73)5.3.3.14Access Barring check for NB-IoT (74)5.3.4Initial security activation (75)5.3.4.1General (75)5.3.4.2Initiation (76)5.3.4.3Reception of the SecurityModeCommand by the UE (76)5.3.5RRC connection reconfiguration (77)5.3.5.1General (77)5.3.5.2Initiation (77)5.3.5.3Reception of an RRCConnectionReconfiguration not including the mobilityControlInfo by theUE (77)5.3.5.4Reception of an RRCConnectionReconfiguration including the mobilityControlInfo by the UE(handover) (79)5.3.5.5Reconfiguration failure (83)5.3.5.6T304 expiry (handover failure) (83)5.3.5.7Void (84)5.3.5.7a T307 expiry (SCG change failure) (84)5.3.5.8Radio Configuration involving full configuration option (84)5.3.6Counter check (86)5.3.6.1General (86)5.3.6.2Initiation (86)5.3.6.3Reception of the CounterCheck message by the UE (86)5.3.7RRC connection re-establishment (87)5.3.7.1General (87)5.3.7.2Initiation (87)5.3.7.3Actions following cell selection while T311 is running (88)5.3.7.4Actions related to transmission of RRCConnectionReestablishmentRequest message (89)5.3.7.5Reception of the RRCConnectionReestablishment by the UE (89)5.3.7.6T311 expiry (91)5.3.7.7T301 expiry or selected cell no longer suitable (91)5.3.7.8Reception of RRCConnectionReestablishmentReject by the UE (91)5.3.8RRC connection release (92)5.3.8.1General (92)5.3.8.2Initiation (92)5.3.8.3Reception of the RRCConnectionRelease by the UE (92)5.3.8.4T320 expiry (93)5.3.9RRC connection release requested by upper layers (93)5.3.9.1General (93)5.3.9.2Initiation (93)5.3.10Radio resource configuration (93)5.3.10.0General (93)5.3.10.1SRB addition/ modification (94)5.3.10.2DRB release (95)5.3.10.3DRB addition/ modification (95)5.3.10.3a1DC specific DRB addition or reconfiguration (96)5.3.10.3a2LWA specific DRB addition or reconfiguration (98)5.3.10.3a3LWIP specific DRB addition or reconfiguration (98)5.3.10.3a SCell release (99)5.3.10.3b SCell addition/ modification (99)5.3.10.3c PSCell addition or modification (99)5.3.10.4MAC main reconfiguration (99)5.3.10.5Semi-persistent scheduling reconfiguration (100)5.3.10.6Physical channel reconfiguration (100)5.3.10.7Radio Link Failure Timers and Constants reconfiguration (101)5.3.10.8Time domain measurement resource restriction for serving cell (101)5.3.10.9Other configuration (102)5.3.10.10SCG reconfiguration (103)5.3.10.11SCG dedicated resource configuration (104)5.3.10.12Reconfiguration SCG or split DRB by drb-ToAddModList (105)5.3.10.13Neighbour cell information reconfiguration (105)5.3.10.14Void (105)5.3.10.15Sidelink dedicated configuration (105)5.3.10.16T370 expiry (106)5.3.11Radio link failure related actions (107)5.3.11.1Detection of physical layer problems in RRC_CONNECTED (107)5.3.11.2Recovery of physical layer problems (107)5.3.11.3Detection of radio link failure (107)5.3.12UE actions upon leaving RRC_CONNECTED (109)5.3.13UE actions upon PUCCH/ SRS release request (110)5.3.14Proximity indication (110)5.3.14.1General (110)5.3.14.2Initiation (111)5.3.14.3Actions related to transmission of ProximityIndication message (111)5.3.15Void (111)5.4Inter-RAT mobility (111)5.4.1Introduction (111)5.4.2Handover to E-UTRA (112)5.4.2.1General (112)5.4.2.2Initiation (112)5.4.2.3Reception of the RRCConnectionReconfiguration by the UE (112)5.4.2.4Reconfiguration failure (114)5.4.2.5T304 expiry (handover to E-UTRA failure) (114)5.4.3Mobility from E-UTRA (114)5.4.3.1General (114)5.4.3.2Initiation (115)5.4.3.3Reception of the MobilityFromEUTRACommand by the UE (115)5.4.3.4Successful completion of the mobility from E-UTRA (116)5.4.3.5Mobility from E-UTRA failure (117)5.4.4Handover from E-UTRA preparation request (CDMA2000) (117)5.4.4.1General (117)5.4.4.2Initiation (118)5.4.4.3Reception of the HandoverFromEUTRAPreparationRequest by the UE (118)5.4.5UL handover preparation transfer (CDMA2000) (118)5.4.5.1General (118)5.4.5.2Initiation (118)5.4.5.3Actions related to transmission of the ULHandoverPreparationTransfer message (119)5.4.5.4Failure to deliver the ULHandoverPreparationTransfer message (119)5.4.6Inter-RAT cell change order to E-UTRAN (119)5.4.6.1General (119)5.4.6.2Initiation (119)5.4.6.3UE fails to complete an inter-RAT cell change order (119)5.5Measurements (120)5.5.1Introduction (120)5.5.2Measurement configuration (121)5.5.2.1General (121)5.5.2.2Measurement identity removal (122)5.5.2.2a Measurement identity autonomous removal (122)5.5.2.3Measurement identity addition/ modification (123)5.5.2.4Measurement object removal (124)5.5.2.5Measurement object addition/ modification (124)5.5.2.6Reporting configuration removal (126)5.5.2.7Reporting configuration addition/ modification (127)5.5.2.8Quantity configuration (127)5.5.2.9Measurement gap configuration (127)5.5.2.10Discovery signals measurement timing configuration (128)5.5.2.11RSSI measurement timing configuration (128)5.5.3Performing measurements (128)5.5.3.1General (128)5.5.3.2Layer 3 filtering (131)5.5.4Measurement report triggering (131)5.5.4.1General (131)5.5.4.2Event A1 (Serving becomes better than threshold) (135)5.5.4.3Event A2 (Serving becomes worse than threshold) (136)5.5.4.4Event A3 (Neighbour becomes offset better than PCell/ PSCell) (136)5.5.4.5Event A4 (Neighbour becomes better than threshold) (137)5.5.4.6Event A5 (PCell/ PSCell becomes worse than threshold1 and neighbour becomes better thanthreshold2) (138)5.5.4.6a Event A6 (Neighbour becomes offset better than SCell) (139)5.5.4.7Event B1 (Inter RAT neighbour becomes better than threshold) (139)5.5.4.8Event B2 (PCell becomes worse than threshold1 and inter RAT neighbour becomes better thanthreshold2) (140)5.5.4.9Event C1 (CSI-RS resource becomes better than threshold) (141)5.5.4.10Event C2 (CSI-RS resource becomes offset better than reference CSI-RS resource) (141)5.5.4.11Event W1 (WLAN becomes better than a threshold) (142)5.5.4.12Event W2 (All WLAN inside WLAN mobility set becomes worse than threshold1 and a WLANoutside WLAN mobility set becomes better than threshold2) (142)5.5.4.13Event W3 (All WLAN inside WLAN mobility set becomes worse than a threshold) (143)5.5.5Measurement reporting (144)5.5.6Measurement related actions (148)5.5.6.1Actions upon handover and re-establishment (148)5.5.6.2Speed dependant scaling of measurement related parameters (149)5.5.7Inter-frequency RSTD measurement indication (149)5.5.7.1General (149)5.5.7.2Initiation (150)5.5.7.3Actions related to transmission of InterFreqRSTDMeasurementIndication message (150)5.6Other (150)5.6.0General (150)5.6.1DL information transfer (151)5.6.1.1General (151)5.6.1.2Initiation (151)5.6.1.3Reception of the DLInformationTransfer by the UE (151)5.6.2UL information transfer (151)5.6.2.1General (151)5.6.2.2Initiation (151)5.6.2.3Actions related to transmission of ULInformationTransfer message (152)5.6.2.4Failure to deliver ULInformationTransfer message (152)5.6.3UE capability transfer (152)5.6.3.1General (152)5.6.3.2Initiation (153)5.6.3.3Reception of the UECapabilityEnquiry by the UE (153)5.6.4CSFB to 1x Parameter transfer (157)5.6.4.1General (157)5.6.4.2Initiation (157)5.6.4.3Actions related to transmission of CSFBParametersRequestCDMA2000 message (157)5.6.4.4Reception of the CSFBParametersResponseCDMA2000 message (157)5.6.5UE Information (158)5.6.5.1General (158)5.6.5.2Initiation (158)5.6.5.3Reception of the UEInformationRequest message (158)5.6.6 Logged Measurement Configuration (159)5.6.6.1General (159)5.6.6.2Initiation (160)5.6.6.3Reception of the LoggedMeasurementConfiguration by the UE (160)5.6.6.4T330 expiry (160)5.6.7 Release of Logged Measurement Configuration (160)5.6.7.1General (160)5.6.7.2Initiation (160)5.6.8 Measurements logging (161)5.6.8.1General (161)5.6.8.2Initiation (161)5.6.9In-device coexistence indication (163)5.6.9.1General (163)5.6.9.2Initiation (164)5.6.9.3Actions related to transmission of InDeviceCoexIndication message (164)5.6.10UE Assistance Information (165)5.6.10.1General (165)5.6.10.2Initiation (166)5.6.10.3Actions related to transmission of UEAssistanceInformation message (166)5.6.11 Mobility history information (166)5.6.11.1General (166)5.6.11.2Initiation (166)5.6.12RAN-assisted WLAN interworking (167)5.6.12.1General (167)5.6.12.2Dedicated WLAN offload configuration (167)5.6.12.3WLAN offload RAN evaluation (167)5.6.12.4T350 expiry or stop (167)5.6.12.5Cell selection/ re-selection while T350 is running (168)5.6.13SCG failure information (168)5.6.13.1General (168)5.6.13.2Initiation (168)5.6.13.3Actions related to transmission of SCGFailureInformation message (168)5.6.14LTE-WLAN Aggregation (169)5.6.14.1Introduction (169)5.6.14.2Reception of LWA configuration (169)5.6.14.3Release of LWA configuration (170)5.6.15WLAN connection management (170)5.6.15.1Introduction (170)5.6.15.2WLAN connection status reporting (170)5.6.15.2.1General (170)5.6.15.2.2Initiation (171)5.6.15.2.3Actions related to transmission of WLANConnectionStatusReport message (171)5.6.15.3T351 Expiry (WLAN connection attempt timeout) (171)5.6.15.4WLAN status monitoring (171)5.6.16RAN controlled LTE-WLAN interworking (172)5.6.16.1General (172)5.6.16.2WLAN traffic steering command (172)5.6.17LTE-WLAN aggregation with IPsec tunnel (173)5.6.17.1General (173)5.7Generic error handling (174)5.7.1General (174)5.7.2ASN.1 violation or encoding error (174)5.7.3Field set to a not comprehended value (174)5.7.4Mandatory field missing (174)5.7.5Not comprehended field (176)5.8MBMS (176)5.8.1Introduction (176)5.8.1.1General (176)5.8.1.2Scheduling (176)5.8.1.3MCCH information validity and notification of changes (176)5.8.2MCCH information acquisition (178)5.8.2.1General (178)5.8.2.2Initiation (178)5.8.2.3MCCH information acquisition by the UE (178)5.8.2.4Actions upon reception of the MBSFNAreaConfiguration message (178)5.8.2.5Actions upon reception of the MBMSCountingRequest message (179)5.8.3MBMS PTM radio bearer configuration (179)5.8.3.1General (179)5.8.3.2Initiation (179)5.8.3.3MRB establishment (179)5.8.3.4MRB release (179)5.8.4MBMS Counting Procedure (179)5.8.4.1General (179)5.8.4.2Initiation (180)5.8.4.3Reception of the MBMSCountingRequest message by the UE (180)5.8.5MBMS interest indication (181)5.8.5.1General (181)5.8.5.2Initiation (181)5.8.5.3Determine MBMS frequencies of interest (182)5.8.5.4Actions related to transmission of MBMSInterestIndication message (183)5.8a SC-PTM (183)5.8a.1Introduction (183)5.8a.1.1General (183)5.8a.1.2SC-MCCH scheduling (183)5.8a.1.3SC-MCCH information validity and notification of changes (183)5.8a.1.4Procedures (184)5.8a.2SC-MCCH information acquisition (184)5.8a.2.1General (184)5.8a.2.2Initiation (184)5.8a.2.3SC-MCCH information acquisition by the UE (184)5.8a.2.4Actions upon reception of the SCPTMConfiguration message (185)5.8a.3SC-PTM radio bearer configuration (185)5.8a.3.1General (185)5.8a.3.2Initiation (185)5.8a.3.3SC-MRB establishment (185)5.8a.3.4SC-MRB release (185)5.9RN procedures (186)5.9.1RN reconfiguration (186)5.9.1.1General (186)5.9.1.2Initiation (186)5.9.1.3Reception of the RNReconfiguration by the RN (186)5.10Sidelink (186)5.10.1Introduction (186)5.10.1a Conditions for sidelink communication operation (187)5.10.2Sidelink UE information (188)5.10.2.1General (188)5.10.2.2Initiation (189)5.10.2.3Actions related to transmission of SidelinkUEInformation message (193)5.10.3Sidelink communication monitoring (195)5.10.6Sidelink discovery announcement (198)5.10.6a Sidelink discovery announcement pool selection (201)5.10.6b Sidelink discovery announcement reference carrier selection (201)5.10.7Sidelink synchronisation information transmission (202)5.10.7.1General (202)5.10.7.2Initiation (203)5.10.7.3Transmission of SLSS (204)5.10.7.4Transmission of MasterInformationBlock-SL message (205)5.10.7.5Void (206)5.10.8Sidelink synchronisation reference (206)5.10.8.1General (206)5.10.8.2Selection and reselection of synchronisation reference UE (SyncRef UE) (206)5.10.9Sidelink common control information (207)5.10.9.1General (207)5.10.9.2Actions related to reception of MasterInformationBlock-SL message (207)5.10.10Sidelink relay UE operation (207)5.10.10.1General (207)5.10.10.2AS-conditions for relay related sidelink communication transmission by sidelink relay UE (207)5.10.10.3AS-conditions for relay PS related sidelink discovery transmission by sidelink relay UE (208)5.10.10.4Sidelink relay UE threshold conditions (208)5.10.11Sidelink remote UE operation (208)5.10.11.1General (208)5.10.11.2AS-conditions for relay related sidelink communication transmission by sidelink remote UE (208)5.10.11.3AS-conditions for relay PS related sidelink discovery transmission by sidelink remote UE (209)5.10.11.4Selection and reselection of sidelink relay UE (209)5.10.11.5Sidelink remote UE threshold conditions (210)6Protocol data units, formats and parameters (tabular & ASN.1) (210)6.1General (210)6.2RRC messages (212)6.2.1General message structure (212)–EUTRA-RRC-Definitions (212)–BCCH-BCH-Message (212)–BCCH-DL-SCH-Message (212)–BCCH-DL-SCH-Message-BR (213)–MCCH-Message (213)–PCCH-Message (213)–DL-CCCH-Message (214)–DL-DCCH-Message (214)–UL-CCCH-Message (214)–UL-DCCH-Message (215)–SC-MCCH-Message (215)6.2.2Message definitions (216)–CounterCheck (216)–CounterCheckResponse (217)–CSFBParametersRequestCDMA2000 (217)–CSFBParametersResponseCDMA2000 (218)–DLInformationTransfer (218)–HandoverFromEUTRAPreparationRequest (CDMA2000) (219)–InDeviceCoexIndication (220)–InterFreqRSTDMeasurementIndication (222)–LoggedMeasurementConfiguration (223)–MasterInformationBlock (225)–MBMSCountingRequest (226)–MBMSCountingResponse (226)–MBMSInterestIndication (227)–MBSFNAreaConfiguration (228)–MeasurementReport (228)–MobilityFromEUTRACommand (229)–Paging (232)–ProximityIndication (233)–RNReconfiguration (234)–RNReconfigurationComplete (234)–RRCConnectionReconfiguration (235)–RRCConnectionReconfigurationComplete (240)–RRCConnectionReestablishment (241)–RRCConnectionReestablishmentComplete (241)–RRCConnectionReestablishmentReject (242)–RRCConnectionReestablishmentRequest (243)–RRCConnectionReject (243)–RRCConnectionRelease (244)–RRCConnectionResume (248)–RRCConnectionResumeComplete (249)–RRCConnectionResumeRequest (250)–RRCConnectionRequest (250)–RRCConnectionSetup (251)–RRCConnectionSetupComplete (252)–SCGFailureInformation (253)–SCPTMConfiguration (254)–SecurityModeCommand (255)–SecurityModeComplete (255)–SecurityModeFailure (256)–SidelinkUEInformation (256)–SystemInformation (258)–SystemInformationBlockType1 (259)–UEAssistanceInformation (264)–UECapabilityEnquiry (265)–UECapabilityInformation (266)–UEInformationRequest (267)–UEInformationResponse (267)–ULHandoverPreparationTransfer (CDMA2000) (273)–ULInformationTransfer (274)–WLANConnectionStatusReport (274)6.3RRC information elements (275)6.3.1System information blocks (275)–SystemInformationBlockType2 (275)–SystemInformationBlockType3 (279)–SystemInformationBlockType4 (282)–SystemInformationBlockType5 (283)–SystemInformationBlockType6 (287)–SystemInformationBlockType7 (289)–SystemInformationBlockType8 (290)–SystemInformationBlockType9 (295)–SystemInformationBlockType10 (295)–SystemInformationBlockType11 (296)–SystemInformationBlockType12 (297)–SystemInformationBlockType13 (297)–SystemInformationBlockType14 (298)–SystemInformationBlockType15 (298)–SystemInformationBlockType16 (299)–SystemInformationBlockType17 (300)–SystemInformationBlockType18 (301)–SystemInformationBlockType19 (301)–SystemInformationBlockType20 (304)6.3.2Radio resource control information elements (304)–AntennaInfo (304)–AntennaInfoUL (306)–CQI-ReportConfig (307)–CQI-ReportPeriodicProcExtId (314)–CrossCarrierSchedulingConfig (314)–CSI-IM-Config (315)–CSI-IM-ConfigId (315)–CSI-RS-Config (317)–CSI-RS-ConfigEMIMO (318)–CSI-RS-ConfigNZP (319)–CSI-RS-ConfigNZPId (320)–CSI-RS-ConfigZP (321)–CSI-RS-ConfigZPId (321)–DMRS-Config (321)–DRB-Identity (322)–EPDCCH-Config (322)–EIMTA-MainConfig (324)–LogicalChannelConfig (325)–LWA-Configuration (326)–LWIP-Configuration (326)–RCLWI-Configuration (327)–MAC-MainConfig (327)–P-C-AndCBSR (332)–PDCCH-ConfigSCell (333)–PDCP-Config (334)–PDSCH-Config (337)–PDSCH-RE-MappingQCL-ConfigId (339)–PHICH-Config (339)–PhysicalConfigDedicated (339)–P-Max (344)–PRACH-Config (344)–PresenceAntennaPort1 (346)–PUCCH-Config (347)–PUSCH-Config (351)–RACH-ConfigCommon (355)–RACH-ConfigDedicated (357)–RadioResourceConfigCommon (358)–RadioResourceConfigDedicated (362)–RLC-Config (367)–RLF-TimersAndConstants (369)–RN-SubframeConfig (370)–SchedulingRequestConfig (371)–SoundingRS-UL-Config (372)–SPS-Config (375)–TDD-Config (376)–TimeAlignmentTimer (377)–TPC-PDCCH-Config (377)–TunnelConfigLWIP (378)–UplinkPowerControl (379)–WLAN-Id-List (382)–WLAN-MobilityConfig (382)6.3.3Security control information elements (382)–NextHopChainingCount (382)–SecurityAlgorithmConfig (383)–ShortMAC-I (383)6.3.4Mobility control information elements (383)–AdditionalSpectrumEmission (383)–ARFCN-ValueCDMA2000 (383)–ARFCN-ValueEUTRA (384)–ARFCN-ValueGERAN (384)–ARFCN-ValueUTRA (384)–BandclassCDMA2000 (384)–BandIndicatorGERAN (385)–CarrierFreqCDMA2000 (385)–CarrierFreqGERAN (385)–CellIndexList (387)–CellReselectionPriority (387)–CellSelectionInfoCE (387)–CellReselectionSubPriority (388)–CSFB-RegistrationParam1XRTT (388)–CellGlobalIdEUTRA (389)–CellGlobalIdUTRA (389)–CellGlobalIdGERAN (390)–CellGlobalIdCDMA2000 (390)–CellSelectionInfoNFreq (391)–CSG-Identity (391)–FreqBandIndicator (391)–MobilityControlInfo (391)–MobilityParametersCDMA2000 (1xRTT) (393)–MobilityStateParameters (394)–MultiBandInfoList (394)–NS-PmaxList (394)–PhysCellId (395)–PhysCellIdRange (395)–PhysCellIdRangeUTRA-FDDList (395)–PhysCellIdCDMA2000 (396)–PhysCellIdGERAN (396)–PhysCellIdUTRA-FDD (396)–PhysCellIdUTRA-TDD (396)–PLMN-Identity (397)–PLMN-IdentityList3 (397)–PreRegistrationInfoHRPD (397)–Q-QualMin (398)–Q-RxLevMin (398)–Q-OffsetRange (398)–Q-OffsetRangeInterRAT (399)–ReselectionThreshold (399)–ReselectionThresholdQ (399)–SCellIndex (399)–ServCellIndex (400)–SpeedStateScaleFactors (400)–SystemInfoListGERAN (400)–SystemTimeInfoCDMA2000 (401)–TrackingAreaCode (401)–T-Reselection (402)–T-ReselectionEUTRA-CE (402)6.3.5Measurement information elements (402)–AllowedMeasBandwidth (402)–CSI-RSRP-Range (402)–Hysteresis (402)–LocationInfo (403)–MBSFN-RSRQ-Range (403)–MeasConfig (404)–MeasDS-Config (405)–MeasGapConfig (406)–MeasId (407)–MeasIdToAddModList (407)–MeasObjectCDMA2000 (408)–MeasObjectEUTRA (408)–MeasObjectGERAN (412)–MeasObjectId (412)–MeasObjectToAddModList (412)–MeasObjectUTRA (413)–ReportConfigEUTRA (422)–ReportConfigId (425)–ReportConfigInterRAT (425)–ReportConfigToAddModList (428)–ReportInterval (429)–RSRP-Range (429)–RSRQ-Range (430)–RSRQ-Type (430)–RS-SINR-Range (430)–RSSI-Range-r13 (431)–TimeToTrigger (431)–UL-DelayConfig (431)–WLAN-CarrierInfo (431)–WLAN-RSSI-Range (432)–WLAN-Status (432)6.3.6Other information elements (433)–AbsoluteTimeInfo (433)–AreaConfiguration (433)–C-RNTI (433)–DedicatedInfoCDMA2000 (434)–DedicatedInfoNAS (434)–FilterCoefficient (434)–LoggingDuration (434)–LoggingInterval (435)–MeasSubframePattern (435)–MMEC (435)–NeighCellConfig (435)–OtherConfig (436)–RAND-CDMA2000 (1xRTT) (437)–RAT-Type (437)–ResumeIdentity (437)–RRC-TransactionIdentifier (438)–S-TMSI (438)–TraceReference (438)–UE-CapabilityRAT-ContainerList (438)–UE-EUTRA-Capability (439)–UE-RadioPagingInfo (469)–UE-TimersAndConstants (469)–VisitedCellInfoList (470)–WLAN-OffloadConfig (470)6.3.7MBMS information elements (472)–MBMS-NotificationConfig (472)–MBMS-ServiceList (473)–MBSFN-AreaId (473)–MBSFN-AreaInfoList (473)–MBSFN-SubframeConfig (474)–PMCH-InfoList (475)6.3.7a SC-PTM information elements (476)–SC-MTCH-InfoList (476)–SCPTM-NeighbourCellList (478)6.3.8Sidelink information elements (478)–SL-CommConfig (478)–SL-CommResourcePool (479)–SL-CP-Len (480)–SL-DiscConfig (481)–SL-DiscResourcePool (483)–SL-DiscTxPowerInfo (485)–SL-GapConfig (485)。

Synopsys TestMAX

Synopsys TestMAX

DATASHEETOverview Synopsys TestMAX™ Advisor, performs RTL testability analysis and optimization, allowing users to fine-tune RTL early in the design cycle to predictably meet manufacturing and in-system test coverage goals. Advisor is commonly used throughout the design implementation flow at various handoff points when the designs content changes.Advisor checks for testability issues in advance, checking how suitable the RTL or NetList is for test and checks to see if it is ready for DFT logic insertion. Advisor also performs analysis to determine where to place these DFT structures called test points that can improve the results of ATPG or Logic BIST.Advisor is built on Synopsys SpyGlass ® technology and provides a comprehensive set of early RTL testability analysis capabilities as well as allows the traditional netlist-based flow.Key Benefits:• Shortens test implementation time and cost by ensuring RTL or netlist is scan-compliant • Improves test quality by diagnosing DFT issues early at RTL or netlist • Detects source of static and dynamic X Capture and provides impact analysis • Reduce ATPG pattern counts and run times and improve coverage • Systematically check DFT connections Key Features:• DFT violation checking • ATPG coverage estimation • Test Robustness and Glitch Monitoring • Test Points Selection • Connectivity Validation (facilitates design agnostic custom methodology)DFT Violation Checks TestMAX Advisor can be used to check a design for DFT violations, and this provides an early insight into the testability problems, it also speeds up time to DFT and ensures that RTL is scan ready. Resolving at-speed test issues at the RTL can save weeks of effort. TestMAX Advisor identifies timing closure issues caused by at speed tests, which often achieve lower fault coverage than required even when full-scan is utilized, and the stuck-at coverage is high.Design-for-testrule checkingand RTL faultcoverage estimationcapabilities that helpdesigners pinpointtestability issuesearly in the flowTestMAX Advisor Address Testability Issues EarlyTestMAX Advisor also performs lint checking to ensure the RTL or netlist can achieve maximum ATPG coverage. The tool verifies that the design meets scan DRC requirements, providing detailed audit reports that help designers identify missing test constraints and make appropriate modifications to the design to address scan issues. It also verifies that a multi-voltage design complies with low-power DFT rules. For example, one type of check ensures that low-power constraints are compatible with scan test requirements; another type, applicable to netlists, verifies that scan chains do not cross voltage domains without level shifters.ATPG Coverage EstimationTestMAX Advisor provides the maximum achievable ATPG coverage estimate for the design, and reports the hierarchical coverage estimate for the sub blocks and hierarchies. This helps to determine whether the coverage goal can be achieved, and which blocks or hierarchies are contributing to coverage last for the entire design. One of the important features of TestMAX Advisor is ATPG coverage estimation. The tool provides consistent and repeatable correlation between RTL and ATPG test coverage. For Stuck-at TestMAX Advisor’s coverage estimate correlates within 1% to the actual ATPG coverage. Whereas for transition delay, TestMAX Advisor’s coverage estimate correlates within 5% to the actual ATPG coverage. These correlations are expected provided that the DFT constraints are aligned between TestMAX Advisor and ATPG.Test Robustness and ReliabilityGlitch detection is the process of identifying and preventing glitches in the register-transfer level (RTL). Glitches can be causedby a number of factors including asynchronous signal transitions, clock domain crossing (CDC), sequential logic and timing errors. Testability profiling assesses test robustness, the susceptibility of test patterns to electrical glitches and identifies RTL constructs that limit maximum stuck-at and transition fault coverage. Rule violations always reference the RTL so that designers know exactly where to make changes. To easily diagnose testability issues in the RTL, TestMAX Advisor provides an intuitive, integrated debug environment that enables cross-probing among views.Test Point SelectionSome of the faults in the design are ATPG testable but difficult to test. TestMAX Advisor identifies hard-to-test areas in the design and reports an ordered list of test points that can be inserted at hard to control and observe points to improve test coverage and reduce pattern count. The test points identified by TestMAX Advisor can then be inserted by TestMAX DFT. To reduce area congestion, physically-aware test points are supported where physical information about the test points selected by TestMAX Advisor canbe used by Design Compiler® NXT and Fusion Compiler™ (as shown in the Synopsys design flow in Figure 1 and Figure 2). Test points are grouped based on physical data, allowing one flop to be shared across multiple test points, resulting in significant area overhead reduction.A fault is deemed hard-to-detect if it has a very low probability of detection in a test composed entirely of randomly generated patterns. TestMAX Advisor analyzes random pattern coverage to identify hard-to-detect faults and suggests changes to meet testability goals. The random pattern coverage estimation is displayed in a hierarchical fault browser. Designers can quickly zoom into the blocks that have significant low coverage and further analyze which portion of the design leads to poor coverage. Connectivity ValidationTestMAX Advisor validates connectivity across hierarchies checking both paths and values. This validation not only applies for test logic added at SoC integration level but also for any logic not related to test. TestMAX Advisor addresses connectivity challenges such as back-to-back on-chip controllers (OCCs) that find no clock control connection. Examples of value checks include PLL resets or clock gating enable pins. Conditional checks are also supported, for example memory sleep controlled by pin at IP level. Connectivity validation can be performed either at RTL or gate-level netlists. Connectivity Checks can also be used to create design-agnostic custom methodologies.Figure 1: TestMAX Advisor addresses testability issues early in the design flow User Interface ExampleThe TestMAX Advisor Integrated debug environment enables cross-probing among views to easily diagnose testability issuesFigure 3: TestMAX Advisor debug environmentFigure 2: TestMAX Advisor in RTL creation flowReference MethodologyThe TestMAX Advisor reference methodology provides a structured, easy-to-use, and comprehensive process for resolving RTL design issues, thereby ensuring high quality RTL with fewer design bugs. The methodology leads to fewer but more meaningful violations, thus saving time for the designer. The methodology documentation and rule sets are provided with TestMAX Advisor. Design FormatsTestMAX Advisor supports the following data formats:• Design: VHDL, Verilog (RTL or netlist), SystemVerilog• Test Models: SPF/CTL• Constraints: SDC and SpyGlass SGDC, Tcl• Power: UPF• Verification: VCD, FSDBFor more information about Synopsys products, support services or training, visit us on the web at , contact your local sales representative or call 650.584.5000©2023 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks isavailable at /copyright.html. All other names mentioned herein are trademarks or registered trademarks of their respective owners.。

Transition Networks CPSMC18xx-xxx 18-Slot PointSys

Transition Networks CPSMC18xx-xxx 18-Slot PointSys

Table of Contents1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51.1Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51.2Unpacking the CPSMC18xx-xxx Equipment . . . . . . . . . . . . . . . . . .72Slide-in-Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82.1Media Converter Slide-in-Modules . . . . . . . . . . . . . . . . . . . . . . . . .82.1.1Chassis Face Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82.1.2Calculating the Power Consumption . . . . . . . . . . . . . . . . . . . . . .82.1.3Installing the Media Converter Slide-in-Modules . . . . . . . . . . . . .92.1.4Replacing the Media Converter Slide-in-Modules . . . . . . . . . . .102.2Management Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112.2.1Three Types of Management Modules . . . . . . . . . . . . . . . . . . . .112.2.2Installing the Management Modules . . . . . . . . . . . . . . . . . . . . .122.2.3Replacing the Management Modules . . . . . . . . . . . . . . . . . . . . .133Powering the CPSMC18xx-xxx . . . . . . . . . . . . . . . . . . . . . . . .143.1AC Power Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143.2DC Power Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163.3Optional Dual Power Supply Modules . . . . . . . . . . . . . . . . . . . . .183.4Power Supply Module Maintenance . . . . . . . . . . . . . . . . . . . . . .193.4.1Primary/Secondary-Management/Manual Switch . . . . . . . . . . . .193.4.2Installing the Power Supply Module . . . . . . . . . . . . . . . . . . . . . .203.4.3Replacing the Power Supply Module . . . . . . . . . . . . . . . . . . . . .213.4.4Replacing the Power Supply Fuses . . . . . . . . . . . . . . . . . . . . . . .223.5Optional Fan Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244CPSMC18xx-xxx Chassis . . . . . . . . . . . . . . . . . . . . . . . . . . . .254.1Installing the CPSMC18xx-xxx Chassis . . . . . . . . . . . . . . . . . . . . .254.1.1Table Top Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254.1.2Standard 19-inch Rack Installation . . . . . . . . . . . . . . . . . . . . . . .254.1.3Grounding Lugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274.2Telco Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284.3Cascade Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314.4Connecting the Slide-in-Modules to the Network . . . . . . . . . . . . .334.5Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335Network Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345.1Hardware Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Technical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Cable Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Contact Us . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 Warranty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41introductionintroductionslide-in-modules1.2Unpacking the CPSMC18xx-xxx EquipmentUse the following list to verify the shipment:ItemPart Number 18-Slot chassis with AC Power SupplyCPSMC1800-20018-Slot chassis with DC Power SupplyCPSMC1810-20018-Slot chassis with AC Power SupplyCPSMC1850-150and two (2) Telco connectors18-Slot chassis with DC Power SupplyCPSMC1850-160and two (2) Telco connectorsPointSystem™Chassis Face Plates (18)CPSFP-200 Power Cord(varies by country)User’s Guide 33185The following items are optional accessories for the C PSMC 18xx-xxx 18-Slot PointSystem™ chassis:ItemPart Number Redundant AC Power Supply ModuleCPSMP-200 (optional)Redundant 48-VDC Power Supply ModuleCPSMP-210 (optional)Redundant Fan ModuleCPSFM-200 (optional)Single-Slot Master Management ModuleCPSMM-120 (optional)Dual-Slot Master Management ModuleCPSMM-200 (optional)FocalPoint™Software DiskA1-7227(included with the management modules)Expansion Management ModuleCPSMM-210 (optional)Management Module Cascade Connector6026 (optional)Telco RJ-21 (male) to RJ-45 Hydra cable21HC45-6 (optional)Telco RJ-21 to RJ-21 (male-to-male) cable21HC21-6 (optional)Rack Mount EarsCPSRE-230 (optional)Selectable media converter slide-in-module(s)(various P/N) - (optional)slide-in-modulesslide-in-modulesslide-in-modulesslide-in-modulesslide-in-modulespower supplypower supplypower supplypower supplypower supplypower supplypower supplypower supplypower supplypower supplychassischassischassischassisFiber Port #2Fiber Port #1CDFTF1001850-1xx are designed for any Transition Networks Slots 7-18 on the CPSMC1850-1xx can accommodate any Transition Networks media converter slide-in-module. However the Telco option will not functionchassisCascading multiple CPSMC18xx-xxx chassisTo cascade two or more CPSMC18xx-xxx chassis:1.Locate one (1) Transition Networks management module cascade cable (withRJ-45 connectors installed at both ends) (P/N 6026) for each set of two (2)chassis to be cascaded.NOTE: Transition Networks management module cascade cables are one (1)meter long. Ensure that the chassis are installed within one (1) meter of eachother.2.At the first chassis in the series: Plug the RJ-45 connector at one end of thecascade cable into the management module’s RJ-45 port labeled “OUT”.3.At the next chassis in the series: Plug the RJ-45 connector at the other end of thecascade cable into the management module’s RJ-45 port labeled “IN”.4.At the same chassis as in step 3: Plug the RJ-45 connector at one end of thecascade cable into the management module’s RJ-45 port labeled “OUT”.5.At the next chassis in the series: Plug the RJ-45 connector at the other end of thecascade cable into the management module’s RJ-45 port labeled “IN”.6.Repeat steps 4 and 5 until all chassis have been connected.chassisnetwork mgmt.network mgmt.6Troubleshooting1.Are any of the power LEDs on any of the slide-in-modules illuminated, AND arethe fans operating?YES•The chassis is receiving power. Proceed to the next step.NO•Check all power supply cables for proper connection.•For AC power: Ensure the AC receptacle on the wall is supplying power.•If the fuse for the AC receptacle on the wall blows repeatedly, have the ACreceptacle inspected by a qualified electrician.•For DC power: Ensure the DC power supply is supplying power.•Check the fans to see if they are operating.•C ontact Technical Support: U.S./C anada: 1-800-260-1312, International:00-1-952-941-7600.2.For the management modules (CPSMM-120, CPSMM-200, CPSMM-210), areANY of the power LEDs NOT illuminated?NO•All management modules are receiving power. Proceed to the next step.YESFor those management modules where the power LED is NOT illuminated:•Ensure the management module is firmly seated in the slot.•Press the RESET button on the management module.•C ontact Technical Support: U.S./C anada: 1-800-260-1312, International:00-1-952-941-7600.3.For the remaining slide-in-modules, are ANY of the power LEDs NOTilluminated?NO•All slide-in-modules are receiving power. Proceed to the next step.YESFor those slide-in-modules where the power LED is NOT illuminated:•Ensure the slide-in-module is firmly seated in the slot.•C ontact Technical Support: U.S./C anada: 1-800-260-1312, International:00-1-952-941-7600.4.To determine if a fault is due to a software problem, consult the troubleshootingsection of the Focal Point™ 2.0 Management Appl ication and CPSMM100Firmware User’s Guide (P/N 33293). This manual is available on the enclosedapplication CD and on-line at .5.To determine if a fault is due to an individual management module or slide-in-troubleshooting module, consult the troubleshooting section of the user’s guide for thatparticular module.6.If none of the solutions listed in this section resolves the problem, contactTechnical Support: U.S./Canada: 1-800-260-1312, International: 00-1-952-941-7600.Cable SpecificationsNull Modem CableThe Null Modem Cable is used for connecting a terminal or terminal emulator tothe management module’s DB-9 connector to access the command-line interface.The table below shows the pin assignments for the DB9 cable.Function Mnemonic PinCarrier Detect CD1Receive Data RXD2Transmit Data TXD3Data Terminal Ready DTR4Signal Ground GND5Data Set Ready DSR6Request To Send RTS7Clear To Send CTS8The table below shows the pin assignments for the RS-232 null modem cable.RJ-45 CableCategory 5:Gauge:24 to 22 AWGAttenuation: 22.0 dB /100m @ 100 MHzMaximum Cable Distance:100 meters• Straight-through OR crossover cable may be used.• Shielded twisted-pair(STP) OR unshielded twisted-pair (UTP) may be used.• Pins 1&2 and 3&6 are the two active pairs in an Ethernet network.(RJ-45 Pin-out: Pin 1 = TD+, Pin 2 = TD-, Pin 3 = RD+, Pin 6 = RD-)• All pin pairs (1&2, 3&6, 4&5, 7&8) are active in a gigabit Ethernet network.• Use only dedicated wire pairs for the active pins:(e.g., blue/white & white/blue, orange/white & white/orange, etc.)• Do not use flat or silver satin wire.COAX CableCoaxial cable media is used for circuits such as DS3, E1 and 10Base-2 Ethernet.The impedance of the coaxial cable is determined by the interface type, forexample:•75 ohm for DS3.•50 ohm for 10Base-2 Ethernet.Special attention should be given to the grounding requirements of coaxial cablecircuits. Installation may require grounding at both cable ends or only one cableend or neither cable end.Cable Shield GroundingMedia converter network cabling my be shielded or unshielded. Shielded cablesMUST be grounded according to the specific requirements of the media and porttype. For example:•Shielded RJ-45 cable used for 100Base-Tx Ethernet MUST be grounded at both cable endpoints via shielded RJ-45 jacks.•Shielded RS-232 cable MUST have the shield grounded at both cable endpoints via shielded RS-232 connectors.•COAX cable used for 10Base-2 Ethernet MUST only be grounded at a single point.The media converters provide a jumper option or other grounding mechanism asrequired. Special attention should be given to the grounding requirements ofcoaxial cable circuits. Installation may require grounding at both cable ends or onlyone cable end or neither cable end. See the individual media converter user’s guidefor cable/port grounding requirements.WarrantyLimited Lifetime WarrantyEffective for products shipped May 1, 1999 and after. Every Transition Networks' labeled product purchased after May 1, 1999 will be free from defects in material and workmanship for its lifetime. This warranty covers the original user only and is not transferable.This warranty does not cover damage from accident, acts of God, neglect, contamination, misuse or abnormal conditions of operation or handling, including over-voltage failures caused by use outside of the product's specified rating, or normal wear and tear of mechanical components. If the user is unsure about the proper means of installing or using the equipment, contact Transition Networks' free technical support services.To establish original ownership and provide date of purchase, please complete and return the registration card accompanying the product or register the product on-line on our product registration page.Transition Networks will, at its option:•Repair the defective product to functional specification at no charge,•Replace the product with an equivalent functional product, or•Refund the purchase price of a defective product.To return a defective product for warranty coverage, contact Transition Networks' technical support department for a return authorization number. Transition's technical support department can be reached through any of the following means: Technical Support is available 24 hours a day at:•800-260-1312 x 200 or 952-941-7600 x 200•fax 952-941-2322•*******************************•live web chat: and click the “Transition Now” link•voice mail 800-260-1312 x 579 or 952-941-7600 x 579•All messages will be answered within one hour.Send the defective product postage and insurance prepaid to the following address: CSI Material Management Centerc/o Transition Networks508 Industrial DriveWaconia, MN 55387 USAAttn: RETURNS DEPT: CRA/RMA # ___________Failure to properly protect the product during shipping may void this warranty. The return authorization number must be written on the outside of the carton to ensure its acceptance. We cannot accept delivery of any equipment that is sent to us without a CRA or RMA number.The customer must pay for the non-compliant product(s) return transportation costs to Transition Networks for evaluation of said product(s) for repair or replacement.Transition Networks will pay for the shipping of the repaired or replaced in-warranty product(s) back to the customer (any and all customs charges, tariffs, or/and taxes are the customer's responsibility).Before making any non-warranty repair, Transition Networks requires a $200.00 charge plus actual shipping costs to and from the customer. If the repair is greater than $200.00, an estimate is issued to the customer for authorization of repair. If no authorization is obtained, or the product is deemed not repairable, Transition Networks will retain the $200.00 service charge and return the product to the customer not repaired. Non-warranted products that are repaired by Transition Networks for a fee will carry a 180-day limited warranty. All warranty claims are subject to the restrictions and conventions set forth by this document.Transition Networks reserves the right to charge for all testing and shipping incurred, if after testing, a return is classified as "No Problem Found."THIS WARRANTY IS YOUR ONLY REMEDY. NO OTHER WARRANTIES, SUCH AS FITNESS FOR A PARTIC ULAR PURPOSE, ARE EXPRESSED OR IMPLIED. TRANSITION NETWORKS IS NOT LIABLE FOR ANY SPEC IAL, INDIREC T, INCIDENTAL OR CONSEQUENTIAL DAMAGES OR LOSSES, INCLUDING LOSS OF DATA, ARISING FROM ANY CAUSE OR THEORY. AUTHORIZED RESELLERS ARE NOT AUTHORIZED TO EXTEND ANY DIFFERENT WARRANTY ON TRANSITION NETWORKS' BEHALF.。

ZNA PCCONV问题清单

ZNA PCCONV问题清单

预计完成时间 实际完成时间 2010-7-13 邓康宁 2010-7-15 2010-7-16 2010-7-16 2010-7-16 2010-7-16 2010-7-16 2010-7-16 2010-7-16 2010-7-16 2010-7-16 2010-7-16 2010-7-16 2010-7-16 2010-7-16 2010-7-16 2010-7-16
基础数据 MM01 基础数据 CO01_P 基础数据 CO01_V 基础数据 MM02 基础数据 MM13_A 基础数据 MM13_B 基础数据 MM17_A 基础数据 MM17_B
10 基础数据 11 基础数据 12 基础数据 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 界面
PC-CONV问题清单及解决日程
需求内容 ESB按文件传送数据给PC-CONV,需要对数据进行拆分。规则待确认。 PC-Conv需要生成UTF-8文件给ESB 提供的样例数据CATCCTSP.D0120100607122000,MM17即时修正数据长度与 layout不一致。Layout长度为120 CO03库存地点lgort之前默认为1020,ZNA的待确认 Change_MAPPING表内数据的定义。Fieldname='gr_location' Change_MAPPING表内数据的定义。Fieldname='MTART','MATKL','BESKZ' 担当 程明 变更实际 PC-CONV支持回车换行拆分和按 数据长度拆分。 程明 ESB统一修改为GB2312格式 程明 程明 程明 程明
PC-CONV问题清单及解决日程
No. 提案者 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 提交日期 11 12 13 10 11 12 13 14 15 16 17 18 分类 接口 接口 接口 接口 所属模块 ESB接口 ESB接口 ESB接口 CO03 王宇科 2010-7-6 王宇科 2010-7-7 王宇科 2010-7-8 程明 程明 程明 程明 程明 程明 程明 程明 程明 程明 程明 程明 2010-7-9 2010-7-9 2010-7-9 2010-7-9 2010-7-9 2010-7-9 2010-7-9 2010-7-9 2010-7-9 2010-7-13 2010-7-13 2010-7-13

Application Note AC147说明书

Application Note AC147说明书

Application Note AC147February 20141© 2014 Microsemi CorporationUsing the BUFD and INVD Delay MacrosTable of ContentsIntroductionChip designers often find themselves in a situation where the board layout has been completed before the chip is designed. The FPGA they are targeting must satisfy an external input phase relationship -usually between clock and data inputs. Maintaining this phase relationship for signals going off-chip enables them to meet external setup and hold requirements. BUFD and INVD are special delay macros that give designers more control in the timing behavior of their designs.BUFD is a special version of the buffer (BUFF), which will not be removed by Microsemi’s designer software in its optimization steps. This macro will always be retained and its delay preserved after the compile and layout steps. Similarly, INVD is a special version of the inverter (INV), which is preserved after compilation and layout.The suggested uses of BUFD and INVD are as follows:•Maintain the phase relationship between clock and data input signals when sending signals derived from them these signals off-chip. This application enables them to meet external setup and hold requirements.•Maintain the phase relationship of clock and data input signals in designs with high-fanout clock signals.Maintaining Phase RelationshipsAs shown in Figure 1, a certain phase relationship exists between the clock and data signals (generally,the data signal lags the clock signal). Employing BUFD is recommended to maintain this phase relationship. All Microsemi antifuse device families have a restriction that a CLKBUF cannot be connected directly to an OUTBUF, so Designer software will automatically insert a BUFF module (inst3 in Figure 1). This will introduce a delay that may cause the data signal to arrive ahead of the sys_clk signal going off-chip. To prevent this, the user can insert a BUFD macro in his netlist. The BUFD, unlike a regular BUFF, is assigned the ALSPRESERVE property. This ensures that the BUFD will not be optimized away during the compilation step and hence can offset the delay caused by automatic insertion of the BUFF in the sys_clk path. This technique maintains the phase relationship of the data andclock inputs when going off-chip and the external setup and hold requirements can be met.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Maintaining Phase Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Usage Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3HDL Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3Schematic Capture Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4Delay Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Using the BUFD and INVD Delay Macros2In Figure2, the clock signal coming from the CLKBUF has a high fanout. This means increased capacitive loading and hence increased delay. In contrast, the data signal has a fanout of only one. The clock network’s high fanout may allow the data input to (undesirably) lead the clock signal. Again, introducing one or more BUFD macros (inst1) in the data signal path provides enough delay to offset the delay of the high-fanout clock net.Figure 1 • Control of Phase Relationship between Data and System Clock using BUFDUsage Models3If inversion of the signal is required in addition to delay, the INVD macro is available. Again, the ALSPRESERVE property is assigned to this macro to avoid elimination during optimization steps.Usage ModelsHDL Design FlowNone of the synthesis tools that support Microsemi technologies will infer the INVD or BUFD macros in the synthesized netlist. Simulation library models of INVD and BUFD, similar to their INVD and BUFF counterparts, are available from Microsemi in both VHDL and Verilog. The manual process for buffer insertion is as follows:1.Import the synthesized netlist into Designer. Run compile and layout.2.Invoke Timer from Designer to check the timing/phase relationships for the signals of interest.ing a text editor, manually modify the netlist and insert BUFD and/or INVD macros into thedesired paths.4.Import the modified netlist into Designer. Again run compile and layout.5.Invoke Timer again to review the delays for the signals of step 2.If necessary, repeat steps 3 through 5 until the design timing requirements are met.Figure 2 • Control of Phase Relationship in Designs with High Clock FanoutsUsing the BUFD and INVD Delay Macros4Schematic Capture Design FlowINVDs and BUFDs are available for the following Microsemi-supported schematic capture tools:•ConceptHDL PE13.5 and PE13.6•Mentor Graphics c.4 and D.1•Workview Office 7.5•Powerview 6.1•ePD 1.0•ePD 1.1 TypicalTo avoid inadvertent instantiation of INVD or BUFD where INV or BUFF is intended, the graphicalsymbols for INVD and BUFD have warning labels "Special Use Only." The flow for buffer insertion is as follows:1.Generate an EDIF netlist with the schematic tool.2.Import the EDIF netlist into Designer. Run compile and layout.3.Invoke Timer from Designer to check the timing/phase relationships for the signals of interest.4.Edit the schematics to insert BUFD and/or INVD macros into the desired paths.5.Check and save your schematics. Generate an EDIF netlist from the modified schematics.6.Import the modified netlist into Designer. Again run compile and layout.7.Invoke Timer again to review the delays for the signals of step 3.8.If necessary, repeat steps 4 through 7 until the design timing requirements are met.Delay ValuesTable 1 shows the rising (R) and falling (F) delays for INVD and BUFD in different Microsemi families.These values are obtained using the fastest speed grade for the device using typical temperature,voltage, and process corners as well as optimized placement. Actual delay numbers may vary with the device, speed grade, and actual placement.List of ChangesThe following table lists critical changes that were made in the current version of the document.Table 1 • BUFD/INVD Delay for Various Microsemi Technology FamiliesACT1ACT2ACT33200DX 42Mx SX eX RTAX-S Units BUFD R 3.9 4.3 2.6 4.2 1.80.7 1.1 4.5ns F 3.7 3.5 2.5 3.4 1.60.7 1.1 4.6ns INVD R 3.8 4.3 2.4 3.9 1.80.7 1.1 6.5ns F3.6 3.6 2.2 3.2 1.60.7 1.1 6.1nsSpeed Grade-3-1-3-3-3-3STD-1Revision ChangesPage Revision 1(February 2014)Table 1 is updated to include RTAX-S values (SAR 47788).45192673-1/02.14© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at .Microsemi Corporate HeadquartersOne Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100Sales: +1 (949) 380-6136Fax: +1 (949) 215-4996。

NOTIFIRE WEB SERVER NWS-3 说明书

NOTIFIRE WEB SERVER NWS-3 说明书

NWS-3NOTI•FIRE•NET™Web ServerDN-6928:C • A0-810GeneralThe NOTI•FIRE•NET™ Web Server(NWS-3) is a web-baseddevice that acts as an HTML server, allowing remote access tothe NOTI•FIRE•NET™ network via the Internet or an intranet.With the NWS-3 interface, users can view fire alarm controlpanel (FACP) event history, event status, device properties andother information based on access permissions defined by thesystem administrator. All data available on the NWS-3 is a“snapshot” of the data on the NOTI•FIRE•NET™ network atthe time the browser requested the information.The NWS-3 interfaces to the Internet/intranet using an IP-basedwire Ethernet connection.FeaturesFOR THE NOTI•FIRE•NET™ WEB SER ER ANDBROWSER CONFIGURATION TOOL•Access NOTI•FIRE•NET™ device statuses and properties remotely via the Internet or an intranet.•Automatically send up to 50 emails or text messages in response to any system event.•Compatible with standard and high speed NOTI•FIRE•NET™.•Unacknowledged Beep feature, if enabled, causes the com-puter browsing the NWS-3 to beep at three-second intervals if there are unacknowledged events in the Multiple Event List.•Compatible with NOTI•FIRE•NET™ version 5.0 and higher.•One NWS-3 supports multiple users.•Standard Ethernet over IP connection.•Y our system remains secure by installing the NWS-3 behind your network firewall.•Supports up to 64 operator and 64 administrator accounts.•Built-in password security and user-access record.•Multiple users can access the web server at the same time.•Supports standard Microsoft® Internet Explorer 8.0 or higher.•Intuitive Explorer-style user interface.•Ability to use V eriFire® Tools (version 3.0 or higher) for remote programming/configuration of the NWS-3 and ONYX® Series products.NOTE: No fire alarm control functions are permitted. The NWS-3 is an ancillary device and not intended for primary reporting.CompatibilityThe NWS-3 is compatible with NOTI•FIRE•NET™ version 5.0 and higher for the following panels and devices:•ONYX® Series.•AM2020/AFP1010 (version 5.0 SIB).•AFP-200 (events only).•AFP-300/AFP-400.•BACnet Gateway (events only).•NCS Network Control Station (events only).•NCA(-2) Network Control Annunciator (events only).•Compatible with high speed network HS-NCM version 1.0 and higher.NOTE: The NWS-3 is NOT intended as a primary annunciator and is ancillary in nature.System Requirements•NOTI•FIRE•NET™ Web Server (NWS-3).•NCM card.•Browser: Microsoft Internet Explorer, version 8.0 or higher.•JAVA version 6 or later.Agency Listings and ApprovalsThese listings and approvals apply to the NOTI•FIRE•NET™Web Server. In some cases, certain modules or applications may not be listed by certain approval agencies, or listing may be in process. Consult factory for latest listing status.•UL/ULC Listed: S635.•CSFM: 7165-0028:0247.•FDNY: COA#6045.NFN-GW-EM-3.JPGDN-6928:C • 08/15/2012 — Page 1 of 2Page 2 of 2 — DN-6928:C • 08/15/2012ONYX ®, NOTIFIER ®, and VeriFire ® are registered trademarks, and NOTI•FIRE•NET ™ and ONYXWorks ™ are trademarks of Honeywell International Inc. Microsoft ® and Windows ® are registered trademarks of Microsoft Corporation.©2012 by Honeywell International Inc. All rights reserved. Unauthorized use of this document is strictly prohibited.This document is not intended to be used for installation purposes. We try to keep our product information up-to-date and accurate. We cannot cover all specific applications or anticipate all requirements.All specifications are subject to change without notice.For more information, contact Notifier. Phone: (203) 484-7161, FAX: (203) 484-7118.System Architecture•Connect to the NOTI•FIRE•NET™ network. The NWS-3can be connected to the NOTI•FIRE•NET™ network via the Network Control Module (NCM) network interface card (see diagram).•The NWS-3 can be directly connected to ONYX® series pan-els for stand-alone panel applications.•The NWS-3 can also be connected to high speed networks using HS-NCM network interface.System Architecture DiagramNWS -3 HS-NCM OR NCM ARCHITECTURECAB-4 Cabinet with NWS-3 Assembly and HS-NCM W/SF/MF or NCM W/F BoardNFN NetworkInternet/IntranetSupported FACP Supported FACPPC Browser InterfaceHS-NCM-W/SF/MFor NCM-W/FHS-NCM-W/SF/MF or NCM-W/FNWS-3 DIRECT PANEL ARCHITECTUREInternet/IntranetPC Browser InterfaceSupported ONYX Series FACPwith Web Server Assembly。

EVS_EN_16454_2015_en_preview

EVS_EN_16454_2015_en_preview

© 2015 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.
Ref. No. EN 16454:2015 E
EENVS1-6E4N5146:240541:520(1E5)
This document is a preview generated by EVS
EUROPEAN STANDARD NORME EUROPÉEN240.60
EN 16454
September 2015
Supersedes CEN/TS 16454:2013
Euroopa standardi EN 16454:2015 ingliskeelset consists of the English text of the European
teksti.
standard EN 16454:2015.
Standard on jõustunud sellekohase teate This standard has been endorsed with a
EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels
This document is a preview generated by EVS
Contents
Page

nVent RAYCHEM TraceCalc

nVent RAYCHEM TraceCalc

nVent RAYCHEM TraceCalc© Pro Version 2.17Readme FileWelcome to nVent RAYCHEM TraceCalc© Pro, the industry standard for heat tracing design. nVent is devoted to delivering quality software and support to make this the best design tool available in the industry today. Your feedback is very important to us. Please feel free tocontact us at **********************with questions, issues or suggestions for this program.IMPORTANT: Please check our web site periodically to obtain the latest TraceCalc Pro newsand updates.This Readme covers the following topics:1. Main New Features of Version2.172. Known Issues and Limitations3. System Requirements4. Installation5. Register for a Validation Code6. Technical Support7. Change History (new features and fixed issues)1. Main new features of version2.17•The recently introduced Raychem 20XTVR2-CT has successfully passed hazardous area approval testing to allow for an unconditional T3 rating up to a nominal supply voltage of240Vac. This means that the Raychem 20XTVR2-CT is now unconditionally T3 rated up to 240 Vac and T2 rated up to 277Vac. This is applicable for all approvals schemes the product is certified to (IEC, NAM, CCC,…).•The recently introduced High Power Retention (HPR) self-regulating heating cables, nVent RAYCHEM XTVR and HTV, are now CCC approved allowing them for use in hazardousarea as per GB standard for China.•The TraceCalc Pro attachment algorithm was modified to also include glass tape when aluminum tape is used, to better reflect actual installation practices when heating cables are installed using aluminum tape on pipes. We have given the user flexibility to specify theamount of glass tape to include on the design tab since the glass tape is used only as atemporary fixation aid.2. Known Issues and Limitations•For designs with European single conductor, polymer insulated (PI) series heater cables, the connection components selected by TraceCalc Pro have the following limitations:a. For CS-150-xx-PI connection kits, the specific crimp size is not indicated in the bill ofmaterial. You will need to manually select the correct crimp based on data presentedin the latest Technical Data Book.b. For Power Tee or Power Splice configurations, a JB-EX-20 junction box will beselected by TraceCalc Pro; a JB-EX-21 should be substituted instead.c. The last leg of a multi-segment Parent/Child design will include two single conductorsegments and a junction box allowed for series connection of the two segments. Atthis point, TraceCalc Pro does not support a single looped cable as the lastsegment.d. TraceCalc Pro will not support the full application range of the universal connectionand splice kit for PI heating cables, reference: CS-150-UNI-PI.Its maximum use temperature has been limited to 120°C for simplification of theselection algorithms. If the user plans to select the kit, it is important to verify themaximum allowed wattages for higher temperatures as detailed in our installationinstructions (ref. Install-064). In case of doubt, please contact nVent or use the kit CS-150-2.5- PI instead.•For European series cable designs, TraceCalc Pro will propose a bill of materials for which some components have the quantity set to zero. These are small electrical items required to create the desired electrical configuration and are compatible with the proposed junction box. Users should adjust the quantities of these components to ensure that the requested electrical configuration can be realized. Refer to the individual datasheets of the proposed junction boxes for more information on the exact contents and electrical limitations.3. System RequirementsThe TraceCalc Pro installation package no longer supports installation on Windows XP.Contact nVent for more information.Minimum Requirements:•Microsoft Windows 10 or later, Server 2012 or later•At least 25 MB of free hard disk space•Internet Explorer 6.0 or later•Adobe Acrobat Reader 5.0 or later•Recommended: 500 MHZ, 2 GB RAM4. InstallationThe program can be downloaded from our website. After downloading, just start theTraceCalc Pro 2.17 Setup.exe program and follow the instructions.During installation, Setup will detect if an earlier version has been installed. If you have an earlier version installed, then Setup will uninstall it before continuing. All of your application settings will be retained. Old projects will not be removed and can be used with TraceCalc Pro 2.17.5. Register for a Validation CodeWhen you install the TraceCalc Pro software, you are getting a trial version that will only function for 30 days, unless it is registered and a valid registration code entered.The first time you launch TraceCalc Pro, you will be prompted to register. Register online through our public website. Once you register, we will send you the validation code. To enter the code, launch TraceCalc Pro, click Register on the main menu and type the code in the pop-up window.6. Technical SupportFor help using TraceCalc Pro, first check the extensive on-line help in the program.•To contact your local nVent representative, visit our website, click on the ‘Support’ menu, then choose ‘Where to Buy’•To view Frequently Asked Questions, visit our website, click on the ‘Support’ menu, then choose ‘Frequently Asked Questions (FAQ)’•To contact Technical Support, send email to **********************andindicate your country and preferred language.•To download the latest version of TraceCalc Pro or the user manual, go to the TraceCalc Pro page.Thanks for reporting any issues to us.7. Change historyVersion 2.17New Recently launched nVent RAYCHEM XTVR and HTV that use HPR technology are now CCC approvedNew Recently launched nVent RAYCHEM 20XTVR2-CT now has an unconditional T3 rating up to 240Vac for all approval schemes to which the product is certified to.New To improve flexibility reflecting actual installation practices, the ‘Design tab’ allows to specify the pipe length interval to use to include additional glass tape whendesigns with aluminum tape are done.Fixed The max exposure temp of the mechanical thermostat with limiter type RAYCHEM T-M-20-S/0+200C/EX has been corrected to 230°C to deal with the limitations of thecontrol sensor.Fixed The ‘Register online’ button (on the Register form) pointed to an obsolete URL and hence returned an error. This has been corrected to ensure it takes the user to thecorrect page on our website.Fixed When using Global Edit on the startup temperature, the SW would under specific circumstances erroneously not always update all lines.Fixed The warning “maximum segment length exceeded” was being raised unnecessarily on series cable vessel designs.Fixed On a vessel design using parallel heater technology, if the cable type was forced but the attachment type was not, the system sometimes applied an incorrectcircuit length adjustment factor, resulting in an erroneously long reportedmaximum circuit length.Fixed HTV reported maximum heater lengths were sometimes shorter than actually allowed for design conditions.Fixed When installing a new version over a previous installation with different regional settings, a user’s customized default project settings (which includes regionalsettings) are preserved, so the user does not get the (new) regional settings.Therefore a button that allows the user to replace his default project with the last-installed default regional settings has been added.Copyright 2023 nVent.。

FRAX 101 Sweep Frequency Response Analyzer 用户手册说明书

FRAX 101 Sweep Frequency Response Analyzer 用户手册说明书

FRAX 101Sweep Frequency Response AnalyzerISmallest and most rugged FRA instrument in the industryIHighest possible repeatability by using reliable cable practice and high-performance instrumentation IFulfills all international standards for SFRA measurementsIHighest dynamic range and accuracy in the industryIWireless communication and battery operatedIAdvanced analysis and decision support built into the softwareIImports data from other FRA test setsFRAX 101Sweep Frequency Response AnalyzerDESCRIPTIONPower transformers are some of the most vital components in today’s transmission and distribution infrastructure.Transformer failures cost enormous amounts of money in unexpected outages and unscheduled maintenance. It is important to avoid these failures and make testing and diagnostics reliable and efficient.The FRAX 101 Sweep Frequency Response Analyzer (SFRA) detects potential mechanical and electricalproblems that other methods are unable to detect. Major utilities and service companies have used the FRA method for more than a decade. The measurement is easy to perform and will capture a unique “fingerprint” of the transformer. The measurement is compared to a reference “fingerprint” and gives a direct answer if the mechanical parts of the transformer are unchanged or not. Deviations indicate geometrical and/or electrical changes within the transformer.FRAX 101 detects problems such as:I Winding deformations and displacements I Shorted turns and open windings I Loosened clamping structures I Broken clamping structures I Core connection problems I Partial winding collapse I Faulty core grounds I Core movements IHoop bucklingAPPLICATIONPower transformers are specified to withstand mechanical forces from both transportation and in-service events, such as faults and lightning. However, mechanical forces may exceed specified limits during severe incidents or when the insulation’s mechanical strength has weakened due to aging. A relatively quick test where the fingerprintresponse is compared to a post event response allows for a reliable decision on whether the transformer safely can be put back into service or if further diagnostics is required.Collecting fingerprint data using Frequency Response Analysis (FRA) is an easy way to detect electro-mechanical problems in power transformers and an investment that will save time and money.1981Method BasicsA transformer consists of multiple capacitances,inductances and resistors, a very complex circuit that generates a unique fingerprint or signature when test signals are injected at discrete frequencies and responses are plotted as a curve.Capacitance is affected by the distance betweenconductors. Movements in the winding will consequently affect capacitances and change the shape of the curve.The SFRA method is based on comparisons between measured curves where variations are detected. One SFRA test consists of multiple sweeps and reveals if the transformer’s mechanical or electrical integrity has been jeopardized.Practical Application In its standard application, a “finger print” reference curvefor each winding is captured when the transformer is new or when it is in a known good condition. These curves can later be used as reference during maintenance tests or when there is reason to suspect a problem.The most reliable method is the time based comparison where curves are compared over time on measurements from the same transformer. Another method utilizes type based comparisons between “sister transformers” with the same design. Lastly, a construction based comparison can,under certain conditions, be used when comparingmeasurements between windings in the same transformer.These comparative tests can be performed 1) before and after transportation, 2) after severe through faults 3) before and after overhaul and 4) as diagnostic test if you suspect potential problems. One SFRA test can detect windingproblems that requires multiple tests with different kinds of test equipment or problems that cannot be detected with other techniques at all. The SFRA test presents a quick and cost effective way to assess if damages have occurred or if the transformer can safely be energized again. If there is a problem, the test result provides valuable information that can be used as decision support when determining further action.Having a reference measurement on a mission critical transformer when an incident has occurred is, therefore, a valuable investment as it will allow for an easier and more reliable analysis.Analysis and SoftwareAs a general guideline, shorted turns, magnetization and other problems related to the core alter the shape of the curve in the lowest frequencies. Medium frequencies represent axial or radial movements in the windings and high frequencies indicate problems involving the cables from the windings, to bushings and tap changers.FRAX 101Sweep Frequency Response AnalyzerAn example of low,medium and high frequenciesThe figure above shows a single phase transformer after a serviceoverhaul where, by mistake, the core ground never got connected (red),and after the core ground was properly connected (green). This potential problem clearly showed up at frequencies between 1 kHz and 10 kHz and a noticeable change is also visible in the 10 kHz - 200 kHz range.The FRAX Software provides numerous features to allow for efficient data analysis. Unlimited tests can be open at the same time and the user has full control on which sweeps to compare. The response can be viewed in traditional Magnitude vs. Frequency and/or Phase vs.Frequency view. The user can also choose to present the data in an Impedance or Admittance vs. Frequency view for powerful analysis on certain transformer types.FRAX 101Sweep Frequency Response AnalyzerTest Object Browser —Unlimited number of tests and sweeps. Full user control.Quick Select Tabs —Quickly change presentation view for differentperspectives and analysis tools.Quick Graph Buttons —Programmablegraph setting lets you change views quickly and easily.Sweep/Curve Settings —Every sweep can be individually turned on or off,change color,thickness and position.Dynamic Zoom —Zoom in and move your focus to any part of the curve.Operation Buttons —All essentialfunctions at your fingertips; select with mouse, function keys or touch screen.Automated analysis compares two curves using an algorithm that compare amplitude as well asfrequency shift and lets you know if the difference is severe, obvious, or light.Built-in-decision support is provided by using a built-inanalysis tool based on the international standard DL/T 911-2004.FRAX 101Sweep Frequency Response AnalyzerConsiderations When Performing SFRA MeasurementsSFRA measurements are compared over time or between different test objects. This accentuates the need to perform the test with the highest repeatability and eliminates the influence from external parameters such as cables,connections and instrument performance. FRAX offers all the necessary tools to ensure that the measured curve represents the internal condition of the transformer.Good Connections Bad connections cancompromise the test results which is why FRAX offers a rugged test clamp thatensures good connection to the bushings and solid connections to the instrument.Shortest Braid ConceptThe connection from the cable shield to ground has to be the same for every measurement on a given transformer.Traditional ground connections techniques have issues when it comes to providing repeatable conditions. This causes unwanted variations in the measured response for the highest frequencies that makes analysis difficult. The FRAX braid drops down from the connection clamp next to the insulating discs to the ground connection at the base of the bushing. This creates near identicalconditions every time you connect to a bushing whether it is tall or short.The Power of WirelessFRAX 101 uses class 1 Bluetooth ®wireless communication.Class 1 Bluetooth ®has up to 100 m range and is designed for industrial applications. An optional internal battery pack is available for full wireless flexibility. Shorter and more light-weight cables can be used when the user is liberated from cable communication and power supply cables.A standard USB interface (galvanically isolated) is included for users who prefer a direct connection to their PC. IMPORT AND EXPORTThe FRAX software can import data files from other FRA instruments making it possible to compare data obtained using another FRA unit. FRAX can import and export data according to the international XFRA standard format as well as standard CSV and TXT formats.Optimized Sweep SettingThe software offers the user an unmatched feature that allows for fast and efficient testing. Traditional SFRAsystems use a logarithmic spacing of measurement points.This results in as many test points between 20Hz and200Hz as between 200KHz and 2MHz and a relatively long measurement time.The frequency response from the transformer contains a few resonances in the low frequency range but a lot of resonances at higher frequencies. FRAX allows the user to specify less measurement points at lower frequencies and high measurement point density at higher frequencies.The result is a much faster sweep with greater detail where it is needed.Variable VoltageThe applied test voltage may affect the response at lower frequencies. Some FRA instruments do not use the 10 V peak-to-peak used by major manufacturers and this may complicate comparisons between tests. FRAX standard voltage is 10 V peak-to-peak but FRAX also allows the user to adjust the applied voltage to match the voltage used in a different test.FTB 101Several international FRA guides recommends to verify the integrity of cables and instrument before and after a test using a test circuit with a known FRA response supplied by the equipment manufacturer. FRAX comes with a field test box FTB101 as a standard accessory and allows the user to perform this important validation in the field at any time and secure measurement quality.The laptop can be operated by touch screen and the communication is wireless via Bluetooth. Measurement ground braids connect close to the connection clamps and run next to the bushing to the flange connectionto avoid cable loops that otherwise affect the measurement.Contacts made with the C-clamp guarantee good connectionsFTB 101 Field Test BoxFRAX 101Sweep Frequency Response AnalyzerDYNAMIC RANGEMaking accurate measurements in a wide frequency range with high dynamics puts great demands on test equipment,test leads, and test set up. FRAX 101 is designed with these requirements in mind. It is rugged, able to filter induced interference and has the highest dynamic range andaccuracy in the industry. FRAX 101 dynamic range or noise floor is shown in red below with a normal transformer measurement in black. A wide dynamic range, low noise floor, allows for accurate measurements in everytransformer. A margin of about 20 dB from the lowest response to the instruments noise floor must be maintained to obtain ±1 dB accuracy.SPECIFICATIONSGeneral FRA Method: Sweep frequency (SFRA)Frequency Range:0.1 Hz - 25 MHz, user selectable Number of Points:Default 1046,User selectable up to 32,000Measurement time:Default 64 s, fast setting,37 s (20 Hz - 2 MHz)Points Spacing:Log., linear or both Dynamic Range/Noise Floor:>130dB Accuracy:±0.3 dB down to -105 dB(10 Hz - 10 MHz)IF Bandwidth/Integration Time:User selectable (10% default) Software:FRAX for Windows 2000/ XP/Vista PC Communication:Bluetooth and USB(galvanically isolated)Calibration Interval:Max 3 yearsStandards/guides:Fulfill requirements in CigréBrochure 342, 2008Mechanical condition assessment of transformer windings using FRA and Chinese standard DL/T 911-2004, FRA on winding deformation of powertransformers, as well as other international standards and recommendations Analog Output Channels:1Compliance Voltage:0.2 - 20 V peak-to-peak Measurement Voltage at 50 Ω:0.1 - 10 V peak-to-peak Output Impedance:50 ΩProtection:Short-circuit protected Analog Input Channels: 2Sampling:Simultaneously Input Impedance:50 ΩSampling Rate:100 MS/sPhysicalInstrument Weight:1.4 kg/3.1 lbs Case and Accessories Weight:15 kg/33 lbsDimensions:250 x 169 x 52 mm 9.84 x 6.65 x 2.05 in Dimensions with Case:520 x 460 x 220 mm 20.5 x 18.1 x 8.7 in.Input Voltage:11 - 16 V dc or 90 - 135 V ac and 170 - 264V ac, 47-63 Hz EnvironmentalOperating Ambient Temp: -20°C to +50°C /-4°F to +122°F Operating Relative Humidity:< 90% non-condensingStorage Ambient Temp:-20°C to 70°C / -4°F to +158°F Storage Relative Humidity:< 90% non-condensingCE Standards:IEC61010 (LVD) EN61326 (EMC)PC Requirements (PC not included)Operating System:Windows 2000/ XP / Vista Processor:Pentium 500 MHz Memory:256 Mb RAM or more Hard Drive:Minimum 30 Mb free Interface:Wireless or USB (client)An example of FRAX 101’s dynamic limit (red) and transformer measurement (black)FEATURES AND BENEFITSI Smallest and most rugged FRA instrument in the industry.IGuaranteed repeatability by using superior cablingtechnology, thus avoiding the introduction of error due to cable connection and positioning (which is common in other FRA manufacturers’ equipment).IFulfills all international standards for Sweep Frequency Response Analysis (SFRA) measurements.IHighest dynamic range and accuracy in the industry allowing even the most subtle electro-mechanical changes within the transformer to be detected.IWireless communication allows easy operation without the inconvenience of cable hook up to a PC.IBattery input capability allows for easy operation without the need for mains voltage supply.IAdvanced analysis and support software tools allows for sound decision making with regard to further diagnostics analysis and/or transformer disposition.FRAX 101Sweep Frequency Response AnalyzerUKArchcliffe Road, Dover CT17 9EN EnglandT +44 (0) 1 304 502101 F +44 (0) 1 304 207342******************UNITED STATES 4271 Bronze WayDallas, TX 75237-1019 USA T 1800 723 2861 (USA only) T +1 214 333 3201 F +1 214 331 7399******************Registered to ISO 9001:2000 Cert. no. 10006.01FRAX101_DS_en_V01Megger is a registered trademark Specifications are subject to change without notice.OTHER TECHNICAL SALES OFFICES Täby SWEDEN, Norristown USA,Sydney AUSTRALIA, Toronto CANADA,Trappes FRANCE, Kingdom of BAHRAIN,Mumbai INDIA, Johannesburg SOUTH AFRICA, and Chonburi THAILANDFRAX cable set consists of double shielded high quality cables, braid for easy and reliable ground connection, and clamp for solid connections to the test object.OPTIONAL ACCESSORIESI The built-in battery pack offers flexibility when performing tests on or off the transformer.IThe Active Impedance Probe AIP 101 should be used when measuring grounded connections such as to the transformer tank or a bushing connected to thetransformer tank. AIP 101 ensures safe, accurate and easy measurements to ground.IThe Active Voltage Probe AVP 101 is designed formeasurements when higher input impedance is needed.AVP 101 can be used for measurements where up to 1M Ωinput impedance is required.Item (Qty)Cat. No.Optional Accessories Battery option, 4.8 Ah AC-90010Calibration setAC-90020 Active impedance probe AIP 101AC-90030Active voltage probe AVP 101AC-90040FRAX Demo box FDB 101AC-90050Field Demo Box FTB 101AC-90060Ground braid set, 4 x 3 m including clamps GC-30031FRAX Generator cable, 2xBNC, 9 m (30 ft)GC-30040FRAX Generator cable, 2xBNC, 18 m (59 ft)GC-30042FRAX Measure cable, 1xBNC, 9 m (30 ft)GC-30050FRAX Measure cable, 2xBNC, 18 m (59 ft)GC-30052FRAX C-clamp GC-80010FRAX for WindowsSA-AC101Item (Qty)Cat. No.FRAX 101complete with: ac/dc adapter,mains cable,ground cable 5 m (16 ft), transport case,USB cable, Bluetooth adapter, Windows software, 4x 3m (10 ft) ground braid set, 2 x C-clamp, field test box, generator cable 18 m (59 ft), measure cable 18 m (59 ft), manual AC-19090FRAX 101, incl. battery,complete with: ac/dc adapter,mains cable,ground cable 5 m (16 ft), transport case,USB cable, Bluetooth adapter,Windows software, 4x 3m (10 ft) ground braid set, 2 x C-clamp, field test box, generator cable 18 m (59 ft), measure cable 18 m (59 ft), battery pack, manual AC-19091ORDERING INFORMATION。

Yeastar S100 VoIP PBX Installation Guide

Yeastar S100 VoIP PBX Installation Guide

Yeastar S100 VoIP PBX Installation GuideContentWelcome (3)Before You Start (4)Package Contents (4)Expansion Board (4)Yeastar S100 Overview (5)LED Indicators and Ports (6)Installation (8)Safety Disclaimers and Installation Warnings (8)Telephony Module Installation (8)DSP Module Installation (11)Desktop Installation (12)Rack Installation (12)Frame Ground Connection (13)Connecting the Equipment (14)Getting Started with the Configuration (15)WelcomeThank you for choosing Yeastar S100 IP PBX. S100 is a cost-effective business communication system with a base configuration of 100 users and 30 concurrent calls and can scale up to 200 users and 60 concurrent calls. The flexible S100 comes with support for analog ports, ISDN BRI, E1/T1/PRI, and GSM networks.This guide describes how to install the S100 and how to log in the web GUI to configure the system. Once you complete the installation, refer to the Yeastar S-Series Administrator Guide for instructions on how to perform configurations on the system.Related DocumentsThis Installation Guide only explains the installation of Yeastar S100 IPPBX. For more functionality and advanced settings, please refer to the relative documents as below:Before You StartBefore you begin to install the S100 IP Phone System, please check the package contents to verify that you have received the items below. If there is any problem, please contact your provider.Package ContentsExpansion BoardYeastar S100 supports expanding up to 2 Expansion boards and supports expanding one DSP module.Expansion Board – EX08EX08 board supports up to 4 modules (8 ports).Optional Module∙O2 Module∙S2 Module∙SO Module∙B2 Module∙GSM Module∙3G ModuleExpansion Board – EX30EX30 board supports 1 E1/T1 port.D30 ModuleD30 is a DSP module, used to expand the capacity of PBX. With per D30 module added, the extensions increase 100 and concurrent calls increase 30 in additional.Yeastar S100 OverviewFront Panel (1*EX08 + 1*EX30)Back PanelAntenna SocketsSD Slot Console Power SwitchPower LAN Power InletSystem WAN Protective EarthReset USB SlotLED Indicators and PortsLED IndicatorsPort DescriptionInstallationThis chapter shows you how to install Yeastar S100 IP phone system.Safety Disclaimers and Installation WarningsTo avoid unexpected accident, personal injury or device damage, please read the safety disclaimers and installation warnings.Power●Use only the power cord provided with the IP PBX.●Keep the power off during the installation.●Make sure that the supply voltage matches the specifications indicated on the back panel of thedevice.●To avoid the electric accident, do not open or remove the cover of IP PBX when it is working aswell as off the power.●Before cleaning the device, cut off the power supply.EnvironmentInstall the Yeastar S100 IP PBX in a location that is clean, free from vibration, electric shock, and temperature/humidity extremes. The operating temperature should be kept below 104°F (40°C).Telephony Module InstallationSTEP 1Loosen the screws on the enclosure and then remove the upper cover.STEP 2Push out the empty board from the inside of the device.STEP 3Push in the Expansion Board (EX08 or EX30).STEP 4Lock the screws to fix the Expansion Board.STEP 5Insert the Telephony Modules on the EX08 Board. Skip this step for EX30 Board.STEP 6Insert a SIM card on the GSM/3G module following the instructions. Skip this step if no GSM/3G module installed.STEP 7 Close the cover and fix the screws.STEP 8 Rotate the antenna into the Antenna Socket. Skip this step if no GSM/3G module installed.DSP Module InstallationSTEP 1 Open the device upper cover and insert the DSP module (D30) into the D-Slot from a tilt angle and then press it down.STEP 2 Lock the screws to fix the D30 module board.Desktop InstallationWARNING∙Please set 5~10cm gaps around the device for air circulation.∙Please avoid any heavy thing placed on the device.STEP 1 Place the IP PBX on a steady platform.STEP 2 Remove the adhesive backing paper from the rubber feet.STEP 3 Turn over the device and attach the supplied rubber feet to the recessed areas on the bottom at each corner of the device.Rack InstallationWARNING∙Be careful not to drop any components. Dropping components may damage them or cause an injury.∙Only use the 19-inch rack mounting kits (attached bracket and fittings) included with the PBX.STEP 1 Fix the brackets to the left and right sides of the PBX with 4 screws.STEP 2 Place the PBX in the 19-inch rack and fix both brackets to the rack with the rack’s proprietary mounting equipment.Ground ConnectionWARNING∙Proper grounding (connection to ground) is very important to reduce the risk to the user of electrocution or protect the PBX from the bad effects of external noise in the case of alightning strike.∙ A permanent connection between ground and the ground terminal of the PBX must be made.STEP 1 Tighten the provided screw stud into the Grounding port on PBX.STEP 2 Insert an 18AWG grounding wire (user supplied).STEP 3 Tighten the provided screw nut.STEP 4 Attach the grounding wire to the grounding terminal.Connecting the EquipmentSTEP 1 Connect one end of a network cable to the LAN port of Yeastar device, and the other end to any port of your company’s LAN switch/router.STEP 2 Plug the provided power cord into the power jack on S100 and the other end to a standard electrical wall socket. Wait for the system to boot up till the SYSTEM LED starts to blink.STEP 3 Connect the telephony line to the RJ11 port of the device.STEP 4 Connect one end of the E1 cable to the E1/T1 port. Connect the other end to the E1 provider’s equipment.NOTEConnect BRI/PSTN/analog phone/fax machine to the corresponding port based on the color of port indicator.Getting Started with the ConfigurationYeastar S100 IP Phone System provides web-based configuration interface for administrator. The administrator can manage the device by logging in the Web interface.∙Access path: https://192.168.5.150:8088∙User Name: admin∙Password: passwordSTEP 1 Connect your PC to the same network as Yeastar S100.STEP 2 Start the browser on PC. In the address bar, enter the IP address, click “Enter” key and then you can see the web GUI login page shows as below.STEP 3 For the detailed configurations of extensions, trunks and other system settings, please refer to the manual Yeastar S-Series Administrator Manual.NOTEAfter saving the changes, reme mber to click the “Apply” button at the top-right corner to make the changes take effect.[END]。

xdma核的max payload size -回复

xdma核的max payload size -回复

xdma核的max payload size -回复"xdma核的max payload size"是指在使用Xilinx的XDMA IP核时,数据传输中每次可传输的最大载荷大小。

本文将逐步解释Xilinx的XDMA 核和其max payload size的概念,并介绍如何设置和优化这个值。

第一步:了解Xilinx的XDMA IP核Xilinx的XDMA IP核是一种用于高性能数据传输的IP核。

它可用于连接FPGA与主机系统之间的DMA(Direct Memory Access)通信。

XDMA 核可实现高带宽、低延迟的数据传输,并广泛应用于图像处理、加速计算等领域。

第二步:理解max payload size的概念在数据传输中,每次数据传输都会将数据分割成多个块,每个块称为一个payload。

max payload size表示每个payload的最大大小。

较大的max payload size可以提高数据传输效率和吞吐量,但可能会增加延迟并占用更多的系统资源。

第三步:设置max payload size在Xilinx的XDMA核中,可以通过调整相关寄存器的值来设置max payload size。

具体而言,需要设置MM2S和S2MM通道中的TLP Burst Size和Max Payload Size这两个参数。

TLP Burst Size用于设置每个传输请求的最大传输数量,而Max Payload Size用于设置每个传输请求的max payload size。

第四步:优化max payload size为了优化max payload size的设置,需要考虑以下几个因素:1. DMA通信的传输特性:根据具体应用需求和系统架构,选择合适的max payload size。

如果需要低延迟,可以选择较小的max payload size。

如果需要高吞吐量,可以选择较大的max payload size。

Moxa EDS-728 系列 24+4G 埠 Layer 2 Gigabit 模組化網管型乙太網路

Moxa EDS-728 系列 24+4G 埠 Layer 2 Gigabit 模組化網管型乙太網路

EDS-728系列24+4G 埠Layer 2Gigabit模組化網管型乙太網路交換器特色與優點•4個Gigabit 連接埠和24個快速乙太網路連接埠,可連接銅質纜線和光纖•支援Turbo Ring 和Turbo Chain (對於250台交換器斷線復連時間小於20毫秒)1、RSTP/STP 和MSTP 網路備援•支援TACACS+、SNMPv3、IEEE 802.1X 、HTTPS 和SSH ,強化網路安全•透過網頁瀏覽器、CLI 、Telnet /序列主控台、Windows 管理工具和ABC-01輕鬆管理網路•支援MXstudio ,輕鬆實現可視化的工業網路管理認證簡介EDS-728系列採用多功能的模組化設計,可搭配不同的光纖和銅線模組組合,可以組建各種連線模式,靈活適用於所有自動應用網路。

模組化設計可讓您安裝多達4個Gigabit 連接埠和24個快速乙太網路連接埠。

EDS-728系列是針對Gigabit 網路骨幹備援所特別設計,利用模組化配置為網路擴充提供高度彈性。

透過EDS-728系列進階管理和安全特性,將可確保頂級的網路效能、安全性與可靠性。

EDS-728系列也具備工業級結構,包括可用於自動配置備份的主控台連接埠,以及從水平和垂直視角都可輕鬆查看的多角度LED 故障排除面板。

附加特色與優點•命令列介面(CLI )快速設定主要網管功能•透過Q-in-Q 標籤支援進階VLAN 功能•軟體型IEEE 1588PTPv2(精確時間協定)可提供精確的網路時間同步•DHCP Option 82以不同原則指派IP 位址•支援EtherNet/IP 和Modbus TCP 通訊協定以進行設備管理和監控•相容於PROFINET 通訊協定以進行透通式數據傳輸•IGMP snooping 和GMRP ,用於過濾多點播送流量•IEEE 802.1Q VLAN 以及GVRP 通訊協定,可簡化網路規劃•QoS (IEEE 802.1p/1Q 和TOS/DiffServ )提高資料傳送穩定性•Port Trunking 可將頻寬使用率最佳化•SNMPv1/v2c/v3,支援不同層級的網路管理•RMON 提供主動且有效率的網路監控•頻寬管理可預防不穩定的網路狀態出現•連接埠鎖定功能可依據MAC 位址封鎖未經授權的存取•Port mirroring 可用於線上除錯•發生狀況時可透過電子郵件或是繼電器輸出自動發出告警•數位輸入可將感應器和警告整合至IP 網路•備援雙直流(DC)電源輸入•可透過網頁瀏覽器、Telnet /序列主控台、CLI 、Windows 管理工具,以及ABC-01自動備份配置器進行配置設定規格Input/Output InterfaceAlarm Contact Channels 2,Relay output with current carrying capacity of 1A @24VDC Digital Input Channels 2Digital Inputs+13to +30V for state 1-30to +3V for state 0Max.input current:8mA1.Gigabit 乙太網路斷線復連時間小於50毫秒Ethernet InterfaceModule6slots for any combination of4-port interface modules,10/100BaseT(X)or100BaseFX;2slots for any combination of2-port interface modules,10/100/1000BaseT(X)or1000BaseSFPStandards IEEE802.1D-2004for Spanning Tree ProtocolIEEE802.1p for Class of ServiceIEEE802.1Q for VLAN TaggingIEEE802.1s for Multiple Spanning Tree ProtocolIEEE802.1w for Rapid Spanning Tree ProtocolIEEE802.1X for authenticationIEEE802.3for10BaseTIEEE802.3ab for1000BaseT(X)IEEE802.3ad for Port Trunk with LACPIEEE802.3u for100BaseT(X)and100BaseFXIEEE802.3x for flow controlIEEE802.3z for1000BaseXEthernet Software FeaturesFilter GMRP,GVRP,IGMP v1/v2,QinQ VLAN,802.1Q VLAN,VLAN unawareIndustrial Protocols EtherNet/IP,Modbus TCPManagement Back Pressure Flow Control,BOOTP,DDM,DHCP Option66/67/82,DHCP Server/Client,Flow control,IPv4,LLDP,Port Mirror,RARP,RMON,SMTP,SNMP Inform,SNMPv1/v2c/v3,Syslog,Telnet,TFTPMIB Bridge MIB,Ethernet-like MIB,MIB-II,P-BRIDGE MIB,Q-BRIDGE MIB,RMON MIBGroups1,2,3,9,RSTP MIBRedundancy Protocols Link Aggregation,MSTP,RSTP,STP,Turbo Chain,Turbo Ring v1/v2Security Broadcast storm protection,HTTPS/SSL,Port Lock,RADIUS,SSH,TACACS+Time Management NTP Server/Client,SNTP,IEEE1588v2PTP(software-based)Switch PropertiesIGMP Groups256MAC Table Size16KMax.No.of VLANs64Packet Buffer Size32MbitsPriority Queues4VLAN ID Range VID1to4094Serial InterfaceConsole Port RS-232(TxD,RxD,GND),8-pin RJ45(115200,n,8,1)Power ParametersConnection2removable6-contact terminal block(s)Input Current0.82A@24VDCInput Voltage24VDC,Redundant dual inputsOperating Voltage12to45VDCOverload Current Protection SupportedReverse Polarity Protection SupportedPhysical CharacteristicsIP Rating IP30Dimensions362.4x142.5x128mm(14.27x5.61x5.04in)Weight1950g(4.30lb)Installation DIN-rail mounting,Wall mounting(with optional kit)Environmental LimitsOperating Temperature0to60°C(32to140°F)Storage Temperature(package included)-40to85°C(-40to185°F)Ambient Relative Humidity5to95%(non-condensing)Standards and CertificationsFreefall IEC60068-2-32EMC EN55032/24EMI CISPR32,FCC Part15B Class AEMS IEC61000-4-2ESD:Contact:6kV;Air:8kVIEC61000-4-3RS:80MHz to1GHz:10V/mIEC61000-4-4EFT:Power:4kV;Signal:2kVIEC61000-4-5Surge:Power:2kV;Signal:1kVIEC61000-4-6CS:10VIEC61000-4-8PFMFMaritime ABS,DNV-GL,LR,NKSafety EN60950-1,UL508,UL60950-1,CSA C22.2No.60950-1Shock IEC60068-2-27Vibration IEC60068-2-6MTBFTime191,203hrsStandards Telcordia SR332WarrantyWarranty Period5yearsDetails See /tw/warrantyPackage ContentsDevice1x EDS-728Series switchCable1x RJ45-to-DB9console cableDocumentation1x document and software CD1x product certificates of quality inspection,Simplified Chinese1x product notice,Simplified Chinese1x quick installation guide1x warranty cardNote SFP modules and/or modules from the IM Module Series need to be purchased separatelyfor use with this product.尺寸訂購資訊Model Name Layer Total No.of PortsIM-2G Series Module10/100/1000BaseT(X)or1000BaseSFPIM Series Module10/100BaseT(X)and/or100BaseFXOperating Temp.EDS-72810G2282slots for up to410/100/1000BaseT(X)or1000BaseSFP ports6slots for up to2410/100BaseT(X)and/or100BaseFX ports0to60°C配件(選購)IM Module SeriesIM-1LSC/3TX Fast Ethernet interface AC module with310/100BaseT(X)ports,1100BaseFX single-mode port with SCconnector for80km transmission,0to60°C operating temperatureIM-2GSFP Gigabit Ethernet interface module with21000BaseSFP slots,0to60°C operating temperatureIM-2GTX Gigabit Ethernet interface module with210/100/1000BaseT(X)ports,0to60°C operating temperature IM-2MSC/2TX Fast Ethernet interface module with210/100BaseT(X)ports,2100BaseFX multi-mode ports with SCconnector,0to60°C operating temperatureIM-2MST/2TX Fast Ethernet interface module with210/100BaseT(X)ports,2100BaseFX multi-mode ports with STconnectors,0to60°C operating temperatureIM-2SSC/2TX Fast Ethernet interface module with210/100BaseT(X)ports,2100BaseFX single-mode ports with SCconnectors,0to60°C operating temperatureIM-4MSC Fast Ethernet interface module with4100BaseFX multi-mode ports with SC connector,0to60°Coperating temperatureIM-4MST Fast Ethernet interface module with4100BaseFX multi-mode ports with ST connectors,0to60°Coperating temperatureIM-4SSC Fast Ethernet interface module with4100BaseFX single-mode ports with SC connector,0to60°Coperating temperatureIM-4TX Fast Ethernet interface module with410/100BaseT(X)ports,0to60°C operating temperatureStorage KitsABC-01Configuration backup and restoration tool for managed Ethernet switches and AWK Series wireless APs/bridges/clients,0to60°C operating temperatureSFP ModulesSFP-1G10ALC WDM-type(BiDi)SFP module with11000BaseSFP port with LC connector for10km transmission;TX1310nm,RX1550nm,0to60°C operating temperatureSFP-1G10ALC-T WDM-type(BiDi)SFP module with11000BaseSFP port with LC connector for10km transmission;TX1310nm,RX1550nm,-40to85°C operating temperatureSFP-1G10BLC WDM-type(BiDi)SFP module with11000BaseSFP port with LC connector for10km transmission;TX1550nm,RX1310nm,0to60°C operating temperatureSFP-1G10BLC-T WDM-type(BiDi)SFP module with11000BaseSFP port with LC connector for10km transmission;TX1550nm,RX1310nm,-40to85°C operating temperatureSFP-1G20ALC WDM-type(BiDi)SFP module with11000BaseSFP port with LC connector for20km transmission;TX1310nm,RX1550nm,0to60°C operating temperatureSFP-1G20ALC-T WDM-type(BiDi)SFP module with11000BaseSFP port with LC connector for20km transmission;TX1310nm,RX1550nm,-40to85°C operating temperatureSFP-1G20BLC WDM-type(BiDi)SFP module with11000BaseSFP port with LC connector for20km transmission;TX1550nm,RX1310nm,0to60°C operating temperatureSFP-1G20BLC-T WDM-type(BiDi)SFP module with11000BaseSFP port with LC connector for20km transmission;TX1550nm,RX1310nm,-40to85°C operating temperatureSFP-1G40ALC WDM-type(BiDi)SFP module with11000BaseSFP port with LC connector for40km transmission;TX1310nm,RX1550nm,0to60°C operating temperatureSFP-1G40ALC-T WDM-type(BiDi)SFP module with11000BaseSFP port with LC connector for40km transmission;TX1310nm,RX1550nm,-40to85°C operating temperatureSFP-1G40BLC WDM-type(BiDi)SFP module with11000BaseSFP port with LC connector for40km transmission;TX1550nm,RX1310nm,0to60°C operating temperatureSFP-1G40BLC-T WDM-type(BiDi)SFP module with11000BaseSFP port with LC connector for40km transmission;TX1550nm,RX1310nm,-40to85°C operating temperatureSFP-1GEZXLC SFP module with11000BaseEZX port with LC connector for110km transmission,0to60°C operatingtemperatureSFP-1GEZXLC-120SFP module with11000BaseEZX port with LC connector for120km transmission,0to60°C operatingtemperatureSFP-1GLHLC SFP module with11000BaseLH port with LC connector for30km transmission,0to60°C operatingtemperatureSFP-1GLHLC-T SFP module with11000BaseLH port with LC connector for30km transmission,-40to85°C operatingtemperatureSFP-1GLHXLC SFP module with11000BaseLHX port with LC connector for40km transmission,0to60°C operatingtemperatureSFP-1GLHXLC-T SFP module with11000BaseLHX port with LC connector for40km transmission,-40to85°C operatingtemperatureSFP-1GLSXLC SFP module with11000BaseLSX port with LC connector for1km/2km transmission,0to60°C operatingtemperatureSFP-1GLSXLC-T SFP module with11000BaseLSX port with LC connector for1km/2km transmission,-40to85°Coperating temperatureSFP-1GLXLC SFP module with11000BaseLX port with LC connector for10km transmission,0to60°C operatingtemperatureSFP-1GLXLC-T SFP module with11000BaseLX port with LC connector for10km transmission,-40to85°C operatingtemperatureSFP-1GSXLC SFP module with11000BaseSX port with LC connector for300m/550m transmission,0to60°Coperating temperatureSFP-1GSXLC-T SFP module with11000BaseSX port with LC connector for300m/550m transmission,-40to85°Coperating temperatureSFP-1GZXLC SFP module with11000BaseZX port with LC connector for80km transmission,0to60°C operatingtemperatureSFP-1GZXLC-T SFP module with11000BaseZX port with LC connector for80km transmission,-40to85°C operatingtemperaturePower SuppliesDR-120-24120W/2.5A DIN-rail24VDC power supply with universal88to132VAC or176to264VAC input byswitch,or248to370VDC input,-10to60°C operating temperatureDR-452445W/2A DIN-rail24VDC power supply with universal85to264VAC or120to370VDC input,-10to50°Coperating temperatureDR-75-2475W/3.2A DIN-rail24VDC power supply with universal85to264VAC or120to370VDC input,-10to60°C operating temperatureMDR-40-24DIN-rail24VDC power supply with40W/1.7A,85to264VAC,or120to370VDC input,-20to70°Coperating temperatureMDR-60-24DIN-rail24VDC power supply with60W/2.5A,85to264VAC,or120to370VDC input,-20to70°Coperating temperatureSoftwareMXview-50Industrial network management software with a license for50nodes(by IP address)MXview-100Industrial network management software with a license for100nodes(by IP address)MXview-250Industrial network management software with a license for250nodes(by IP address)MXview-500Industrial network management software with a license for500nodes(by IP address)MXview-1000Industrial network management software with a license for1000nodes(by IP address)MXview-2000Industrial network management software with a license for2000nodes(by IP address)MXview Upgrade-50License expansion of MXview industrial network management software by50nodes(by IP address) Rack-Mounting KitsRK-4U19-inch rack-mounting kitWall-Mounting KitsWK-32Wall-mounting kit,2plates,6screws,30.3x140x12.3mm©Moxa Inc.版權所有.2020年11月25日更新。

改进时间卷积网络下局域网异常状态预测方法

改进时间卷积网络下局域网异常状态预测方法

改进时间卷积网络下局域网异常状态预测方法
葛昕;岳敏楠
【期刊名称】《计算机仿真》
【年(卷),期】2024(41)1
【摘要】局域网异常会阻碍网络运行速度,严重时会导致网络瘫痪。

为了精准预测局域网是否存在异常,提出一种基于改进时间卷积网络的局域网异常预测方法。

组建变分模态分解(Variational Mode Decomposition,VMD)高频噪声分量判定标准,剔除高频分量,将剩余VMD分量叠加重构,去除局域网数据中的噪声。

建立局域网异常预测模型,将去噪后的局域网数据特征数值规约到和灰度图像像素值对应的范围内,形成局域网灰度图,并将其输入到改进时间卷积网络结构中训练和模型调优,完成局域网异常预测。

经实验测试证明,所提方法可以获取高精度和高效率的局域网异常预测结果,在局域网异常预测领域具有广阔的发展前景。

【总页数】5页(P438-442)
【作者】葛昕;岳敏楠
【作者单位】上海理工大学;上海理工大学能源与动力工程学院
【正文语种】中文
【中图分类】TP183
【相关文献】
1.基于改进时间卷积网络的日志序列异常检测
2.基于时间卷积网络的用户用电异常检测方法
3.基于CEEMDAN和改进时间卷积网络的短期风电功率预测模型
4.改进
时间卷积网络和长短时记忆网络的泸水河流域月径流量预测模型5.基于改进时间卷积网络的短期光伏出力概率预测方法
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

郑州日产SAP 项目周度报告
报告日期:报 告 人:
项目总体计划和状态
下周主要工作计划 2010/05/17-2010/05/22

工作内容描述责任人完成日期状态
#
#
#
#
18周
19周
20周
21周
22周23周24周25周26周27周28周29周30周#
#
#
#
#
#
#
#
#
#
PC-CONV 小组需求确认联调测试程明2010/8/6整体策划
操作手册编写
程明
2010/8/6
变更点分析
变更点业务确认
需求关联关系表需求设计DR
数据库设计
数据库设计数据库设计D R
变更指导书设计
变更指导书设计变更指导书D R
开发与单元测试测试方案
测试执行
测试报告
业务测试
上线准备上线与支持上线、培训
重要里程碑
需求设计完成
上线
项目整体状况
G 进度正常Y 问题可控问题严重 本周主要工作进展 2010/07/26-2010/07/30
工作内容描述责任人完成日期状态
PC CONV 小组
各小组情况
状态责任人主要情况描述单元测试程明2010.7.29完成基本构想
程明联调数据准备
程明
2010.7.29
进行中
专题
程明问题管理
程明
问题/风险
问题/风险描述
严重程度
相应对策
责任人
完成日期
1CATS 与SAP 数据转换对照未确定
345678
2010/05/14张志进、朱利军
10.04
10.05
10.0610.0710.08
10.09
10.102010/7/15
2010/6/6开发与单元测试综合测试
业务测试项目整体情况
Y
R 40
42
基本构想需求设计Y
一般问题严重问题R PC-CONV小组。

相关文档
最新文档