Quasi-3D Light Confinement in Double Photonic Crystal Reflectors VCSELs for CMOS-Compatible

合集下载

法律英语词汇总结

法律英语词汇总结

词汇总结(老师分享版总结)Unit1—5monlaw普通法2.equitylaw衡平法3.precedent先例4.staredecisis遵循先例原则5.resjudicata一案不再审6.jurisdiction管辖权,管辖区,司法区7.trialcourt初审法院8.CourtofAppeals,appellatecourt上诉法院9.appellant/appellee,petitioner/respondent上诉人/被上诉人,申诉人/被申诉人10.SupremeCourt最高法院,SPS,SPP,ProcuratorateChiefJustice检察院首席大法官11.courtoflastresort,firstinstance终审法院,初审12.courtofgeneraljurisdiction普通管辖权法院13.circuitcourt巡回法院14.percuriam法官共同决议意见15.concurringopinion附随意见/并存意见16.dissentingopinion反对意见17.prosecutorprocuratorate公诉人/检察官检察院18.affirm,reverse,remand维持,撤销,发回重审19.reversal,overruling撤销判决,推翻判决20.enbanc全院审判,集体听讼21.holding,dicta判决,附带意见?22.dayincourt出庭应诉23.forum审判地24.venue审判地25.certiorari调卷令26.legalremedyrelief法律救济27.equitableremedy衡平法上的救济28.injunction禁制令29.thelegislative立法机构,legislation立法legislature立法机关30.thejudicialjudiciary司法,司法系统31.theexecutive行政,execute处死,执行execution死刑/enforcement执行,executor遗嘱执行人administer执行32.statute成文法statutoryright法定权利33.attorney,barrister/advocate,solicitor,trialadvocacy,counsel律师34.damages损害赔偿金punitivedamages惩罚性损害赔偿金35.benchtrial法官审判,王座法庭(无陪审团的法官审)jurytrial陪审团审判36.civilaction民事诉讼tortiousact侵权行为tortaction侵权诉讼37.substantivelaw实体法procedurallaw程序法38.diversityofcitizenship州籍不同39.impeachment弹劾40.separationofpowers分权41.checks&balances制衡42.dueprocessoflaw法律正当程序43.billofrights权利法案44.judicialinterpretation/construction司法解释construe解释literal文字的/liberal慷慨的45.vetopower,righttovote否决权46.litigant诉讼当事人litigation诉讼litigator诉讼人47.infamouscrime不名誉罪fraud欺诈perjury伪证罪treason叛国罪perjure作伪证defraud诈骗defrauded欺骗48.civillawsystem大陆法系49.amendment修正案50.judicialreview司法审查51.Congress/Parliament,senate国会/议会,参议院52.bring/file/institute/initiate/commenceanaction,suit,lawsuit,litigation,proceedings诉讼53.bindingprecedent有拘束力的先例54.persuasiveprecedent有说服力的先例55.MirandaWarnings米兰达警告45.misdemeanor轻罪felony重罪56.probation缓刑probate见证人,见证程序57.parole假释rcenytheft盗窃罪59.deceased死者,被继承人decedent死者60.mensrea犯意61.actusreus犯罪行为62.causation因果关系,interveningfactor介入因素63.felony-murderrule重罪谋杀规则64.punitivedamages惩罚性赔偿65.civilwrong民事违法criminaloffense刑事犯罪66.homicide杀人罪67.justifiablehomicide可证明为正当的杀人罪,excusable可原谅的68.murder谋杀/谋杀罪69.voluntarymanslaughter故意杀人罪70.involuntarymanslaughter过失杀人罪71.Redress赔偿compensation赔偿reimburse偿还,赔偿72.Warrant逮捕令73.self-defense正当防卫74.liability责任liable有责的75.probablecause正当理由,合理根据56.deathpenalty死刑57.imprisonment,confinement,incarceration,detention监禁58.forfeiture没收59.aggravatingcircumstances加重情节60.mitigating/extenuatingcircumstances减轻情节61.enteraguiltypleapleadguilty做出有罪答辩62.pleabargaining辩诉交易63.interstatecommerce州际贸易64.drugtrafficking贩毒counterfeitgoods假冒商品65.illegitimatechild私生子,非婚生子66.conviction有罪裁决acquittal无罪裁决67.inquisitorialsystem纠问制/adversary对抗制/adversarial对抗制68.summons传票,subpoena传票,process传票,诉讼过程中的各种命令,citation罚单69.serviceofprocess送达程序pulsoryprocess强制到庭程序71.voirdire陪审团资格审查72.peremptorychallenge无因回避73.challengeforcause有因回避74.jurycharge/instruction指示陪审团75.rebuttalevidence反驳证据76.pretrialmotions审前动议move步骤post-trial审判后动议77.discovery,disclosure证据开示78.cross-examination交叉询问79.motionfordirectedverdict申请驳回起诉的动议80.mistrial无效判决81.hungjury/deadlockedjury陪审团僵局82.hearsay传闻证据83.jurydeliberation陪审团审议84.inpersonam/personaljurisdiction属人管辖权85.inremjurisdiction对物管辖权86.subjectmatterjurisdiction事务管辖权87.fact-finder事情调查者,检察员,trier审判者88.objection反对,exception异议,例外89.plaintiff,原告defendant被告90.prosecution控诉defense辩解91.affirmativedefense积极性抗辩92.statuteoflimitations诉讼时效93.entrapment陷阱94.alibi不在场证据95.intoxication喝醉96.insanity精神失常97.indictment(大陪审团)起诉书/information公诉书plaint刑事控告书、自诉书99.accusatorialsystem诉讼程序100.criminalcharge刑事指控101.primafaciecase初步证明的案件102.bail保释,保证金103.arraignment传讯104.privilegeagainstself-incrimination不得自证其罪的权利105.doublejeopardyclause双重追诉条款106.confrontationclause质证条款,对质条款107.presumptionofinnocence无罪推定108.grandjury大陪审团(程序)109.beyondareasonabledoubt排除合理怀疑110.bythepreponderanceoftheevidence/preponderantevidence优势证据111.balanceoftheprobabilities可能性权衡112.burdenofproof举证责任113.standardofproof证明标准114.criminaljusticesystem刑事司法体系115.burglary盗窃罪116.statutorycrime法定犯罪rceny盗窃罪stolengoods赃物118.injunctiverelief禁令救济,申请制止侵权的权利119.standingtosue原告资格120.discovery证据开示121.long-armstatute长臂管辖法122.forumshopping挑选有管辖权的法院123.causeofaction原告的起诉理由124.directexamination直接询问125.juryverdict陪审团裁决126.admit供认admissible可接纳的inadmissible不可接纳的admissibility证据的可采性127.applicablelaw可适用的法律128.defaultjudgment缺席判决129.judgmentdebtor判决确定的债务人creditor债权人130.rebuttalevidence反驳证据?Unit6wsuit诉讼47.substantivelaw/procedurallaw实体法/程序法48.formality手续49.leaseordeedofland土地租赁或转让契约50.administrativelaw行政法51.civil/criminalprocedure民事/刑事程序52.conflictsoflaw法律冲突53.client当事人54.emotionaldistress精神伤害55.breachofcontract违反合同约定56.filebankruptcy申请破产131.invasionofprivacy侵犯隐私132.subjectmatter/personaljurisdiction诉讼标的/属人管辖权133.serveasummon送达传票pliant/answer起诉书/答辩状135.defaultjudgment缺席审判136.demurrer抗辩137.affirmativedefense积极的抗辩138.statuteoflimitation诉讼时效139.motiondenied/granted被否决的动议/被允许的动议140.negligent/negligence过失(形容词)/过失(名词)141.inadmissibleevidence不予采信的证据142.objectionbydefendant’s被co告un律se师l的抗辩143.hearsay传闻证据144.presentevidence举证145.callwitness传唤证人146.counselforplaintiff原告律师147.burdenofproof举证责任148.chargetothejury/juryinstruction下指令给陪审团/陪审团发出的指令149.litigation诉讼150.deliberation(陪审团)审议151.general/specialverdict一般/特别的裁决152.reasonableperson有理性的人153.judgmentnonobstanteverdicto与陪审团相反的判决154.judgmentforplaintiff原告胜诉的判决155.resjudicata已决案件156.executionofthejurgement判决的执行157.sheriff治安官158.proceeds收益159.insolvency清偿160.pleading诉讼请求161.brief诉讼要点162.transcriptofthetestimony证词的记录163.court’sruli法ng院的裁决Unit8TextB57.Drive-through免下车的,可坐在汽车里购物的路边商店麦当劳得来速汽车餐厅pensatoryandpunitivedamages59.Causeofaction诉讼理由;诉因指原告起诉时的根据。

用于3维重建的立体图像校正_刘怡光

用于3维重建的立体图像校正_刘怡光

根据对极约束的基本原理,易知对于一幅图像
中的一个点 u,在另一幅图像中与其对应的匹配点
u' 一定位于与点 u 对应的对极线 l' 上。由此可见,
只需要对齐 2 幅图像的对应极线,便可以简化立体
匹配问题,将匹配的搜索范围从 2 维降到了 1 维。
文中算法步骤如下: 1) 提取 SIFT[9]特征点并匹配; 2) 使用 RANSAC[10]剔除离群匹配点; 3) 选用归一化八点算法[11]计算基础矩阵 F;
用于 3 维重建的立体图像校正
刘怡光,孙柏林* ,石勇涛,黄增喜,赵晨晖
( 四川大学 计算机学院,四川 成都 610065)
摘 要: 传统的图像校正方法通过最小化匹配点间的距离作为目标函数引导图像校正,但往往会导致被校正图像
出现较大的失真变形,不仅无法为 3 维( 3D) 重建提供信息,反而会带来额外的误差。为此提出一种无需相机标定
间满足基本极线方程:
u'TFu = 0
( 1)
图 1 Hartley[4]方法与本文方法校正结果 Fig. 1 Hartley method and proposed method rectifica-
tion result
图 2 对极几何
Fig. 2 Epipolar geometry
对应于左右 2 幅图像的摄像机矩阵分别用 P、
作者提出一种基于基础矩阵分解的极线校正方 法,对视点差别很大的立体图像对分别施加不同的 单应变换,从而使得对应的对极线相互匹配,达到校 正的目的。假设摄像机的移动方向,即基线方向是 图像所在水平方向。基于以上假设,要求校正后的 对极线平行于 x 轴,从而图像的视差仅发生在 x 方 向,即 y 方向没有视差。分析对极几何的理论易知, 对 2 幅图像进行适当的单应变换来校正图片,等价 于调整相机相对位置,即简化成 1 对并排放置,且主 轴相互平行的摄像机。首先,将 1 幅图像的对极点 映射到无穷远点,求得对应的单应变换矩阵; 然后根 据双目图像的对应关系,推导出另一幅图像中的单 应矩阵的基本形式。考虑到利用匹配点对间的距离 来度量校正结果易致图像变形较大。点对间距离最 小化约束方法没有考虑因为摄像机方位的不同而造 成图像中相对的点之间的距离差异,如果强行约束 使得点对间距离最小,就是忽略了图像应有的视差, 在这样的约束下,图像的失真变形严重( 图 1) 。

磁控溅射原理介绍(英文)

磁控溅射原理介绍(英文)

Magnetic Field B
+
E
x
x x Bx
-
Main Menu
MIRDC
What is a Magnetron
The most common type of magnetron can be found inside a microwave oven.
This is a magnetron tube.
Control of these highly mobile plasma electrons is the key to all forms of plasma control
Conversion of a neutral atom
into an ion by electron collision
(for ion energies < 1keV).
Ar+
Main Menu
MIRDC
Ionising collisions
Ions and electrons lost from the discharge can be replaced by ionising collisions
⇒ e- + Ar e- + e- + Ar+
in a plasma
0+ e-
e1+
Main Menu
MIRDC
Electron motion in a combined electric & magnetic field
e-
SN E
B ExB
B
x
B
e-
NS
e-

Main Menu
MIRDC

quantum wells (Wikipedia)

quantum wells (Wikipedia)

Quantum wellFrom Wikipedia, the free encyclopediaA quantum well is a potential well with only discrete energy values.One technology to create quantization is to confine particles, which were originally free to move in three dimensions, to two dimensions, forcing them to occupy a planar region. The effectsof quantum confinement take place when the quantum well thickness becomes comparable to the de Broglie wavelength of the carriers (generally electrons and holes), leading to energy levels called "energy subbands", i.e., the carriers can only have discrete energy values.∙∙∙∙[edit]FabricationQuantum wells are formed in semiconductors by having a material, like galliumarsenide sandwiched between two layers of a material with a wider bandgap, like aluminiumarsenide. These structures can be grown by molecular beam epitaxy or chemical vapordeposition with control of the layer thickness down to monolayers.(Other example: layer of indium gallium nitride (InGaN) sandwiched between two layers of gallium nitride (GaN). )Thin metal films can also support quantum well states, in particular, metallic thin overlayers grown in metal and semiconductor surfaces. The electron (or hole) is confined by the vacuum-metalinterface in one side, and in general, by an absolute gap with semiconductor substrates, or by a projected band gap with metal substrates.[edit]ApplicationsBecause of their quasi-two dimensional nature, electrons in quantum wells have a density ofstates as a function of energy that has distinct steps, versus a smooth square root dependence that is found in bulk materials. Additionally, the effective mass of holes in the valence band is changed to more closely match that of electrons in the conduction band. These two factors, together with the reduced amount of active material in quantum wells, leads to better performance in optical devicessuch as laser diodes. As a result quantum wells are in wide use in diode lasers, including red lasers for DVDs and laser pointers, infra-red lasers in fiber optic transmitters, or in blue lasers. They are also used to make HEMTs (High Electron Mobility Transistors), which are used in low-noise electronics. Quantum well infrared photodetectors are also based on quantum wells, and are used for infrared imaging.By doping either the well itself, or preferably, the barrier of a quantum well with donor impurities,a two-dimensional electron gas (2DEG) may be formed. Such as structure forms the conducting channel of a HEMT, and has interesting properties at low temperature. One such property isthe quantum Hall effect, seen at high magnetic fields. Acceptor dopants can lead to atwo-dimensional hole gas (2DHG).Quantum well can be fabricated as saturable absorber utilizing its saturable absorption property. Saturable absorber is widely used in passively mode locking lasers. Semiconductor saturable absorbers (SESAMs) were used for laser mode-locking as early as 1974 when p-type germanium is used to mode lock a CO2 laser which generated pulses ~500 ps. Modern SESAMs are III-V semiconductor single quantum well (SQW) or multiple quantum wells grown onsemiconductor distributed Bragg reflectors (DBRs). They were initially used in a Resonant Pulse Modelocking (RPM) scheme as starting mechanisms for Ti:sapphire lasers which employed KLM as a fast saturable absorber. RPM is another coupled-cavity mode-locking technique. Different from APM lasers which employ non-resonant Kerr-type phase nonlinearity for pulse shortening, RPM employs the amplitude nonlinearity provided by the resonant band filling effects of semiconductors. SESAMs were soon developed into intracavitysaturable absorber devices because of more inherent simplicity with this structure. Since then, the use of SESAMs has enabled the pulse durations, average powers, pulse energies and repetition rates of ultrafast solid-state lasers to be improved by several orders of magnitude. Average power of 60 W and repetition rate up to160 GHz were obtained. By using SESAM-assisted KLM, sub-6 fs pulses directly from a Ti:sapphire oscillator was achieved. A major advantage SESAMs have over other saturable absorber techniques is that absorber parameters can be easily controlled over a wide range of values. For example, saturation fluence can be controlled by varying the reflectivity of the top reflectorwhile modulation depth and recovery time can be tailored by changing the low temperature growing conditions for the absorber layers. This freedom of design has further extended the application of SESAMs into modelocking of fibre lasers where a relatively high modulation depth is needed to ensure self-starting and operation stability. Fibre lasers working at ~1 μm and 1.5 μm were successfully demonstrated.[1]。

Essential Macleod光学薄膜设计软件介绍

Essential Macleod光学薄膜设计软件介绍

2013/7/12
版权所有 2004 讯技光电科技(上海)有限公司
24
Formula窗口
2013/7/12
版权所有 2004 讯技光电科技(上海)有限公司
25
Generate Rugate…
• 用这个命令容易生成一个有皱褶膜(rugate coatings)模型。 • 用大量的分离的变化的折射率层模拟皱褶膜的连续变 化的折射率。折射率的变化用改变每层的packing density 来实现。 • Generate Rugate命令可以容易地指定折射率变化,并且 控制模拟皱褶结构的层的数目。
2013/7/12 版权所有 2004 讯技光电科技(上海)有限公司 27
光学厚度->物理厚度
2013/7/12
版权所有 2004 讯技光电科技(上海)有限公司
28
Scale Thicknesses...
• 偶尔有某些材料的厚度要按同样的方法改变。 • 当研究不均匀性时,或需要对通或禁带进行微调时, 经常要这样做。 • 有时候要保持特殊参考波长的值,但要将所有膜层厚 度按同样的比例改变。都可以用这个命令容易实现。
2013/7/12
版权所有 2004 讯技光电科技(上海)有限公司
16
Plotting
• 图形坐标轴和绘图的定制。
2013/7/12
版权所有 2004 讯技光电科技(上海)有限公司
17
Cone
• 控制Stack Editor提供的cone计算, Nominal Cone Segment Length :计算特定波长、频率和入射角时的cone响应时,控制 Cone用的适应计算。与 Nominal Plot Segment Length 类似。 • Bandwidth Step:带宽不为0时,控制步长, • Gaussian Calculation Scale Factor :缺省值是2,此时,光束的 强度降为轴上的0.0003倍,对大多数的情况可以了, 越大,计算 越久。

法律英语词汇总结

法律英语词汇总结

词汇总结老师分享版总结Unit 1—5mon law普通法2.equity law衡平法3.precedent 先例4.stare decisis 遵循先例原则5.res judicata一案不再审6.jurisdiction 管辖权,管辖区,司法区7.trial court 初审法院8.Court of Appeals, appellate court 上诉法院9.appellant/appellee, petitioner/respondent 上诉人/被上诉人,申诉人/被申诉人10.Supreme Court最高法院, SPS, SPP, Procuratorate Chief Justice检察院首席大法官11.court of last resort, first instance终审法院,初审12.court of general jurisdiction 普通管辖权法院13.circuit court巡回法院14.per curiam法官共同决议意见15.concurring opinion附随意见/并存意见16.dissenting opinion反对意见17.prosecutor procuratorate 公诉人/检察官检察院18.affirm, reverse, remand维持,撤销,发回重审19.reversal, overruling撤销判决,推翻判决20.en banc全院审判,集体听讼21.holding, dicta 判决,附带意见22.day in court 出庭应诉23.forum审判地24.venue审判地25.certiorari调卷令26.legal remedy relief 法律救济27.equitable remedy 衡平法上的救济28.injunction 禁制令29.the legislative立法机构, legislation立法legislature立法机关30.the judicial judiciary 司法,司法系统31.the executive行政, execute处死,执行execution死刑/enforcement执行, executor 遗嘱执行人administer 执行32.statute成文法statutory right 法定权利33.attorney, barrister/advocate, solicitor, trial advocacy, counsel 律师34.damages 损害赔偿金punitive damages 惩罚性损害赔偿金35.bench trial 法官审判,王座法庭无陪审团的法官审jury trial 陪审团审判36.civil action 民事诉讼tortious act侵权行为tort action侵权诉讼37.substantive law 实体法procedural law 程序法38.diversity of citizenship 州籍不同39.impeachment 弹劾40.separation of powers分权41.checks & balances 制衡42.due process of law 法律正当程序43.bill of rights 权利法案44.judicial interpretation/construction 司法解释construe解释literal文字的/liberal慷慨的45.veto power, right to vote否决权46.litigant 诉讼当事人litigation 诉讼litigator诉讼人47.infamous crime不名誉罪fraud欺诈perjury 伪证罪treason叛国罪perjure作伪证defraud 诈骗defrauded欺骗48.civil law system大陆法系49.amendment 修正案50.judicial review 司法审查51.Congress/Parliament,senate 国会/议会,参议院52.bring/file/institute/initiate/commence an action, suit, lawsuit, litigation, proceedings诉讼53.binding precedent 有拘束力的先例54.persuasive precedent 有说服力的先例55.Miranda Warnings米兰达警告45. misdemeanor 轻罪felony 重罪56.probation 缓刑probate 见证人,见证程序57.parole假释rceny theft 盗窃罪59.deceased 死者,被继承人decedent 死者60.mens rea 犯意61.actus reus犯罪行为62.causation因果关系, intervening factor 介入因素63.felony-murder rule重罪谋杀规则64.punitive damages 惩罚性赔偿65.civil wrong 民事违法criminal offense 刑事犯罪66.homicide 杀人罪67.justifiable homicide可证明为正当的杀人罪, excusable可原谅的68.murder谋杀/谋杀罪69.voluntary manslaughter故意杀人罪70.involuntary manslaughter 过失杀人罪71.Redress赔偿compensation 赔偿reimburse 偿还,赔偿72.Warrant逮捕令73.self-defense正当防卫74.liability 责任liable有责的75.probable cause 正当理由,合理根据76.death penalty死刑77.imprisonment, confinement, incarceration, detention监禁78.forfeiture 没收79.aggravating circumstances加重情节80.mitigating/extenuating circumstances减轻情节81.enter a guilty plea plead guilty 做出有罪答辩82.plea bargaining辩诉交易83.interstate commerce州际贸易84.drug trafficking贩毒counterfeit goods假冒商品85.illegitimate child私生子,非婚生子86.conviction 有罪裁决acquittal 无罪裁决87.inquisitorial system纠问制/ adversary对抗制/adversarial对抗制88.summons传票, subpoena传票, process传票,诉讼过程中的各种命令, citation罚单89.service of process 送达程序pulsory process强制到庭程序91.voir dire陪审团资格审查92.peremptory challenge无因回避93.challenge for cause有因回避94.jury charge/instruction 指示陪审团95.rebuttal evidence 反驳证据96.pretrial motions审前动议move步骤post-trial审判后动议97.discovery, disclosure证据开示98.cross-examination交叉询问99.motion for directed verdict申请驳回起诉的动议100.mistrial 无效判决101.hung jury/ deadlocked jury陪审团僵局102.hearsay 传闻证据103.jury deliberation 陪审团审议104.in personam/personal jurisdiction 属人管辖权105.in rem jurisdiction对物管辖权106.subject matter jurisdiction事务管辖权107.fact-finder事情调查者,检察员, trier 审判者108.objection反对, exception 异议,例外109.plaintiff, 原告defendant被告110.prosecution 控诉defense 辩解111.affirmative defense积极性抗辩112.statute of limitations 诉讼时效113.entrapment 陷阱114.alibi 不在场证据115.intoxication喝醉116.insanity精神失常117.indictment大陪审团起诉书/information 公诉书plaint 刑事控告书、自诉书119.accusatorial system诉讼程序120.criminal charge 刑事指控121.prima facie case 初步证明的案件122.bail保释,保证金123.arraignment 传讯124.privilege against self-incrimination不得自证其罪的权利125.double jeopardy clause双重追诉条款126.confrontation clause 质证条款,对质条款127.presumption of innocence无罪推定128.grand jury 大陪审团程序129.beyond a reasonable doubt 排除合理怀疑130.by the preponderance of the evidence/ preponderant evidence优势证据131.balance of the probabilities可能性权衡132.burden of proof 举证责任133.standard of proof 证明标准134.criminal justice system 刑事司法体系135.burglary 盗窃罪136.statutory crime 法定犯罪rceny盗窃罪stolen goods 赃物138.injunctive relief 禁令救济,申请制止侵权的权利139.standing to sue原告资格140.discovery 证据开示141.long-arm statute长臂管辖法142.forum shopping挑选有管辖权的法院143.cause of action原告的起诉理由144.direct examination 直接询问145.jury verdict 陪审团裁决146.admit 供认admissible可接纳的inadmissible不可接纳的admissibility 证据的可采性147.applicable law 可适用的法律148.default judgment缺席判决149.judgment debtor 判决确定的债务人creditor 债权人150.rebuttal evidence反驳证据Unit 6wsuit诉讼2.substantive law/ procedural law实体法/程序法3.formality手续4.lease or deed of land土地租赁或转让契约5.administrative law行政法6.civil/criminal procedure民事/刑事程序7.conflicts of law法律冲突8.client 当事人9.emotional distress精神伤害10.breach of contract 违反合同约定11.file bankruptcy 申请破产12.invasion of privacy 侵犯隐私13.subject matter/personal jurisdiction诉讼标的/属人管辖权14.serve a summon 送达传票pliant/ answer 起诉书/答辩状16.default judgment 缺席审判17.demurrer抗辩18.affirmative defense积极的抗辩19.statute of limitation诉讼时效20.motion denied/granted 被否决的动议/被允许的动议21.negligent/ negligence过失形容词/过失名词22.inadmissible evidence不予采信的证据23.objection by defendant’s counsel被告律师的抗辩24.hearsay 传闻证据25.present evidence举证26.call witness传唤证人27.counsel for plaintiff原告律师28.burden of proof举证责任29.charge to the jury/ jury instruction 下指令给陪审团/陪审团发出的指令30.litigation 诉讼31.deliberation 陪审团审议32.general/special verdict 一般/特别的裁决33.reasonable person 有理性的人34.judgment non obstante verdicto 与陪审团相反的判决35.judgment for plaintiff原告胜诉的判决36.res judicata 已决案件37.execution of the jurgement判决的执行38.sheriff治安官39.proceeds收益40.insolvency 清偿41.pleading 诉讼请求42.brief诉讼要点43.transcript of the testimony 证词的记录44.court’s ruling法院的裁决Unit 8 Text B1.Drive-through 免下车的,可坐在汽车里购物的路边商店麦当劳得来速汽车餐厅pensatory and punitive damages3.Cause of action 诉讼理由;诉因指原告起诉时的根据;具体指原告起诉寻求司法救济所依据的事实,如侵权行为和损害后果等;4.Out-of-state 外州的5.Recuperate vt. 康复6.Out-of-pocket 自掏腰包的7.summary dismissal 拒绝立案8.deter 威慑9.runaway 逃跑者,漏网之鱼10.undisclosed a. 不公开的11.Fahrenheit 华氏温度180 degrees Fahrenheit=82.2 摄氏度160 degrees Fahrenheit=71.1摄氏度12.Styrofoam 泡沫塑料13.Proceed to trial 提起诉讼14.Proceeding n. 程序诉讼程序15.Procedure n. 指进行民事或刑事诉讼应遵守的司法规则、模式、步骤16.Defective product 缺陷产品17.Withstand scrutiny 经得起推敲18.Scrutiny 详细审查;周密调查Intervening causes介入因素All-or-nothing-at-all 全有或全无BlastKeep wild animals: Every dog is allowed his first bite. 初犯者从宽;As long as no harm occursPrivity n. 契约关系contractual relationshipAbsolute liability 绝对责任Agreement 协议AssumptionBasic assumption基础认知Egg-shell skull 可预见的伤害转化成不可预见的严重伤害Unit 9 Text A1.promise/ promisor/ promise 承诺/承诺人/受承诺人2.promissory obligation 约定义务3.quasi contract 准契约4.unjust enrichment 不当得利5.assignee受让人6.the third party beneficiary第三方受益人7.offer/counter offer/ offeror/ offeree要约/反要约/发要约人/受要约人8.acceptance 承诺9.bargain 讨价还价10.bilateral contract/ unilateral contract双务合同/单务合同11.irrevocable offer不可撤销的要约12.contract of adhesion 格式合同13.consideration 对价14.gratuitous promise单方获益的承诺15.enforceable contract可强制执行的合同16.estoppel禁止反言17.immunity 豁免权18.frustration/impossibility/ discharge of contract中止/不能履行/终止的合同19.binding agreement 有约束力的协议20.freedom of contract 缔约自由21.Statute of Frauds防止诈欺条例当事人拒绝履行契约的借口22.Express/implied 明示/默示offer 要约23.Express: explicitly stated24.Quasi-contract 准契约系欠缺构成要件的行为;基于衡平原则,当一方自他方取得利益致后者受损失则法律给予双方的行为具有准契约的效果,使前者必须就所得利益的价值给付后者;25.Unjustly enriched 不当得利的26.Foreseeable person27.Oxymoron 矛盾修辞法28.Inadequacy of consideration 约因的不足29.Minors/infants 未成年人30.V oid/voidable contract 无效/可撤销合同31.Mutual assent共同同意32.Rescind the contract 撤销契约33.Affirm/disaffirm 确认/否认34.Enforceable/unenforceable contract 违反法定要件缺强制力的合同Unit 9 Text B1.Enforcement 施行2.Plain meaning 字面含义3.Discourage 阻止,劝阻4.Penalize v. 对予以惩罚5.Deceptive 欺骗的6.Unforeseen 不可预见的7.Preference n. 偏爱优待8.Accommodate 适应9.Modification 修订plexity 复杂11.Subjectivity 主观12.Performance/fulfillment 履行成功地执行合同义务,即完全履行,通常可因此解除履行人的义务;13.Honor agreed-upon promise 依约履行协议14.Projected-loss of profits 预计损失的利润15.Aggrieved party 受害人16.Specific performance 实际履行17.Mutual mistake 双方错误指各方当事人对主要事实、合同用语或文书内容等有相同的误解18.Erroneous assumption 错误的假设19.Material to the contract 对合同有实质影响20.Duress 胁迫21.Undue influence 不当影响22.Material provision 实质条款23.Misrepresentation 虚假陈述Unit 12corporation 法人公司在法律上被认为是单一法律实体的、由个人组成的团体或某一职位的持有人; 为了与自然人natural person区别,法人又称为拟制人artificial person,法律上的人juristic person或团体人corporate person;incorporate v. 成立公司,设立公司intermediary 中间人a lawyer for the situation 情势律师capital structure of corporation 公司资本结构equity financing 股权融资debt financing 债券融资corporate financing 公司融资articles of incorporation 公司章程powers of corporation 公司权力ultra vires doctrine 越权原则serve v. 送达service of process 送达程序customize 定制,改制MBCA 美国标准公司法bylaws 内部章程细则voting by proxy 代理投票internal affairs doctrine 内部事务原则公司内部事务;公司内部事务是指公司内部,公司本身与其董事、股东、中小股东、高级管理人员相互之间的权利、义务关系;内部事务的范围相当广②,大体可分为不影响第三人权利的内部事务和影响第三人权利的内部事务;前者例如股东的累积投票权;后者如股东对公司债务的个人责任,是否揭开公司面纱,追究股东责任对公司债权人利益影响重大;公司内部事务适用其属人法,美国绝大多数州以公司注册成立地为其属人法,以注册成立地公司法调整内部事务关系;特拉华州现象;许多公司竞相选择特拉华州作为公司成立地,在内部事务上适用该州公司法,这被公司法及国际私法学者称为特拉华州现象;公司章程是规范公司与股东、董事之间,股东与股东,股东与董事之间关系的法律文件,公司章程是他们权利和义务的源泉之一;tangible evidence 实物证据real evidence: real thing 实物证据demonstrative evidence确证: tangible material used for explanatory or illustrative purposes onlyreversible error 可更改的错误。

量子点

量子点

半导体量子点材料的制备技术
可以看出用这种方法制 备量子点尺寸均匀、具 有严格的对称性。但是 用这种方法制备的量子 点受光刻水平的限制, 不可能刻蚀出更小的量 子点。于是人们利用高 分辨率聚焦电子、离子 束、X射线代替光束对材 料进行刻蚀,从而制备 出线宽更小的量子线和 量子点。利用这种方法 原则上可以制备最小特 征宽度为10nm左右的结 构。表1给出了这一技术
半导体量子点的主要性质
假设某时刻电子通过样品时只有两条路径,那麽由两个波函 数叠加得到的几率分布为:
当样品的尺寸远大于状态相干长度时,电子会遭受非弹性 散射,上式最后一项的平均值为零;如果样品尺寸与相位相干长 度同一量级,交叉项就会有一比值,由于通过不同路径时遇到杂 质的情况不同,所以此值随机变化. 如果在样品的两端放置两 个探头,理论上来说就能够测量到干涉结果,这就是量子干涉现 象. 所以在相位相干长度内,载流子所输运的电流不仅与其速
国内外所达到的水平”。 用光刻技术在Si衬底上制备GaAs量子点的示意图
半导体量子点材料的制备技术
国内外量子点细微加工水平
方法
国外
国内
X-ray光刻技术 最小线度80nm, 0.8~1.0μm 接触曝光 10nm
电子束光刻技 术
束斑直径 实现70nm图形,
Φ<1nm,采
一般为
用PMMA胶已 100~200nm
半导体量子点的主要性质
(a)半导体材料受限维 度变化的示意图;
(b)半导体材料受限维 度对电子态密度影 响的示意图。
(1)体相半导体; (2)量子阱;(3) 量子线;(4)量 子点。
半导体量子点的主要性质
对于纳米半导体颗粒(量子点),由于 三维限域作用,其载流子(电子、空穴)在 一个类似于准零维的量子球壳中运动,相应 的电子结构也从体相连续能带变成分裂的能 级。下图 是半导体材料从体相到量子点电子 结构变化示意图。三维限域作用导致电子和 空穴的动能增加, 使原来的能隙增大,从而使 光学吸收边蓝移。

Celestron - 高质量的天文望远镜用户指南说明书

Celestron - 高质量的天文望远镜用户指南说明书

H I GH LI GH TS• Designed for education• Robust and sturdy, with secured eyepieces • Dual or triple magnifications• Available in ergonomic rack & pinion and pillar stands • Double 1 W LED illumination• With rechargeable batteries for cordless use • Digital models with 3.2 MP camera available • Ergonomic carrying grip • 5 years warrantyTEC HNI C A L S P E C IF IC AT I ON S EYEP I E C E (S )• Pair of secured WF10x/20 mm eyepieces supplied with eyecupsHE A D• Binocular head with 45° inclined tube. • Diopter adjustment of ± 5 on one side• Interpupillary distance adjustable between 55 and 75 mm • D igital head is supplied with a 3.2 MP USB-2 1/2” CMOS camera • Maximum 2048 x 1536 pixels resolutionDUA L MAG NI F I C AT I ON O B J E C T IV E S• Revolving nosepiece with dual 1x/3x and 1x/2x , which can provide standard magnifications of 10x and 30x or 20x and 40x • Working distance 60 mm• Field of views of 20/6.7 mm or 10/5 mm• M agnifications can be altered using optional eyepieces• All optics are anti-fungus treated and anti-reflection coated for maximum light throughputTRI P LE MAG NI F I C AT I ON OB J E C T IV E S• Revolving nosepiece with triple 1x/2x/3x and 1x/2x/4x,which can provide standard magnifications of 10x, 20x and 30x or 10x, 20x and 40x • Working distance 60 mm• F ield of views of 20/10/6.7 mm or 20/10/5mm • Magnifications can be altered using optional eyepiecesSTAN D• The rack & pinion and pillar stands of the EduBlue are equipped with ergonomically designed flat bases, complete with 2 object clamps and Ø 60 mm transparent and black/white stage plate. • The coarse adjustment is equipped with tension control. • The stands are alloy metal casted with hardened off-white coatingI LLU MI N AT I O N• The transmitted and incident 1 W LED illuminations can be used simultaneously and the light intensities can be adjusted separately, 60 mm working distance • Supplied with an external 100-240 V mains adapter/charger and 3 rechargeable batteries for corded and cordless usePAC K AG I N G• Supplied with 100-240 V mains adapter/charger, dust cover, eyecups and user manual • Delivered with an external power supply • All packed in a polystyrene boxEduBlueED.1402-S1x 2x 4xTriple magnificationDigital head1x/3x objectives 2x/4x objectives 1x/2x/3x objectives 1x/2x/4x objectivesPillar standRack & pinionstandED.1302-P ••ED.1302-S ••ED.1305-S •••ED.1402-P ••ED.1402-S ••ED.1405-S •••ED.1502-S ••ED.1505-S •••ED.1802-S ••ED.1805-S•••M O D E L SDI GI TAL MO DE LS C AME R A• Digital models are equipped with a 3.2 MP USB 2 1/2 inch sensor CMOS USB-2 camera• Maximum resolution is 2048 x 1536 pixels, 24 bits color depth, up to 10 frames per second. Smaller resolutions are selectable • Delivered with the ImageFocus 4 software, for capturing of images and videos, USB-2 cable and a micrometer 1mm/100 slide • Warranty for the camera is 2 yearsSOF T WA RE• Delivered with ImageFocus 4 for capturing of images and videos• This software also allows a full range of analysis like measurements on still and live images and annotations on captured images • Save images in .jpg, .tif or .bmp formats, save videos in .avi format• Images can be annotated and measurements can be performed on live or captured images • Compatible with Windows XP , Vista, 7, 8 and 10, all 32 and 64 bits configurations • For Mac OS more basic software is available• Updates can be downloaded on our website ED.1505-SED.1302-PACC E S S O RI E S A ND S PA RE PA R TSED.6005 Pair of HWF 5x/22 mm eyepieces ED.6010 Pairof HWF 10x/20 mm eyepieces ED.6015 Pair of HWF 15x/12 mm eyepieces ED.6020 Pair of HWF 20x/10 mm eyepiecesED.6110 HWF 10x/20 mm eyepiece with 10 mm/100 micrometer ED.6099 Pair of eyecupsED.9570 Pair of object clamps for stageED.9950 Stage plate frosted glass, opaque, Ø 60 mm ED.9956 Stage plate black/white, Ø 60 mm ED.9975 External 100-240 V mains adapter/ charger ED.4300 Aluminium transport case for EduBlue microscopesSL.5504 LED replacement unit for EduBlue, incident illumination SL.5505 LED replacement unit for EduBlue, transmitted illuminationAE.1112 Micrometer 76 x 26 mm slide, 50 mm/50 divisions PB.5245 Lens cleaning paper, 100 sheets per pack PB.5274 Isopropyl alcohol 99% (200 ml)PB.5275 Cleaning kit: lens cleaning fluid, lint free lens tissue, brush, air blower, cotton swabsD I ME N S I O N S258260463822017513548EuromexMicroscopenbv•Papenkamp20•6836BDArnhem•TheNetherlands•T+31(0)263232211•F+31(0)263232833•****************•。

基于空洞卷积与多尺度特征融合的室内场景单图像分段平面三维重建

基于空洞卷积与多尺度特征融合的室内场景单图像分段平面三维重建

传感技术学报CHINESE JOURNAL OF SENSORS AND ACTUATORS Vol.34No.3 Mar.2021第34卷第3期2021年3月Piecewise Planar3D Reconstruction for Indoor Scenes from a Single Image Based on Atrous Convolution and Multi-Scale Features Fusion*SUN Keqiang,MIAO Jun*9JIANG Ruixiang,HUANG Shizhong,ZHANG Guimei (Computer Vision Institute of Nanchang Hongkong University,Nanchang Jiangxi33Q063f China)Abstract:It is hard for pixel-level and regional-level3D reconstruction algorithms to recover details of indoor scenes due to luminous changes and lack of texture.A piecewise planar3D reconstruction method is proposed based on the convolution residual connection of the holes and the multi-scale feature fusion network.This model uses the shallow high-resolution detail features generated by the ResNet-101network with the added hole convolution to reduce the loss impact of spatial information as network structure deepens on the detail reconstruction,so that this model can learn more abundant features and by coupling positioning accuracy optimized by the fiilly connected conditional ran­dom field(CRF)with the recognition ability of deep convolutional neural network,which keeps better boundary smoothness and details・Experimental results show that the proposed method is robust to the plane prediction of in­door scenes with complex backgrounds,the plane segmentation results are accurate,and the depth prediction accura­cy can reach92.27%on average.Key words:3D reconstruction of indoor scene;deep convolutional neural network;conditional random field;atrous convolution;multi-scale feature fusionEEACC:6135;6135E doi:10.3969/j.issn.l004-1699.2021.03.012基于空洞卷积与多尺度特征融合的室内场景单图像分段平面三维重建*孙克强,缪君*,江瑞祥,黄仕中,张桂梅(南昌航空大学计算机视觉研究所,江西南昌330063)摘要:受光照变化和纹理缺乏等因素的影响,基于单幅室内场景图像的像素级和区域级三维重建算法很难恢复场景结构细节。

科学仪器服务公司SIMION

科学仪器服务公司SIMION

The Industry Standard in 3D Ion and Electron Optics Simulations Scientific Instrument Services, Inc.1027 Old York Rd, Ringoes, NJ 08551Phone: (908) 788-5550Scientific Instument Services, Inc™ SIMION ™Version 8.1SIMION 8.1S IMION 8.1 is a software package used primarily to calculate electric fields, when given a configuration of electrodes withvoltages, and calculate trajectories of charged particles in those fields, when given particle initial conditions, including optional RF, magnetic field, and collisional effects are supported. In this, SIMION provides extensive supporting functionality in defin-ing your system geometry and conditions, recording and visualizing results, and extending the simulation capabilities with user pro-gramming. It is an affordable but versatile platform, widely used for over 35 years to simulate lens, mass spec, and other types of particle optics systems.Typical usage of SIMION is illustrated below for a simple three-element Einzel lens. The geometry consisting of three ring elec-trodes with given voltages is defined (top), and the fields and particle trajectories are calculated and displayed.Electrostatic field solving:SIMION solves fields in 2D and 3D arrays of up to nearbillions of points, with optimizations for systems with symmetry and mirroring, accord-ing to the finite difference method with much optimized linear-time solving. Smallarrays solve in under a minute; very large arrays may take roughly an hour depending onconditions. A “workbench” strategy allows you to position, size, and orient instances(3D images) of different grid densities and symmetries to permit the simulation of muchlarger systems that don't easily fit into a single array. Some magnetic field solving capa-bilities are also available (see following page).Particle trajectory solving: Particle trajectories are calculated given the previouslycalculated or defined fields. The method is Runge-Kutta with relativistic corrections andvariable-length dynamically adjusting and controllable time steps. Particle mass, charge,and other parameters can be defined individually or according to some pattern or distrib-ution. User programming can modify the system during particle flight to inject noveleffects (such ion-gas scattering). Particle tracing is fast _millions of particles can behandled—and they display in real-time. Basic charge repulsion effects, including a pois-son solver can help estimate the onset of space-charge.Viewing of the system is highly interactive, allowing adjustment of parametersand viewing of the system even during particle flight (trajectory calculation). SIMIONsupports cutting away volumes to see trajectories inside, zooming, viewing potentialenergy surfaces, contour lines, and trajectories, and reflying particles as dots for movieeffects.S IMION is suitable for a wide variety of systems: from ion flight through simple electrostatic and magnetic lenses to particle guns to highly complex instruments, including time-of-flight, hemispherical analyzers, ion traps, quadrupoles, ICR cells, and other MS, ion source and detector optics.Time-dependent or RF (low frequency) voltages:Electrode voltages may be controlled in a general way during particle flight via simple user programs _ e.g. to step or oscillate electrode voltages in some manner. Quadrupole mass filter, multipole, and ion trap simulations (above) in the megahertz range are regularly performed. SIMION applies the quasistatic approximation with superposition, which gives fast calculations (assuming the absence of induced magnetic field or radiation effects as would occur in “high frequency” systems having the wavelength below the length of your system).Magnetic fields: SIMION will import magnetic fields, define them analytically or solve them in restricted cases (e.g. Biot-Savart wire currents - left), optionally superimposed on an electrostatic field (e.g.penning trap or ICR cell - right) for the pur-pose of particle flying.ApplicationsRF Quad Mass Filter RF Ion Trap RF Ion Trap (Potential Energy Display)Ion Confinement in Air SolenoidICR CellIon-neutral collisions: SIMION can handle the effects of particles colliding against a background gas, such as for the buffer gas of the ion trap (top), the back-ground gas in an RF ion-funnel (right), or in ion mobility. Multiple collision models are included: Stokes' law, hard-sphere, and a mobility model optimized for high pres-sure “atmospheric” conditions. The parti-cles will diffuse and randomly scatter away from their normal trajectories.RF Ion Funnel Atmospheric Pressure ExampleDefine Your SimulationComplex CAD Modelimported from STL file(left) to a SIMION arrayGeometry (GEM) defi-nition file exampleGeometry definition: A system geometry can be defined by whichever method is most convenient for you: an interactive 3D paint-like program(called “Modify”), CAD import from STL format (supported by most CAD packages), a solid geometry defined mathe-matically via a text file(“GEM files”), and programmatic manipulation of arrays from such languages as Lua, Perl, Python, and C++.Particle initial conditions can be defined in various ways. The“FLY2” format in SIMION allows quick definition of many types ofparticles random distributions and sequences. Particles may also beexhaustively enumerated (optionally imported from a text file).Analysis and Programming SIMION has a number of capabilities for collecting data.•Package contents: a 450-page printed manual, installation CD with software license key number (for receiving softwareupdates), and quick start notes. The installation CD installs the software, examples, and additional documentation.•Documentation:SIMION comes with a 450-page printed manual. Additional documentation and course notes are available electronically, in the examples, or on the web site. See the web site for the user group, software updates, latest SIMION tips, articles, and links to some of the hundreds of scholarly papers that use SIMION.•Updates:Free updates to 8.1.x versions of 8.1 are provided as free downloads from .•Support:Free basic support via email, phone, and forum •Supported systems: Formally tested on Windows 10/8.1/8/Vista/XP, as well as Wine/Linux (and Crossover/Mac). Latest system compatibility information is on .In the example above, trajectories are calcu-lated while phase space data is interactively plotted in Excel via the Lua COM interfaceSIMION can optimize voltages and geometry with simplex optimizer and batch mode capabilities. At left is a SIMION generated surface plot of beam size as a func-tion of two lens voltages. At right is one of the many user programming examples (scattering at surface).Programming in Lua Surface Plot in ExcelScattering Effects at Surface User programming allows the simulation to be extended in many novel ways. During ion flight, you may control electrode voltages (example at right), define or modify fields, scatter or deflect ions (e.g.ion-gas collision models), tune (optimize) lens voltages, compute results, export data to programs like Excel via COM or command-line interfaces, and do many other things. The Lua scripting language is directly embedded in SIMION, and Lua may also call C/C++ or COM routines. Programming may also be used to operate SIMION in batch mode , such as for geometry optimization or to read/manipu-late potential array files.Contents Data recording:The simulation parameters you are interested in (e.g. ion position, velocity, KE, and voltage) can be recorded at various stages in particle flight (e.g. when hitting an electrode and crossing a plane). Data can be recording to the screen or to delim-ited text file for subsequent analysis of fields and trajectories (right). Analysis can be done via SIMION user programming, in a program or language of your choice like Excel, and MATLAB ®.Features in SIMION 8.1 (and 8.2EA/beta)Poisson solver (Refine), fully Dielectric materials (Refine)Supplemental Documentation Integration with Lua/C, Excel, gnuplot, Origin,Large 64-bit array sizes up to 20billion points / 190 GB Improved curved surface handling (“surface enhancement”) gives order of magnitude field accuracy improvement Multicore Refines (8.1)Oblong, non-square grid cells.More AccurateMore Versatile CompatibilityNested refining techniquesSome permeability and mag-High quality 3D (OpenGL)graphics on View screen More examples and documentation New GUI dialog library New programming API’s:。

Dynamic Light Scattering 简介

Dynamic Light Scattering 简介

生化儀器分析: Dynamic light scattering另稱: Quasielastic light scattering spectroscopy (QELSS), photon correlation spectroscopy (PCS), or (dynamic) light scattering (DLS) 目的: 利用生化分子在溶液中對光折(散)射的物理性質,來測定生化分子的物理性質。

實驗方法特點: (1) 非破壞性測量 (2) 實驗的樣品包括 macromolecules, protein, polysaccharides, synthetic polymers, colloidal particles and aggregates, micells and microemulsions. (3) estimate size (molecular weight) of macromolecules in solution (mono-disperse case) (4) 實驗時間:5-30 mins,particle size: 5nm-50µm (3) Estimate the width of molecular weight distributions. (poly-disperse case) (4) 測量 translational diffusion coefficient of macromolecules in solution. 樣品體積可以小到 12 mL, 而樣品可以回收或是連續 式測量。

DLS的原理DLS的全名為dynamic light scattering,由於所測定分子在溶液中不是固定不變的,所 以測量的結果是所有分子在溶液中的集體平均效果,因此稱之為dynamic。

而分子在 溶液中的特性是以光照的方式,不同形狀及大小的分子對入射光都會有不同的折射 (或diffraction)效果來評估,因此稱之為dynamic light scattering(簡稱之DLS)。

3D打印用双酚A型环氧丙烯酸光敏树脂的制备

3D打印用双酚A型环氧丙烯酸光敏树脂的制备

CHINA SYNTHETIC RESIN AND PLASTICS 研究与开发合 成 树 脂 及 塑 料 , 2018, 35(4): 34三维(3D)打印是一种增材制造技术,采用可黏合材料,通过逐层打印成型的方式来构造立体物体的现代技术[1]。

3D打印依据其成型的方式不同可分为光固化快速成型(SLA)、数字光处理、3D喷墨打印3种成型方式[2-4]。

其中,SLA技术又称为立体光刻技术或立体光固化[5-7]。

光敏树脂作为SLA 技术的主要原料,由预聚物、稀释剂、光引发剂等主要成分及其他助剂组成[8]。

双酚A型环氧丙烯酸酯具有光固化速率快、耐化学药品腐蚀、层间黏结性能好、硬度高等优点,常被用来作为光敏树脂的低聚物基体[9]。

本工作以双酚A型环氧树脂、丙烯酸为单体合成了双酚A型环氧丙烯酸酯低聚物,然后以双酚A型环氧丙烯酸酯作为光敏树脂的低聚物基体,二苯甲酮(BP)为光引发剂,二溴新戊基二醇乙烯丙基醚(DDPE)为稀释剂,SiO2为填料,制备了用于3D打印的双酚A型环氧丙烯酸酯光敏树脂,并探讨了各组分的最佳用量。

3D打印用双酚A型环氧丙烯酸光敏树脂的制备王 鹤(河南工程学院,河南省郑州市 451191)摘要:以双酚A型环氧树脂、丙烯酸为单体,采用自由基溶液聚合法合成了双酚A型环氧丙烯酸酯低聚物。

采用双酚A型环氧丙烯酸酯为光敏树脂低聚物基体,二苯甲酮为光引发剂,二溴新戊基二醇乙烯丙基醚为活性稀释剂,二氧化硅为填料,制备了三维打印用双酚A型环氧丙烯酸酯光敏树脂。

通过测试光敏树脂的固化时间、黏度、固化收缩率和力学性能,研究了光敏树脂各组分的最佳用量。

结果表明:当光引发剂质量分数为8%,稀释剂质量分数为20%,填料质量分数为1.0%时,光敏树脂拉伸强度为15.6 MPa,耐热温度为263.4 ℃。

关键词:三维打印 双酚A型环氧树脂 环氧丙烯酸 光敏树脂中图分类号:TQ 317;TP 391文献标识码: B 文章编号:1002-1396(2018)04-0034-04Preparation of bisphenol A epoxy acrylate photosensitiveresin for 3D printingWang He(Henan University of Engineering,Zhengzhou 451191)Abstract:The bisphenol A epoxy acrylate prepolymer was synthesized via free radical solution polymerization with bisphenol A epoxy resin and acrylic acid as the main monomers. Bisphenol A epoxy acrylate resin was used as the oligomer matrix of photosensitive resin,benzophenone as photoinitiator,dibromo neopentyl glycol ethylene propyl ether as active diluents and silica as filler to prepare the photosensitive resin for three dimensional printing. The optimum proportion of the components in the photosensitive resin was investigated by testing the curing time,viscosity,curing shrinkage and mechanical properties of the resin. The results show that the tensile strength of the photosensitive resin is 15.6 MPa and the melting temperature reaches 263.4 ℃ when the mass fraction of the photoinitiator,diluent and filler are 8%,20%,1% respectively.Keywords:three dimensional printing; bisphenol A epoxy resin; epoxy acrylate; photosensitive resin收稿日期:2018-03-06;修回日期:2018-05-16。

Particle-Imaging Techniques For Experimental Fluid Mechanics

Particle-Imaging Techniques For Experimental Fluid Mechanics
Pulsed Light Velocimetry PLV
I
Speckle Patterns
Particulate Markers
(N.»l)
I I
LSV
Particle Images
I
I I
I
I II
I
Fluorescent
Molecular Markers
Photochromic
I
I
I
I
(N.«l)
Particle-Image Velocimetry
A technique that uses particles and their images falls into the category commonly known as particle-image ve/ocimetry, or PI V, which is the principal subject of this article. Before comparing the characteristics of PIV with the other methods displayed in Figure I, it is helpful to examine
PIV
I
NI» l
High Image Density PIV
Low Image Density PlY PlY
NI«l
Figure 1
Particle-image velocimetry and other forms of pulsed-light velocimetry.
PARTICLE-IMAGING TECHNIQUES
where ilx is the displacement of a marker, located at x at time t, over a short time interval Llt separating observations of the marker images. The particles are usually solids in gases or liquids but can also be gaseous bubbles in liquids or liquid droplets in gases or immiscible liquids. Other types of markers include (a) patches of molecules that are activated by laser beams, causing them either to fluoresce (Gharib et al 1985), or to change their optical density by photochromic chemical reactions (Popovich & Hummel 1967, Ricka 1987), and (b) speckle patterns caused by illumi­ nating groups of particles with coherent light. Regardless of the marker type, locations at various instants are recorded optically by pulses of light that freeze the marker images on an optical recording medium such as a photographic film, a video array detector, or a holographic film. Since these methods share many similarities, it is useful to group them under the single topic of pulsed-light velocimetry, or PLV. The various P LV techniques are organized in Figure I.

YiyingWu(吴屹影):以武(吴屹影)

YiyingWu(吴屹影):以武(吴屹影)

Yiying Wu (吴屹影)The Ohio State University Phone: (614) 247-7810 Department of Chemistry Fax: (614)-292-1685 100 W 18th Avenue E-mail:***********************.edu Columbus, OH 43210EDUCATION:Dec. 2002 Ph.D. in Chemistry, University of California at Berkeley.Advisor: Prof. Peidong Yang.June. 1998 B.S. in chemical physics, University of Science and Technology of China.EMPLOYMENT:2005-present Assistant Professor, Chemistry Department, The Ohio StateUniversity. Interest: nanostructured functional materials.2003-2005 Postdoctoral Researcher, University of California at Santa Barbara, Department of Chemistry and Biochemistry, Advisor: Prof. Galen D.Stucky.HONORS:2010 NSF-CAREER Award2008 Cottrell Scholar Award, Research Corporation2001 MRS Graduate Student Silver Award, Boston.2001-2002Cal@Silicon Valley Fellowship, University of California at Berkeley. PROFESSIONAL MEMBERSHIPS:2001 American Chemical Society2001 Materials Research SocietyPUBLICATION LIST:u=undergraduate, g=graduate student, p=postdoc, s=senior personnel, *=corresponding author45. Y. Li g, G. Natu g, Y. Wu*. “LiFePO4/Graphene Composite as the CathodeMaterial for High-Power Lithium Ion Batteries” submitted to Nano Letters(2010).44. P. Hasin g, M. A. Alpuche-Aviles p, Y. Wu*.“Electrocatalytic activity ofgraphene multilayers towards I-/I3-: effect of preparation conditions andpolyelectrolyte modification” submitted to J. Physical Chemistry C (2010).43. G. Natu g, Y. Wu*. “Photoelectrochemical Study of the Ilmenite Polymorph ofCdSnO3 and its Photoanodic Application in Dye-Sensitized Solar Cells” J.Physical Chemistry C, accepted (2010).42. Y. Li g, P. Hasin g, Y. Wu*. “Ni x Co3-x O4 Nanowire Arrays for ElectrocatalyticOxygen Evolution”, Advanced Materials, accepted (2010).41. J. Baxter s, G. Chen s, D. Daniielson s, M. S. Dresselhaus s*, A. G. Fedorov s*, T. S.Fisher s, C. W. Jones s, E. Maginn s, U. Kortshagen s, A. Manthiram s, A. Nozik s, D.Rolison s, T. Sands s, L. Shi s*, D. Sholl s, Y. Wu s. “Nanoscale Design to Enablethe Revolution in Renewable Energy”, Energy & Environmental Science. 2(6), 559 (2009)40. Y. Li g, Y. Wu*. “Coassembly of Graphene Oxide and Nanowires for Large-Area Nanowire Alignment”, J. Am. Chem. Soc.131(16) 5851-5857 (2009).39. M. A. Alpuche-Aviles p, Y. Wu*. “Photoelectrochemical Study of the Bandstructure of Zn2SnO4Prepared by the Hydrothermal method”, J. Am. Chem.Soc.131(9) 3216-3224 (2009).38. P. Hasin g, M. A. Alpuche-Aviles p, Y. Li g, Y. Wu*. “Mesoporous Nb-dopedTiO2 as Pt Support for Counter Electrode in Dye-Sensitized Solar Cells”, J.Phys. Chem. C. 113(17) 7456-7460 (2009).37. Y. Li g, Y. Wu*. “Formation of Na0.44MnO2 nanowires via stress-inducedsplitting of birnessite nanosheets”,Nano Research, 2(1): 54-60 (2009). 36. Y. Li g, B. Tan p, Y. Wu*. "Mesoporous Co3O4 Nanowire Arrays for LithiumIon Batteries with High Capacity and Rate Capacity", Nano Letters, 8:265-270 (2008).35. Y. Li g, B. Tan p, Y. Wu*. "Ammonia-Evaporation-Induced Synthetic Methodfor Metal (Cu, Zn, Cd, Ni) Hydroxide/Oxide Nanostructures", Chem.Mater.20: 567-576 (2008).34. B. Tan p, E. Toman u, Y. Li g, Y. Wu*, "Zinc Stannate (Zn2SnO4) Dye-SensitizedSolar Cells", J. Am. Chem. Soc. 129(14), 4162 (2007).33. Y. Li g, B. Tan p, Y. Wu*, "Freestanding mesoporous quasi-single-crystallineCo3O4 nanowire arrays", J. Am. Chem. Soc. 128(44), 14258-14259 (2006)(highlighted by Nature Nanotech. (Oct. 2006)).32. B. Tan p, Y. Wu*, “Dye-Sensitized Solar Cells Based on Anatase TiO2Nanoparticle/Nanowire Composites”, J. Phys. Chem. B110: 15932-15938(2006).(Postdoc work)31. A. Thomas, M. Schierhorn, Y. Wu, G. Stucky, “Assembly of SphericalMicelles in 2D Physical Confinements and Their Replication intoMesoporous Silica Nanorods”, J. Mater. Chem. 17: 4558-4562 (2007). 30. M. Moskovits, D.H. Jeong, T. Livneh, Y.Y. Wu, G.D. Stucky, "Engineeringnanostructures for single-molecule surface-enhanced Raman spectroscopy", Isreal Journal. of Chemistry, 46: 283-291 (2006).29. Y. Zhang , J. Christofferson, A. Shakouri, D. Li, A. Majumdar, Y. Wu, R. Fan,P. Yang, “Characterization of heat transfer along Si Nanowire”, IEEETransactions on Nanotechnology, 5, 67 (2006).28.J. F. Wang, C.-K. Tsung, R. C. Hayward, Y. Wu, G. D. Stuck. “Single-crystal mesoporous silica ribbons”, Angew. Chem. Int. Ed.44: 332-336 (2005).27.Y. Wu, G. S. Cheng, K. Katsov, S. W. Sides, J. F. Wang, J. Tang, G. H.Fredrickson, M. Moskovits, G. D. Stucky, “Composite mesostructures bynano-confinement”, Nature Materials3, 816-822 (2004). (Highlighted byScience306, 943 (2004)).26.Y. Wu, T. Livneh, Y. X. Zhang, G. S. Cheng, J. F. Wang, J. Tang, M.Moskovits, G. D. Stucky, “Templat ed synthesis of highly orderedmesostructured nanowires and nanowire array”, Nano Letters 4, 2337(2004) (cover story).25.J. F. Wang, C.-K. Tsung, W. B. Hong, Y. Wu, J. Tang, G. D. Stucky,"Synthesis of mesoporous silica nanofibers with controlled porearchitectures", Chem. Mater. 16, 5169 (2004).24.J. Tang, Y. Wu, E. W. McFarland, G. D. Stucky, “Synthesis andphotocatalytic properties of highly crystalline and ordered mesoporousTiO2 thin films”, Chem. Comm. (14), 1670-1671 (2004).(Graduate work)23.A. R. Abramson, W. C. Kim, S. T. Huxtable, H. Q. Yan, Y. Wu, A. Majumdar,C.-K. Tien, P.D. Yang, "Fabrication and characterization of ananowire/polymer-based nanocomposite for a prototype thermoelectricdevice", Journal of Microelectromechanical Systems, 13(3), 505 (2004).).22.D. Y. Li, Y. Wu, R. Fan, P. D. Yang, A. Majumdar, “Thermal conductivity ofSi/SiGe longitudinal heterostructure nanowires” Appl. Phys. Lett. 83(15),3186 (2003).21.D. Y. Li, Y. Wu, P. Kim, L. Shi, N. Mingo, Y. Liu, P. D. Yang, A. Majumdar,“Thermal conductivity of individual silicon nanowires” Appl Phys. Lett.83(14), 2934 (2003).20.R. Fan, Y. Wu, D. Y. Li, M. Yue, A. Majundar, P. D. Yang, “Fabrication ofSilica Nanotube Arrays from Vertical Silicon Nanowire Templates”, J. Am.Chem. Soc.125(18), 5254-5255 (2003).19.Y. N. Xia, P. D. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim,H. Yan, “One-dimensional Nanostructures: Synthesis, Characterization, andApplications”, Adv. Mater. 15(5), 353-389 (2003).18.Y. Wu, R. Fan, P. D. Yang, "Block-by-block growth of single-crystallineSi/SiGe superlattice nanowires", Nano letters, 2, 83 (2002).17.Y. Wu, H. Yan, M. Huang, B. Messer, J. Song, P. D. Yang, “Inoragnicsemiconductor nanowires: rational growth, assemblies and novel properties”, Chemistry, Euro. J., 8, 1260 (2002).16.Y. Wu, H. Yan, P. D. Yang, "Semiconductor nanowire array: potentialsubstrates for photocatalysis and photovoltaics", Topics in Catalysis, 19(2), 197 (2002).15.B. Gates, B. Mayers, Y. Wu, Y. Sun, B. Cattle, P. D. Yang, Y. N. Xia,“Synthesis and characterization of crystalline Ag2Se nanowires through atemplate-engaged reaction at room temperature”, Adv. Func. Mater. 12(10), 679-686 (2002).14.P. D. Yang, Y. Wu, R. Fan, “Inorganic semiconductor nanowires”,International Journal of Nanoscience,1(1), 1-39 (2002).13.B. Zheng, Y. Wu, P. D. Yang, J. Liu, “Synthesis of ultra-long and highly-oriented silicon oxide nanowires from alloy liquid”, Adv. Mater. 14, 122(2002).12.Y. Wu, P. D. Yang, “Direct observation of vapor-liquid-solid nanowiregrowth”, J. Am. Chem. Soc. 123, 3165 (2001).11.Y. Wu, B. Messer, P. D. Yang, "Superconducting MgB2 nanowires", Adv.Mater.13, 1487 (2001).10.Y. Wu, P. D. Yang, “Melting and welding semiconductor nanowires innanotubes”, Adv. Mater. 13, 520 (2001).9.M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, "Room-temperature ultraviolet nanowire nanolasers", Science,292, 1897 (2001).8.M. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. D. Yang, “Catalytic growthof zinc oxide nanowi res through vapor transport”, Adv. Mater. 13(2), 113(2001).7.J. Song, Y. Wu, B. Messer, H. Kind, P. D. Yang, "Metal nanowire formationusing Mo3Se3- as reducing and sacrificing templates", J. Am. Chem. Soc.123, 10397 (2001).6. B. Gates, Y. Wu, Y. Yin, P. D. Yang, Y. D. Xia, “Single-crystalline nanowiresof Ag2Se can be synthesized by templating against nanowires of trigonalSe”, J. Am. Chem. Soc. 123, 11500 (2001).5.J. Song, B. Messer, Y. Wu, H. Kind P. D. Yang, "MMo3Se3 (M=Li+, Na+, Rb+,Cs+, NMe4+) nanowire formation via cation exchange in organic solution",J. Am. Chem. Soc. 123, 9714 (2001).4.Y. Li, J. Wang, Z. Deng, Y. Wu, X. Sun, S. Fan, D. Yu, P. D. Yang, “Bismuthnanotubes: a rational low-temperature synthetic route”, J. Am. Chem. Soc.123, 9904 (2001).3.Y. Wu, P. D. Yang, “Germanium/carbon core-sheath nanostructures”, Appl.Phys. Lett. 77, 43 (2000).2.Y. Wu, P. D. Yang, “Germanium nanowire growth via simple vapor transport”,Chem. Mater. 12, 605 (2000).1. B. Messer, J. H. Song, M. Huang, Y. Wu, F. Ki m, P. Yang, “Surfactantinduced mesoscopic assemblies of inorganic molecular chains”, Adv.Mater. 12, 1526 (2000).GRANTS and AW ARDS:9/07-8/10 Department of Energy, “Designing nanoparticle/nanowire composites and "nanotree" arrays as electrodes for efficient dye-sensitized solarcells”, $750,000 total9/06-9/08 Petroleum Research Fund PRF-43833, “Functional nanocrystal-nanowire composite materials: synthesis and electron transportproperties”, $35,000 total.7/08- Research Co rporation (Cottrell Scholar Award), “Searching for New Electrode Materials and Nanostructured Architectures for EfficientDye-Sensitized Solar Cells”; $100,000 total.2/10-2/15 NSF-CAREER, “Black Cobalt Oxide Nanowire Arrays: Synthesis, Properties, and Ene rgy Applications”; $575,000 totalINVITED PRESENTATIONS:Conferences/Workshops/Symposia16. FACCS conference, Lousville, KY, October 19, 2009.15. IMR Materials Week, Ohio State Unversity, August 31 – September 3, 2009.14. North American Solid State Conference, Ohio State University, June 17-20,2009.13. Central Regional Meeting of the American Chemical Society, Cleveland, May20-23, 2009.12. Materials Research Society meeting, San Francisco, April 13-17, 2009.11. Indo-US Workshop on nanoscale materials and interfaces, Purdue University,10-12 March 2009.10. Nanoparticles in Energy Applications Workshop, Argonne National Lab, Feb.23, 2009.9. ASME Heat transfer, Fluids, Energy Sustainability and Nanotechnology,Jacksonville, FL, Aug. 12, 20088. Central Regional Meeting of American Chemical Society, Columbus, OH,June 13, 20087. 35th Annual Spring Symposium, Michigan Chapter of the American VacuumSociety, Toledo, Oh, May 28, 20086. Wright Center PVIC Semi Annual meeting, Columbus, OH, April 17, 2008 5. 235th ACS National Meeting, New Orleans, LA, April 9, 20084. SPIE Optics East, Boston, MA, Sept. 9-12, 20073. Advanced Materials Workshop, Dalian, China, June 23-24, 20072. 223rd ACS national meeting, Chicago, IL, March 25-28, 20071. 41st ACS Midwest Regional Meeting, Quincy, IL, Oct. 25-27, 2006 Universities/Colleges13. IUPUI, Department of Mechanical Engineering, February 4, 2010.12. UC Davis, Department of Chemistry, January 5, 2010.11. University of Michigan, Department of Chemistry, October 30, 2009.10. Penn State University, Department of Chemistry &MRSEC, October 5, 2009.9. Purdue University, Department of Chemistry, September 16, 2009.8. The Ohio State University, ENCOMM, February 13, 20097. The Ohio State University, Department of Chemistry, January 14, 2009 (4th-year review).6. Indiana University, Department of Chemistry, April 22, 2008.5. Miami University, Department of Chemistry and Biochemistry, February 7,2008.4. Ohio University, Condensed matter and surface science seminar, May 17,2007.3. OSU, Department of Materials Science and Engineering, April 6, 2007.2. OSU, Department of Biomedical Engineering, February 2007.1. Kent State University, Department of Chemistry, September 22, 2005. PATENTS:4. “Graphene Compo sites as the Cathode Material of High-Power Lithium IonBatteries”, U.S. provisional patent, OSU1159-288A (2010).3. “Fluidic Nanotubes and Devices”, Patent No. US 7,355,216 B2 (April 8, 2008) 2. “Sacrificial Template Method of Fabricating a Nanotube”, Pa tent No.: US7,211,143 B2 (May 1, 2007).1. “Methods of fabricating nanostructures and nanowires and devices fabricatedtherefrom”, Patent N0.: WO02080280 (2002).LAB PERSONNEL:Present:Postdoctoral Associates:Dr. Dan Wang (May 2009-present)Graduate Students:Yanguang Li (5th year, Ph.D candidate); Panitat Hasin (3nd year); Gayatri Natu (3nd year); Ishika Sinha (3nd year); Tushar Kabre (2st year);。

纳米学基本理论

纳米学基本理论

对于含有少量传导电子的纳米金属颗粒来说,低温 下能级的离散性会凸现出来。
热激发 kBT波及 范围
热运动能
能级间隔 ~kBT
自由电子气能量示意图
****
• §4.1 电子能级的不连续性
• 纳米粒子体积极小,所包含的原子数很少。许多 现象不能用通常有无限个原子的块状物质的性质 加以说明,这种特殊的现象通常称之为体积效应。
• 主要英文词汇
• Kubo Theory, Quantum confinement effect, Quantum tunneling effect, dielectric confinement effect, Coulomb Blockade Effect
前言:原子与固体的电子性质
• 1. 孤立原子 • 原子结构是电子波粒二象性的直接结果,
子都是十分困难的。他提出:
kBTWed2
• W为从一个超微粒子取出或放入一个电子克服库仑力所做 的功,d为超微粒直径,e为电子电荷。
• 对 于 氢 原 子 , r=0.053nm,W=13.6eV; 外 推 法 r=5.3nm, W=0.13eV;室温下,kBT=0.025eV.
• 由此式表明,随d值下降,W增加,低温下热涨落 很难改变超微粒子电中性。
• 最后整个体系的能量降低,形成氢分子。
• 如果N个原子集聚形成晶体,则孤立原子的一 个能级将分裂成N个能级。
• 而能级分裂的宽度∆E决定于原子间的距离; • 在晶体中原子间的距离是一定的,所以∆E与原
子数N无关。
• 这种能级分裂的宽度决定于两个原子中原来能 级的分布情况,以及二者波函数的重叠程度, 即两个原子中心的距离。
• 为了解决理论和实验相脱离的困难,久保对小颗 粒大集合体的电子能态做了两点主要假设:

适用于瞬态条件的多通道序列前光成像系统设计

适用于瞬态条件的多通道序列前光成像系统设计

第 32 卷第 4 期2024 年 2 月Vol.32 No.4Feb. 2024光学精密工程Optics and Precision Engineering适用于瞬态条件的多通道序列前光成像系统设计张战飞1,黄洁2,宋强2*,封斐1,丁建文2(1.中国科学院西安光学精密机械研究所,陕西西安 710119;2.中国空气动力研究与发展中心超高速所,四川绵阳 621000)摘要:为满足在瞬态条件、不同物距下获得稳定高质量序列图像的成像需求,设计了四通道序列前光高速成像系统。

系统采用像空间平行分光,以成像原理为出发点,对系统的设计关键进行分析。

以理论计算参数为设计依据进行分镜组(物镜组、场镜及准直镜租、汇聚镜组)设计并分别进行像差独立校正,加入场镜减小系统体积和重量,提升光能利用率,通过视场和光瞳的准确衔接提高光束的传输效果,在此基础上对分镜组进行整合优化,加入分光器件形成最终的四通道序列前光成像系统。

设计物距可调光路,使用中通过调节物镜组手轮保证系统在0.5 m~∞物距下的成像质量,同时保持一次像面位置不变,增强系统性能稳定性的同时降低了装调难度。

系统可根据实际需要对接收端进行更换,且在分光区域加入分光器件后可拓展至八通道系统。

利用装调后的序列前光成像系统进行实验室检测和现场试验,其主要光学性能良好,各通道实测分辨率可达到72 lp/mm,成像一致性大于98%。

现场试验结果表明,该光学系统可满足瞬态条件下序列图像的拍摄要求。

关键词:序列前光成像;多通道;光学设计;镜组衔接;一致性中图分类号:TH74 文献标识码:A doi:10.37188/OPE.20243204.0478Design of multi-channel sequential front light imaging system fortransient conditionZHANG Zhanfei1,HUANG Jie2,SONG Qiang2*,FENG Fei1,DING Jianwen2(1.Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences,Xi′an 710119, China;2.China Aerodynamic Research and Developmnet Center Super High Speed institute,Mianyang 621000, China)* Corresponding author, E-mail:10477222@qq. comAbstract: In order to obtain stable and high-quality sequential images under transient condition and differ⁃ent object distances, a four-channel sequential front light high-speed imaging system was designed. The system used image space parallel light splitting, taking the imaging principle as the starting point to analyze the key design elements of system. Based on the theoretical calculation parameters, the sub-lens groups (objective lens group, field mirror and collimating lens group, converging lens group) was designed and ab⁃errations were independently corrected. Adding field mirror to reduce the size and weight of system and im⁃prove light energy utilization. The transmission effect of beam was improved by accurate connection of 文章编号1004-924X(2024)04-0478-12收稿日期:2023-07-04;修订日期:2023-08-10.基金项目:中国科学院战略性先导科技专项(A类)(No.XDA22030201)第 4 期张战飞,等:适用于瞬态条件的多通道序列前光成像系统设计field of view and pupil. On this basis, the sub lens groups were integrated and optimized, and beam split⁃ters were added to form the final four-channel sequential front light imaging system. The object distance ad⁃justable optical path was designed, and the image quality of system at the object distance of 0.5 m~∞ was guaranteed by adjusting the handwheel of objective lens group in use, while keeping the position of primary image plane unchanged, enhancing the stability of system performance stability and reducing the difficulty of installation and adjustment. The receiving part of system can be replaced according to actual needs, and the system can be expanded to eight-channel system after adding splitters in the beam splitting region. The installed and adjusted sequential front-light imaging system is used for laboratory testing and field tests, and main optical performance is good. the resolution of each channel can reach 72 lp/mm, and imaging con⁃sistency is greater than 98%. Field test results show that the optical system can meet the requirements for shooting sequence images under transient condition.Key words: sequential front light imaging; multi-channel; optical design; lens group connection; consistency1 引言序列前光成像,顾名思义就是对物体的光照面进行序列成像,可应用于瞬态条件的高速拍摄。

光电英语词汇(D2)_科技英语词汇

光电英语词汇(D2)_科技英语词汇

diluted colour 非饱和diluted hydrofluoric acid 稀氢氟酸diluted mineral acid 稀无机酸dilution (1)稀释,冲淡(2)稀释度dim 模糊的,暗淡的dim light 微光,弱光dim lisht color photo 微光彩色摄影dimension (1)尺寸(2)量钢(3)维,度dimension limit 尺寸极限dimension scale 尺寸比例尺dimensional analysis 量钢分析dimensional equation 量纲方程dimensional metrology 尺寸测量术dimensional stability 尺寸稳定性dimensionless (1)无量钢的(2)无维的,无度的dimensionless wave number 无量纲波数dimer 二元物;二聚物;双合体dimer laser 双原子激光器,二聚物激光器dimethylsulfoxide 二甲基亚碤diminisher (1)减光器(2)减声器diminsished image 缩小像dimmer (1)遮光器(2)光度调整器dimple (1)波纹(2)表面微凹din color system 德国工业标准彩色系统din spend 德国工业标准感光度diode 二极管diode demodulator 二极管解调器diode image converter 二极管变像器,二极管光电图像变换器diode image tube 二极管摄像管diode laser 二极管激光器diode pump solide-state laser (dpssl)二极体激发式固态雷射diode pumping 二极管抽运diode-array target tv-camera tube 二极管阵列靶电视摄像管diode-pumped miniature solid-stat laser 二极管抽运微型固体激光器diode-triode 二极-三极复合管dioe matrix 二极管矩阵diople-quadrupole interaction 偶极-四极相互作用diopside 透辉石diopter (1)折光度,屈光度(2)瞄准器,照准仪diopter lens 折光透镜,屈光透镜diopter scale 折光标,屈光标diopter sight 折光瞄准具,屈光瞄准具dioptometer 折光度计,屈光度计dioptoscopy 折光测量法dioptra 折光仪,屈光仪dioptre (=diopter)(1)折光度,屈光度(2)瞄准器,照准仪dioptri scale 折光标度,屈光标度dioptric adjkustment ring 折光度调环,屈光度调节环dioptric apparatus 折光仪,屈光仪dioptric glass 折光玻璃,屈光玻dioptric imaging 折射成像dioptric lens 折光透镜,屈光透镜dioptric power (1)折光度,屈光度(2)折光本领,屈光本领dioptric strength 折光度,屈光度dioptric substances 折光材料,屈光材料dioptric system 折光系统,屈光系统dioptric tester 折光度计,屈光度计dioptrical 折光的,屈光的dioptrics 折射光学,屈学dioptrometer 折光度计,屈光度计dioptry 折光度,屈光度dioter ring 折光度调节环,屈光度调节环dioxide 二氧化物dip (1)麻点(2)倾斜度(3)倾角dip circle 磁倾仪dip compass 倾斜测量仪diphase 双相,二相diphenylene naphthalene 联二亚本基奈diploe moment 偶极子矩diploid (1)扁方二十四面体(2)二重的,倍数的diplopia (diplopy)(1)复视(2)双像dipmeter 倾斜测量仪dipolar polarizability 偶极子极化率dipolarity 偶极性dipole (1)二极(2)偶极子dipole absorption 偶极子吸收dipole antenna 偶极天线dipole prolarization 偶极子极化dipole radiation pattern 偶极辐射图样dipole source 偶极子源dipole-dipole broadening 偶极-偶极展宽dipole-quadrupole effecty 偶极-四极效应dipping polish 浸渍抛光dipping refractometer 浸式折射计dipvergence (1)双目垂直角差(2)高低发散差dirac comb function 狄喇克梳状函数dirac delta function 狄喇克函数dirac matrices 狄喇克矩阵dirac-electron wave 狄喇克电子波dirct nuclear pumping 直接核抽运direct calibration 直接校准direct comparison method of measurement 直接比较测量法direct current (d.c)直流电direct current motor 直流电动机direct curretn shumt motor 直流分激电动机direct detection 直接探测direct digital controller (ddc)直接数字控制仪direct duplicating film 真接拷贝direct glare 直照闪光direct indexing 直接分度法direct inlet system 直接输入系统direct insertion probe 直插式探针direct light 直射光direct lighting 直接照明direct measurement 直接测量direct method 直接法direct method of measurement 直接测量法direct modulation 直接调制direct nuclear pumped laser 直接核抽运激光器direct proportaion 正比例direct reading 直接读数,直接读出direct reading mether 直读计direct reading spectrometer 直读分光计direct reflection 直读反射direct transmission 正透射,定向透射direct transmission factor 定向透射系数direct view thermal image tube 直射视式热摄像管direct vision finder 直视取景器direct vision prism 直视棱镜direct vision prisms 直视棱镜direct vision spectroscope 直视分光镜direct wave 直达波direct-detection receiver 直探测接收机direct-fire elbow telescope 指束射击望远刽direct-fire etelescope 指挥射击望远镜direct-indirect transition 直接-间接跃迁direct-positive photographic material 直接正摄材料direct-radio spectrophotometer 正比分光光度计direct-vision spectrograph 直视抏谱仪directed beam 定向光束directed ray 定向射线directing point 基准点direction (1)方向(2)方位direction cosine 方向余弦direction finder (1)探向器(2)无线电罗盘direction fluctuation 方向起伏directiona diffuseness 定向漫射directional antenna 定向天线directional coupler 定向耦合器directional emissivity 定向发射率directional emittance 定向发射度directional focusing 指向聚焦directional reflectance 定向反射比directionality (1)方向性(2)定向性directionality effect 定向效应directionless 无方向的directivity (1)方向性(2)定向性,指向性directon theodolite 方向经纬仪director 导向器,指挥仪director telescope 导向望远镜directrix 准线direichlet series 狄利克雷级数diretpath 直接路径dirivig member 传动构件,主动构件diriving infrared binoculars 夜行车用红外双筒望远镜dirt 污物,灰尘dirt optics 不洁光学装置dirt spot 污点disability glare 致残闪光disalignment (1)失中(2)失调disappearing-filament optical pyrometer 隐丝光学高温计disc (1)盘,圆盘(2)磁盘(3)研磨盘(4)斑disc cam 盘形凸轮disc laser 圆盘形激光器disc of confusion 弥散斑disc storage 磁盘存储器disc type shutter 圆盘快门discerning method 分辨法,鉴别法discernment (1)分辨(2)分辨力discharge (1)释放(2)放电discharge chamber 放电室discharge current noise 放电流噪声discharge excited 放电激发的discharge tube 放电管discharger (1)放电器(2)火花隙discoloration 褪色,去色disconnection 分开,断开,断路discontinuity (1)不连续性(2)突变性(3)突变点discontinuous wave 非连续波discrete (1)分立的(2)离散的discrete channel 离散信道discrete component 分立元件discrete distribution 离散分布discrete energy state 分立能态discrete fourier transform 离散傅里叶变换discrete maximum principle 离散最大值原理discrete message 离散信息discrete mode spectrum 离散模谱discrete picture 离散图像discrete random process 离散随权过程discrete signal 离散信号discrete source 离散信源discrete spectrum 离散谱discrete value 分立值discrete-carrier hologram 离散载体全息图discretely tunable infrared laser 不连续可调红外激光器discreteness (1)分位性(2)离散性discriminablility (1)鉴别力(2)鉴频能力discriminant 判别式discrimination error 鉴别误差discrimination of brightness 亮度鉴别discrimination threshold 鉴别阈discriminator (1)鉴别器(2)鉴频器disdropmeter 示滴仪dish (1)盘(2)盘状物dish aerials 盘式天线disilicon trioxide 三氧化二硅disintegration 蜕变disintegratoor 粉碎机disk (=disc)(1)盘,圆盘(2)磁盘(3)研磨盘(4)斑disk-annulus pattern 圆环状图样dislocation (1)位移(2)位错dislocation density 位错密度dislocation theory 位错理论dislocation-free 无位错disorder 无序,不规则disordered thin film 无序薄膜disorientation 乱取向dispersing prism 色散棱镜dispersing reflector 色散反射器dispersing resonator 色散共振腔dispersing spectromodulator 色散光谱调制器dispersing-type spectroradiometer 色散型光谱辐射计dispersion (1)色散,频散(2)弥散dispersion angle 色散角dispersion conefficient 色散系数dispersion curve 色散曲线dispersion electron 致色散电子dispersion force 弥散力dispersion gradient 色散陡度dispersion law (1)色散律(2)离散定的dispersion line 色散谱线dispersion spectrum 色散光谱dispersion-shifted fiber 色散位移光纤dispersionless 无色散的dispersity (1)色散度(2)弥散度dispersive 色散的dispersive delay line 色散延迟线dispersive laser cavity 色激光共振腔dispersive medium 色散媒质dispersive modulator 色调制器dispersive optical maser 色散光学微波激射器dispersive optical system 色散光学系统dispersive power (1)色散本顉(2)色散率dispersive pspectrometer 色散分光计dispersiveness 分散性dispersoid 弥散体dispersor 色散器displacement (1)位移(2)排出量displacement bar 偏移指示器displacement current 位移电流displacement graticule 位移分划板displacement target 位移目标display 显示,指示,显像display device 显示装置,显像装置display file 显示文件display lamp 指示灯display optical film 显示器用光学膜display panel 显示板display-storage ballast 显示存储管display-storage tube 显示存储管disposition (1)配置,布置,安排(2)倾向disproportion (1)不均衡,不相称(2)不成比例disruption (1)破坏,破裂(2)击穿dissceting microscope 解剖显微镜disscetor 析像管dissection (1)解剖(2)分析dissection image tube 析像管dissemination (1)弥散(2)散逸,扩散(3)散射dissipation (1)耗散,消耗,散逸(2)弥散,散射dissipation loss 耗散损失,散射损失dissipation region (1)耗散区域,弥散区域(2)散射范围dissociation 离解,分解dissociative excitation 离解激发dissolubility 溶解度dissolution 溶解dissolve (1)溶(2)图像渐隐dissolvent 溶剂dissolver 溶解装置,溶解器disstortion-meter 畸变计dissymmetric 不对称的dissymmetry factor 不对称因子distance (1)距离(2)远距离distance cathode 远距阴极distance control 遥控distance of distinct vision 明视距离distance scale 距离尺标distance-lens 远视透镜distance-measuring theodolite 测距经纬仪distant control 遥控distant shot 远摄,远景distant view photograph 全景照片,远景照片distillatio (1)蒸馏(2)蒸镀distillation film 蒸镀薄膜distilled water 蒸馏水distinctness (1)差别(2)清晰度distinot vision 明晰视觉distometer 测距计distorition 畸变distorted lattice 畸变点阵distorted wave 畸变波distortion factor 畸变因数distortionless 无畸变的distortionless telephoto objective 无畸变远摄物镜distributed bragg reflector 分布布拉格反射器distributed circuit 分布电路distributed feedback 分布反馈distributed feedback laser 分布反馈激光器distributed paramp 分布参量放大器distributed-feedback dye laser 分布反馈染料激光器distributed-feedback semiconductor laser 分布反馈半导体激光器distribution (1)分配(2)分布(3)配电distribution board 配电盘distribution photometer 分布光度计distributor (1)配电盘(2)分配器distributor case (1)分配箱(2)配电箱distroted spectrum 畸变谱disturbace resolution 扰动分辨率,干扰分辨率disturbance (1)扰动,干扰(2)摄动dit 小沙眼ditance finder 测距计ditertragonal prism 复正方柱核镜ditertrahedron 双四面体ditetragon 双四边形ditrigon 双三角形ditrigonal prism 复三角柱棱镜diurnal variation 周日变化divalent 二价的divalent ion 二价离子diveded-circle 度盘仪器divergence (divergency)(1)散度(2)发散度(3)发散divergent (1)发散的(2)辐散的divergent beam 发散光束divergent lenses 发散透镜divergent mirror 发散镜divergent pencil of rays 发散光束divergent wave 发散波divergent-beam photography 发散光束摄影术divergent0meniscus lens 弯月形发散透镜diverging light 发散光diverging ocular 发散圆镜diverging wave 发散波diversion 转向,转换,转移diversity (1)相异性,多样性(2)分集diverter (1)分流器(2)分流电阻divided circle 圆度盘,刻度盘divided scale 被除数divided-circle instrument 分液显影dividend (1)分压器(2)除法器(3)双脚规,分线规divider 圆规,分规divider salipers (1)分度(2)分度法(3)除dividing 分度盘dividing dial 分度盘dividing disc 分度机,刻度机dividing engine 分度头dividing head 分度键dividing key 分度盘dividing plate 航差指示器,偏差计divieded development 分划尺,刻度尺diviometer (1)刻度(2)等分(3)除法division of amplitude 除数divison 分振辐法divisord 型镜头头dizao (1)重氮(2)重氮dizazo process 重氮照相法dlp digital light processing 数位光源处理器dmd digital micromirror device 数位微镜装置dmensionality 维度dobule-discharge technique 双放电技术document scanner 十二面体documentary film 纪录片摄影术documentary photography (1)文件扫描器(2)文件扫描程序dodechedron 遮光dodging dog (1)止块(2)小型制动机构dog clutch 抓形离合器dolly 摄影机移动车dolly on 推摄,近摄dolly out 拉摄,远摄dolomite glass 白云石玻离domain (1)畴(2)域domain of definiton 定义域domain of dependence 依赖域dome (1)圆顶盖,半球形(2)罩(3)玻面dome director 圆顶指示器dome nut 圆盖螺母dome reflector 穷面反射器dome slot 圆形糟,半球形缝dominant wave 主波dominant wvelenght 主波长domination 支配,控制donaldson colorimeter 唐纳森色度计donor 施主donor element 施主元素donor impurity 施主杂质donor impurity level 施主杂质能级donor molecule 施主分子donor site 施主能级donor-acceptor pair 施主-受主对donut (1)环形室(2)环形真空罩dopant 掺质,掺杂剂doped glass 掺杂玻璃doped single crystal 掺杂单品doping 掺杂doping accuracy 掺杂精度doping density 掺杂密度doping gradient 掺杂陡度doppler accuracy 多普勒精度doppler broadening 多普勒增宽,多普勒展宽doppler direction finder 多普勒效应定向仪doppler effect 多普勒效应定向仪doppler frequency 多普勒频率doppler half-width 多普勒半宽doppler line shape 多普勒线形doppler linewidth 多普勒线形doppler profile 多普勒剖面doppler q switching 多普勒q 开关doppler radar 多普勒雷达doppler shift 多普勒频移doppler spectrum 多普勒频谱doppler velocimeter 多普勒速度计doppler width 多普勒宽度doppler-broadened laser transition 多普勒展宽激光跃迁doppler-fizeau effect 多普勒-菲索效应doppler-free spectrocopy 无多普勒光谱学doppler-free two-photon spectroscopy 无多普勒双光子光谱学doppler-shifted reflection 多普勒频移反射doran 多普勒测距系统dorsal view 背视图dosage 剂量dose 剂量dose meter (dosimeter)剂量计dosimetry 剂量测定法dot beamsplitter 点式射束分离器,点式分束器dot formation 网点形成dot pattern 光点图,点图样dot product 点积dot raster character generator 点阵法字符产生器dot reproduction 网点再现dot-shaded line 点影线dotted line 虚线doubel image eyepiece 双像目镜doubel water glass 双料水玻璃doubel-gauss goniometer 双向测角仪doubel-gauss objective 双高斯型物镜doubel-resonance 双共振double anastigmat 消像散双镜组double beam interferometer 双光速干涉差double beam microspectrophotometer 双光束显微分光光度计double beam photometer 光束光度计double beam photometers 复光束光度计,复光束量测器double calcite plate 双方解石片double concave 双凹的double convex 双凸的double crucible 复式坩埚,双层坩埚double crystal spectrography 双晶摄谱仪double discharge initiated hf laser 双放电引发hf 激光器double doughunt laser 双圈激光器double eccentric connector 双偏心连托器double elliptical cavity 双椭圆共振腔double exposure device 两次曝光装置double exposure holographic interferometry 两次曝光全息干涉量度计,双曝光全息干涉法double exposure prevented device 防止重拍机构double extra dense flint 双超重火石玻璃double focusing 双聚焦double frequency 倍频,双频double half-wave filter 双半波滤光片double heecojunction laser 双异质结激光器double helical gear 人字齿轮double helical tooth 人字齿double image 双像double image micrometer 双像测微器double image ocular 双像目镜double image prism 双像棱镜double image range finder 双像测距仪double integral 二重积分double layer 双层double lens magnifier 双透镜放大镜double mirror 双面反射镜double pass planar dye laser amplifier 双程平面染料激光放大器double prism field glass 双棱镜望远镜double protractor 双斜量角器double pulse excitation 双脉冲激励double pulsing 双脉冲double quartz prism spectroradiometer 双石英棱镜光谱辐射计double reflection 双反射double refracting crystal 双折射晶体double refraction 双折射double samping inspetion plan 复式抽样检查方案double scattering 双散射double sided angle-reading system 双向读角系统double sighting error 二倍照准误仪double star 双星double stratum 双层double thread 双头螺纹double vernier 复游标double vision 双视double-beam densitometer 双光束密度计double-beam polarizer 双光束偏振器double-center theodolite 复合经纬仪double-crystal diffractometer 双晶衍射计double-crystal spectrometer 双晶分光计double-directional focusing 双向聚焦double-discharge stabilization 双放电稳定double-doped laser 双掺激光器double-dove scan prism 双道威扫描棱镜,立方扫描棱镜double-exposed hologram (1)两曝光全息图(2)两次曝光全息照片double-exposure holography 两次曝光全息术double-exposure inteferometry 两次曝光干涉法double-fine structure 双重线精细结构double-focus interferometer 双焦点干涉仪double-focusing mass spectrometer 双聚焦质谱仪double-folded astigmatically compensated optical cavity 双折光式像散光学共振腔double-gauss derivatives 双高斯型物镜变型double-gauss lenses 双高斯透镜double-heterostructure 双异质结构double-heterostructure injection laser 双异质结构注入式激光器double-humped 双峰double-humped wave 双峰波double-pass monochromator 双程单色器double-pass spectrometer 双程分光计double-pivoted type 双轴尖式double-pulsed flash lamp 双脉冲闪光灯double-pulsed time 双脉冲间隔double-purpose camera 两用照相机double-slit interferometer 双缝干涉仪double-threaded screw 双头螺旋double-thrust bearing 对向推力轴承,对向止推轴承double-wedge 菱形的,双楔形的doublem\-beam spectrophotometer 双光束分光光度计doubler 倍频器doublet (1)双重线(2)偶极天线(3)双合透镜(4)偶极子doublet interval 双线间隔doubly charged ion 双倍带电离子doubly clad optical fiber 双包层光纤维doubly clad wavegudie 双包层波导doubly diffuse density (1)双漫射密度(2)双散射密度doubly refracting crystal 双折射晶体doubly resonance (1)双共振(2)双共呜doubly resonant oscillator 双共振振荡器doubly resonant parametric oscillator 双共振参量振荡器doubly-dispersed spectrum 两次色散光谱doubly-excited levels 双重受激能级doughnut-shaped flash lamp 环形闪光灯doughunt (1)环形室(2)环形真空罩dove prism 道威棱镜dovetail (1)燕尾(2)楔形准dovetail groove 燕尾槽dovetail guide 燕尾道轨dovetail slide 燕尾滑板dovetailed way 燕尾导轨dovetailing 燕尾连接dowel [pin] (1)定缝销钉,暗钉(2)木钉(3)定位销dowell interferometer 多威耳干涉仪down shot 俯瞰摄影down-coming wave 下射波down-conversion 下转换,降频转换down-converter (down-convertor)下换器,降频转换器draft (1)草图(2)草案draft equipment 绘图设备drafter 制图机械drafting 制图drafting board 制图板,绘图板drafting scale 制图尺,绘图尺drag 曳力,阻力drag coefficient 电力系数drag detector 曳力测定器drain (1)消耗(2)漏极drain current 漏电流draw power 抽拉功率,抽运功率drawbar (1)拉杆(2)挂钩drawer shutter 瓣式快门drawing (1)抽,拉,压延(2)牵引(3)提取(4)回火(5)绘图drawing apparatus 描绘器,绘图器drawing machine 制图机,绘图机drawplate 拉模反dresser 整形器,修正器dressing 整形,修整drier (1)干燥剂(2)燥形器,烘箱drift (1)漂移(2)偏差drift coefficient 漂移系数drift mobility 漂移迁移率drift region 漂移区域drift velocity 漂移速度drill (1)钻头(2)钻床drill gauge 钻径规drill press 钻床driller 钻床drilling 钻孔drilling machine 钻床drive (1)驾驶(2)传动,驱动,起动(3)激励(4)传体装置,驱动装置drive axle (1)传体轴(2)主动轴drive circuit 驱动电路drive fit 紧配合drive pinion 传动小齿轮driven 被动的,从动的driven gear 被动齿轮,从动齿轮driven sweep 致动扫描driver 传动器,激光器,激励器driver ic 显示面板用驱动ic driverscpe 驾驶仪drivign belt 传动皮带drivign frequency 驱动频率driving (1)传动,驱动(2)激厉(3)主动的driving band 传动带driving current 驱体电流driving gear (1)传动齿轮(2)主动齿轮driving oscillator 主控振荡器driving power 驱动功率driving spindle (1)传动轴(2)主动轴drone (1)遥控无人驾驶飞机(2)靶机droop 下垂,低垂drop (1)滴(2)下落,降落droplet (1)微滴(2)飞沫droplet interfermetry 微滴干涉测量法dropout (1)脱落(2)遗失信息dropper (1)滴管(2)挂钩drum (1)鼓,鼓形物(2)磁鼓(3)鼓轮(4)滚筒(5)绕线架drum cam 凸轮轴,凸轮鼓drum camera 鼓轮摄影机drum dial 鼓形刻度盘,刻度鼓drum lens 鼓形透镜,drum reading 测微鼓读数drum scanner 鼓形扫描设备drum storage 磁鼓存储器drunkenness error 缧纹导程周期误差dry battery 乾电池组dry cell 乾电池dry lens 乾式透镜dry objective 乾式物镜dry photopolymer film 乾式光聚合薄膜dry-ic 乾冰dryer (1)乾燥器(2)乾燥剂dryness 乾燥度dt target 氘氚靶dtl diode-transistor logic 二极体电晶体逻辑dtr process (diffusion transfer reversal process)扩散转移反转法dual (1)二的(2)双重的(3)对偶的dual beam interferometer 双光束干涉仪dual flank gear rolling tester 双面啮合齿轮检查仪dual frequency dye laser 双频染料激光器dual lattice 倒易点阵dual lens 双透镜dual mode coding 对偶式编碥dual-cavity laser 双腔激光器dual-grating spectrography 双光栅摄谱仪dual-polarization 双偏振,双极化dual-polarization laser 双偏振激光器dual-polarization oscillation 双偏擃荡dual-polarized ring laser 偏振环形激光器dual-seatter laser velocimeter 双重散射激光测速计dual-trace oscillograph 双线示波器dualism 二像性duality (1)二象性(2)二重性(3)对偶性(4)二元性duantd 形盘ducon 配合器,接合器duct 导管ductility (1)延性(2)柔软性ductiny 输送dull dullness (1)钝的(2)黯淡(3)模糊的dummy (1)钝度(2)黯淡(3)模糊dummy load (1)虚设物,伪装物(2)伪程序(3)假人dumper 假负载,仿真负载,等效负载dumper mirror 倒空器dumping 定镜dumpy level 倒空器duo-binary system 定镜准准仪duodeno-fiberscope 十二进制的duodiode 十二指肠纤维束内窥镜duojdecimal 双二进制duolaser 双二极管,孪二极管duple 双激光器duplex 二倍的,二重的duplicate (1)双的,二重的,复式的(2)双工的(3)双向的duplicate test (1)二重的,双联的(2)副本duplicating film 重覆测试duplication 底片durability (1)加倍(2)重覆(2)复制duralumin 耐久性,持久性duration 硬铝,杜拉铝duration of exciting 期间,持续时间duration of vision 激发持续时间durometer 视觉暂留dust 硬度计dust cap 防尘盖,防尘罩dust chamber 除尘室dust chatcher 吸尘器,集尘器dust cleaner 除尘器dust clollector 吸尘器,集尘器dust counter 尘量计dust cover 防罩dust guard 防尘dust ring 防尘圈dust-free 无尘的dust-free area 无尘区,防尘区dust-proof (1)防尘的(2)防尘器duster 除尘器duty cycle 负载循环duty factor (1)占空因数(2)负载因数dvd-rom drivesdvd-rom 光碟机dvd-romsdvd-rom 光碟片dwdm 高密度光分波多工器dwdm dense wavelength division multiplexer 高密度波长多工器dwell (1)同心部份(2)停止(3)静态dye 染料,染色dye(flash lamp pumped)lasers 染料雷射(闪光灯激发)dye(laser pumped)lasers 染料雷射(雷射激发)dye cell 染料盖dye doped polyurethane film 染料聚氨鲁膜片dye laser 染料激光器dye laser densitemetry 染料激光器显测密度术dye laser spectroscoppy 染料激光光谱学dye q-switching 染料q 开关dye sensitized photoconductor 染料敏化光导体dye vapor fluorescence 染料蒸气发光dye-gelatine filter 染色明胶滤色片dye-laser quenching 染料激光器犴灭dye-saturable absorber 染料饱和吸收器dye-sensitized 染色敏化的dyed glue process 染胶法dyestuff 染料dyhexagonal prism 复六方柱棱镜dyn 达因dynameter 倍率计dynamic (1)动力的(2)动力学(3)动态的dynamic balancer 动平衡器dynamic balnce 动平衡,动力平衡,动力均衡dynamic beam apodization 动态光束切趾dynamic equilibrium 动平衡,动态平衡dynamic error 动态误差dynamic fm conttrol 动力调频控制dynamic focusing 动态聚焦dynamic imaging 动态成像dynamic laser (1)动态激光器(2)气体激光器dynamic laser speckle 动态激散斑dynamic range 动态范围dynamic storage 动态存储dynamics 动力学dynamo 直流发电机dynamometer (1)测力计(2)功率计dynamotor 电动发电机dynaquad 三端开关器件dynatron 负阻管dynemeter 达因计dynode 倍增电极dynotron 超高频振荡三极管dyscrystalline 不良结晶质dyson interference microscope 达桑干涉显微镜dysprosium (dy)镝dysprosium laser 镝激光器dyssophotic 弱光的dytetragonal prism 复正方柱棱镜。

贵州中西部冰雹云闪电活动特征及对降雹指示作用研究

贵州中西部冰雹云闪电活动特征及对降雹指示作用研究

中低纬山地气象Mid-low LatituUe Monntaiu Meteorolopp Vno444Nn46 Dec,2020第44卷第6期2020年12月文章编号:2297-5359(2020)06-0044-07贵州中西部冰雹云闪电活动特征及对降雹指示作用研究曾勇8,,张淑霞2罗雄8,邹书平8,黄'0,周丽娜8 (2贵州省人工影响天气办公室,贵州贵阳554082贵州省气象灾害防御技术中心,贵州贵阳554082)摘要:利用VLF/LF三维闪电监测资料、CINRAD/CD C达资料和地面降雹观测资料,对贵州中西部冰雹云闪电特征进行分析。

结果表明:高原台地威宁平均POP和Z值均高于斜坡过渡带区域,两者平均POP值均高于贵州2a(2006—2015年)平均POP统计特征值。

斜坡过渡区域内总闪峰值平均为22次/5min,威宁总闪峰值平均为2次/5min。

斜坡过渡带区域0°7^0?闪电跳跃信号和闪电频次峰值提前量平均为20mm和2rnin,威宁闪电跳跃信号和闪电频次峰值提前量平均为33.0mm和20mm。

2刃尸第闪电跳跃信号指示降雹优于闪电频次峰值信号,在实际中可以综合利用闪电.丑血丘跳跃信号与峰值信号识别降雹。

关键词:冰雹云;闪电频次;闪电跃增事件跳跃信号中图分类号:P427.32文献标识码:BSidy on tUc Charocteristict of Hail Cloud and Lightmng Activito O tUcMiOdlr and West of Guizhou Province and its Indiceting Effect on HaO ZENG Yony22,ZHANG Shuxia2丄U O Xiony1,ZOU SSupiny1,HUANG Yu2,ZHOU Lino1(8.The W/ther Mopification Office of GuizOon Provioce,Guiypny556052,China;2.GuizOon Meteoelopical Disiter Preveation TecOoolopp C/tet,Guiyany550052,China)Abstroci:Bp usiny VLF/LF three一dimeasionat lightniny monimeny data,CINRAD/CD匸1^data and pennd hail oPserva/on data,the cOaracteestico of hail clonU lightniny in ceatral and Western GuizOon were analyzed-The results shw that the gverape POP and Z of Weininy platean platform le higher thao those of slope transition z one,and the gverape POP of both le hignvr thao the12a gverape POP statistical Oiimestic of GuizOon fem2006to222.The averape pead value of total lightniny in the slope traosition area is22^j/(5min),and the averape pead value of total lightniny in Weininy it2r/(5min).The averape of 2ct LF cr lightniny)ump signal and pead advaoce of lightniny frequ/cy in slope traosition zone it20min and2min, and the averape of2d LFCR lightniny)ump signal and pead advaoce of lightniny fequ/ce in Weininy is33.7min and29mid.The2cf LF cr lightniny)ump signal it bettet thao the pead signal of lightniny fedu/cy-Io practice,the 2d LFCR lightniny)ump signal and the pead signal cat be used to id/tify hit.Key W woo:3311clonU;lightniny frequeqce;lightniny)ump eveat;(FCR jump signal收稿日期:2020-01-18第一作者简介:曾勇(286—),男,硕士,工程师,主要从事云雾物理与大气电学研究,E-m1020200859@qq.om。

ContrastcontrolwithILFORDMULTIGRADEpapers

ContrastcontrolwithILFORDMULTIGRADEpapers

When the paper is exposed to blue light, all parts of the emulsion react and contribute equally to the final image. This image is of high contrast because of the additive effect produced by three emulsions with the same speed and contrast. The resultant curve has a narrow exposure range and is thus of high contrast.D e n s i t yD e n s i t yTECHNICAL INFORMATIONCONTRAST CONTROLCONTRAST CONTROLFOR ILFORD MULTIGRADE V ARIABLE CONTRAST PAPERSContrast control with ILFORD MULTIGRADE papers can be achieved in several ways. These include the ILFORD MULTIGRADE hand filters and the ILFORD MULTIGRADE 600 equipment. Contrast can also be controlled with other variable contrast enlarger heads and with colour enlargers.CONTRAST RANGEThis section describes how MULTIGRADE papers give different contrast levels. For practicalinformation on selecting contrast levels turn to the next pages.All chloro-bromide (black and white) emulsions are blue sensitive with a slight sensitivity to green light. To make an emulsion sensitive to colours in addition to blue, sensitising dyes need to be added.MULTIGRADE papers are coated with an emulsion which is a mixture of three separate emulsions. Each emulsion is a basic blue sensitive emulsion to which is added different amounts of greensensitising dye. Thus, part of the mixed emulsion is sensitive mainly to blue light, part to blue light with some sensitivity to green light and part to both blue and green light.All parts of the emulsion have the same contrast. They also all have the same speed to blue light, but naturally, the part of the emulsion with only a small amount of green sensitising dye has a low speed (that is, is less sensitive) to green light.When the paper is exposed to green light, only the parts of the emulsion with the larger amounts of green sensitising dye react initially. This is because the three emulsions have very different sensitivities to green light. This image is of low contrast because of the additive effect produced by three emulsions with different speeds to green light, but with the same inherent contrast. Theresultant curve has a very much wider exposure range and is thus of low contrast.By varying the proportion of blue to green light, a contrast range between these two extremes can be obtained. The simplest way of controlling the colour of the light reaching the emulsion during exposure is by the use of filters: a magenta filter absorbs green light and transmits blue; a yellow filter absorbs blue light and transmits green. In this way, high and low contrast images can be made.Exposure to blue lightRelative log exposureA combined curveB dyed emulsion IC dyed emulsion II Ddyed emulsion IIIExposure to green lightRelative log exposureA combined curveB dyed emulsion IC dyed emulsion II Ddyed emulsion IIIThe MULTIGRADE 600H enlarger head replaces the standard lamphouse on the most popular professional enlargers. The control unit, power supply and probe complete the system.CONTRAST CONTROLof 00 to 5.It works on the closed loop system, with a single pre-warmed lamp, to give repeatable results, even at high contrasts.The light output is precisely controlled by the motorised shutter. The motorised filters give contrast control in 1/10 grade steps over grades 0 to 5. The head has five programmable paper channels (four pre-set for ILFORD MULTIGRADE papers). It also gives true white light for composition, focusing and exposure.Once calibrated, the exposure probe automatically calculates the exposure and contrast needed for each negative. It can be used under normal safelight conditions.The MULTIGRADE 600 system can also be used with most automatic roll easels.There are two versions of the MULTIGRADE 600H enlarger head. The medium format version issuitable for the Durst M805 enlarger. The standard format version is suitable for other enlargersincluding the Durst L1200, DeVere 504, Omega D and Beseler 45. The enlarger head fits directly in place on the Durst M805 and Durst L1200 enlargers. An adaptor kit is needed with other enlargers.system.OTHER VARIABLE CONTRAST ENLARGER HEADSThe contrast of MULTIGRADE papers can be controlled with the range of variable contrastenlarger heads that are currently available. Some of these are easier to use than others, and several give excellent results.Many manufacturers make variable contrast heads for their enlargers which are specially designed for use with MULTIGRADE papers. Enlarger heads that have been designed in conjunction with ILFORD include those from De Vere, Dunco, Kaiser, Leitz, LPL and Meopta.For use with MULTIGRADE papers, follow theinstructions provided by the enlarger manufacturer.CONTRAST CONTROLMULTIGRADE filter Durst (max170M) Durst (max 130M) Kodak Meopta 00 150Y 120Y 199Y 150Y 090Y 70Y 90Y 90Y 1/270Y 50Y 70Y 70Y 1 55Y 40Y 50Y 55Y 11/2 30Y 25Y 30Y 30Y 2 0 0 0 0 21/2 20M 10M 5M 20M 3 45M 30M 25M 40M 31/2 65M 50M 50M 65M 4 100M 75M 80M 85M 41/2 140M 120M 140M 200M 5170M*130M199M–USE OF COLOUR HEADSBy adjusting the yellow and magenta filtration on colour heads, it is possible to obtain a wide contrast range with MULTIGRADE papers.However, the maximum contrast will be slightly lower as the filters used in colour heads areoptimised for use with colour paper and not with variable contrast paper. The suggested filtration in the following tables can only be a guide, because individual enlargers vary. The actual filtration for a particular enlarger must be determined by trial.Filtration types used in colour enlargers From the table below, select the type of filtration needed according to the enlarger type.Durst Kodak Meopta Dunco Advena Meopta Durst Beseler Kaiser Chromega Kienzle De Vere Leitz FujimotoLupo IFFJoboLPLOmega Paterson SimmardVivitarSingle colour filter settingsFrom the table below, read off the approximate filtration needed for each contrast step. However, as the yellow and magenta filters have not been arranged to equalise exposures, new exposure times will have to be recalculated when the contrast is changed.If you are using a Durst enlarger, or one that uses Durst filtration values, choose the suggested settings depending on whether the maximum magenta setting on your enlarger is 170M or 130M.Dual colour filter settingsFrom the table below, read off the approximate filtration needed for each contrast step. Dualfiltration values usually need longer exposure times than single filtration values, but should need less adjustment to exposure times when changing contrast.MULTIGRADE Durst Durst Kodak Leitz filter (max (max Focomat170M) 130M) V3500 115Y/0M 120Y/0M 162Y/0M 135Y/6M 0 100Y/5M 88Y/6M 90Y/0M 105Y/12M1/2 88Y/7M 78Y/8M 78Y/5M 77Y/11M 1 75Y/10M 64Y/12M 68Y/10M 67Y/17M 11/265Y/15M 53Y/17M 49Y/23M 52Y/28M 2 52Y/20M 45Y/24M 41Y/32M 39Y/43M 21/2 42Y/28M 35Y/31M 32Y/42M 32Y/51M 3 34Y/45M 24Y/42M 23Y/56M 23Y/62M31/2 27Y/60M 17Y/53M 15Y/75M 14Y/79M 4 17Y/76M 10Y/69M 6Y/102M 10Y/95M 41/2 10Y/105M 6Y/89M 0Y/150M 15Y/154M 5 0Y/170M 0Y/130M – 0Y/200M EXPOSING LIGHT SOURCES MULTIGRADE papers are designed for use with most enlargers and printers, that is, those fitted with either a tungsten or tungsten halogen light source. They are also suitable for use with cold cathode (cold light) light sources designed for variable contrast papers.Cold cathode enlarger headsEnlargers fitted with a cold cathode (cold light) head which has been designed for use with variable contrast papers can give a full contrast range on MULTIGRADE papers.However, although a full contrast range may be available, it might not be evenly spaced. Also, in some cases, a full contrast range may not be available – it depends on the cold cathode lamp used.The following chart gives a guide to the contrast range of MULTIGRADE papers when exposed using MULTIGRADE filters with a conventional tungsten enlarger head and with an Aristo head fitted with an Aristo W45 cold cathode lamp. With the Aristo W45 lamp, extra yellow filtration was also added – CC40Y – as recommended by Aristo. It can be seen that a full contrast range can be achieved, but the grade intervals are bunched towards the hard contrast end.*Some enlargers in this group have a maximum magenta setting higher or lower than 170M. For these enlargers, set the highest possible magenta value as an approximate equivalent to filter 5.CONTRAST CONTROL。

一种光固化3DP实体材料树脂

一种光固化3DP实体材料树脂

第25卷第7期高分子材料科学与工程Vol.25,No.7 2009年7月POL YM ER MA TERIAL S SCIENCE AND EN GIN EERIN GJ ul.2009一种光固化3DP 实体材料树脂刘海涛,莫建华,黄 兵(华中科技大学材料成形与模具技术国家重点实验室,湖北武汉430074)摘要:为研究紫外光固化三维打印(3DP )的成形技术及成形材料,制备了一种实体材料光敏树脂。

使用实时傅立叶红外光固化实验研究了这种实体材料中主要成分在室温和55℃时的光固化速度;考察了黏度、表面张力及工作温度对实体材料可打印性的影响;在喷头为XAAR500的三维打印实验机上,测试了实体材料的打印稳定性和成形精度。

结果表明,这种实体材料在55℃时可持续稳定地从喷头喷出,光固化速率和精度符合要求。

关键词:光固化;打印稳定性;三维打印;实体材料;光敏树脂中图分类号:TB381 文献标识码:A 文章编号:100027555(2009)0720148204收稿日期:2008206210基金项目:湖北省自然科学基金资助项目(2005ABA181)通讯联系人:刘海涛,主要从事快速成形用光敏树脂研究, E 2mail :liuhaitao1@ 3DP (Three 2dimensional printing )成形技术分为粘接材料三维打印成形、光敏材料三维打印成形和熔融材料三维打印成形三种工艺[1~4]。

其中,光敏材料三维打印成形是根据微滴喷射技术,将实体和支撑光敏材料喷射到工作台面上,再用紫外光进行固化,逐层堆积的一种工艺。

它将喷射成形和光固化成形的优点结合在一起,成形精度高,成形速度快,后处理简单。

目前,国外研究光敏材料三维打印成形的机构有美国3DSystems 公司和以色列OBJ ET 公司[5];国内还没有光敏材料三维打印成形材料及技术的相关报道。

本课题组自行研制出一种光敏材料三维打印成形设备和材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Quasi-3D Light Confinement in DoublePhotonic Crystal Reflectors VCSELs forCMOS-Compatible IntegrationCorrado Sciancalepore,Badhise Ben Bakir,Xavier Letartre,Jean-Marc Fedeli,Nicolas Olivier,Damien Bordel, Christian Seassal,Pedro Rojo-Romeo,Member,IEEE,Philippe Regreny,and Pierre ViktorovitchAbstract—A novel architecture of one-dimensional photonic crystal membrane(PCM)reflectors embodying a heterostructure is proposed as a robust design aimed at a3-D efficient confine-ment of light in single-mode polarization-controlled 1.55-m vertical-cavity surface-emitting laser(VCSEL)microsources for heterogeneous integration on complementary metal-oxide-semi-conductor(CMOS).On the basis of a theoretical approach,the paper focuses on the deep interweaving between the kinetics of light transport in the mirrors and the physical nature of the ex-ploited Fano resonances.An example of VCSEL design for optical pumping employing heterostructure-confined photonic crystal mirrors is presented.The predicted photons kinetics along with the considerable improvement in cavity modal features owing to the enhanced mirror architecture have been confirmed by per-forming rigorous three-dimensionalfinite-difference time-domain (3-D FDTD)calculations.Finally,experimental observations of photoluminescence(PL)emission performed onfirst-ever fabri-cated devices for optical pumping show striking agreement with theoretical considerations and ab initio modelling.Index Terms—Photonic crystals,photons,semiconductor lasers, slow Bloch mode,vertical-cavity surface-emitting lasers(VC-SELs).I.I NTRODUCTIONA CHIEVING a full control of photons in thereal—reciprocal space as well as in the frequency—time domain is decisive for the design of innovative optical components aimed at further breakthroughs in thefield of micro-nano-photonics.An efficient harnessing of light is made possible by confining photons within the tiniest spatial domain (in comparison to the wavelength)for the longest time possible (as compared to the oscillation period),while allowing to be efficiently collected(from)or addressed(to)the photonic structures where are meant to be confined.Manuscript received December22,2010;revised April19,2011,May05, 2011;accepted May10,2011.Date of publication May23,2011;date of current version June15,2011.This work was supported by the European Commission in the framework of the project HELIOS.C.Sciancalepore is with the Institut des Nanotechnologies,Ecole Centrale de Lyon,F-69134Ecully,France(e-mail:corrado.sciancalepore@ec-lyon.fr) and with the Commissariatàl’énergie Atomique et auxÉnergies Alternatives, Département Optronique,(CEA-LETI Minatec),F-38054Grenoble,France (e-mail:corrado.sciancalepore@cea.fr).X.Letartre,C.Seassal,P.Rojo-Romeo,P.Regreny,and P.Viktorovitch are with the Institut des Nanotechnologies,Ecole Centrale de Lyon,F-69134Ecully, France.B.Ben Bakir,J.-M.Fedeli,N.Olivier,and D.Bordel are with the Commis-sariatàl’énergie Atomique et auxÉnergies Alternatives,Département Optron-ique,(CEA-LETI Minatec),F-38054Grenoble,France.Digital Object Identifier10.1109/JLT.2011.2157303An effective control of light is highly desirable in the case of laser microcavities and devices for non-linear applications where the need for a stronger light-matter coupling is even more binding.This concept is particularly true in vertical-cavity sur-face-emitting lasers(VCSELs),where the coupling of the op-tical mode with the active material is crucial for low-threshold emitters and modal control constitutes an additional require-ment to be addressed especially for telecommunication-oriented applications.As widely proposed in the literature,while ver-tical confinement is achieved through diffractive phenomena provided by distributed Bragg reflectors(DBRs),the lateral op-tical waveguiding(or antiguiding)and modal behaviour in VC-SELs generally relies on a complex interplay of index-[1]and gain-guiding mechanisms[2].Specifically,in arsenide lasers,the enhancement of the pho-tons-matter coupling along with modal selection was accom-plished by introducing an optimized transverse optical and elec-trical confinement via oxide windows[3]–[7].However,the main drawback of such solutions lies with the ineludible de-sign trade-offs between single-mode operation,low threshold and optical output power[6].Using shallow surface reliefs[5] has only partly addressed the issue given the still considerable drop in emitted power;on the other hand,VCSELs’designs based on external cavity configurations and index antiguiding [7]for the suppression of higher order modes are characterized by rather complicated and possibly unstable processing.Con-cerning InP-based VCSELs,while efficient carrier funnelling has been obtained by means of structured[8]–[10]or proton-im-planted[11]tunnel junctions,this device class is still waiting for an efficient optical confinement owing to the lack of index guiding[11].Solutions based on the incorporation of2-D pho-tonic crystals(PhCs)in proton-implanted devices[11]are af-fected by significant drawbacks due to light leaking through the photonic crystal holes disrupting laser operation,even calling into question the actual feasibility of the fabrication process. In electro-thermally tunable micro-electro-mechanical sys-tems(MEMS)-VCSELs,curved micro-machined DBR mem-branes have been successfully employed in order to improve the transverse confinement of the fundamental mode while main-taining a good modal selection[8].Nonetheless,these mirrors are affected by several important disadvantages such as the lack of lateral(typical diameters100m)and longitudinal(cavity physical length15m)compactness,tight epitaxial and fab-rication constraints.Regarding polarization control,different strategies have been so far adopted in VCSELs:elasto-[12]and electro-optic[13], [14]induced birefringence,asymmetric cavity geometries[15]0733-8724/$26.00©2011IEEEFig.1.Left:Exemplifying sketch of2.5-D PCM-VCSEL structures for op-tical pumping.Materials,refractive indices,and physical lengths are reported in Table I.Right:Top view of Si/SiO one-dimensional photonic crystal mir-rors.and current injection[16],elliptical surface reliefs[17]as well as sub-wavelength gratings[18],[19].Nevertheless,although the latter solution provides a good polarization mode suppres-sion ratio(PMSR),a precise control over the grating etch depth and duty cycle is necessary to ensure a stable polarization. Since Yablonovitch’s paper in the late‘80s[20],photonic crystals were increasingly employed to control the spatial-tem-poral trajectory of photons through the diffractive confinement arising from the high-index-contrast periodical structuring of the optical medium.In photonic crystal membranes(PCMs) [21]–[24],the control of light by diffractive phenomena is com-bined with the refractive confinement arising from the index guiding provided by the strong contrast between the high-index slab core and the low-index cladding.In the past years,dif-ferent groups[24]–[30]suggested to shift from thicker,effi-ciency-limited,narrow-bandwidth DBRs to PCMs as wideband polarization-sensitive reflectors in VCSELs.Recently,high-nu-merical-aperture PCM mirrors enabling a double focusing for both reflected and transmitted waves have been proposed as building block for a new class of VCSELs and solid-state lasers [31].Although PhCs operating in the photonic bandgap regime have been already successfully employed in VCSELs[32],[33], however,PCMs working in the slow-light regime through the excitation of surface-addressable slow Bloch modes via low-Q Fano resonances(FRs)represent a very attractive solution as efficient compact mirrors.Fano resonances arise from the res-onant coupling between slow Bloch modes wave-guided in the PCM reflector with the background radiation continuum.Spec-tral properties of the resonances and coupling strength depend on the parameters defining the membrane design such as dielec-tric constant corrugation,slab thickness andfilling factor. Another interpretation of the physics governing light in PCMs lies in the destructive(or constructive)interference between the modes propagating through the membrane[along -axis,see Fig.1(right)],which is set by the design,deter-mining the strong reflective(transmissive)behavior of the membrane[34].This innovative photonic architecture can accommodate in-plane wave-guided modes which are deliberately opened to the third spatial dimension by accurately tailoring the cou-pling with the radiation continuum.Hence,the optical modes supported by a VCSEL cavity employing double photonic crystal reflectors are combination of a wave-guided(within the mirrors)and a radiated component(coupled to the active material in between the mirrors)giving origin to so-called hybrid modes.TABLE IM ATERIALS,R EFRACTIVE I NDICES,AND P HYSICAL L ENGTHS IN PCM-VCSELS Essentially,from2-D micro-nano-photonics,where only in-plane truly wave-guided modes are concerned,we are moving into the realm of2.5-D-photonics where a quasi-3D accurate light harnessing at the wavelength scale is made possible.As already demonstrated[26],one-dimensional broadband PCMs in VCSELs led to significant improvements in terms of optical mode lateral confinement,modal selection and polarization control.By exploiting two spectrally over-lapped low-Q Fano resonances,resulting in large stopbands up to150nm,such reflectors opened new perspectives also for the design of electro-statically tunable single-mode polariza-tion-controlled laser microsources,thus gradually substituting DBRs as alternative competing mirrors.Starting from a deeper theoretical understanding of photons kinetics in1-D PCMs,with the present paper we propose a novel PCM design embodying a photonic crystal heterostruc-ture aimed at a dramatic increase in the lateral confinement in long-wavelength VCSELs meant for the III-V/Si integration on complementary metal-oxide-semiconductor(CMOS).This is achieved by reducing the lateral escape rate of photons out of the mirrors by means of energy barriers.A photonic crystal heterostructure[35]–[40]consists in one photonic crystal(i.e.,the PCM reflectors of our VCSEL)en-closed laterally between two adjacent different crystals.The two crystals are chosen in such a way that photons can propagate in the central layer—the pass-band well—while encountering a forbidden bandgap region in the side layers which forms the so-called barriers.These can be obtained either by changing the refractive index profile or thefilling factor of the two con-stituting crystals or even also by approaching two PhC layers of different lattice period.Although the concept of photonic crystal heterostructures has already been employed in several applications,however,the inclusion of heterostructures in both photonic crystal reflectors of PCM-VCSELs represents to our knowledge an original and innovative solution for a quasi-3D light confinement in such devices.Here follows the manuscript organization.In Section2,a brief description of the structure design and the photon kinetics describing the vertical confinement in PCM-VCSELs is pro-vided,while in thefirst part of Section3the crucial concept of light transport kinetics within1-D PCMs is addressed by pre-senting the two-dimensional dispersion surfaces of slow Bloch modes excited in the mirror.In the second subsection the the-oretical description is validated by3-D FDTD simulations and the integration of photonic crystal heterostructures in PCMs is introduced and discussed.In the third and last part of Section3 the experimental evidence of previous theoretical arguments isSCIANCALEPORE et al.:QUASI-3D LIGHT CONFINEMENT2017Fig.2.(a)RCWA-computed TE-and TM-reflectivity spectra(inset)of1-D PCMs.(b)Dispersion characteristics in the neighbourhood of the-point of slow Bloch modes excited via the low-Q Fano resonances(labelled as“FR”) shown in the TE-reflectivity spectrum.presented;finally,Section4is dedicated to conclusions and per-spectives.II.PCM-VCSEL S TRUCTURE AND V ERTICAL C ONFINEMENT A schematic cross section of the optically pumped structures under study along with its top view is given in Fig.1.Briefly, an embedded InAsP-InGaAsP multiple-quantum-well active re-gion grown by molecular beam epitaxy(MBE),such to pro-vide gain around1.55m,is placed between a top and bottom Si/SiO1-D PCMs broadband reflectors(50%Sifilling factor, lattice period m)spaced by means of two sym-metric SiO gaps.It is worth to point out that the use of ad-vanced III-V—semiconductors/SiO wafer bonding technology [41],[42]as well as deep-UV(DUV)lithography is required for mirrors fabrication.The light kinetics that governs the vertical confinement in PCM-VCSELs can be described in rather good approximation by simply evaluating the quality factor of the exploited Fano resonance.According to the relation(strictly rig-orous only in the case of laterally infinite photonic crystal mem-branes),where and are,respectively,the frequency and the lifetime of photons in the membrane,a broad resonance cor-responds to a strong coupling rate of photons to the ra-diation continuum,which represents a condition to obtain wideband mirrors.A rigorous coupled-wave analysis(RCWA)computation of PCM reflectivity spectra for transverse electric(TE,electric field parallel to silicon slits)and transverse magnetic polar-ization(TM,electricfield perpendicular to slits)is shown in Fig.2(a),while the dispersion characteristics of slow Bloch modes corresponding to both Fano resonances are reported in Fig.2(b).The calculation of dispersion curves was carried out by tracking the resonant wavelength of the corresponding Fano resonance.This method,which may appear a qualitative approximation due to the small quality factors involved,proves instead to be enough reliable in determining the frequencies of slow Bloch modes located at band-edges,resulting in a very good agreement with3-D FDTD simulations of the PCM-VCSEL cavity shown later on in this work.Designed in order to operate at a band-edge obviously situ-ated above the light cone,the PCM shows a wide TE stopband (140nm)provided by two spectrally overlapped broad reso-nances situated at1.37m and1.55m respectively.It should be remarked that both slow Bloch modes can couple at the -point,given their symmetric distributions over the photonic crystal unit cell[43].Although a high power reflectivity is ensured over the whole PhC stopband,however we decided to operate near the redder Fano in order to maximize the cavity vertical confinement in the wavelength region of interest.The guidelines for a proper choice of the Fano resonance lie in its dispersion characteristic and we will comment further on it below.As said before,the optical mode supported by the cavity can be seen as a hybrid mode made up of two components:a wave-guided component in the mirrors as well as a radiated(com-monly called Fabry-Perot)component in between the mirrors. In detail,one can express the average relative time spent by pho-tons in the cavity during the overall lifetime of the hybrid reso-nance as follows[24]:(1)where,being the cavity optical thickness and c the speed of light.In contrast with low-index contrast DBRs, the fast coupling rate to radiation continuum provided by broad Fano resonances promotes a higher electromagnetic density within the laser active region,thus favouring the design of low-threshold devices.III.A DDRESSING THE L ATERAL C ONFINEMENT INPCM-VCSEL SA.Light Transport Kinetics in1-D Photonic Crystal Mirrors Given thefinite width of the photonic crystal membrane re-flector,the reflectivity yield is limited by the lateral escape rate which is in turn related to the average group velocity ex-by photons when propagating in PCMs.Therefore, concerning the issue of lateral confinement,a second necessary condition to realize efficient mirrors is set by minimization of ,where and indicate,respectively,the lat-eral of the mirror and the Fano resonance dispersion char-acteristic curvature around the-point[23].In other words,the resonant coupling efficiency can be ex-pressed as:the reduction in lateral losses is thus accomplished by putting photons through a slow-light regime via the excitation of surface-addressable slow Bloch modes located at veryflat band-edges(low)of dispersion curves.The dispersion characteristic of the hybrid mode is entirely defined by its wave-guided and radiated components in the re-ciprocal space.The isotropic dispersion characteristic of the FP component of the hybrid mode in the vicinity of the-point can be described by the following simple analytical expression(2) where indicates the transverse wavevector component,being the frequency at the-point and the quadratic approx-imation of the dispersion characteristic curvature evaluated at the band-edge.In a simplified but still reliable one-dimensional approach(strictly rigorous in case of laterally infinite struc-tures),the hybrid mode band curvature is a linear combi-nation of the wave-guided and FP components2018JOURNAL OF LIGHTWA VE TECHNOLOGY,VOL.29,NO.13,JULY1,2011corresponding band curvatures weighted by the relative average lifetimes and[28](3) Owing to the isotropic dispersion characteristic of the Fabry–Perot component of the hybrid mode,it follows that the optical cavity modal features are mainly determined by the wave-guided component.Consequently,a deep study of photons behavior when exciting slow Bloch modes in PCMs is essential to the understanding of the physics describing the device.Given the one-dimensional nature of the membrane refractive index structuring,photons propagating in PCMs experience different dispersion curves depending on the wave vector,thus originating strongly anisotropic two-dimensional dispersion surfaces.Relying on purely one-dimensional dispersion characteristics as commonly done would end up with the unrealistic modelling of light transport in the mirrors.We need to shift to dispersion surfaces where the energies of corresponding photonic states are now depending on a generic in-plane wave vector of compo-nents.In this way,grasping theflow of light within photonic crystal membrane reflectors provides us with a powerful tool to design highly compact and innovative single-mode PCM-VCSELs. Such complex picture has been studied by RCWA calcula-tions in the neighbourhood of the-point,which,in our case, corresponds to the domain of the reciprocal space experienced by the wave-guided component of the fundamental mode.As il-lustrated in Fig.3the-space dispersion surfaces show,beyond the well-expected anisotropy,very different behaviors.The slow Bloch mode at1.55m is described by a saddle surface, while the mode at higher energy is characterized by a strongly anisotropic paraboloid.Although both resonances provide high vertical confinement[see Fig.2(a)],the latter is affected by stronger lateral losses due to a higher average group velocity notably along the direction perpendicular to the mirror slits and should therefore be considered less appropriate for an efficient confinement of optical modes.On the other hand,it can be noted that both dispersion surfaces are sharing aflat but slightly negative curvature mainly parallelly to the slits.The existence of directions within PCMs along which photons propagate with a negative group velocity allows confining the light towards the mirror center,resulting crucial for the improvement of light control in the device as further shown later on.According to(3),we may suppose to exploit slow Bloch modes characterized by a negative curvature of the dispersion characteristic at the band-edge in order to com-pensate for the positive band curvature of the Fabry–Perot mode(2),resulting in a minimization of the global hybrid mode curvature over a wide reciprocal space domain around the-point.The enhanced light slow-down would turn out in high-Q cavity modes.Nevertheless,the strong anisotropy of 2-D dispersion surfaces prevents to accomplish an overall com-pensation between and for every in-plane direction. In other words,(3)should be re-written as a function of the in-plane wave vector and not just of.As a re-sult,innovative confinement strategies arenecessary.To this purpose,2-D dispersion surfaces represent a highly predictive and reliable tool for the design of2.5-D laser cavities.Fig.3.Two-dimensional reciprocal-space dispersion surfaces of slow Bloch modes at1.37m(a)and1.55m(b)respectively.In fact,although the hybrid mode spans in a three-dimensional world,however,its wave-guided(and most meaningful)com-ponent can be considered as purely two-dimensional.Hence,the picture describing the light behavior in the mirrors is thus given by dispersion surfaces which depend exclusively on in-plane wave vectors.On the basis of the morphology of dispersion surfaces[see Fig.3(b)]as well as referring to the considerations contained in the previous paragraph,we can infer that photons travel-ling within PCMs will experience a lateral confinement or,vice versa,a higher lateral escape rate,depending on the wave vector. Specifically,photons propagating in the mirrors along directions characterized by a negative group velocity are to a certain ex-tent confined within the mirror.Simply,starting from the definition of group velocity for the th dispersion band(4) we can determine confinement and deconfinement domains in the reciprocal space by computing the gradient of the Fano res-onance dispersion surface at1.55m(mode“B”)as illustrated in Fig.4.By deriving the group velocity as a two-dimensional vectorialfield we obtain a clearer overview about the magnitude and preferential directions along which lateral losses rise sig-nificantly.We expect the out-coupling of light to be maximized along those directions(i.e.,wave vectors)indicated by the gra-dient.Thus,mirrors reveal to be particularly leaky across the slits,while showing a natural confinement along the slits.Con-cerning single-mode operation,gradient paths in Fig.4clearly explain the achievement of transverse modal selection in the de-vice:those modes characterized by larger transverse wavevector components are leaking out of the PCM faster,resulting in an in-trinsic modal discrimination determined by the curvature of dis-persion surfaces.The increased lateral losses suffered by higherSCIANCALEPORE et al.:QUASI-3D LIGHT CONFINEMENT2019Fig.4.(a)–(d)Group velocity corresponding to the slow Bloch mode at1.55 m[see.Fig.3(b)]calculated on different-space domains.order modes boost the threshold discrimination for the benefit of the fundamental mode.B.Heterostructure-Confined1-D PCMs for Ultimate Transverse Light ControlGiven the high vertical confinement obtained when operating nearby the Fano resonance wavelength,the minimization of photons lateral escape rate within the PCMs is necessary for low-loss PCM-VCSELs.The introduction of a photonic crystal heterostructure suits quite well with the control of anisotropic losses arising from the peculiar light transport dynamics taking place in1-D PCMs.In our devices,barriers are obtained by introducing a local vari-ation of thefilling factor(silicon content)and oriented per-pendicularly to those directions affected by a higher average group velocity,aiming at preventing photons to leak out and al-lowing a more efficient optical transverse confinement[35][see Fig.5(a)].Similarly to the formalism used in[38]we can express the local modification of thefilling factor in the heterostructures Fig.5.(a)Sketch-up of a heterostructure-confined1-D photonic crystal mirror. Barriers are introduced in a typical1-D PCM to enhance lateral confinement (and represent,respectively,the siliconfilling factor in the well and barriers).(b)Schematic illustration of the heterostructure band-gap;the tun-nelling and diffraction losses coupling rates are indicated.(c) dispersion characteristics in the well and barriers .indicates the confinement frequency along direction of transport.as a spatially slowly varying perturbation modulating the average refractive index of the crystal(5) where2L and are,respectively,the width of the well and the index contrast between the core and the cladding of the het-erostructure.In a naïve but realistic approach,the heterostructure can be seen as a resonator where barriers serve as mirrors,while the well constitutes the centre cavity.The resulting confinement wavelength range arises from the bandgap introduced with the heterostructure and can be treated as an energy barrier[in Fig.5(c)].The lateral reflectivity provided by the heterostruc-ture bandgap increases the lifetime of the wave-guided mode in the PCM,promoting the confinement of the global hybrid mode.In particular,in narrow barriers with a tiny heterostruc-ture bandgap the electricfield decays exponentially but still al-lowing photons to pass through as in quantum-mechanical tun-nelling.On the contrary,in the case of wider and energetic bar-riers,the decay will be complete so that all the energy will be reflected within the well.This mechanism is responsible for the enhancement of the photonic crystal mirror reflectivity yield. In dielectric waveguides optical confinement is obtained when the dielectric contrast between core and cladding is posi-tive.In photonic crystal heterostructures,the diffractive-based confinement of waveguided modes depends on the sign of the th band curvature in the well at the band-edge[38](i.e., the photon effective mass2020JOURNAL OF LIGHTWA VE TECHNOLOGY,VOL.29,NO.13,JULY1,2011evaluated along the direction of perpendicular transport.The positive band curvature along implies that optical confine-ment can be obtained if the average refractive index in the well is greater than in barriers,which implies the use of a higher siliconfilling in the On the contrary,usingin presence of a positively-(negatively-) curved dispersion band in the well would introduce antiguiding at the expense of modal confinement in the VCSEL. Regarding modal selection between two competing trans-verse modes,the single-mode behavior of a laser microcavity is usually assessed through the modal stability parameter(6) where the subscripts and label,respectively,vertical and hor-izontal mode orders and represents the threshold gain the corresponding mode needs for lasing.Alternatively,modal se-lection can be appreciated to a larger extent by estimating the proportion between the quality factor of competing modes,since it provides the ratio between the energy stored in the cavity and the dissipated power for each cavity mode.In order to lay out an accurate comparison between heterostructure-confined devices and ordinary PCM-VCSELs in terms of their modal properties, rigorous3-D FDTD simulations(without considering the gain medium)were performed.In Table II resonant wavelengths and corresponding quality factors of the fundamental andfirst order transverse modes are reported for a standard15-m-wide PCM-VCSEL with and without the use of lateral barriers. Results confirm the expected increase in lateral confinement of cavity modes provided by heterostructure-confined photonic crystal mirrors respect to standard1-D PCMs.This can be fully appreciated by comparing the cavity modes nearfields reported in Fig.6(a)–(d).First of all,lateral losses are strongly anisotropic and this perfectly matches with the description provided by dispersion surfaces:photons loss rate across the mirror slits is sensibly higher respect to the parallel direction [see Fig.6(a),(b)].Moreover,the same behavior is reproduced in the MQW active region,implying that the modal properties of the hybrid mode are shaped by its wave-guided component in the mirror.In second place,the heterostructure-confined mirrors[see Fig.6(c),(d)]suppress lateral loss almost com-pletely,resulting in a considerable quality factor enhancement originated by the maximization of the PCMs reflectivity yield. The observed red-shift of cavity modes in structures including photonic heterostructures is simply due to the variation of the transverse boundary.Referring to Table II,we observe that the rise in the funda-mental mode quality factor does not come at the expense of the modal selection,but,on the contrary,strengthens the modal dis-crimination of the cavity.The reason for that can be found out by introducing in our descriptive model two additional parame-ters[see Fig.5(b)]:1)the photons tunnelling rate through the barriers,which expresses the efficacy of the heterostructure in con-fining the light laterally;2)a secondterm related to diffraction loss affecting cavity modes,which is induced by the perturbation modu-lating the refractive index profile.Fig.6.nearfields within the top PCM(a)and the MQW active region(b)in standard PCM-VCSELs compared to a heterostructure-confined device(c),(d).Mirror dimensions are defined by the superimposed white square(co-ordinates are reported inm),while slits orientation is illustrated schematically in the left part of theTABLE IIM ODAL B EHAVIOR C OMPARISON Consequently,we can define the quality factors of transversemodes as follows:(7) where refers to out-coupling vertical losses which mainly depend on modal wavelengths.The increase in lateral reflectivity yield provided by het-erostructure is strictly linked to the width of the bandgap originated by the perturbation.In particular,the exponential decay of the electricfield characterized by penetration depth within barriers is related to the size of the heterostructure band-gap.Residual lateral losses are thus mainly con-trolled by the barriers physical extension as well as the width of the confinement frequency range.Modal selection is related to diffraction losses stem-ming from the different spatial overlap of transverse modes with barriers.In detail,the coupling to radiation continuum via diffractive scattering due to barriers is proportional to the overlap between the optical mode and the perturbation to the dielectric constant introduced in the photonic crystal mem-brane.The mode overlap with barriers affects also the photons tunnelling rate.In fact,a major extension of the cavity mode profile within barriers gives rise to a drop in reflectivity yield due to a diminished efficacy in the confinement.It follows that barriers position governs the selective lateral confinement。

相关文档
最新文档