基因工程 112
基因工程复习资料
基因工程复习资料1.基因工程操作的主要对象是2.正丁醇在氯化铯-溴化乙锭连续梯度离心法纯化DNA中的作用3.溴化乙锭是很强的诱变剂,含溴化乙锭的废物可以如何处理后不再有危害性?4.通过凝胶电泳回收的DNA样品,因检测需要而含有的溴化乙锭对后续DNA操作有什么影响?5.在一个DNA分子中,若T所占的摩尔比是28.2%,则C所占的摩尔比为6.有氨基酸对应的密码子有几个?7.终止密码子有哪三个?8.起始密码子是9.高温导致DNA双链解链成单链从面引起变性的原因10.DNA变性的过程与特点?11.几种DNA分子的表示方法12.通常DNA右手双螺旋构象的表示是13.RNA和DNA在碱基组成上的区别14.乙醇在提取DNA过程中的作用?15.复性温度取决于什么条件?16.在何种情况下互补的两条DNA单链会结合成双链17.提取质粒DNA时为了使其与其它染色体DNA分开,细胞裂解液pH值应达到多少?18.碱性SDS法提取质粒DNA的原理与步骤19.碱法提取质粒DNA时,为了去除RNA常采用水解RNA的酶是20.提取大肠杆菌质粒DNA之前要培养菌体,在培养基中加入适量抗菌素的目的是什么?21.限制性内切酶作用的底物是什么?22.限制性核酸内切酶切割哪一类型DNA分子时效率最高23.限制酶的命名原则?24.影响限制性核酸内切酶的催化效率的因素有哪些?25.限制性核酸内切酶切割DNA后在其5’和3’端各自产生什么样的末端?26.大多数限制性核酸内切酶的最适反应温度是27.Ⅱ类限制性核酸内切酶的识别序列特点是什么?28.对一克隆的DNA片段做酶切图谱分析,需要用到哪种酶?29.已知某一内切酶在一个环状 DNA 上有 4个切点,当用此酶切割该环状 DNA ,可以得到的片段数是30.在对目的基因和载体DNA进行同聚物加尾时,需采用哪种酶?31.Pω0 DNA 聚合酶比Taq DNA聚合酶准确是因为它具有什么样的酶活性?32.内切酶产生星号活性的主要原因有哪些?33.限制性核酸内切酶是由细菌产生的. 其生理意义是什么?34.重组DNA技术中实现目的基因与载体DNA拼接的酶是35. E.coli DNA连接酶反应系统中必须的辅助因子是36. E.coli DNA连接酶可以连接哪两种DNA片段?37.T4-DNA 连接酶是通过形成磷酸二酯键将两段 DNA 片段连接在一起,其底物的关键基团是什么?38.TaqDNA聚合酶可以不需要模板,在双链DNA的末端加一个碱基,主要是加39.以mRNA为模板,催化cDNA合成的酶是40.cDNA第一链合成通常所需的引物是41. E.col i连接酶的功能?42.S1核酸酶的功能?43.碱性磷酸酯酶的作用是44.DNA片段5′端脱磷酸化的目的是什么?45.在PCR的引物中,引物的3′端不应有46.进行PCR设计引物时,引物的核苷酸序列必须与模板链的哪一段核苷酸序列互补?47.PCR的原理与反应过程48.PCR 提前进入平台期原因有哪些?49.PCR反应中的复性温度取决于哪些因素?50.如果要扩增10-20kb的DNA片段,需要使用什么类型的PCR?51.琼脂糖凝胶中琼脂糖的浓度取决于c Z′基因在克隆子筛选中的作用53.在显色互补筛选法中,阳性转化子的颜色是54.常用的报告基因有哪些?55.若某质粒带有 lacZ’标记基因,那么与之相匹配的筛选方法是在筛选培养基中加入56.TA质粒克隆载体可以用来直接克隆PCR产物的原理?57.各种克隆载体能克隆外源DNA片段的长度是多少?58.质粒概念及特点描述59.如果要将某植物抗病基因转入十字花科植物中,应选择哪种克隆载体60.质粒克隆载体有哪些?61.基因工程载体应具备哪些主要条件?62.基因治疗的临床实施中,一般多选用的基因载体是63.Cos位点是哪种克隆载体的序列64.λ噬菌体线性 DNA 分子的两端各有一个天然黏性末端,该末端包含的碱基数是65.酵母人工克隆载体是由哪几个部分组成的?66.应用于克隆和分离单链外源DNA片段的克隆载体是67.pUC18 与 pUC19 的区别是什么?68.串联启动子表达载体的目的是什么?69.穿梭克隆载体的组成与特点70.Ep克隆载体可以酵母作为宿主,这是因为它含有哪个质粒的复制起始位点?71.在构建cDNA基因文库时应选择哪种克隆载体?72.构建基因组文库时,第一步是对基因组DNA进行随机切割,其方法有哪些?73.质粒被选为基因运载体的理由有哪些?74.质粒克隆载体中MCS是指75.pBR322是一种改造型的质粒,含有两个抗性基因,其中四环素抗性基因来自哪种质粒?76.Pribnow框是指序列77.真核生物结构基因的组成?78.原核生物结构基因的组成?79.基因的化学合成步骤80.根据已知基因序列分离目的基因有哪些方法?81.首次完成了重组质粒DNA对大肠杆菌转化的科学家是82.重组DNA分子导入植物细胞的方法有哪些?83.mRNA分子在结构上的显著特征有哪些?84.核酸或蛋白质标记中常用的放射性标记有哪些?85.真核生物受体菌的细胞有哪些?86.转化大肠杆菌的方法有哪些?其中转化效率最高的是哪个?87.大肠杆菌作为受体菌的优缺点各有哪些?88.植物细胞作为受体细胞有哪些优点及缺点?89.酵母作为受体细胞有哪些优点及缺点?90.哪一种金属离子常用于诱导大肠杆菌感受态细胞91.提取大肠杆菌质粒DNA之前要培养菌体,在培养基中加入适量抗菌素的目的是什么?92.mRNA差别显示技术的技术特点及步骤93.在cDNA技术中,所形成的发夹环可用酶切除?94.cDNA-RDA的技术特点及步骤95.DNA接头在基因工程中的主要作用是96.启动子具有哪些特征97.Southern印迹杂交作用的对象是98.Northern印迹杂交作用的对象是99.1976年,美国联邦政府授权国立卫生研究院就制定了世界上第一个实验室基因工程法规是100.法国于1997年就明确要求从美国进口的农产品必须标示GMO或非GMO的区别,这里的GMO指的是101.有利于基因的蛋白质产物分泌的元件是102.融合蛋白的特性103.可用于蛋白质进一步分离纯化的方法有哪些?104.基因芯片中所采用样品的标记方法有哪些?105.基因芯片的应用范围106.原核生物基因SD区是指107.哺乳动物乳腺生物反应器的优缺点各有哪些?108.干扰素的主要生理作用表现有哪些?109.DNA达到50%变性的温度称为。
基因工程[可修改版ppt]
可以使原核生物与真核生物之间的遗传信息进行 相互重组和转移 可以使动物与植物之间的遗传信息进行相互重组 和转移 可以使人与其他生物间的遗传信息进行相互重组 和转移
2.2 DNA重组
2.2.1 DNA的一般性质 2.2.1.1 DNA的组成和结构
腺嘌呤脱氧核苷酸(A) 鸟嘌呤脱氧核苷酸(G) 胞嘧啶脱氧核苷酸(C) 胸腺嘧啶脱氧核苷酸(T)
主要途径: 限制性内切核酸酶酶切法 PCR扩增法 化学合成法
2.2.2 获得DNA片段的主要途径
2.2.2.1 限制性内切核酸酶和DNA片段化 限制性内切核酸酶(restriction endonuclease) 功能:能识别双链DNA中特殊核苷酸序列, 并在合适的 反应条件下,使每条链的一个磷酸二酯键断开,产生具有 3´OH和5´P的DNA片段。 识别序列规律:旋转对称或左右互补对称。 切割位点:在识别序列上使磷酸二酯键断开的位置。
这些酶的普遍缺点: 热稳定性差,DNA热变性后即被灭活。
Taq酶
来自水生嗜热菌Thermus aquaticus YT-1,该菌是 1969年从美国黄石国家森林公园火山温泉中分离得 到。生长在70~75℃极富矿物质的环境中。
Taq聚合酶的特点及浓度:
具有良好的热稳定性。在70~75℃时生物学活性最 高;92.5℃时半衰期为130 min。
人类DNA的长度相当于3200公里
2 nm
11 nm
30 nm
DNA双螺旋短区域 染色质节段
由紧密包装的核小体组 成的30nm的染色质纤维
染色体节段的一部分 中期染色体的凝缩节段
染色体
300 nm
700 nm
1400 nm
基因工程pdf
基因工程一、基因工程的定义和发展基因工程是指通过分子生物学技术,对生物体基因进行修饰、重组、转移、克隆和表达,以达到改善生物性状、治疗疾病、改良农作物和工业微生物等目的的技术。
自20世纪70年代以来,基因工程在科学界得到了广泛关注和发展。
随着相关技术的不断进步,基因工程已经成为现代生物学研究的重要领域之一,为人类疾病治疗、农业生产、工业生物技术等领域提供了强大的技术支持。
二、基因工程的基本技术基因工程涉及的基本技术包括DNA的分离和纯化、PCR扩增、基因克隆、基因表达和基因编辑等。
这些技术为基因工程的研究和应用提供了基础工具。
三、基因克隆基因克隆是基因工程的核心技术之一,它通过将目的基因从生物体中分离出来,并将其重组到载体DNA分子中,从而获得重组DNA分子。
重组DNA分子可以在受体细胞中复制和表达,从而实现目的基因的遗传和表达。
基因克隆技术为基因功能研究、蛋白质表达和药物开发等领域提供了重要的技术支持。
四、基因表达基因表达是指将重组DNA分子导入受体细胞后,目的基因在细胞内被转录和翻译,进而产生相应的蛋白质。
基因表达是基因工程研究的重要内容之一,通过调节目的基因的表达水平,可以实现对生物性状的改良和优化。
五、基因编辑基因编辑是指通过特定的酶对DNA分子进行精确的修饰和剪切,以达到治疗遗传性疾病或消除有害微生物的目的。
CRISPR-Cas9系统是一种常用的基因编辑工具,它可以通过对特定DNA序列的精准定位和剪切,实现对特定基因的敲除、插入或替换。
基因编辑技术的发展为人类疾病治疗、生物安全保护等领域提供了新的可能。
六、基因测序基因测序是指通过测定生物体DNA分子的序列,来了解其遗传信息的过程。
随着第二代测序技术的发展,基因测序已经成为基因工程研究的重要手段之一,它可以帮助我们更深入地了解生物体的遗传信息,为疾病诊断、个性化治疗和生物进化研究等领域提供重要的数据支持。
七、基因工程在医学中的应用基因工程在医学领域有着广泛的应用,包括疾病诊断、治疗和预防等方面。
基因工程知识点 超全精选全文完整版
可编辑修改精选全文完整版基因工程一、基因工程的概念基因工程是指按照人们的愿望,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
由于基因工程是在二、基因工程的基本工具1、限制性核酸内切酶-----“分子手术刀”2、DNA连接酶-----“分子缝合针”3、基因进入受体细胞的载体-----“分子运输车”1.“分子手术刀”——限制性核酸内切酶(限制酶)(1)存在:主要存在于原核生物中。
(2)特性:特异性,一种限制酶只能识别一种特定的核苷酸序列,并且能在特定的切点上切割DNA分子。
(3)切割部位:磷酸二酯键(4)作用:能够识别双链DNA分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。
(5)识别序列的特点:(6)切割后末端的种类:DNA分子经限制酶切割产生的DNA片段末端通常有两种形式——黏性末端和平末端。
当限制酶在它识别序列的中轴线两侧将DNA的两条链分别切开时,产生的是黏性末端,而当限制酶在它识别序列的中轴线处切开时,产生的则是平末端。
2.“分子缝合针”——DNA 连接酶(1)作用:将限制酶切割下来的DNA 片段拼接成DNA 分子。
(2)类型相同点:都连接磷酸二酯键3.“分子运输车”——载体(1)载体具备的条件:①能在受体细胞中复制并稳定保存。
②具有一个至多个限制酶切点,供外源DNA 片段插入。
③具有标记基因,供重组DNA 的鉴定和选择。
(2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌拟核之外,并具有自我复制种类 E ·coli DNA 连接酶 T 4DNA 连接酶 来源 大肠杆菌 T 4噬菌体 功能特性只能将双链DNA 片段互补的黏性末端之间的磷酸二酯键连接起来 缝合两种末端,但连接平末端之间的效率较低能力的双链环状DNA分子。
(3)其他载体:λ噬菌体的衍生物、动植物病毒。
高中生物基因工程知识点总结
高中生物基因工程知识点总结基因工程,作为现代生物技术的核心领域之一,在高中生物课程中占据着重要的地位。
它不仅具有深刻的理论意义,还在农业、医药等众多领域有着广泛的实际应用。
下面我们就来详细梳理一下高中生物中基因工程的相关知识点。
一、基因工程的概念基因工程,又叫基因拼接技术或 DNA 重组技术,是指按照人们的意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。
二、基因工程的基本工具1、限制性核酸内切酶(限制酶)限制酶能够识别双链 DNA 分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。
它具有特异性,即一种限制酶只能识别一种特定的核苷酸序列,并在特定的切点上切割 DNA 分子。
2、 DNA 连接酶DNA 连接酶的作用是将两个具有相同末端的 DNA 片段连接起来,形成磷酸二酯键。
3、运载体常用的运载体有质粒、噬菌体和动植物病毒等。
运载体需要具备的条件有:能在受体细胞中复制并稳定保存;具有一至多个限制酶切点,供外源 DNA 片段插入;具有标记基因,便于筛选。
三、基因工程的基本操作程序1、目的基因的获取目的基因可以从自然界中已有的物种中分离出来,也可以用人工的方法合成。
常用的方法有:从基因文库中获取、利用 PCR 技术扩增目的基因、通过化学方法人工合成。
2、基因表达载体的构建这是基因工程的核心步骤。
基因表达载体包括目的基因、启动子、终止子和标记基因等。
启动子是 RNA 聚合酶识别和结合的部位,能驱动基因转录出 mRNA;终止子是转录终止的信号;标记基因的作用是为了鉴别受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。
3、将目的基因导入受体细胞将目的基因导入植物细胞常用的方法有农杆菌转化法、基因枪法和花粉管通道法;导入动物细胞常用的方法是显微注射法;导入微生物细胞常用感受态细胞法。
4、目的基因的检测与鉴定检测目的基因是否导入受体细胞可以采用 DNA 分子杂交技术;检测目的基因是否转录出 mRNA 可以采用分子杂交技术;检测目的基因是否翻译成蛋白质可以采用抗原抗体杂交技术;还可以进行个体生物学水平的鉴定,比如抗虫或抗病的接种实验。
基因工程精选全文完整版
– 可直接表达不含任何原核序列的外源 蛋白(原核表达载体)
– 以融合蛋白的形式进行表达(原核基 因融合表达载体)
表达载体
真核表达载体含有:
– 原核基因序列 – 真核转录单位
真核表达载体:有两类
– 不带病毒复制子 – 带病毒复制子
质粒(plasmid)
存在于细菌等细胞质中 双链环状DNA分子 大约 1-200 Kb 具有自主复制和转录能力 不能独立存活 在子细胞中保持恒定的拷贝数 并表达其遗传信息
质粒(plasmid)
在细胞内的复制分两种类型
严密控制型
松弛控制型
(stringent control) (relaxed control)
基因工程操作流程
基因重组示意图
基因工程上游技术基本过程
选择载体 获得目的基因 目的基因与载体的重组 重组载体的转化 重组子的筛选与鉴定
载体(vector)
质粒(plasmid) 噬菌体(phage) 病毒(virus)
载体的条件
分子小( 10 Kb) 有限制酶酶切位点 可自主复制 有足够的copy数 带筛选的标志
法将允许克隆人体器官
法国总理若斯潘(2000年9月28日) 表示:
– 法国政府将允许对人体器官克隆技术 进行用于医疗目的的研究
基因工程技术
上游技术(upstream)
– 重组子的构建 – 工程菌的构建及高效表达
下游技术(downstream)
– 工程菌大规模发酵最佳参数的确定 – 新型生物反应器的研制 – 高效分离介质及装置的开发 – 分离纯化的优化控制 – 生物反应器等一系列仪器、仪表的设计制造 – 超滤、反渗透技术的应用
基因工程的概述
基因工程的概述定义:狭义的基因工程仅指用体外重组DNA技术去获得新的重组基因;广义的基因工程则指按人们意愿设计,通过改造基因或基因组而改变生物的遗传特性。
如用重组DNA技术,将外源基因转入大肠杆菌中表达,使大肠杆菌能够生产人所需要的产品;将外源基因转入动物,构建具有新遗传特性的转基因动物;用基因敲除手段,获得有遗传缺陷的动物等。
基因工程又被称为基因拼接技术或者DNA重组技术,可分为微生物基因工程、动物基因工程和植物基因工程三种生物转基因技术。
其主要特点是通过人工转移的方式,将一种生物的基因转移到另外一个受体细胞中,并使该转移基因在受体细胞中表达,从而获得全新的具有生物活性的产物。
基因工程技术为遗传物质研究和医药研究提供了重要的技术支撑。
动物基因工程技术利用先进的生物技术手段对动物基因进行编辑和改造,以达到揭示基因功能和利用基因治疗疾病等目的。
常见的动物基因工程技术包括基因敲除、基因敲入、基因编辑和转基因技术等。
通过使用基因编辑工具精确地切割和删除目标基因的特定区域,使该基因在动物个体中的表达缺失,可以揭示该基因在特定生理过程中的功能和调控机制。
基因治疗能够通过修复或替换患有遗传性疾病的动物个体的缺陷基因来达到治疗和预防遗传疾病的目的。
如利用基因编辑技术可以修复猫头鹰视网膜变性等遗传性视网膜疾病,从而改善视力。
微生物具有结构简单、迅速繁殖的特性,在其繁殖发展中应用生物基因工程技术能取得显著的效果。
将外源基因转入微生物中表达,使微生物能够生产人所需要的产品,如抗体和药用蛋白质等。
利用基因工程技术开发的重组亚单位疫苗、重组活载体疫苗及基因疫苗,有利于打破传统疫苗的局限性。
植物细胞具有全能性,在特定环境下,植物组织或者细胞能够生长出完整的植株。
所以,可以将药物基因组合到植物细胞内,通过分别培养,得到具有药物基因的植株。
植物独特的稳定遗传特性为医药领域的发展提供了充足而良好的条件。
目前,借助植物基因工程制造的药物有纯化的血清蛋白、干扰素与脑啡肽等。
基因工程资料
基因工程资料基因工程是一门涉及生物学、化学、物理学和计算机科学等多学科的交叉学科,它通过改变生物体的基因组,从而改变生物体的性状和功能。
基因工程的应用范围广泛,包括农业、医学、环境保护等领域。
本文将介绍基因工程的基本概念、技术原理、应用领域以及相关伦理和安全问题。
一、基因工程的基本概念基因工程是指通过对生物体的基因进行人为改造,以达到特定目的的一种技术。
它包括基因的克隆、基因的定点突变、基因的插入和基因的删除等操作。
基因工程的核心是DNA分子的重组,通过将不同来源的DNA片段进行连接,构建出具有特定功能的重组DNA。
二、基因工程的技术原理基因工程的关键技术包括基因克隆、基因定点突变、基因插入和基因删除等。
其中,基因克隆是指将感兴趣的基因从生物体中分离出来,并进行扩增,得到足够多的DNA片段。
基因定点突变是指通过人为干预,使某个基因的序列发生改变,从而改变基因的功能。
基因插入是指将外源基因导入到目标生物体的染色体中,使其表达出外源基因的特性。
基因删除是指通过人为干预,将某个基因从生物体的染色体中删除,从而消除该基因的功能。
三、基因工程的应用领域基因工程在农业、医学、环境保护等领域都有广泛的应用。
在农业领域,基因工程可以用于改良作物,使其具有抗虫、抗病、耐旱等性状,提高农作物的产量和品质。
在医学领域,基因工程可以用于治疗遗传性疾病,如基因治疗、基因替代治疗等。
在环境保护领域,基因工程可以用于处理污染物、修复生态环境等。
四、基因工程的伦理和安全问题基因工程的发展给人类带来了巨大的福祉,但同时也引发了一系列的伦理和安全问题。
首先,基因工程涉及到对生物的改造,可能会对生物的自然属性产生不可逆的影响,引发生态系统的紊乱。
其次,基因工程可能导致基因的非预期突变,产生未知的风险和危害。
此外,基因工程还涉及到对个体隐私和人类基因库的管理问题,需要制定相应的法律和伦理准则。
综上所述,基因工程是一门重要的交叉学科,它通过改变生物体的基因组,实现对生物体性状和功能的改变。
什么是基因工程基因工程的操作步骤
什么是基因工程基因工程的操作步骤基因工程技术为基因的结构和功能的研究提供了有力的手段。
基因工程也是我们要学习的一门知识。
今天小编就与大家分享基因工程相关知识,仅供大家参考!基因工程的介绍基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。
基因工程的特征1)跨物种性外源基因到另一种不同的生物细胞内进行繁殖。
2)无性扩增外源DNA在宿主细胞内可大量扩增和高水平表达。
基因工程的优点基因工程最突出的优点是打破了常规育种难以突破的物种之问的界限,可以使原核生物与真核生物之间、动物与植物之间,甚至人与其他生物之间的遗传信息进行重组和转移。
人的基因可以转移到大肠杆菌中表达,细菌的基因可以转移到植物中表达。
基因工程的操作步骤工具(1)酶:限制性核酸内切酶、DNA连接酶、(2)载体:质粒载体、噬菌体载体、Ti质粒、人工染色体1.提取目的基因获取目的基因是实施基因工程的第一步。
如植物的抗病(抗病毒抗细菌)基因,种子的贮藏蛋白的基因,以及人的胰岛素基因干扰素基因等,都是目的基因。
要从浩瀚的“基因海洋”中获得特定的目的基因,是十分不易的。
科学家们经过不懈地探索,想出了许多办法,其中主要有两条途径:一条是从供体细胞的DNA中直接分离基因;另一条是人工合成基因。
直接分离基因最常用的方法是“鸟枪法”,又叫“散弹射击法”。
鸟枪法的具体做法是:用限制酶将供体细胞中的DNA切成许多片段,将这些片段分别载入运载体,然后通过运载体分别转入不同的受体细胞,让供体细胞提供的DNA(即外源DNA)的所有片段分别在各个受体细胞中大量复制(在遗传学中叫做扩增,如使用PCR技术),从中找出含有目的基因的细胞,再用一定的方法把带有目的基因的DNA片段分离出来。
基因工程讲解
基因工程讲解基因工程是一项涉及基因的科学技术,通过在生物体的基因组中修改、操控和转移基因,从而改变生物体的遗传特性。
它使人类能够更深入地理解基因的功能和作用,并有望为人类带来巨大的医学和农业进步。
本文将从基因工程的基本概念、原理和应用方面进行详细讲解。
一、基因工程的基本概念基因工程,又称遗传工程,是指通过改变生物体的遗传物质,使其具备特定的性状和功能。
基因工程技术是细胞和分子生物学、遗传学等多学科的交叉应用,它利用遗传物质(DNA、RNA)进行基因的克隆、修饰和转移,使其能够产生有益的变化。
基因工程技术已经广泛应用于药物研发、农业改良和环境保护等领域。
二、基因工程的原理基因工程的主要原理是通过DNA重组技术,将想要的外源基因导入到目标生物体中,并使其能够在目标生物体内表达出来。
DNA重组技术包括DNA的分离、切割、连接和转染等步骤。
首先,从源生物体或合成DNA样本中分离出目标基因;然后,利用限制性内切酶或PCR方法对DNA进行切割;接着,将切割好的目标基因与载体(如质粒)连接起来,形成重组DNA;最后,将重组DNA导入到目标生物体中,使其能够在目标生物体内表达出来。
三、基因工程的应用基因工程技术在医学、农业和环境保护等领域都有广泛的应用。
在医学领域,基因工程技术可以用于疾病的诊断和治疗。
例如,基因工程技术可以通过克隆和表达人类蛋白质来生产药物,如重组人胰岛素和重组人生长激素等。
此外,基因工程技术还可以用于基因治疗,即将正常基因导入患者体内,以纠正基因缺陷所导致的疾病。
在农业领域,基因工程技术可以用于农作物的改良和耐病性的提高。
通过转基因技术,科学家们可以将具有抗虫、抗病等特性的基因导入作物中,使其能够抵御病虫害的侵袭,提高农作物的产量和品质。
同时,基因工程技术也可以改善作物的营养组分,使其更加丰富和有益于人类健康。
在环境保护方面,基因工程技术可以用于生物修复和生物监测。
生物修复是指利用基因工程技术改良生物体的代谢途径,使其具备降解有害物质的能力,从而清除环境中的污染物。
《基因工程》
1、(多选)一个基因表达载体的构建应包括 ABCD
A.目的基因 B.启动子 C.终止子 D.标记基因
2、下列关于基因表达载体的叙述不正确的是 A
A.启动子是与RNA聚合酶识别和结合的部位,是起
始密码
B.启动子和终止子都是特殊结构的DNA短片段,对
结果:产生黏性未端(碱基互补配对)。
基因的针线──DNA连接酶
作用:将互补配对的两个黏性末端缝隙 连接起来,使之成为一个完整的DNA分子。
DNA连接酶与DNA聚合酶的比较
作用实质
是否需模板
连接 DNA链
DNA连接酶
DNA聚合酶
都是催化两个核苷酸之间形成磷酸二酯键
不需要
需要
双链
单链
作用过程
在两个DNA片段之间形 成磷酸二酯键
(1)高产、稳产和具优良品质的品种 用基因工程的方法可以改善粮食作物的
蛋白质含量。如“向日葵豆”植株。 (2)抗逆性品种
将细菌的抗虫、抗病毒、抗除草剂、抗盐 碱、抗干旱、抗高温等抗性基因转移到作物 体内,将从根本上改变作物的特性。如转基 因抗虫棉。
二、动物基因工程前景广阔
——动物品种改良、建立生物反应器、器官移植等
哪些转基因作物已进入大规模商业化 应用阶段? 转基因大豆、玉米、棉花和油菜
(一)抗虫转基因植物
1.虫害给农作物带来了哪些影响? 传统农业如何防治害虫? 有哪些不足?
2.现在已有哪些抗虫植物问世?
3. 抗虫基因
Bt毒蛋白基因、蛋白酶抑制剂基因、
淀粉酶抑制剂基因、植物凝集素基因等 请阅读P18生物资料技术卡,了解一些抗虫 基因的抗虫机理。
什么是基因工程
什么是基因工程基因工程(Genetic Engineering),也称为基因改造、基因操作或遗传改良,是指人工干预生物体的遗传物质,以改变其基因组和基因表达方式的技术。
通过基因工程,科学家可以对生物体的基因进行删减、组合和重新排列,以实现特定的目标,包括改良农作物、生产药物、治疗疾病等。
基因工程的基本原理是利用DNA分子的特性进行操作。
DNA是生物体内携带遗传信息的分子,由一系列碱基序列组成。
基因工程的过程主要涉及到以下几个步骤:1. 基因分离:科学家首先需要从生物体中选择目标基因,对其进行分离和纯化。
一般通过PCR技术、限制酶切剪和电泳等方法,将目标基因从整个基因组中提取出来。
2. 基因复制:接下来,将分离得到的目标基因进行复制,使其得到足够数量的拷贝。
这一步骤可以通过PCR技术或者克隆等方法进行。
3. 基因修饰:为了使目标基因在新的宿主生物体中能够正常表达,科学家可能需要对其进行一些修饰。
这包括在基因中插入特定的启动子和终止子,以及进行DNA序列的修饰和优化。
4. 基因导入:经过修饰后的目标基因需要被导入到宿主生物体中。
这可以通过多种方法实现,例如基因枪、化学转化、电穿孔和冷冻法等。
5. 基因表达:一旦目标基因成功导入宿主生物体,科学家会利用生物体的代谢和复制系统,使其在宿主中得以表达。
不同的宿主生物体有不同的表达方式,例如细菌可通过表达蛋白来生产药物,植物可以通过表达特定基因来改良农作物。
基因工程技术的应用非常广泛。
在农业领域,基因工程可以用于改良作物的抗病性、耐旱性和营养价值,提高农作物产量和品质。
在医学领域,基因工程技术已经应用于制造重组蛋白药物,例如重组人胰岛素和重组人生长激素。
此外,基因工程还被用于研究基因功能、揭示疾病的发生机制,以及开发新的治疗方法。
尽管基因工程技术在农业、医学和科学研究中具有广阔的前景,但其也存在一些伦理和安全问题。
例如,基因工程可能导致基因污染和生物多样性的减少;基因改良农作物可能引发环境问题;基因编辑技术可能涉及到人类胚胎的修改,引发伦理问题。
基因工程基本原理及技术
即可按密码子推算出其基因的核苷酸序列, 随后应用化学合成法,就可在短时间内合成目的 基因。
用于结构清楚、分子量较小的基因
vitro,(dNTP;Buffer;Mg2+,Primers)
Chain reaction: Repeated cycles of reaction under the same condition.
The PCR reaction
Denature
95ºC
Extend Primers
72ºC
Anneal Primers 45-68ºC
游离型(transient)或称病毒颗粒型载体,这类载体携带外 源基因后,本质上仍然是一种完整或缺损的病毒,能够以 病毒颗的形式在宿主内自行复制或在辅助病毒存在下进行 复制。这类载体有痘苗病毒、腺病毒、杆状病毒。
5.克隆载体(cloning vector) 用于在受体细胞中进行目的基因扩增的载体
。一般具有较低的分子量、较高的拷贝数和松弛型 复制子。主要由细菌质粒或与其它质粒、噬菌体及 真核生物病毒的DNA重组构建。常用载体pUC18 pUC 19.
(2)常由4—6个碱基组成; (3)具有回文序列(palindromic sequence)
切口类型:
(1)形成粘末端(cohesive end):DNA分子末端的单链 片段能与其他DNA单链片段互补配对形成双链者,这 两个DNA分子末端单链片段即为粘末端:如BamHⅠ
5` -G↓GATCC-3`
其可同时具有细菌质粒的复制原点和真核生物可识 别的病毒复制原点或酵母菌的自主复制序列(ARS ),它即能在原核细胞中扩增又能在真核细胞中复制
基因工程
• 工具酶和载体 • 目的基因 • 受体细胞
基因工程的“分子手术刀”——限制性内切 酶
基因工程的“分子手术刀”——限制性内切 酶
基因工程的“分子运输车”——载体
②基因工程的基本操作
• 目的基因的获得(从基因中获得、PCR技术 扩增目的基因)
• 基因表达载体的构建 • 目的基因导入受体细胞 • 目的基因的检测与鉴定
PCR基因扩增技术
聚合酶链反应(Polymerase Chain Reaction , PCR)是80年代中期发展起来的体 外核酸扩增技术。它具有特异、敏感、产率高、 快速、简便、重复性好、易自动化等突出优点; 能在一个试管内将所要研究的目的基因或某一 DNA片段于数小时内扩增至十万乃至百万倍, 使肉眼能直接观察和判断;可从一根毛发、一 滴血、甚至一个细胞中扩增出足量的DNA供分 析研究作
基因工程
基因工程概念基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。
基因工程技术为基因的结构和功能的研究提供了有力的手段。
学科概况基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。
所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术,属于基因重组。
是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。
它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。
它克服了远缘杂交的不亲和障碍。
学科起源基因工程是在分子生物学和分子遗传学综合发展基础上于本世纪70年代诞生的一门崭新的生物技术科学。
一般来说,基因工程是指在基因水平上的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中"安家落户",进行正常复制和表达,从而获得新物种的一种崭新的育种技术。
这个定义表明,基因工程具有以下几个重要特征:首先,外源核酸分子在不同的寄主生物中进行繁殖,能够跨越天然物种屏障,把来自任何一种生物的基因放置到新的生物中,而这种生物可以与原来生物毫无亲缘关系,这种能力是基因工程的第一个重要特征。
基因工程
有特异性 对DNA片段 片段 无选择性 具备条件 种类 人工改造
DNA连接酶 DNA连接酶
来自大肠杆菌 T4噬菌体 T4噬菌体
磷 酸 二 酯 键 P4
(运)载体 P6
EcoRI
EcoRI
双链 中的GAATTC 中的 识别的序列是 双链DNA中的 GA之间的磷酸二酯键 之间的磷酸二酯键 切点是
某种限制酶将DNA分子切成下图 例 某种限制酶将 分子切成下图 所示的粘性末端
DNA如何复制? 如何复制? 如何复制
DNA聚合酶 聚合酶 DNA聚合酶 聚合酶
DNA连接酶 连接酶
引物Biblioteka DNA连接酶 连接酶连接成DNA的酶 的酶 连接成 水解DNA的酶 的酶 水解 切割DNA的酶 的酶 切割 连接RNA的酶 的酶 连接 水解RNA的酶 的酶 水解 基因工程中的酶
DNA聚合酶 聚合酶 DNA酶 酶 限制酶 RNA聚合酶 聚合酶 RNA酶 酶 DNA连接酶 连接酶
4、目的基因的表达和检测
大量的受体细胞接受不多的目的基因。 大量的受体细胞接受不多的目的基因。处 理的受体细胞中真正摄入了目的基因的很少, 理的受体细胞中真正摄入了目的基因的很少, 必须将它从中检测出来。 必须将它从中检测出来。 将每个受体细胞单独培养形成菌落, 将每个受体细胞单独培养形成菌落,检测 菌落中是否有目的基因的表达产物。 菌落中是否有目的基因的表达产物。淘汰无表 达产物的菌落,保留有表达产物的进一步培养、 达产物的菌落,保留有表达产物的进一步培养、 研究。 研究。
P10
DNA变性 DNA变性 双链解聚为单链
低温55-60 低温 复性 引物与模板结合 引物与模板结合
中温70-75 中温 延伸 Taq酶 引物起始合成 Taq酶从引物起始合成 互补链
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专一性
如:EcoRI限制酶
如:EcoRI限制酶 (1)该限制酶只能识别GAATTC的序列,并 特定的切点是G和A之间 (2)EcoRI限制酶识别了GAATTC的序列后,将 会发生什么样的变化?
重播
练习使用EcoRI 剪切目的基因
CTTCATG AATTCCGTAG AATTCCCTAA GAAGTACTTAA GGCATCTTAA GGGATT
b
3、基因的运输工具——运载体
常用的运载体:质粒、 噬菌体和动植物病毒 运载体必须同 时满足三个要求: ①能与目的基因结 合;②能进入受体 生物细胞并在受体 生物细胞内复制并 表达;③比较容易 得到。
标记基因, 便于进行 检测。
给科学插上想象的翅膀, 你会收获更多!
你见过树会走路吗?
设想
能否让热带鱼 也能发光?
能发光的水母
不能发光的热带斑马鱼
能发荧光的热 带斑马鱼
能产生人胰岛素的大肠杆菌
基因“嫁接”
T
A
G T
C C G G A A T T
• 又称基因拼接技术,或重组DNA 技 术。 • 通俗的说,就是按照人们的意愿, 把一种生物的某种基因提取出来, 加以修饰改造,然后放到另一种生 物的细胞里,定向的改造生物的遗 传性状。
CTTCATG GAAGTACTTAA
AATTCCCTAA GGGATT
AATTCCGTAG 目的基因 GGCATCTTAA
黏性末端
基因操作的工具
2.分子针线—DNA连接酶
积极思考 DNA连接酶连接的是两个脱氧 核苷酸分子的什么部位?
使用DNA连接酶制作重组DNA分子
AATTCCGTAG GGCATCTTAA
转基因大肠杆菌
(能分泌人的胰岛素)
• 培育转基因大肠杆菌的关键步骤:
1.ONE 2.TWO 3.THREE
胰岛素基 因从人体 细胞内提 取出来
基因的“剪刀”
胰岛素基 因与运载 体DNA连接
胰岛素基因 导入受体 (大肠杆菌) 细胞
基因的运载体
基因的“针线”
二、基因操作的工具
1.基因的“剪刀”──限制性核酸内 切酶(限制酶) 一种限制酶只能识别一种特定 的核苷酸序列,并在特定的切点上 切割DNA分子。
甲片段
CTTCATG AATTCCGTAG AATTCCCTAA GAAGTACTTAA GGCATCTTAAGGGATT
乙片段
重组DNA分子
例题.DNA连接酶的作用是:
A.子链和母链之间形成氢键 B.黏性末端之间形成氢键 C.两个DNA末端间的缝隙连接 D.A、B、C都对
C
基因操作的工具
3.基因的运输工具——运载体
胰岛素从猪、牛等动物的胰 腺中提取,100Kg胰腺只能提取 4-5g的胰岛素,其产量之低和价 格之高可想而知。 将合成的胰岛 素基因导入大肠杆 菌,每2000L培养液 就能产生100g胰岛 素!使其价格降低 了30%-50%!
我国生产的部分胰岛素产品
我国生产的部分基因工程药物和疫苗
乙肝疫苗
3、环境保护:基因工程做成的“超级细菌”
2
基因工程的操作步骤 1.目的基因的提取 2.目的基因与运载体结合 3.目的基因导入受体细胞 4.目的基因的检测与表达
3
基因工程的应用
exercise
1.基因工程的正确操作步骤是:
①使目的基因与运载体结合 ②将目的基因导入受体细胞 ③检测目的基因的表达是否符合特定性状要求 ④提取目的基因 A. ③ ② ④ ① C. ④ ① ② ③ B. ② ④ ① ③ D. ③ ④ ① ②
转抗寒基因 的番茄
转黄瓜抗青枯病基因的甜椒
生长快(阿根廷)
2、基因工程与药物研制
许多药品的生产 是从生物组织中提取 的。受材料来源限制 产量有限,其价格往 往十分昂贵。
我国生产的部分基因 工程疫苗和药物
微生物生长迅速,容易控制,适于大规模工 业化生产。若将生物合成相应药物成分的基因导 入微生物细胞内,让它们产生相应的药物,不但 能解决产量问题,还能大大降低生产成本。
能吞食和分解多种污染环境的物质。
通常一种细菌只能分解石油中的一种烃类,用基因 工程培育成功的“超级细菌”却能分解石油中的多种烃 类化合物。有的还能吞食转化汞、镉等重金属,分解 DDT等毒害物质。
转基因食品
安全吗?
基因工程的原理 1
基因工程的操作工具 1.基因的剪刀 ——限制性内切酶 2.基因的针线 ——DNA连接酶 3.基因的运输工具 ——运载体
基因工程
原 理:
基因重组
操作水平: DNA分子水平 结 果: 定向地改造生物的遗传性状,
获得人类所需要的品种。
• 培育转基因大肠杆菌的简要过程:
普通大肠杆菌
人体组织细胞
提取
(不能分泌人的胰岛素) 大肠杆菌(含人的胰岛素
基因)
胰岛素基因
与运载体DNA拼接
导入
你认为上述培育转 基因大肠杆菌的关 键步骤有哪些?
常用的运载体有两类: • 目的基因(如人的胰岛素基因)怎样才能 1)细菌细胞质的质粒 导入受体细胞(如大肠杆菌细胞)? 2)噬菌体或某些动植物病毒
质粒存 在于许多细 菌和酵母菌 等生物中,是 拟核或细胞 核外能够自 主复制的很 小的环状DNA 分子.
一、基因工程与作物育种
获得高产、稳产和具有 优良品质的农作物和具 有抗逆性的作物新品种。
2.要使目的基因与对应的载体重组,所需的 两种酶是( ) ①限制酶 ②连接酶 ③解旋酶 ④还原酶 A.①② B.③④ C.①④ D.②③
ABC
3.(多选题)如图,下列有关酶功 能的叙述中,正确的是 a
A.切断a处的酶为限制性内切酶 B.连接a处的酶为DNA连接酶 C.切断b处的酶为解旋酶 D.连接b处的酶为RNA聚合酶