数据结构排序源代码2.txt
数据结构代码文档
数据结构代码文档
摘要:
1.数据结构的定义
2.数据结构代码的作用
3.编写数据结构代码文档的步骤
4.数据结构代码文档的示例
正文:
数据结构是计算机科学中一个重要的概念,它是一种用于存储和组织数据的方式。
数据结构可以被用于许多不同的应用程序,包括操作系统、数据库和网络应用程序。
数据结构代码是用于实现这些数据结构的计算机程序,它可以帮助程序员更有效地管理和操作数据。
编写数据结构代码文档是程序员在编写数据结构代码之前必须完成的一个重要步骤。
这个过程包括确定数据结构的类型、定义数据结构的属性和方法,以及编写代码来实现这些属性和方法。
通过编写数据结构代码文档,程序员可以更好地理解数据结构的工作原理,并且可以更有效地调试和修改代码。
下面是一个数据结构代码文档的示例,它定义了一个名为“链表”的数据结构,包括一个节点和一个指向下一个节点的指针。
这个文档还定义了如何创建一个新的链表节点,以及如何遍历和打印链表中的所有节点。
源代码--数据结构与算法(Python版)chap10 排序
交换类
(2)快速排序 快速排序采用分而治之(Divide and Conquer)
的策略将问题分解成若干个较小的子问题,采用 相同的方法一一解决后,再将子问题的结果整合 成最终答案。快速排序的每一轮处理其实就是将 这一的基准数定位,直到所有的数都排序完成 为止。
21
快速排序的基本步骤:
1. 选定一个基准值(通常可选第一个元素); 2. 将比基准值小的数值移到基准值左边,形
14
• 交换类
交换类排序的基本思想是:通过交换无序序列 中的记录得到其中关键字最小或最大的记录,并将 其加入到有序子序列中,最终形成有序序列。交换 类排序可分为冒泡排序和快速排序等。
15
交换类
(1)冒泡排序 两两比较待排序记录的关键字,发现两
个记录的次序相反时即进行交换,直到没有 反序的记录为止。因为元素会经由交换慢慢 浮到序列顶端,故称之为冒泡排序。
3. 最后对这个组进行插入排序。步长的选法 一般为 d1 约为 n/2,d2 为 d1 /2, d3 为 d2/2 ,…, di = 1。
11
【例】给定序列(11,9,84,32,92,26,58,91,35, 27,46,28,75,29,37,12 ),步长设为d1 =5、d2 =3、 d3 =1,希尔排序过程如下:
for i in range(1,len(alist)):
#外循环n-1
for j in range(i,0,-1):
#内循环
if alist[j]<alist[j-1]:
alist[j],alist[j-1]=alist[j-1],alist[j] #交换
li=[59,12,77,64,72,69,46,89,31,9] print('before: ',li) insert_sort(li) print('after: ',li)
数据结构试验完整代码
数据结构实验完整代码目录一、顺序存储的线性表 (2)二、单链存储的线性表 (4)三、栈 (7)四、队列 (8)五、二叉树的建立和遍历 (10)六、霍夫曼树 (11)七、图的建立和遍历 (17)图的邻接矩阵表示 (17)图的邻接表表示 (20)八、图的最小生成树 (23)九、图的最短路径 (28)十、顺序查找表 (31)十一、二叉排序树的查找 (34)十二、哈希表 (36)十三、插入排序 (41)十四、交换排序-冒泡排序 (44)十五、交换排序-快速排序 (45)十六、简单选择排序 (45)十七、堆排序 (46)一、顺序存储的线性表typedef struct{char name[10];char no[10];double grade;}Student;typedef struct{Student *elem;int length;int listsize;}SqList;void Display(SqList *L){int i;for (i=0;i<L->length ;i++){cout<<i+1<<":姓名"<<L->elem[i].name<<",学号:"<<L->elem[i].no<<",成绩:"<<L->elem[i].grade <<endl;}cout<<"请选择菜单项:";}SqList *CreateList(){SqList *L;L=(SqList*)malloc(sizeof(SqList));if(!L) cout<<"建立线性表失败!";else cout<<"建立线性表成功!";return(L);}int InitList(SqList *L){int i;char name[10],no[10];double grade;L->elem=(Student *)malloc(ListInitSize * sizeof(Student));if (!(L->elem)) cout<<"初始化表失败!";L->length = 0;L->listsize = ListInitSize;cout<<"请输入要录入信息的学生个数:"<<endl;cin>>i;if (i>(L->listsize)){L->elem =(Student *)realloc(L->elem ,i*sizeof(Student));}for (int j=0;j<i;j++){cout<<"请输入第"<<j+1<<"个学生的信息:"<<endl;cin>>name>>no>>grade;strcpy((L->elem+L->length)->name,name);strcpy((L->elem+L->length)->no,no);(L->elem+L->length)->grade =grade;L->length ++;}cout<<"信息录入完成!";return 0;}int Insert(SqList *l){Student e;int i,j;Student *newbase;cout<<"请输入要插入的位置:";cin>>j;j--;cout<<"请输入学生信息:";cin>>>>e.no>>e.grade;if(l->length==l->listsize){newbase=(Student*)realloc(l->elem,(l->listsize+ListIncreasement)*sizeof(Studen t));if(!newbase){cout<<"出错!";return 0;}l->elem=newbase;l->listsize+=ListIncreasement;}for(i=l->length;i>=j;i--){l->elem[i+1] = l->elem[i];}l->elem[j]=e;l->length++;cout<<"插入成功!";return 0;}int Delect(SqList *L){int i,j;cout<<"输入删除信息的位置:";cin>>j;j--;cout<<"删除的信息为:姓名:"<<L->elem[j].name<<",学号:"<<L->elem[j].no<<"成绩:"<<L->elem[j].grade<<endl;for(i=j+1;i<=L->length;i++){L->elem[i-1]=L->elem[i];}L->length--;cout<<"请按回车继续"<<endl;getchar();getchar();cout<<"删除成功!";return 0;}二、单链存储的线性表typedef struct Student{char name[10];char no[10];double grade;}Student;typedef struct LNode{Student data;LNode *next;}LNode,*LinkList;void CreateList(LinkList &l){l=(LinkList)malloc(sizeof(LNode));if (!l) cout<<"建立失败。
数据结构顺序表代码
数据结构顺序表代码很高兴回答这个问题。
关于数据结构的顺序表代码,我们需要先了解什么是顺序表以及其特点和常用操作。
顺序表是一种基于数组实现的线性数据结构,其特点是元素在内存中是连续存储的,可以支持快速随机访问,但插入和删除元素比较麻烦。
下面是一份简单的顺序表代码:```#define MAXSIZE 100 //定义顺序表的最大长度typedef struct {int data[MAXSIZE]; //用数组存储顺序表的元素int length; //顺序表的当前长度} SeqList;// 初始化顺序表void InitList(SeqList *L){memset(L->data, 0, sizeof(L->data)); //初始化所有元素为0L->length = 0; //长度为0}// 插入元素bool ListInsert(SeqList *L, int pos, int val){if(pos < 1 || pos > L->length + 1 || L->length == MAXSIZE) //判断是否越界或者表满return false;for(int i = L->length; i >= pos; i--) //从后向前移动元素L->data[i] = L->data[i - 1];L->data[pos - 1] = val; //插入新元素L->length++; //长度加1return true;}// 删除元素bool ListDelete(SeqList *L, int pos){if(pos < 1 || pos > L->length) //判断是否越界return false;for(int i = pos - 1; i < L->length - 1; i++) //从前向后移动元素 L->data[i] = L->data[i + 1];L->length--; //长度减1return true;}// 查找元素int LocateElem(SeqList L, int val){for(int i = 0; i < L.length; i++){ //遍历顺序表找到元素 if(L.data[i] == val)return i + 1;}return 0;}// 获取元素int GetElem(SeqList L, int pos){if(pos >= 1 && pos <= L.length) //判断是否越界 return L.data[pos - 1];elsereturn -1;}// 输出顺序表void PrintList(SeqList L){for(int i = 0; i < L.length; i++)printf("%d ", L.data[i]); //输出每个元素printf("\n");}```以上就是一个简单的顺序表代码实现,包括初始化、插入、删除、查找、获取和输出操作。
数据结构课程设计源代码(完整版)
算法与数据结构课程设计报告设计题目:专业班级学生学号指导教师2014年第1学期第一部分:需求分析1、系统名称:航空客运订票系统航空客运订票的业务活动包括:查询航线、客票预定和办理退票等。
要求在TC或VC环境下设计一个航空客运订票系统,以使上述业务可以借助计算机来完成。
2、要求:(1)每条航线所涉及的信息有:终点站名、航班号、飞机号、飞行日期(星期几)、乘员定额、余票量、已经订票的客户名单(包括姓名、订票量)以及等候替补的客户名单(包括姓名、所需票量)。
(2)作为模拟系统,全部数据可以只存放在内存中。
(3)通过此系统可以实现如下功能:①录入功能:可以录入航班情况②查询功能:根据客户提供的终点站名进行查询,可以输出以下信息:航班号、飞机号、星期几飞行和余票量等。
也可以根据航班号,查询飞机某个航线的情况。
③订票功能:根据客户提出的要求(姓名、终点站名、订票数量)查询该航班的余票量情况。
如尚有足够的余票,则为客户办理订票手续;若已满员或余票量少于订票数量,则需要重新询问客户要求,如需要,可登记排队候补。
④退票功能:根据客户提供的情况(姓名、日期、航班号),为客户办理退票手续,然后查询该航班是否有人排队候补,若有人排队,则为排在第一位的客户办理订票手续。
第二部分:系统设计图样一:设计说明1:添加航班:整个航班的信息保存在一个结构体flight中,采用结构体数组,每一个航班信息包含航班号、起飞时间、起飞城市、降落时间、降落城市、余票数量。
航班信息通过lulu()函数进行添加。
添加的信息保存在航班flight结构体数组中。
2:查询航班:查询板块分为两个部分,按姓名查找和按站名查找。
按姓名查找:通过所输入的姓名和已定客户的姓名相匹配,匹配成功则查找成功。
按站名查找:通过所输入的起始站名和终点站名进行匹配,匹配成功则查找成功。
3:订票功能:根据用户的姓名和航班号进行订票,如果所查找的航班号的余票满足用户需要的票数,则订票成功,该信息保存在Customer中,才用结构体数组,包含已定客户的姓名、客户ID、订的票数、起飞时间、起飞城市、降落时间、降落城市、航班号。
数据结构与算法实验源代码(2023最新版)
数据结构与算法实验源代码本文档为数据结构与算法实验源代码的范本,旨在帮助读者深入理解和实践数据结构和算法的相关知识。
下文将详细介绍各个章节的内容。
⒈引言- 简要介绍数据结构与算法的重要性和应用场景。
- 说明本文档的结构和目的。
⒉数据结构概述- 介绍数据结构的基本概念和分类。
- 详细介绍各种常见数据结构,如数组、链表、栈、队列、树等。
- 提供每种数据结构的定义、操作和应用示例。
⒊算法基础- 介绍算法的基本思想和特性。
- 详细讲解常见的算法设计方法,如递归、分治、贪心、动态规划等。
- 提供每种算法的原理、示例和分析。
⒋排序算法- 介绍各种排序算法的原理和实现方式。
- 包括冒泡排序、选择排序、插入排序、归并排序、快速排序等。
- 提供每种排序算法的时间复杂度和空间复杂度分析。
⒌查找算法- 介绍常用的查找算法,如顺序查找、二分查找、哈希查找等。
- 提供每种查找算法的原理和实现方式。
- 分析每种查找算法的时间复杂度和空间复杂度。
⒍图算法- 介绍图的基本概念和表示方法。
- 详细讲解图的遍历算法,如深度优先搜索和广度优先搜索。
- 介绍最短路径算法,如Dijkstra算法和Floyd-Warshall算法。
- 提供每种图算法的实现示例和应用场景。
⒎高级数据结构与算法- 介绍高级数据结构,如堆、红黑树、AVL树等。
- 详细讲解高级算法,如动态规划、并查集等。
- 提供每种高级数据结构和算法的原理、实现方式和应用示例。
⒏结语- 对数据结构与算法的重要性进行总结。
- 强调学习和实践的重要性。
本文档涉及附件:⒈源代码示例附件,包含了本文中提到的各种数据结构和算法的实现代码。
法律名词及注释:⒈数据结构:指一组数据的存储结构和相应的操作。
⒉算法:指解决特定问题的一系列有序步骤或规则。
⒊时间复杂度:用来度量算法执行时间随输入规模增长时的增长率。
⒋空间复杂度:用来度量算法执行过程中所需存储空间随输入规模增长时的增长率。
数据结构(C语言版)实验报告 (内部排序算法比较)
《数据结构与算法》实验报告一、需求分析问题描述:在教科书中,各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大概执行时间。
试通过随机数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。
基本要求:(l)对以下6种常用的内部排序算法进行比较:起泡排序、直接插入排序、简单选择排序、快速排序、希尔排序、堆排序。
(2)待排序表的表长不小于100000;其中的数据要用伪随机数程序产生;至少要用5组不同的输入数据作比较;比较的指标为有关键字参加的比较次数和关键字的移动次数(关键字交换计为3次移动)。
(3)最后要对结果作简单分析,包括对各组数据得出结果波动大小的解释。
数据测试:二.概要设计1.程序所需的抽象数据类型的定义:typedef int BOOL; //说明BOOL是int的别名typedef struct StudentData { int num; //存放关键字}Data; typedef struct LinkList { int Length; //数组长度Data Record[MAXSIZE]; //用数组存放所有的随机数} LinkList int RandArray[MAXSIZE]; //定义长度为MAXSIZE的随机数组void RandomNum() //随机生成函数void InitLinkList(LinkList* L) //初始化链表BOOL LT(int i, int j,int* CmpNum) //比较i和j 的大小void Display(LinkList* L) //显示输出函数void ShellSort(LinkList* L, int dlta[], int t,int* CmpNum, int* ChgNum) //希尔排序void QuickSort (LinkList* L, int* CmpNum, int* ChgNum) //快速排序void HeapSort (LinkList* L, int* CmpNum, int* ChgNum) //堆排序void BubbleSort(LinkList* L, int* CmpNum, int* ChgNum) //冒泡排序void SelSort(LinkList* L, int* CmpNum, int* ChgNum) //选择排序void Compare(LinkList* L,int* CmpNum, int* ChgNum) //比较所有排序2 .各程序模块之间的层次(调用)关系:二、详细设计typedef int BOOL; //定义标识符关键字BOOL别名为int typedef struct StudentData //记录数据类型{int num; //定义关键字类型}Data; //排序的记录数据类型定义typedef struct LinkList //记录线性表{int Length; //定义表长Data Record[MAXSIZE]; //表长记录最大值}LinkList; //排序的记录线性表类型定义int RandArray[MAXSIZE]; //定义随机数组类型及最大值/******************随机生成函数********************/void RandomNum(){int i; srand((int)time(NULL)); //用伪随机数程序产生伪随机数for(i=0; i小于MAXSIZE; i++) RandArray[i]<=(int)rand(); 返回;}/*****************初始化链表**********************/void InitLinkList(LinkList* L) //初始化链表{int i;memset(L,0,sizeof(LinkList));RandomNum();for(i=0; i小于<MAXSIZE; i++)L->Record[i].num<=RandArray[i]; L->Length<=i;}BOOL LT(int i, int j,int* CmpNum){(*CmpNum)++; 若i<j) 则返回TRUE; 否则返回FALSE;}void Display(LinkList* L){FILE* f; //定义一个文件指针f int i;若打开文件的指令不为空则//通过文件指针f打开文件为条件判断{ //是否应该打开文件输出“can't open file”;exit(0); }for (i=0; i小于L->Length; i++)fprintf(f,"%d\n",L->Record[i].num);通过文件指针f关闭文件;三、调试分析1.调试过程中遇到的问题及经验体会:在本次程序的编写和调试过程中,我曾多次修改代码,并根据调试显示的界面一次次调整代码。
数据结构排序PPT课件
注:外部排序时,要将数据分批调入内存来 排序,中间结果还要及时放入外存,显然外 部排序要复杂得多。
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
5.待排序记录在内存中怎样存储和处理?
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
Void BInsertSort (SqList &L) // 折半插入排序
{ for ( i=2;i<=L.length;++i )
{ L.r[0] = L.r[ i ]; // 将L.r [i] 暂存到L.r[0]
处理方式: ① 顺序排序 —— 数据间的逻辑顺序关系通过其物理
存储位置的相邻来体现,排序时直接移动记录; 适合数据较少的情况!
② 链表排序 ——数据间的逻辑顺序关系通过结点中 的指针体现,排序时只修改指针,不移动数据;
③ 地址排序 —— 数据存储在一段连续地址的空间, 构造一个辅助表保持各数据的存放地址(指针),排 序时先修改辅助表中的地址,最后再移动记录。
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
4. 什么叫内部排序?什么叫外部排序? —— 若待排序记录都在内存中,称为内部排序;
内部排序基本操作有两种: ◆ 比较两个关键字的大小;(比不可少的操作) ◆ 存储位置的移动。
i=8
0
1
2
3
4
数据结构实验报告(C语言)顺序表__排序
int i,j,n,x,change; n=L->length; change=1; for(i=1;i<=n-1 && change;++i){
change=0; for(j=1;j<=n-i-1;++j)
if(L->r[j] > L->r[j+1]){ x=L->r[j]; L->r[j]=L->r[j+1]; L->r[j+1]=x; change=1;
void QuickSort(SqeList *L,int low,int high){ int mid; if(low<high){ mid=Partition(L,low,high); QuickSort(L,low,mid-1); QuickSort(L,mid+1,high); }
}
//直接选择排序
printf("\n7-直接选择排序结果为:\n"); SelectSort(&l); PrintList(&l); printf("\n"); printf("\n8-二路归并结果为:\n"); MergeSort(&l);
PrintList(&l); printf("\n"); } else printf("请输入大于 0 的值: "); return 0; }
} else{
MR->r[k]=R->r[j]; ++j; } ++k; } while(i<=mid) MR->r[k++]=R->r[i++]; while(j<=high) MR->r[k++]=R->r[j++]; }
数据结构源代码(全)
/*顺序表的操作#include<iostream>#include<stdlib.h>using namespace std;Release 13.12 rev 9501 (2013/12/25 19:25:45) gcc 4.7.1 Windows/unicode - 32 bit #define MAX_SIZE 100typedef struct{int *emel;int lenth;}Sq;void init(Sq &l);void create(Sq &l);void trval(Sq &l);void find_value(Sq &l);void find_position(Sq &l);void insert(Sq &l);void dele(Sq &l);int main(){Sq l;init(l);create(l);trval(l);find_value(l);find_position(l);insert(l);trval(l);dele(l);trval(l);return 0;}void init(Sq &l){l.emel =new int[MAX_SIZE];if(l.emel ==NULL){cout<<"\t申请空间失败!"<<endl;exit(1);}l.lenth=0;cout<<"\t成功申请空间!该顺序表的长度目前为:"<<l.lenth<<endl; }void create(Sq &l){cout<<"\t请输入你想输入元素的个数:";int x;cin>>x;if((x<1)&&(x>MAX_SIZE)){cout<<"\t你说输入的数不在范围里"<<endl;return;}int i;for(i=0;i<x;i++){cin>>l.emel[i];}l.lenth=x;cout<<"\t成功赋值!"<<endl;}void trval(Sq &l){int i;cout<<"l(";for(i=0;i<l.lenth;i++){cout<<l.emel[i]<<" ";}cout<<")"<<" 该顺序表现在的长度为:"<<l.lenth<<endl;}void find_value(Sq &l){int x,t=0;cout<<"\t请输入你要查找的值:";cin>>x;int i;for(i=0;i<l.lenth;i++){if(l.emel[i]==x){t=1;cout<<"\t成功找到该元素,它是顺序表的第"<<i+1<<"个元素!"<<endl;}}if(t==0){cout<<"\t无该元素!"<<endl;}}void find_position(Sq &l){int x;cout<<"\t请输入你要查找的位置:";cin>>x;int i;if((x<1)||(x>l.lenth)){cout<<"\t输入的值不在范围内!"<<endl;return;}for(i=1;i<=l.lenth;i++){if(i==x){cout<<"\t成功找到该元素,该值是"<<l.emel[i-1]<<endl;}}}void insert(Sq &l){int i,x,y;cout<<"\t请输入你要插入的位置";cin>>x;cout<<"\t请输入你要插入的值";cin>>y;if((x<1)||(x>l.lenth)){cout<<"\t输入的值不在范围内!"<<endl;return;}if(x==l.lenth){l.emel[l.lenth]=y;l.lenth=l.lenth+1;return;}for(i=l.lenth;i>=x;i--){l.emel[i]=l.emel[i-1];}l.emel[x-1]=y;l.lenth=l.lenth+1;}void dele(Sq &l){int i,x;cout<<"\t请输入你要删除位置:";cin>>x;if((x<1)||(x>l.lenth)){cout<<"\t输入的值不在范围内!"<<endl;return;}for(i=x-1;i<=l.lenth;i++){l.emel[i]=l.emel[i+1];}l.lenth=l.lenth-1;}成功申请空间!该顺序表的长度目前为:0请输入你想输入元素的个数:3852成功赋值!l(8 5 2 ) 该顺序表现在的长度为:3请输入你要查找的值:5成功找到该元素,它是顺序表的第2个元素!请输入你要查找的位置:3成功找到该元素,该值是2请输入你要插入的位置3请输入你要插入的值10l(8 5 2 10 ) 该顺序表现在的长度为:4请输入你要删除位置:3l(8 5 10 ) 该顺序表现在的长度为:3--------------------------------Process exited with return value 0Press any key to continue . . .*//*#include<stdio.h>#include<stdlib.h>typedef struct Link{int num;struct Link *next;}L;L* creat(L* head){head=(L *)malloc(sizeof(L));if(head==NULL){printf("头节点申请失败!\n");exit(-1);}head->next=NULL;return head;}void insert(L* head){int x,i;printf("请输入你想输入数据的个数:");scanf("%d",&x);L *p,*q;p=head;for(i=0;i<x;i++){q=(L *)malloc(sizeof(L));if(q==NULL){printf("新点申请失败!\n");exit(-1);}printf("请输入值:");scanf("%d",&q->num);q->next=NULL;p->next=q;p=q;}}void print(L* head){L *p;p=head->next;while(p!=NULL){printf("值为:%d\n",p->num);p=p->next;}}int main(){L *head;head=creat(head);printf("成功创建头节点!!!\n");insert(head);printf("成功输入数据!!!\n");print(head);return 0;}*//*线性表的操作#include<stdio.h>#include<stdlib.h>typedef struct Link{int num;struct Link *next;}L;L* creat(L* head){head=(L *)malloc(sizeof(L));if(head==NULL){printf("头节点申请失败!\n");exit(-1);}head->next=NULL;return head;}void init(L* head){int x,i;printf("请输入你想输入数据的个数:");scanf("%d",&x);L *p,*q;p=head;for(i=0;i<x;i++){q=(L *)malloc(sizeof(L));if(q==NULL){printf("新点申请失败!\n");exit(-1);}printf("请输入值:");scanf("%d",&q->num);q->next=p->next;p->next=q;}}int print(L* head){L *p;int lenth=0;p=head->next;printf("\t\tL(");while(p!=NULL){lenth++;printf("%d ",p->num);p=p->next;}printf(")\n");return lenth;}int insert(L *head,int lenth){printf("\t\t请输入你要插入的元素的位置:");int in;scanf("%d",&in);if(in<1 || in>lenth){printf("\t\t输入值不在范围内!");return -1;}L *p,*q;p=head->next;q=(L *)malloc(sizeof(L));if(q==NULL){printf("新点申请失败!\n");return -1;}printf("\t\t请为新节点输入值:");scanf("%d",&q->num);int i=0;while(p!=NULL){i++;if(i==in-1){q->next=p->next;p->next=q;}p=p->next;}lenth++;return lenth;}int dele(L *head,int lenth){printf("\t\t请输入你要删除的元素的位置:");int out;scanf("%d",&out);if(out<1 || out>lenth){printf("\t\t输入值不在范围内!");return -1;}L *p,*q;p=head->next;q=head;int i=0;while(p!=NULL){i++;if(i==out){q->next=p->next;}q=p;p=p->next;}lenth--;return lenth;}void find(L *head,int lenth){printf("\t\t请输入你要查找的元素的位置:");int finder;scanf("%d",&finder);if(finder<1 || finder>lenth){printf("\t\t输入值不在范围内!");return ;}L *p;p=head->next;int i=0;while(p!=NULL){i++;if(i==finder){printf("\t\t你要找的该位置所对应的值为:%d\n",p->num);}p=p->next;}}int main(){L *head;head=creat(head);printf("成功创建头节点!!!\n");init(head);printf("成功输入数据!!!\n");int len;len=print(head);printf("\t\t该线性表的长度为:%d\n",len);len=insert(head,len);len=print(head);printf("\t\t插入后线性表的长度为:%d\n",len);len=dele(head,len);len=print(head);printf("\t\t删除后该线性表的长度为:%d\n",len);find(head,len);return 0;}*//*顺序表的合并#include<iostream>using namespace std;struct LA{int *pa;int lenth;};struct LB{int *pb;int lenth;};struct LC{int *pc;int lenth;};void mergelist(LA la,LB lb,LC &lc);int main(){int x,y;LA la;LB lb;cout<<"\t\t请给线性表LA和LB指定长度:";cin>>x>>y;la.pa =new int(sizeof(int)*x);lb.pb =new int(sizeof(int)*y);int i;for(i=0;i<x;i++){cout<<"请输入表LA的值:";cin>>la.pa[i];}cout<<endl;la.lenth=x;for(i=0;i<y;i++){cout<<"请输入表LB的值:";cin>>lb.pb[i];}lb.lenth=y;cout<<"LA(";for(i=0;i<x;i++){cout<<la.pa[i]<<" ";}cout<<")"<<endl;cout<<"LB(";for(i=0;i<y;i++){cout<<lb.pb[i]<<" ";}cout<<")"<<endl;LC lc;mergelist(la,lb,lc);return 0;}void mergelist(LA la,LB lb,LC &lc){lc.lenth=la.lenth+lb.lenth;lc.pc=new int(sizeof(int)*lc.lenth);int *pa=la.pa,*pb=lb.pb,*pc=lc.pc;int *pa_last=la.pa+la.lenth-1;int *pb_last=lb.pb+lb.lenth-1;while(pa<=pa_last && pb<=pb_last){if(*pa <= *pb){*pc++=*pa++;}else{*pc++=*pb++;}}while(pa<=pa_last){*pc++=*pa++;}while(pb<=pb_last){*pc++=*pb++;}cout<<"LC(";int i=0;for(i=0;i<lc.lenth;i++){cout<<lc.pc[i]<<" ";}cout<<")"<<endl;}*///栈/*#include<iostream>using namespace std;#include<stdlib.h>#define MAXSIZE 100typedef struct{int *base;int *top;int stacksize;}Sqstack;int Initstack(Sqstack &s);void Push(Sqstack &s,int e);void StackTraverse(Sqstack &s);void Gettop(Sqstack &s);void Pop(Sqstack &s);int main(){Sqstack s;Initstack(s);cout<<"\t\t初始化栈成功!"<<endl;Push(s,2);cout<<"\t\t2入栈成功!"<<endl;Push(s,4);cout<<"\t\t4入栈成功!"<<endl;Push(s,6);cout<<"\t\t6入栈成功!"<<endl;Push(s,8);cout<<"\t\t8入栈成功!"<<endl;cout<<"\n由栈底至栈顶的元素为:";StackTraverse(s);Gettop(s);Pop(s);Gettop(s);return 0;}int Initstack(Sqstack &s){s.base=new int[MAXSIZE];if(s.base==NULL){exit(1);}s.top=s.base;s.stacksize=MAXSIZE;}void Push(Sqstack &s,int e){if(s.top-s.base==s.stacksize){exit(1);}*s.top++=e;}void StackTraverse(Sqstack &s){int *p=s.base,i=0;while(p<s.top){i++;cout<<*p++<<" ";}cout<<"\t\t栈的长度是"<<i<<endl;}void Gettop(Sqstack &s){if(s.base==s.top){exit(1);}cout<<"栈顶元素是:"<<*(s.top-1)<<endl; }void Pop(Sqstack &s){if(s.top==s.base){exit(1);}cout<<"出栈的第一个元素是:";cout<<*--s.top<<" "<<endl;}*///队列例题:/*#include<iostream>#include<stdlib.h>using namespace std;#define MAXQSIZE 100typedef struct{int *base;int front;int rear;}SqQueue;int InitQueue(SqQueue &q);int EnQueue(SqQueue &q,int x);int DeQueue(SqQueue &q);int main(){SqQueue q;InitQueue(q);EnQueue(q,1);EnQueue(q,3);EnQueue(q,5);EnQueue(q,7);DeQueue(q);DeQueue(q);DeQueue(q);DeQueue(q);return 0;}int InitQueue(SqQueue &q){q.base=new int[MAXQSIZE];if(q.base==NULL){exit(1);}q.front=0;q.rear=0;return 0;}int EnQueue(SqQueue &q,int x){if((q.rear+1)%MAXQSIZE==q.front){exit(0);}q.base[q.rear]=x;q.rear=(q.rear+1)%MAXQSIZE;return 0;}int DeQueue(SqQueue &q){if(q.front==q.rear){exit(0);}int x=q.base[q.front];q.front=(q.front+1)%MAXQSIZE;cout<<x<<endl;}*//*#include<iostream>#include<stdlib.h>using namespace std;typedef struct Qnode{int date;struct Qnode *next;}Qnode,*Queueptr;typedef struct{Queueptr front; //队头指针Queueptr rear; //队尾指针}LinkQueue;int InitQueue(LinkQueue &Q);void EnQueue(LinkQueue &Q,int e);void TrvalQueue(LinkQueue Q);void DeQueue(LinkQueue &Q);int main(){LinkQueue Q;InitQueue(Q);EnQueue(Q,1);cout<<"\t元素1入队成功!"<<endl;EnQueue(Q,3);cout<<"\t元素3入队成功!"<<endl;EnQueue(Q,5);cout<<"\t元素5入队成功!"<<endl;EnQueue(Q,7);cout<<"\t元素7入队成功!"<<endl;cout<<"\t队列的元素分别是:"<<endl;TrvalQueue(Q);cout<<"\t第一个出队的元素是:"<<endl;DeQueue(Q);cout<<"\n\t第一个元素出队完成之后队列中从队头至队尾的元素为:";TrvalQueue(Q);return 0;}int InitQueue(LinkQueue &Q){Q.rear=new Qnode;Q.front=Q.rear;if(Q.front==NULL){exit(0);}Q.front->next=NULL;return 0;}void EnQueue(LinkQueue &Q,int e){Qnode *p=new Qnode;if(!p){exit(1);}p->date=e;p->next=NULL;Q.rear->next=p; //连接Q.rear=p; //修改队尾指针}void TrvalQueue(LinkQueue Q){Qnode *p=Q.front->next;//队头元素while(Q.front!=Q.rear){cout <<p->date<<" ";Q.front=p;p=p->next;}cout<<endl;}void DeQueue(LinkQueue &Q){if(Q.front==Q.rear){return;}Qnode *p=Q.front->next;cout<<"\t"<<p->date<<endl;Q.front->next=p->next;if(Q.rear==p){Q.rear=Q.front;delete p;}}*//*//表达式求值#include<iostream>#include<stdlib.h>#include<stdio.h>using namespace std;#define MAXSIZE 100typedef struct{char *base;char *top;char num;}OPND; //数据栈typedef struct{char *base;char *top;char c;}OPTR; //符号栈int Initstack(OPND &op_n,OPTR &op_t);void Pushstack(OPND &op_n,char ch);void Pushstack(OPTR &op_t,char ch);char Popstack(OPND &op_n,char ch);char Popstack(OPTR &op_t,char ch);char Gettop(OPTR op_t);char Gettop(OPND op_n);int In(char ch);char Precede(char x,char y);char operate(char z,char x,char y);int main(){OPND op_n;OPTR op_t;Initstack(op_n,op_t);Pushstack(op_t,'#');char ch;char p;cin>>ch;while(ch!='#' || Gettop(op_t)!='#'){if(!In(ch)){Pushstack(op_n,ch);cin>>ch;}else{switch( Precede(Gettop(op_t),ch) ){case '<':Pushstack(op_t,ch);cin>>ch;break;case '>':char x,y,z;x=Popstack(op_t,x);y=Popstack(op_n,y);z=Popstack(op_n,z);Pushstack(op_n,operate(z,x,y));break;case '=':p=Popstack(op_t,p);cin>>ch;break;}}}cout<<"\t表达式结果是:"<<Gettop(op_n)<<endl;return 0;}int Initstack(OPND &op_n,OPTR &op_t){op_n.base=new char[MAXSIZE];op_t.base=new char[MAXSIZE];if((op_n.base==NULL) || (op_t.base==NULL)){exit(1);}op_n.top=op_n.base;op_t.top=op_t.base;op_n.num=MAXSIZE;op_t.c=MAXSIZE;return 0;}void Pushstack(OPND &op_n,char ch){if(op_n.top-op_n.base==op_n.num){return;}*op_n.top++=ch;cout<<ch<<" 入数字栈"<<endl;}void Pushstack(OPTR &op_t,char ch){if(op_t.top-op_t.base==op_t.c){return;}*op_t.top++=ch;cout<<ch<<" 入操作符"<<endl;}char Popstack(OPND &op_n,char ch)if(op_n.top==op_n.base){exit(1);}ch=*--op_n.top;cout<<ch<<" 出数字栈"<<endl;return ch;}char Popstack(OPTR &op_t,char ch){if(op_t.top==op_t.base){exit(1);}ch=*--op_t.top;cout<<ch<<" 出字符栈"<<endl;return ch;}char Gettop(OPTR op_t){char x;if(op_t.top==op_t.base){exit(1);}x=*(op_t.top-1);cout<<"得到操作符栈顶"<<x<<endl;return x;}char Gettop(OPND op_n){char x;if(op_n.top==op_n.base){exit(1);}x=*(op_n.top-1);cout<<"得到操作数栈顶"<<x<<endl;return x;}int In(char ch)if(ch=='+'||ch=='-'||ch=='*'||ch=='/'||ch=='('||ch==')'||ch=='#') {return 1;}else{return 0;}}char Precede(char x,char y){if(x=='+' || x=='-'){if(y=='+' || y=='-' || y==')' || y=='#'){return '>';}else{return '<';}}if(x=='*'||x=='/'){if(y=='('){return '<';}else{return '>';}}if(x=='('){if(y==')'){return '=';}else if(y=='+'||y=='-'||y=='*'||y=='/'||y=='('){return '<';}}if(x==')'){if(y!='('){return '>';}}if(x=='#'){if(y=='#'){return '=';}else if(y!=')'){return '<';}}}char operate(char z,char x,char y) {if(x=='+'){return (z-'0') + (y-'0')+48;}if(x=='-'){return (z-'0') - (y-'0')+48;}if(x=='*'){return (z-'0')* (y-'0')+48;}if(x=='/'){return (z-'0')/ (y-'0')+48;}}*//*#include<iostream>using namespace std;int main(){char a[10];char *b[10];char **c[10];return 0;}*//*#include<iostream>using namespace std;char f(char x,char y){return (x-'0') * (y-'0')+48;}int main(){char a='3',b='5';char p=f(a,b);cout<<p<<endl;return 0;}*///数列出队/*#include<iostream>#include<stdlib.h>using namespace std;typedef struct Qnode{int num;struct Qnode *next;}Qnode,*Queueptr;typedef struct{Queueptr front;Queueptr rear;}LinkQueue;int InitQueue(LinkQueue &Q);void EnQueue(LinkQueue &Q,int x); int DeQueue(LinkQueue &Q,int p); int main(){LinkQueue Q;InitQueue(Q);int x,i,y,num=0,e;cout<<"请输入总人数:";cin>>x;for(i=1;i<=x;i++){EnQueue(Q,i);}cout<<"请输入第几个数淘汰:";cin>>y;{for(i=0;i<y;i++){if(i!=y-1){e=DeQueue(Q,e);EnQueue(Q,e);}else{DeQueue(Q,e);num++;}}if(num==x-1){break;}}e=DeQueue(Q,e);cout<<"最后剩下的是:"<<e<<endl;return 0;}int InitQueue(LinkQueue &Q){Q.front=new Qnode;Q.rear=Q.front;if(Q.front==NULL){exit(1);}Q.front->next=NULL;}void EnQueue(LinkQueue &Q,int x){Qnode *p=new Qnode;if(!p){exit(1);}p->num=x;p->next=NULL;Q.rear->next=p;}int DeQueue(LinkQueue &Q,int e) {Qnode *p;if(Q.rear==Q.front){exit(0);}p=Q.front->next;e=p->num;Q.front->next=p->next;if(Q.rear==p){Q.front=Q.rear;}delete p;return e;}*//*二叉树#include<iostream>#include<stdlib.h>using namespace std;typedef struct BiTNode{char date;struct BiTNode *lchild,*rchild; }BiTNode,*BiTree;void CreateBiTree(BiTree &T);int Depth(BiTree T);int NodeCount(BiTree T);int LeavesNodeCount(BiTree T);int PreOrderTraverse(BiTree T);int InOrderTraverse(BiTree T);int PostOrderTraverse(BiTree T); int main(){BiTree T;CreateBiTree(T);cout<<"二叉树的深度为:"<<Depth(T)<<endl;cout<<"二叉树中结点个数为:"<<NodeCount(T)<<endl;cout<<"二叉树中叶子结点个数为:"<<LeavesNodeCount(T)<<endl;cout<<"先序遍历:";PreOrderTraverse(T);cout<<"\n中序遍历:";InOrderTraverse(T);cout<<"\n后序遍历:";PostOrderTraverse(T);cout<<endl;return 0;}void CreateBiTree(BiTree &T){cout<<"请为该节点赋值:";char ch;cin>>ch;if(ch=='#'){T=NULL;}else{T =new BiTNode;T->date=ch;CreateBiTree(T->lchild);CreateBiTree(T->rchild);}}int Depth(BiTree T){int m,n;if(T==NULL){return 0;}else{m=Depth(T->lchild);n=Depth(T->rchild);if(m>n){return m+1;}else{return n+1;}}}int NodeCount(BiTree T){if(T==NULL){return 0;}else{return NodeCount(T->lchild)+NodeCount(T->rchild)+1;}}int LeavesNodeCount(BiTree T){if(T==NULL){return 0;}else if(T->lchild==NULL && T->rchild==NULL){return 1;}else{return LeavesNodeCount(T->lchild)+LeavesNodeCount(T->rchild);}}int PreOrderTraverse(BiTree T){if(T!=NULL){cout<<T->date;PreOrderTraverse(T->lchild);PreOrderTraverse(T->rchild);}}int InOrderTraverse(BiTree T){if(T!=NULL){InOrderTraverse(T->lchild);cout<<T->date;InOrderTraverse(T->rchild);}}int PostOrderTraverse(BiTree T){if(T!=NULL){PostOrderTraverse(T->lchild);PostOrderTraverse(T->rchild);cout<<T->date;}}请为该节点赋值:-请为该节点赋值:+请为该节点赋值:a请为该节点赋值:#请为该节点赋值:#请为该节点赋值:*请为该节点赋值:b请为该节点赋值:#请为该节点赋值:#请为该节点赋值:-请为该节点赋值:c请为该节点赋值:#请为该节点赋值:#请为该节点赋值:d请为该节点赋值:#请为该节点赋值:#请为该节点赋值:/请为该节点赋值:e请为该节点赋值:#请为该节点赋值:#请为该节点赋值:f请为该节点赋值:#请为该节点赋值:#二叉树的深度为:5二叉树中结点个数为:11二叉树中叶子结点个数为:6先序遍历:-+a*b-cd/ef中序遍历:a+b*c-d-e/f后序遍历:abcd-*+ef/-Process returned 0 (0x0) execution time : 76.214 s Press any key to continue.*//*#include<iostream>#include<stdlib.h>#include<string.h>using namespace std;typedef struct{int weiget;int parent,lchild,rchild;}HTNode,*HuffmanTree;typedef char** HuffmanCode;void creat(HuffmanTree &HT,int n);void Select(HuffmanTree HT,int k,int &min1,int &min2); void creatcode(HuffmanTree HT,HuffmanCode &HC,int n); int min(HuffmanTree HT,int k);int main(){int n;cout<<"请输入叶子节点的个数:";cin>>n;HuffmanTree HT;creat(HT,n);HuffmanCode HC;creatcode(HT,HC,n);return 0;}void creat(HuffmanTree &HT,int n){if(n<1){exit(1);}int m=2*n-1,i;HT=new HTNode[m+1];for( i=1;i<=m;i++){HT[i].parent=0;HT[i].lchild=0;HT[i].rchild=0;}for(i=1;i<=n;i++){cout<<"请输入权值:";cin>>HT[i].weiget;}int s1,s2;for(i=n+1;i<=m;i++) //通过n-1次选择来合并创建{Select(HT,i-1,s1,s2);HT[s1].parent=i; //赋值,作为删除的标记HT[s2].parent=i;cout<<"s1:"<<s1<<" s2:"<<s2<<endl;HT[i].lchild=s1; //生成新节点HT[i].rchild=s2;HT[i].weiget=HT[s1].weiget+HT[s2].weiget;}}void Select(HuffmanTree HT,int k,int &min1,int &min2){min1=min(HT,k);min2=min(HT,k);}int min(HuffmanTree HT,int k){int i=0;int min;//存放weight最小且parent为-1的元素的序号int min_wei;//存放权值while(HT[i].parent!=0){i++;}min_wei=HT[i].weiget;min=i;for(;i<=k;i++){if(HT[i].weiget<min_wei && HT[i].parent==0){min_wei=HT[i].weiget;min=i;}}HT[min].parent=1;return min;}void creatcode(HuffmanTree HT,HuffmanCode &HC,int n){HC =new char *[n+1];char *cd=new char[n];cd[n-1]='\0';int i,start;//start指向最后,即编码结束符的位置int current,father;for(i=1;i<=n;i++){start=n-1;current=i;father=HT[i].parent;while(father!=0){--start;if(HT[father].lchild==current){cd[start]='0';}else{cd[start]='1';}current=father;father=HT[father].parent;}HC[i]=new char[n-start];strcpy(HC[i],&cd[start]);cout<<HT[i].weiget<<"对应的编码是:"<<HC[i]<<endl;}delete cd;}请输入叶子节点的个数:5请输入权值:1请输入权值:2请输入权值:3请输入权值:4请输入权值:5s1:1 s2:2s1:3 s2:6s1:4 s2:5s1:7 s2:81对应的编码是:0102对应的编码是:0113对应的编码是:004对应的编码是:105对应的编码是:11Process returned 0 (0x0) execution time : 4.003 s Press any key to continue.*///折半查找#include<iostream>#include<stdio.h>using namespace std;#define ENDFLAG 10000typedef int KeyType;typedef char* InfoType;typedef struct{KeyType key;InfoType otherinfo;}ElemType;typedef struct{ElemType *R;int length;}SSTable;void CreateSTable(SSTable &ST,int n){int i;ST.R=new ElemType[n+1];for(i=1;i<=n;i++){cout<<"请输入"<<i<<"个测试数据:";cin>>ST.R[i].key;}ST.length=n;}int Search_Bin1(SSTable ST,KeyType key){int low,high,mid;low=1;high=ST.length;while(low<=high){mid=(low+high)/2;if(key==ST.R[mid].key){return mid;}else if(key<ST.R[mid].key){high=mid-1;}else{low=mid+1;}}return 0;}int Search_Bin2(SSTable ST,int low,int high,KeyType key) {int mid;if(low>high){return 0;}mid=(low+high)/2;printf("%d+++++",key==ST.R[mid].key);if(key==ST.R[mid].key){return mid;}else if(key<ST.R[mid].key){return Search_Bin2(ST,low,mid-1,key);}else{return Search_Bin2(ST,mid+1,high,key);}}int main(){int n;KeyType key;SSTable ST;cout<<"请输入静态查找表长:";cin>>n;CreateSTable(ST,n);cout<<"请输入待查记录的关键字:";cin>>key;cout<<"Search_Bin1算法计算的位置为:"<<Search_Bin1(ST,key)<<endl;cout<<"Search_Bin2算法计算的位置为:"<<Search_Bin2(ST,1,ST.length,key)<<endl;return 0;}/*请输入静态查找表长:5请输入1个测试数据:1请输入2个测试数据:2请输入3个测试数据:3请输入4个测试数据:4请输入5个测试数据:5请输入待查记录的关键字:3Search_Bin1算法计算的位置为:3Search_Bin2算法计算的位置为:3Process returned 0 (0x0) execution time : 8.620 sPress any key to continue.*//*#include<iostream>using namespace std;typedef struct{int key;}ElemType;typedef struct BSTNode{ElemType date;struct BSTNode *lchild,*rchild;}BSTNode,*BSTree;void Create(BSTree &T);void Insert(BSTree &T,ElemType e);int InOrderTraverse(BSTree T);int main(){BSTree T;Create(T);InOrderTraverse(T);cout<<"\n中序遍历:";return 0;}void Create(BSTree &T){T=NULL;ElemType e;cout<<"请为节点赋值:(0为结束条件)";cin>>e.key;while(e.key!=0){Insert(T,e);cout<<"请为节点赋值:(0为结束条件)";cin>>e.key;}}void Insert(BSTree &T,ElemType e){if(!T){BSTree S;S=new BSTNode;S->date=e;S->lchild=NULL;S->rchild=NULL;T=S;}else if(e.key<T->date.key){Insert(T->lchild,e);}else{Insert(T->rchild,e);}}int InOrderTraverse(BSTree T){if(T!=NULL){InOrderTraverse(T->lchild);cout<<T->date.key<<" ";InOrderTraverse(T->rchild);}return 0;}请为节点赋值:(0为结束条件)12请为节点赋值:(0为结束条件)7请为节点赋值:(0为结束条件)17请为节点赋值:(0为结束条件)11请为节点赋值:(0为结束条件)16请为节点赋值:(0为结束条件)2请为节点赋值:(0为结束条件)13请为节点赋值:(0为结束条件)9请为节点赋值:(0为结束条件)21请为节点赋值:(0为结束条件)4请为节点赋值:(0为结束条件)02 4 7 9 11 12 13 16 17 21中序遍历:Process returned 0 (0x0) execution time : 23.808 s Press any key to continue.*/。
c语言排序与查找代码
c语言排序与查找代码在程序设计中,排序和查找是非常常见的操作。
排序是将一组数据按照特定规则进行重新排列的过程,而查找则是在已经排列好的数据中寻找某个特定的元素。
C语言提供了丰富的函数和算法来实现这两个操作。
一、排序代码实现:C语言中有多种排序算法可以选择,其中最常见和经典的有冒泡排序、选择排序、插入排序和快速排序等。
1. 冒泡排序代码实现:冒泡排序是一种简单直观的排序算法,它通过不断交换相邻元素的位置,将较大的元素逐渐往后移动。
具体实现代码如下:```cvoid bubbleSort(int arr[], int n) {for (int i = 0; i < n - 1; i++) {for (int j = 0; j < n - i - 1; j++) {if (arr[j] > arr[j + 1]) {int temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}}}```2. 选择排序代码实现:选择排序是一种简单的排序算法,它每次从待排序的数据中选出最小(或最大)的元素,放到已排序序列的末尾。
具体实现代码如下:```cvoid selectionSort(int arr[], int n) {int i, j, minIndex, temp;for (i = 0; i < n - 1; i++) {minIndex = i;for (j = i + 1; j < n; j++) {if (arr[j] < arr[minIndex]) {minIndex = j;}}temp = arr[i];arr[i] = arr[minIndex];arr[minIndex] = temp;}}```3. 插入排序代码实现:插入排序是一种简单直观的排序算法,它将待排序的数据分为已排序和未排序两部分,每次从未排序部分取出一个元素插入到已排序部分的适当位置。
数据结构c++顺序表、单链表的基本操作,查找、排序代码
} return 0; }
实验三 查找
实验名称: 实验3 查找 实验目的:掌握顺序表和有序表的查找方法及算法实现;掌握二叉排序 树和哈希表的构造和查找方法。通过上机操作,理解如何科学地组织信 息存储,并选择高效的查找算法。 实验内容:(2选1)内容1: 基本查找算法;内容2: 哈希表设计。 实验要求:1)在C++系统中编程实现;2)选择合适的数据结构实现查 找算法;3)写出算法设计的基本原理或画出流程图;4)算法实现代码 简洁明了;关键语句要有注释;5)给出调试和测试结果;6)完成实验 报告。 实验步骤: (1)算法设计 a.构造哈希函数的方法很多,常用的有(1)直接定址法(2)数字分析法;(3) 平方取中法;(4)折叠法;( 5)除留余数法;(6)随机数法;本实验采用的是除 留余数法:取关键字被某个不大于哈希表表长m的数p除后所得余数为哈 希地址 (2)算法实现 hash hashlist[n]; void listname(){ char *f; int s0,r,i; NameList[0].py="baojie"; NameList[1].py="chengቤተ መጻሕፍቲ ባይዱoyang"; ……………………………… NameList[29].py="wurenke"; for(i=0;i<q;i++){s0=0;f=NameList[i].py; for(r=0;*(f+r)!='\0';r++) s0+=*(f+r);NameList[i].k=s0; }} void creathash(){int i;
v[k-1]=v[k]; nn=nn-1; return ; } int main() {sq_LList<double>s1(100); cout<<"第一次输出顺序表对象s1:"<<endl; s1.prt_sq_LList(); s1.ins_sq_LList(0,1.5); s1.ins_sq_LList(1,2.5); s1.ins_sq_LList(4,3.5); cout<<"第二次输出顺序表对象s1:"<<endl; s1.prt_sq_LList(); s1.del_sq_LList(0); s1.del_sq_LList(2); cout<<"第三次输出顺序表对象s1:"<<endl; s1.prt_sq_LList(); return 0; } 运行及结果:
数据结构简单排序
数据结构简单排序一、简介数据结构是计算机科学中重要的概念之一,它用于组织和存储数据,以便于访问和修改。
而排序算法则是数据结构中的重要内容,它可以将无序的数据按照特定规则进行排列,提高数据的查找和处理效率。
本文将介绍数据结构中的简单排序算法。
二、冒泡排序冒泡排序是最基础的排序算法之一,它通过不断比较相邻元素并交换位置,将较大或较小的元素逐步“冒泡”到数组的末尾或开头。
具体步骤如下:1. 从数组第一个元素开始比较相邻元素。
2. 如果前一个元素大于后一个元素,则交换它们的位置。
3. 继续向后比较相邻元素,并交换位置直到最后一个元素。
4. 重复以上步骤直到整个数组有序。
三、选择排序选择排序也是一种简单且常用的排序算法。
它通过不断寻找最小值或最大值,并将其放在已排好序部分的末尾或开头。
具体步骤如下:1. 找到当前未排序部分中最小值(或最大值)。
2. 将该值与未排序部分第一个元素交换位置。
3. 将已排序部分的末尾(或开头)指针向后(或前)移动一位。
4. 重复以上步骤直到整个数组有序。
四、插入排序插入排序是一种简单但高效的排序算法,它通过将未排序部分中的每个元素插入已排好序部分中的合适位置,逐步构建一个有序数组。
具体步骤如下:1. 将第一个元素视为已排好序部分,将第二个元素作为未排序部分中的第一个元素。
2. 将未排序部分中的第一个元素插入已排好序部分中合适的位置。
3. 将已排好序部分扩展至包含前两个元素,并将未排序部分中的下一个元素插入到合适位置。
4. 重复以上步骤直到整个数组有序。
五、希尔排序希尔排序是一种高效且简单的改进版插入排序算法。
它通过对数据进行多次局部交换和移动,使得数据更快地接近有序状态。
具体步骤如下:1. 定义一个增量值h,将数组按照间隔h划分成若干子数组。
2. 对每个子数组进行插入排序操作。
3. 缩小增量h,重复以上操作直到h=1。
4. 对整个数组进行插入排序操作。
六、归并排序归并排序是一种高效且稳定的排序算法。
数据结构完整代码
(线性表顺序存储)#include"string.h"#include"ctype.h"#include"stdio.h"#include"stdlib.h"#include"io.h"#include"math.h"#include"time.h"#define OK1#define ERROR0#define TRUE1#define FALSE0#define MAXSIZE20/*存储空间初始分配量*/ typedef int Status;/*Status是函数的类型,其值是函数结果状态代码,如OK等*/typedef int ElemType;/*ElemType类型根据实际情况而定,这里假设为int*/Status visit(ElemType c){printf("%d",c);return OK;}typedef struct{ElemType data[MAXSIZE];/*数组,存储数据元素*/int length;/*线性表当前长度*/}SqList;/*初始化顺序线性表*/Status InitList(SqList*L){L->length=0;return OK;}/*初始条件:顺序线性表L已存在。
操作结果:若L为空表,则返回TRUE,否则返回FALSE*/Status ListEmpty(SqList L){if(L.length==0)return TRUE;elsereturn FALSE;}/*初始条件:顺序线性表L已存在。
操作结果:将L重置为空表*/Status ClearList(SqList*L){L->length=0;return OK;}/*初始条件:顺序线性表L已存在。
操作结果:返回L 中数据元素个数*/int ListLength(SqList L){return L.length;}/*初始条件:顺序线性表L已存在,1≤i≤ListLength(L)*/ /*操作结果:用e返回L中第i个数据元素的值,注意i 是指位置,第1个位置的数组是从0开始*/Status GetElem(SqList L,int i,ElemType*e){if(L.length==0||i<1||i>L.length)return ERROR;*e=L.data[i-1];return OK;}/*初始条件:顺序线性表L已存在*//*操作结果:返回L中第1个与e满足关系的数据元素的位序。
数据结构与算法-排序
假定待排序文件由 n 条记录组成,记录依次存储在 r[1]~r[n]中。使用简单冒泡排
序算法对待排序文件中的记录进行排序,具体处理流程如下。
(1)遍历待排序文件 r[1]~r[n],每访问一条记录 r[j]时,比较所访问记录排序关
键字与所访问记录后一记录排序关键字的大小,核对所访问记录 r[j]与所访问记录后一
则,此排序算法是不稳定的。例如, 给定待排序文件 A={1,2,3,1,4}和B={1,3,1,2,4},假定某
一排序算法对文件 A 和B 的排序结果分别为{1,1,2,3,4}和{1,1,2,3,4},由于文件 B 中存在多
项同为 1 的记录,且排序后同为 1 的记录相对位置发生了改变,因此,此算法是不稳定
排序
目
CONTENTS
录
01
排序的概述
02
插入排序算法
03
交换排序算法
04
选择排序算法
05
归并排序算法
06
分配排序算法
07
各种排序技术比较
08
本章小结
01
PART
排序的概述
排序是以某一数据项(称为排序关键字)为依据,将一组无序记录调整成一组有序
记录,形成有序表的过程。排序问题可以定义为以下形式。
件排序时,记录分组以及每趟排序结果如右
图所示。
插入排序算法
2.3希尔排序算法
第一趟排序时,增量 h=4,因此,以
h=4 为记录间隔,将待排序文件中的记录分
为 4 组:{r[1],r[5],r[9]}、{r[2],r[6]}、{r[3],r[7]}
和{r[4],r[8]},并分别对 4 组记录进行直接插入
C数据结构实例代码
C数据结构实例代码C语言是一种通用的高级程序设计语言,也是实现数据结构的一种常用语言。
下面是一些常见的数据结构的示例代码,供参考。
1. 数组(Array)```c#include <stdio.h>int maiint arr[5] = {1, 2, 3, 4, 5}; // 创建一个有5个元素的整数数组for(int i=0; i<5; i++)printf("%d ", arr[i]); // 遍历并输出数组的所有元素}return 0;```2. 链表(Linked List)```c#include <stdio.h>#include <stdlib.h>struct Nodeint data;struct Node* next;};void printList(struct Node* head)struct Node* curr = head;while(curr != NULL)printf("%d ", curr->data);curr = curr->next;}void insert(struct Node** head, int data)struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));newNode->data = data;newNode->next = (*head);(*head) = newNode;int maistruct Node* head = NULL;insert(&head, 5);insert(&head, 4);insert(&head, 3);insert(&head, 2);insert(&head, 1);printList(head); // 输出链表的所有元素return 0;```3. 栈(Stack)```c#include <stdio.h>#define SIZE 5int stack[SIZE];int top = -1;int isEmptreturn top == -1;int isFulreturn top == SIZE - 1;void push(int item)if(isFull()printf("Stack is full.\n");} elsestack[++top] = item;printf("Pushed %d\n", item);}void poif(isEmpty()printf("Stack is empty.\n");} elseprintf("Popped %d\n", stack[top--]); }int maipush(1);push(2);push(3);pop(;push(4);push(5);push(6);pop(;return 0;```4. 队列(Queue)```c#include <stdio.h>#define SIZE 5int queue[SIZE];int front = -1; // 队头指针int rear = -1; // 队尾指针int isEmptreturn front == -1 && rear == -1; int isFulreturn rear == SIZE - 1;void enqueue(int item)if(isFull()printf("Queue is full.\n");} elseif(isEmpty()front = rear = 0;} elserear++;}queue[rear] = item;printf("Enqueued %d\n", item);}void dequeuif(isEmpty()printf("Queue is empty.\n");} elseprintf("Dequeued %d\n", queue[front]); if(front == rear)front = rear = -1;} elsefront++;}}int maienqueue(1);enqueue(2);enqueue(3);dequeue(;enqueue(4);enqueue(5);enqueue(6);dequeue(;return 0;```5. 树(Tree)```c#include <stdio.h>#include <stdlib.h>struct Nodeint data;struct Node* left;struct Node* right;};struct Node* create(int data)struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));newNode->data = data;newNode->left = NULL;newNode->right = NULL;return newNode;void inorder(struct Node* root)if(root != NULL)inorder(root->left);printf("%d ", root->data);inorder(root->right);}int maistruct Node* root = create(1);root->left = create(2);root->right = create(3);root->left->left = create(4);root->left->right = create(5);root->right->left = create(6);root->right->right = create(7);printf("Inorder traversal of the tree: "); inorder(root); // 中序遍历树return 0;```。
数据结构代码汇总
数据结构代码汇总数据结构代码汇总一、线性结构1.数组(Array):●定义和初始化数组●插入、删除元素●查找元素●数组的遍历●数组排序算法(如冒泡排序、快速排序)2.链表(Linked List):●单链表的定义和初始化●插入、删除节点●链表的遍历●双向链表的定义和初始化●插入、删除节点●双向链表的遍历●栈的定义和初始化●入栈、出栈操作●获取栈顶元素、判断栈是否为空●栈的应用(如括号匹配、逆波兰表达式求值)4.队列(Queue):●队列的定义和初始化●入队、出队操作●获取队头元素、判断队列是否为空●队列的应用(如循环队列、优先级队列)二、非线性结构1.树(Tree):●二叉树的定义和初始化●二叉树的遍历(前序、中序、后序)●二叉搜索树的实现和应用●平衡二叉树(AVL树)的实现和应用●哈夫曼树的实现和应用●图的存储结构(邻接矩阵、邻接表)●深度优先搜索(DFS)●广度优先搜索(BFS)●最小树算法(如Prim算法、Kruskal算法)●最短路径算法(如Dijkstra算法、Floyd算法)附件:本文档中所涉及的代码示例可以在附件中找到,包括各种数据结构的实现和相关算法。
法律名词及注释:1.数组:计算机科学中的一种数据结构,用于存储一系列相同类型的元素。
2.链表:一种动态数据结构,由一系列节点组成,每个节点包含一个数据元素和指向下一个节点的指针。
3.栈:一种特殊的线性数据结构,遵循先进后出(Last In First Out,LIFO)的原则。
4.队列:一种特殊的线性数据结构,遵循先进先出(First In First Out,FIFO)的原则。
5.二叉树:一种特殊的树形结构,每个节点最多有两个子节点。
6.图:由节点(顶点)和连接节点的边构成的数据结构,用于描述事物之间的关系。
数据结构排序实验报告
数据结构排序实验报告一、实验目的本次数据结构排序实验的主要目的是深入理解和掌握常见的排序算法,包括冒泡排序、插入排序、选择排序、快速排序和归并排序,并通过实际编程和实验分析,比较它们在不同规模数据下的性能表现,从而为实际应用中选择合适的排序算法提供依据。
二、实验环境本次实验使用的编程语言为 Python 3x,开发环境为 PyCharm。
实验中使用的操作系统为 Windows 10。
三、实验原理1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。
它重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。
2、插入排序(Insertion Sort)插入排序是一种简单直观的排序算法。
它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到整个数组有序。
3、选择排序(Selection Sort)首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
以此类推,直到所有元素均排序完毕。
4、快速排序(Quick Sort)通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
5、归并排序(Merge Sort)归并排序是建立在归并操作上的一种有效、稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。
四、实验步骤1、算法实现使用 Python 语言分别实现上述五种排序算法。
为每个算法编写独立的函数,函数输入为待排序的列表,输出为排序后的列表。
2、生成测试数据生成不同规模(例如 100、500、1000、5000、10000 个元素)的随机整数列表作为测试数据。
将数组从小到大排序的代码
将数组从小到大排序的代码数组排序是计算机科学中的一个基本问题,它是许多算法和数据结构的基础。
在实际应用中,我们经常需要对一组数据进行排序,以便更方便地进行查找、统计和分析。
本文将介绍如何使用常见的排序算法对数组进行排序,以及它们的优缺点和应用场景。
1. 冒泡排序冒泡排序是最简单的排序算法之一,它的基本思想是通过不断交换相邻的元素,将最大的元素逐步“冒泡”到数组的末尾。
具体实现如下:```pythondef bubble_sort(arr):n = len(arr)for i in range(n):for j in range(n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]return arr```冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1),它的优点是代码简单易懂,缺点是效率较低,不适用于大规模数据的排序。
2. 插入排序插入排序是一种简单而有效的排序算法,它的基本思想是将一个元素插入到已经排好序的数组中,使得插入后仍然有序。
具体实现如下:```pythondef insertion_sort(arr):n = len(arr)for i in range(1, n):key = arr[i]j = i - 1while j >= 0 and arr[j] > key:arr[j+1] = arr[j]j -= 1arr[j+1] = keyreturn arr```插入排序的时间复杂度为O(n^2),空间复杂度为O(1),它的优点是对于小规模数据的排序效率较高,缺点是对于大规模数据的排序效率较低。
3. 选择排序选择排序是一种简单而直观的排序算法,它的基本思想是每次选择最小的元素,将其放到已经排好序的数组的末尾。
具体实现如下:```pythondef selection_sort(arr):n = len(arr)for i in range(n):min_index = ifor j in range(i+1, n):if arr[j] < arr[min_index]:min_index = jarr[i], arr[min_index] = arr[min_index], arr[i]return arr```选择排序的时间复杂度为O(n^2),空间复杂度为O(1),它的优点是对于大规模数据的排序效率较高,缺点是不稳定,即相同元素的相对位置可能会发生变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
if(L.r[i]<L.r[i-dk]) //将L.r[i]插入有序增量子表
{
L.r[0]=L.r[i]; //暂存L.r[0]
for(j=i-dk;j>0 && L.r[0]<L.r[j];j-=dk)
{
#include "stdio.h"
#include "stdlib.h"
#include "time.h"//计时
#define ERROR 0
#define OK 1
#define OVERFLOW -2
#define MAXSIZE 100000 //用户自己规定排序的数字的长度
/*Status ShellInsert(Sqlist &L,int dk) //希尔插入排序
{
int i,j; //前后位置的增量是dk
for(i=dk+1;i<=L.length;i++) //r[0]只是暂存单元,不是哨兵,
// 直接插入排序
//***************************************************************
Status InsertSort(Sqlist &L) //参考书P265算法10.1
{
int i,j;
{
L.r[0]=L.r[i]; //将L.r[i]暂存在L.r[0]
low=1;
high=i-1;
while(low<=high) //在r[low..high]中折半查找有序插入的位置
{
mid=(low+high)/2;
if(L.r[0]<L.r[mid]) //插入点在低半区
{
L.r=(int *)malloc(MAXSIZE*sizeof(int)); //分配存储空间
if(!L.r)
{
printf("存储分配失败!");
exit(0);
}
}
return OK;
}
//***************************************************************
// 折半插入排序
//***************************************************************
for(i=1;i<=N;i++)
L.r[i]=rand(); //随机产生样本整数
printf("\n\n");
printf(" 随机产生了%d个随机数,它们是:\n",N);
for(i=1;i<=N;i++)
{
printf("%7.2d ",L.r[i]);
{
high--;
}
L.r[low]= L.r[high]; //将比枢轴记录小的记录移到低端
while(low<high && L.r[low]<=pivotkey)
{
low++;
}
L.r[high]=L.r[low]; //将比枢轴记录大的数移到高端
}
L.r[low]=L.r[0]; //枢轴记录到位
return low;
}//Partition函数
Hale Waihona Puke void Qsort (Sqlist &L,int low, int high)
{
int pivotloc;
if (low<high) //长度大于1,可以进行
{
if(L.length==0)
{
printf("要排序的数据为空!");
return ERROR;
}
Qsort(L,1,L.length);
return OK;
}//QuickSort
//**********************************************
typedef int Status;
typedef struct
{
int *r; // r[0]闲置
int length; //顺序表的总长度
}Sqlist;
//构造一个空线性表
Status InitSqlist(Sqlist &L)
}
}
}
return OK;
}
//****************************************************
// 快速排序
//****************************************************
Status BubbleSort(Sqlist &L)
{
int i,j,t;
if(L.length==0)
{
printf("要排序的数据为空!");
return ERROR;
}
for(i=1;i<=L.length-1;i++)
} //存储分配失败
L.length=0;//初始长度为0
return OK;
}
//输入随机数并显示在界面上
Status ScanfSqlist(int &N,Sqlist &L)
{
int i;
printf("请输入要排序的元素个数N: ");
scanf("%d",&N);
{
for(j=1;j<=L.length-i;j++)
{
if(L.r[j]>L.r[j+1]) //前面的数据>后面数据时
{
t=L.r[j+1];
L.r[j+1]=L.r[j];
L.r[j]=t; //将元素交换
// 选择排序
Status BInsertSort(Sqlist &L) //参考书P267算法10.2
{
int i,j,mid,low,high;
if(L.length==0)
{
printf("要排序的数据为空!");
return ERROR;
}
for(i=2;i<=L.length;i++)
pivotkey=L.r[low]; //用枢轴纪录关键字
while (low<high)
{
while(low<high && L.r[high]>=pivotkey)
}
printf("\n");
L.length=N; //存储线性表的长度
return OK;
}
//输出排序之后的数据
Status PrintfSqlist(int N,Sqlist L)
{
int i;
printf("数据个数:");//输出数据个数
printf("%d\n",L.length);
L.r[i]=L.r[i-1];
for(j=i-2;L.r[0]<L.r[j];j--)
{
L.r[j+1]=L.r[j]; //记录后移
}
L.r[j+1]=L.r[0]; //插入到正确位置
int Partition(Sqlist &L, int low, int high) //交换顺序表中子表L.r[low..high]的记录,使得枢轴记录到位,并返回其所在位置,此时在它之前(后)的记录均不大于它
{
int pivotkey; //记录关键字
L.r[0]=L.r[low]; //用子表的第一个纪录作枢轴纪录
}
L.r[high+1]=L.r[0]; //将数据插入
}//for
return OK;
}
/********************************************************************************
希尔排序
L.r[j+dk]=L.r[j]; //记录后移,查找插入位置
}
L.r[j+dk]=L.r[0]; //插入
}
}
return OK;
}
Status ShellSort(Sqlist &L,int dlta[5],int t) //希尔排序
{
int i;
if(L.length==0)
{
printf("要排序的数据为空!");
return ERROR;
}
for(i=0;i<t;i++)
{
ShellInsert(L,dlta[i]); //一趟增量为dlta[k]的插入排序
}
if(L.length==0)
{
printf("要排序的数据为空!");
return ERROR;
}
for(i=2;i<=L.length;i++)