电磁感应典型例题

合集下载

(完整版)电磁感应典型例题

(完整版)电磁感应典型例题

典型例题电磁感应与电路、电场相结合1 .如图所示,螺线管的导线的两端与两平行金属板相接,一个带负电的通草球用丝线悬挂在两金属板间,并处于静止状态,若条形磁铁突然插入线圈时,通草球的运动情况是()A、向左摆动B、向右摆动_C、保持静止D、无法确定N解:当磁铁插入时,穿过线圈的磁通量向左且增加,线圈产S—^生感应电动势,因此线圈是一个产生感应电动势的电路,相当于一个电源,其等效电路图如图,因此A板带正电,B板带负电,故小球受电场力向左答案:A3.如图所示,匀强磁场B=0.1T,金属棒AB长0.4m,与框架宽度相同,计,电阻Ri=2 Q, R2=1 ◎当金属棒以5m/s的速度匀速向左运动时,求:(1)流过金属棒的感应电流多大?(2)若图中电容器C为0.3则充电量多少?(1)0.2A, (2)4 10-8C解:(1)金属棒AB以5m/s的速度匀速向左运动时,切割磁感线,产生的感应电动势为 E Blv ,得E 0.1 0.4 5V 0.2V ,2由串并联知识可得R外一,R总1 ,所以电流I 0.2A304(2)电容器C并联在外电路上,U外—V由公式Q CU 0.334.(2003上海)粗细均习的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行。

现使线框以同样大小的速度沿四个不同方向平移出磁场,如图100-1所示,则在移出过程中线框的一边a、b两点间电势差绝对值最大的是()解:沿四个不同方向移出线框的感应电动势都是E效电路如图100-2所示,显然图B'的Uab最大,选B。

电阻为R=1/3 ◎框架电阻不106 034 c 4108cBlv ,而a、b两点在电路中的位置不同,其等AB5.( 2004年东北三校联合考试)粗细均匀的电阻丝围成如图12 —8所示的线框abcde (ab=bc)置于正方形有界匀强磁场中,磁场方向垂直于线框平面.现使线框以同样大小的速度匀速地沿四个不同方向平动进入磁场,并且速度方向始终与线框先进入磁场的那条边垂直,则在通过图示位置时,线框ab边两端点间的电势差绝对值最大的是6. 竖直平面内有一金属环,半径为 a,总电阻为 R.磁感应强度为 B 的匀强磁场垂直穿过环平面,与环的最高点 A 较链连接的长度为 2a 、电阻为R/2的导体棒AB 由水平位置紧-----贴环面摆下(如图).当摆到竖直位置时, B 点的线速度为 v,则这时 AB 两端 巾 的电压大小为( )|,\A.2BavB.BavC.2Bav/3D.Bav/3 X工/解析:导体棒转至竖直位置时,感应电动势 E=1B2av=Bav E2R R电路中总电阻R 总=Y2-2— + — = — R 总电流I = -- = 4EavAB 两端的电压U=E - I — =— Bav.R R 2 4 R 总 3R2 32 2答案:D8. (04江苏35)如图100-3所示,U 形导线框 MNQP 水平放置在磁感应强度 B = 0.2T 的匀强磁场中, 磁感线方向与导线框所在平面垂直,导线 MN 和PQ 足够长,间距为0. 5m,横跨在导线框上的导体棒 ab的电阻r= 1.0 0,接在NQ 间的电阻R = 4.OQ,电压表为理想电表,其余电阻不计.若导体棒在水平外力 作用下以速度 尸2.0m/s 向左做匀速直线运动,不计导体棒与导线框间的摩擦.(1)通过电阻R 的电流方向如何?(2)电压表的示数为多少?M 咛 (3)若某一时刻撤去水平外力,则从该时刻起,在导体棒运动1.0m•的过程中,通过导体棒的电荷量为多少 ?解:(1)由右手定则可判断,导体棒中的电流方向为 阻R 的电流方向为NRQ(2)由感应电动势的公式,得 E=Blv设电路中的电流为I,由闭合电路欧姆定律,得又电压表的示数等于电阻 R 两端的电压值,则有综合①②③式,得R +产 ④(3)撤去水平外力后,导体棒将在安培力的作用下, 做减速运动.设在导体棒运动x=1.0m 的过程中,2U=IR ③代入数值,得 U=0.16V ⑤导体棒中产生的感应电动势的平均值为由法拉第电磁感应定律,得设通过导体棒的电荷量为E E f =—A/E r综合⑥、⑦、⑧式,得Q,则有 Q = I At由闭合电路欧姆定律,得⑧⑨代入数值,得Q=2.0 M0-2C ⑩解析:线框通过图示各位置时,电动势均为E=Blv,图A 中ab 相当于电源,U ab 最大.答案:A答案:通过电阻R的电流万向为NRQ 0.16V 2.0 102c得:Ft mgt I LBt mv ⑤ 解得:q I t 0.36C⑥拓展1. (2003年北京海淀区模拟题) 如图所示,MN 和PQ 是固定在水平面内间距 L=0.20 m 的平 行金属轨道,轨道的电阻忽略不计.金属杆ab 垂直放置在轨道上.两轨道间连接有阻值为 R O =1.5翦勺电阻, ab 杆的电阻R= 0.50 @b 杆与轨道接触良好并不计摩擦, 整个装置放置在磁感应强度为 B= 0.50 T 的匀强 磁场中,磁场方向垂直轨道平面向下 .对ab 杆施加一水平向右的拉力,使之以v= 5.0 m/s 的速度在金属轨道上向右匀速运动 .求: (1)通过电阻R 0的电流; (2)对ab 杆施加的水平向右的拉力的大小 ;(3) ab 杆两端的电势差. 解析:(1) a 、b 杆上产生的感应电动势为 E=BLv=0.50 V. 根据闭合电路欧姆定律,通过 R 0的电流1 = 一E一=0.25 A. R 0 R 口 (2)由于ab 杆做匀速运动,拉力和磁场对电流的安培力 F 大小相等,即F 拉=F=BIL=0.025 N..................................... ER BlvR … (3)根据欧姆定律,ab 杆两端的电势差 Uab=——0—= -------- 0- =0.375 V.R R 0 R R 0 答案:(1) 0.50 V (2) 0.025 N (3) 0.375 V 拓展2.如图所示,水平面上有两根相距 0.5m 的足够长的平行 金属导轨 MN 和PQ,它们的电阻可忽略不计,在 M 和P 之间接有 阻值为R 的定值电阻,导体棒 ab 长l = 0.5m,其电阻为r,与导轨 接触良好.整个装置处于方向竖直向上的匀强磁场中,磁感应强度 B = 0.4T.现使ab 以v= 10m/s 的速度向右做匀速运动. (1) ab 中的感应电动势多大 ? (2)ab 中电流的方向如何 ? ⑶若定值电阻R = 3.O ◎导体棒的电阻r=1.O ◎,则电路电流大? 解:(1) ab 中的感应电动势为: E Blv ① 代入数据得:E=2.0V ② (2) ab 中电流方向为b-a (3)由闭合电路欧姆定律,回路中的电流 I —E — ③ 代入数据得:I = 0.5A R r答案:(1) 2.0V (2) ab 中电流方向为 b-a (3) 0.5A 拓展3.如图所示,MN 、PQ 是两条水平放置彼此平行的金属导轨, 匀强磁场的磁感线垂直导轨平面. 导 轨左端接阻值 R=1.5 ◎的电阻,电阻两端并联一电压表,垂直导轨跨接一金属杆 ab, ab 的质量m=0.1kg, 电阻r=0.5 Q.ab 与导轨间动摩擦因数 户0.5,导轨电阻不计,现用F=0.7N 的恒力水平向右拉 ab,使之从静止开始运动,经时间 t=2s 后,ab 开始 做匀速运动,此时电压表示数 U=0.3V .重力加速度g=10m/s 2.求: (1) ab 匀速运动时,外力 F 的功率. (2) ab 杆加速过程中,通过 R 的电量. (3) ab 杆加速运动的距离. 解:(1)设导轨间距为 L,磁感应强度为 B, ab 杆匀速运动的速 度为v,电流为I,此时ab 杆受力如图所示:由平衡条件得:F=(i mg+ILB ① 由欧姆定律得:1_B" U ② R r R由①②解得:BL=1T m v=0.4m/s③ F 的功率:P=Fv=0.7 0.4W=0.28W④(2)设ab 加速时间为t,加速过程的平均感应电流为I ,由动量定理典型例题一一导体在磁场中切割磁感线(一)单导体运动切割磁感线1.动——电——动2.电——动——电(3)设加速运动距离为s,由法拉第电磁感应定律得 EBLs又E 「(R r) ⑧由⑥⑦⑧解得 c q(R r)s -------BL 0.36 2 ------ m 072m9. (05天津23)图中MN和PQ为竖直方向的两平行长直金属导轨,间距导轨所在平面与磁感应强度B为0. 50T的匀强磁场垂直。

电磁感应练习题初三

电磁感应练习题初三

电磁感应练习题初三电磁感应是物理学中一个重要的概念,也是初中物理课程的重点内容之一。

下面我们来进行一些关于电磁感应的练习题,以帮助初三学生巩固和拓展对这一知识点的理解。

练习题一:一个长直导线中通过电流I,它产生的磁感应强度B为2.5 × 10^-4 T。

现有一条与长直导线平行的导线,两者距离为0.1 m,导线长度为0.5 m,通过的电流为5 A。

求这条导线在电磁感应中所受到的力。

解答:根据电磁感应的洛伦兹力公式F = BILsinθ,其中F为力,B为磁感应强度,I为电流,L为导线长度,θ为两者夹角。

将已知数据代入公式中,可得:F = (2.5 × 10^-4 T) × (5 A) × (0.5 m) × sinθ练习题二:一根长度为1.2 m的导线以速度2.5 m/s在磁感应强度为0.3 T的磁场中运动。

求导线在该磁场中感应出的电动势。

解答:根据电磁感应的法拉第电磁感应定律,感应电动势ε等于导线与磁感应强度的乘积再乘以导线运动的速度。

即ε = BvL,其中ε为感应电动势,B为磁感应强度,v为导线速度,L为导线长度。

将已知数据代入公式中,可得:ε = (0.3 T) × (2.5 m/s) × (1.2 m)练习题三:一个圆形线圈有100个匝,线圈的半径为5 cm,并且导线上的电流随时间变化,变化的速率为0.2 A/s。

求当时间为2 s时,该圆形线圈内感应出的电动势大小。

解答:根据电磁感应的法拉第电磁感应定律,感应电动势ε等于导线上的匝数N与磁感应强度的乘积再乘以导线上电流随时间变化的速率的绝对值。

即ε = NB |dI/dt|,其中ε为感应电动势,N为导线的匝数,B为磁感应强度,dI/dt为电流随时间变化的速率。

将已知数据代入公式中,可得:ε = (100 匝) × B × |0.2 A/s|练习题四:一个长度为1.5 m的导线以速度3 m/s穿过磁感应强度为0.5 T的磁场,导线的两端接在一个电阻为10 Ω的电阻器上。

(完整版)电磁感应综合典型例题

(完整版)电磁感应综合典型例题

电磁感应综合典型例题【例1】电阻为R的矩形线框abcd,边长ab=L,ad=h,质量为m,自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁场区域的宽度为h,如图所示,若线框恰好以恒定速度通过磁场,线框中产生的焦耳热是_______.(不考虑空气阻力)【分析】线框通过磁场的过程中,动能不变。

根据能的转化和守恒,重力对线框所做的功全部转化为线框中感应电流的电能,最后又全部转化为焦耳热.所以,线框通过磁场过程中产生的焦耳热为Q=W G=mg—2h=2mgh.【解答】2mgh。

【说明】本题也可以直接从焦耳热公式Q=I2Rt进行推算:设线框以恒定速度v通过磁场,运动时间从线框的cd边进入磁场到ab边离开磁场的过程中,因切割磁感线产生的感应电流的大小为cd边进入磁场时的电流从d到c,cd边离开磁场后的电流方向从a到b.整个下落过程中磁场对感应电流产生的安培力方向始终向上,大小恒为据匀速下落的条件,有因线框通过磁场的时间,也就是线框中产生电流的时间,所以据焦耳定律,联立(l)、(2)、(3)三式,即得线框中产生的焦耳热为Q=2mgh.两种解法相比较,由于用能的转化和守恒的观点,只需从全过程考虑,不需涉及电流的产生等过程,计算更为简捷.【例2】一个质量m=0.016kg、长L=0.5m,宽d=0.1m、电阻R=0.1Ω的矩形线圈,从离匀强磁场上边缘高h1=5m处由静止自由下落.进入磁场后,由于受到磁场力的作用,线圈恰能做匀速运动(设整个运动过程中线框保持平动),测得线圈下边通过磁场的时间△t=0.15s,取g=10m/s2,求:(1)匀强磁场的磁感强度B;(2)磁场区域的高度h2;(3)通过磁场过程中线框中产生的热量,并说明其转化过程.【分析】线圈进入磁场后受到向上的磁场力,恰作匀速运动时必满足条件:磁场力=重力.由此可算出B并由运动学公式可算出h2。

由于通过磁场时动能不变,线圈重力势能的减少完全转化为电能,最后以焦耳热形式放出.【解答】线圈自由下落将进入磁场时的速度(l)线圈的下边进入磁场后切割磁感线产生感应电流,其方向从左至右,使线圈受到向上的磁场力.匀速运动时应满足条件(2)从线圈的下边进入磁场起至整个线圈进入磁场做匀速运动的时间以后线圈改做a=g的匀加速运动,历时所对应的位移所以磁场区域的高度(3)因为仅当线圈的下边在磁场中、线圈做匀速运动过程时线圈内才有感应电流,此时线圈的动能不变,由线圈下落过程中重力势能的减少转化为电能,最后以焦耳热的形式释放出来,所以线圈中产生的热量【说明】这是力、热、电磁综合题,解题过程要分析清楚每个物理过程及该过程遵守的物理规律,列方程求解。

高一物理电磁感应现象练习题及答案

高一物理电磁感应现象练习题及答案

高一物理电磁感应现象练习题及答案练习题一:1. 一根导线以速度v穿过磁感应强度为B的均匀磁场,导线长度为L,角度θ为导线与磁场方向的夹角。

求导线在时间Δt内所受到的感应电动势。

答案:感应电动势E = B * v * L * sinθ2. 一根导线以速度v进入磁感应强度为B的均匀磁场,导线的长度为L。

当导线完全进入磁场后,突然停止不动。

求此过程中导线两端之间的电势差。

答案:电势差V = B * v * L3. 一个长度为L的导线以速度v匀速通过磁感应强度为B的均匀磁场,当导线通过时间Δt后,磁场方向突然发生改变。

求导线两端之间产生的感应电动势。

答案:感应电动势E = 2 * B * v * L4. 一根长度为L的导线以速度v与磁感应强度为B的均匀磁场垂直相交,导线所受到的感应电动势大小为E,如果将导线切成长度为L/2的两段导线,两段导线所受感应电动势的大小分别是多少?答案:每段导线所受感应电动势的大小都是E练习题二:1. 一台电动机的转子有60个磁极,额定转速为3000转/分钟。

求转子在额定转速下的转子导线所受的感应电动势大小。

答案:转子导线所受感应电动势的大小为ω * Magnetic Flux,其中ω为角速度,Magnetic Flux为磁通量。

转速为3000转/分钟,转速ω =2π * 3000 / 60。

由于转子有60个磁极,每转所经过的磁通量为60 * Magnetic Flux。

因此,转子导线所受感应电动势的大小为60 * 2π * 3000 / 60 * Magnetic Flux。

2. 一根长度为L的导线以角速度ω绕通过导线轴线的磁感应强度为B的磁场旋转。

求导线两端之间的电势差大小。

答案:电势差V = B * ω * L3. 一根输电线路的电阻为R,长度为L,电流为I。

如果在电力系统中,磁感应强度为B的磁场垂直于导线方向,求输电线路两端之间的感应电动势。

答案:感应电动势E = B * L * I4. 一块矩形线圈有N匝,每匝的边长为a和b,磁通量为Φ,求矩形线圈所受到的感应电动势。

电磁感应经典大题及答案

电磁感应经典大题及答案

电磁感应经典大题及答案题量超大的题集,较有难度,答案详细,是很不错的电磁感应习题哦。

电磁感应经典习题1.如图10所示,匀强磁场区下边界是水平地面,上边界与地面平行,相距h=1.0m,两个正方形金属线框P、Q在同一竖直平面内,与磁场方向始终垂直。

P的下边框与地面接触,上边框与绝缘轻线相连,轻线另一端跨过两个定滑轮连着线框Q。

同时静止释放P、Q,发现P全部离开磁场时,Q还未进入磁场,而且当线框P整体经过磁场区上边界时,一直匀速运动,当线框Q整体经过磁场区上边界时,也一直匀速运动。

若线框P的质量m1 0.1kg、边长L1 0.6m、总电阻R1 4.0Ω,线框Q的质量m2 0.3kg、边长L2 0.3m、总电阻R2 1.5Ω忽略一切摩擦和空气阻力,重力加速度g 10m/s2。

求:(1)磁感应强度的大小?(2)上升过程中线框P增加的机械能的最大值?2.如图13甲所示,一边长L=2.5m、质量m=0.5kg的正方形金属线框,放在光滑绝缘的水平面上,整个装置放在方向竖直向上、磁感应强度B=0.8T的匀强磁场中,它的一边与磁场的边界MN重合。

在水平力F作用下由静止开始向左运动,经过5s 线框被拉出磁场。

测得金属线框中的电流随时间变化的图像如乙图所示,在金属线框被拉出的过程中。

(1)求通过线框导线截面的电量及线框的电阻;(2)写出水平力F随时间变化的表达式;(3)已知在这5s内力F做功1.92J,那么在此过程中,线框产生的焦耳热是多少?题量超大的题集,较有难度,答案详细,是很不错的电磁感应习题哦。

3.随着越来越高的摩天大楼在世界各地的落成,而今普遍使用的钢索悬挂式电梯已经不适应现代生活的需求。

这是因为钢索的长度随着楼层的增高而相应增加,这些钢索会由于承受不了自身的重力,还没有挂电梯就会被拉断。

为此,科学技术人员开发一种利用磁力的电梯,用磁动力来解决这个问题。

如图所示是磁动力电梯示意图,即在竖直平面上有两根很长的平行竖直轨道,轨道间有垂直轨道平面交替排列的匀强磁场B1和B2,B1=B2=1.0T,B1和B2的方向相反,两磁场始终竖直向上作匀速运动。

初三电磁感应练习题及答案

初三电磁感应练习题及答案

初三电磁感应练习题及答案练习题1:1. 一个导线以2.0m/s的速度从一个均匀磁场中通过,磁感应强度为0.4T,导线长度为0.5m。

求导线所受的感应电动势大小。

2. 一个长度为3.0m的导线以10m/s的速度垂直通过一个磁感应强度为1.5T的磁场,求导线两端之间的感应电势差。

3. 一个矩形导线框架的长边长度为2.0m,短边长度为0.5m,框架的整体电阻为6.0Ω。

当磁感应强度为0.8T时,框架被拉动,导线切割磁力线的速度恒定为3.0m/s。

求在导线上出现的电动势大小。

答案:1. 感应电动势的大小与磁感应强度、导线长度和导线在磁场中的速度有关。

根据公式E = B*d*l*v,其中B为磁感应强度,d为导线长度,l为导线在磁场中的速度,v为导线长度。

将已知值代入计算,得到E = 0.4T * 0.5m * 2.0m/s = 0.4V。

故导线所受的感应电动势大小为0.4V。

2. 感应电势差的大小取决于磁感应强度、导线长度和导线在磁场中的速度之积。

根据公式∆V = B*l*v,其中B为磁感应强度,l为导线长度,v为导线在磁场中的速度。

将已知值代入计算,得到∆V = 1.5T * 3.0m * 10m/s = 45V。

导线两端之间的感应电势差为45V。

3. 在导线上出现的电动势大小取决于磁感应强度、导线长度、导线在磁场中的速度和导线的电阻之积。

根据公式E = B*d*l*v/R,其中B为磁感应强度,d为导线长度,l为导线在磁场中的速度,R为导线的电阻。

将已知值代入计算,得到E = 0.8T * 3.0m * 2.0m * 0.5m/s / 6.0Ω = 0.8V。

在导线上出现的电动势大小为0.8V。

练习题2:1. 一个磁感应强度为0.5T的磁场垂直于一个半径为0.2m的圆环,圆环的电阻为2.0Ω。

圆环以5rad/s的角速度绕垂直磁场线旋转,求圆环上出现的感应电动势大小。

2. 一个长度为4.0m的直导线绕过一个半径为2.0m的圆形电感线圈,电感线圈中有100个匝。

初中电磁感应专题练习(含详细答案)

初中电磁感应专题练习(含详细答案)

初中电磁感应专题练习(含详细答案)
一、选择题
1. 一个导线在磁场中匀速向右移动,感应电动势的方向如何?
A. 由左向右
B. 由右向左
C. 没有感应电动势
D. 无法确定
答案:B
2. 带电粒子在磁场中匀速运动,运动轨迹如何?
A. 直线运动
B. 圆形运动
C. 抛物线运动
D. 双曲线运动
答案:B
二、计算题
1. 一个弯曲的导线长为10cm,导线中有一个电流I=2A,若在
导线处有一个磁感应强度为B=3T的磁场,求电动势的大小为多少?
解答:
$\mathcal{E}=Blv=\frac{1}{2}Blv=\frac{1}{2}Blsin\theta=\frac{1}{2} \times 3 \times 0.1 \times 2=\frac{3}{20}$V。

三、简答题
1. 什么是电磁感应?
电磁感应是指导体中的电子受到磁场的作用从而在导体两端产
生的电动势。

2. 什么是法拉第电磁感应定律?
法拉第电磁感应定律指出,当导体中的磁力线发生变化时,沿
着导体的任意闭合回路中就会产生感应电动势,其大小与磁通量的
变化率成正比,方向满足楞次定律。

3. 什么是楞次定律?
楞次定律指出,当导体内有感应电流时,该电流所发出的磁场的方向是这样的,即它所引起的磁通量的变化总是阻碍引起这种变化的原因。

4. 什么情况下会产生感应电流?
当导体在磁场中发生运动或被磁场线穿过而发生变化时,就会在导体中产生感应电流。

电磁感应典型例题

电磁感应典型例题

例1:如图,两根相距L =0.8m 、电阻不计的平行光滑金属导轨水平放置,一端与阻值R =0.3Ω的电阻相连。

导轨x >0一侧存在沿x 方向均匀增大的稳恒磁场,其方向与导轨平面垂直,变化率k =0.5T/m ,x =0处磁场的磁感应强度B 0=0.5T 。

一根质量m =0.2kg 、电阻r =0.1Ω的金属棒置于导轨上,并与导轨垂直。

棒在外力作用下从x =0处以初速度v 0=4m/s 沿导轨向右运动,运动过程中电阻上消耗的功率不变。

则( )A .金属棒在x=3m 处的速度为1m/sB .金属棒从x=0运动到x=3m 过程中安培力做功的大小为5.12JC .金属棒从x=0运动到x=3m 过程中所用的时间为0.8sD .金属棒从x=0运动到x=3m 过程中外力的平均功率为5.6W答案:AD解析:在x =3m 处,磁感应强度B = B 0+kx 2=0.5T+0.5T/m ×3m=2T 。

E=BLv =B 0Lv 0解得:金属棒在x =3m 处的速度v =1m/s ,A 对;由于功率恒定,电流恒定,安培力大小随距离均匀增大,x=0处:N rR v L B F 6.10220=+=安 x=3m 处,N r R v L B F 4.622=+=安过程中安培力做功的大小W 安=21( F 0 + F)x=12J ,B 错; W=Pt ,P=EI =W rR v L B 4.6222=+,解得:t=1.875s ,C 错; (提示:C 答案中,求时间还可以采用:=P r R v L B r R v L B +=+22220220,即:v kx B v B )(000+=,即:00011v x v B k v +=,作出x v -1图象,图像下面积即为时间。

)由动能定理:W+W 安=k E ∆,即:P 外t=J mv mv 5.10122121202=+-,解得:P 外=5.6W ,D 对。

变式训练:(2013高考上海物理第33题)如图,两根相距L =0.4m 、电阻不计的平行光滑金属导轨水平放置,一端与阻值R =0.15Ω的电阻相连。

电磁感应定律典型例题

电磁感应定律典型例题

典型例例1: 关于感应电动势,下列说法正确的是( ) A .穿过回路的磁通量越大,回路中的感应电动势就越大 B .穿过回路的磁通量变化量越大,回路中的感应电动势就越大 C .穿过回路的磁通量变化率越大,回路中的感应电动势就越大D .单位时间内穿过回路的磁通量变化量越大,回路中的感应电动势就越大 【解析】感应电动势E 的大小与磁通量变化率t∆∆φ成正比,与磁通量φ、磁通量变化量φ∆无直接联系。

A 选项中磁通量φ很大时,磁通量变化率t∆∆φ可能很小,这样感应电动势E 就会很小,故A 错。

B 选项中φ∆很大时,若经历时间很长,磁通量变化率t∆∆φ仍然会很小,感应电动势E 就很小,故B 错。

D 选项中单位时间内穿过回路的磁通量变化量即磁通量变化率t∆∆φ,它越大感应电动势E 就越大,故D 对。

答案:CD【总结】感应电动势的有无由磁通量变化量φ∆决定,φ∆≠0是回路中存在感应电动势的前提,感应电动势的大小由磁通量变化率t ∆∆φ决定,t∆∆φ越大,回路中的感应电动势越大,与φ、φ∆无关。

例2:一个面积S=4×10-2m 2,匝数N=100的线圈,放在匀强磁场中,磁场方向垂直线圈平面,磁场的磁感应强度B 随时间变化规律为△B /△t=2T/s ,则穿过线圈的磁通量变化率t∆∆φ为 Wb/s ,线圈中产生的感应电动势E= V 。

【解析】根据磁通量变化率的定义得t∆∆φ= S △B /△t=4×10-2×2 Wb/s=8×10-2Wb/s 由E=N △φ/△t 得E=100×8×10-2V=8V 答案:8×10-2;8【总结】计算磁通量φ=BScos θ、磁通量变化量△φ=φ2-φ1、磁通量变化率△φ/△t 时不用考虑匝数N ,但在求感应电动势时必须考虑匝数N ,即E=N △φ/△t 。

同样,求安培力时也要考虑匝数N ,即F=NBIL ,因为通电导线越多,它们在磁场中所受安培力就越大,所以安培力也与匝数N 有关。

电磁感应应用题理解电磁感应的实际应用

电磁感应应用题理解电磁感应的实际应用

电磁感应应用题理解电磁感应的实际应用电磁感应是一种物理现象,根据法拉第电磁感应定律,当磁通量变化时,导体中就会产生感应电动势。

电磁感应的实际应用非常广泛,涉及到许多领域,本文将通过几个应用题来更好地理解电磁感应在实际中的应用。

应用题一:电动车充电原理假设某电动汽车的电磁感应线圈面积为0.5平方米,磁感应强度为0.6特斯拉,当电动车以10米/秒的速度通过这个线圈,求感应电动势大小和方向。

解析与计算:根据电磁感应的定义,感应电动势的大小和方向由以下公式给出:ε = -N * ΔΦ / Δt其中,ε为感应电动势,N为线圈匝数,ΔΦ为磁通量的变化量,Δt为时间的变化量。

根据题目中的条件,线圈面积为0.5平方米,磁感应强度为0.6特斯拉,电动车速度为10米/秒。

当电动车通过线圈时,磁通量Φ随时间发生改变。

假设电动车通过线圈的时间为0.1秒,则感应电动势ε的计算如下:ε = -N * ΔΦ / Δt= -N * B * ΔA / Δt其中,B为磁感应强度,ΔA为线圈面积的变化量。

假设线圈面积变化量很小,可以忽略不计。

则有:ε = -N * B * ΔA / Δt= -N * B * A / t代入已知条件,可得:ε = -N * B * A / t= -1 * (0.6) * (0.5) / 0.1= -3伏特由于感应电动势的方向与磁通量变化的方向相反,所以感应电动势的方向为相反方向,即3伏特。

应用题二:磁力定位系统磁力定位系统是一种通过利用电磁感应原理实现的定位技术。

设想一个磁力定位系统由四个线圈组成,每个线圈上固定有磁铁,当磁铁与线圈之间的距离发生变化时,感应电动势的大小和方向如何变化?解析与讨论:磁力定位系统中的线圈与磁铁之间存在磁通量的变化,根据电磁感应的原理,感应电动势将随着磁铁与线圈之间的距离发生变化。

当磁铁靠近线圈时,磁通量增加,电动势增大;当磁铁远离线圈时,磁通量减少,电动势减小。

根据电磁感应的规律,感应电动势的方向始终与磁通量的变化方向相反。

电磁感应典型例题集锦

电磁感应典型例题集锦

电磁感应典型例题集锦【例题1】图为地磁场磁感线的示意图,在北半球的地磁场的竖直分量向下,飞机在我国的上空匀速航行,机翼保持水平,飞行高度不变。

由于地磁场的作用,金属机翼上有电势差,设飞行员左方机翼末端处的电势为U1,右方机翼末端的电势为U2。

A.若飞机从西向东飞,U1比U2高B.若飞机从东向西飞,U2比U1高C.若飞机从南往北飞,U1比U2高D.若飞机从北往南飞,U2比U1高【例题2】如图所示,通电直导线右边有一个矩形线框,线框平面与直导线共面,若使线框逐渐远离(平动)通电导线,则穿过线框的磁通量将:A.逐渐增大B.逐渐减小C.保持不变D.不能确定【例题3】如边长为0.2m的正方形导线框abcd斜靠在墙上,线框平面与地面成30°角,该区域有一水平向右的匀强磁场,磁感应强度为0.5T,如图所示。

因受振动线框在0.1s内滑跌至地面,这过程中线框里产生的感应电动势的平均值为_____。

【例题4】关于自感现象,下列说法中正确的是:A.对于同一线圈,当电流变化越大时,线圈中产生的自感电动势也越大B.对于同一线圈,当电流变化越快时,其自感系数也越大C.线圈中产生的自感电动势越大,则其自感系数一定较大D.感应电流有可能和原电流的方向相同【例题5】用力拉导线框使导线框匀速离开磁场这一过程如图所示,下列说法正确的是:A.线框电阻越大,所用拉力越小B.拉力做的功减去磁场力所做的功等于线框产生的热量C.拉力做的功等于线框的动能D.对同一线框,快拉与慢拉所做的功相同,线框产生的热量也相同【例题6】如右图所示,线圈由A位置开始下落,在磁场中受到的磁场力如果总小于它的重力,则它在A、B、C、D四个位置(B、D位置恰好线圈有一半在磁场中)时,加速度关系为:A. a A>a B>a C>a DB. a A=a C>a B>a DC. a A=a C>a D>a BD. a A=a C>a B=a D【例题7】如图所示,槽中有两铜棒,左侧液面下有5.6×10-3g Fe,溶液为足量的CuSO4。

八年级物理练习题:电磁感应

八年级物理练习题:电磁感应

八年级物理练习题:电磁感应电磁感应练习题
题目一:
1. 一根导线被连接到一个电池的两个端口上,并放在一块磁铁附近。

当电流通过导线时,磁铁受到吸引。

请说明这是如何发生的?
题目二:
2. 一个长直导线垂直放置在一块保持不变的磁场中。

如果导线中的电流方向与磁场方向相同,导线将受到一个向上的力。

如果电流方向与磁场方向相反,导线将受到一个向下的力。

请解释这个现象。

题目三:
3. 当电磁感应发生时,电流是如何产生的?请解释法拉第电磁感应定律。

题目四:
4. 简述发电机的工作原理。

说明在发电机中如何利用电磁感应产生电流。

题目五:
5. 请解释电磁感应在变压器中的应用。

说明变压器如何将电能从一个线圈传输到另一个线圈。

题目六:
6. 电磁感应可用于许多设备和技术中。

请举例并解释其中一个实际应用。

题目七:
7. 描述电磁感应实验的步骤。

设计并实施一个简单的电磁感应实验。

题目八:
8. 某个发电站的输出电压为220V。

计算电磁感应原理下,需要多少匝才能将
输出电压增加到440V?
题目九:
9. 当一个磁场变化时,经过具有多个匝数的线圈时,电压的大小会受到影响。

请说明匝数如何影响电磁感应中的电压大小。

题目十:
10. 电磁感应也被应用于感应炉。

解释感应炉是如何利用电磁感应加热金属的。

电磁感应典型题目(含答案)

电磁感应典型题目(含答案)

电磁感应的典型计算1 如图所示,一与水平面夹角为θ=37°的倾斜平行金属导轨,两导轨足够长且相距L=0.2m,另外两根水平金属杆MN和PQ的质量均为m=0.01kg,可沿导轨无摩擦地滑动,MN杆和PQ杆的电阻均为R=0.2Ω(倾斜金属导轨电阻不计),MN杆被两个垂直于导轨的绝缘立柱挡住,整个装置处于匀强磁场内,磁场方向垂直于导轨平面向上,磁感应强度B=1.0T.PQ杆在恒定拉力F作用下由静止开始向上加速运动,拉力F垂直PQ杆沿导轨平面向上,当运动位移x=0.1 m时PQ杆达到最大速度,此时MN杆对绝缘立柱的压力恰好为零(g取10m/s2,sin 37°=0.6 ,cos 37°=0.8).求:(1) PQ杆的最大速度v m, (2)当PQ杆加速度时,MN杆对立柱的压力;(3)PQ杆由静止到最大速度过程中回路产生的焦耳热Q.解:(1)PQ达到最大速度时,关于电动势为:E m=BLv m,感应电流为:I m=REm2,根据MN杆受力分析可得:mg sinθ=BI m L,联立解得:v m=22sin2LBRmg=0.6m/s;(2)当PQ的加速度a=2 m/s2 时,对PQ根据牛顿第二定律可得:F-mg sinθ-BIL=ma,对MN根据共点力的平衡可得:BIL+F N-mg sinθ=0,PQ达到最大速度时,有:F-mg sinθ-BI m L=0,联立解得:F N=0.02N,根据牛顿第三定律可得对立柱的压力F N=0.02N;(3)PQ由静止到最大速度的过程中,根据功能关系可得:F x =221mmv+mgx sinθ+Q,解得:Q=4.2×10-3 J.答:(1)PQ杆的最大速度为0.6m/s;(2)当PQ杆加速度a=2m/s2时,MN杆对立柱的压力为0.02N (3)PQ杆由静止到最大速度回路产生的焦耳热为4.2×10-3 J.2 如图所示,平行金属导轨与水平面间夹角均为θ=37°,导轨间距为lm,电阻不计,导轨足够长.两根金属棒 ab 和a′b′的质量都是0.2kg,电阻都是1Ω,与导轨垂直放置且接触良好,金属棒a′b′和导轨之间的动摩擦因数为0.5,设金属棒a′b′受到的最大静摩擦力等于滑动摩擦力.金属棒ab和导轨无摩擦,导轨平面PMKO处存在着垂直轨道平面向上的匀强磁场,导轨平面PMNQ处存在着沿轨道平面向上的匀强磁场,磁感应强度B的大小相同.用外力让a′b′固定不动,将金属棒ab由静止释放,当ab下滑速度达到稳定时,整个回路消耗的电功率为18W.求:(1)ab 棒达到的最大速度;(2)ab棒下落了 30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足什么条件?( g=10m/s2,sin37°=0.6,cos37°=0.8 )解:(1)ab 棒达到最大速度时做匀速运动,其重力功率等于整个回路消耗的电功率,则有:mg sinθ•v m=P电,则得:ab棒的最大速度为:v m==m/s=15m/s;由P电==,得:B==T=0.4T(2)根据能量守恒得:mgh=Q+则得:Q=mgh-=0.2×10×30J-×0.2×152 =37.5 J(3)将a′b′固定解除,为确保a′b′始终保持静止,则对于a′b′垂直于斜面方向有:N=mg cos37°+BIL,平行于斜面方向有:mg sin37°≤f m=μN解得:I ≥2A对于ab棒:E=I•2R,E=BLv,则得:v=≥m/s=10m/s故ab的速度应满足的条件是:10m/s≤v≤15m/s答:(1)ab 棒达到的最大速度是15m/s;(2)ab棒下落了30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q是37.5J;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足的条件是10m/s≤v≤15m/s3 如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为L,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B,方向垂直斜面向上.将甲乙两电阻阻值相同、质量均为m的相同金属杆如图放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距L.静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨向下的外力F,使甲金属杆在运动过程中始终做沿导轨向下的匀加速直线运动,加速度大小g sinθ,乙金属杆刚进入磁场时,发现乙金属杆作匀速运动.(1)求乙刚进入磁场时的速度(2)甲乙的电阻R为多少;(3)乙刚释放时t=0,写出从开始释放到乙金属杆离开磁场,外力F随时间t的变化关系;(4 )若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q,试求此过程中外力F对甲做的功.解:⑴在乙尚未进入磁场中的过程中,甲、乙的加速度相同,设乙刚进入磁场时的速度v乙刚进入磁场时,对乙由根据平衡条件得(2)设乙从释放到刚进入磁场过程中做匀加速直线运动所需要的时间为设乙从进入磁场过程至刚离开磁场的过程中做匀速直线运动所需要的时间为设乙离开磁场时,甲的速度设甲从开始释放至乙离开磁场的过程中的位移为x根据能量转化和守恒定律得:4 如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接。

高中物理【电磁感应】专题分类典型题(带解析)

高中物理【电磁感应】专题分类典型题(带解析)

高中物理电磁感应专题分类题型一、【电磁感应现象楞次定律】典型题1.如图所示,两个单匝线圈a、b的半径分别为r和2r.圆形匀强磁场B的边缘恰好与a线圈重合,则穿过a、b 两线圈的磁通量之比为()A.1∶1B.1∶2C.1∶4 D.4∶1解析:选A.磁通量Φ=B·S,其中B为磁感应强度,S为与B垂直的有效面积.因为是同一磁场,B相同,且有效面积相同,S a=S b,故Φa=Φb.选项A正确.2.如图所示,两个相同的轻质铝环套在一根水平光滑绝缘杆上,当一条形磁铁向左运动靠近两环时,两环的运动情况是()A.同时向左运动,间距增大B.同时向左运动,间距减小C.同时向右运动,间距减小D.同时向右运动,间距增大解析:选B.根据“来拒去留”可知,两环同时向左运动,又因两环中产生同向的感应电流,相互吸引,且右环受磁铁的排斥作用较大,故两环间距又减小,B正确.3.如图,一圆形金属环与两固定的平行长直导线在同一竖直平面内,环的圆心与两导线距离相等,环的直径小于两导线间距.两导线中通有大小相等、方向向下的恒定电流.若()A.金属环向上运动,则环上的感应电流方向为顺时针方向B.金属环向下运动,则环上的感应电流方向为顺时针方向C.金属环向左侧直导线靠近,则环上的感应电流方向为逆时针方向D.金属环向右侧直导线靠近,则环上的感应电流方向为逆时针方向解析:选D.当金属环上下移动时,穿过环的磁通量不发生变化,根据楞次定律,没有感应电流产生,选项A、B错误;当金属环向左移动时,穿过环的磁通量垂直纸面向外且增加,根据楞次定律可知,环上产生顺时针方向的感应电流,故选项C错误;当金属环向右移动时,穿过环的磁通量垂直纸面向里且增加,根据楞次定律可知,环上产生逆时针方向的感应电流,故选项D正确.4.如图,在一根竖直放置的铜管的正上方某处从静止开始释放一个强磁体,在强磁体沿着铜管中心轴线穿过铜管的整个过程中,不计空气阻力,那么()A.由于铜是非磁性材料,故强磁体运动的加速度始终等于重力加速度B.由于铜是金属材料,能够被磁化,使得强磁体进入铜管时加速度大于重力加速度,离开铜管时加速度小于重力加速度C.由于铜是金属材料,在强磁体穿过铜管的整个过程中,铜管中都有感应电流,加速度始终小于重力加速度D.由于铜是金属材料,铜管可视为闭合回路,强磁体进入和离开铜管时产生感应电流,在进入和离开铜管时加速度都小于重力加速度,但在铜管内部时加速度等于重力加速度解析:选C.铜是非磁性材料,不能够被磁化,B错误;铜是金属材料,在强磁体穿过铜管的整个过程中,铜管始终切割磁感线,铜管中都有感应电流,强磁体受到向上的磁场力,加速度始终小于重力加速度,C正确,A、D错误.5.(多选)如图所示,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路.将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态.下列说法正确的是()A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向D.开关闭合并保持一段时间再断开后的瞬间,小磁针的N极朝垂直纸面向外的方向转动解析:选AD.由电路可知,开关闭合瞬间,右侧线圈环绕部分的电流向下,由安培定则可知,铁芯中产生水平向右的磁场,由楞次定律可知,左侧线圈环绕部分产生向上的电流,则直导线中的电流方向由南向北,由安培定则可知,直导线在小磁针所在位置产生垂直纸面向里的磁场,则小磁针的N极朝垂直纸面向里的方向转动,A正确;开关闭合并保持一段时间后,穿过左侧线圈的磁通量不变,则左侧线圈中的感应电流为零,直导线不产生磁场,则小磁针静止不动,B、C错误;开关闭合并保持一段时间再断开后的瞬间,穿过左侧线圈向右的磁通量减少,则由楞次定律可知,左侧线圈环绕部分产生向下的感应电流,则流过直导线的电流方向由北向南,直导线在小磁针所在处产生垂直纸面向外的磁场,则小磁针的N极朝垂直纸面向外的方向转动,D正确.6.(多选)如图a,螺线管内有平行于轴线的外加匀强磁场,以图中箭头所示方向为其正方向.螺线管与导线框abcd相连,导线框内有一小金属圆环L,圆环与导线框在同一平面内.当螺线管内的磁感应强度B随时间按图b 所示规律变化时()A.在t1~t2时间内,L有收缩趋势B.在t2~t3时间内,L有扩张趋势C.在t2~t3时间内,L内有逆时针方向的感应电流D.在t3~t4时间内,L内有顺时针方向的感应电流解析:选AD.L收缩还是扩张取决于螺线管中产生感应电流的变化情况,t1~t2磁通量的变化率增大,感应电流变大,abcd线框内磁通量变大,L有收缩的趋势,A选项正确;t2~t3时间内磁通量的变化率为常数,产生的感应电流恒定不变,abcd线框内磁感应强度不变,L没有电流,也就没有扩张趋势,B、C选项错误;根据楞次定律,t3~t4时间内由于螺线管内磁通量变化引起的感应电流在线框中为dcba方向并减小,L线圈中原磁场的方向垂直于纸面向里且磁感应强度大小减小,根据楞次定律得L中的感应电流方向为顺时针方向,D选项正确.7.如图为一种早期发电机原理示意图,该发电机由固定的圆形线圈和一对用铁芯连接的圆柱形磁铁构成,两磁极相对于线圈平面对称,在磁极绕转轴匀速转动过程中,磁极中心在线圈平面上的投影沿圆弧XOY运动,(O是线圈中心).则()A.从X到O,电流由E经G流向F,线圈的面积有收缩的趋势B.从X到O,电流由F经G流向E,线圈的面积有扩张的趋势C.从O到Y,电流由F经G流向E,线圈的面积有收缩的趋势D.从O到Y,电流由E经G流向F,线圈的面积有扩张的趋势解析:选D.在磁极绕转轴从X到O匀速转动中,穿过线圈平面的磁通量向上增大,根据楞次定律可知线圈中产生顺时针方向的感应电流,电流由F经G流向E;线圈的每部分受到指向圆心的安培力,线圈的面积有收缩的趋势,故A、B项错误;在磁极绕转轴从O到Y匀速转动中,穿过线圈平面的磁通量向上减小,根据楞次定律可知线圈中产生逆时针方向的感应电流,电流由E经G流向F;线圈的每部分受到背离圆心的安培力,所以线圈的面积有扩张的趋势,故C项错误,D项正确.8.如图甲所示,水平面上的平行导轨MN、PQ上放着两根导体棒ab、cd,两棒中间用绝缘丝线系住.开始时匀强磁场垂直于纸面向里,磁感应强度B随时间t的变化如图乙所示,I和F T分别表示流过导体棒中的电流和丝线的拉力(不计电流之间的相互作用力),则在t0时刻()A.I=0,F T=0 B.I=0,F T≠0C.I≠0,F T=0 D.I≠0,F T≠0解析:选C.t0时刻,磁场变化,磁通量变化,故I≠0;由于B=0,故ab、cd所受安培力均为零,丝线的拉力为零,C项正确.9.如图所示,AOC是光滑的金属导轨,电阻不计,AO沿竖直方向,OC沿水平方向;PQ是金属直杆,电阻为R,几乎竖直斜靠在导轨AO上,由静止开始在重力作用下运动,运动过程中P、Q端始终在金属导轨AOC上;空间存在着垂直纸面向外的匀强磁场,则在PQ杆从开始滑动到P端滑到OC的过程中,PQ中感应电流的方向()A.始终是由P→QB.始终是由Q→PC.先是由P→Q,后是由Q→PD.先是由Q→P,后是由P→Q解析:选C.在PQ杆滑动的过程中,△POQ的面积先增大后减小,穿过△POQ的磁通量先增加后减少,根据楞次定律可知,感应电流的方向先是由P→Q,后是由Q→P,C正确.10.如图所示,质量为m的铜质小闭合线圈静置于粗糙水平桌面上.当一个竖直放置的条形磁铁贴近线圈,沿线圈中线由左至右从线圈正上方等高、匀速经过时,线圈始终保持不动.则关于线圈在此过程中受到的支持力F N 和摩擦力F f的情况,以下判断正确的是()A.F N先大于mg,后小于mgB.F N一直大于mgC.F f先向左,后向右D.线圈中的电流方向始终不变解析:选A.当磁铁靠近线圈时,穿过线圈的磁通量增加,线圈中产生感应电流,线圈受到磁铁的安培力作用,根据楞次定律可知,线圈受到的安培力斜向右下方,则线圈对桌面的压力增大,即F N大于mg,线圈相对桌面有向右运动趋势,受到桌面向左的静摩擦力.当磁铁远离线圈时,穿过线圈的磁通量减小,同理,根据楞次定律可知,线圈受到的安培力斜向右上方,则线圈对桌面的压力减小,即F N小于mg,线圈相对桌面有向右运动趋势,受到桌面向左的静摩擦力.综上可知,F N先大于mg,后小于mg,F f始终向左,故选项B、C错误,A正确;当磁铁靠近线圈时,穿过线圈向下的磁通量增加,线圈中产生感应电流从上向下看是逆时针方向;当磁铁远离线圈时,穿过线圈向下的磁通量减小,线圈中产生感应电流从上向下看是顺时针方向,故选项D错误.11.自1932年磁单极子概念被狄拉克提出以来,不管是理论物理学家还是实验物理学家都一直在努力寻找,但迄今仍然没能找到它们存在的确凿证据.近年来,一些凝聚态物理学家找到了磁单极子存在的有力证据,并通过磁单极子的集体激发行为解释了一些新颖的物理现象,这使得磁单极子艰难的探索之路出现了一丝曙光.如果一个只有N极的磁单极子从上向下穿过如图所示的闭合超导线圈,则从上向下看,这个线圈中将出现()A.先是逆时针方向,然后是顺时针方向的感应电流B.先是顺时针方向,然后是逆时针方向的感应电流C.逆时针方向的持续流动的感应电流D.顺时针方向的持续流动的感应电流解析:选C.N极磁单极子穿过超导线圈的过程中,当磁单极子靠近线圈时,穿过线圈的磁通量增加,且磁场方向从上向下,所以由楞次定律可知感应电流方向为逆时针;当磁单极子远离线圈时,穿过线圈的磁通量减小,且磁场方向从下向上,所以由楞次定律可知感应电流方向为逆时针.因此线圈中产生的感应电流方向不变.由于超导线圈中没有电阻,因此感应电流将长期维持下去,故A、B、D错误,C正确.12. (多选)如图是生产中常用的一种延时继电器的示意图,铁芯上有两个线圈A和B(构成电磁铁),线圈A跟电源连接,线圈B的两端接在一起,构成一个闭合回路.下列说法正确的是()A.闭合开关S时,B中产生与图示方向相同的感应电流B.闭合开关S时,B中产生与图示方向相反的感应电流C.断开开关S时,电磁铁会继续吸住衔铁D一小段时间D.断开开关S时,弹簧K立即将衔铁D拉起解析:选BC.由题意可知,闭合S后,线圈A中产生磁场,穿过线圈B的磁通量要增加,根据楞次定律及右手螺旋定则可知,B中产生与图示方向相反的感应电流,故A错误,B正确;断开S,回路电流减小,铁芯中磁场减小,由楞次定律及右手螺旋定则可知,线圈B产生图示方向的电流,减缓磁场减小的趋势,电磁铁会继续吸住衔铁D 一小段时间,故C 正确,D 错误.13.(山东省2020等级考试)(多选)竖直放置的长直密绕螺线管接入如图甲所示的电路中,通有俯视顺时针方向的电流,其大小按图乙所示的规律变化.螺线管内中间位置固定有一水平放置的硬质闭合金属小圆环(未画出),圆环轴线与螺线管轴线重合.下列说法正确的是( )A .t =T 4时刻,圆环有扩张的趋势B .t =T 4时刻,圆环有收缩的趋势 C .t =T 4和t =3T 4时刻,圆环内的感应电流大小相等 D .t =3T 4时刻,圆环内有俯视逆时针方向的感应电流 解析:选BC .t =T 4时刻,线圈中通有顺时针逐渐增大的电流,则线圈中由电流产生的磁场向下且逐渐增加.由楞次定律可知,圆环有收缩的趋势.A 错误,B 正确;t =3T 4时刻,线圈中通有顺时针逐渐减小的电流,则线圈中由电流产生的磁场向下且逐渐减小,由楞次定律可知,圆环中的感应电流为顺时针,D 错误;t =T 4和t =3T 4时刻,线圈中电流的变化率一致,即由线圈电流产生的磁场变化率一致,则圆环中的感应电流大小相等,C 正确.14.如图所示,在一有界匀强磁场中放一电阻不计的平行金属导轨,虚线为有界磁场的左边界,导轨跟圆形线圈M 相接,图中线圈N 与线圈M 共面、彼此绝缘,且两线圈的圆心重合,半径R M <R N .在磁场中垂直于导轨放置一根导体棒ab ,已知磁场垂直于导轨所在平面向外.欲使线圈N 有收缩的趋势,下列说法正确的是( )A .导体棒可能沿导轨向左做加速运动B .导体棒可能沿导轨向右做加速运动C .导体棒可能沿导轨向左做减速运动D .导体棒可能沿导轨向左做匀速运动解析:选C .导体棒ab 加速向左运动时,导体棒ab 中产生的感应电动势和感应电流增加,由右手定则判断知ab 中电流方向由b →a ,根据安培定则可知M 产生的磁场方向垂直纸面向外,穿过N 的磁通量增大,线圈面积越大抵消的磁感线越多,所以线圈N 要通过增大面积以阻碍磁通量的增大,故A 错误;导体棒ab 加速向右运动时,导体棒ab 中产生的感应电动势和感应电流增加,由右手定则判断知ab 电流方向由a →b ,根据安培定则判断可知M 产生的磁场方向垂直纸面向里,穿过N 的磁通量增大,同理可知B 错误;导体棒ab 减速向左运动时,导体棒ab中产生的感应电动势和感应电流减小,由右手定则判断知ab 中电流方向由b →a ,根据安培定则判断可知M 产生的磁场方向垂直纸面向外,穿过N 的磁通量减小,线圈面积越大抵消的磁感线越多,所以线圈N 要通过减小面积以阻碍磁通量的减小,故C 正确;导体棒ab 匀速向左运动时,导体棒ab 产生的感应电动势和感应电流恒定不变,线圈M 产生的磁场恒定不变,穿过线圈N 中的磁通量不变,没有感应电流产生,则线圈N 不受磁场力,没有收缩的趋势,故D 错误.二、【法拉第电磁感应定律 自感和涡流】典型题1. (多选)如图所示,闭合金属导线框放置在竖直向上的匀强磁场中,匀强磁场的磁感应强度随时间变化.下列说法正确的是( )A .当磁感应强度增加时,线框中的感应电流可能减小B .当磁感应强度增加时,线框中的感应电流一定增大C .当磁感应强度减小时,线框中的感应电流一定增大D .当磁感应强度减小时,线框中的感应电流可能不变解析:选AD .线框中的感应电动势为E =ΔB ΔtS ,设线框的电阻为R ,则线框中的电流I =E R =ΔB Δt ·S R ,因为B 增大或减小时,ΔB Δt可能减小,也可能增大,也可能不变.线框中的感应电动势的大小只和磁通量的变化率有关,和磁通量的变化量无关.故选项A 、D 正确.2.如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B .在此过程中,线圈中产生的感应电动势为( )A .Ba 22ΔtB .nBa 22ΔtC .nBa 2ΔtD .2nBa 2Δt解析:选B .磁感应强度的变化率ΔB Δt =2B -B Δt =B Δt ,法拉第电磁感应定律公式可写成E =n ΔΦΔt =n ΔB ΔtS ,其中磁场中的有效面积S =12a 2,代入得E =n Ba 22Δt,选项B 正确,A 、C 、D 错误. 3.如图所示,长为L 的金属导线弯成一圆环,导线的两端接在电容为C 的平行板电容器上,P 、Q 为电容器的两个极板.磁场方向垂直于环面向里,磁感应强度以B =B 0+kt (k >0)随时间变化.t =0时,P 、Q 两极板电势相等,两极板间的距离远小于环的半径.经时间t ,电容器的P 极板( )A .不带电B .所带电荷量与t 成正比C .带正电,电荷量是kL 2C 4πD .带负电,电荷量是kL 2C 4π解析:选D .磁感应强度均匀增加,回路中产生的感应电动势的方向为逆时针方向,Q 板带正电,P 板带负电,A 错误;由L =2πR ,得R =L 2π,感应电动势E =ΔB Δt ·S =k ·πR 2,解得E =kL 24π,电容器上的电荷量Q =CE =kL 2C 4π,B 、C 错误,D 正确.4.在一空间有方向相反,磁感应强度大小均为B 的匀强磁场,如图所示,垂直纸面向外的磁场分布在一半径为a 的圆形区域内,垂直纸面向里的磁场分布在除圆形区域外的整个区域,该平面内有一半径为b (b >2a )的圆形线圈,线圈平面与磁感应强度方向垂直,线圈与半径为a 的圆形区域是同心圆.从某时刻起磁感应强度在Δt 时间内均匀减小到B 2,则此过程中该线圈产生的感应电动势大小为( )A .πB (b 2-a 2)2ΔtB .πB (b 2-2a 2)ΔtC .πB (b 2-a 2)ΔtD .πB (b 2-2a 2)2Δt解析:选D .磁感线既有垂直纸面向外的,又有垂直纸面向里的,所以可以取垂直纸面向里的方向为正方向.磁感应强度大小为B 时线圈磁通量Φ1=πB (b 2-a 2)-πBa 2, 磁感应强度大小为B 2时线圈磁通量Φ2 =12πB (b 2-a 2)-12πBa 2,因而该线圈磁通量的变化量的大小为ΔΦ=|Φ2-Φ1|=12πB (b 2-2a 2).根据法拉第电磁感应定律可得线圈中产生的感应电动势的大小为E =ΔΦΔt =πB (b 2-2a 2)2Δt.故选项D 正确. 5.在如图所示的电路中,两个灵敏电流表G 1和G 2的零点都在刻度盘中央,当电流从“+”接线柱流入时,指针向右摆;电流从“-”接线柱流入时,指针向左摆.在电路接通后再断开的瞬间,下列说法中符合实际情况的是( )A .G 1表指针向左摆,G 2表指针向右摆B .G 1表指针向右摆,G 2表指针向左摆C .G 1、G 2表的指针都向左摆D .G 1、G 2表的指针都向右摆解析:选B .电路接通后线圈中电流方向向右,当电路断开时,线圈L 中电流减小,产生与原方向同向的自感电动势,与G 2和电阻组成闭合回路,所以G 1中电流方向向右,G 2中电流方向向左,即G 1指针向右摆,G 2指针向左摆,B 正确.6.如图所示,水平“U 形”导轨abcd 固定在匀强磁场中,ab 与cd 平行,间距L 1=0.5 m ,金属棒AB 垂直于ab 且和ab 、cd 接触良好,AB 与导轨左端bc 的距离为L 2=0.8 m ,整个闭合回路的电阻为R =0.2 Ω,磁感应强度为B 0=1 T 的匀强磁场竖直向下穿过整个回路.金属棒AB 通过滑轮和轻绳连接着一个质量为m =0.04 kg 的物体,不计一切摩擦,现使磁场以ΔB Δt=0.2 T/s 的变化率均匀地增大.求:(1)金属棒上电流的方向;(2)感应电动势的大小;(3)物体刚好离开地面的时间(g 取10 m/s 2).解析:(1)由楞次定律可以判断,金属棒上的电流由A 到B .(2)由法拉第电磁感应定律得E =ΔΦΔt =S ΔB Δt=0.08 V . (3)物体刚好离开地面时,其受到的拉力F =mg而拉力F 又等于棒所受的安培力,即mg =F 安=BIL 1 其中B =B 0+ΔB Δtt I =E R解得t =5 s.答案:(1)由A 到B (2)0.08 V (3)5 s7. (多选)如图所示的电路中,L为一个自感系数很大、直流电阻不计的线圈,D1、D2是两个完全相同的电灯,E是内阻不计的电源.t=0时刻,闭合开关S.经过一段时间后,电路达到稳定,t1时刻断开开关S.I1、I2分别表示通过电灯D1和D2的电流,规定图中箭头所示方向为电流正方向,以下各图中能定性描述电流I随时间t变化关系的是()解析:选AC.当S闭合时,L的自感作用会阻碍其中的电流变大,电流从D1流过;当L的阻碍作用变小时,L中的电流变大,D1中的电流变小至零;D2中的电流为电路总电流,电流流过D1时,由于线圈L自感的影响,D2的电流较小,当D1中电流为零时,电流流过L与D2,总电阻变小,电流变大至稳定;当S再断开时,D2马上熄灭,D1与L组成回路,由于L的自感作用,D1慢慢熄灭,电流反向且减小;综上所述知选项A、C正确.8.如图所示,三个灯泡L1、L2、L3的阻值关系为R1<R2<R3,电感线圈L的直流电阻可忽略,D为理想二极管,开关S从闭合状态突然断开时,下列判断正确的是()A.L1逐渐变暗,L2、L3均先变亮,然后逐渐变暗B.L1逐渐变暗,L2立即熄灭,L3先变亮,然后逐渐变暗C.L1立即熄灭,L2、L3均逐渐变暗D.L1、L2、L3均先变亮,然后逐渐变暗解析:选B.开关S处于闭合状态时,由于R1<R2<R3,则分别通过三个灯泡的电流大小I1>I2>I3,开关S 从闭合状态突然断开时,电感线圈产生与L中电流方向一致的自感电动势,由于二极管的反向截止作用,L2立即熄灭,电感线圈、L1、L3组成闭合回路,L1逐渐变暗,通过L3的电流由I3变为I1,再逐渐减小,故L3先变亮,然后逐渐变暗,选项B正确.9. (多选)如图所示,一导线弯成直径为d的半圆形闭合回路,虚线MN右侧有磁感应强度为B的匀强磁场,方向垂直于回路所在的平面.回路以速度v向右匀速进入磁场,直径CD始终与MN垂直.从D点到达边界开始到C 点进入磁场为止,下列说法中正确的是()A .感应电流方向为逆时针方向B .CD 段直导线始终不受安培力C .感应电动势的最大值E =Bd vD .感应电动势的平均值E -=18πBd v解析:选AD .线圈进磁场过程,垂直平面向里的磁通量逐渐增大,根据楞次定律“增反减同”,感应电流方向为逆时针方向,选项A 正确;CD 端导线电流方向与磁场垂直,根据左手定则判断,安培力竖直向下,选项B 错误;线圈进磁场切割磁感线的有效长度是初、末位置的连线,进磁场过程,有效切割长度最长为半径,所以感应电动势最大值为Bd v 2,选项C 错误;感应电动势的平均值E -=ΔΦΔt =B ·12π⎝⎛⎭⎫d 22d v=Bd πv 8,选项D 正确.10. (多选)如图所示,水平面上固定一个顶角为60°的光滑金属导轨MON ,导轨处于磁感应强度大小为B 、方向竖直向下的匀强磁场中,质量为m 的导体棒CD 与∠MON 的角平分线垂直,导轨与棒单位长度的电阻均为r .t =0时刻,CD 在水平外力F 的作用下从O 点以恒定速度v 0沿∠MON 的角平分线向右滑动,在滑动过程中始终保持与导轨良好接触.若棒与导轨均足够长,则( )A .流过导体棒的电流I 始终为B v 03rB .F 随时间t 的变化关系为F =23B 2v 209r tC .t 0时刻导体棒的发热功率为23B 2v 3027r t 0D .撤去F 后,导体棒上能产生的焦耳热为12m v 20解析:选ABC .导体棒的有效切割长度L =2v 0t tan 30°,感应电动势E =BL v 0,回路的总电阻R =(2v 0t tan 30°+2v 0t cos 30°)r ,通过导体棒的电流I =E R =B v 03r ,选项A 正确;导体棒受力平衡,则外力F 与安培力平衡,即F =BIL ,得F =23B 2v 209r t ,选项B 正确;t 0时刻导体棒的电阻为R x =2v 0t 0tan 30°·r ,则导体棒的发热功率P 棒=I 2R x =23B 2v 3027r t 0,选项C 正确;从撤去F 到导体棒停下的过程,根据能量守恒定律有Q 棒+Q 轨=12m v 20-0,得导体棒上能产生的焦耳热Q 棒=12m v 20-Q 轨<12m v 20,选项D 错误. 11.如图所示,abcd 为水平放置的平行“匚”形光滑金属导轨,导轨间距为l ,电阻不计.导轨间有垂直于导轨平面向上的匀强磁场,磁感应强度大小为B .金属杆放置在导轨上,与导轨的接触点为M 、N ,并与导轨成θ角.金属杆以ω 的角速度绕N 点由图示位置匀速转动到与导轨ab 垂直,转动过程中金属杆与导轨始终接触良好,金属杆单位长度的电阻为r .则在金属杆转动过程中( )A .M 、N 两点电势相等B .金属杆中感应电流的方向由N 流向MC .电路中感应电流的大小始终为Bl ω2rD .电路中通过的电荷量为Bl2r tan θ解析:选A .根据题意可知,金属杆MN 为电源,导轨为外电路,由于导轨电阻不计,外电路短路,M 、N 两点电势相等,故选项A 正确;根据右手定则可知金属杆中感应电流的方向是由M 流向N ,故选项B 错误;由于切割磁感线的金属杆长度逐渐变短,E =12B ⎝⎛⎭⎫l sin θ2ω,R =l sin θ r ,I =E R =Bl ω2r sin θ,θ增大,回路中的感应电流逐渐变小,故选项C 错误;由于金属杆在电路中的有效切割长度逐渐减小,所以接入电路的电阻逐渐减小,R >lr ,根据法拉第电磁感应定律有q =I Δt =ΔΦΔt ·R·Δt =ΔΦR <Bl2r tan θ,故选项D 错误.12.如图所示,足够长的平行光滑金属导轨水平放置,宽度L =0.4 m ,一端连接R =1 Ω的电阻.导轨所在空间存在竖直向下的匀强磁场,磁感应强度B =1 T .导体棒MN 放在导轨上,其长度恰好等于导轨间距,与导轨接触良好.导轨和导体棒的电阻均可忽略不计.在平行于导轨的拉力F 作用下,导体棒沿导轨向右匀速运动,速度v =5 m/s.求:(1)感应电动势E 和感应电流I ; (2)在0.1 s 时间内,拉力冲量I F 的大小;(3)若将MN 换为电阻r =1 Ω的导体棒,其他条件不变,求导体棒两端的电压U . 解析:(1)由法拉第电磁感应定律可得,感应电动势 E =BL v =1×0.4×5 V =2 V , 感应电流I =E R =21 A =2 A .(2)拉力大小等于安培力大小 F =BIL =1×2×0.4 N =0.8 N ,冲量大小I F =F Δt =0.8×0.1 N ·s =0.08 N ·s. (3)由闭合电路欧姆定律可得,电路中电流。

电磁感应经典例题及解析

电磁感应经典例题及解析

电磁感应经典例题及解析电磁感应是电磁学中的重要概念,也是我们日常生活中常常会遇到的现象。

在电磁感应的过程中,磁场的变化会导致电场的产生,进而引发电流的产生。

这一原理广泛应用于发电机、变压器等电磁设备中。

下面我们来看一些经典的电磁感应例题,并对其进行解析。

例题1:一个磁感强度为0.2 T的匀强磁场,以2 m/s的速度向垂直于磁场的方向移动,求导体中感应电动势的大小。

解析:根据电磁感应的原理,导体中感应电动势的大小等于磁感强度与导体的速度的乘积,即E = Bv。

将已知数据代入计算,E = 0.2 T × 2 m/s = 0.4 V。

例题2:一个圆形线圈的半径为10 cm,磁感强度为0.5 T的磁场垂直于线圈的平面,在0.2 s内磁场的强度从0.2 T增加到0.6 T,求线圈中感应电流的大小。

解析:根据电磁感应的原理,感应电流的大小等于感应电动势与电阻的比值,即I = ε/R。

感应电动势可以通过磁场的变化率来计算,即ε = -dφ/dt。

其中,φ表示磁通量。

磁通量的大小等于磁感强度与线圈面积的乘积,即φ = Bπr^2。

将已知数据代入计算,φ = 0.2 T ×π× (0.1 m)^2 = 0.02π Tm^2。

对磁通量关于时间的导数,即dφ/dt,可以计算为(0.6 T - 0.2 T)/0.2 s = 2 T/s。

因此,感应电动势的大小为ε = -2 T/s。

线圈的电阻需要另外给定,才能计算感应电流的大小。

通过以上例题的解析,我们可以看到,在电磁感应问题中,需要根据已知条件来计算磁通量的变化率,从而得到感应电动势的大小。

最后,根据电路中的电阻情况,可以计算出感应电流的大小。

电磁感应是电磁学中的重要概念,掌握电磁感应的原理和应用,对于理解和应用电磁学的知识具有重要意义。

通过解析经典的电磁感应例题,可以加深对电磁感应原理的理解,提高解决实际问题的能力。

电磁感应应用题(含答案)

电磁感应应用题(含答案)

电磁感应应用题(含答案)题目一一个导线长为3m,电流为5A,位于磁场中。

如果该导线所受的磁感应强度为0.8T,求该导线上的电磁感应强度大小。

解答根据电磁感应定律,电磁感应强度的大小可以通过以下公式计算:\[\text{{电磁感应强度大小}} = \text{{导线长度}} \times \text{{电流大小}} \times \text{{磁感应强度}}\]将已知数据代入公式,可得:\[\text{{电磁感应强度大小}} = 3 \, \text{{m}} \times 5 \, \text{{A}} \times 0.8 \, \text{{T}}\]计算结果为2.4T。

题目二一个面积为0.5平方米的线圈,每个回路的匝数为100,位于磁场中。

当该线圈的磁感应强度为0.6T时,求线圈内的磁通量。

解答根据磁通量的定义,磁通量可以通过以下公式计算:\[\text{{磁通量}} = \text{{磁感应强度}} \times \text{{面积}}\times \text{{匝数}}\]将已知数据代入公式,可得:\[\text{{磁通量}} = 0.6 \, \text{{T}} \times 0.5 \, \text{{平方米}} \times 100\]计算结果为30Wb。

题目三一个磁感应强度为0.4T的匀强磁场,以45°的角度斜射到一个平面回路上。

如果回路的面积为0.2平方米,求回路内的磁通量。

解答由于匀强磁场斜射到平面回路上,只有垂直于磁感应强度方向的分量会影响磁通量,因此需要先计算垂直于磁感应强度方向的面积。

垂直于磁感应强度方向的面积可以通过以下公式计算:\[\text{{垂直面积}} = \text{{回路面积}} \times \sin(\text{{角度}}) \]将已知数据代入公式,可得:\[\text{{垂直面积}} = 0.2 \, \text{{平方米}} \times \sin(45°)\]计算结果为0.2平方米。

电磁感应练习题及

电磁感应练习题及

电磁感应练习题及解答电磁感应练习题及解答电磁感应是物理学中的一个重要概念,涉及到电磁场的变化过程中电场和磁场相互作用产生的现象。

它在日常生活和科学研究中都有广泛的应用。

下面是一些电磁感应练习题及解答,供大家进行练习。

1. 一根长导线以速度v从北向南方向通过均匀磁场B,该导线的两端分别连接一个电阻为R的电灯泡。

求当导线通过磁场过程中,电灯泡亮起的时间。

解答:根据法拉第电磁感应定律,导线通过磁场时产生感应电动势,导致电流流过电灯泡。

所以,在导线通过磁场期间,电灯泡会一直亮起。

因此,电灯泡亮起的时间等于导线通过磁场的时间。

2. 一个长方形线圈的边长为a和b,放置在匀强磁场B中,使得长方形线圈的法线与磁场方向垂直。

求长方形线圈在匀强磁场中的磁通量。

解答:根据法拉第电磁感应定律,在匀强磁场中,线圈的磁通量可以通过以下公式计算:Φ = B * A * cosθ,其中B表示磁场强度,A表示线圈的面积,θ表示磁场方向与线圈法线方向之间的夹角。

由于线圈的法线与磁场方向垂直,θ为0,所以磁通量Φ = B * A。

3. 在一个闭合导线中有一个直径为d的圆环,该圆环的电阻为R。

当一个恒定的磁场B垂直于圆环平面时,求圆环上感应的电动势。

解答:根据法拉第电磁感应定律,当磁场的变化导致一个闭合回路中的磁通量发生改变时,会在回路中产生感应电动势。

在这个问题中,磁场是恒定的,所以不会产生感应电动势。

4. 一个导线带有电流I,在该导线旁边有另一条导线,它们平行。

第二条导线的长度为L,并且距离第一条导线的距离为d。

求第二条导线中感应的电动势。

解答:当电流从第一条导线中流过时,会在周围产生磁场。

第二条导线因为位于磁场中,所以会感受到这个磁场产生的磁通量的改变。

根据法拉第电磁感应定律,第二条导线中的感应电动势可以通过以下公式计算:ε = -dΦ/dt,其中Φ表示磁通量的变化率。

在这个问题中,需要计算第二条导线中的磁通量的变化率,并由此得出感应电动势。

电磁感应-经典高考题

电磁感应-经典高考题

电磁感应经典高考题〔全国卷1〕17.某地的地磁场磁感应强度的竖直分量方向向下,大小为4.5x 10-5T 。

一灵敏电压表连接在当地入海河段的两岸,河宽100m ,该河段涨潮和落潮时有海水〔视为导体〕流过。

设落潮时,海水自西向东流,流速为2m/s 。

以下说法正确的选项是A. 河北岸的电势较高B .河南岸的电势较高C .电压表记录的电压为9mVD .电压表记录的电压为5mV【答案】BD【解析】海水在落潮时自西向东流,该过程可以理解为:自西向东运动的导体棒在切割竖直向下的磁场。

根据右手定则,右岸即北岸是正极电势高,南岸电势低,D 对C 错。

根据法拉第电磁感应定律 E 二BLv 二4.5x 10-5x 100x 2二9x 10-3V ,B 对A 错。

【命题意图与考点定位】导体棒切割磁场的实际应用题。

〔全国卷2〕18•如图,空间某区域中有一匀强磁场,磁感应强度方向水平,且垂直于纸面向里,磁场上边界b 和下边界d 水平。

在竖直面内有一矩形金属统一加线圈,线圈上下边的距离很短,下边水平。

线圈从水平面a 开始下落。

已知磁场上下边界之间的距离大于水平面a 、b 之间的距离。

假设线圈下边刚通过水平面b 、c 〔位于磁场中〕和d 时,线圈所受到的磁场力的大小分别为F 、F 和F ,则bedA.F >F >Fdcb C.F >F >Fcbd 【答案】D【解析】线圈从a 到b 做自由落体运动,在b 点开始进入磁场切割磁感线所有受到安培力F ,由于线b圈的上下边的距离很短,所以经历很短的变速运动而进入磁场,以后线圈中磁通量不变不产生感应电流,在c 处不受安培力,但线圈在重力作用下依然加速,因此从d 处切割磁感线所受安培力必然大于b 处,答案D o【命题意图与考点定位】线圈切割磁感线的竖直运动,应用法拉第电磁感应定律求解。

B.F <F <F cdbD.F <F <F cbd〔新课标卷〕21.如下图,两个端面半径同为R的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场一铜质细直棒ab 水平置于缝隙中,且与圆柱轴线等高、垂直•让铜棒从静止开始自由下落,铜棒下落距离为0.2R 时铜棒中电动势大小为L 下落距离为0.8R 时电动势大小为E 2,忽略涡流损耗和边缘效应.关于「E 2的大小和铜棒离开磁场前两端的极性,以下判断正确的选项是 B 、E i >E 2,b 端为正答案:D 又根据右手定则判断电流方向从a 到b ,在电源内部,电流是从负极流向正极的,所以选项D 正确。

电磁感应经典例题

电磁感应经典例题

[例1] (2004上海,4)两圆环A 、B 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导体环.当A 以如图13-36所示的方向绕中心转动的角速度发生变化时,B 中产生如图所示方向的感应电流.则( BC )A.A 可能带正电且转速减小B.A 可能带正电且转速增大C.A 可能带负电且转速减小D.A 可能带负电且转速增大[解析] 由题目所给的条件可以判断,感应电流的磁场方向垂直于纸面向外,根据楞次定律,原磁场的方向与感应电流的磁场相同时是减少的,环A 应该做减速运动,产生逆时针方向的电流,故应该带负电,故选项C 是正确的,同理可得B 是正确的.[例2](2004天津理综,20)图13-37中MN 、GH 为平行导轨,AB 、CD 为跨在导轨上的两根横杆,导轨和横杆均为导体.有匀强磁场垂直于导轨所在的平面,方向如图,用I 表示回路的电流.CA.当AB 不动而CD 向右滑动时,0≠I 且沿顺时针方向B.当AB 向左、CD 向右滑动且速度大小相等时,I =0C.当AB 、CD 都向右滑动且速度大小相等时,I =0D.当AB 、CD 都向右滑动,且AB 速度大于CD 时,且沿逆时针方向[解析] 当AB 不动而CD 向右滑动时,0≠I ,但电流方向为逆时针,A 错;当AB 向左,CD 向右滑动时,两杆产生的感应电动势同向,故0≠I ,B 错;当AB 和CD 都向右滑动且速度大小相等时,则两杆产生的感应电动势等值反向,故I =0,C 正确;当AB 和CD 都向右滑动,且AB 速度大于CD 时,0≠I ,但方向为顺时针,D 错[例3] (2001上海综合,14)某实验小组用如图13-38所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是(D )A.a →G →bB.先a →G →b ,后b →G →aC.b →G →aD.先b →G →a ,后a →G →b[解析] ○1确定原磁场的方向:条形磁铁在穿入线圈的过程中,磁场方向向下.○2明确回路中磁通量变化情况:向下的磁通量增加. ○3由楞次定律的“增反减同”可知:线圈中感应电流产生的磁场方向向上. ○4应用右手安培定则可以判断感应电流的方向为逆时针(俯视)即:从b →G →a . 同理可以判断:条形磁铁穿出线圈过程中,向下的磁通量减小,由楞次定律可得:线圈中将产生顺时针的感应电流(俯视),电流从a →G →b .[评价] 该题目关键在于对楞次定律的理解和应用以及对“穿过”二字的正确理解,它包括穿入和穿出两个过程.t I Q ∆=[例4] 如图13-19所示,光滑固定导轨M 、N 水平放置,两根导体棒P 、Q 平行放于导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时(AD )A.P 、Q 将互相靠拢B.P 、Q 将互相远离C.磁铁的加速度仍为gD.磁铁的加速度小于g[解析] 方法一:设磁铁下端为N 极,如图13-40所示,根据楞次定律可判断出P 、Q 中感应电流方向,根据左手定则可判断P 、Q 所受安培力的方向,可见P 、Q 将互相靠拢,由于回路所受安培力的合力向下,由牛顿第三定律,磁铁将受到向上的反作用力,从而加速度小于g .当S 极为下端时,可得到同样的结果.方法二:根据楞次定律的另一种表述——感应电流的效果总是要反抗产生感应电流的原因,本题的“原因”是回路中磁通量的增加.归根结底是磁铁靠近回路,“效果”便是阻碍磁通量的增加和磁铁的靠近,所以P 、Q 将互相靠近,且磁铁的加速度小于g .[例1] 有一面积为S =100cm 2金属环,电阻为R =0.1Ω,环中磁场变化规律如图13-41所示,且磁场方向垂直环面向里,在t 1到t 2时间内,环中感应电流的方向如何?通过金属环的电量为多少?[分析] 由楞次定律可判断感应电流的方向.感应电量的计算为Rt tR t R E t I Q ∆Φ=∆∆∆Φ=∆=∆=,仅由电路电阻和磁通量变化决定,与发生磁通量变化的时间无关,本题推导的感应电量的计算表达式可以直接使用.[解析] (1)由楞次定律,可以判断金属环中感应电流方向为逆时针方向.(2)由图可知:磁感应强度的变化率为1212t t B B t B --=∆∆ ○1 线圈中的磁通量的变化率: S t t B B S t B t ∙--=∆∆=∆∆Φ1212 ○2 环中形成感应电流通过金属环的电量:○4由○1○2○3○4解得:t R R t R E I ∆∆Φ=∆∆Φ==/1.010)1.02.0()(212-⨯-=-=R S B B Q C=0.1C.[例2] (2001上海物理,22)(13分)半径为a 的圆形区域内有均匀磁场,磁感应强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均匀为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计.(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径00′的瞬间(如图13-43所示)MN 中的电动势和流过灯L 1的电流.(2)撤去中间的金属棒MN ,将右面的半圆环OL 2O ′以OO ′为轴向上翻转90°,若此时磁场随时间均匀变化,其变化率为s T t B /)/4(/π=∆∆,求L 1的功率.[解析] (1)棒通过圆环直径时切割磁感线的有效长度L =2a ,棒中产生的感应电动势为58.02.02⨯⨯===av B BLv E V=0.8V ○1当不计棒和环的电阻时,直径OO ′两端的电压U =E =0.8V ,通过灯L 1电流的为 28.001==R U I A =0.4A. ○2(2)右半圆环上翻90°后,穿过回路的磁场有效面积为原来的一半,221a S π=',磁场变化时在回路中产生的感应电动热为VV a t BS t E 23.04212=⨯=∆∆∙'=∆∆Φ='ππ由L 1、L 2两灯相同,圆环电阻不计,所以每灯的电压均为E U '='21,L 1的功率为220211028.1)21(-⨯='='=R ER U P W. ○4[例3] (2004两湖理综,19)一直升飞机停在南半球的地磁极上空.该处地磁场的方向竖直向上,磁感应强度为B ,直升飞机螺旋桨叶片的长度为l ,螺旋桨转动的频率为f ,顺着地磁场的方向看螺旋桨,螺旋桨顺时针方向转动.螺旋桨叶片的近轴端为a ,远轴端为b ,如图13-44所示.如果忽略a 到转轴中心线的距离,用ε表示每个叶片中的感应电动势,则(A )A.B ft 2πε=,且a 点电势低于b 点电势B.B ft 22πε-=,且a 点电势低于b 点电势C.B ft 2πε=,且a 点电势高于b 点电势D.B ft 22πε=,且a 点电势高于b 点电势[解析] 对于螺旋桨叶片ab ,其切割磁感线的速度是其做圆周运动的线速度,螺旋桨不同点的线速度不同,但是满足R v ω=',可求其等效切割速度fl lv πω==2,运用法拉第电磁感应定律B ft Blv 2πε==,由右手定则判断电流的方向为由a 指向b ,在电源内部电流由低电势流向高电势,故选项A 是正确的.[例1] (2002粤豫大综合,30)如图13-45所示,在一均匀磁场中有一U 形导线框abcd ,线框处于水平面内,磁场与线框平面垂直,R 为一电阻,ef 为垂直于ab 的一根导体杆,它可在ab 、cd 上无摩擦地滑动.杆ef 及线框中导线的电阻都可不计.开始时,给ef 一个向右的初速度,则( A )A.ef 将减速向右运动,但不是匀减速B.ef 将匀减速向右运动,最后停止C.ef 将匀速向右运动D.ef 将往返运动[解析] 给ef 一个向右的初速度,则ef 产生感应电动势,回路中产生感应电流.由楞次定律可以判断,ef 受到一个向左的安培力的作用而减速,随着ef 的速度减小,ef 产生的感应电动势减小,回路的感应电流减小,安培力减小,因此可以判断ef 是做加速度逐渐减小的减速运动.因此可知选项A 是正确的.[例2] (2004北京理综,23)如图13-46甲所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L .M 、P 两点间接有阻值R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B 的匀强磁场中,磁场方向的垂直斜面向下.导轨和金属杆的电阻可忽略.让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b 向a 方向看到的装置如图13-46乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab 杆可以达到的速度最大值.[解析] (1)重力mg ,竖直向下;支撑力N ,垂直斜面向上;安培力F ,沿斜面向上.(2)当ab 杆速度为v 时,感应电动势E =B lv ,此时电路中电流RBlv R E I ==. ab 杆受到安培力Rv L B BIL F 22==, 根据牛顿运动定律,有Rv L B mg F mg ma 22sin sin -=-=θθ, mRv L B g a 22sin -=θ. (3)当θsin 22mg Rv L B =时,ab 杆达到最大速度v m . 22sin LB mgR v m θ= [例3] (2001京春季,20)(12分)两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为l .导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图13-47所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少?(2)当ab 棒的速度变为初速度的43时,cd 棒的加速度是多少? [解析] ab 棒向cd 棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流.ab 棒受到与运动方向相反的安培力作用做减速运动,cd 棒则在安培力作用下做加速运动.在ab 棒的速度大于cd 棒的速度时,回路总有感应电流,ab 棒继续减速,cd 棒继续加速.两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v 做匀速运动.(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有mv mv 20= ○1 根据能量守恒,整个过程中产生的总热量2022041)2(2121mv v m mv Q =-=○2 (2)设ab 棒的速度变为初速度的43时,cd 棒的速度为v ′,则由动量守恒可知 v m v m mv '+=0043 ○3 此时回路中的感应电动势和感应电流分别为Bl v v E )43(0'-= ○4 R I 2ε= ○5此时cd 棒所受的安培力IBl F =cd 棒的加速度mF a = 由以上各式,可得m Rv l B a 4022=. ○8 [例4] 把一个矩形线圈从有理想边界的匀强磁场中匀速拉出(如图13-48),第一次速度为v 1,第二次速度为v 2且v 2=2v 1,则两种情况下拉力的功之比W 1/W 2= ,拉力的功率之比P 1/P 2= ,线圈中产生焦耳热之比Q 1/Q 2= .[解析] 设线圈的ab 边长为L ,bc 边长为L ′,整个线圈的电阻为R ,把ab 边拉出磁场时,cd 边以速度v 匀速运动切割磁感线产生感应电动势Blv E =.其电流方向从c 指向d ,线圈中形成的感应电流RBLv R E I == cd 边所受的安培力Rv L B BIL F 22== 为了维持线圈匀速运动,所需外力大小为Rv L B BIL F F 22=='= 因此拉出线圈过程外力的功v RL L B L F W '='=22 外力的功率222v RL B Fv P == 线圈中产生的焦耳热W v R L L B v L R R v L B Rt I Q ='='∙==2222222由上面得出的W 、P 、Q 的表达式可知,两情况拉力的功、功率、线圈中的焦耳热之比分别为1∶2、1∶4、1∶2.[评价] 从题中可以看出,安培力做的功,与电路的消耗的电能是相同的.[例5] (2004河南理综,24)图13-49中a 1b 1c 1d 1和a 2b 2c 2d 2为在同一竖直面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里.导轨的a 1b 1段与a 2b 2段是竖直的,距离为l 1;c 1d 1段与c 2d 2段也是竖直的,距离为l 2.x 1y 1与x 2y 2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m 1和m 2,它们都垂直于导轨并与导轨保持光滑接触.两杆与导轨构成的回路的总电阻为R .F 为作用于金属杆x1y 1上的竖直向上的恒力.已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率.[解析] 设杆向上运动的速度为v ,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少,由法拉第电磁感应定律,回路中的感应电动势的大小v l l B E )(12-=回路中的电流RE I = 电流沿顺时针方向,两金属杆都要受到安培力作用,作用于杆x 1y 1的安培力为 11BIlF =(方向向上)作用于杆x 2y 2的安培力为22BIl F =(方向向下)当杆匀速运动时,根据牛顿第二定律有 02121=-+--F F g m g m F 解以上各式作用于两杆的重力功率的大小 gv m m P )(21+= 电阻上的热功率4.电磁感应中的图象问题.[例6] (2004内蒙理综,19)一矩形线圈位于一随时间t 变化的匀强磁场内,磁场方向垂直线圈所在的平面(纸面)向里,如图13-50所示.以I 表示线圈中的感应电流,以图中的线圈上所示方向的电流为正,则图13-51的I -t 图正确的是( A )图13-50图13-51[解析] 由图象可知,在0到1秒的时间内,磁感应强度均匀增大,那么感应电流的方向为逆时针方向,与图示电流方向相反,为负值,排除B 、C 选项.根据法拉第电磁感应定律,其大小t S B t ∆∙∆=∆∆Φ=ε,Rt S B R E I ∙∆∙∆==为一定值,在2到3秒和4到5秒内,磁感应强度不变,磁通量不变,无感应电流生成,D 错误,所以A 选项感应强度不变,磁通量不变,无感应电流生成,D 错误,所以A 选项正确.[]2122211221)()()()(l l B R g m m F v l l B g m m F I -+-=-+-=.)()()()()(21221212122212R l l B g m m F Q g m m R l l B g m m F P R I Q ⎥⎦⎤⎢⎣⎡-+-=+-+-==。

(完整版)高中物理电磁感应经典例题总结

(完整版)高中物理电磁感应经典例题总结

1. 如图,金属棒ab 置于水平放置的 U 形光滑导轨上,在ef 右侧存在有界匀强磁 场B ,磁场方向垂直导轨平面向下, 在ef 左侧的无磁场区域 cdef 内有一半径很小的金属圆环L ,圆环与导轨在同一平面内。

当金属棒ab 在水平恒力F 作用下从磁场左边界ef 处由静止开始向右运动后,圆环 L 有 _______________ (填收缩、扩 张)趋势,圆环内产生的感应电流 __________________ (填变大、变小、不变) 答案:收缩,变小解析:由于金属棒ab 在恒力F 的作用下向右运动,则 abcd 回路中产生逆时针方向的感应电流,则在圆环处产 生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收 缩的趋势以阻碍圆环的磁通量将增大; 又由于金属棒向右运动的加速度减小, 单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。

2.如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为 R 的电阻,整个装置处在竖直向上磁感应强度大小为 B 的匀强磁场中。

一质量为 m (质量分布均匀)的导体杆 ab 垂直于导轨放 置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为u 。

现杆在水平向左、垂直于杆的恒力 F 作用下从静止开始沿导轨运动距离 L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直) 。

设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g 。

则此过程aF 1C.恒力F 做的功与摩擦力做的功之和等于杆动能的变化量 D •恒力F 做的功与安倍力做的功之和大于杆动能的变化量q-BdL ,B 对;在棒从开始到达到最大速度的过程中由动能定理有:R r R r R r W FW f W 安E K ,其中W f mg ,W 安 Q ,恒力F 做的功与摩擦力做的功之和等于杆动能的变化量与回路产生的焦耳热之和, C 错;恒力F 做的功与安倍力做的功之和等于于杆动能的变化量与克服摩擦力 做的功之和,D 对。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应与交变电流传感器典型例题一、选择题1.如图所示,MN 利PQ 为处于同一水平面内的两根平行的光滑金属导轨,垂直导轨放置的金属棒ab 与导轨接触良好,在水平金属导轨之间加竖直向—卜的匀强磁场,导轨的N 、Q 端按理想变压器的初级线圈,理想变压器的输出端有三组次级线圈,分别接有电阻元件R 、电感元件L 和电容元件C 。

若用I R 、I L 、I C 分别表示通过R 、L 和C 的电流,不考虑电容器的瞬间充放电,则下列判断中正确的是( )A .若ab 棒匀速运动,则L C 0I 0I =0R I ≠≠、、B .若ab 棒匀加速运动,则LC 0I 0I =0R I ≠≠、、C .若ab 棒做加速度变小的加速运动,则L C 0I =0I =0R I ≠、、D .若ab 棒在某一中心位置附近做简谐运动,则 L C 0I 0I 0R I ≠≠≠、、 2.边长为l 的正方形闭合线框abcd ,在磁感应强度为B 的匀强磁场中,以角速度ω绕cd从图示位置开始匀速转动,转轴与磁场垂直,线框总电阻为R ,一理想电压表接在线框的c 、d 两点之间,下列说法中正确的是: A .线框转过90°过程中感应电动势的最大值为Bl 2ω B .线框转过90°的过程中通过线框导线横截面的电荷量为RBl 2C .电压表示数为222ωBlD .线框转一周外力所做的功为Rl B ωπ42二、实验题3、热敏电阻是传感电路中常用的电子元件.现用伏安法研究热敏电阻在不同温度下的伏安特性曲线,要求特性曲线尽可能完整.已知常温下待测热敏电阻的阻值约40~50Ω.热敏电阻和温度计插入带塞的保温杯中,杯内有一定量的冷水,其它备用的仪表和器具有:盛有热水的热水瓶(图中未画出)、电源(3V 、内阻可忽略)、直流电流表(内阻约1Ω)、直流电压表(内阻约5kΩ)、滑动变阻器(0~10Ω)、开关、导线若干.①图(1)中a 、b 、c 三条图线能反映出热敏电阻伏安特性曲线的是 . ②在图(2)的方框中画出实验电路图,要求尽可能多测量几组数据,以减小误差.1、如图1所示,空间存在B =0.5T ,方向竖直的匀强磁场,MN 、PQ 是水平放置的平行长直导轨,其间距L =0.2m ,R 是连在导轨一端的电阻,ab 是跨接在导轨上质量m =0.1kg的导体图(1)图(2)棒。

从零时刻开始,对ab 施加一个大小为F =0.45N ,方向水平向左的恒定拉力,使其从静止开始沿导轨滑动,过程中棒始终保持与导轨垂直且良好接触,图2是棒的速度--时间图像,其中AO 是图像在O 点的切线,AB 是图像的渐近线。

(1) 除R 以外,其余部分的电阻均不计,求的阻值。

(2) 当棒的位移为100m 时,其速度已经达到了最大速度10m/s ,求在此过程中电阻上产生的热量。

2、如图甲所示,空间存在B=0.5T ,方向竖直向下的匀强磁场,MN 、PQ 是相互平行的粗糙的长直导轨,处于同一水平面内,其间距L=0.2m ,R 是连在导轨一端的电阻,ab 是跨接 在导轨上质量m =0.1kg 的导体棒,从零时刻开始,通过一小型电动机对ab 棒施加一个牵引力F ,方向水平向左,使其从静止开始沿导轨做加速=运动,此过程中棒始终保持与导轨垂直且接触良好,图乙是棒的速度一时间图象,其中OA 段是直线,AC 是曲线,DE 是曲线图象的渐近线小型电动机在12s 末达到额定功率P=4.5W ,此后功率保持不变。

除R 以外,其余部分的电阻均不计,g=10 m /s 2。

⑪求导体棒在0~12s 内的加速度大小⑫求导体棒与导轨间的动摩擦因数及电阻R 的阻值⑬若t=17s 时,导体棒ab 达最大速度,且0~17s 内共发生位移100m ,试求12s~17s 内R 上产生的热量是多少?3、如图甲所示,水平面上的两光滑金属导轨平行固定放置,间距d =0.5 m ,电阻不计,左端通过导线与阻值R =2 Ω的电阻连接,右端通过导线与阻值R L =4 Ω的小灯泡L 连接.在CDEF 矩形区域内有竖直向上的匀强磁场,CE 长l =2 m ,有一阻值r =2 Ω的金属棒PQ 放置在靠近磁场边界CD 处.CDEF 区域内磁场的磁感应强度B随时间变化如图1图2图乙所示.在t =0至t =4s 内,金属棒PQ 保持静止,在t =4s 时使金属棒PQ 以某一速度进入磁场区域并保持匀速运动.已知从t =0开始到金属棒运动到磁场边界EF 处的整个过程中,小灯泡的亮度没有发生变化,求: (1)通过小灯泡的电流.(2)金属棒PQ 在磁场区域中运动的速度大小.4、如图所示,间距为l 的两条足够长的平行金属导轨与水平面的夹角为θ,导轨光滑且电阻忽略不计.场强为B 的条形匀强磁场方向与导轨平面垂直,磁场区域的宽度为d 1,间距为d 2.两根质量均为m 、有效电阻均为R 的导体棒a 和b 放在导轨上,并与导轨垂直.(设重力加速度为g )⑪若a 进入第2个磁场区域时,b 以与a 同样的速度进入第1个磁场区域,求b 穿过第1个磁场区域过程中增加的动能△E k ; ⑫若a 进入第2个磁场区域时,b 恰好离开第1个磁场区域;此后a 离开第2个磁场区域时,b又恰好进入第2个磁场区域.且a .b 在任意一个磁场区域或无磁场区域的运动时间均相等.求a 穿过第2个磁场区域过程中,两导体棒产生的总焦耳热Q ;5、如图所示,光滑绝缘斜面的倾角为 ,斜面上放置一质量为M ,电阻为R 、边长为L 的正方形导线框abcd ,通过细线绕过光滑的定滑轮与一质量为m 的重物相连,连接线框的细线与线框共面,滑轮和绳的质量均不计.斜面上有两个匀强磁场区域I 和Ⅱ,其宽度均为L ,磁感应强度大小均为B ,磁场方向分别垂直于斜面向上和垂直于斜面向下线框的ab 边距磁sR场区域I的上边界为2L开始时各段绳都处于伸直状态,现将它们由静止释放.线框沿斜面向下运动,ab边刚穿过两磁场的分界线'OO进入磁场区域Ⅱ时,线框恰好做匀速运动(绳子始终处于拉紧状态)求:(1)线框的ab边刚进入磁场区域I时的速度大小;(2)线框ab边在磁场区域Ⅱ中运动的过程中.线框重力的功率P;(3)从开始释放到ab边刚穿出磁场区域I的过程中,线框中产生的焦耳热Q6.如图所示,abcd是位于竖直平面内的正方形闭合金属线框,金属线框的质量为m电阻为R,在金属线框的下方与bc边平行的水平边界PQ和P´Q´内有一垂直线圈平面的匀强磁场区域,现金属线框由距PQ某一高度处从静止开始下落,设空气阻力恒定。

右图是金属线框由静止开始下落到完全穿过匀强磁场区域过程中的速度-时间图象,图象中坐标轴上所标出的字母均为已知量。

求:⑪金属线框由静止开始下落到完全穿过匀强磁场区域的总位移;⑫磁场的磁感应强度;⑬金属线框在进入匀强磁场区域过程中流过其横截面的电荷量;⑭金属线框在整个下落过程中所产生的焦耳热。

dcPP´Q´t1.31.87.如图甲所示,不计电阻“⊃”形光滑导体框架水平放置,框架中间区域有竖直向上的匀强磁场,磁感应强度为1=B T ,有一导体棒AC 横放在框架上,其质量为1.0=m kg ,电阻为Ω=4R ,现用轻绳栓住导体棒,轻绳一端通过光滑的定滑轮绕在电动机的转轴上,另一端通过光滑的定滑轮与物体D 相连,物体D 的质量为3.0=M kg ,电动机内阻为Ω=1r ,接通电路后,电压表的读数恒为8=U V ,电流表的读数恒为1=I A ,电动机牵引原来静止的导体棒AC 平行于EF 向右运动,其运动情况如图乙所示(取10=g m/s 2)求: (1)AC 棒的最大速度; (2)匀强磁场的宽度;(3)导体棒在变速运动阶段产生的热量。

8、一小型发电机通过升压、降压变压器把电能输送给用户,已知发电机的输出功率为为50kW ,输出电压为500 V ,升压变压器原、副线圈匝数比为1:5,两个变压器间的输电导线的总电阻为15 Ω,降压变压器的输出电压为220 V ,变压器本身的损耗忽略不计,在输电过程中电抗造成电压的损失不计,求: (1)升压变压器副线圈的端电压; (2)输电线上损耗的电功率;(3)降压变压器原、副线圈的匝数比.9、一电阻为R 的金属圆环,放在匀强磁场中,磁场与圆环所在平面垂直,如图(a )所示,已知通过圆环的磁通量随时间t 的变化关系如图(b )所示,图中的最大磁通量0φ和变化周期T 都是已知量,求:(1)在t =0到t = T /4的时间内,通过金属圆环横截面的电荷量q 。

(2)在t=0到t=2T 的时间内,金属环所产生的电热Q 。

参考答案:一、选择题1、BD2、ABD 二、实验题①C ②分压电路 安培表外接 三、计算题1.棒在0时刻受到拉力F 和摩擦力f 的作用,此时的加速度等于直线AO 的斜率.据牛顿第二定律 ma f F =- ① 又 2/5.24/10s m a == ② 由以上两式得N f 2.0= ③设当棒达到最大速度v 时,电动势为E ,电流为I ,棒受到的安培力为F 安,则BLv E = ④ R E I /= ⑤ BIL F =安 ⑥此时棒处在平衡状态 安F f F += ⑦由③--⑦得 Ω=4.0R ⑧(1) 电阻上产生的热量等于过程中导体棒克服安培力所的功W 对棒应用动能定理221mv W fS FS =-- ⑨ 带入数据得 J W 20= ⑩ 过程中电阻上产生的热量为20J2、解析:⑪由图中可得12s 末的速度为V 1=9m/s ,t 1=12s 导体棒在0~12s 内的加速度大小为 211075/V a .m s t -== ⑫设金属棒与导轨间的动摩擦因素为μ.A 点有 E 1=BLV 1 ① 感应电流 11E I R=②由牛顿第二定律 111F mg BI L ma μ--= ③ 则额定功率为 11m P FV = ④ 将速度v=9m/s ,a=0.75m/s 2和最大速度V m =10m/s ,a =0 代入。

可得μ=0.2 R =0.4Ω ⑤ ⑬0~12s 内导体棒匀加速运动的位移s 1=v 1t 1/2=54m 12~17s 内导体棒的位移s 2=100-54=46m 由能量守恒 Q=Pt 2-m (v 22-v 12)/2-μmg s 2=12.35J 。

3、解析:(1)在t =0至t =4s 内,金属棒PQ 保持静止,磁场变化导致电路中产生感应电动势.电路为r 与R 并联,再与R L 串联,电路的总电阻rR RrR R L ++=总=5Ω ① 此时感应电动势tBdl t E ∆∆=∆∆=φ=0.5×2×0.5V=0.5V ② 通过小灯泡的电流为:总R EI ==0.1A ③ (2)当棒在磁场区域中运动时,由导体棒切割磁感线产生电动势,电路为R 与R L 并联,再与r 串联,此时电路的总电阻LL R R RR r R ++='总=2+4×24+2 Ω=103 Ω ④由于灯泡中电流不变,所以灯泡的电流I L =0.1A ,则流过棒的电流为RI R I I I I LL L R L +=+='=0.3A ⑤ 电动势Blv R I E =='''总 ⑥ 解得棒PQ 在磁场区域中运动的速度大小v =1m/s ⑦4、解:⑪a 和b 不受安培力作用,由机械能守恒得θsin mgd E k 1=∆①⑫设导体棒刚进入无磁场区域时的速度为v 1,刚离开无磁场区域时的速度为v 2,由能量守恒知:在磁场区域中:θsin mgd mv Q mv 122212121+=+ ② 在无磁场区域中:θsin mgd mv mv 221222121+=③解得: θsin )d d (mg Q 21+=5.解:(1)对线框和重物利用机械守恒定律有: 2112sin 2()2MgL mgL M m θυ-=+ ①3分解得:1υ=②2分(2)设线框ab 边刚进入磁场Ⅱ时速度为2v ,则线框中产生的电流为:22BL I Rυ= ③1分线框受到的安培力:22242B L v F BIL R== ④1分设绳对线框、m 的拉力大小为T 则;对线框;sin T F Mg θ+= ⑤1分 对;m T mg = ⑥1分联立④⑤⑥解得:222(sin )4M m gRB L θυ-= ⑦1分2222(sin )sin sin 4M M m g R P Mg B Lθθθυ-=⋅⋅= ⑧2分 (2)从线框开始释放到ab 边刚穿出磁场Ⅱ的过程中,根据能量守恒有:2214sin 4()2MgL mgL Q M m θυ-=++ ⑨2分联立⑦⑨得: 2221(sin )4(sin )()[]24M m gR Q M m gL M m B L θθ-=--+ ⑩2分 6.解:⑪进入前x 1=0.5vt , 进入过程x 2=vt ,在磁场内匀加速过程平均速度是1.4 v , 因此 x 3=1.4v 0.8t =1.12 vt ,穿出过程和进入过程位移相等x 4=x 2=vt 。

相关文档
最新文档