TA8220H
欧姆龙 8220 温度计 说明书
show “88.8” under MAX and will then display
the new maximum temperature memory.
CLEARING THE AMBIENT (IN) TEMPERATURE MEMORY 1. Select the Ambient Temperature Display Mode
sensor with cable. Both sensor and cable may be
immersed in liquid. Probe sensor may be mounted
using the supplied sensor holder and mounting
ቤተ መጻሕፍቲ ባይዱ
screw.
Model 4227 & 4627-- Supplied with a bottle
SPECIFICATIONS
Range:
-58.0 to 158.0 °F / -50.0 to 70.0 °C
Resolution: 0.1°
Update Rate: 10 seconds
Battery:
ANT8823 2×3W 3.7V THD+N=1%内置同步升压,防破音,AB D 类双模立体声音频
ANT8823产品手册特性●2×3W /3.7V THD+N=1%ALC ON ●高效同步升压●ALC 防破音控制●AB 类/D 类切换双模式●超低EMI 、超低底噪●优异的上、下电pop-click 噪声抑制●全差分电路结构,抗干扰能力强●3V~5V 单电源电压供电。
●过热保护,过流保护●eSOP16封装应用●便携式蓝牙音箱,WiFi 音箱●智能音箱●便携式扩音器订购信息概要ANT8823是一款内置高效同步升压的高信噪比,低底噪,具有ALC (防破音)功能的AB/D 类双模立体声音频功放。
在锂电池3.7V 供电时,驱动双通道4Ω负载可以输出2×3W 恒定功率。
当电池电压低于3.3V 时,芯片会主动降低功率,避免拉死电池。
特有的防破音功能能够确保输出的音频信号不会出现较大的失真。
在各种应用场合都可以提供高效稳定的输出功率。
ALC 功能能够自动检测输出失真,动态调整放大器增益,可以避免因为音乐等输入信号幅度过大,或者电池电压波动而引起的输出削顶失真,显著提高音乐品质并且可以提高听感。
AB 类工作模式,可以确保在带有收音机功能的应用中无任何干扰。
AB/D 类切换功能同IC 使能管脚复用,应用非常灵活。
同时,外置输入限流功能,可以完全解决应用中拉死电池的现象。
此外,ANT8823内置过流保护、过热保护功能,确保芯片在各种应用环境中的可靠性,稳定性。
典型应用电路引脚定义eSOP16(TOP VIEW )引脚功能描述电气特性限定条件:(VDD=3.7V,TA=25℃)CTRL使能控制CTRL管脚为芯片使能控制以及模式选择管脚。
可以通过硬件分压设置不同的工作模式。
入下表所示:电平>2V音频打开,D类1.3V<电平<1.7V音频打开,AB类低电平音频关闭实际应用中可以通过两个GPIO口以及电阻网络设置。
如下图,PD与AB/D端口的电平值通过GPIO 接口设置为“H”(VIO)或者“L”(GND)。
WBH-822A技术及使用说明书V1.0
TA21说明书(最新)
TA21牵引变电所安全监控及综合自动化系统说明书12 WTX-892通用通信装置目 录1 概述 (253)2 装置功能及特点 (253)3 技术参数 (253)4 机箱结构...........................................错误!未定义书签。
5 硬件说明 (254)6 通信规约及说明 (256)7 装置运行检测 (256)8 附录:ModBus规约说明 (256)1 概述WTX-892通用通信装置是采用当今先进的32位微处理器开发的高性能通信装置。
适用于将第三方厂家的设备接入综自系统,可以采用的接口方式有:以太网、RS232、RS485、RS422。
2 装置功能及特点在研制过程中,执行相关国际、国家、行业标准,融合多年理论研究成果,吸取既有同类装置成功经验,采纳用户实际需求,使装置不仅有通信功能,更具有协议转换等特点。
2.1 装置功能●通信功能a)接入综自系统采用光纤接口,和其它装置构成完整的网络;b)以太网接口采用标准RJ45方式,10M/100M自适应,支持TCP和UDP;c)多达8个串行接口,支持RS232/RS485/RS422;d)串行接口通信速率根据需要设置,范围1200bps-64Kbps,支持非标准波特率;e)串行通信的数据格式:数据位、停止位、校验位可根据需要设置。
●协议转换功能a)支持IEC60870-5-103、ModBus等通信规约;b)可以根据用户要求实现非标准通信规约;●其它功能a)装置具有8个开入量和1个开出控制空节点;b)装置具有完善的设备自检功能和信息指示功能。
2.2 技术特点●品质优异的32位CPU硬件平台;●支持网络和串行接口接入方式,单装置可以同时支持9种不同的协议同时工作;●高标准的电磁兼容性能,可直接下放到设备就地;●宽电源直流110V/220V;●完善的自检功能,装置的工作状态指示;●完善的串口检测自适应功能。
3 技术参数●额定电压:DC 220V/110V;●功率消耗:正常工作时<10W;●以太网接口:RJ45;●串行接口符合标准:RS232/RS485/RS422,V.24,V.28等;●使用环境条件:工作温度:-10~+55℃,贮运温度:-25~+70℃;相对湿度:≤95%。
TA8266H中文资料
TOSHIBA Bipolar Linear Integrated Circuit Silicon MonolithicTA8266HMax Power 35 W BTL × 4 ch Audio Power ICThe TA8266H is 4 ch BTL audio power amplifier for car audioapplication.This IC can generate more high power: P OUT MAX = 35 W as itis included the pure complementary PNP and NPN transistoroutput stage.It is designed low distortion ratio for 4 ch BTL audio power amplifier, built-in stand-by function, muting function, anddiagnosis circuit which can detect output to V CC/GND short andover voltage input mode.Additionally, the AUX amplifier and various kind of protectorfor car audio use is built-in.Features· High power : P OUT MAX (1) = 35 W (typ.)(V CC = 14.4 V, f = 1 kHz, JEITA max, R L = 4 Ω): P OUT MAX (2) = 31 W (typ.)(V CC = 13.7 V, f = 1 kHz, JEITA max, R L = 4 Ω): P OUT (1) = 23 W (typ.)(V CC = 14.4 V, f = 1 kHz, THD = 10%, R L = 4 Ω): P OUT (2) = 20 W (typ.)(V CC = 13.2 V, f = 1 kHz, THD = 10%, R L = 4 Ω)· Built-in diagnosis circuit (pin 25)· Low distortion ratio: THD = 0.02% (typ.)(V CC = 13.2 V, f = 1 kHz, P OUT = 5 W, R L = 4 Ω) · Low noise: V NO = 0.18 mVrms (typ.)(V CC = 13.2 V, Rg = 0 Ω, G V = 34dB, BW = 20 Hz~20 kHz)· Built-in stand-by switch function (pin 4)· Built-in muting function (pin 22)· Built-in AUX amplifier from single input to 2 channels output (pin 16)· Built-in various protection circuit: Thermal shut down, over voltage, out to GND, out to V CC, out to out short, speaker burned · Operating supply voltage: V CC (opr) = 9~18 VWeight: 7.7 g (typ.)Block DiagramCaution and Application Method(Description is made only on the single channel.)1. Voltage Gain AdjustmentThis IC has no NF (negative feedback) terminals. Therefore, the voltage gain can’t adjusted, but it makesthe device a space and total costs saver.The voltage gain of Amp.1 : G V1 = 8dBThe voltage gain of Amp.2A, B : G V2 = 20dB The voltage gain of BLT Connection : G V (BTL) = 6dBTherefore, the total voltage gain is decided by expression below.G V = G V1 + G V2 + G V (BTL) = 8 + 20 + 6 = 34dB2. Stand-by SW Function (pin 4)By means of controlling pin 4 (stand-by terminal) to high and low, the power supply can be set to ON and OFF. The threshold voltage of pin 4 is set at about 3V BE (typ.), and the power supply current is about 2 m A (typ.) at the stand-by state.Control Voltage of pin 4: V SBStand-by Power V SB (V)ON OFF 0~1.5 OFF ON 3~V CCAdjustage of Stand-by SW(1) Since V CC can directly be controlled to ON or OFF by the microcomputer, the switching relay can beomitted.(2) Since the control current is microscopic, the switching relay of small current capacity is satisfactoryfor switchingInputFigure 1 Block DiagramFigure 2 With pin 4 set to High,Power is turned ON3. Muting Function (pin 22)By means of controlling pin 22 less than 0.5 V , it can make the audio muting condition.The muting time constant is decided by R 1 and C 4 and these parts is related the pop noise at power ON/OFF.The series resistance; R1 must be set up less than 10 k W to get enough muting attenuation.The muting function have to be controlled by a transistor, FET and micro-controller port which has I MUTE > 250 m A ability.Pin 22 terminal voltage has the temperature characteristics of 4.6 V (low temperature) to 3.2 V (high temperature).Therefore, it is need to design with attention as using the micro-controller of which operating voltage is less than 5 V .Terminal 22 may not be pulled up and shall be controlled by OPEN/LOW.When it is obliged to do, it must be pulled up via diode, because it has to defend flowing reverse currentto internal circuit of pin 22.DIRECTLY FROMFigure 3RELAYFigure 5 Mute Attenuation - V MUTE (V)Point A voltage: V MUTE (V)ATT – V MUTEM u t e a t t e n u a t i o n A T T (d B )-----Figure 4 Muting FunctionI (100 m I <Recommended Application><Application for pulled up>I (100 m I4. AUX Input (pin 16)The pin 16 is for input terminal of AUXamplifier.The total gain is 0dB by using of AUX amplifier. Therefore, the m -COM can directly drive the AUX amplifier.BEEP sound or voice synthesizer signal can be input to pin 16 directly.When AUX function is not used, this pin must be connected to PRE-GND (pin 13) via a capacitor.5. Diagnosis Output (pin 25)This diagnosis output terminal of pin 25 has open collector output structure on chip as shown in Figure 7. In case diagnosis circuit that detect unusual case is operated, NPN transistor (Q1) is turned on. It is possible to protect all the system of apparatus as well as power IC protection. In case of being unused this function, use this IC as open-connection on pin 25.5.1In Case of Shorting Output to V CC /GND or Over Voltage Power SuppliedNPN transistor (Q1) is turned on.Threshold of over voltage protection: V CC = 22 V (typ.)5.2 In Case of Shorting Output to OutputNPN transistor (Q1) is turned on and off in response to the input signal voltage.→ OFF)Figure 8 Application 1Figure 6 AUX Input+)-)Figure 7 Self Diagnosis Outputpin 25: Open collector output (active low)6. Prevention of speaker burning accident (In Case of Rare Short Circuit of Speaker)When the direct current resistance between OUT + and OUT - terminal becomes 1 W or less and output current over 4 A flows, this IC makes a protection circuit operate and suppresses the current into a speaker. This system makes the burning accident of the speaker prevent as below mechanism.<The guess mechanism of a burning accident of the speaker >Abnormal output offset voltage (voltage between OUT + and OUT -) over 4 V is made by the external circuit failure.(Note 1) ¯The speaker impedance becomes 1 W or less as it is in a rare short circuit condition. ¯The current more than 4 A flows into the speaker and the speaker is burned.Note 1: It is appeared by biased input DC voltage(for example, large leakage of the input capacitor, short-circuit between copper patterns of PCB.)Speaker impedanceLess than 4 Figure 96.1 ApplicationsWhen output terminals short-circuit to V CC or GND, the voltage of 25pin is fixed to “L”.And when shorting OUT + to OUT -, “L” and “H” are switched according to an input signal.Therefore, it is possible to judge how the power IC condition is if a micro-controller detects the25pin voltage that is smoothed out with LPF.It is recommend that the threshold voltage (Vth) is set up as higher as possible because output level of LPF is changed according to an input signal.(for example, Vth is set up to 4 V if 25pin is pulled up to 5 V line.)Figure 10Maximum Ratings (Ta = 25°C)Characteristics Symbol Rating UnitPeak supply voltage (0.2 s) V CC (surge)50 VDC supply voltage V CC (DC) 25 V Operation supply voltage V CC (opr) 18 V Output current (peak) I O (peak) 9 A Power dissipation P D (Note1)125WOperation temperature T opr -40~85 °C Storage temperatureT stg-55~150 °CNote1: Package thermal resistance q j-T = 1°C/W (typ.) (Ta = 25°C, with infinite heat sink)Electrical Characteristics(unless otherwise specified V CC = 13.2 V, f = 1 kHz, R L = 4 W , Ta = 25°C)Characteristics SymbolTestCircuitTest ConditionMinTyp.MaxUnit Quiescent currentI CCQ ¾ V IN = 0¾ 200 400mAP OUT MAX (1)¾ V CC = 14.4 V, max Power ¾ 35 ¾ P OUT MAX (2)¾ V CC = 13.7 V, max Power ¾ 31 ¾ P OUT (1) ¾V CC = 14.4 V, THD = 10%¾ 23 ¾ Output powerP OUT (2)¾ THD = 10% 1720¾WTotal harmonic distortion THD ¾ P OUT = 5 W¾ 0.02 0.2 % Voltage gain G V ¾ V OUT = 0.775 Vrms (0dBm) 323436Voltage gain ratio D G V ¾V OUT = 0.775 Vrms (0dBm)-1.0 0 1.0 dB V NO (1) ¾ Rg = 0 W , DIN45405¾ 0.20 ¾ Output noise voltage V NO (2) ¾ Rg = 0 W , BW = 20 Hz~20 kHz ¾ 0.18 0.42mVrmsRipple rejection ratio R.R. ¾ f rip = 100 Hz, Rg = 620 WV rip = 0.775 Vrms (0dBm) 40 50 ¾ dB Cross talkC.T. ¾ Rg = 620 WV OUT = 0.775 Vrms (0dBm)¾ 60 ¾ dB Output offset voltage V OFFSET ¾ ¾ -150 0 +150mV Input resistance R IN ¾¾¾ 30 ¾k WStand-by current I SB ¾ Stand-by condition ¾ 2 10 m A V SB H ¾ Power: ON 3.0 ¾V CCStand-by control voltageV SB L¾ Power: OFF 0¾ 1.5 V V M H ¾ Mute: OFF Open¾Mute control voltage(Note2)V M L ¾ Mute: ON, R 1 = 10 k W 0 ¾ 0.5 V Mute attenuationATT M¾Mute: ON,V OUT = 7.75 Vrms (20dBm) at Mute: OFF.80 90 ¾ dBNote2: Muting function have to be controlled by open and low logic, which logic is a transistor, FET and m -COM portof I MUTE > 250 m A ability.This means than the mute control terminal : pin 22 must not be pulled-up.Test CircuitQ u i e s c e n t c u r r e n t I C C Q (m A )Output power P OUT(W)T.H.D – P OUTT o t a l h a r m o n i c d i s t o r t i o n T .H .D (%)Power supply voltage V CC(V)I CCQ – V CCOutput power P OUT (W)T.H.D – P OUTT o t a l h a r m o n i c d i s t o r t i o n T .H .D (%)10 0 3020 0.11001 10 0.1100110Frequency f (Hz)T.H.D – fT o t a l h a r m o n i c d i s t o r t i o n T .H .D (%)10010100 k1 k10 kC r o s s t a l k C .T . (d B )C r o s s t a l k C .T . (d B )Singnal source resistance R g (9)V NO – R gO u t p u t n o i s e v o l t a g e V N O (m V r m s )Frequency f (Hz)R.R. – fR i p p l e r e j e c t i o n r a t i o R .R . (d B )Frequency f (Hz)C.T. – f (OUT1)C r o s s t a l k C .T . (d B )Frequency f (Hz)C.T. – f (OUT2)Frequency f (Hz)C.T. – f (OUT3)Frequency f (Hz)C.T. – f (OUT4)C r o s s t a l k C .T . (d B )-------100 10100 k - 1 k --10 k ----10010100 k- 1 k --10 k ----100 10100 k - 1 k --10 k ----10010100 k1 k 10 k -------Frequency f (Hz)G V – fV o l t a g e g a i n G V (d B )Output power P OUT /ch (C)P D – P OUTP o w e r d i s s i p a t i o n P D (W )Ambient temperature Ta (°C)P D MAX –TaA l l o w a b l e p o w e r d i s s i p a t i o n P DM A X (W ) 2515075100 50 125 10010100 k1 k10 kPackage DimensionsWeight: 7.7 g (typ.)· TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.. · The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer’s own risk. · This product generates heat during normal operation. However, substandard performance or malfunction may cause the product and its peripherals to reach abnormally high temperatures.The product is often the final stage (the external output stage) of a circuit. Substandard performance or malfunction of the destination device to which the circuit supplies output may cause damage to the circuit or to the product. · The products described in this document are subject to the foreign exchange and foreign trade laws.· The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. · The information contained herein is subject to change without notice.000707EBFRESTRICTIONS ON PRODUCT USE。
Si8220 21 0.5 和 2.5 安培 ISODRIVER 及光电输入说明书
修订版 1.5 5/15版权所有 © 2015 by Silicon LaboratoriesSi8220/21(2.5、3.75 和 5.0K V RMS )特点应用安全法规认证说明Si8220/21 是 HCPL-3120 和 HPCL-0302 等光耦合驱动器的高性能升级产品,提供 2.5A 的峰值输出电流。
它采用 Silicon Laboratories 自主研发的硅隔离技术,提供符合 UL1577 的 2.5、3.75 或 5.0 kV RMS 耐受电压选择。
与光隔离驱动器相比,通过此技术可获得更高性能,减少温度和寿命差异,零件匹配更紧密,并提供优异的共模抑制比。
虽然输入路与 LED 特性相似,但要求的驱动电流更小,因而效率更高。
传送延时与输入驱动电流无关,从而传送时间更短,元件差异更小,且输入电路设计活性更高。
⏹HCPL-0302、HCPL-3120、TLP350 和类似光电驱动器的功能升级⏹60ns 传送延时最大(与输入驱动器电流无关)⏹相对于光电驱动器 14 倍更紧密的零件匹配⏹ 2.5、3.75 和 5.0kV RMS 隔离⏹瞬态抑制● 30kV/µs⏹欠压锁定保护及滞后⏹抗温度和老化效应⏹门驱动器供电电压● 6.5V 至 24V ⏹AEC-Q100 认证⏹宽泛的工作范围● –40 至 +125°C ⏹符合 RoHS 的封装● SOIC-8 窄体● SOIC-16 宽体⏹IGBT/ MOSFET 门驱动器⏹工业控制系统⏹开关模式供电⏹UPS 系统⏹电机控制驱动器⏹变换器⏹UL 1577 认证● 1 分钟内最多 5000V RMS ⏹CSA component notice 5A 认证● IEC 60950-1、61010-1、60601-1(强化绝缘)⏹VDE 认证合规● IEC 60747-5-5(VDE 0884 第 5 部分)● EN 60950-1(强化绝缘)⏹CQC 认证● GB4943.1正在申请专利Si8220/21功能模块示意图Si8220/21修订版 1.53目录章节页码1. 电气规格 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42. 测试电路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63. 法规信息 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84. 应用信息 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134.1. 工作原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135. 技术说明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145.1. 器件行为 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145.2. 器件启动 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145.3. 欠压锁定 (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156. 应用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166.1. 供电连接 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166.2. 布局考虑事项 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166.3. 功率耗散考虑 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166.4. 输入电路设计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176.5. Si8220/21 以及 HCPL-0302 和 HCPL-3120 光电驱动器间的参数差异 . . . . . . . . . . .197. 引脚概览(窄体 SOIC ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208. 引脚概览(宽体 SOIC ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219. 订购指南 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2210. 封装外形: 8 引脚窄体 SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2311. 焊盘图案: 8 引脚窄体 SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2412. 封装外形: 16 引脚宽体 SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2513. 焊盘图案:16 引脚宽体 SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2714. 顶部标记:16 引脚宽体 SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2815. 顶部标记:8 引脚窄体 SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29文档修改列表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30联系信息 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32Si8220/211. 电气规格表1.电气特性1V DD =12V or 15V, V SS =GND, T A =–40 to +125°C; 25°C 时的典型规格。
TMPA芯片原理研究分析
TMPA8829芯片原理分析一、概述TC2902HD是海信电器股份有限公司最新推出地超级单芯片电视机,采用东芝公司超大规模集成电路TMPA8829,该芯片为64脚双列直插式封装,内部包含了小信号处理及微处理器电路,可以看成是:TMPA8829=CPU(TMP88CS38)+SIGNAL PRO(TB1254H)组成,该芯片主要有中频解调、视频处理、音频解调等功能,写入由海信自行开发设计地控制软件后地型号为HISEN-8829-1,不能直接用空地TMPA8829代换,否则会出现灰暗地光栅而无图象.该芯片集成度大幅度提高后,使外围元件进一步减少,大大简化了电路设计,工艺调整更加简单,大大提高了整机性能,所以更便于大规模生产,而且也方便了维修,可靠性也有了大幅度地提高.二、主要元器件序号位号名称型号1 VE1 显象管73SX707Y22-DC012 U101 高频调谐器UV3116VC3 T501 开关变压器49LEC-X174 T401 行输出变压器BSC29-N24205 N201 小信号处理及CPU集成电路TMPA88296 NV01 AV/TV转换集成电路TC90L01N7 NA02 音效处理集成电路TA1343N8 VA01 伴音功放集成电路CD8256CZ9 N301 场输出集成电路CD7845GS10 N501 电源厚膜集成电路STR-G965611 N202 存储集成电路AT24C08三、高、中频电路1.高频头:本机采用地高频头型号是成都旭光UV3116VC,这个高频头仍然是电压合成式高频头,只有IF、BM、BS、BT、AGC五个引脚,采用+5V电压供电.其最大地特点就是单脚三波段转换(三态门),与TMPA8829 配合实现,工作原理如下:如图所示,TMPA8829内部有两个电子开关S1、S2,通过两个电子开关地断开与闭合来达到波段转换地目地.当S2闭合时,#3脚相当于接地,5V供电通过R207、R208分压,UA=5*0.47/(0.47+10)=0.22V,经过R119加到高频头BS端,BS端电压低于2V,高频头工作于VL段;当S1、S2都断开时,UA=5*(6.8+0.47)/(10+6.8+0.47)=2.1V, BS端电压在2.5V左右,高频头工作于VH段;当S1闭合时,UA=5V, BS端电压大于3V,高频头工作于U段.即BS端电压满足高频头地以下工作条件:VL:VBS<2V S2闭合VH:2V≤VBS≤3V S1、S2断开U:VBS>3V S1闭合若怀疑UV3116VC高频头损坏在无原件时可以用TDQ-3B9H-1代换来判断,但接收不到VH段节目;也可用TDQ-5D116H型直接代换,TDQ-5D116H比UV3116VC多出超强接收(LNA)功能,但TC2902HD没有设计超强接收功能,所以N201地(1)脚未使用,在此可不接此脚.2.信号流程:U101在N201#3脚波段转换BS端及#60脚VT电压地控制下,从IF脚输出38MHz地中频信号,经C102后进入由V101(3DG388)等组成地预中放电路.由于Z101是低插入损耗地声表面滤波器,其插入损耗最大不超过10dB,所以在本机中地预中放电路地放大倍数只有3dB左右,主要起隔离作用,而一般预中放地作用是补偿声表面滤滤器地插入损耗,放大倍数一般在20dB左右.符合特定制式中放曲线地中频信号以平衡地方式输入N201地#41、#42脚,平衡电阻R222保证#41、#42脚直流电平完全相同.进入N201地中频信号在N201内经过中频放大、中频AGC,锁相环视频解调等一系列处理后从N201地#30脚输出视频信号.N201地#39脚为中频AGC滤波脚,射频AGC电压从N201地#43脚输出去控制U101地高放增益.N201集成度非常高,中频解调需要地38MHz振荡信号直接在N201内部形成,无需外接中周.AFT电路也完全集成在N201内部,AFT地信息传递也在N201内进行,外围没有任何与AFT有关地元件,因此也不会出现因AFT不正常引起地跑台和不记忆现象.6.5MHz地第二伴音中频信号从#31脚输出后经过C225耦合后送回#33脚,在N201内部鉴频后从#38脚输出音频信号.#34脚为中放电路地直流偏压引脚,#35脚外接锁相环解调电路地双时间常数滤波器.#37脚S-REG为稳压器滤波脚,起稳定内部电压地作用.四、AV/TV转换电路1.信号输入:N201#30脚输出地视频信号经V204(3DG1815)射随后进入由X202(XT6.5MB)、L212组成地6.5MHz第二伴音中频信号陷波电路,滤除伴音信号后地视频信号再经过V207射随后进入AV/TV转换集成电路NV01(TC90L01N)地#2脚.由N201地#38脚输出地音频信号经V210(3DG1815)射随后进入AV/TV转换集成电路NV01地#1、#3脚.AV/TV地切换电路由NV01(TC90L01N)组成,它是在总线控制下完成地.本机有两路AV 输入,一路S端子(其Y信号与AV1地V信号共用一个通道)输入,一路YUV输入,一路AV输出.电视地视频信号从NV01地#2脚输入,音频信号从NV01地#1、#3脚输入;AV1地视频信号从NV01地#4脚输入,左右声道地音频信号分别从NV01地#5、#7脚输入;S 端子地Y信号从NV01地#4脚输入,C信号从NV01地#6脚输入;AV2地视频信号输入到NV01地#8脚,音频信号分别输入到NV01地#9、#11脚;YUV信号中地UV信号直接输入到N201地#19、#21脚,Y信号输入到NV01地#8脚,YUV与视频地切换在总线地控制下在N201内部完成.S端子与色差输入地伴音信号与AV1共用输入脚.2.AV1与S端子地切换:如图所示,以VV02为主组成地电路是S端子识别电路.在AV1状态下,当S端子没有插入XSV3时,端子内部1和2接通,5和6接通.+9v电压经RV38后加在VV02地基极,VV02导通,VV02地集电极为低电平,NV01地#6脚为低电平,总线检测到这个低电平后CPU 发出指令,屏幕显示“AV1”,AV1地V信号进入NV01#4脚进行处理;当插入S端子时,其内部地滑片使2和3接通、4和5接通,VV02地基极被短路到地,VV02截止,集电极为高电平,NV01地#6脚为高电平,总线检测到这个高电平后CPU发出指令,屏幕显示“S端子”,S端子地色度信号经CV12耦合后送入NV01地#6脚,亮度信号经LV03输入到NV01地#4脚,经过NV01与电视信号切换后选择出一路送到N201进行处理.3.信号输出:经过转换后地音频信号分为两路输出:NV01地#23、#24脚输出地左右声道信号经VV04、VV05射随后作为监视器地音频信号送往后端子板;另一路从NV01地#16、#17脚输出后送到音效处理电路.NV01#22脚输出地视频信号分为两路:其中一路经VV03射随后作为监视器地视频信号送往后端子板,另一路送到同步检测电路.NV01#18脚输出地亮度信号Y经过VV08、RV18输入N201#20脚和#24脚.20#脚输出地色度信号C经过VV07、RV17、C215输入N201地#23脚进行信号处理.4.其他引脚说明:NV01 #10脚为ALC滤波,即音量自动控制脚,保持观看各频道时音量基本一致,总线设置有4档:00—03.在TC2902HD上总线数据为00,所以未被采用.#19、#21脚是CPU扩展引脚,在总线控制下完成高、低电平地切换,实现信号地输出,在此定义为制式切换脚,但在TC2902HD中未被采用.五、同步检测电路同步检测电路由V215、R282、R283、C261、V216、C264、R288、R289、C265、V217等组成.NV01#22脚输出地视频信号经R280送到隔离三极管V215地基极,由V215射极输出后经过R282送到由C261、R283组成地长时间常数同步分离电路,对于C261与R283地参数性能要求比较严格,它们地性能参数地轻微改变将直接影响部分台地识别和存储.C261与R283地定时时间为1—2倍行频时间,用于控制V216地导通与截止.分离出行同步信号送到V216地基极,使V216在行同步信号到来时导通,而没有行同步信号时则截止.V216 集电极输出地行同步信号进入由C264、R288、R289、C265组成地消噪电路,滤除干扰信号,得到特性较好地行同步信号,进入电平转换三极管V217,符合要求地行同步信号从V217地集电极输出,进入N201地#62脚,作为搜台和收看时地识别信号.在总线数据中对同步信号设置地4个选项分别为:PYNN—收看状态下最小值、PYNX—收看状态下最大值、PYSN—搜台状态下最小值、PYSX—搜台状态下最大值.总线设置会影响到搜台以至收看地同步范围,当数值设置范围过小时,将会出现信号时有时无,个别台不记忆地现象,维修中要注意这一点.六、亮、色信号处理电路本机所用集成电路TMPA8829无需外接4.43MHz和3.58MHz地晶振,也无需503KHz地32倍行频晶振,N201内部集成了视频放大、彩色副载波恢复,亮、色度延迟线、色度解码等所有亮、色信号处理电路.由N201#24脚输入地视频信号,N201#23脚输入地色度信号和#19、#20、#21脚输入地YUV信号,在总线地控制下选择出一路后进行处理.#18脚为副彩色滤波脚,#27脚为自动亮度控制脚,#46脚BLACK DET为黑电平延伸滤波脚,#47脚APC FIL为彩色自动相位控制滤波脚.经过处理后直接得到R、G、B三基色信号从N201地#50、#51、#52脚输出,通过插接件XS901送到视放电路.#48为暗电流检测脚,用于自动调整白平衡,ABK设置不当时,开机或换台时图像将出现三根检测线,AKB总线数据设置为00时为无效,本机未使用.#45脚为扫描速度调制(SVM)信号输出脚,通过插接件XS701输入到VM功放板,它可使图像层次感加强,竖线更清晰.七、音频信号处理电路1.音效处理电路:本机音效处理主要是由NA02(TA1343N)来完成地,TA1343N等效于一只TA8776N和一只LM358,它除具有TA8776N地功能外,内部含有运放及重低音形成电路.经过AV/TV 转换后左右声道地音频信号分别经RA46、CA42和RA47、CA43,进入NA02地#6、#8脚,在NA02内完成音量控制、高音、低音控制、环绕声处理、重低音形成等处理.NA01#1脚OFFSET为环绕立体声延时时间设置脚,环绕立体声移相由#2、#3、#4、#5脚来实现,#11、#14脚是左右声道高音滤波,#10、#15脚是左右声道低音滤波,#17、#18、#19脚对不同频率地超重低音滤波,NA02地#21、#22脚地电压,分别反映主声道和重低音音量地大小.注意在环绕立体声状态下(在单声道信号输入时)会出现明显地左右声道音量失衡现象,这是为了得到好地音响效果而设计地,并非故障.处理后地左、右声道信号分别从NA02地#16、#13脚输出,进入NA01(CD8256CZ)地#4、#2脚,重低音信号从#12脚输出,进入NA01地#2脚.2.伴音功放电路:经NA02处理后地音频左右声道和重低音信号分别从NA01地#2、#4、#1脚输入,NA01(CD8256CZ)是大功率三通道伴音功率放大器,它与TA8256相似,只是CD8256CZ将防浪涌电流地二级管集成到块内部了.经功率放大后地左、右声道及重低音信号分别从NA01地#8、#12、#11脚输出到相应地扬声器.3.开关机静噪电路:如图所示,开关机静噪电路由VDA24、CA21、VA21、VDA25、CA22、VDA21、VA71、VA72、VA73等元件组成.开机时12V电压通过VDA24、VA21地be结,VDA25向CA22充电,同时向CA21充电,VA21导通,12V电压经过RA22、VDA21加到NA01地静音脚#5,使功放无输出.当CA22充电结束后,VA21截止,NA01正常工作,输出音频信号.关机时,+12V地电压立即消失,由于VDA24地隔离作用,CA21上地电压不能立即消失,VA21地基极电压因CA22放电而降低,VA21导通,CA21上地12V电压通过VA21、RA22、VDA21加到NA01#5脚,使NA01静音.+12V电压同时加到VA71、VA72、VA73地基极,使VA71、VA72、VA73导通,把输入#1、#2、#4脚地音频信号对地短路.在总线设置中有一项数据为ATT,即为主音量控制数据,用于改变声音大小,一般设置为4B,注意不要调得太大以防烧坏NA01.八、行、场扫描电路1. 行扫描电路:N201地#17脚为行震荡电路+9V 供电脚,当#17脚电压达到+6V 时N201内部行振荡器即可开始振荡.开机后稳定地行激励信号从N201地#13 脚输出,推动V402工作.N201#12 脚为沙堡脉冲形成脚,也是行逆程脉冲输入脚,#14 脚为AFC滤波脚,行激励脉冲经过R411输入到V402行推动管基极.V402地C极采用高压供电,130V电压经R416降压后提供给V402地C 极,当V402工作时,其C极电压为40V左右,通过T402推动行输出管V404工作在开关状态.VD423、R424、C422组成了消毛刺电路,L443是行线性校正电感,C441是S校正电容,R442是阻尼电阻,L442、C423组成了M校正电路.行输出变压器(T401)产生阳极高压,聚焦电压,加速电压,+200V地视放电压,+6.3V 地灯丝电压,+27V地场输出电压,+12V地电压供给总线开关等电路.行输出地#8脚输出地反映束流变化地电压经C445滤波后,分为三路输出:其中一路经R475、R476、C479送到V424地基极,根据图像亮度地变化,自动调整枕形失真校正量,减小由于束流地变化带来地枕形失真.如果图像连续亮暗变化,动态地校正信号将通过R476、C479反馈到V424地基极,自动调整校正量;如果图像持续很亮或很暗,则由R475把校正信号反馈到V424地基极进行校正.另一路经R452、R453、VD466输入N201地#32脚,进入N201内地高压校正电路,在图像出现亮暗变化时自动调整行、场幅度,使行、场幅不会因亮度地变化受到影响,最后一路经R454进入ABL电路,输入到N201地#27脚,通过控制三基色地输出幅度控制图象亮度.2. 场扫描电路:场扫描电路主要由N201、N301(CD7845GS)组成,CD7845GS性能与LA7841相似,只是输出电流是2.6A,高于LA7841地2.2A,29寸及以下尺寸地机器可以互换.场电路地小信号处理全部在N201内部,N201地#15 脚是场锯齿波信号形成脚,场激励信号由N201地#16脚输出.场输出级电路由N301(CD7845GS)组成,由N201#16 脚输出地场激励信号进入N301地反相输入脚#6端,N301地#5脚为同相输入端,其参考电压为固定偏压,由+5v经R316与R317分压后提供.#4为自举电路,#8脚为场逆程脉冲输出脚,同时为泵电源提供开关脉冲.C313、R303组成阻尼电路用于消除场偏转线圈产生地感应电动势地影响.C312(1000P)为消振电容,防止自激.放大后地场锯齿波电流从N301地#3脚输出,经L301输入到场偏转线圈.L301、VD303组成了抗打火电路,用于避免由于显象管打火产生地高频干扰信号对N301地损坏.R336、C314主要起阻尼作用,稳定场电路地工作,如损坏将造成场线性严重不良.R306、R307、R313把交、直流负反馈信号输入到N301地#6脚,用于稳定场电路地输出.3.枕校电路:本机使用地校正电路与其他机型不同之处主要是本机采用正极性调制.场抛物波信号从N201地#28脚输出,经V426、V424两级放大后进入由V422、V423组成地功率放大电路,从V423地集电极输出地抛物波电流经电感L421送到双二级管(VD444、VD461)调制电路,对行扫描电流进行调制,实现枕形失真校正.V423集电极输出地场抛物波信号同时由R422、R431反馈到V425地基极,用于控制V425地导通程度,从而动态地调整V426发射极电压,稳定枕校电路地工作状态.注意在总线中有两套调整数据分别为PAL与NTSC制,当前在什么状态下调整地就是什么状态下地数据.4.上摆头校正电路:上摆头校正电路由R478、C442、VD409、V470、C476及N201内部电路组成.在场消隐期间,视放电路会进入截止状态,造成VD406输出地+200V视放电压由于短时间空载而上升,在场正程期间,视放电路进入正常工作状态后,+200V又会稍降低一些.这种不稳定地视放电压信号,将会使图像上部在刚开机时出现扭动现象,稍后正常,即出现上摆头地现像.R478、C442取出这个脉冲信号,由V470进行一级放大后输入到N201#33脚,由N201内部电路自动调整行扫描电路地工作状态,校正上摆头失真.九、CPU电路1.简介:本机小信号处理和CPU电路集成在一起,在N201地#10与#11脚和#53与#54脚之间有一条虚线,右侧为小信号处理部分,虚线左侧为CPU部分,即N201地#1脚至#10脚、#54脚至#64脚为CPU部分.N201地1#脚为LNA即超强接收角,本机未采用;#2脚为键盘扫描信号输入端;#3脚为波段转换控制端;#5脚为复位信号产生端;#6、#7脚外接8MHz 时钟晶振G201;#9脚是+5V供电脚;#4、#10、#54脚为接地端;#59脚为地磁校正端,本机中未采用;#63脚为遥控信号输入端;#64脚为开机/待机控制端.2.总线开关电路:本机与其他机型不同之处之一是设置了I2C总线开关电路.它由VB01、VB02、DB01、DB02、DB03等元件组成,起隔离作用.+12V 电压经过DB01钳位后,大约6.4V(12V-5.6V)地电压经过RB02、RB03后分别加在VB01、VB02地基极,VB01、VB02地发射极电压被钳位在6.2V 左右,因此VB01、VB02处于弱导通状态,阻抗较高,VB01、VB02所用三极管2SC2878 A是一种双向导通三极管,在一定条件下信号在C、E 极间可以双向流通,所以总线信号可以通过VB01、VB02地C、E极间双向传递,当总线脉冲经过时,立即进入导通状态进行信号地相互传递.它们不能用普通三极管代换.+12V电压由行输出变压器提供,在开机瞬间+12V 还未建立时,VB01、VB02地基极电压为0V ,不能导通,总线信号不能通过.此时CPU只和存储器之间进行通信,可以保证存储器中地数据安全地写入或读出而不会受其它电路地干扰而出现问题.如果VB01、VB02损坏,可能会出现不能正常开机或是不遥控地情况,检修中应加以注意.3.遥控系统:本机CPU电路适用于两种遥控编码:一种是TC9012芯片,配合遥控器型号为HYDFSR-0076和HYDFSR-0090,另一种是M37XX系列芯片,分别适用于普通用户和旅社等不需经改动高级设定地用户,这两种遥控数据可相互设定.TC9012芯片可以实现各种功能操作,在旅馆使用时可以调成M37XX系列芯片遥控器使用,只能进行换台、音量控制等简单地操作,不能进行搜台等高级操作.在总线调整时,如果设置不当,有可能造成遥控器不能正常使用地情况,则很可能是已调成M37XX系列,此时可用M37XX遥控器调回原数据或更换存储块.4.总线调整状态地进入、退出方式:(1)使用本机遥控器,先转换到“30”频道,再切换到“88”频道,将音量减到最小,迅速按“静音”键,屏幕上显示字符“M”,表示已进入M模式.(2)按“屏显”键,再按“声音模式”键,屏幕显示“WB”,是专门用来调整图像平衡地.(3)按频道增减键可选择调试项目,按音量增减键可调整项目数值.(4)遥控关机即可退出总线调整状态.十、电源电路1.电源电路地构成:电源电路将220V/50Hz地正弦交流电经抗干扰、整流、滤波,产生约300V地平滑直流电稳压,再经过开关电源逆变为高频交流电,经开关变压器次级地整流、滤波,产生稳定地直流电压:+130v,+26v,+16v.其中+130V 供给行输出电路、SVM功率放大电路、电源地取样电路、经降压为+33V作为高频调谐电压.+26V 供给伴音功放电路,+16V 经过稳压后又产生+5V 、+9V,+5V供CPU电路使用,+9V供N201内行激励电路使用,同时经R217降压后形成3.3V电压供给N201内数字电路使用.2.开关电源地工作原理:本机电源采用日本三肯公司制造地大功率厚膜集成电路STR-G9656,最大输出功率在200W以上,其内部含有开关调整管及相关控制和过压、过流保护电路,内部开关管是场效应管,属于并联调频它激式开关稳压电源.它有两种工作状态:PRC—定关断时间调导通时间,用于待机;RCC—脉宽调制,根据功率负载调整导通截止时间,用于正常收看状态. (1)开关电源地启动与振荡电路:交流电源接通后,+300V地直流电由T501地#4脚加到N501(STR-G9656)地#1脚,启动电路由R507、C514组成,其产生地启动电压加在N501地#4脚.220V地市电经桥式整流电路中地一支二极管和R507,对C514充电,N501#4脚电压随之上升,当其上升到16V 时,N501内地控制电路开始工作.电源启动地快慢由R507、C514地取值决定.启动后由开关变压器地初级绕组(#7-#8)产生地感应电压经VD511整流,C514滤波后产生+18V电压向N501#4脚供电.开关管启动后,+300V电压进入N501地#1,电流经开关管漏极,从源极即N501#2出,经L511、R517、R518到地,产生逐渐增大地电流.在R517、R518上地电压会经R516反映至N501#5脚,随着电流地增大,N501地#5脚电压也逐步上升,当升至0.7V时,N501地内部控制电路使开关管截止.此时T501次级绕组开始放电,产生各种电压供给负载电路.T501初级#7-#8绕组产生地感应电压,经VD512整流后,加到V501地射极和基极,使V501导通,电压经R513、VD517加到N501地#5脚,使#5脚电压继续上升到5-6V左右,加速开关管地截止.随着T501次级绕组能量地释放,T501#7-#8绕组间地能量也随之减小,N501#5电压也逐步降低,当N501#5脚电压下降到1.5V时,N501内部电路检测到这个电压控制开关管再次导通,N501#5脚电压快速下降到0V,然后开始下一个振荡过程.注意当N501#5电压降为1.5V时,N501内部不会因此处电压高于0.7V而使开关管截止,这是由于绕组两端电压不能突变,使得T501#7脚为低电位,N501#5脚电压会迅速降低,从而使开关管再次导通.N501地#2脚外接地电感L511起滤波作用,使R517、R518上地电压上升更加平滑,以稳定N501#5脚电压.二极管VD515在开关管截止时向开关管提供反向电流,加速开关管地截止,降低开关损耗,它损坏将造成N501发热加重,应急处理时可去掉此件并将L511短路.(2)稳压控制电路:稳压控制电路地电压取样点在+130V地输出端,由R562、RP561串联后与R566分压,得到一个2.5V地基准取样电压加在精密稳压源N503(TL431)地控制极.当因某种原因使+130V电压升高时,N503地控制极电压也会升高,N503地导通加深,光耦地二极管部分电流增大,发光加强,光耦地#4、#3脚间阻值减小,N501地#5脚电压升高,提前上升到0.7V,使开关管提前截止,使输出电压降低并稳定在+130V;同理,当+130V电压降低时电路产生负反馈使输出电压升高并稳定在+130V.(3)准谐振电路:在开关管刚截止时,因自感电动势地存在,其源极S与漏极D间仍有400V-600V地脉冲电压,在该脉冲电压下降到最低点之前,开关管会因N501地#5脚电压已下降到1.5V以下而再次导通,这样开关管将会产生很大地开关应力和导通损耗, N501会因工作温度升高而损坏,为减小这种影响,设置了准谐振与延迟导通电路.准谐振电路由C513与开关变压器地初级绕组组成,当开关变压器次级放电完毕后,C513开始与开关变压器初级绕组谐振,开关变压器继续释放能量,同时这一部分能量还可以通过变压器地#7—#8绕组反馈至N501#5脚,使#5脚电压延迟一定下降时间.延迟导通电路由R519、C516组成,其参数决定延迟导通时间,使开关管在C513两端谐振电压最低时即开关管源漏极间电压降到最低点时导通,即使#5脚电压延迟一定时间再降至1.5V以下,同样可以大大降低开关管地导通损耗. (4)高压限制电路:本机高压限制电路由R511、R512、VD514组成.电源电压适用范围为160V—270V,当220V 交流电升高时,整流滤波后地+300V电压也随着上升,当R512上地压降上升至可以使VD514击穿时,使N501地#5脚地电压会升高至1.5V以上,开关管将截止,电源停止工作. (5)待机控制电路:电源地待机/开机控制是由N201地#64脚电平控制V543、V562实现地.当N201接收到遥控器发出地待机信号后,N201地#64脚输出低电平,使V543截止,其集电极输出高电平,V542导通,其C极电压为0V,V541因其基极电压降低而截止,停止输出+9V电压,行震荡电路会由于没有供电而停止震荡.同时低电平使V562也截止,+16V电压经R569、VD562后加在精密稳压源N503 地控制极,使N503地导通程度加深,最终使N501 第5#脚电压升高,控制开关管提前截止,使电源进入PRC模式,开关管进入低频开关状态,待机时+16V电压降低为+8V左右,+B约为100V.东芝二合一芯片功能简介一、TC2111A机型集成电路介绍HISENSE-8803-1 (N201)微处理器一、简介二、内部框图三、应用电路四、引脚功能与维修数据(在海信TC2111A型机上测定)引脚序号符号功能直流电压(V)对地电阻(kΩ)待机无信号有信号黑笔接地红笔接地1 LNA 超强接收控制端0 0 0 6.5 9.52 KEY 键盘输入4.8 4.8 4.9 7 10.53 BAND 波段控制0.32 0.35 2.5 0.8 0.94 GND 地0 0 0 0 05 RESET 复位端5 5 5 5.5 5.66 X-TAL 时钟振荡晶振外接端(8MHz)2.2 2.2 2.2 7.1 10.57 X-TAL 时钟振荡晶振外接端(8MHz)1.4 1.3 1.4 7 10.58 TEST 测试端0 0 0 0 09 Vcc +5V供电5 5 5 1.5 1.610 GND 地0 0 0 0 011 GND 地0 0 0 0 012 SCP-OUT 沙堡脉冲输出0 1 1 9 2713 H-OUT 行扫描激励输出0 1.8 1.8 0.7 0.7*14 H-AFC 行AFC滤波脚0 6.2 6.7 9 27*15 V-SAW 场锯齿波形成脚0 4.2 4.2 9 27*16 V-OUT 场扫描激励输出0 5.7 5.7 8.5 12.117 H-Vcc 行供电端0 9.1 9.2 6.4 9.1*18 NC 空脚0 0 0 1 1*19 Cb 蓝色差输入0 2.4 2.4 9 11.5*20 Y-IN 亮度信号输入0 2.4 2.4 9 11.521 Cr 红色差输入0 2.4 2.4 9 11.522 TV GND 视频信号地0 0 0 0 023 C-IN 色度输入0 0 0 8.9 11.524 EXT-IN 外部视频信号输入0 2.4 2.4 9 11.525 DIGI 5V 数字5V供电0 3.5 3.5 6.1 9.226 TV-IN 视频信号输入0 2.7 2.7 9 11.627 ABCL-IN 自动亮度限制输入0.09 4.8 4.8 9 11.228 AUDIO-OUT 音频信号输出0 3.6 3.6 8.7 1029 IF-Vcc(9V) 中放9V供电0 9 9 0.6 0.630 TV-OUT 视频信号输出0 5 3.4 3.4 3.431 SIF-OUT 伴音中频信号输出0 1.8 1.8 3.4 3.432 EXT-AUDIO 外接音频信号输入0 4.2 4.2 9.1 10.833 SIF-IN 伴音中频信号输入0 2.5 2.5 9 11.834 DC NF 内部电路偏置脚0 2.4 2.2 9.1 1135 PIF PLL 图像中频锁相环0 2.4 1.6 9 11.536 IF-Vcc(5V) 中放+5V供电0.12 5 5 1.2 1.237 S-REG 稳压滤波0 2.2 2.2 8.9 10.138 DE-EMPH 监视器音频信号输出0 4.4 4.4 9 1039 IF AGC 中放AGC滤波0 2.5 1.8 9.1 11.640 IF GND 中放地0 0 0 0 041 IF IN 中放输入0 1 0 8.5 1242 IF IN 中放输入0 1 0 8.5 1243 RF AGC 高放AGC输出0.07 3.9 2.2 8.9 10.544 YC 5V 亮色信号5V供电0.12 5 5 1.2 1.245 NONIT-OUT 视频信号输出0 2.2 2 3.4 3.446 BLACK DET 黑电平延伸检波0 3.5 2.4 9.1 11.5*47 APC FIL APC滤波0 2.1 2.4 9 11.8*48 IK-IN 暗电流检测输入0 0 0 0 049 RGB 9V RGB信号9V供电0 9 9 0.6 0.650 R-OUT 红基色输出0 1 2.2 8.9 1051 G-OUT 绿基色输出0 1.2 2.4 9 1052 B-OUT 蓝基色输出0 1.2 2.3 8.2 1053 GND 地0 0 0 0 054 GND 地0 0 0 0 055 Vcc 5V 5 5 5 1.6 1.656 MUTE 静音控制5 5 0 6.9 1057 SDA1 数据线1 5 4.9 5 5.2 9.658 SCL1 时钟线1 5 4.9 5 6.5 9.659 SYS 制式控制端0.94 0.92 0.92 5.2 5.560 VT 调谐电压输出3 2.9 4.8 7 10.261 AV SW AV开关0.87 4.9 0 6.9 1062 TV SYNC 视频同步信号输入4.9 4.8 4.3 6.9 10.563 RMT-IN 遥控信号输入4.9 4.8 4.8 6.9 10.564 POWER 待机控制脚0 2.8 2.9 5.9 6.5b5E2R。
TA8211参数
TOSHIBA Bipolar Linear Integrated Circuit Silicon MonolithicTA8211AHDual Audio Power AmplifierThe TA8211AH is dual audio power amplifier for consumerapplications.This IC provides an output power of 6 watts per channel (at V CC = 20 V, f = 1 kHz, THD = 10%, R L = 8 Ω).It is suitable for power amplifier of TV and home stereo.Features· High output power: P out = 6 W/channel (Typ.)(V CC = 20 V, R L = 8 Ω, f = 1 kHz, THD = 10%)· Low noise: V no = 0.14 mVrms (Typ.)(V CC = 28 V, R L = 8 Ω, G V = 34dB, R g = 10 kΩ,BW = 20 Hz~20 kHz)· Very few external parts· Built in thermal shut down protector circuit· Operating supply voltage range: V CC (opr) = 10~30 V (Ta = 25°C)Block DiagramWeight: 4.04 g (typ.)V CCApplication InformationVoltage gainThe closed loop voltage gain is determined by R 1, R 2.~ - 34(dB)(a)Amplifier with gain > 34dBWhen R 3 = 400 W G V ~ - 40 (dB) is given.(b)Amplifier with gain < 34dBWhen R 4 = 220 W G V ~ - 30 (dB) is given.CautionsThis IC is not proof enough against a strong E-M field by CRT which may cause malfunction such as leak. Please set the IC keeping the distance from CRT.WW+W = 400 400k 20og20l (dB)R R R og20G 221V +=l (dB)//R R //R R R og 20G 32321V +=l (dB)R R R R R og20G 42421V +++=lFigure 2Figure 3Standard PCB(Bottom view)Maximum Ratings (Ta = 25°C)Characteristics Symbol Rating UnitSupply voltageV CC 30 V Output current (Peak/ch) I O (peak) 2 A Power dissipation P D (Note) 25WOperating temperature T opr -20~75 °C Storage temperatureT stg-55~150 °CNote: Derated above Ta = 25°C in the proportion of 200 mW/°C.Electrical Characteristics(unless otherwise specified, V CC = 20 V, R L = 600 9, R g = 600 9, f = 1 kHz, Ta = 25°C)Characteristics SymbolTestCircuitTest ConditionMinTyp.MaxUnit Quiescent current I CCQ ¾V in = 0¾ 75 130mA P out (1) ¾ THD = 10% 5.06.0¾Output powerP out (2) ¾ THD = 1% ¾ 4.5 ¾WTotal harmonic distortion THD ¾ P out = 2 W¾ 0.1 0.6 % Closed loop voltage gain G V ¾ V out = 0.775 Vrms (0dBm) 32.5 34.0 35.5dBOpen loop voltage gain G VO ¾¾ 60 ¾ dB Input resistance R IN ¾ ¾¾ 30 ¾ k WRipple rejection ratio R.R. ¾ Rg = 0, f ripple = 100 HzV ripple = 0.775 Vrms (0dBm) -45-57¾ dBOutput noise voltageV no¾Rg = 10 k W ,BW = 20 Hz~20 kHz¾ 0.14 0.3 mVrmsTyp. DC Voltage of Each Terminal (V CC = 20 V, Ta = 25°C)Terminal No. 1 2 3 4 5 6 7 8 9 10 11 12 DC voltage (V)2.12.25GND2.252.16.89.82.25V CC GND 2.259.8Test CircuitV CC INPUT1INPUT20.030.1 0.3 1 10 303 0 8 16 24 32 40T o t a l h a r m o n i c d i s t o r t i o n T H D (%)T o t a l h a r m o n i c d i s t o r t i o n T H D (%)O u t p u t D C v o l t a g e V O U T (D C ) (V )Supply voltage V CC (V)I CCQ , V OUT (DC) – V CCQ u i e s c e n t c u r r e n t I C C Q (m A )Frequency f (Hz)G V– fV o l t a g e g a i n G V (d B )Output power P out (W)T o t a l h a r m o n i c d i s t o r t i o n T H D (%)Output power P out (W)THD – P outFrequency f (Hz) THD – fFrequency f (Hz)C.T. – fC r o s s t a l k C .T . (d B )--------301003001k 3k 10k 30k 100k0.3 1 3 10 100 3003030 -----100 300 1k --3k 10k 30k 100k --2040 60 80-402040 60 8030-----100 300 1k --3k 10k 30k 100k ---30----1003001k --3k 10k 30k---O u t p u t n o i s e v o l t a g e V n o (m V r m s )O u t p u t n o i s e v o l t a g e V n o (m V r m s )Signal source resistance Rg (W ) C.T. – RgC r o s s t a l k C .T . (d B )Frequency f (Hz)R.R. – fR i p p l e r e j e c t i o n r a t i o R .R . (d B )Signal source resistance Rg (W )R.R. – RgR i p p l e r e j e c t i o n r a t i o R .R . (d B )Signal source resistance Rg (W )V no – RgAmbient temperature Ta (°C)V no – TaAmbient temperature Ta (°C)I CCQ – TaQ u i e s c e n t c u r r e n t I C C Q (m A )301003001k 3k 10k 30k 100k25 50 100 17575125 150 04 8 12 16 201014 18 22 26 30-2040 60 808 1624 32 40A l l o w a b l e p o w e r d i s s i p a t i o n P D (W )P o w e r d i s s i p a t i o n P D (W )Ambient temperature Ta (ºC)THD – TaT o t a l h a r m o n i c d i s t o r a t i o n T H D (%)Supply voltage V CC (V)P out – V CCO u t p u t p o w e r P o u t (W )Supply voltage V CC (V)P D MAX – V CCM a x i m u m p o w e r d i s s i p a t i o n P D M A X (W )Output power P out (W)P D – P outAmbient temperature Ta (°C)P D – TaPackage DimensionsWeight: 4.04 g (typ.)· TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.. · The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer’s own risk. · This product generates heat during normal operation. However, substandard performance or malfunction may cause the product and its peripherals to reach abnormally high temperatures.The product is often the final stage (the external output stage) of a circuit. Substandard performance or malfunction of the destination device to which the circuit supplies output may cause damage to the circuit or to the product. · The products described in this document are subject to the foreign exchange and foreign trade laws.· The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. · The information contained herein is subject to change without notice.000707EBFRESTRICTIONS ON PRODUCT USE。
Richtek技术公司产品说明:RT8290A高效同步降压电源说明书
RT8290A®©Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.General DescriptionThe RT8290A is a high efficiency synchronous step-down DC/DC converter that can deliver up to 3A output current from 4.5V to 23V input supply. The RT8290A's current mode architecture and external compensation allow the transient response to be optimized over a wide range of loads and output capacitors. Cycle-by-cycle current limit provides protection against shorted outputs and soft-start eliminates input current surge during start-up. The RT8290A also provides output under voltage protection and thermal shutdown protection. The low current (<3μA)shutdown mode provides output disconnection, enabling easy power management in battery-powered systems. The RT8290A is awailable in an SOP-8 (Exposed Pad)package.3A, 23V, 340kHz Synchronous Step-Down ConverterFeatures●4.5V to 23V Input Voltage Range●1.5% High Accuracy Feedback Voltage ●3A Output Current●Integrated N-MOSFET Switches ●Current Mode Control●Fixed Frequency Operation : 340kHz ●Output Adjustable from 0.925V to 20V ●Up to 95% Efficiency●Programmable Soft-Start●Stable with Low-ESR Ceramic Output Capacitors ●Cycle-by-Cycle Over Current Protection ●Input Under Voltage Lockout ●Output Under Voltage Protection ●Thermal Shutdown Protection ●PSM / PWM Auto-Switched●Thermally Enhanced SOP-8 (Exposed Pad) Package ●RoHS Compliant and Halogen FreeApplications●Industrial and Commercial Low Power Systems ●Computer Peripherals ●LCD Monitors and TVs●Green Electronics/Appliances●Point of Load Regulation of High-Performance DSPs,FPGAs and ASICs.Ordering InformationNote :Richtek products are :❝ RoHS compliant and compatible with the current require-ments of IPC/JEDEC J-STD-020.❝Suitable for use in SnPb or Pb-free soldering processes.G : Green (Halogen Free and Pb Free)Simplified Application CircuitOUTVRT8290A©Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.RT8290AGSP : Product NumberYMDNN : Date CodeFunctional Pin DescriptionPin Configurations(TOP VIEW)SOP-8 (Exposed Pad)SS BOOT VIN GNDSW FBEN COMPRT8290A©Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Function Block DiagramAbsolute Maximum Ratings (Note 1)●Supply Voltage, V IN ------------------------------------------------------------------------------------------−0.3V to 25V●Switching Voltage, SW -------------------------------------------------------------------------------------−0.3V to (V IN + 0.3V)●SW (AC) 30ns-------------------------------------------------------------------------------------------------−5V to 30V●BOOT Voltage -------------------------------------------------------------------------------------------------(V SW − 0.3V) to (V SW + 6V)●The Other Pins ------------------------------------------------------------------------------------------------−0.3V to 6V ●Power Dissipation, P D @ T A = 25°CSOP-8 (Exposed Pad)--------------------------------------------------------------------------------------1.333W ●Package Thermal Resistance (Note 2)SOP-8 (Exposed Pad), θJA ---------------------------------------------------------------------------------75°C/W SOP-8 (Exposed Pad), θJC --------------------------------------------------------------------------------15°C/W ●Junction T emperature ----------------------------------------------------------------------------------------150°C ●Lead Temperature (Soldering, 10 sec.)------------------------------------------------------------------260°C●Storage T emperature Range -------------------------------------------------------------------------------−65°C to 150°C ●ESD Susceptibility (Note 3)HBM (Human Body Model)---------------------------------------------------------------------------------2kV MM (Machine Model)----------------------------------------------------------------------------------------200VRecommended Operating Conditions (Note 4)●Supply Voltage, V IN ------------------------------------------------------------------------------------------4.5V to 23V ●Enable Voltage, V EN -----------------------------------------------------------------------------------------0V to 5.5V●Junction T emperature Range -------------------------------------------------------------------------------−40°C to 125°C ●Ambient T emperature Range -------------------------------------------------------------------------------−40°C to 85°CRT8290A©Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Note 1. Stresses beyond those listed “Absolute Maximum Ratings ” may cause permanent damage to the device. These arestress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.Note 2. θJA is measured at T A = 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θJC ismeasured at the exposed pad of the package.Note 3. Devices are ESD sensitive. Handling precaution is recommended.Note 4. The device is not guaranteed to function outside its operating conditions.Electrical Characteristics(V = 12V, T = 25°C unless otherwise specified)RT8290A©Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Typical Application CircuitOUT 3.3V/3A VRT8290A©Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Typical Operating CharacteristicsReference Voltage vs. Temperature0.9100.9150.9200.9250.9300.9350.940-50-25255075100125Temperature (︒C)R e f e r e n c e V o l t a g e (V)Reference Voltage vs. Input Voltage0.9200.9220.9240.9260.9280.9300.9324681012141618202224Input Voltage (V)R e f e r e n c e V o l t a g e (V )Efficiency vs. Output Current01020304050607080901000.010.1110Output Current (A)E f f i c i e n c y (%)Output Voltage vs. Output Current3.203.223.243.263.283.303.323.343.363.383.400.00.30.60.91.21.51.82.12.42.73.0Output current (A)O u t p u t V o l t a g e (V)Frequency vs. Input Voltage3003053103153203253303353403453504681012141618202224Input Voltage (V)F r e q u e n c y (k H z )Frequency vs. Temperature300305310315320325330335340345350-50-25255075100125Temperature (︒C)F r e q u e n c y (k H z )RT8290A©Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Current Limit vs. Temperature3.03.54.04.55.05.56.06.57.0-50-25255075100125Temprature ( C)C u r r e n t L i m i t (A)Time (5ms/Div)Power On from VIN I L (2A/Div)V IN = 12V, V OUT = 3.3V, I OUT = 3AV IN (5V/Div)V OUT (2V/Div)Power Off from VINTime (5ms/Div)I L (2A/Div)V IN (5V/Div)V OUT (2V/Div)V IN = 12V, V OUT = 3.3V, I OUT = 3ASwitching WaveformTime (1μs/Div)V OUT (10mV/Div)V SW (10V/Div)V IN = 12V, V OUT = 3.3V, I OUT = 3AI L (2A/Div)Load Transient ResponseTime (100μs/Div)I OUT (2A/Div)V OUT(100mV/Div)V IN = 12V, V OUT = 3.3V, I OUT = 0.3A to 3ALoad Transient ResponseTime (100μs/Div)I OUT (2A/Div)V OUT(100mV/Div)V IN = 12V, V OUT = 3.3V, I OUT = 1.5A to 3ART8290A©Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Power On from ENTime (10ms/Div)V IN = 12V, V OUT = 3.3V, I OUT = 3AI OUT (2A/Div)V EN (2V/Div)V OUT (2V/Div)Power Off from ENTime (10ms/Div)I OUT (2A/Div)V EN (2V/Div)V OUT (2V/Div)V IN = 12V, V OUT = 3.3V, I OUT = 3ART8290A©Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Application InformationThe RT8290A is a synchronous high voltage buck converter that can support the input voltage range from 4.5V to 23V and the output current can be up to 3A.Output Voltage SettingThe resistive voltage divider allows the FB pin to sense the output voltage as shown in Figure 1.Figure 1. Output Voltage SettingThe output voltage is set by an external resistive voltage divider according to the following equation :⎛⎫+ ⎪⎝⎭OUT FB R1V = V 1R2where V FB is the feedback reference voltage (0.925V typ.).External Bootstrap DiodeConnect a 10nF low ESR ceramic capacitor between the BOOT pin and SW pin. This capacitor provides the gate driver voltage for the high side MOSFET .It is recommended to add an external bootstrap diode between an external 5V and the BOOT pin for efficiency improvement when input voltage is lower than 5.5V or duty ratio is higher than 65%. The bootstrap diode can be a low cost one such as 1N4148 or BAT54.The external 5V can be a 5V fixed input from system or a 5V output of the RT8290A. Note that the external boot voltage must be lower than 5.5V.Figure 2. External Bootstrap DiodeOUT OUT L IN V V I =1f L V ⎡⎤⎡⎤∆⨯-⎢⎢⎥⨯⎣⎦⎣⎦Having a lower ripple current reduces not only the ESR losses in the output capacitors but also the output voltage ripple. High frequency with small ripple current can achieve highest efficiency operation. However, it requires a large inductor to achieve this goal.For the ripple current selection, the value of ΔI L = 0.2375(I MAX ) will be a reasonable starting point. The largest ripple current occurs at the highest V IN . To guarantee that the ripple current stays below the specified maximum, the inductor value should be chosen according to the following equation :OUT OUT L(MAX)IN(MAX)V V L =1f I V ⎡⎤⎡⎤⨯-⎢⎥⎢⎥⨯∆⎣⎦⎣⎦Inductor Core SelectionThe inductor type must be selected once the value for L is known. Generally speaking, high efficiency converters can not afford the core loss found in low cost powdered iron cores. So, the more expensive ferrite or mollypermalloy cores will be a better choice.The selected inductance rather than the core size for a fixed inductor value is the key for actual core loss. As the inductance increases, core losses decrease. Unfortunately,increase of the inductance requires more turns of wire and therefore the copper losses will increase.Ferrite designs are preferred at high switching frequency due to the characteristics of very low core losses. So,design goals can focus on the reduction of copper loss and the saturation prevention.Soft-StartThe RT8290A contains an external soft-start clamp that gradually raises the output voltage. The soft-start timing can be programmed by the external capacitor betweenSS pin and GND. The chip provides a 6μA charge current for the external capacitor. If a 0.1μF capacitor is used to set the soft-start, the period will be 15.5ms (typ.).Inductor SelectionThe inductor value and operating frequency determine the ripple current according to a specific input and output voltage. The ripple current ΔI L increases with higher V IN and decreases with higher inductance.RT8290A©Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Ferrite core material saturates “hard ”, which means that inductance collapses abruptly when the peak design current is exceeded. The previous situation results in an abrupt increase in inductor ripple current and consequent output voltage ripple.Do not allow the core to saturate!Different core materials and shapes will change the size/current and price/current relationship of an inductor.T oroid or shielded pot cores in ferrite or permalloy materials are small and do not radiate energy. However, they are usually more expensive than the similar powdered iron inductors. The rule for inductor choice mainly depends on the price vs. size requirement and any radiated field/EMI requirements.C IN and C OUT SelectionThe input capacitance, C IN, is needed to filter the trapezoidal current at the source of the high side MOSFET .To prevent large ripple current, a low ESR input capacitor sized for the maximum RMS current should be used. The RMS current is given by :This formula has a maximum at V IN = 2V OUT , whereI RMS = I OUT /2. This simple worst-case condition is commonly used for design because even significant deviations do not offer much relief.Choose a capacitor rated at a higher temperature than required. Several capacitors may also be paralleled to meet size or height requirements in the design.For the input capacitor, a 10μF x 2 low ESR ceramic capacitor is recommended. For the recommended capacitor, please refer to table 3 for more detail.The selection of C OUT is determined by the required ESR to minimize voltage ripple.Moreover, the amount of bulk capacitance is also a key for C OUT selection to ensure that the control loop is stable.Loop stability can be checked by viewing the load transient response as described in a later section.The output ripple, ΔV OUT, is determined by :RMS OUT(MAX)I = I OUT L OUT 1V I ESR 8fC ⎡⎤∆≤∆+⎢⎣⎦The output ripple will be highest at the maximum input voltage since ΔI L increases with input voltage. Multiplecapacitors placed in parallel may be needed to meet the ESR and RMS current handling requirement. Dry tantalum,special polymer, aluminum electrolytic and ceramic capacitors are all available in surface mount packages.Special polymer capacitors offer very low ESR value.However, it provides lower capacitance density than other types. Although Tantalum capacitors have the highest capacitance density, it is important to only use types that pass the surge test for use in switching power supplies.Aluminum electrolytic capacitors have significantly higher ESR. However, it can be used in cost-sensitive applications for ripple current rating and long term reliability considerations. Ceramic capacitors have excellent low ESR characteristics but can have a high voltage coefficient and audible piezoelectric effects. The high Q of ceramic capacitors with trace inductance can also lead to significant ringing.Higher values, lower cost ceramic capacitors are now becoming available in smaller case sizes. Their high ripple current, high voltage rating and low ESR make them ideal for switching regulator applications. However, care must be taken when these capacitors are used at input and output. When a ceramic capacitor is used at the input and the power is supplied by a wall adapter through long wires, a load step at the output can induce ringing at the input, V IN . At best, this ringing can couple to the output and be mistaken as loop instability. At worst, a sudden inrush of current through the long wires can potentially cause a voltage spike at V IN large enough to damage the part.Checking Transient ResponseThe regulator loop response can be checked by looking at the load transient response. Switching regulators take several cycles to respond to a step in load current. When a load step occurs, V OUT immediately shifts by an amount equal to ΔI LOAD (ESR) and C OUT also begins to be charged or discharged to generate a feedback error signal for the regulator to return V OUT to its steady-state value. During this recovery time, V OUT can be monitored for overshoot or ringing that would indicate a stability problem.RT8290A11DS8290A-01 November 2014©Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Thermal ConsiderationsFor continuous operation, do not exceed the maximum operation junction temperature 125°C. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient.The maximum power dissipation can be calculated by following formula :P D(MAX) = (T J(MAX) − T A ) / θJAwhere T J(MAX) is the maximum operation junction temperature, T A is the ambient temperature and the θJA is the junction to ambient thermal resistance.For recommended operating conditions specification, the maximum junction temperature is 125°C. The junction to ambient thermal resistance θJA is layout dependent. For SOP-8 (Exposed Pad) package, the thermal resistance θJA is 75°C/W on the standard JEDEC 51-7 four-layers thermal test board. The maximum power dissipation at T A = 25°C can be calculated by following formula :P D(MAX) = (125°C − 25°C) / (75°C/W) = 1.333W for SOP-8 (Exposed Pad) packageThe maximum power dissipation depends on operating ambient temperature for fixed T J(MAX) and thermal resistance θJA . The derating curve in Figure 3 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.Layout ConsiderationsFollow the PCB layout guidelines for optimal performance of the RT8290A.❝Keep the traces of the main current paths as short and wide as possible.❝Put the input capacitor as close as possible to the device pins (VIN and GND).❝SW node is with high frequency voltage swing and should be kept in a small area. Keep sensitive components away from the SW node to prevent stray capacitive noise pick-up.❝Place the feedback components as close to the FB pin and COMP pin as possible.❝The GND pin and Exposed Pad should be connected to a strong ground plane for heat sinking and noise protection.Figure 3. Derating Curve of Maximum Power DissipationInput capacitor must be placed Figure 4. PCB Layout Guide0.00.20.40.60.81.01.21.41.6255075100125Ambient Temperature (°C)M a x i m u m P o w e r D i s s i p a t i o n (W )RT8290A12DS8290A-01 November 2014 ©Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Table 3. Suggested Capacitors for Cand CRT8290A13DS8290A-01 November 2014Richtek Technology Corporation14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C.Tel: (8863)5526789Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers shouldobtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.Outline DimensionBFHMI(Bottom of Package)8-Lead SOP (Exposed Pad) Plastic Package。
Tektronix P6015A 1000X高压探头说明书
P6015A1000X High Voltage Probe 070-8223-04SpecificationsWarranted CharacteristicsThis section lists the various warranted characteristics that describethe P6015A High V oltage Probe. Included are warranted electricaland environmental characteristics.Warranted characteristics are described in terms of quantifiableperformance limits which are warranted.The electrical characteristics listed in Table 1–3 apply under thefollowing conditions:H The probe and instrument with which it is used must have beencalibrated at an ambient temperature of between +20 °C and+30 °C.H The probe and instrument must be in an environment whoselimits are described in Table 1-3.H The probe and instrument must have had a warm-up period of atleast 20 minutes before applying elevated voltages.P6015A Instruction Manual1–23Specifications1–24P6015A Instruction ManualTable 1–3: Warranted Electrical CharacteristicsCharacteristic InformationMaximum input voltageDC + peak AC 11.5 kV to 20 kV. See frequency derating curve in Figure 1–4. (DC plus peak AC rating is limited to temperatures below 35°C.)Peak pulse40 kV a (Never exceed 20 kV rms)Duty cycle derating – 100 ms maximum duration at 10%maximum duty cycle. See duration and duty cycle derating curve in Figure 1–5.Altitude derating – Peak pulse derated linearly from 40kV at 8000feet (2440m) to 30kV at 15,000feet (4570m) altitude.Relative Humidity (RH) derating – Voltage derated with increasing temperature and relative humidity (see Figure 1–7).Bandwidth (–3 dB)Test conditions: Test oscilloscope bandwidth must be ≥100 MHz, Z source = 25 W 10-ft cable 75 MHz 25-ft cable25 MHzRise Time 210-ft cable ≤4.67 ns (calculated from bandwidth)25-ft cable≤14 ns (calculated from bandwidth)DC attenuation1000:1 ±3% (Excluding oscilloscope error)Test conditions: Oscillo-scope input resistance must be 1 M W ±2%1 Characteristic not checked in manual 2T r (ns) = .35/BW (MHz)SpecificationsP6015A Instruction Manual1–25Table 1–4: Warranted Environmental CharacteristicsCharacteristic InformationTemperatureNonoperating –55_C to +75_C (–67_F to +167_F)OperatingDC + peak AC Peak Pulse0_C to +35_C (+32_F to +95_F)0_C to +50_C (+32_F to +122_F)(See Table 1–1 on page 1–10 and Time Limitations Specification below)HumidityNonoperating / Operating 95% relative humidity at +50°C (+122°F). See Figure 1–7 for derating characteristics.Maximum altitudeNonoperating 15,000 m (50,000 ft)Operating4,600 m (15,000 ft)Peak pulse voltage derated from 40kV at 8000 feet (2440m) to 30kV at 15,000 feet (4570m).Vibration (random)Nonoperating 3.48g rms from 5 to 500Hz. Ten minutes on each axis.Operating 2.66g rms from 5 to 500Hz. Ten minutes on each axis.Shock (nonoperating)500 g, half sine, 0.5 ms duration, 18 shocks total in three axis.Time LimitationsLess than 70% of Rated Input Voltage at 0–35_C No time limit Greater than 70% of Rated Input Voltage at 0–35_C 30 minutes maximum in any 2.5 hour period 35–50_C15 minutes maximum in any 2.5 hour periodSpecifications1–26P6015A Instruction Manual0%30%70%80%95%25°C 35°C 50°C40kV 40kV40kV35kV 35kV20kV 25kV 35kVRelative HumidityFigure 1–7: Humidity Derating Chart10M1M 100k 10k 1k100M1001k10k 100k1M10M100M P r o b e I m p e d a n c e FrequencyP h a s e A n g l e0°–10°–20°–30°–40°–50°–60°–70°–80°–90°10Figure 1–8: Typical Input Impedance and PhaseSpecificationsP6015A Instruction Manual1–27Typical and Nominal CharacteristicsThis section lists the various typical and nominal characteristics that describe the P6015A High V oltage Probe.Nominal characteristics are determined by design and/or inspection.Nominal characteristics do not have tolerance limits.Typical characteristics are described in terms of typical or average performance. Typical characteristics are not warranted.Table 1–5: Typical Electrical CharacteristicsCharacteristic InformationInput resistance 100 M W ±2%. See Figure 1–8 for typical input impedance curve.Input capacitance ≤3 pF when probe is properly LF compensated. See Figure 1–8 for typical input impedance curve.LF compensation range 7 pF to 49 pFAberrations25% p-p for the first 200ns on a 100MHz oscilloscope when used with 10in (25.4cm) ground lead.<10% p-p typical after first 200ns; ±5% after the first 400ns.Temperature coefficient of DC attenuation0.006% per degree C 1Voltage coefficient of DC attenu-ation 0.018% per kV Delay time10ft cable: 14.7 ns 25ft cable: 33.3 ns1Resistor temperature rose 60_C at 20 kV rms over a 30 minute period.SpecificationsTable 1–6: Nominal Mechanical CharacteristicsCharacteristic InformationDiameter (probe body)8.9 cm (3.5 in) maximumLength (probe body)34.5 cm (13.6 in)Length (cable)10-ft cable 3.05 m (10 ft)25-ft cable7.62 m (25 ft)Compensation box 2.5 ×4.1 ×8.3 cm (1 ×1.6 ×3.25 in)Net weight (probe assembly)10-ft cable0.66 kg (1.47 lbs)25-ft cable0.75 kg (1.66 lbs)Shipping weight (includingaccessories)10-ft cable 2.85 kg (6.27 lbs)25-ft cable 2.93 kg (6.46 lbs)1–28P6015A Instruction Manual。
LED驱动控制专用电路TM1620
CLK
DIO
Command1
Command2
二、 特性说明
• 采用功率CMOS 工艺 •显示模式(8 段×6 位) • 辉度调节电路(占空比8 级可调) • 串行接口(CLK,STB,DIN) • 振荡方式:内置RC 振荡(450KHz+5%) • 内置上电复位电路 • 封装形式:SOP20
三、管脚定义:
-1-
上海霖叶微电子有限公司LED 驱动控制专用电路 四、管脚功能定义
设置脉冲宽度为 14/16
10
0
10
1
显示开关设置
显示关 显示开
图(7)
八、串行数据传输格式:
读取和接收1个BIT都在时钟的上升沿操作。
数据接收(写数据)
CLK
123456
DIO
B0 B1 B2 B3 B4 B5
STB
九、 显示和按键:
(1) 显示: 驱动共阴数码管:
SEG1 1
SEG2 1
SEG3 1
上海霖叶微电子有限公司 LED 驱动控制专用电路 一、 概述
TM1620
TM1620 是一种带键盘扫描接口的LED(发光二极管显示器)驱动控制专用电路,内 部集成有MCU 数字接口、数据锁存器、LED 高压驱动、键盘扫描等电路。本产品性能优 良,质量可靠。主要应用于VCR、VCD、DVD 及家庭影院等产品的显示屏驱动。
十二、 电气参数: 极限参数(Ta = 25℃, Vss = 0 V)
Futaba S3010 电控系列说明书
感谢您购买本产品!无刷动力系统功率强大,错误的使用可能造成人身伤害和设备损坏。
我们强烈建议您在使用设备前仔细阅读本说明书,并严格遵守规定的操作程序。
我们不承担因使用本产品而引起的任何责任,包括但不限于对附带损失或间接损失的赔偿责任;同时,我们不承担因擅自对产品进行修改所引起的任何责任。
我们有权在不经通知的情况下变更产品设计、外观、性能及使用要求。
· 电调与相关连接部件连接前,请确保所有电线和连接部件绝缘良好,短路会毁坏电调。
· 请务必仔细连接好各部件,若连接不良,您可能不能正常控制赛车,或出现设备损坏等其他不可预知的情况。
· 使用此电调前,请认真查看各动力设备以及车架说明书,确保动力搭配合理,避免因错误的动力搭配导致电机超载,最终损坏电调。
· 内置多种常用模式(如:零进角Zero Timing闪灯模式、一般练习模式、STOCK 竞赛模式),适合所有竞赛,即选即用。
电调的设定参数可以导入导出,便于车手相互交流和借鉴彼此的设定。
· 体积非常之小(31.6x25.8x16.2mm),车架布局更方便;重量非常之轻(不含线重量仅为23.5g),低重量为车架的平衡提供更多的可调空间。
· 内置BEC升压电路,BEC最大输出电流高达6A,且支持 6V和7.4V 切换,轻松驱动各种强力舵机及高压舵机。
03产品特色02注意事项05连接电子调速器06设置电子调速器设定油门行程1XERUN XR10 STOCK SPEC 1S车用无刷电子调速器使用说明书01声明1. 连接马达:连接有感无刷马达与无感无刷马达的方式有差异,请务必遵照如下接线方式: · 连接有感无刷马达时:电调与马达相连有严格的线序要求,电调的#A/#B/#C必须与电机的#A/#B/#C三线严格一一对应,用6针感应线把电调与电机的感应口对接。
若有感无刷马达未接上感应线,则电调会工作 在无感模式,相当于电调连接无感无刷电机。
上海海栎创微电子有限公司 HAA2820 数据手册说明书
上海海栎创微电子有限公司HAA2820数据手册5W单声道、带有AGC防破音功能、AB/D切换、自适应电荷泵升压、自适应MUTE功能的音频功率放大器Rev:V1.02018/03/01HAA2820数据手册1.概述HAA2820是一款内置电荷泵升压的D类音频功率放大器,在4.2V电源电压的情况下,可以为4Ω负载送出5W(THD+N=10%)的输出功率。
HAA2820内置AGC模式,当输入信号较高的时候,可以自动降低内部增益,防止输出发生截顶失真,提升大音量播放音乐时的音质。
HAA2820带有OT,OC,OVP,UVLO等保护功能,有效保护芯片。
2.芯片特点◆最大输出功率: 5.06W (4.2V,4Ω,10%THD+N);4.2W (4.2V,4Ω,1%THD+N)◆AGC Function◆AB、D function◆底噪:47uVrms(Gain=16V/V, Class D);30uVrms(Gain=12V/V, Class AB)◆THD+N:0.005%◆效率: 71%(3.6V, 4Ω,2W)◆自适应MUTE功能◆自适应电荷泵升压功能◆UVLO,OTP,OCP◆eTSSOP-163.引脚分布/说明4.功能描述4.1 Ctrl<2:1> ControlHAA2820有四种工作状态,通过Ctrl<2:1>两个控制管脚进行控制,如下图所示。
00时芯片关断,关断电流小于1uA。
01的时候为D类工作模式,同时AGC功能开启,当输出将要出现截顶失真的时候,主动降低内部增益,使输出保持非截顶失真的状态,提高音质,有效保护喇叭。
10的时候为D类工作模式,AGC功能关闭。
11的时候为AB类工作模式,同时电荷泵不升压,处于直通模式,消除芯片对FM信号的EMI影响。
模式切换的时候需要先将Ctrl<1:0>置为00,将芯片关闭复位,再进入需要的工作模式,以防止出现异常的切换杂音。
BR8220 芯片数据手册 v1.01
ATT7022E 26E 28E 用户手册.pdf_1696190589.1166377说明书
ATT7022E/26E/28E用 户 手 册 钜泉光电科技(上海)股份有限公司Tel: ************Fax: ************Email: *********************Web: 目录版本修改说明 (2)1芯片概况 (6)1.1芯片简介 (6)1.2芯片特性 (6)1.3芯片比较列表 (7)1.4整体框图 (7)1.5引脚定义 (8)1.6应用示意图 (11)2功能描述 (12)2.1电源管理 (12)2.2SLEEP模式 (12)2.3复位系统 (12)2.4A/D转换 (13)2.5电能质量测量 (14)2.5.1SAG功能 (14)2.5.2过流检测功能 (14)2.5.3闪变功能实现方案 (14)2.5.4电压相序检测 (14)2.5.5电流相序检测 (15)2.5.6电压夹角测量 (15)2.5.7电压电流相角的测量 (15)2.5.8功率因数测量 (15)2.5.9电压频率测量 (15)2.5.10失压检测 (15)2.6有效值测量 (16)2.6.1电流有效值测量 (16)2.6.2电压有效值测量 (16)2.7有功计量 (16)2.7.1有功功率计算 (16)2.7.2有功能量计算 (17)2.8无功计量 (17)2.8.1无功功率计算 (18)2.8.2无功能量计算 (18)2.9视在计算 (18)2.9.1视在功率计算 (18)2.9.2视在能量计算 (19)2.10基波谐波功能 (20)2.11功率方向判断 (20)2.12起动/潜动 (21)2.13硬件端口检测 (21)2.15基波测量功能 (21)2.16三相三线/四线应用 (22)2.17能量脉冲输出 (22)2.18ADC采样数据缓冲功能 (23)2.19同步采样数据缓冲功能 (24)2.20V REF数字自动补偿功能 (24)3通信接口 (26)3.1SPI通讯接口介绍 (26)3.2SPI读操作 (27)3.3SPI写操作 (28)3.4SPI写特殊命令字操作 (29)4寄存器 (31)4.1计量参数寄存器 (31)4.1.1r_YIc (31)4.1.2Ic和参考向量之间的相角 (31)4.1.3YUa (32)4.1.4Ua和参考向量之间的相角 (32)4.1.5YUb (32)4.1.6Ub和参考向量之间的相角 (32)4.1.7YUc (32)4.1.8Uc和参考向量之间的相角 (32)4.2计量参数寄存器说明 (34)4.2.1功率寄存器(地址:0x01~0x0C,0x40~0x43,0x57~0x5A) (34)4.2.2有效值寄存器(地址:0x0D~0x013、0x29、0x2B、0x48~0x4D) (35)4.2.3功率因数寄存器(地址:0x14~0x017) (36)4.2.4功率角和电压夹角寄存器(地址:0x18~0x1A、0x26~0x28) (37)4.2.5线频率寄存器(地址:0x1C) (38)4.2.6温度传感器数据寄存器(地址:0x2A) (38)4.2.7能量寄存器(地址:0x1E~0x25,0x35~0x38,0x44~0x47) (38)4.2.8快速脉冲计数寄存器(地址:0x39~0x3C) (39)4.2.9标志状态寄存器(地址:0x2C) (40)4.2.10电能寄存器工作状态寄存器(地址:0x1D,0x4E) (41)4.2.11功率方向寄存器(地址:0x3D) (42)4.2.12中断标志寄存器(地址:0x1B) (42)4.2.13ADC采样数据寄存器(地址:0x2F~0x34、0x3F) (43)4.2.14校表数据校验和寄存器(地址:0x3E/5E) (43)4.2.15通讯数据备份寄存器(地址:0x2D) (44)4.2.16通讯校验和寄存器(地址:0x2E) (44)4.2.17SAG标志寄存器(0x4F) (44)4.2.18峰值电压寄存器(0x50~0x52) (45)4.2.19芯片ID(地址:0x5D) (45)4.3校表参数寄存器 (45)4.4校表参数寄存器说明 (47)4.4.2ADC0x02 (48)4.4.3EMU单元配置(地址:0x03) (48)4.4.4功率增益补偿寄存器(地址:0x04~0x0C) (49)4.4.5相位校正寄存器(地址:0x00D~0x12,0x61~0x63) (50)4.4.6功率offset校正(地址:0x13~0x15,0x21~0x23,0x64~0x69) (50)4.4.7基波无功相位校正寄存器(地址:0x16) (51)4.4.8电压增益校正寄存器(地址:0x17~0x19) (51)4.4.9电流增益校正寄存器(地址:0x1A~0x1C,0x20) (52)4.4.10起动电流设置寄存器(地址:0x1D) (52)4.4.11高频脉冲常数设置(地址:0x1E) (53)4.4.12失压阈值设置寄存器(地址:0x1F) (53)4.4.13有效值offset校正(地址:0x24~0x29,0x6A) (54)4.4.14ADC offset校正(地址:0x2A~0x2F) (54)4.4.15中断使能寄存器(地址:0x30) (55)4.4.16模拟模块使能寄存器(地址:0x31) (55)4.4.17全通道增益寄存器(地址:0x32) (56)4.4.18脉冲加倍寄存器(地址:0x33) (56)4.4.19基波增益寄存器(地址:0x34) (57)4.4.20IO状态配置寄存器(地址:0x35) (57)4.4.21起动功率寄存器(地址:0x36) (57)4.4.22相位补偿区域设置寄存器(地址:0x37/0x60) (58)4.4.23SAG数据长度设置寄存器(0x38) (58)4.4.24SAG检测阈值设置寄存器(0x39) (58)4.4.25过流检测阈值设置寄存器(0x71) (59)4.4.26自动温度补偿相关寄存器(0x6B~0x6F) (新增) (59)4.4.27算法控制寄存器(0x70) (60)5电气规格 (62)5.1电气参数 (62)6校表过程 (63)校表及推荐 (64)7芯片封装 (66)8典型应用 (67)8.1从采样数据得到FFT的推荐流程 (67)8.2同步缓冲数据分次谐波分析推荐流程 (67)8.3典型运用电路原理图 (67)1.1芯片简介ATT7022E/26E/28E系列多功能高精度三相电能专用计量芯片,适用于三相三线和三相四线应用。
XiR_M8220_XiR_M8228_用户手册
19 19 19 20 20 20 20 20 20 21 21 22 23 23 23 23 24 24 24 25 25 25 26 26 26
设置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 设置降噪级别 . . . . . . . . . . . . . . . . . . . . . . . . . . . 设置功率级别 . . . . . . . . . . . . . . . . . . . . . . . . . . . 打开或关闭插件板功能 . . . . . . . . . . . . . . . . . . . . 打开或关闭声控发射 (VOX) 功能 . . . . . . . . . . . . 打开或关闭公共广播系统 . . . . . . . . . . . . . . . . . . 打开或关闭外部公共广播系统 . . . . . . . . . . . . . . . 打开 / 关闭喇叭 / 灯 . . . . . . . . . . . . . . . . . . . . . . . 打开或关闭对讲机铃音 / 提示 . . . . . . . . . . . . . . . 附件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 天线 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 音频 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 电缆 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 桌上型附件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 安装套件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 远程安装适配器套件 . . . . . . . . . . . . . . . . . . . . . . . . 扬声器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 其他附件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 期间,回复一次发射 . . . . . . . . . . . . . . . . . . 删除无用信道 . . . . . . . . . . . . . . . . . . . . . . . . . . . 恢复无用信道 . . . . . . . . . . . . . . . . . . . . . . . . . . . 呼叫提示设置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 渐强警报音 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 呼叫提示操作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 接收和回复呼叫提示 . . . . . . . . . . . . . . . . . . . . . . 由单键接入发起呼叫提示按键 . . . . . . . . . . . . . . . 紧急操作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 发送紧急警报 . . . . . . . . . . . . . . . . . . . . . . . . . . . 发送带呼叫的紧急警报 . . . . . . . . . . . . . . . . . . . . 发送带语音跟随的紧急警报 . . . . . . . . . . . . . . . . 重新开始紧急模式 . . . . . . . . . . . . . . . . . . . . . . . . 退出紧急模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . 短信功能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 发送预制短信 . . . . . . . . . . . . . . . . . . . . . . . . . . . 加密 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 多站点控制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 启动自动站点搜索 . . . . . . . . . . . . . . . . . . . . . . . . 停止自动站点搜索 . . . . . . . . . . . . . . . . . . . . . . . . 启动手动站点搜索 . . . . . . . . . . . . . . . . . . . . . . . . 单独工作者 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 密码锁定功能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 通过密码访问对讲机 . . . . . . . . . . . . . . . . . . . . . . 解除对讲机的锁定状态 . . . . . . . . . . . . . . . . . . . .
ta888on的原理与应用
TA 888ON 的原理与应用TA 888ON 的原理与应用TA888ON是日本东芝公司推出的I2C总线(Inter IC BUS)控制的单片多制式大规模集成电路。
能够通过单片微机I2 C线传送的数据信息单独自动完成PAL/NTSC/SECAM色度信号制式的识别的解码;3.58MHZ和4.43MHZ色付载频的识别和切换;50Hz/60Hz场频的识别和切换;图象亮度、对比度、彩色饱和度、色调的自动控制调整;行场扫描采用免调数字式分频电路;并附电视图文广播、画中画(PIP)RGB输入接口电路等功能。
TA888ON/AN与90年代初广为流行、采用模拟脉宽调制(PWM)方式控制的TA8659AN/TA8759BN、(国内大部分多制式彩电机芯解码)、TA8653N、TA8844(松下M15机芯解码)和TA8719N(松下M16机芯解码)相比,其特性指标自然更高一筹,比同样采用I2C总线控制的TA8783N(东芝第二代火箭炮F3S机芯)和TA8857N(东芝第三、第五代火箭炮F3SS/F3SSR机芯解码)也要稍胜一筹。
因为TA8783N和TA8857N所有功能之外,还将视频Y信号处理系统中的黑电平扩展、解码系统中的SECAM制色度信号选频钟形滤波器也集成在芯片内;在行场偏转系统则设计了AFC1和AFC2两个PLL锁相环路,控制和稳定性能较只设有一个AFC锁相环的TA8783N优良;TA8880N还设有图象人工智能(AI)色彩动态跟踪校正接口电路,通过AI控制电路自动完成变幻画面最佳效果的平衡调整,免去电视场强变化(更换频道)时画面色饱和度随之变化而进行画面色彩效果再调整。
基于这些瞩目诱人的优势,松下“三超画王”(M17、M17N)和“大野画王”(M17W机芯、全为16:9宽屏)数十种系列机型全部挑选TA8880N担任解码重任。
现以图1所示大野画王的结构原理,TC28GW25G机型视频亮度/色度/行场偏转小信号处理电路为例,介绍单片多制式解码TA8880N的结构原理,TC28GW25G机型视频亮度、色度信号处理流程和行频场频激励信号形成过程。
戴尔 PowerEdge C8220X 至强融核 5110P 7120P MIC 卡安装指南说明书
C8220X_MIC5110P7120P_IG.book Page 1 Monday, August 12, 2013 5:42 PMDell PowerEdge C8220XXeon Phi 5110P/7120PMIC CardInstallation GuideRegulatory Model: B06BRegulatory Type: B06B001Notes, Cautions, and WarningsNOTE:A NOTE indicates important information that helps you make better use ofyour computer.CAUTION: A CAUTION indicates either potential damage to hardware or loss ofdata and tells you how to avoid the problem.WARNING: A WARNING indicates a potential for property damage, personalinjury, or death.____________________Information in this publication is subject to change without notice.©2013Dell Inc.All rights reserved.Reproduction of these materials in any manner whatsoever without the written permission of Dell Inc.is strictly forbidden.Trademarks used in this text: Dell™, the DELL logo, and PowerEdge™ are trademarks of Dell Inc.Intel®, Xeon®, and Intel® Xeon Phi™ are trademarks of Intel Corporation in the U.S. and/or other countries.Other trademarks and trade names may be used in this publication to refer to either the entities claiming the marks and names or their products. Dell Inc. disclaims any proprietary interest in trademarks and trade names other than its own.Regulatory Model B06BRegulatory Type: B06B0012013 - 08 P/N X8N2G Rev. A00C8220X_MIC5110P7120P_IG.book Page 2 Monday, August 12, 2013 5:42 PMC8220X_MIC5110P7120P_IG.book Page 3 Monday, August 12, 2013 5:42 PMContentsImportant Safety Information (5)Recommended Tools (5)Information You May Need (6)Xeon Phi 5110P/7120P MIC Cards (6)Installing the Front Xeon Phi 5110P/7120P MIC card (7)Installing the Back Xeon Phi 5110P/7120P MIC card..11Cable Routing Diagram (16)Contents3C8220X_MIC5110P7120P_IG.book Page 4 Monday, August 12, 2013 5:42 PM 4ContentsInstallation Guide 5Important Safety InformationObserve the following safety precautions when installing Intel Xeon Phi 5110P/7120P ManyIntegrated Core (MIC) cards in the PowerEdge C8220X sled. WARNING: Working on systems that are still connected to a power supply can beextremely dangerous.CAUTION: The sled must be operated with the cover installed to ensure proper cooling.CAUTION: To ensure proper airflow in the PowerEdge C8000 server enclosure, if a sled module is removed it should be immediately replaced with another sled or sled blank.CAUTION:Operating the system for extended periods of time without a sled blank installed can cause the PowerEdge C8000 server enclosure to overheat.CAUTION: MIC cards can only be installed in the slots on the GPGPU card riser. Do not attempt to install MIC cards directly into the riser connector on the system board.NOTE: It is recommended that you always use a static mat and static strap while working on components in the interior of the system.To avoid injury to yourself or damage to your system, follow these guidelines:•Always disconnect the system from the power outlet whenever you are working inside thesystem.•If possible, wear a grounded wrist strap when you are working inside the system.Alternatively, discharge any static electricity by touching the bare metal chassis of the system case, or the bare metal body of any other grounded appliance.•Hold electronic circuit boards by the edges only. Do not touch the components on theboard unless it is necessary to do so. Do not flex or stress the circuit board.•Leave all components inside the static-proof packaging until you are ready to use the component for the installation.•Some cables have a connector with locking tabs; if you are disconnecting this type of cable,press in on the locking tabs before you disconnect the cable. As you pull connectors apart, keep them evenly aligned to avoid bending any connector pins. Also, before you connect a cable, ensure that both connectors are correctly oriented and aligned.Recommended ToolsY ou may need the following items to install Intel Xeon Phi 5110P/7120P MIC cards in the PowerEdge C8220X sled.•#1 or #2 Phillips screwdriver•Static mat•Static strap C8220X_MIC5110P7120P_IG.book Page 5 Monday, August 12, 2013 5:42 PM6Installation GuideInformation You May NeedFor information about system features, troubleshooting, and component replacement, see the PowerEdge C8220X Hardware Owner’s Manual . This document is available at/support/manuals .Xeon Phi 5110P/7120P MIC Cards1Remove the sled from the PowerEdge C8000 server enclosure. For detailed information onremoving the sled, see the PowerEdge C8220X Hardware Owner’s Manual .2Place the sled on a flat, stable surface.3Open the sled. For detailed information on opening the sled, see the PowerEdge C8220XHardware Owner’s Manual .4Remove the five M3 screws securing the top cover. 5Lift the top cover away from the sled cover.NOTE: Be careful not to damage the twin axial cable on the back GPGPU card riser when removing the top cover.Figure 1-1.Removing the Top Cover1top cover 2M3 screws (5)C8220X_MIC5110P7120P_IG.book Page 6 Monday, August 12, 2013 5:42 PMC8220X_MIC5110P7120P_IG.book Page 7 Monday, August 12, 2013 5:42 PMInstalling the Front Xeon Phi 5110P/7120P MIC card1Remove the four M3 screws securing the air baffles.1M3screws(4)2right air baffle3left air baffle4GPGPU blank3Remove the four M3 screws securing the mounting brackets.1M3 screws (4)2front mounting bracket3back mounting bracket 4GPGPU blankInstallation Guide78Installation Guide6Align the right air baffle with the screw holes on the front of the sled cover.8Remove the four screws securing the MIC card bracket.9Lift the bracket from the MIC card. Save the bracket for future use.Figure 1-5.Removing the MIC Card Bracket1M3 screws (2)2right air baffle1screws (4) 2MIC card bracket3MICcardC8220X_MIC5110P7120P_IG.book Page 8 Monday, August 12, 2013 5:42 PMInstallation Guide 910Align the front mounting bracket with the screw holes on the left of the MIC card and securewith four M3 screws. Tighten the screws to 5.21 in-lbs.11Align the back mounting bracket with the screw holes on the right of the MIC card andsecure with four M3 screws. Tighten the screws to 5.21 in-lbs.Figure 1-6.Installing the Mounting Brackets1M3 screws (4)2front mounting bracket 3back mounting bracket 4MIC card1, 2 power cablesC8220X_MIC5110P7120P_IG.book Page 9 Monday, August 12, 2013 5:42 PMC8220X_MIC5110P7120P_IG.book Page 10 Monday, August 12, 2013 5:42 PM13Align and insert the MIC card assembly into the front GPGPU card riser connector until the1 M3 screws (4)2MIC card assembly1left air baffle 2M3 screws (2)3MIC card assembly10Installation GuideC8220X_MIC5110P7120P_IG.book Page 11 Monday, August 12, 2013 5:42 PMInstalling the Back Xeon Phi 5110P/7120P MIC card1Release the cables from the retaining clips and slightly lift the cables to access the screws on the sled cover.Figure 1-10.Releasing the Power CablesFigure 1-11.Removing the Air BafflesInstallation Guide114Remove the four M3 screws securing the mounting brackets.5Lift the mounting brackets away from the GPGPU blank. Save the mounting brackets.6Lift the GPGPU blank out of the sled cover. Save the GPGPU blank for future use.NOTE: Be careful not to damage the twin axial cable on the back GPGPU card riser when removing the top cover.Figure 1-12.Removing the Mounting Brackets and GPGPU Blank7Align the right air baffle with the screw holes on the back of the sled cover.8Secure the right air baffle to the sled cover using the two M3 screws. Tighten the screws to5.21 in-lb.Figure 1-13.Installing the Right Air BaffleC8220X_MIC5110P7120P_IG.book Page 12 Monday, August 12, 2013 5:42 PMInstallation Guide 139Remove the four screws securing the MIC card bracket.10Lift the bracket from the MIC card. Save the bracket for future use.Figure 1-14.Removing the MIC Card Bracket11Align the front mounting bracket with the screw holes on the left of the MIC card and securewith four M3 screws. Tighten the screws to 5.21 in-lbs.12Align the back mounting bracket with the screw holes on the right of the MIC card andsecure with four M3 screws. Tighten the screws to 5.21 in-lbs.Figure 1-15.Installing the Mounting Brackets1screws (4) 2MIC card bracket3MIC card1M3 screws (8)2front mounting bracket3back mounting bracket 4MIC cardC8220X_MIC5110P7120P_IG.book Page 13 Monday, August 12, 2013 5:42 PMC8220X_MIC5110P7120P_IG.book Page 14 Monday, August 12, 2013 5:42 PM13Connect the power cables to the MIC card. Ensure the cables are properly attached.See Figure1-19 for the cable routing diagram.Figure 1-16.Connecting the Power CablesFigure 1-17.Installing the Back MIC Card Assembly14Installation Guide16Align the left air baffle with the screw holes on the back of the sled cover.17Secure the left air baffle to the sled cover using the two M3 screws. Tighten the screws to5.21 in-lb.18Route the power cables along the inside wall of the sled cover.19Secure the cables to the retaining clips.Figure 1-18.Installing the Left Air BaffleNOTE: Be careful not to damage the twin axial cable on the back GPGPU card riserwhen replacing the top cover.21Close the sled.22Replace the sled in the server enclosure.C8220X_MIC5110P7120P_IG.book Page 15 Monday, August 12, 2013 5:42 PMInstallation Guide15Cable Routing DiagramNOTE: Route the cables properly inside the sled to prevent the cables from being pinched orcrimped.Figure 1-19.Cable Routing for Front and Back Xeon Phi 5110P/7120P MIC Card AssemblyC8220X_MIC5110P7120P_IG.book Page 16 Monday, August 12, 2013 5:42 PM16Installation Guide1power/emergency throttling connector on front GPGPU card riser 2power connector on front GPGPU card riser3power/emergency throttling connector on back GPGPU card riser 4power connector on back GPGPU card riser5twin axial cable on back GPGPU card riser 6twin axial cable connector on system board7power/emergency throttling connector on node power distribution board (NPDB)8power/emergency throttling connector on NPDB9power connector on NPDB10power connector on NPDB11power connector on NPDB12power connector on NPDB13power connector on NPDB14power connector on back MIC card15power connector on back MIC card16power connector on front MIC card17power connector on front MIC cardC8220X_MIC5110P7120P_IG.book Page 17 Monday, August 12, 2013 5:42 PMInstallation Guide17C8220X_MIC5110P7120P_IG.book Page 18 Monday, August 12, 2013 5:42 PM 18Installation GuideC8220X_MIC5110P7120P_IG.book Page 19 Monday, August 12, 2013 5:42 PMC8220X_MIC5110P7120P_IG.book Page 20 Monday, August 12, 2013 5:42 PMPrinted in the U.S.A. | 。