《集成运放放大器的应用》设计报告材料
集成运算放大器的应用实验报告
一、实验目的1. 了解集成运算放大器的基本特性和工作原理。
2. 掌握集成运算放大器的基本应用电路的设计与调试方法。
3. 熟悉集成运算放大器在实际电路中的应用,提高电子电路设计能力。
二、实验原理集成运算放大器(Op-Amp)是一种高增益、低输入阻抗、高输入电阻、低输出阻抗的直接耦合放大器。
它广泛应用于各种模拟信号处理和产生电路中。
本实验主要研究集成运算放大器的基本应用电路,包括反相比例放大电路、同相比例放大电路、加法运算电路、减法运算电路等。
三、实验仪器与设备1. 集成运算放大器:TL0822. 直流稳压电源:±15V3. 数字万用表4. 示波器5. 面包板6. 连接线7. 电阻、电容等元件四、实验内容1. 反相比例放大电路(1)电路连接:将集成运算放大器TL082的输入端分别连接到输入电阻R1和地,输出端连接到负载电阻R2,反馈电阻Rf与R1并联后连接到反相输入端。
(2)电路调试:将输入电压信号输入到电路中,使用示波器观察输出电压波形,调整R1和Rf的值,使输出电压与输入电压成反相关系。
(3)实验结果:当R1和Rf的值分别为1kΩ和10kΩ时,输出电压与输入电压成反相关系,放大倍数为-10。
2. 同相比例放大电路(1)电路连接:将集成运算放大器TL082的同相输入端连接到输入电阻R1,反相输入端连接到地,输出端连接到负载电阻R2,反馈电阻Rf与R1并联后连接到同相输入端。
(2)电路调试:将输入电压信号输入到电路中,使用示波器观察输出电压波形,调整R1和Rf的值,使输出电压与输入电压成正比关系。
(3)实验结果:当R1和Rf的值分别为1kΩ和10kΩ时,输出电压与输入电压成正比关系,放大倍数为10。
3. 加法运算电路(1)电路连接:将集成运算放大器TL082的反相输入端连接到地,同相输入端连接到两个输入电阻R1和R2,输出端连接到负载电阻R3,反馈电阻Rf与R1、R2并联后连接到同相输入端。
集成运算放大器的应用实验报告
集成运算放大器的应用实验报告集成运算放大器的应用实验报告一、实验题目:集成运算放大器的应用二、实验目的:1、在面包板上搭接μA741的电路。
首先将+12V和-12V直流电压正确接入μA741的Vcc+(7脚)和Vcc-(4脚)。
2、用μA741组成反比例放大电路,放大倍数自定,用示波器观察输入和输出波形,测量放大器的电压放大倍数。
3、用μA741组成积分电路,用示波器观察输入和输出波形,并做好记录。
三、实验摘要:1、在面包板上搭接一个搭接μA741的电路2、用示波器观察输入和输出波形,测量放大器的电压放大倍数。
3、用μA741组成积分电路,用示波器观察输入和输出波形。
四、实验仪器:1、示波器2、函数发生器3、数字万用表4、面包板,100欧电阻2个,1000欧电阻,导线,可调直流电压源五、实验原理:集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
在大多数情况下,将运放视为理想运放,满足下列条件的运算放大器称为理想运放。
理想运放在线性应用时的两个特性:(1)理想运算放大器的两个输入端流进运放的电流为零,成为“虚断”。
(2)理想运算放大器的两个输入端间的电压差为零,成为“虚短路” 用μA741组成反比例放大电路,放大倍数自定,用示波器观察输入和输出波形,测量放大器的电压放大倍数。
原理图:VCC12VVCC715GNDR1100ΩR2GND100Ω2U1613524UA741CDVEEVE E-12VR41kΩ6XFG1XSC1Ext Trig+_GNDGNDA+_+B_GNDGND J1AC1Key = A10uFVCC12VVCC71515GNDGNDR1100ΩR2100Ω2U16324UA741CDVEEVE E-12V6XFG1XSC1Ext Trig+_GNDGNDA+_+B_GNDGND六、实验步骤及数据1、反比例放大电路:原理图:现在面包板上搭好如上图原理图所示的电路,在将示波器与函数信号发生器接入,打开示波器测量。
集成运算放大器的基本应用实验报告
集成运算放大器的基本应用实验报告集成运算放大器的基本应用实验报告引言:集成运算放大器(Operational Amplifier,简称Op-Amp)是一种广泛应用于电子电路中的重要器件。
它具有高增益、低失调、宽带宽等特点,可以实现信号放大、滤波、积分、微分等功能。
在本次实验中,我们将通过几个基本应用实验,探索集成运算放大器的工作原理和应用场景。
实验一:非反相放大器非反相放大器是Op-Amp最常见的应用之一。
它通过将输入信号与放大倍数相乘,输出一个放大后的信号。
我们在实验中使用了一个标准的非反相放大器电路,将一个正弦波信号作为输入,观察输出信号的变化。
实验结果显示,输出信号的幅度和输入信号的幅度相比,增大了放大倍数倍。
而相位方面,输出信号与输入信号的相位保持一致。
这说明非反相放大器能够有效放大输入信号,并且不改变其相位。
实验二:反相放大器反相放大器是Op-Amp另一种常见的应用。
它与非反相放大器相比,输入信号与放大倍数相乘后取反,输出一个反向的放大信号。
我们在实验中使用了一个反相放大器电路,将一个正弦波信号作为输入,观察输出信号的变化。
实验结果显示,输出信号的幅度与输入信号的幅度相比,同样增大了放大倍数倍。
但是相位方面,输出信号与输入信号相差180度。
这说明反相放大器能够有效放大输入信号,并且改变其相位。
实验三:积分器积分器是Op-Amp的另一个重要应用。
它可以将输入信号进行积分运算,输出一个积分后的信号。
我们在实验中使用了一个积分器电路,将一个方波信号作为输入,观察输出信号的变化。
实验结果显示,输出信号呈现一个斜率逐渐增大的曲线,表明输入信号得到了积分。
这说明积分器能够有效对输入信号进行积分运算,输出一个积分后的信号。
实验四:微分器微分器是Op-Amp的又一个重要应用。
它可以将输入信号进行微分运算,输出一个微分后的信号。
我们在实验中使用了一个微分器电路,将一个正弦波信号作为输入,观察输出信号的变化。
集成运算放大器应用实验报告
I1=1mA I2=0.6mA I=1.6mA If=1.6mA V1=5V V2=3V V0=-8V 2.根据电路元件值,计算 I 1 , I 2 , I 及 I f 。 I1=V1/R3=1mA I2=V2/R4=0.6mA I=I1+I2=1.6mA If=I=1.6mA 3.根据步骤 2 的电流计算值,计算输出电压 V0。另外,用 V1 和 V2 计算 V0。 V0=-IfRf=-8V V0=-(V1+V2)=-8V 4.在 EWB 平台上建立如图 7-3 所示的实验电路,仪器按图设置。单击仿真开关运行动 态分析。在坐标纸上画出输入及输出波形,并记录直流输出偏移电压。
V1 R1பைடு நூலகம்
由于运放反相输入端虚地,因此加法器的输出电压 Vo 为反馈电阻 Rf 两端电压的负值, 即 对于图 7-3 和图 7-4 所示的电路,输出电压为
四、实验步骤
1.在 EWB 平台上建立如图 7-2 所示的实验电路,万用表按图设置。单击仿真开关运行 电路分析。记录 I1 , I 2 , I , I f ,V1 ,V2 及 V0 。
9.根据电路元件值,用 V1 和 V2 计算输出电压 V0。V0=-V1=-1V
五、思考与分析
1.在步骤 1 中电流 I1,I2,I 及 If 的测量值与计算值比较,情况如何? 完全一样 2.在步骤 1 中输出电压 V0 的测量值与计算值比较,情况如何?为什么 V0 为负值? 完全一样,运放接入的是负极 3.在步骤 1,3 中,输出电压与输入电压之间有何关系? 输出是所有输入电压和的相反数 4.在步骤 5 中,输入电压与输出电压之间有何关系? 输出是所有输入电压和的相反数 5.在步骤 7 中,输入电压与输出电压之间有何关系? 输出是所有输入电压和的相反数 6.在步骤 8 中,输入电压与输出电压之间有何关系? 输出是所有输入电压和的相反数
集成运算放大器应用实验报告
集成运算放大器应用实验报告集成运算放大器应用实验报告引言:集成运算放大器(Operational Amplifier,简称Op-Amp)是一种非常常见的电子元件,广泛应用于电路设计和实验中。
本实验旨在通过实际应用,深入了解集成运算放大器的特性和使用方法,并通过实验结果验证理论知识的正确性。
实验目的:1. 了解集成运算放大器的基本结构和工作原理;2. 掌握集成运算放大器的常见应用电路;3. 通过实验验证理论知识的正确性。
实验仪器和材料:1. 集成运算放大器(例如LM741);2. 电阻、电容等基本电子元件;3. 示波器、信号发生器等实验仪器。
实验步骤:1. 集成运算放大器的基本特性实验首先,将集成运算放大器与电源相连接,并通过示波器观察输出波形。
调节输入信号的幅值和频率,观察输出波形的变化。
记录实验结果,并与理论知识进行对比分析。
2. 集成运算放大器的反相放大电路实验搭建反相放大电路,输入一个正弦波信号,通过示波器观察输出波形。
调节输入信号的幅值和频率,观察输出波形的变化。
记录实验结果,并与理论计算值进行对比。
3. 集成运算放大器的非反相放大电路实验搭建非反相放大电路,输入一个正弦波信号,通过示波器观察输出波形。
调节输入信号的幅值和频率,观察输出波形的变化。
记录实验结果,并与理论计算值进行对比。
4. 集成运算放大器的积分电路实验搭建积分电路,输入一个方波信号,通过示波器观察输出波形。
调节输入信号的幅值和频率,观察输出波形的变化。
记录实验结果,并与理论计算值进行对比。
实验结果与分析:1. 集成运算放大器的基本特性实验结果根据实验结果观察到,集成运算放大器具有高增益、低失调电压和低输入阻抗等特点。
随着输入信号幅值的增加,输出信号也随之增大,且输出信号与输入信号具有线性关系。
2. 集成运算放大器的反相放大电路实验结果通过实验观察到,反相放大电路可以将输入信号的幅值放大,并且输出信号与输入信号相位相反。
实验结果与理论计算值基本一致,验证了理论知识的正确性。
《集成运放放大器的应用》设计报告材料
集成运算放大器的应用--2011年全国电子大学生电子设计竞赛综合测评题152207100017 黄荣一、设计要求:使用一片通用四运放芯片LM324组成电路框图见图1(a),实现下述功能:使用低频信号源产生ui1=0.1*sin(2*π*fo*t) (V),fo=500Hz的正弦信号,加至加法器的输入端,加法器的另一输入端加入资质振荡器产生的正弦波信号,uo1的峰峰值为4V,波形上下对称,T1=0.5ms,允许T1有±5%的误差。
要求加法器的输出电压ui2=10ui1+uo1。
ui2经选频滤波器滤除uo1频率分量,选出fo 信号为uo2,uo2为峰峰值等于9V的正弦信号,用示波器观察无明显失真。
Uo2信号再经比较器后在1kΩ负载上得到峰峰值为2V的输出电压uo3。
电源只能选用+12V和+5V两种单电源,由稳压电源供给。
不得使用额外电源和其它型号运算放大器。
要求预留ui1、ui2、uo1、uo2、uo3的测试端子。
二、设计原理multisim1、设计原理2.电路原理与参数计算:1.三角波产生器通常三角波发生器需要运用2只运放,加法器、滤波放大器、比较器各一只,而题目要求4只运放,可以考虑一只运放产生方波信号,然后利用无源积分器电路实现三角波信号。
由电容充放电,在电容两脚之间即可得到三角波,由两个电位器调节输出电压和输出三角波频率的大小。
2.加法器电路使用低频信号源产生ui1=0.1*sin(2*π*fo*t) (V),fo=500Hz的正弦信号,加至加法器的输入端,加法器的输出电压ui2=10ui1+uo1。
uo1为三角波产生器产生的频率为2kHZ,峰峰值为4V的对称波形信号。
3.滤波放大电路电路采用二阶压控电压源低通滤波器电路。
由上面的原理图可见,它是由两节RC滤波电路和同向比例放大电路组成,其中同向比例放大电路实际上就是所谓的压控电压源。
此电路可以很好的滤除合成波中2KHz的三角波分量,留下500Hz 的正弦波信号,放大信号4倍,得倒9V输出电压。
集成运算放大器地应用实验报告材料
集成运算放大器的应用实验报告【摘要】:本题目关于放大器设计的基本目标:使用一片通用四运放芯片LM324组成预设的电路,电路包括三角波产生器、加法器、滤波器、比较器四个设计模块,每个模块均采用一个运放及一定数目的电容、电阻搭建,通过理论计算分析,最终实现规定的电路要求。
【关键字】:运算放大器LM324、三角波信号发生器、加法器、滤波器、比较器一、设计任务使用一片通用四运放芯片LM324 组成电路框图见图1(a),实现下述功能:使用低频信号源产生,的正弦波信号,加至加法器的输入端,加法器的另一输入端加入由自制振荡器产生的信号uo1, uo1 如图1(b)所示, T1=0.5ms,允许T1有±5%的误差。
(a)(b)图中要求加法器的输出电压ui2=10ui1+uo1。
ui2 经选频滤波器滤除uo1 频率分量,选出f0 信号为uo2,uo2 为峰峰值等于9V 的正弦信号,用示波器观察无明显失真。
uo2 信号再经比较器后在1kΩ 负载上得到峰峰值为2V 的输出电压uo3。
电源只能选用+12V 和+5V 两种单电源,由稳压电源供给。
不得使用额外电源和其它型号运算放大器。
要求预留ui1、ui2、uo1、uo2 和uo3 的测试端子。
二、设计方案1、三角波发生器由于用方波发生器产生方波,再经过积分电路电路产生三角波需要运用两个运算放大器,而LM324只有四个运算放大器,每个电路运用一个,所以只能用一个运算放大器产生三角波。
同时由于器件不提供稳压二极管,所以电阻电容的参数必须设计合理,用直流电压源代替稳压管。
对方波放生电路进行分析发现,如果将输出端改接运放的负输入端,出来的波形近似为三角波。
电路仿真如下图所示:2、 加法器由于加法器输出11210o i i u u u += ,根据《模拟电子技术》书上容采用求和电路,电路如下所示:3、 滤波器由于正弦波信号1i u 的频率为500Hz ,三角波1o u 的频率为2KHz ,滤波器需要滤除u,所以采用二阶的有源低通滤波器。
《集成运算放大器应用----比例运算电路》实验报告
xxxx
姓名
xxxx
成绩
课程
名称
模拟电子技术实验
实验项目
名称
集成运算放大器应用----比例运算电路
指导教师
xxxx
教师评语
教师签名:
年月日
一、实验目的
1、掌握运算放大器组成比例、求和运算电路的结构特点。
2、掌握运算电路的输入与输出电压特性的测试方法。
二、实验原理
运算放大器是具有两个输入端和一个输出端的高增益、高输入阻抗的电压放大器。在
+1V
+2V
-1V
-2V
-4V
输出Uo(V)
理论值
0
3
6
-3
-6
-12
实测值
0
3.06
6.05
-2.98
-5.92
-9.87
计算误差
0
0.06
0.05
0.02
0.08
2.13
表2同相比例运算实验数据表
六、实验结果及分析
对比理论值和实验值,存在误差,反相比例运算电路误差值较大,同相比例运算电路误
差相对较小,可能由于为运放所提供的直流电源小于12V;同相比例运算电路中,输入电
压越大,误差越大。
xxxxx学校
学生实验报告
实验课程名称:模拟电子技术实验
开课实验室电子技术实验室
系、部:xxxxxx年级:x专业班:xx
学生姓名xx学号xxx
开课时间2013至2014学年第二学期
总成绩
教师签名
《集成运算放大器应用----比例运算电路》实验报告
开课实验室:电子技术实验室2014年5月26日
系部
集成运算放大器的应用实验报告
集成运算放大器的应用实验报告
比较泵造成的成本和维护成本,以及集成运算放大器带来的成本和维护成本,确定哪种方式可以更有效地实现我们的功能。
本次实验主要目的是探讨集成运算放大器在应用中的作用,分析其在某些特定应用情况下,与比较泵相比,集成运算放大器更有利。
首先,说明实验条件。
本实验所使用的集成运算放大器是TI公司的LM317 IC。
所选择的比较泵是AZ的AZ855端口比较泵。
实验灯是飞利浦灯泡,电压是220V,实验电阻箱参数为1K法拉,实验线路均采用19号铜线。
其次,介绍了实验方法。
首先,以比较泵为基础进行测试,测量比较泵输入电压和灯泡输出电压,分析比较泵的功能。
然后,以集成运算放大器为基础进行实验,通过更改集成运算放大器的电压值,比较出给定电压时,比较泵与集成运算放大器的输出功率值,判断其在应用中的优劣。
最后,对实验结果进行总结:实验表明,采用集成运算放大器,在调节电压控制灯泡输出功率时,可以比采用比较泵更精准地控制,而且购买成本也更低。
因此,在一定的应用场景中,集成运算放大器要比比较泵更具有优势,可以有效地节约成本并且维护成本也很低。
集成运算放大器的基本应用模拟运算电路实验报告
集成运算放大器的基本应用模拟运算电路实验报告实验目的:1. 学习集成运算放大器的基本应用;2. 掌握模拟运算电路的基本组成和设计方法;3. 理解反馈电路的作用和实现方法。
实验器材:1. 集成运算放大器OP07;2. 双电源电源供应器;3. 多用途万用表;4. 音频信号发生器;5. 电容、电阻、二极管、晶体管等元器件。
实验原理:集成运算放大器是一种高增益、高输入阻抗、低输出阻抗、具有巨大开环增益的差分放大器。
在应用中,我们通常通过反馈电路来控制放大器的增益、输入输出阻抗等特性,从而使其实现各种模拟运算电路。
常用的反馈电路有正向电压反馈、负向电压反馈和电流反馈等。
各种反馈电路的实现方法有所不同,但基本思想都是引入一个反馈回路来控制电路的传递函数,从而实现对电路特性的控制。
实验内容:1. 非反相比例放大电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
2. 非反相积分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
3. 非反相微分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
4. 反相比例放大电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
5. 反相积分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
6. 反相微分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
7. 增益和带宽测试选择合适的集成运算放大器,按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
实验数据及分析:根据实验中所得到的数据,可以绘制出放大倍数和频率的曲线图,从中可以看出电路的增益特性和带宽特性。
实验结论:通过本次实验,我们学习了集成运算放大器的基本应用,掌握了模拟运算电路的基本组成和设计方法,理解了反馈电路的作用和实现方法,同时也提高了我们的实验操作能力。
实验报告集成运算放大器的应用
姓名 王盼宝 班级 电气二班 学号 09S006119 台号 55 日期 节次 成绩 教师签字实验二 集成运算放大器的应用一、实验目的1)掌握集成运算放大器的正确使用方法; 2)掌握常用单元电路的设计和调试方法;3)掌握由单元电路组成简单电子系统的方法及调试技术。
二、实验仪器与设备1)Agilent DSO5032A 型数字示波器 2)Agilent 33220A 型函数/任意信号发生器 3)Agilent U1252A 型数字万用表 4)DF1731SB3AD 三路直流稳压电源 5)EEL-69模拟/数字电子技术试验箱 6)“集成运算发大器应用”实验插板7)μA741集成运算放大器,电位器,二极管,电阻,电容,导线三、实验内容1.设计加法电路 【要求】设计一加法电路,满足关系式)2(3210U U U +-=。
1) 输入信号1U 、2U 都是频率1kHz 的正弦信号,幅度分别为mV U PP 1001=,mV U PP 2002=,观测输出是否满足要求。
2) 输入信号1U 是频率为1kHz 、幅度为mV U PP 1001=的交流正弦信号,2U 是直流电压(+0.5V),观测输出是否满足设计要求。
电工电子实验中心实验报告【步骤】1)首先在Multisim软件环境中搭建如图1所示加法运算电路,由要求可知通过反相比例电路可以实现式子中的加法关系,XFG1,XFG2分别为峰峰值为100mV和200mV的正弦信号。
图1 使用运算放大器构成的加法电路2)通过Multisim仿真可得到图2所示的波形,黄色波形为运算器输出,其结果与要求一致。
图2 加法运算电路仿真输出波形3) 在实验室使用μA741集成运算放大器按照上述电路图搭建实际电路,得到如图3所示实验波形,其结果与理论分析一致。
图3 加法运算电路实验输出波形4)将XFG2用0.5V直流电压源代替,通过仿真分析和实际实验可得到如图4所示的波形,正选波与直流量相加后会出现相对应的直流偏置,仿真波形和实验波形与理论分析一致。
集成运算放大器的应用实验报告
集成运算放大器的应用实验报告引言集成运算放大器(Operational Amplifier,简称Op Amp)是一种常用的电子元器件,广泛应用于各种电路中。
本实验主要目的是通过实践操作,掌握Op Amp的基本原理、特性以及应用。
本文档将详细记录实验过程、结果分析以及心得体会。
实验设备与材料1.集成运算放大器芯片2.电源(直流电源和信号发生器)3.示波器4.电阻、电容等基本元件5.连接线和面包板6.多用途实验电路板实验目标1.了解集成运算放大器的基本原理和特性。
2.熟悉使用Op Amp进行电压放大、非反相放大、反相放大等基本运算。
3.掌握Op Amp的应用范围和适用条件。
4.实验结果的数据测量和分析。
5.总结实验心得,进一步巩固理论知识。
实验原理集成运算放大器的基本原理集成运算放大器是一种具有高增益、输入阻抗大、输出阻抗小的电子放大器。
它通常由差动放大器和输出级组成。
集成运算放大器的输入端有两个,分别为非反相输入端(+)和反相输入端(-)。
输出端的电压和电源电压之间的差值称为放大倍数,通常表示为A。
集成运算放大器的主要特点有以下几个方面:1.无穷大的增益:理论上,集成运放的增益可以达到无穷大。
2.高输入阻抗:集成运放的输入电阻非常大。
3.低输出阻抗:集成运放的输出电阻非常小。
4.大信号频率响应范围宽:集成运放的频带宽度一般为几十到上百MHz。
Op Amp的应用电压放大器电压放大器利用Op Amp的高增益特性,将输入信号进行放大。
输入信号经过放大后,输出信号可以达到较高的幅度。
电压放大器通常采用非反相放大电路,输出信号与输入信号的相位关系相同。
非反相放大器非反相放大器是一种常见的Op Amp应用电路。
它实际上是电压放大器的一种特殊形式。
非反相放大器的特点是输出信号与输入信号具有相同的相位关系,通过选择合适的电阻比例,可以实现不同的电压放大倍数。
反相放大器反相放大器也是一种常用的Op Amp应用电路。
模电设计性实验报告——集成运算放大器的运用之模拟运算电路
模电设计性实验报告——集成运算放大器的运用之模拟运算电路重庆科技学院设计性实验报告学院:_电气与信息工程学院_ 专业班级: 自动化1102学生姓名: 罗讯学号: 2011441657实验名称: 集成运算放大器的基本应用——模拟运算电路完成日期:2013年 6月 20 日重庆科技学院学生实验报告集成运算放大器的基本应用——课程名称模拟电子技术实验项目名称模拟运算电路开课学院及实验室实验日期学生姓名罗讯学号 2011441657 专业班级自动化1102 指导教师实验成绩实验六集成运算放大器的基本应用——模拟运算电路一、实验目的1、研究有集成运算放大器组成的比例、加法和减法等基本运算电路的功能2、了解运算放大器在实际应用时应考虑的有些问题二、实验仪器1、双踪示波器;2、数字万用表;3、信号发生器三、实验原理在线性应用方面,可组成比例、加法、减法的模拟运算电路。
1) 反相比例运算电路电路如图6-1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻//。
RF 100k1 5 4 R1 10k2 Ui 6 Uo3 U1 R2 9.1k 7图6-1 反相比例运算电路2) 反相加法电路电路如图6-2所示,输出电压与输入电压之间的关系为:////RF 100kR1 10k Ui1 4 1 5 R2 20k 2 Ui2 6 Uo 3 U1 R3 6.2k 7图6-2 反相加法运算电路3) 同相比例运算电路图6-3(a)是同相比例运算电路。
RF 100k1 5 4 R1 10k 26 Uo 3R2 9.1k U1 7RF10k4 1 526 R2 Uo 3 Ui 10k U1 7(a)同乡比例运算 (b)电压跟随器图6-3 同相比例运算电路它的输出电压与输入电压之间关系为://当即得到如图6-3所示的电压跟随器。
图中,用以减小漂移和起保护作用。
一般取10KΩ,太小起不到保护作用,太大则影响跟随性。
集成运放课程设计报告
《集成运算放大器的应用》课程设计报告专业:10通信工程学号:100307012姓名:张东东指导教师:吴志伟日期:2012年6月6日电子课程设计---集成运算放大器的应用集成运放器是一种高增益直流放大、直流放大器既能放大变化极其缓慢的直流信号,下限频率可到零;又能放大交流信号,上限频率与普通放大器一样,受限于电路中的电容或电感等电抗性元器件。
集成运放和外部反馈网络相配置后,能够在它的输出和输入之间建立起种种特定的函数关系,故而称它为“运算”放大器。
本课程设计的基本目标:使用一片通用四运放芯片LM324组成预设的电路,电路包括三角波产生器、加法器、滤波器、比较器四个设计模块,每个模块均采用一个运放及一定数目的电容、电阻搭建,通过理论计算分析,最终实现规定的电路要求。
目录一、设计任务 (4)1. 三角波产生器 (7)2. 加法器 (8)3. 滤波器 (9)4. 比较器 (9)5.正弦波产生器 (10)二、电路设计及理论分析 (10)三、电路仿真结果及分析 (12)1.1o U端口 (12)2.1i U端口 (13)3.2i U端口 (13)4.2o U端口 (14)5.3o U端口 (14)四、实际波形.......................................................... 错误!未定义书签。
五、总结 (17)一、设计任务使用一片通用四运放芯片LM324 组成电路框图见图1(a ),实现下述功能: 使用低频信号源产生Hz f V t f u i 500)(2sin 1.0001==π的正弦波信号, 加至加法器的输入端,加法器的另一输入端加入由自制振荡器产生的信号1o u ,1o u 如图1(b )所示,1T =0.5ms ,允许1T 有±5%的误差。
图中要求加法器的输出电压11210o i i u u u +=。
2i u 经选频滤波器滤除1o u 频率分量,选出0f 信号为2o u ,2o u 为峰峰值等于9V 的正弦信号,用示波器观察无明显失真。
集成运算放大器的基本应用实验报告
集成运算放大器的基本应用实验报告一、实验目的。
本实验旨在通过对集成运算放大器的基本应用进行实验操作,加深对集成运算放大器的工作原理和基本应用的理解,掌握集成运算放大器的基本特性和应用技巧,提高实验操作能力和动手能力。
二、实验仪器与设备。
1. 集成运算放大器实验箱。
2. 示波器。
3. 直流稳压电源。
4. 电阻、电容等元器件。
5. 万用表。
6. 示波器探头。
三、实验原理。
集成运算放大器(Operational Amplifier,简称Op-Amp)是一种高增益、直流耦合的差动放大器,具有输入阻抗高、输出阻抗低、增益稳定、频率响应宽等特点,广泛应用于模拟电路中。
在本实验中,我们将学习集成运算放大器的基本特性和应用技巧,包括集成运算放大器的基本参数、基本电路和基本应用。
四、实验内容。
1. 集成运算放大器的基本参数测量。
a. 输入失调电压的测量。
c. 增益带宽积的测量。
2. 集成运算放大器的基本电路实验。
a. 非反相放大电路。
b. 反相放大电路。
c. 比较器电路。
d. 电压跟随器电路。
3. 集成运算放大器的基本应用实验。
a. 信号运算电路。
b. 信号滤波电路。
c. 信号调理电路。
五、实验步骤。
1. 连接实验仪器与设备,按照实验要求进行电路连接。
2. 分别测量集成运算放大器的输入失调电压、输入失调电流和增益带宽积。
3. 搭建集成运算放大器的基本电路,观察输出波形并记录实验数据。
4. 进行集成运算放大器的基本应用实验,观察输出波形并记录实验数据。
六、实验数据与分析。
1. 输入失调电压测量数据。
输入失调电压,0.5mV。
平均输入失调电压,0.55mV。
2. 输入失调电流测量数据。
输入失调电流,10nA。
输入失调电流,12nA。
平均输入失调电流,11nA。
3. 增益带宽积测量数据。
增益带宽积,1MHz。
4. 实验数据分析。
通过测量数据的分析,我们可以得出集成运算放大器的输入失调电压较小,输入失调电流也较小,增益带宽积较大,符合集成运算放大器的基本特性。
集成运算放大器的应用实验报告
集成运算放大器的应用实验报告实验目的,通过本次实验,我们将学习集成运算放大器的基本原理和应用,掌握运算放大器的基本参数测量方法,了解运算放大器在电路中的应用。
实验仪器,集成运算放大器、示波器、信号发生器、直流稳压电源、电阻、电容、万用表等。
实验原理,运算放大器是一种高增益、差分输入、单端输出的电子放大器。
在实验中,我们将通过测量运算放大器的输入偏置电压、输入失调电压、输入失调电流、增益带宽积等参数,来了解运算放大器的基本性能。
实验步骤:1. 连接电路,按照实验指导书上的电路图,连接好运算放大器的电路。
2. 测量输入偏置电压,将输入端接地,测量输出端的电压,计算出输入偏置电压。
3. 测量输入失调电压和输入失调电流,将输入端接地,测量输出端的电压,再将输出端接地,测量输入端的电压和电流,计算出输入失调电压和输入失调电流。
4. 测量增益带宽积,通过改变输入信号的频率,测量输出信号的幅度,计算出增益带宽积。
5. 测量共模抑制比,通过改变输入信号的幅度,测量输出信号的幅度,计算出共模抑制比。
实验结果与分析:通过实验测量,我们得到了运算放大器的各项参数,分析结果如下:1. 输入偏置电压为0.5mV,说明运算放大器的输入端存在微小的偏置电压。
2. 输入失调电压为1mV,输入失调电流为10nA,说明运算放大器的输入端存在微小的失调电压和失调电流。
3. 增益带宽积为1MHz,说明运算放大器在1MHz以下的频率范围内具有较高的增益。
4. 共模抑制比为80dB,说明运算放大器具有较好的共模抑制能力。
结论:通过本次实验,我们对集成运算放大器的基本原理和应用有了更深入的了解,掌握了运算放大器的基本参数测量方法,并了解了运算放大器在电路中的应用。
同时,我们也了解到了运算放大器的一些性能指标,为今后的实际应用提供了参考依据。
总结:集成运算放大器是电子电路中常用的重要器件,具有高增益、差分输入、单端输出等特点,广泛应用于放大、滤波、积分、微分等电路中。
集成运算放大器的应用实验报告
集成运算放大器的应用实验报告一、实验目的。
本实验旨在通过实际操作,掌握集成运算放大器的基本原理和应用技巧,加深对集成运算放大器的理解,提高实际操作能力。
二、实验仪器与设备。
1. 集成运算放大器实验箱。
2. 直流稳压电源。
3. 示波器。
4. 信号发生器。
5. 电阻、电容等元件。
6. 万用表。
7. 示波器探头。
三、实验原理。
集成运算放大器是一种高增益、直流耦合的差分输入、单端输出的电子放大器,具有很多种应用。
在本实验中,我们主要探讨集成运算放大器的非反相放大电路和反相放大电路的应用。
1. 非反相放大电路。
非反相放大电路是指输入信号与反馈信号同相,通过调节反馈电阻和输入电阻的比值,可以实现不同的放大倍数。
在本实验中,我们将通过调节电阻的数值,观察输出信号的变化,从而验证非反相放大电路的工作原理。
2. 反相放大电路。
反相放大电路是指输入信号与反馈信号反相,同样可以通过调节电阻的数值,实现不同的放大倍数。
在本实验中,我们将通过改变输入信号的频率和幅度,观察输出信号的变化,从而验证反相放大电路的工作原理。
四、实验步骤。
1. 连接电路。
根据实验要求,连接非反相放大电路和反相放大电路的电路图,接通电源。
2. 调节参数。
通过调节电阻的数值,观察输出信号的变化,记录不同放大倍数下的输入输出波形。
3. 改变输入信号。
改变输入信号的频率和幅度,观察输出信号的变化,记录不同条件下的输入输出波形。
4. 数据处理。
根据实验数据,计算不同条件下的放大倍数,绘制相应的放大倍数曲线。
五、实验结果与分析。
通过实验数据的记录和处理,我们得出了非反相放大电路和反相放大电路在不同条件下的放大倍数曲线。
从实验结果可以看出,随着电阻数值的变化,放大倍数呈线性变化;而随着输入信号频率和幅度的改变,输出信号的波形也发生相应的变化。
六、实验总结。
通过本次实验,我们深入理解了集成运算放大器的基本原理和应用技巧,掌握了非反相放大电路和反相放大电路的工作原理。
集成运放及应用实验报告
一、实验目的1. 理解集成运算放大器(运放)的基本原理和特性。
2. 掌握集成运放的基本线性应用电路的设计方法。
3. 通过实验验证运放在实际电路中的应用效果。
4. 了解实验中可能出现的误差及分析方法。
二、实验原理集成运算放大器是一种高增益、低噪声、高输入阻抗、低输出阻抗的直接耦合多级放大电路。
它广泛应用于各种模拟信号处理和产生电路中。
本实验主要研究运放的基本线性应用电路,包括比例、加法、减法、积分、微分等运算电路。
三、实验仪器与器材1. 集成运放(如LM741)2. 模拟信号发生器3. 示波器4. 数字多用表5. 电阻、电容等电子元件6. 面包板四、实验内容1. 反相比例运算电路(1) 设计电路:根据实验要求,搭建一个反相比例运算电路,其中输入电阻R1和反馈电阻Rf的比值决定了放大倍数A。
(2) 实验步骤:a. 连接电路,确保无误。
b. 输入一定频率和幅值的正弦信号,观察输出波形。
c. 改变输入信号幅度,记录输出波形。
d. 计算放大倍数,并与理论值进行比较。
2. 同相比例运算电路(1) 设计电路:搭建一个同相比例运算电路,其中输入电阻R1和反馈电阻Rf 的比值决定了放大倍数A。
(2) 实验步骤:a. 连接电路,确保无误。
b. 输入一定频率和幅值的正弦信号,观察输出波形。
c. 改变输入信号幅度,记录输出波形。
d. 计算放大倍数,并与理论值进行比较。
3. 加法运算电路(1) 设计电路:搭建一个加法运算电路,实现两个输入信号的求和。
(2) 实验步骤:a. 连接电路,确保无误。
b. 输入两个不同频率和幅值的正弦信号,观察输出波形。
c. 改变输入信号幅度,记录输出波形。
d. 验证输出波形为两个输入信号的相加。
4. 减法运算电路(1) 设计电路:搭建一个减法运算电路,实现两个输入信号的相减。
(2) 实验步骤:a. 连接电路,确保无误。
b. 输入两个不同频率和幅值的正弦信号,观察输出波形。
c. 改变输入信号幅度,记录输出波形。
集成运算放大器的应用实验报告
集成运算放大器的应用实验报告集成运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子器件,广泛应用于各个领域,包括电子通信、仪器仪表、控制系统等。
本文将介绍集成运算放大器的基本原理和应用实验报告。
一、集成运算放大器的基本原理集成运算放大器是一种高增益、差分输入、单端输出的电子放大器。
它由多个晶体管、电阻和电容器等器件组成,以实现放大、滤波、反相和非反相等功能。
集成运算放大器的输入阻抗高、输出阻抗低,具有较大的开环增益和较宽的频率响应范围。
集成运算放大器的基本原理是负反馈。
通过将输出信号与输入信号进行比较,并将差值放大反馈给输入端,从而实现对输入信号的放大和控制。
这种负反馈使得集成运算放大器具有稳定性、线性度高的特点。
二、集成运算放大器的应用实验报告为了深入了解集成运算放大器的应用,我们进行了一系列实验。
以下是其中几个实验的报告:实验一:非反相放大器我们首先搭建了一个非反相放大器电路。
该电路由一个集成运算放大器、两个电阻和一个输入信号源组成。
通过调节电阻的阻值,我们可以改变电路的放大倍数。
实验结果表明,当输入信号为正弦波时,输出信号也为正弦波,但幅值比输入信号大。
这验证了非反相放大器的放大功能。
实验二:反相放大器接下来,我们搭建了一个反相放大器电路。
该电路同样由一个集成运算放大器、两个电阻和一个输入信号源组成。
与非反相放大器不同的是,输入信号通过电阻接到集成运算放大器的反向输入端。
实验结果显示,输出信号与输入信号相比,幅值变大且相位相反。
这证明了反相放大器的放大和反相功能。
实验三:低通滤波器我们进一步设计了一个低通滤波器电路。
该电路由一个集成运算放大器、一个电容和一个电阻组成。
输入信号通过电容接到集成运算放大器的反向输入端,输出信号从集成运算放大器的输出端取出。
实验结果显示,该电路能够滤除高频信号,只保留低频信号。
这说明了低通滤波器的滤波功能。
实验四:积分器最后,我们设计了一个积分器电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集成运算放大器的应用
--2011年全国电子大学生电子设计竞赛综合测评题
7 黄荣
一、设计要求:
使用一片通用四运放芯片LM324组成电路框图见图1(a),实现下述功能:
使用低频信号源产生ui1=0.1*sin(2*π*fo*t) (V),fo=500Hz的正弦信号,加至加法器的输入端,加法器的另一输入端加入资质振荡器产生的正弦波信号,uo1的峰峰值为4V,波形上下对称,T1=0.5ms,允许T1有±5%的误差。
要求加法器的输出电压ui2=10ui1+uo1。
ui2经选频滤波器滤除uo1频率分量,选出fo 信号为uo2,uo2为峰峰值等于9V的正弦信号,用示波器观察无明显失真。
Uo2信号再经比较器后在1kΩ负载上得到峰峰值为2V的输出电压uo3。
电源只能选用+12V和+5V两种单电源,由稳压电源供给。
不得使用额外电源和其它型号运算放大器。
要求预留ui1、ui2、uo1、uo2、uo3的测试端子。
二、设计原理multisim
1、设计原理
2.电路原理与参数计算:
1.三角波产生器
通常三角波发生器需要运用2只运放,加法器、滤波放大器、比较器各一只,而题目要求4只运放,可以考虑一只运放产生方波信号,然后利用无源积分器电路实现三角波信号。
由电容充放电,在电容两脚之间即可得到三角波,由两个电位器调节输出电压和输出三角波频率的大小。
2.加法器电路
使用低频信号源产生ui1=0.1*sin(2*π*fo*t) (V),fo=500Hz的正弦信号,加至加法器的输入端,加法器的输出电压ui2=10ui1+uo1。
uo1为三角波产生器产生的频率为2kHZ,峰峰值为4V的对称波形信号。
3.滤波放大电路电路采用二阶压控电压源低通滤波器电路。
由上面的原理图可见,它是由两节RC滤波电路和同向比例放大电路组成,其中同向比例放大电路实际上就是所谓的压控电压源。
此电路可以很好的滤除合成波中2KHz的三角波分量,留下500Hz 的正弦波信号,放大信号4倍,得倒9V输出电压。
4.比较器电路
电压比较器时对两个模拟电压比较器大小,比判断出其中哪一个电压高,比较器输入有一个同向输入端和一个反向输入端,一般设置其中一个端的输入电压为参考电压,V+>V-,输出高电平;V+<V-,输出低电平。
V+是三角波,V-是正弦波信号,由于两信号交叉变高变低,因此输出方波信号,调得R14得输出电压为2V.
三、仿真波形
1、三角波产生电路
2.加法器电路
3.滤波放大电路
4.比较器电路
四、实验现象和结果
五、实验心得
焊接时,将运放取下来,防止烧坏。
连通电路前,检查电源正负极是否接反,防止运放被烧坏。
通过这次课程设计,我学到了很多的东西,不仅巩固了所学的知识,而且学到了很多在书本上学不到的东西,更加熟悉了multisim这个平台的使用方法。
通过这次课程设计使我懂得了理论与实际相结合的重要性,只有理论知识是远远不够的,只有把所学的理论知识与实际相结合起来,从理论中得出结论,才是真正的知识,才能提高自己的实际动手能力和独立思考的能力。
在设计的过程中遇到了各种各样的问题,同时在设计的过程中发现了自己的不足之处,对以前所学的知识理解不够深刻,掌握的不够牢固,通过这次课程设计,把以前所学过的知识重新温故,巩固了所学的知识。
!单独测试每个模块,每个模块的输入输出端用插针接出来,每个模块作为一个单独的模块,要联调两个模块或多个模块时用跳线接起来,建议不要从板子上走线,因为后一级电路可能对前一级电路有影响,所以对于单个模块测试使测试结果不准确。
先焊电源模块,焊好后检测电源模块。
每焊好一个模块单独检测,最后再联调。
单独测试、调试每个模块(实物图)
(一)三角波产生电路(产生u01)
1.在反相端接一个隔直电容1nF(104),使负半轴的三角波的峰值等于上半周的峰值。
2.调节R9改变三角波的峰峰值,使其峰峰值达到4.0V,然后调节R11改变三角波的频率,使其达到2.0KHz,尽量接近2.0KHz。
(二)加法器电路(输入ui1,uo1,输出ui2)
将第二步产生的三角波u01接到加法器电路的电阻上,将500Hz、500mv低频信号
接到R1(1k)电阻上(千万不要接反了),观察输出波形,然后按暂停,观察波形,
看是不是如下所示:
(三)滤波放大电路。
(输入ui2,输出u02)
用函数信号发生器产生500Hz、峰峰值为200mV的正弦信号,调节R1,使输出波形的峰峰值达到900mV,则说明放大倍数可以达到4.5倍,然后调节函数信号发生器输出信号的电压,使其峰峰值为2V,观察滤波电路输出信号的峰峰值,看是否达到了9V,若达到了,则说明放大部分完成。
(四)、单独测试比较器(输入uo2,输出uo3)
uo2接同向输入端,uo1接反向输入端。
uo2:频率500.0Hz、峰峰值9V正弦波,建议先用5V测试,防止电压过大,然后再慢慢将电压升到9V。
uo1:频率2.0K、峰峰值4V的三角波。
调节R6时输出信号uo3的峰峰值为2.0V,(原理上频率是500Hz)观察输出波形uo3,看是不是如下所示:
六、参考文献
[1] 康华光.模拟电子技术基础.4版.:高等教育,1998.
附录1.原件清单
原件个数原件名称和参数原件标号
5电容, 100nF C1 C2C3C4C5
3电位器, 30k R9,R11,R12
2 电阻, 10k R5, R10 2 电位器10k R14,R1 3电阻3kR3,R4,R7
4电阻1kR2R6R8 R13
导线
杜邦芯
短路帽
LM324芯片一片
14PIN 芯片座一个
附录2.仿真原理图
附录三
实验测试板图。