RD-1505D中文资料

合集下载

常用三极管参数大全

常用三极管参数大全

玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理玉林万顺达电脑芯片级维修资料 2010-07-20整理。

505中文使用说明书(上册)

505中文使用说明书(上册)

监视计时器 第三章
CPU 故 障 控 制 ..................................... 2-11
安装步骤 ..................................................... 3-1 机 械 数 据 与 硬 件 的 安 装 ......................................... 3-1 壳体 ..................................................... 3-1 安装 ..................................................... 3-5 505 的跨 接 件 ............................................. 3-5 电气 连 接 ................................................. 3-7 电源 .................................................... 3-11 屏蔽 与 接 地 .............................................. 3-12 转速 传 感 器 的 输 入 ........................................ 3-13 触点 输 入 ................................................ 3-14 模拟 输 入 ................................................ 3-15 模拟 输 出 ................................................ 3-15 执行 机 构 输 出 ............................................ 3-16 继电 器 输 出 .............................................. 3-16 串行 通 信 ................................................ 3-17 Modbus 接线 ............................................. 3-17 RS-232 接线 .......................................... 3-17 RS-422 接线 .......................................... 3-18 RS-485 接线 .......................................... 3-18 通 信 的 接 地 与 屏 蔽 ............................................ 3-19 第四章 505 的控制说明 ............................................... 4-1 汽 轮 机 起 动 ................................................... 4-1 允许 起 动 ................................................. 4-2 零 转 速 信 号 超 越 ............................................... 4-2 手动 转 速 超 越 ............................................. 4-2 自动 转 速 超 越 ............................................. 4-3 汽 轮 机 起 动 方 式 ............................................... 4-3 手动 起 动 方 式 ............................................. 4-3 半自 动 起 动 方 式 ........................................... 4-4 自动 起 动 方 式 ............................................. 4-4 避 开 临 界 转 速 ................................................. 4-5 暖机 额 定 ................................................... 4-6 至额 定 转 速 的 特 性 ......................................... 4-6

D51中文资料

D51中文资料

C-Message ResponseTelephone Message &Circuit Noise MeasurementDescriptionThe D51 is designed specifically to provide the C-message weighting frequency response specified in Bell System Technical Reference 41009 for tele-phone message circuit noise measurement. Thetheoretical C-message characteristic simulates the perceived response of the human ear to telephone noise.The D51 filter provides a close, ±1db approximation to the theoretical C-message weighting function from 60 Hz to 5.0 kHz.Applications•Telephone Message Circuit Noise Measurement •Test EquipmentFrequency Response CurveTheoretical Frequency Response FrequencyAttenuationTolerance HzdB±dB6055.7110042.5120025.0130016.5140011.415007.51600 4.71700 2.71800 1.519000.6110000.00.112000.2113000.511500 1.011800 1.312000 1.312500 1.412800 1.913000 2.513300 5.2135007.61400014.51450021.51500028.51Pin-Out and Package DataOrdering InformationSpecifications(25°C and Vs ±15 Vdc)We hope the information given here will be helpful. The information is based on data and our best knowledge, and we consider the information to be true and accurate. Please read all statements,recommendations or suggestions herein in conjunction with our conditions of sale which apply to all goods supplied by us. We assume no responsibility for the use of these statements, recommendations or suggestions, nor do we intend them as a recommendation for any use which would infringe any patent or copyright.PR-00D51-02Analog Input Characteristics Impedance 10 k W min.Source Impedance1600 W max. Bias Current 20 Voltage Range ±10 V peak Maximum Safe Voltage ±Vs Analog Output CharacteristicsImpedance (Closed Loop)< 1 W typ.10 W max.Linear Operating Range ±10 VMaximum Current 3±2 mA Offset Voltage ±5 mV Offset Temp. Coeff.50 m V / °CNoise 450 m V RMS Gain (non-inverting)0 ±0.1 dB @ 1 kHzPower Supply (±Vs)Rated Voltage ±15 VdcOperating Range±5 to ±18 Vdc Maximum Safe Voltage ±18 Vdc Quiescent Current ±1.5 mA typ.±2.0 mA max.Temperature Operating 0 to + 70 °C Storage- 25 to + 85 °CNotes:1.Maximum allowable series input resistance if gain accuracy's are to be maintained.2.Capacitor coupled.3.Output is short circuit protected to common.DO NOT CONNECT TO ±Vs.4.DC to 50 kHz excluding DC offset with input grounded.0.00.10.40.51.51.61.8All dimensions are in inches All case dimensions ± 0.01"。

Panduit UP003LSM高可靠电力供应设备详细说明书

Panduit UP003LSM高可靠电力供应设备详细说明书

UPS003LSMPA27224A01 Rev: 02 3-2014UNINTERRUPTIBLE POWER SUPPLY LOAD SENSE MODULEOPERATION MANUAL© Panduit Corp. 2014Original InstructionsTO REDUCE THE RISK OF INJURY, USER MUST READ INSTRUCTION MANUALEmail:***********************EU Website:/emeaEU Email:emeatoolservicecenter@Technical Support:Tel: 1-888-506-5400, ext. 83255Panduit Europe • EMEA Service CenterAlmelo, NetherlandsTel: +31-546-580-452 • Fax: +31-546-580-441TABLE OF CONTENTSUPS LSM GENERAL SPECIFICATIONS (2)Model Number (2)Input Power (2)Output Power (2)Environmental (2)Compliance (2)Installation (2)Performance (3)PRECAUTIONS AND GENERAL GUIDELINES (3)Safety Warnings (3)Electrical Safety Practices (4)Personal Safety (4)Service (5)1.INTRODUCTION (5)1.1. BACKGROUND (5)1.2. PURPOSE (5)1.3. TERMS AND ABBREVIATIONS (5)1.4. INSTALLATION (6)TABLE OF FIGURESFigure 1: DIN Rail Installation (6)Figure 2: System Block Diagram (6)Figure 3: Load Sense Module (7)Supply Load Sense Module) may also be referred to as “UPS LSM”.UPS LSM GENERAL SPECIFICATIONSModel NumberUPS003LSMInput PowerVoltage: 30.0 VDC MAXCurrent: 5 A MAXOutput PowerVoltage: 30.0 VDC MAXSense: 100 mV MAXCurrent: 5 A MAXEnvironmentalOperating Temperature: -40 to +60°C.Storage (non-operational) Temperature: -40 to +70°C.Humidity: 0 to 95% RH, noncondensingOperational Vibration: 2G at 10 to 500 HzOperational Shock: 20G (11ms 3 bumps / direction, 18 bumps in total)Complianceo UL 1778 and CSA C22.2 No. 107.3-05 “Uninterruptible Power Supply Equipment”o UL 508 and CSA-C22.2 No. 14 “Industrial Control Equipment”o UL 60950-1, 2nd ed, 2011-12-19, CSA C22.2 No. 60950-1-07, 2nd ed, 2011-12"Information Technology Equipment - Safety - Part 1: General Requirements"o (Low-Voltage Directive*) IEC 60950-1:2005+AM 2009, EN 60950-1:2006+A1:2010+A11:2009+A12:2011 "Information Technology Equipment -Safety - Part 1: General Requirements"o ISA 12.12.01:2013, CSA C22.2 No. 213-1987M (R2013) “Standard For Nonincendive Electrical Equipment for Use in Class I and II, Division 2 and Class III, Divisions 1 and 2 Hazardous (Classified)Locations”o FCC Title 47 CFR 15 Subpart B Emissions Class Ao RoHS All materials and components used must meet the material restrictions of European Directive 2002/95/EC on the Restriction of Hazardous Substanceso CAN ICES-3(A)/NMB-3(A), ICES-003 Issue 5o IP20 per IEC 60529o IEC Ex (pending)Voltage / Current / Temp /OutputConformancesApprovalsInstallationTop hat (DIN) rail EN 50022Width: 22.6mm (0.89 in)Depth: 113.3mm (4.46 in)Height: 111.5mm (4.39 in)Weight: 105.7g max (0.233 lbs, max.)Terminals: screw type, accepts #12 to #18 AWG, stranded/solid/terminated The device shall have control wiring along the top edge.PerformanceVoltage Drop: 100 mV maximum at 5 AP R E C A U T IO N S A N D G E N E R A L G U ID E L IN E SThe basic condition for safe use and proper operation of the UPS LSM is the knowledge and attention to the safety information provided in this manual.The following safety information must be observed by all persons who will work with the UPS LSM.All rules and instructions for the work place must be observed, especially those for prevention of accidents.This symbol is used to call your attention to hazards or unsafe practices which could result in an injury or property damage. The signal word, defined below, indicates the severity of the hazard. The message after the signal word provides information for preventing or avoiding the hazard.WARNING Hazards which, if not avoided, COULD result in severe injury or death.CAUTIONHazards or unsafe practices which, if not avoided, MAY result in injury or property damage.Safety WarningsWARNING• Read all safety warning and all instructions. Failure to follow the warningsand instructions may result in electric shock, fire and/or serious injury. • Save all warnings and instructions for future reference.Panduit Corp. recommends the UPS LSM be used with all installed safety features. Customerassumes all liability for injury that could result from improper use of this UPS LSM andresponsibility for all necessary training to ensure safe operation of this UPS LSM. • FOR INSTALLATION AND USE BY TRAINED PERSONNEL ONLY.• IF ANY DAMAGE TO THE PRODUCT IS APPARENT OR SUSPECTED, DO NOT USE THE PRODUCT. REFER PRODUCT TO QUALIFIED SERVICE PERSONNEL.• FCC WARNING: CHANGES OR MODIFICATIONS TO THE PRODUCT COULD VOID THE USER’S AUTHORITY TO OPERATE THE PRODUCT.•USE RECOMMENDED ACCESSORIES. CONSULT THE OWNER’S MANUAL FORRECOMMENDED ACCESSORIES. THE USE OF IMPROPER ACCESSORIES MAY CAUSE RISK OF INJURY TO PERSONS.Electrical Safety PracticesGROUNDING:In the event of a malfunction or breakdown, grounding provides a path of least resistance for electric current which reduces the risk of electrical shock.Improper connection of the equipment grounding conductor can result in a risk of electric shock. The conductor with insulation having an outer surface that is green with or without yellow stripes is the equipment-grounding conductor.Check with a qualified electrician, or service personnel if the grounding instructions are not completely understood; or if in doubt as to whether the UPS LSM is properly grounded.Avoid body contact with earthed or grounded surfaces, such as pipes, radiators, ranges and refrigerators.There is an increased risk of electric shock if your body is earthed or grounded.WARNINGONLY OPERATE THE UPS LSM IN A CLEAN, DRY, INDOOR ENVIRONMENT.DO NOT EXPOSE THE UPS LSM TO RAIN OR WET CONDITIONS. Water entering a UPS LSM will increase the risk of electric shock.KEEP AWAY FROM LIVE CIRCUITS:•Operating personnel must not remove covers.•Replacement of components and internal adjustments must be made by qualified maintenance personnel.•Disconnect power when replacing components.• Dangerous voltages may exist even with the power removed.• To avoid injuries, always disconnect power and turn power switch to OFF.• Input connection to the product must remain accessible as a disconnect device.• DO NOT work on the product; connect or disconnect cables during periods of lightning.•Provide wiring per national and local electrical codes.Warning : A disconnect switch shall be provided by others for DC input circuit and shall be in accordance with the National Electric Code, ANSI/NFPA 70.Personal SafetyWARNINGUse personal protective equipment. Safety glasses must be worn at all times by all persons installing the UPS LSM.Service•Have your UPS LSM serviced by a qualified repair person using only identical replacement parts.Contact Panduit Tool Service at the following locations:Panduit Tool Solutions Division (USA) 16530 W. 163rd Street Lockport, IL 60441Tel.: 1-888-506-5400, ext. 83255Panduit EMEA Service Center (EUR) EMEA Tool Service Center Bedrijvenpark Twente 360 7602 KL Almelo tel + 31 546 580 451The information contained in this manual is based on our experience to date and is believed to be reliable. It is intended as a Web Interface for use by persons having technical skill at their own discretion and risk. We do not guarantee favorable results or assume any liability in connection with its use. Dimensions contained herein are for reference purposes only. For specific dimensional requirements consult thefactory. This publication is not to be taken as a license to operate under, or a recommendation to infringe any existing patents.1. IN T R O D U C T IO NBACKGROUND1.1.The UPS003LSM is designed for redundant power back-up systems. The UPS003LSM is intended to function only with the Panduit UPS003024024015 (UPS) unit. The UPS is rated for a 24 VDC maximum output rating. The UPS LSM is connected to the main power supply line of 24 VDC. The UPS is connected along the secondary power supply line and is connected to the UPS LSM, which allows the UPS to measure the current power consumption of the system. This increases the accuracy of the estimated UPS potential hold time in the event the UPS is required to supply power.PURPOSE1.2.The purpose of this document is to provide the user with the information necessary to connect the UPS LSM.TERMS AND ABBREVIATIONS1.3. A.................... A mpereDC ................. D irect CurrentPCB ............... P rinted Circuit BoardUPS ............... U ninterruptible Power Supply UPS LSM ....... U PS Load Sense Module V .................... V olts W ................... W attsINSTALLATION1.4.Figure 1: DIN Rail InstallationNo minimum spacing to other modules is required for proper operation of the device.To install the UPS LSM, place the module with the DIN rail guideway on the top edge of the DIN rail and then snap it downwards and shown in Figure 1.To remove, release the snap-on catch using a screwdriver and then detach the module from the bottom edge of the DIN rail as shown in Figure 1.NOTE: A 5A external overcurrent protection device is required to protect the UPS LSM.Wiring DiagramFigure 2: System Block DiagramFigure 3: Load Sense ModulePins 3 and 4 of the load sense module are connected to the sense input terminals of the UPS. Note that pin 3 of the current sense resistor must be connected to the “+” sense terminal and pin 4 of the current sense resistor must be connected to the “-“sense terminal. Note that these connections may not be reversed. These connections allow the UPS to measure the current flow to the load under normal operation so that it can predict the run time when backup poweris being provided by the UPS.。

RD5.1S中文资料

RD5.1S中文资料

Reverse Current IR (µA)
MAX.
VR (V)
2
30
2
33
2
36
1
39
1
43
0.2
47
0.2
52
0.2
57
0.2
63
0.2
69
0.2
76
0.2
84
0.2
91
4
Data Sheet D11444EJ3V0DS00
RD2.0S to RD120S
TYPICAL CHARACTERISTICS (TA = 25 °C)
DATA SHEET
ZENER DIODES
RD2.0S to RD120S
ZENER DIODES 200 mW 2 PINS SUPER MINI MOLD
DESCRIPTION Type RD2.0S to RD120S Series are 2 PIN Super Mini
Mold Package zener diodes possessing an allowable power dissipation of 200 mW.
Zener Voltage Vz (V)Note 1
MAX.
Iz (mA)
2.20
5
2.40
5
2.60
5
2.90
5
2.75
2.90
3.20
5
3.05
3.20
3.50
5
3.35
3.50
3.80
5
3.65
3.80
4.10
5
3.97
4.10
4.49

DM15DY151JO3-RHTR02中文资料

DM15DY151JO3-RHTR02中文资料

Sharma Mica Capacitors Page 1Quick ReferenceSeries Features Page DM05Lead Spacing: 3.05 +/-0.8 mm7DM10Lead Spacing: 3.57 +/-0.8 mm9DM12Lead Spacing: 5.00 +/-0.8 mm10DM15Lead Spacing: 5.95 +/-0.8 mm11DM19Lead Spacing: 8.73 +/-0.8 mm13DM20Lead Spacing: 11.11 +/-0.8 mm15DM30Lead Spacing: 11.11 +/-0.8 mm High Capacitance17DM42Lead Spacing: 26.99 +/-0.8 mm High Capacitance17Packaging Specifications18Quick Reference GuideSHARMA DESIGNATIONDM 05DM 10DM 12DM 15MIL STYLE - Discontinued-CM 04-CM 05CAPACITANCE RANGE pF1 to 390 1 to 390 1 to 25001 to 1200MAXIMUM50 V DC 390820-2500CAPACITANCE 100 V DC20039025002000IN pF IN THE 300 V DC 1203608202000RATED 500 V DC -250430750VOLTAGE 1000 V DC*----INDICATED MAXIMUM L 0.2700.3900.4130.490NOMINAL W 0.2500.3800.4330.420DIMENSIONS IN T 0.1900.2200.2200.240INCHES B 0.1200.1410.2000.234MAXIMUM L 6.869.9110.4912.45NOMINAL W 6.359.6511.0010.67DIMENSIONS IN T 4.83 5.59 5.59 6.10mmB3.053.585.085.94SHARMA DESIGNATIONDM 19DM 20DM 30DM 42MIL STYLE - DiscontinuedCM 06-CM 07-CAPACITANCE RANGE pF1 to 8200680 to 12,0005100 to 20,00016000 to 82000MAXIMUM50 V DC ----CAPACITANCE 100 V DC 820012000-82000IN pF IN THE 300 V DC 6800120002000068000RATED 500 V DC 5100100002000051000VOLTAGE1000 V DC*4700-1200030000INDICATED MAXIMUM L 0.7100.8200.830 1.470NOMINALW 0.5900.6300.9200.920DIMENSIONS IN T 0.3700.4500.4500.450INCHES B 0.3440.4380.438 1.063MAXIMUM L 18.0320.8321.0837.34NOMINALW 14.9916.0023.3723.37DIMENSIONS IN T 9.4011.4311.4311.43mmB8.7411.1311.1327.00DM Series General Specifications by Case Size* Available as special part.MICA CAPACITORS330 - 430Sharma Mica Capacitors Page 2are150 ±5%500V SAHATYPE 1MICA CAPACITOR - PART NUMBERING SYSTEMSample Part Number: DM 15F D 151J O3 Description: DM 15 Series, 150pF, 500 Volt, 5%, RoHS Compliant, Tape & Reel , Inside Crimped(See Special Specifications Sheet)Rev D - 2/99Sharma Mica CapacitorsPage 3GENERAL SPECIFICATIONS FOR SHARMA MICA CAPACITORSThe SHARMA Mica capacitors meet the required commercial specifications and theEIA requirements. The CMO series capacitors also meet the military specifications MIL-C-5. The actual specifications and dimensions of the capacitors are mentioned under each series in the catalog.CAPACITANCEThe capacitance of mica capacitors is measured at 1 M Hz ±10% for capacitance values up to 1000 pF and at 1 K Hz ±10% for capacitance values above 1000 pF. The capacitance value when measured at 25 °C shall be with in the tolerance specified.DISSIPATION FACTORThe dissipation factor for mica capacitors are measured at 1MHz for values up to 1000 pF and at 1 KHz for values above 1000 pF. The values shall remain within the specified values.The variation pattern of dissipation factor for different values of capacitance are also shown in the Figure 3.INSULATION RESISTANCEThe insulation resistance is measured at 50 ±5 V for capacitors with rated voltage of 50 V DC and at 100 ±10 V for capacitors with higher voltage rating. The insulation resistance thus measured at 25 °C shall meet the specified limits. The variation of insulation resistance for different capacitance values at 25 °C is shown in Figure 1. After certain tests listed below the insulation resistance value changes and these values are plotted in Figure 2. Figure 4indicates the variation pattern of insulation resistance with capacitance value at different temperature conditions.WITHSTANDING VOLTAGEThe mica capacitors are designed to withstand higher voltage than the rated voltage for limited time. These capacitors shall withstand 200% of the rated voltage for 1 to 5 seconds when applied with a limiting surge current value of 50 mA.VIBRATION GRADEThe capacitors shall be subjected to a harmonic motion having an amplitude of 1.5 mm and the frequency which is varied between the limits of 10 and 55 Hz. The entire frequency range from 10 to 55 Hz and then back to 10 Hz shall be traversed in approximately 1 minute and the motion shall be applied for a period of 1hour in each of the three mutually perpendicular directions. After testing, when the electrical measurements are performed:1.The insulation resistance shall be more than 30000 M Ohms for capacitance value up to 10000 pF. Please refer to Figure 2 for acceptable variation pattern for Insulation Resistance for values above 10000 pF.2.The dissipation factor shall be within the original specified limits. Please also refer to Figure 3 for variation pattern of dissipation factor with respect to capacitance value.3.The capacitance change shall not exceed ±1% or ±1 pF whichever is greater.SOLDERING HEAT RESISTANCEBoth leads of the capacitors shall be immersed in molten solder at a temperature of 270°C for 3 to 4 seconds. After the test the capacitors shall meet the initial requirements of the Withstanding voltage and the Capacitance change shall not exceed ±0.55 or ±1 pF.MOISTURE RESISTANCECapacitors shall be subjected to a temperature of 40 ±2 °C at 90 to 95 % relative humidity for 240 ±8 Hours. After the test:1.The samples shall meet the after test requirement of Insulation resistance values as furnished in Figure2.2.The dissipation factor shall be within 1.5 times the original specified limits. Please also refer to Figure 3 for variation pattern of dissipation factor with respect to capacitance value for original limits.3. The capacitance change shall not exceed ±3% or ±1 pF whichever is greater.MOISTURE RESISTANCE LOADINGCapacitors shall be subjected to a temperature of 40±2 °C at 90 to 95% relative humidity with rated voltage for 500 Hours. After the test the samples are maintained at normal temperature and relative humidity for a period of 4 to 24 hours. When tested after this;1.The capacitor samples shall be free of cracks, or other mechanical damages and the marking shall remain legible2.The samples shall meet the original requirement of the Withstanding voltage3.The samples shall meet the after test requirement of Insulation resistance as furnished in Figure 24.The dissipation factor shall be within 2 times the original limits5.The capacitance change shall not exceed ±5% or ±1 pFPERFORMANCE CHARACTERISTICSFIGURE 1FIGURE 2FIGURE 3FIGURE 5FIGURE 4Sharma Mica CapacitorsPage 4FIGURE 6FIGURE 7FIGURE 8MOISTURE RESISTANCE LOADINGCapacitors shall be subjected to a temperature of 40±2 °C at 90 to 95% relative humidity with rated voltage for 500 Hours. After the test the samples are maintained at normal temperature and relative humidity for a period of 4 to 24 hours. When tested after this;1.The capacitor samples shall be free of cracks, or other mechanical damages and the marking shall remain legible2.The samples shall meet the original requirement of the Withstanding voltage3.The samples shall meet the after test requirement of Insulation resistance as furnished in Figure 24.The dissipation factor shall be within 2 times the original limits5.The capacitance change shall not exceed ±5% or ±1 pFLIFE TESTThe capacitor samples shall be subjected to a temperature of 125 °C with 150% of rated voltage for 2000 hours. After the test :1.The capacitor samples shall be free of cracks, or other mechanical damages and the marking shall remain legible2.The samples shall meet the original requirement of the Withstanding voltage3.The samples shall meet the original requirements of Insulation resistance as furnished in Figure 1.4.The dissipation factor shall be within 1.5 times the original limits5.The capacitance change shall not exceed ±3% or ±1 pF(whichever is greater) for characteristic "C" and ±2.5 ±1pF (whichever is greater) for characteristic D, E and F.)OTHER TYPICAL VARIATION PATTERNSSome typical variation patterns for selected values during heat resistance load life test and moisture proof load life tests as listed below are illustrated in Figures 8 through 10.1.Insulation resistance Vs. time for heat resistance load life test and moisture proof load life tests (Figure 8).2.Capacitance change in percentage Vs. time (Figure 9).3.Dissipation factor Vs. time (Figure 10).Other variation patterns and characteristic for selected values as listed below are furnished as Figures 11 through 141.Capacitance change Vs. frequency (Figure 11)2.Capacitance change Vs. time(Figure 12)3.Dissipation factor change Vs. frequency(Figure 13)4.Insulation resistance Vs. temperature (Figure 14)FIGURE 9FIGURE 10FIGURE 11FIGURE 12FIGURE 13FIGURE 14Sharma Mica CapacitorsPage 5DM SERIESINTRODUCTIONS HARMA Mica capacitors have been designed to meet the exacting physical, electrical & environmental requirements of the MIL-C-5 and RS-153 specifications. Careful selection of raw materials, starting with the finest available grade of India Ruby Mica, and the constant monitoring of all equipment and processes,provides an overall uniform level of quality consistent with today's most sophisticated electronic equipment.Ideal for Tuning, Timing, Filtering and Coupling Circuits.FEATURES•Low loss and high stability•Available in very close tolerances •Suitable for precision applications •Wide range of operating temperatureGENERAL SPECIFICATIONSCAPACITANCE RANGE:1 pF to 82,000 pF VOLTAGE RATING:50 V DC to 500 V DC (Higher voltage capacitors can also be custommade) TEMPERATE RATING:- 40 to + 150 °C CASE SIZES:DM 05 to DM 42 INSULATION RESISTANCE:100,000 M Ohms minimum at 25°C for capacitance up to 10,000 pF. Please refer to characteristic curve for values above the range. DISSIPATION FACTOR <0.1% at 1 M Hz for values between 100 to 1,000 pF <0.2 at 1K Hz for values above 1,000 pF. Please refer to characteristic curve for values above the range.LIFE TEST DETAILS:Capacitors shall withstand 1.5 times the rated DC voltage at 125 °C for 2000 hours. After the test:1. Capacitance change shall not exceed 1% of the initial value or 1 pF, which ever is greater.2. Dissipation Factor shall be within 1.5 times the original limits.3.Insulation Resistance shall meet the initial specified requirements.4.There shall be no remarkable change in the appearance and the marking shall remain legible.DimensionCASE CODE DM05DM10DM12DM15DM19DM20DM30DM42 B 3.05 3.57 5.00 5.958.7311.1111.1126.99± 0.8± 0.8± 0.8± 0.8± 0.8± 0.8± 0.8± 0.8C0.400.400.500.600.800.801.001.00DimensionCASE CODE DM05DM10DM12DM15DM19DM20DM30DM42 B 0.1200.1410.1970.2340.3440.4380.438 1.063± 0.031± 0.031± 0.031± 0.031± 0.031± 0.031± 0.031± 0.031C0.0160.0160.0200.0250.0320.0320.040.04#26#26#24#22#20#20#18#18Case Capacitance Range in pF Equivalent Size Standard MIL MIL Series DM05 1 to 390-None DM10 1 to 820 1 to 390CM 04DM12 1 to 2,500-None DM15 1 to 2,500 1 to 390CM 05DM19100 to 8,200 430 to 4,700CM 06DM20680 to 12,000 -None DM305,100 to 20,000 5,100 to 20,000CM 07DM4216,000 to 82,000-NoneLEAD DIMENSIONS IN INCHESLEAD DIMENSIONS IN MILLIMETERSCASE SIZE Vs. CAPACITANCE RANGELL" = 1.25" min.Dimension "R" = 0.078" max. for DM 05 TO DM 15 and 0.125"max. for DM 19 to DM 42LL" = 30 mm min.Dimension "R" = 2.0 mm max. for DM 05 TO DM 15 and 3.2 mm max. for DM 19 to DM 42DIMENSIONS:LL = 31.75 mm (1.25”) min.Sharma Mica Capacitors Page 6VOLTAGE100 V DC50 V DCW max.T maxLmax.W max.T max3.053.053.053.053.05 6.864.83 3.053.05 6.86 4.83 3.053.30 6.86 4.83 3.053.30 6.86 4.83 3.053.30 6.865.08 3.053.566.86 5.08 3.053.56 6.86 5.08 3.05CAPACITANCE VOLTAGE VALUE in pF300 V DC 100 V DC50 V DC Lmax.W max.T max Lmax.W max.T maxLmax.W max.T max1 - 12C 0.2700.1900.11015C 0.2700.1900.12018 - 20C0.2700.2000.12022 - 24C 0.2700.2000.1200.2700.1900.12027E 0.2700.2000.1300.2700.1900.12030 - 33E 0.2700.2000.1300.2700.2000.12036E 0.2700.2100.1300.2700.2000.12039E 0.2700.2100.1300.2700.2000.1200.2700.1900.12043E 0.2700.2100.1400.2700.2000.1200.2700.1900.12047-51E 0.2700.2100.1400.2700.2000.1300.2700.1900.12056E 0.2700.2200.1500.2700.2000.1300.2700.1900.12062E 0.2700.2200.1500.2700.2100.1300.2700.2000.12068E 0.2700.2200.1500.2700.2100.1400.2700.2000.12075 - 82E 0.2700.2300.1600.2700.2100.1400.2700.2000.12091F 0.2700.2300.1700.2700.2100.1400.2700.2000.130100 - 110F 0.2700.2400.1800.2700.2200.1500.2700.2000.130120F 0.2700.2500.1900.2700.2200.1600.2700.2000.130130F 0.2700.2300.1600.2700.2100.130150F 0.2700.2300.1700.2700.2100.140160F 0.2700.2300.1700.2700.2100.140170 - 180F 0.2700.2400.1800.2700.2100.140200F 0.2700.2500.1900.2700.2200.150220F 0.2700.2200.150240F 0.2700.2200.160270F 0.2700.2300.160300F 0.2700.2300.170330 - 360F 0.2700.2400.180390F0.2700.2500.190C h a r a c t e r i s t i c sDM05CaseDimensions in Millimeters Lead Spacing:3.05 ±0.8mmDM 05Mica CapacitorsDM05CaseDimensions in Inches Lead Spacing:0.120 ±0.031”DIMENSIONS:LL = 31.75 mm (1.25”) min.Sharma Mica Capacitors Page 7CAPACITANCE VOLTAGEVALUE in pF300 V DC100 V DC 50 V DC Lmax.W max.T max Lmax.W max.T max Lmax.W max.T max1 - 12C 6.35 4.06 2.2915 - 20C 6.35 4.32 2.54 6.35 4.06 2.2922C 6.35 4.32 2.54 6.35 4.06 2.54 6.35 4.06 2.2924C 6.35 4.32 2.54 6.35 4.32 2.54 6.35 4.06 2.2927 - 36E 6.35 4.32 2.79 6.35 4.32 2.54 6.35 4.06 2.2939E 6.35 4.57 2.79 6.35 4.32 2.54 6.35 4.06 2.2943E 6.35 4.57 3.05 6.35 4.32 2.54 6.35 4.32 2.5447 - 51E 6.35 4.57 3.05 6.35 4.32 2.79 6.35 4.32 2.5456 - 62E 6.35 4.57 3.30 6.35 4.32 2.79 6.35 4.32 2.5468E 6.35 4.83 3.30 6.35 4.57 2.79 6.35 4.32 2.5475 - 82E 6.35 4.83 3.56 6.35 4.57 3.05 6.35 4.32 2.5491F 6.35 4.83 3.81 6.35 4.57 3.05 6.35 4.32 2.79100F 6.35 5.08 4.06 6.35 4.57 3.30 6.35 4.32 2.79110F 6.35 5.08 4.06 6.35 4.83 3.30 6.35 4.32 2.79120F 6.355.334.326.35 4.83 3.56 6.35 4.32 2.79130F 6.35 4.83 3.56 6.35 4.32 2.79150F 6.35 4.83 3.81 6.35 4.57 3.05160F 6.35 5.08 3.81 6.35 4.57 3.05170 - 180F 6.35 5.08 4.06 6.35 4.57 3.05200F 6.355.334.326.35 4.57 3.30220F 6.35 4.83 3.30240 - 270F 6.35 4.83 3.56300F 6.35 4.83 3.81330 - 360F 6.35 5.08 4.06390F6.35 5.33 4.32C h a r a c t e r i s t i c sCAPACITANCE VOLTAGEVALUE in pF300 V DC 100 V DC50 V DC Lmax.W max.T max Lmax.W max.T max Lmax.W max.T max1 - 12C 0.2500.1600.09015 - 20C 0.2500.1700.1000.2500.1600.09022C 0.2500.1700.1000.2500.1600.1000.2500.1600.09024C 0.2500.1700.1000.2500.1700.1000.2500.1600.09027 - 36E 0.2500.1700.1100.2500.1700.1000.2500.1600.09039E 0.2500.1800.1100.2500.1700.1000.2500.1600.09043E 0.2500.1800.1200.2500.1700.1000.2500.1700.10047 - 51E 0.2500.1800.1200.2500.1700.1100.2500.1700.10056 - 62E 0.2500.1800.1300.2500.1700.1100.2500.1700.10068E 0.2500.1900.1300.2500.1800.1100.2500.1700.10075 - 82E 0.2500.1900.1400.2500.1800.1200.2500.1700.10091F 0.2500.1900.1500.2500.1800.1200.2500.1700.110100F 0.2500.2000.1600.2500.1800.1300.2500.1700.110110F 0.2500.2000.1600.2500.1900.1300.2500.1700.110120F 0.2500.2100.1700.2500.1900.1400.2500.1700.110130F 0.2500.1900.1400.2500.1700.110150F 0.2500.1900.1500.2500.1800.120160F 0.2500.2000.1500.2500.1800.120170 - 180F 0.2500.2000.1600.2500.1800.120200F 0.2500.2100.1700.2500.1800.130220F 0.2500.1900.130240 - 270F 0.2500.1900.140300F 0.2500.1900.150330 - 360F 0.2500.2000.160390F0.2500.2100.170C h a r a c t e r i s t i c sSCDM 05Mica CapacitorsSCDM05CaseDimensions in Millimeters Lead Spacing:3.05 ±0.8mmSCDM05CaseDimensions in Inches Lead Spacing:0.120 ±0.031”Note: Bold Outlined Sections indicate SHARMA Standard items.DIMENSIONS:LL = 31.75 mm (1.25”) min.Sharma Mica Capacitors Page 8VOLTAGE100 V DCT maxLmax.W max.T max4.839.148.38 4.834.839.408.38 4.834.839.408.64 4.834.839.408.64 4.834.839.408.64 4.835.089.408.64 4.835.089.408.64 4.835.089.408.64 5.085.089.408.89 5.085.089.408.89 5.085.089.408.89 5.08CAPACITANCE VOLTAGEVALUE in pF500 V DC 300 V DC100 V DC Lmax.W max.T max Lmax.W max.T maxLmax.W max.T max1 - 18C 0.3600.3300.19020 - 24E 0.3600.3300.19027E 0.3700.3300.19030 - 36E 0.3700.3400.19039E 0.3700.3400.1900.3700.3400.1900.3600.3300.19043E 0.3700.3400.1900.3700.3400.1900.3700.3300.19047 - 68E 0.3700.3400.1900.3700.3400.1900.3700.3400.19075E 0.3700.3400.2000.3700.3400.1900.3700.3400.19082E 0.3700.3500.2000.3700.3400.1900.3700.3400.19091 - 100F 0.3700.3500.2000.3700.3500.2000.3700.3400.190110F 0.3800.3500.2000.3700.3500.2000.3700.3400.190120F 0.3800.3500.2000.3700.3500.2000.3700.3400.200130F 0.3800.3600.2000.3800.3500.2000.3700.3500.200150F 0.3800.3600.2100.3800.3500.2000.3700.3500.200160F 0.3800.3600.2100.3800.3600.2000.3700.3500.200180F 0.3900.3700.2100.3800.3600.2100.3800.3500.200200F 0.3900.3700.2200.3800.3600.2100.3800.3500.200220F 0.3900.3700.2200.3900.3700.2100.3800.3600.210240 - 250F 0.3900.3800.2200.3900.3700.2200.3800.3600.210270F 0.3900.3800.2200.3800.3700.210300F 0.3900.3800.2200.3900.3700.210330F 0.4000.3900.2300.3900.3700.220360F 0.4000.3900.2300.3900.3800.220390 - 400F 0.3900.3800.220430 - 680F 0.4000.3900.230750 - 820*F0.4000.3900.230C h a r a c t e r i s t i c sDM 10 / CM04Mica CapacitorsDM10CM04CaseDimensions in Millimeters Lead Spacing:3.57 ±0.8mmDM10CM04CaseDimensions in Inches Lead Spacing:0.141 ±0.031”* Available only in 50 V rating. Note: Values above 390 pF - available on special order only Note: Bold Outlined Sections indicate SHARMA Standard items.DIMENSIONS:LL = 31.75 mm (1.25”) min.Sharma Mica Capacitors Page 9DM 12Mica CapacitorsDM12CaseDimensions in Millimeters Lead Spacing:5.0 ±0.8mmDM12CaseDimensions in Inches Lead Spacing:0.197 ±0.031SCDM 10Mica Capacitors* Available only in 50 V rating.Note: Bold Outlined Sections indicate SUSCO Standard items.SCDM10CaseDimensions in Millimeters Lead Spacing:3.57 ±0.8mmSCDM10CaseDimensions in Inches Lead Spacing:0.141 ±0.031”Note: Bold Outlined Sections indicateSHARMA DIMENSIONS:LL = 31.75 mm (1.25”) min.Sharma Mica CapacitorsPage 10CAPACITANCE VOLTAGEVALUE in pF 500 V DC 300 V DC100 V DCLmax.W max.T max Lmax.W max.T maxLmax.W max.T max1 - 18C 11.439.14 4.3220 - 68E 11.439.14 4.3275 - 82E 11.439.14 4.5791 - 100F 11.689.14 4.57110 - 130F 11.689.40 4.57150 - 180F 11.689.40 4.83200F 11.689.65 4.83220 - 240F 11.689.65 5.08270 - 390F 11.949.91 5.33430F 11.949.91 5.3311.689.65 5.08470 - 510F 11.9410.16 5.5911.689.65 5.08560 - 620F 12.1910.41 5.8411.689.65 5.08680F 12.4510.67 6.1011.949.91 5.33750F 12.7010.926.3511.949.91 5.33820F 11.949.91 5.3311.949.91 5.33910F 11.9410.16 5.5911.9410.16 5.591,000F 12.1910.16 5.8412.1910.16 5.841,100F 12.4510.67 6.1012.1910.16 5.841,200 - 2,000F 12.7010.92 6.3512.4510.67 6.102,200 - 2,500*F12.4510.67 6.10C h a r a c t e r i s t i c sDM 15 / CM05Mica Capacitors* Available only in 50 V rating.Note: Bold Outlined Sections indicate SHARMA Standard items.CAPACITANCE VOLTAGEVALUE in pF500 V DC 300 V DC100 V DC Lmax.W max.T max Lmax.W max.T maxLmax.W max.T max1 - 18C 0.4500.3600.17020 - 68E 0.4500.3600.17075 - 82E 0.4500.3600.18091 - 100F 0.4600.3600.180110 - 130F 0.4600.3700.180150 - 180F 0.4600.3700.190200F 0.4600.3800.190220 - 240F 0.4600.3800.200270 - 390F 0.4700.3900.210430F 0.4700.3900.2100.4600.3800.200470 - 510F 0.4700.4000.2200.4600.3800.200560 - 620F 0.4800.4100.2300.4600.3800.200680F 0.4900.4200.2400.4700.3900.210750F 0.5000.4300.2500.4700.3900.210820F 0.4700.3900.2100.4700.3900.210910F 0.4700.4000.2200.4700.4000.2201,000F 0.4800.4000.2300.4800.4000.2301,100F 0.4900.4200.2400.4800.4000.2301,200 - 2,000F 0.5000.4300.2500.4900.4200.2402,200 - 2,500*F0.4900.4200.240C h a r a c t e r i s t i c sDM15CM05CaseDimensions in Millimeters Lead Spacing:5.95 ±0.8mmDM15CM05CaseDimensions in Inches Lead Spacing:0.234 ±0.031DIMENSIONS:LL = 31.75 mm (1.25”) min.Sharma Mica Capacitors Page 11SCDM 15Mica CapacitorsCAPACITANCE VOLTAGEVALUE in pF500 V DC 300 V DC100 V DCLmax.W max.T max Lmax.W max.T maxLmax.W max.T max1 - 18C 10.927.11 3.5620 - 68E 10.927.11 3.5675 - 100F 10.927.11 3.81110 - 160F 11.187.37 3.81180 - 200F 11.187.37 4.06220 - 270F 11.187.62 4.06300 - 390F 11.437.87 4.06430 - 470F 11.437.87 4.3211.187.37 3.81510F 11.437.87 4.5711.187.37 3.81560F 11.437.87 4.5711.187.62 4.06620F 11.438.13 4.8311.187.62 4.06680F 11.688.13 5.0811.437.62 4.06750F 11.688.135.3311.437.62 4.06820F 11.437.87 4.3211.437.87 4.06910F 11.437.87 4.5711.437.87 4.321,000F 11.438.13 4.8311.437.87 4.321,100F 11.688.13 5.0811.437.87 4.571,200 - 2,000F 11.688.13 5.3311.438.13 4.832,200 - 2,500*F11.438.13 4.83C h a r a c t e r i s t i c sCAPACITANCE VOLTAGEVALUE in pF500 V DC 300 V DC100 V DC Lmax.W max.T max Lmax.W max.T maxLmax.W max.T max1 - 18C 0.4300.2800.14020 - 68E 0.4300.2800.14075 - 100F 0.4300.2800.150110 - 160F 0.4400.2900.150180 - 200F 0.4400.2900.160220 - 270F 0.4400.3000.160300 - 390F 0.4500.3100.160430 - 470F 0.4500.3100.1700.4400.2900.150510F 0.4500.3100.1800.4400.2900.150560F 0.4500.3100.1800.4400.3000.160620F 0.4500.3200.1900.4400.3000.160680F 0.4600.3200.2000.4500.3000.160750F 0.4600.3200.2100.4500.3000.160820F 0.4500.3100.1700.4500.3100.160910F 0.4500.3100.1800.4500.3100.1701,000F 0.4500.3200.1900.4500.3100.1701,100F 0.4600.3200.2000.4500.3100.1801,200 - 2,000F 0.4600.3200.2100.4500.3200.1902,200 - 2,500*F0.4500.3200.190C h a r a c t e r i s t i c s* Available only in 50 V rating.Note: Bold Outlined Sections indicate SHARMA Standard items.SCDM15CaseDimensions in Millimeters Lead Spacing:5.95 ±0.8mmSCDM15CaseDimensions in Inches Lead Spacing:0.234 ±0.031”DIMENSIONS:LL = 31.75 mm (1.25”) min.Sharma Mica Capacitors Page 12CAPACITANCE VOLTAGEVALUE in pF500 V DC 300 V DC100 V DCLmax.W max.T max Lmax.W max.T maxLmax.W max.T max100 - 330F 16.2612.70 4.83360 - 470F 16.2612.95 5.08510 - 620F 16.5112.95 5.08680 - 910F 16.5112.95 5.331,000 - 1,100F 16.5113.21 5.591,200 - 1,300F 16.7613.21 5.591,500F 16.7613.21 5.841,600F 16.7613.46 5.841,800 - 2,000F 17.0213.46 6.102,200F 17.0213.46 6.352,400F 17.0213.72 6.602,700F 17.2713.72 6.863,000F 17.2713.977.113,300F 17.2713.977.3717.0213.72 6.603,600F 17.2714.227.6217.2713.72 6.863,900F 17.5314.227.8717.2713.72 6.864,300F 17.5314.488.3817.2713.977.114,700F 17.7814.738.8917.2713.977.375,100F 18.0314.999.40---5,600F 17.2714.227.876,200F 17.5314.228.1317.5314.227.876,800F 17.5314.488.3817.5314.488.137,500F 17.7814.488.648,200F17.7814.738.89C h a r a c t e r i s t i c sCAPACITANCE VOLTAGEVALUE in pF500 V DC 300 V DC100 V DC Lmax.W max.T max Lmax.W max.T maxLmax.W max.T max100 - 330F 0.6400.5000.190360 - 470F 0.6400.5100.200510 - 620F 0.6500.5100.200680 - 910F 0.6500.5100.2101,000 - 1,100F 0.6500.5200.2201,200 - 1,300F 0.6600.5200.2201,500F 0.6600.5200.2301,600F 0.6600.5300.2301,800 - 2,000F 0.6700.5300.2402,200F 0.6700.5300.2502,400F 0.6700.5400.2602,700F 0.6800.5400.2703,000F 0.6800.5500.2803,300F 0.6800.5500.2900.6700.5400.2603,600F 0.6800.5600.3000.6800.5400.2703,900F 0.6900.5600.3100.6800.5400.2704,300F 0.6900.5700.3300.6800.5500.2804,700F 0.7000.5800.3500.6800.5500.2905,100F 0.7100.5900.370---5,600F 0.6800.5600.3106,200F 0.6900.5600.3200.6900.5600.3106,800F 0.6900.5700.3300.6900.5700.3207,500F 0.7000.5700.3408,200F0.7000.5800.350C h a r a c t e r i s t i c sDM 19 / CM06 Mica CapacitorsDM19CM06CaseDimensions in Millimeters Lead Spacing:8.73 ±0.8mmDM19CM06CaseDimensions in Inches Lead Spacing:0.344 ±0.031”Note: Bold Outlined Sections indicate SHARMA Standard items.DIMENSIONS:LL = 31.75 mm (1.25”) min.Sharma Mica Capacitors Page 13CAPACITANCE VOLTAGEVALUE in pF500 V DC 300 V DC100 V DCLmax.W max.T max Lmax.W max.T maxLmax.W max.T max100 - 240F 15.4911.43 3.30270 - 560F 15.4911.43 3.56620 - 820F 15.4911.68 3.81910 - 1,100F 15.7511.68 4.061,200 - 1,500F 15.7511.68 4.321,600 - 1,800F 15.7511.68 4.572,000 - 2,200F 16.0011.68 4.832,400F 16.0011.94 5.332,700F 16.0011.94 5.593,000F 16.0011.94 5.843,300F 16.0012.19 6.1016.0010.67 5.333,600F 16.2612.19 6.3516.0011.94 5.333,900F 16.2612.19 6.6016.0011.94 5.334,300F 16.5112.457.1116.0011.94 5.594,700F 16.5112.457.6216.0011.94 5.845,100F 16.7612.708.1316.0012.19 6.105,600F 16.2612.19 6.356,200F 16.2612.19 6.6016.2612.19 6.356,800F 16.2612.45 6.8616.2612.19 6.607,500F 16.5112.457.118,200F16.5112.457.62C h a r a c t e r i s t i c sCAPACITANCE VOLTAGEVALUE in pF500 V DC 300 V DC100 V DC Lmax.W max.T max Lmax.W max.T maxLmax.W max.T max100 - 240F 0.6100.4500.130270 - 560F 0.6100.4500.140620 - 820F 0.6100.4600.150910 - 1,100F 0.6200.4600.1601,200 - 1,500F 0.6200.4600.1701,600 - 1,800F 0.6200.4600.1802,000 - 2,200F0.6300.4600.1902,400F 0.6300.4700.2102,700F 0.6300.4700.2203,000F 0.6300.4700.2303,300F 0.6300.4800.2400.6300.4200.2103,600F 0.6400.4800.2500.6300.4700.2103,900F 0.6400.4800.2600.6300.4700.2104,300F 0.6500.4900.2800.6300.4700.2204,700F 0.6500.4900.3000.6300.4700.2305,100F 0.6600.5000.3200.6300.4800.2405,600F 0.6400.4800.2506,200F 0.6400.4800.2600.6400.4800.2506,800F 0.6400.4900.2700.6400.4800.2607,500F 0.6500.4900.2808,200F0.6500.4900.300C h a r a c t e r i s t i c sSCDM 19Mica CapacitorsSCDM19CaseDimensions in Millimeters Lead Spacing:8.73 ±0.8mmSCDM19CaseDimensions in Inches Lead Spacing:0.344 ±0.031”Note: Bold Outlined Sections indicate SHARMA Standard items.DIMENSIONS:LL = 31.75 mm (1.25”) min.Sharma Mica Capacitors Page 14CAPACITANCE VOLTAGEVALUE in pF500 V DC 300 V DC100 V DC Lmax.W max.T max Lmax.W max.T maxLmax.W max.T max680 - 1,200F 0.7500.5100.2001,300 - 1,600F 0.7500.5100.2101,800 - 2,200F 0.7600.5200.2202,400F 0.7700.5300.2502,700F 0.7700.5400.2603,000F 0.7700.5400.2703,300F 0.7800.5500.2803,600F 0.7800.5500.2903,900F 0.7800.5600.3004,300F 0.7800.5600.3100.7700.5400.2704,700F 0.7900.5600.3200.7700.5400.2705,100F 0.7900.5700.3300.7800.5500.2805,600F 0.7900.5700.3400.7800.5500.2906,200F 0.7900.5800.3500.7800.5600.3000.7800.5500.2906,800F 0.8000.5900.3700.7900.5600.3200.7800.5600.3007,500F 0.8000.6000.3900.7900.5700.3300.7800.5600.3008,200F 0.8100.6100.4100.7900.5700.3400.7800.5600.3109,100F 0.8100.6200.4300.8000.5800.3600.7900.5700.33010,000F 0.8200.6300.4500.8000.5900.3700.7900.5700.34011,000F 0.8000.5900.3800.7900.5800.35012,000F0.8100.6000.4000.8000.5800.360C h a r a c t e r i s t i c sCAPACITANCE VOLTAGEVALUE in pF500 V DC 300 V DC100 V DCLmax.W max.T max Lmax.W max.T maxLmax.W max.T max680 - 1,200F 19.0512.95 5.081,300 - 1,600F 19.0512.95 5.331,800 - 2,200F 19.3013.21 5.592,400F 19.5613.46 6.352,700F 19.5613.72 6.603,000F 19.5613.72 6.863,300F 19.8113.977.113,600F 19.8113.977.373,900F 19.8114.227.624,300F 19.8114.227.8719.5613.72 6.864,700F 20.0714.228.1319.5613.72 6.865,100F 20.0714.488.3819.8113.977.115,600F 20.0714.488.6419.8113.977.376,200F 20.0714.738.8919.8114.227.6219.8113.977.376,800F 20.3214.999.4020.0714.228.1319.8114.227.627,500F 20.3215.249.9120.0714.488.3819.8114.227.628,200F 20.5715.4910.4120.0714.488.6419.8114.227.879,100F 20.5715.7510.9220.3214.739.1420.0714.488.3810,000F 20.8316.0011.4320.3214.999.4020.0714.488.6411,000F 20.3214.999.6520.0714.738.8912,000F20.5715.2410.1620.3214.739.14C h a r a c t e r i s t i c sDM 20Mica CapacitorsDM20CaseDimensions in Inches Lead Spacing:0.438 ±0.031”DM20CaseDimensions in Millimeters Lead Spacing:11.11 ±0.8mmNote: Bold Outlined Sections indicate SHARMA Standard items.DIMENSIONS:LL = 31.75 mm (1.25”) min.Sharma Mica Capacitors Page 15。

MMBD1505A中文资料

MMBD1505A中文资料

3ã1997 Fairchild Semiconductor CorporationMMBD1501/A / 1503/A / 1504/A / 1505/AMMBD1501/A / 1503/A / 1504/A / 1505/ATRADEMARKSACEx™CoolFET™CROSSVOLT™E 2CMOS TM FACT™FACT Quiet Series™FAST ®FASTr™GTO™HiSeC™The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.LIFE SUPPORT POLICYFAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROV AL OF FAIRCHILD SEMICONDUCTOR CORPORA TION.As used herein:ISOPLANAR™MICROWIRE™POP™PowerTrench™QS™Quiet Series™SuperSOT™-3SuperSOT™-6SuperSOT™-8TinyLogic™1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant intothe body, or (b) support or sustain life, or (c) whosefailure to perform when properly used in accordancewith instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.2. A critical component is any component of a lifesupport device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.PRODUCT STATUS DEFINITIONS Definition of TermsDatasheet Identification Product Status Definition Advance InformationPreliminary No Identification Needed Obsolete This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.This datasheet contains preliminary data, andsupplementary data will be published at a later date.Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor.The datasheet is printed for reference information only.Formative or In DesignFirst ProductionFull ProductionNot In ProductionDISCLAIMERFAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY , FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.。

DLT德力通产品推介说明

DLT德力通产品推介说明

DLTK系列乘客电梯产品推介说明一、公司简介湖南德力通电梯有限公司是一家集电梯的研发、制造、销售、安装和维保于一体的综合性企业。

公司座落于南北重要的交通枢纽湖南株洲,水陆交通通讯十分便利。

厂区占地2.5公顷,设有现代化车间(垂直电梯及自动扶梯生产流水线)和国际先进的专业检测、机械加工设备、研发中心等;拥有一批高素质的专业技术人才。

具备年产各类垂直电梯3500台、自动扶梯1000台的生产规模。

目前本厂产品已覆盖全国二十多个省市,并在长沙、广州、深圳、泉州、桂林、扬州、合肥、成都、兰州、潍坊等地设立了办事处及售后服务网点,负责本公司产品在当地的销售及售后服务工作。

德力通电梯有限公司与一些国际著名电梯配件厂商展开全面合作,专业从事高科技、数字化电梯的研究与开发,是世界电梯无机房、无齿轮高科技应用领域内的领先者。

让"用户满意"是德力通人的无上追求,质量与信誉是公司的一贯宗旨。

在生产质量控制与安装、服务过程中严格执行ISO9001-2000与ISO14000、OHSAS18000等相关国际标准管理体系,配备有专业的安装和服务队伍,设立了24小时服务的服务热线,建立起了辐射全国的服务网络和迅捷的备品备件供应体系,为客户提供全方位的服务与支持。

我们热情欢迎宾客用户惠顾、咨询、洽谈订货。

二、产品介绍DLTK系列乘客电梯,是湖南德力通电梯有限公司推出的最新一代高科技绿色环保产品,它具有高效节能、低噪声、无(齿轮箱)油污染、无电源电网污染等优点。

一、最先进的永磁同步拖动系统DLTK系列乘客电梯,采用国际上最先进的永磁同步变频调速拖动技术。

永磁同步电机不需要无功励磁电流,定子铜耗小,功率因素高,并具有低速性、快速性、硬机械特性、停车自闭等优点。

同时,永磁同步电机正常工作时不产生谐波干扰,对电源电网无污染。

二、平稳高效的无齿轮曳引系统DLTK系列乘客电梯,采用无齿轮曳引技术,没有齿轮啮合,彻底消除了齿轮机械传动的振动和噪声,使电梯运行更加平稳,噪声大为降低。

PPH1503D高速直流电源(简中)

PPH1503D高速直流电源(简中)
SCPI状态模式 ............................................... 115
总述 .............................................................................. 10 介绍 ....................................... 主要特性 ........................................................ 12 动作原理 ........................................................ 13 前面板 ............................................................ 14 后面板 ............................................................ 19 恒压/恒流交叉特性......................................... 21
系统设置 ........................................................................55 信息查看 ........................................................ 55 系统参数设定 ................................................. 56 固件升级 ........................................................ 57 系统实时时钟设定 .......................................... 58 移动盘使用说明.............................................. 59

RH-1505D中文资料

RH-1505D中文资料

Deviation / Load
25.000 20.000
Deviation / Load
Deviation from Nominal (%)
Deviation from Nominal (%)
15.000 10.000 5.000 0.000 -5.000 -10.000
15.000 10.000 5.000 0.000 -5.000 -10.000
}
Detailed Information see Application Notes chapter "MTBF"
Typical Characteristics
Efficiency / Load
100 80 60 40
RK-xx05S
100
Efficiency / Load
RK-xx09S
100
RK-xx12S
Efficiency / Load
80 60
3.305
1205
80 60
0509
0512
1212
0505 Efficiency %
40 20 0
1209 Efficiency % 3.309
40 20 0
3.312
Efficiency %
20 0
0% 20% 40% 60% tal Output current (%)
ECONOLINE
DC/DC-Converter
RK & RH Series
Selection Guide
Part Number SIP 7 RK-xx1.8S RK-xx3.3S RK-xx05S RK-xx09S RK-xx12S RK-xx15S RK-xx24S RH-xx1.8D RH-xx3.3D RH-xx05D RH-xx09D RH-xx12D RH-xx15D (4kV) (H) (H) (H) (H) (H) (H) (H) (H) (H) (H) (H) (H) (H) Input Voltage (VDC) 1.8, 3.3, 5, 9, 12, 15, 24 1.8, 3.3, 5, 9, 12, 15, 24 1.8, 3.3, 5, 9, 12, 15, 24 1.8, 3.3, 5, 9, 12, 15, 24 1.8, 3.3, 5, 9, 12, 15, 24 1.8, 3.3, 5, 9, 12, 15, 24 1.8, 3.3, 5, 9, 12, 15, 24 1.8, 3.3, 5, 9, 12, 15, 24 1.8, 3.3, 5, 9, 12, 15, 24 1.8, 3.3, 5, 9, 12, 15, 24 1.8, 3.3, 5, 9, 12, 15, 24 1.8, 3.3, 5, 9, 12, 15, 24 1.8, 3.3, 5, 9, 12, 15, 24 1.8, 3.3, 5, 9, 12, 15, 24 Output Voltage (VDC) 1.8 3.3 5 9 12 15 24 ±1.8 ±3.3 ±5 ±9 ±12 ±15 ±24 Output Current (mA) 555 303 200 111 84 66 42 ±278 ±152 ±100 ±56 ±42 ±33 ±21 Efficiency (%) 70 75 70-78 76-79 78-79 80-82 74-83 70 70 74-78 76-79 80-82 80-84 80-84

2EZ150D5中文资料

2EZ150D5中文资料

FEATURES
• • • • Zener voltage available 3.6 V to 200 V Standard voltage tolerances are plus/minus 5% with a 5 suffix and 10 % with 10 suffix identification Tight tolerances available in plus or minus 2% or 1% with 2 or 1 suffix respectively Options for screening in accordance with MIL-PRF19500 for JAN, JANTX, and JANTXV are available by adding MQ, MX, or MV prefixes respectively to part numbers. Surface mount equivalents available as SMBJ2EZ3.6D5 to SMBJ2EZ200D5 in the DO-214AA package, or SMBG2EZ3.6D5 to SMBG200D5 in the DO-215AA package RoHS compliant devices available by adding “e3” suffix • • • • • •
º
MECHANICAL AND PACKAGING
• • CASE: Void-free transfer molded thermosetting epoxy body meeting UL94V-0 TERMINALS: Leads, tin-lead or RoHS compliant annealed matte-Tin plating solderable per MILSTD-750, method 2026 POLARITY: Cathode indicated by band where diode is to be operated with the banded end positive with respect to the opposite end for Zener regulation. MARKING: Part number TAPE & REEL option: Standard per EIA-296 (add “TR” suffix to part number) WEIGHT: 0.4 grams See package dimensions on last page

ASTM D 1505-03用密度梯度法测定塑料密度的试验方法

ASTM D 1505-03用密度梯度法测定塑料密度的试验方法

Designation:D 1505–03Standard Test Method forDensity of Plastics by the Density-Gradient Technique 1This standard is issued under the fixed designation D 1505;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon (e )indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1.Scope*1.1This test method covers the determination of the density of solid plastics.1.2This test method is based on observing the level to which a test specimen sinks in a liquid column exhibiting a density gradient,in comparison with standards of known density.N OTE 1—The comparable ISO document is ISO 1183–2.There has not been any data generated to date comparing the results of the ISO method with this method.1.3The values stated in SI units are to be regarded as the standard.1.4This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents 2.1ASTM Standards:2D 941Test Method for Density and Relative Density (Spe-cific Gravity)of Liquids by Lipkin Bicapillary Pycnometer D 2839Practice for Use of a Melt Index Strand for Deter-mining Density of PolyethyleneD 4703Practice for Compression Molding Thermoplastic Materials into Test Specimens,Plaques,or SheetsE 691Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method 2.2ISO Standard:ISO 1183-2Methods for Determining the Density and Rela-tive Density of Noncellular Plastics 33.Terminology 3.1Definition:3.1.1density of plastics —the weight per unit volume of material at 23°C,expressed as follows:D 23C ,g/cm 3(1)N OTE 2—Density is to be distinguished from specific gravity,which is the ratio of the weight of a given volume of the material to that of an equal volume of water at a stated temperature.4.Significance and Use4.1The density of a solid is a conveniently measurable property which is frequently useful as a means of following physical changes in a sample,as an indication of uniformity among samples,and a means of identification.4.2This test method is designed to yield results accurate to better than 0.05%.N OTE 3—Where accuracy of 0.05%or better is desired,the gradient tube shall be constructed so that vertical distances of 1mm shall represent density differences no greater than 0.0001g/cm.3The sensitivity of the column is then 0.0001g/cm 3·mm.Where less accuracy is needed,the gradient tube shall be constructed to any required sensitivity.5.Apparatus5.1Density-Gradient Tube —A suitable graduate with ground-glass stopper.45.2Constant-Temperature Bath —A means of controlling the temperature of the liquid in the tube at 2360.1°C.A thermostatted water jacket around the tube is a satisfactory and convenient method of achieving this.5.3Glass Floats —A number of calibrated glass floats cov-ering the density range to be studied and approximately evenly distributed throughout this range.5.4Pycnometer ,for use in determining the densities of the standard floats.5.5Liquids ,suitable for the preparation of a density gradi-ent (Table 1).N OTE 4—It is very important that none of the liquids used in the tube1This test method is under the jurisdiction of ASTM Committee D20on Plastic and is the direct responsibility of Subcommittee D20.70on Analytical Methods (Section D20.70.01).Current edition approved November 1,2003.Published January 2004.Originally approved in st previous edition approved in 1998as D 1505-98.2For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.3Available from American National Standards Institute (ANSI),25W.43rd St.,4th Floor,New York,NY 10036.4Tubes similar to those described in Refs (6)and (12)may also be used.1*A Summary of Changes section appears at the end of this standard.Copyright ©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA 19428-2959,United States.exert a solvent or chemical effect upon the test specimens during the time of specimen immersion.5.6Hydrometers —A set of suitable hydrometers covering the range of densities to be measured.These hydrometers should have 0.001density graduations.5.7Analytical Balance ,with a sensitivity of 0.001g.5.8Siphon or Pipet Arrangement ,for filling the gradient tube.This piece of equipment should be constructed so that the rate of flow of liquid may be regulated to 1065mL/min.6.Test Specimen6.1The test specimen shall consist of a piece of the material under test.The piece may be cut to any shape convenient for easy identification,but should have dimensions that permit the most accurate position measurement of the center of volume of the suspended specimen (Note 5).Care should be taken in cutting specimens to avoid change in density resulting from compressive stress.N OTE 5—The equilibrium positions of film specimens in the thickness range from 0.025to 0.051mm (0.001to 0.002in.)may be affected by interfacial tension.If this affect is suspected,films not less than 0.127mm (0.005in.)in thickness should be tested.6.2The specimen shall be free of foreign matter and voids and shall have no cavities or surface characteristics that will cause entrapment of bubbles.7.Preparation of Density-Gradient Columns7.1Preparation of Standard Glass Floats 5—Prepare glass floats by any convenient method such that they are fully annealed,approximately spherical,have a maximum diameter less than one fourth the inside diameter of the column,and do not interfere with the test specimens.Prepare a solution (400to 600mL)of the liquids to be used in the gradient tube such that the density of the solution is approximately equal to the desired lowest density.When the floats are at room temperature,drop them gently into the solution.Save the floats that sink very slowly,and discard those that sink very fast,or save them for another tube.If necessary to obtain a suitable range of floats,grind selected floats to the desired density by rubbing the head part of the float on a glass plate on which is spread a thin slurry of 400or 500-mesh silicon carbide (Carborundum)or otherappropriate abrasive.Progress may be followed by dropping the float in the test solution at intervals and noting its change in rate of sinking.7.2Calibration of Standard Glass Floats (see Appendix X1):7.2.1Place a tall cylinder in the constant-temperature bath maintained at 2360.1°C.Then fill the cylinder about two thirds full with a solution of two suitable liquids selected from Table 1,the density of which can be varied over the desired range by the addition of either liquid to the mixture.After the cylinder and solution have attained temperature equilibrium,place the float in the solution,and if it sinks,add the denser liquid by suitable means with good stirring until the float reverses direction of movement.If the float rises,add the less dense liquid by suitable means with good stirring until the float reverses direction of movement.7.2.2When reversal of movement has been observed,re-duce the amount of the liquid additions to that equivalent to 0.0001-g/cm 3density.When an addition equivalent to 0.0001-g/cm 3density causes a reversal of movement,or when the float remains completely stationary for at least 15min,the float and liquid are in satisfactory balance.The cylinder must be covered whenever it is being observed for balance,and the liquid surface must be below the surface of the liquid in the constant-temperature bath.After vigorous stirring,the liquid may continue to move for a considerable length of time;make sure that the observed movement of the float is not due to liquid motion by waiting at least 15min after stirring has stopped before observing the float.7.2.3When balance has been obtained,fill a freshly cleaned and dried pycnometer with the solution and place it in the 2360.1°C bath for sufficient time to allow temperature equilib-rium of the glass.Determine the density of the solution by normal methods (Test Method D 941)and make “in vacuo”corrections for all weighings.Record this as the density of the float.Repeat the procedure for each float.7.3Gradient Tube Preparation (see appendix for details):7.3.1Method A —Stepwise addition.7.3.2Method B —Continuous filling (liquid entering gradi-ent tube becomes progressively less dense).7.3.3Method C —Continuous filling (liquid entering gradi-ent tube becomes progressively more dense).8.Conditioning8.1Test specimens whose change in density on conditioning may be greater than the accuracy required of the density determination shall be conditioned before testing in accordance with the method listed in the applicable ASTM material specification.9.Procedure9.1Wet three representative test specimens with the less dense of the two liquids used in the tube and gently place them in the tube.Allow the tube and specimens to reach equilibrium,which will require 10min or more.Thin films of 1to 2mils in thickness require approximately 11⁄2h to settle,and rechecking after several hours is advisable (Note 4).9.2Read the height of each float and each specimen by a line through the individual center of volume and averaging the5Glass floats may be purchased from American Density Materials,3826Springhill Rd.Staunton,V A 24401,Ph:(540)887-1217.TABLE 1Liquid Systems for Density-Gradient TubesSystemDensity Range,g/cm 3Methanol-benzyl alcohol 0.80to 0.92Isopropanol-water0.79to 1.00Isopropanol-diethylene glycol 0.79to 1.11Ethanol-carbon tetrachloride 0.79to 1.59Toluene-carbon tetrachloride 0.87to 1.59Water-sodium bromide 1.00to 1.41Water-calcium nitrate1.00to 1.60Carbon tetrachloride-trimethylene dibromide 1.60to 1.99Trimethylene dibromide-ethylene bromide 1.99to2.18Ethylene bromide-bromoform2.18to2.89three values.When a cathetometer is used,measure the height of thefloats and specimens from an arbitrary level using a line through their center of volume.If equilibrium is not obtained, the specimen may be imbibing the liquid.9.3Old samples can be removed without destroying the gradient by slowly withdrawing a wire screen basket attached to a long wire(Note6).This can be conveniently done by means of a clock motor.Withdraw the basket from the bottom of the tube and,after cleaning,return it to the bottom of the tube.It is essential that this procedure be performed at a slow enough rate(approximately30min/300-mm length of column) so that the density gradient is not disturbed.N OTE6—Whenever it is observed that air bubbles are collecting on samples in the column,a vacuum applied to the column will correct this.10.Calculation10.1The densities of the samples may be determined graphically or by calculation from the levels to which the samples settle by either of the following methods:10.1.1Graphical Calculation—Plotfloat position versus float density on a chart large enough to be read accurately to 61mm and the desired precision of density.Plot the positions of the unknown specimens on the chart and read their corre-sponding densities.10.1.2Numerical Calculation—Calculate the density by interpolation as follows:Density at x5a1[~x2y!~b2a!/~z2y!#(2) where:a and b=densities of the two standardfloats,y and z=distances of the two standards,a and b,respec-tively,bracketing the unknown measured froman arbitrary level,andx=distance of unknown above the same arbitrary level.11.Report11.1Report the following information:11.1.1Density reported as D23C,in grams per cubic centimetre,as the average for three representative test speci-mens,11.1.2Number of specimens tested if different than three, 11.1.3Sensitivity of density gradient in grams per cubic centimetre per millimetre,11.1.4Complete identification of the material tested,and 11.1.5Date of the test.12.Precision and Bias612.1Specimens Molded in One Laboratory and Tested in Several Laboratories—An interlaboratory test was run in1981 in which randomized density plaques were supplied to22 laboratories.Four polyethylene samples of nominal densities of0.92to0.96g/cm3were molded in one laboratory.The data were analyzed using Practice E691,and the results are given in Table2.12.2Specimens Molded and Tested in Several Laboratories: 12.2.1Samples Prepared Using Practice D4703in Each Laboratory—Table3is based on a round robin9conducted in 1994in accordance with Practice E691,involving seven materials tested by7to11laboratories.For each material,all of the samples were prepared by each laboratory,molded in accordance with Procedure C of Annex A1of Practice D4703, and tested using this test method.The data are for comparison with the data of the same samples tested by Practice D2839. Each test result is an individual determination.Each laboratory obtained six test results for each material.12.2.2Samples Prepared Using Practice D2839in Each Laboratory—Table4is based on a round robin9conducted in 1994in accordance with Practice E691,involving seven materials tested by10to15laboratories.For each material,all of the samples were prepared by each laboratory in accordance with Practice D2839.Each test result is an individual deter-mination.Each laboratory obtained six test results for each material.12.3Concept of r and R—Warning—The following expla-nations of r and R(12.3-12.3.3)are only intended to present a meaningful way of considering the approximate precision of this test method.The data in Table1should not be rigorously applied to acceptance or rejection of material,as those data are specific to the round robin and may not be representative of other lots,conditions,materials,or ers of this test method should apply the principles outlined in Practice E691to generate data specific to their laboratory and materi-als,or between specific laboratories.The principles of12.3-12.3.3would then be valid for each data.If S r and S R have been calculated from a large enough body of data,and for test results that were averages from testing one specimen:12.3.1Repeatability Limit,r(Comparing two test results for the same material,obtained by the same operator using the 6Supporting data are available from ASTM Headquarters.Request RR:D20-1123.TABLE2Precision Data Summary—Polyethylene DensityMaterial Average Density,g/cm3S r A S R B r C R D10.91960.000290.001060.000820.004520.93190.000120.000800.000340.002330.95270.000330.001160.000930.003340.96230.000620.001140.001800.0033A Sr=within-laboratory standard deviation for the indicated material.It is obtained by pooling the within-laboratory standard deviations of the test results from all of the participating laboratories.B SR =between-laboratories reproducibility,expressed as standard deviation,for the indicated material.C r=within-laboratory repeatability limit=2.8Sr .D R=between-laboratories reproducibility limit=2.8SR.same equipment on the same day)—The two test results should be judged not equivalent if they differ by more than the r value for that material.12.3.2Reproducibility Limit,R (Comparing two test results for the same material,obtained by different operators using different equipment in different laboratories)—The two test results should be judged not equivalent if they differ by more than the R value for that material.12.3.3Any judgment in accordance with 12.2.1or 12.2.2would have an approximate 95%(0.95)probability of being correct.12.3.4Bias —There are no recognized standards by which to estimate the bias of this test method.13.Keywords13.1density;film;gradient;plaque;polyolefins;polyeth-ylene;polypropylene;preparationAPPENDIXES(Nonmandatory Information)X1.FLOAT CALIBRATION—ALTERNATIVE TEST METHODX1.1This test method of float calibration has been found by one laboratory to save time and give the same accuracy as the standard test method.Its reliability has not been demon-strated by round-robin data.X1.1.1Prepare a homogeneous solution whose density is fairly close to that of the float in question.X1.1.2Fill a graduate about 3⁄4full with the solution,drop in the float,stopper,and place in a thermostatted water bath near 23°C.Fill a tared two-arm pycnometer (Test Method D 941,or equivalent)with the solution.Place the pycnometer in the bath.X1.1.3Vary the bath temperature until the solution density is very near to that of the float.(If the float was initially on the bottom of the graduate,lower the bath temperature until the float rises;if the float floated initially,raise the bath tempera-ture until the float sinks to the bottom.)X1.1.4Change the bath temperature in the appropriate direction in increments corresponding to solution density increments of about 0.0001g/cm 3until the float reverses direction of movement as a result of the last change.This must be done slowly (at least 15-min intervals between incremental changes on the temperature controller).Read the volume of liquid in the pycnometer.X1.1.5Change the bath temperature in increments in the opposite direction,as above,until a change in the float position again occurs.Read the volume of liquid in the pycnometer.N OTE X1.1—The float should rise off the bottom of its own volition.As a precaution against surface tension effects when the float is floating,the float should be pushed about halfway down in the liquid column and then observed as to whether it rises or falls.For this purpose,a length of Nichrome wire,with a small loop on the lower end and an inch or so of length extending above the liquid surface,is kept within the graduate throughout the course of the run.To push a floating float down,the cylinder is unstoppered and the upper wire end grasped with tweezers for the manipulations.The cylinder is then quickly restoppered.X1.1.6Remove the pycnometer from the bath,dry the outside,and set aside until the temperature reaches ambient temperature.Weigh and calculate the “in vacuo”mass of solution to ing the average of the two observed solution volumes,calculate the density of the solution to 0.0001g/cm 3.This solution density is also the float density.X1.1.7The pycnometer used should be calibrated for vol-ume from the 23°C calibration,although the reading is taken at a different temperature.The alternative test method is based on a number of unsupported assumptions but generally gives the same results as that described in 7.2within the accuracyTABLE 3Precision Data—Density,g/cm 3Material Number ofLaboratoriesDensity,g/cm 3S r A S R B r C R DB 70.91390.000290.000880.000810.00245F 80.91770.000180.000790.000510.00221G 80.92200.000280.000710.000780.00197A 110.93560.000360.001050.001000.00294E 110.95280.000460.001180.001290.00331C 100.96190.001000.001000.001030.00281D90.96330.000360.001370.001010.00384AS r =within-laboratory standard deviation for the indicated material.It is obtained by pooling the within-laboratory standard deviations of the test results from all of the participating laboratories.BS R =between-laboratories reproducibility,expressed as standard deviation,for the indicated material.Cr =within-laboratory repeatability limit =2.8S r .DR =between-laboratories reproducibility limit =2.8S R .TABLE 4Density,g/cm 3,Samples Prepared in Accordance WithPractice D 2839MaterialNumber ofLaboratoriesDensity,g/cm 3S r A S R B r C R D B 100.91390.000260.000780.000720.00219F 120.91790.000200.000780.000550.00220G 130.92220.000300.000730.000850.00206A 150.93570.000410.000800.001150.00225E 140.95300.000390.000920.001090.00258C 110.96150.000300.000730.000850.00206D100.96260.000530.001090.001480.00305AS r =within-laboratory standard deviation for the indicated material.It is obtained by pooling the within-laboratory standard deviations of the test results from all of the participating laboratories.BS R =between-laboratories reproducibility,expressed as standard deviation,for the indicated material.Cr =within-laboratory repeatability limit =2.8S r .DR =between-laboratories reproducibility limit =2.8S R.required.In case of disagreement,the method described in7.2shall be the referee method.X2.GRADIENT TUBE PREPARATIONX2.1Method A—Stepwise Addition:X2.1.1Using the two liquids that will give the desireddensity range,and sensitivity(S)in grams per cubic centimetreper millimetre,prepare four or more solutions such that eachdiffers from the next heavier by80S g/cm3.The number ofsolutions will depend upon the desired density range of thecolumn and shall be determined as follows:Numbers of solutions to prepare density2gradient(X2.1)column~Note X2.1!5~11D22D1!/80S(X2.1)where:D2=upper limit of density range desired,D1=lower limit of density range desired,andS=sensitivity,in grams per cubic centimetre per milli-metre.N OTE X2.1—Correct the value of(1+D2−D1)/80S to the nearestwhole number.To prepare these solutions,proceed as follows:Using the hydrometers,mix the two liquids in the proportions necessary to obtain the desired solutions.Remove the dissolved air from the solutions by gentle heating or an applied vacuum.Then check the density of the solutions at2360.1°C by means of the hydrometers and,if necessary,add the appropriate air-free liquid until the desired density is obtained.N OTE X2.2—Where aqueous mixtures are used,0.5%aqueous sodium acetate should be used to prepare the mixture.This reduces the formation of bubbles from dissolution.N OTE X2.3—In order to obtain a linear gradient in the tube,it is very important that the solutions be homogeneous and at the same temperature when their densities are determined.It is also important that the density difference between the solutions consecutively introduced into the tube be equal.X2.1.2By means of a siphon or pipet,fill the gradient tube with an equal volume of each liquid starting with the heaviest, taking appropriate measures to prevent air from being dis-solved in the liquid.After the addition of the heaviest liquid, very carefully and slowly pour an equal volume of the second heaviest liquid down the side of the column by holding the siphon or pipet against the side of the tube at a slight angle. Avoid excess agitation and turbulence.In this manner,the “building”of the tube shall be completed.N OTE X2.4—Density gradients may also be prepared by reversing the procedure described in X2.1.1and X2.1.2.When this procedure is used, the lightest solution is placed in the tube and the next lightest solution is very carefully and slowly“placed”in the bottom of the tube by means of a pipet or siphon which just touches the bottom of the tube.In this manner the“building”of the tube shall be completed.X2.1.3If the tube is not already in a constant-temperature bath,transfer the tube,with as little agitation as possible,to the constant-temperature bath maintained at2360.1°C.The bath level should approximately equal that of the solution in the tube,and provision should be made for vibrationless mounting of the tube.X2.1.4For every254mm of length of tube,dip a minimum offive clean calibratedfloats,spanning the effective range of the column,into the less dense solvent used in the preparation of the gradient tube and add them to the tube.By means of a stirrer(for example,a small coiled wire or other appropriate stirring device)mix the different layers of the tube gently by stirring horizontally until the least dense and most densefloats span the required range of the gradient tube.If,at this time,it is observed that thefloats are“bunched”together and not spread out evenly in the tube,discard the solution and repeat the procedure.Then cap the tube and keep it in the constant-temperature bath for a minimum of24h.X2.1.5At the end of this time,plot the density offloats versus the height offloats to observe whether or not a fairly smooth and nearly linear curve is obtained.Some small irregularities may be seen,but they should be slight.Whenever an irregular curve is obtained,the solution in the tube shall be discarded and a new gradient prepared.N OTE X2.5—Gradient systems may remain stable for several months. X2.2Method B—Continuous Filling with Liquid Entering Gradient Tube Becoming Progressively Less Dense:X2.2.1Assemble the apparatus as shown in Fig.X2.1,using beakers of the same diameter.Then select an appropriate amount of two suitable liquids which previously have been carefully deaerated by gentle heating or an applied vacuum. Typical liquid systems for density-gradient tubes are listed in Table1.The volume of the more dense liquid used in the mixer (Beaker B shown in Fig.X2.1)must be equal to at least one half of the total volume desired in the gradient tube.An FIG.X2.1Apparatus for Gradient TubePreparationestimate of the volume of the less dense liquid required in Beaker A to establishflow from A to B can be obtained from the following inequality:V A.d B V B/d A(X2.2) where:V A=starting liquid volume in Beaker A,V B=starting liquid volume in Beaker B,d A=density of the starting liquid in Beaker A,andd B=density of the starting liquid in Beaker B.A small excess(not exceeding5%)over the amount indicated by the preceding equality will induce the required flow from A toB and yield a very nearly linear gradient column.X2.2.2Place an appropriate volume of the denser liquid into Beaker B of suitable size.Prime the siphon between Beaker B and the gradient tube with liquid from Beaker B and then close the stopcock.The delivery end of this siphon should be equipped with a capillary tip forflow control.N OTE X2.6—Techniques acceptable for transfer of liquid into the gradient tube are siphon/gravity,vacuum-filling,use of a peristatic pump, or any other technique useful to transfer liquids in a controlled manner.It is important to control theflow in order to maintain a desirable gradient. X2.2.3Place an appropriate volume of the less dense liquid into Beaker A.Prime the siphon between Beakers A and B with the liquid from Beaker A and close the stopcock.Start the highspeed,propeller-type stirrer in Beaker B and adjust the speed of stirring such that the surface of the liquid does not fluctuate greatly.X2.2.4Start the delivery of the liquid to the gradient tube by opening the necessary siphon-tube stopcocks simultaneously. Adjust theflow of liquid into the gradient tube at a very slow rate,permitting the liquid toflow down the side of the tube.Fill the tube to the desired level.N OTE X2.7—Preparation of a suitable gradient tube may require1to 11⁄2h or longer,depending upon the volume required in the gradient tube. X2.3Method C—Continuous Filling with Liquid Entering Gradient Tube Becoming Progressively More Dense:X2.3.1This method is essentially the same as Method B with the following exceptions:X2.3.2The lighter of the two liquids is placed in Beaker B. X2.3.3The liquid introduced into the gradient column is introduced at the bottom of the column.Thefirst liquid introduced is the lighter end of the gradient and is constantly pushed up in the tube as the liquid being introduced becomes progressively heavier.X2.3.4The liquid from Beaker A must be introduced into Beaker B by directflow from the bottom of Beaker A to the bottom of Beaker B,rather than being siphoned over as it is in Method B.Filling the tube by this method may be done more rapidly than by Methods A or B.The stopcock between Containers A and B should be of equal or larger bore than the outlet stopcock.A schematic drawing of the apparatus for Method C is shown in Fig.X2.2.REFERENCES (1)Linderstrøm-Lang,K.,“Dilatometric Ultra-Micro-Estimation of Pep-tidase Activity,”Nature,NATRA,V ol139,1937,p.713.(2)Linderstrøm-Lang,K.,and Lanz,H.,“Enzymic Histochemistry XXIXDilatometric Micro-Determination of Peptidase Activity,”Comptesrendus des gravaus de laboratorie Carlsberg,Serie Chimique,V ol21,1938,p.315.(3)Linderstrøm-Lang,K.,Jacobsen,O.,and Johansen,G.,“Measurementof the Deuterium Content in Mixtures of H2O and D2O,”ibid.,V ol23,1938,p.17.(4)Jacobsen,C.F.,and Linderstrøm-Lang,K.,“Method for Rapid Deter-mination of Specific Gravity,”Acta Physiologica Scandinavica,AP-SCA,V ol1,1940,p.149.(5)Boyer,R.F.,Spencer,R.S.,and Wiley,R.M.,“Use of Density-Gradient Tube in the Study of High Polymers,”Journal of Polymer Science,JPSCA,V ol1,1946,p.249.(6)Anfinsen,C.,“Preparation and Measurement of Isotopic Tracers:ASymposium Prepared for the Isotope Research Group,”Edwards,J.W.,Publishers,Ann Arbor,MI,1946,p.61.(7)Tessler,S.,Woodberry,N.T.,and Mark,H.,“Application of theDensity-Gradient Tube in Fiber Research,”Journal of Polymer Sci-ence,JPSCA,V ol1,1946,p.437.(8)Low,B.W.,and Richards,F.M.,“The Use of the Gradient Tube forthe Determination of Crystal Densities,”Journal of the American Chemical Society,JACSA,V ol74,1952,p.1660.(9)Sperati,C.A.,Franta,W.A.,and Starkweather,H.W.,Jr.,“TheMolecular Structure of Polyethylene V,the Effect of Chain Branching and Molecular Weight on Physical Properties,”Journal of the Ameri-can Chemical Society,JACSA,V ol75,1953,p.6127.(10)Tung,L.H.,and Taylor,W.C.,“An Improved Method of PreparingDensity Gradient Tubes,”Journal of Polymer Science,JPSCA,V ol 21,1956,p.144.(11)Mills,J.M.,“A Rapid Method of Construction Linear DensityGradient Columns,”Journal of Polymer Science,V ol19,1956,p.585.(12)Wiley,R.E.,“Setting Up a Density Gradient Laboratory,”PlasticsTechnology,PLTEA,V ol8,No.3,1962,p.31.FIG.X2.2Apparatus for Gradient TubePreparation。

VFCD1505中文资料

VFCD1505中文资料

Document Number: 63109For any questions, contact: foil@VFCD1505 (Z-Foil Technology)Vishay Foil ResistorsZ-Foil Surface Mount Flip Chip Voltage DividerTCR Tracking of 0.1 ppm/°C, Absolute TCR ± 0.05 ppm/°C,with Resistance Ratio Stability of 0.005 % (50 ppm)INTRODUCTIONBulk Metal ® Z-foil (BMZF) technology out-performs all other resistor technologies available today for applications that require ultra high precision and ultra high stability.The new Z-foil technology provides a significant reduction of the resistive element’s sensitivity to changes of temperature due to ambient temperature variations (TCR) and to self heating when power is applied (power coefficient).Model VFCD1505 offers low TCR (both absolute and tracking), excellent load life stability, tight tolerance,excellent ratio stability, low thermal EMF and low current noise, all in one package. 0.05 ppm/°C absolute TCR removes errors due to temperature gradients.The VFCD1505 surface mount divider provides tight tolerance matching and TCR tracking between 2 resistors simultaneously etched on one piece of foil on a common substrate. The electrical specifications of this integrated construction offers improved performances and better real estate utilization over discrete resistors and matched pairs.Our application engineering department is available to advise and make recommendations for non-standard technical requirements and special applications, please contact us.FEATURES•Temperature coefficient of resistance (TCR):absolute: (table 1)± 0.05 ppm/°C (typical 0 °C to + 60 °C)± 0.2 ppm/°C (typical - 55 °C to + 125 °C,+ 25 °C ref.)Tracking: (table 1)0.1 ppm/°C typical•Resistance range: 1K to 10K•Vishay Foil resistors are not restricted to standard values/ratios, we can supply specific “as required” values/ratios at no extra cost or delivery (e.g 2K234/5K456)•Power coefficient tracking: ”ΔR due to self heating”5 ppm at rated power•Short time overload: ± 0.005 %•Tolerance: absolute and resistance ratio: to 0.01 %•Load life stability (0.1 W at 70 °C, 2000 h)Absolute: 0.01 %Ratio: 0.005 %•Electrostatic discharge (ESD) up to 25 000 V•Power rating at 70 °C: entire package: 0.1 W, divided between the two resistors proportionally to their value •Non-inductive, non-capacitive design •Thermal EMF: 0.05 µV/°C typical •Current noise: < - 40 dB•Rise time: 1 ns effectively no ringing •Non inductive: < 0.08 µH •Voltage coefficient: < 0.1 ppm/V •Non hot spot design•Terminal finishes available:lead (Pb)-freetin/lead alloy •For better performances please contact usAPPLICATIONS•Instrumentation amplifiers •Bridge networks •Differential amplifiers •Ratio arms in bridge circuits •Medical and test equipment •Military•Airborne etc.* Pb containing terminations are not RoHS compliant, exemptions may applyBottom ViewRoHS*COMPLIANTVFCD1505 (Z-Foil Technology)Vishay Foil ResistorsZ-Foil Surface Mount Flip Chip Voltage DividerTCR Tracking of 0.1 ppm/°C , Absolute TCR ± 0.05 ppm/°C ,with Resistance Ratio Stability of 0.005 % (50 ppm) For any questions, contact: foil@Document Number: 63109Note•Additional ratios are available. For the relevant VCODES for ordering, please contact application engineering using the footer belowNote1. ΔR's plus additional 0.01 Ω for measurement errorTABLE 1 - RESISTANCE VALUES/RATIO AND TCR CHARACTERISTICSPOPULAR VALUES VCODESABSOLUTE TCR(- 55 °C TO + 125 °C, + 25 °C REF.)TCR TRACKING TOLERANCE MATCHINGTYPICALMAXIMUMTYPICALMAXIMUM10K/10K V0001± 0.2 ppm/°C± 1 ppm/°C0.1 ppm/°C0.5 ppm/°C0.01 %5K/5K V00021K/1K V00042K/2K V00595K/10K V0005± 0.2 ppm/°C± 1 ppm/°C0.4 ppm/°C1.0 ppm/°C0.01 %2.5K/10K V00601K/9K V0056± 0.2 ppm/°C ± 1 ppm/°C 0.4 ppm/°C 1.0 ppm/°C 0.02 %1K/10KV0064TABLE 2 - TYPICAL PERFORMANCE SPECIFICATIONSTESTMIL-PRF-55342H CHARACTERISTIC E ΔR LIMITS 1)VFCD1505 ΔRATIO Thermal shock0.10 %0.005 % (50 ppm)Low temperature operation 0.10 %0.005 % (50 ppm)Short time overload 0.10 %0.005 % (50 ppm)High temperature exposure 0.10 %0.01 % (100 ppm)Resistance to soldering heat 0.20 %0.01 % (100 ppm)Moisture resistance 0.20 %0.005 % (50 ppm)Load life (ratio stability)-0.005 % (50 ppm)Maximum working voltage for each element 22 V Weight 10 mgPackagingWaffle pack standard, tape and reel availableDocument Number: 63109For any questions, contact: foil@VFCD1505 (Z-Foil Technology)Z-Foil Surface Mount Flip Chip Voltage Divider TCR Tracking of 0.1 ppm/°C , Absolute TCR ± 0.05 ppm/°C ,with Resistance Ratio Stability of 0.005 % (50 ppm)Vishay Foil ResistorsNotes*Application engineering release: for non-standard requests, please contact application engineering **For examples of VCODES see table 1TABLE 3 - GLOBAL PART NUMBER INFORMATIONNEW GLOBAL PART NUMBER:Y1685V0001QQ9R (preferred part number format)DENOTES PRECISIONVCODE**TOLERANCE MATCHPACKAGING YRESIST ANCE VALUE CODET = 0.01 %Q = 0.02 %A = 0.05 %R = tape and reel W = waffle packPRODUCT CODE ABSOLUTE TOLERANCEAER*1685 = VFCD1505T = ± 0.01 %Q = ± 0.02 %A = ± 0.05 %B = ± 0.1 %C = ± 0.25 %D = ± 0.5 %F = ± 1.0 %0 = standard product, tin/lead terminations9 = standard product, lead (Pb)-free terminations Other = customFOR EXAMPLE: ABOVE GLOBAL ORDER Y1685 V0001 Q Q 9 R:TYPE: VFCD1505VALUES: 10K/10KABSOLUTE TOLERANCE: ± 0.02 %TOLERANCE MATCH: 0.02 %TERMINATION: lead (Pb)-free PACKAGING: tape and reelHISTORICAL PART NUMBER:VFCD1505 10K/10K TCR0.2Q Q S T (will continue to be used)VFCD150510K/10K TCR0.2Q Q ST MODEL OHMIC VALUE TCRCHARACTERISTICABSOLUTE TOLERANCE TOLERANCE MATCH TERMINATION PACKAGING VFCD1505R 1 = 10 k ΩR 2 = 10 k ΩT = ± 0.01 %Q = ± 0.02 %A = ± 0.05 %B = ± 0.1 %C = ± 0.25 %D = ± 0.5 %F = ± 1.0 %T = 0.01 %Q = 0.02 %A = 0.05 %S = lead (Pb)-free B = tin/lead alloyT = tape and reel W = waffle pack685V 0010Y 1Q9Q RDisclaimer Legal Disclaimer NoticeVishayAll product specifications and data are subject to change without notice.Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.Product names and markings noted herein may be trademarks of their respective owners.元器件交易网Document Number: 。

雷迪公司RD7100

雷迪公司RD7100

4E N G L I S 序言关于本指南注意:本指南提供了RD7100定位仪与发射机的基本操作说明。

本指南中还包含重要的安全信息和指导说明,在操作RD7100定位仪与发射机前应完整阅读本指南。

本指南仅用作快速参考指南。

有关详细说明,包括配件的使用、eCert™, CALSafe™以及使用记录的帮助,请参考RD7100定位仪操作手册和RD Manager™操作手册,可从下载上述内容。

在线用户手册库还包含SurveyCERT+以及RD Manager操作手册的链接。

RD7100定位仪和Tx发射机系列的合格证书请见。

E NRD7100 定位仪12345687131415152629283031161718192021222427252312 颗或更多颗卫星探测到9-11 颗卫星探测到6-8颗卫星探测到3-5颗卫星探测到已获取GPS卫星锁定GPS启动,寻找卫星锁定 定位仪功能1. 键盘2. 含自动背光的LCD显示屏3. 扬声器4. 电池盒5. 可选锂电池组6. 配件连接器7. 耳机连接器8. USB端口(位于电池盒内部)定位仪键盘9. 电源键10. 频率键11. 上下箭头12. 天线键定位仪屏幕图标13. 带峰值标识的信号强度图表14. 信号强度读数15. 谷值/比例导向箭头16. 电量图标17. 灵敏度读数18. 音量图标19. 无线电模式20. 电源模式21. 配件/测量图标22. A型架图标23. 频率/电流/菜单读数24. 天线模式图标: 表示天线模式选择:峰值/峰值+/谷值/导向25. 探头图标:表示已经选定一个探头信号源。

26. 管线图标:表示已经选定一个管线信号源。

27. 罗盘:表示定位管线或探头与定位仪的相对方向。

28. 发射机待机指示器29. 深度读数仅限带GPS功能的定位仪:30. GPS状态图标31. GPS信号质量图标Tx-1,Tx-5和Tx-10发射机13425发射机功能1. 键盘2. LCD显示屏3. 可拆卸配件盒4. 1号电池盒5. 可选锂电池组发射机键盘6. 电源键7. 频率键8. 上下箭头9. 测量键发射机屏幕图标10. 电池电量图标11. 操作模式读数12. 待机图标13. 输出电压水平指示器14. 夹钳图标:表示已连接信号夹钳或其它配件。

第二章1505中文说明书2

第二章1505中文说明书2

第二章 应用提示概述本章节的内容使用户对505数字式调速器的功用及如何应用于控制系统有所了解采用图解的方法介绍了各种典型的应用实例并对它们的功能作了解释还给出了每种应用实例的编程和起动/运行方式的提示以帮助编程组态人员按使用要求来组态505调速器在每种应用图示中给出了基本的外围设备以便让用户了解这些设备是如何与505相连以扩大系统功能转速/负荷PID转速PID能控制和限制机组的转速/频率机组的负荷505调速器的PID在孤立运行时能用于控制机组的转速/频率在并列于无穷大总线电网运行时能控制机组的负荷转速PID能被组态成通过其执行机构的输出信号或者通过来自发电机功率变送器的420mA模拟输入信号来检测机组的负荷当被组态为通过模拟输入来检测和控制发电机负荷时就检测和控制机组的实际负荷通过采用发电机负荷信号控制检测且补偿汽轮机的进汽或排汽压力变化从而提供实际负荷控制转速PID及其给定值限制的组合使该PID能够限制机组的负荷当用作机组负荷限制器时建议将505组态为仅检测和控制发电机的实际负荷如果将505系统用于软电网电网频率大幅度地变化建议使用辅助PID来执行机组负荷限制而不使用转速PID辅助PID能将505调速器的辅助PID编程组态成控制或限制汽轮机进汽压力汽轮机进汽流量汽轮机排汽压力汽轮机排汽流量发电机功率输出电厂或电网线路输入/输出功率2-1过程温度压缩机进口压力压缩机进口流量压缩机出口压力压缩机出口流量任何与机组负荷进口压力/流量或排汽压力/流量有关的过程参数取决于组态情况505的辅助PID能用于作为限制器或控制回路用指令来投入/退出当组态作为限制器时该PID的输出与转速PID的输出采用信号低选这种组态允许辅助PID按所检测的参数来限制机组的负荷当辅助PID被组态作为一个控制回路时它必须由505面板触点输入或Modbus通信所给出的指令来投入和退出采用这种组态当辅助PID投入时转速PID退出控制但跟踪辅助PID的输出控制或限制所列任一参数必须将505组态成接受表示该参数值的辅助模拟输入信号但有一例外即当控制或限制发电机负荷时能将辅助PID组态成使用或与转速PID共享KW/机组负荷输入串级PID能将505调速器的串级PID编程组态成控制汽轮机进汽压力汽轮机进汽流量汽轮机排汽压力汽轮机排汽流量发电机功率输出电厂或电网线路输入/输出功率过程温度压缩机进口压力压缩机进口流量压缩机出口压力压缩机出口流量任何与机组负荷进口压力或排汽压力有关的过程参数取决于组态情况505调速器的串级PID能用于控制所列任一参数该PID必须由505面板触点输入或Modbus通信所给出的指令来投入和退出串级PID串接于转速PID以改变机组的转速/负荷通过直接改变转速PID 的给定值串级PID能改变机组的转速/负荷以控制其输入参数这种组态能实现二种控制方式转速/负荷和串级间的无扰切换2-2应用实例本章节介绍的应用实例并不表示所有可能的控制配置和组合但是这些实例能作为那些手册中没有列出或展示的控制组合或参数的应用参考对于没有给出的要求控制参数和组合的应用可以参考手册中所给出的一个或多个典型应用组态并与要求的控制组态比较然后用要求的控制参数来取代实例中给出的控制参数例如要将505组态为执行汽轮机的排汽压力限制功能参考实例1具汽轮机进汽压力限制的泵或压缩机出口压力控制使用这一实例用排汽压力来取代进汽压力而与规定为控制泵或压缩机出口压力的任何编程设定值无关本章所示实例概述如下实例1具进汽压力限制的泵或压缩机出口压力控制 实例2具自动同步和发电机功率限制的进汽压力控制 实例3具电厂输入/输出功率限制的排汽压力控制 实例4具DRFD 伺服接口的电厂输入/输出功率限制 实例5具孤立方式同步负荷分配控制的进汽压力控制实例6具孤立方式同步负荷分配控制的电厂输入/输出功率控制 实例7感应式发电机组控制表2-1概括了每个所示实例的特点和功能实 例应 用 1 2 3 4 5 6 7 机械驱动X 同步发电机驱动X X X X X 汽轮机类型 感应式发电机驱动X 辅助限制X X X X 辅助控制X 串级控制X X X X X 同步操作X X X X X 负荷分配X X控 制通 道 频率控制X X 进汽压力控制X X 最低进汽压力限制X KW/负荷控制X KW/负荷限制X X 输入/输出负荷控制X X控 制方 式 输入/输出负荷限制X 数字式同步负荷分配DSLC X X X X X 主同步负荷分配MSLCX 有功功率变送器RPSX X X X 外 围设 备数字式远程末级驱动器DRFDX 表2-1 实例一览表2-3实例1具汽轮机进汽压力限制的泵或压缩机出口压力控制图2-1 具汽轮机进汽压力限制的泵或压缩机出口压力控制 这是一种典型的泵或压缩机控制的应用实例在这种应用中505通常被组态为控制泵/压缩机的出口压力并根据低汽轮机进汽压力来限制调节阀阀位在该应用实例中同时使用了辅助和串级方式其它应用中可以采用也可以不采用图2-1中所示以及下面介绍的所用功能采用这种应用通过串级控制回路在505的内部执行泵或压缩机的出口压力控制通常所控制的出口压力会影响许多其它的电厂过程参数可以采用电厂集散控制系统DCS来监视电厂过程状态和设定串级给定值这些都可以通过Modbus通信离散型升/降指令或模拟给定值信号来执行对于这种应用要求具有一种限制型的控制功能以便在系统总管出现问题时保持总管的压力由于辅助PID是唯一具备这种功用的控制回路因此它被用来检测汽轮机的进汽压力并根据低进汽压力设定值来限制调节阀的阀位如果采用电厂集散控制系统通过控制多台泵或压缩机的负荷负荷分配来检测和控制过程DCS可以通过组态的远程转速给定值模拟输入直接与505的转速PID给定值相连这使DCS能通过直接同时改变多台泵或压缩机的转速来检2-4测和补偿电厂和系统的工况可以通过组态的升/降触点420mA输入Modbus指令或505操作屏来改变505所有PID控制回路的给定值转速辅助串级下面所述的提示可供应用编程人员组态505时作参考以实现图2-1所示的控制和限制作用实例1的505组态提示操作参数该实例不是用于驱动发电机场合Generator Application? No串级控制组态串级控制回路以通过1#模拟输入接受泵/压缩机的出口压力信号Analog Input 1# Function: Cascade Input因为采用由回路供电的二线制变送器与该信号相连需求打开505的后盖装上JPR10505被组态为接受来自屏装式开关的触点输入以便从外部投入和退出出口压力控制Contact Input 1 Function: Casc Control Enable泵/压缩机的出口压力正比与汽轮机的进汽阀位置因此输入不必反向Invert Cascade Input? No在这应用实例中不采用给定值跟踪因为系统的压力给定值决不会变化Use Setpoint Tracking? No为了防止由于串级PID控制而使发电机被反向驱动转速给定值的下限值设置为高于同步转速的3%即3605.4rpm如果额定转速为3600rpm且使用5%的不等率即为5.4rpm505自动将转速给定下限值限制在3%的最小值最小负荷如果要求允许PID降负荷至低于该给定值服务方式的Cascade ControlSetting, Use Min Load设定值必须设置为No”在这种情况下由于串级PID不与其它控制回路共同承担排汽压力控制就不需要设置不等率Cascade Droop = 0%辅助控制辅助控制回路被组态成通过2#模拟输入接受汽轮机的进汽总管压力信号Analog Input #2 Function: Auxiliary Input因为是二线制使用回路供电变送器与该信号相连打开505调速器的后盖装上JPR8辅助输入被反向以便达到正确的控制作用提高汽轮机进汽总管压力必须关小调节阀这称作为反作用因此要求输入反向Invert Aux Input? Yes2-5将辅助PID编程组态为限制器Use Aux Enable? No由于辅助PID只作为限制器使用不与其它控制回路共同承担进汽压力控制因此不需要设置不等率Aux Droop = 0%跳 闸在这个实例中可以通过多种设备使汽轮机跳闸其中之一就是505调速器为了给505调速器提供汽轮机巳跳闸的反馈信号跳闸回路的触点被接至外部紧急停机输入TB12在这应用实例中只有在505使汽轮机跳闸时才出现Governor Trip(调速器跳闸)指示而对由其它设备触发的机组停机无指示Turbine Start: Ext Trips in Trip Relay?-No由于在跳闸回路中采用了停机继电器如果505触发跳闸就由该继电器使汽轮机停机因此就需要采用附加继电器来指示任何汽轮机跳闸和由505触发的跳闸3#继电器按下述组态以指示任何汽轮机跳闸Relay: Use Relay #3 –Yes; Relay #3 is a Level Switch? –No; Relay #3 –Energizes on –Shutdown Condition4# 继电器按下述组态以指示由505触发的跳闸Relay: Use Relay#4 – Yes; Relay #4 is a Level Switch? – No; Relay #4 Energizes on – trip Relay注意4# 继电器在跳闸状态下释放不包括外部跳闸输入3# 继电器在跳闸停机状态下激励实例1的起动和运行方式提示能够自动半自动或手动执行起动和升速至暖机/额定或最低转速位置机组起动后能够采用暖机/额定或顺序自动起动功能如果组态的话使调速器升速至额定转速位置或者由操作人员给出升速指令手动提升汽轮机转速机组起动后并控制在最低/要求的转速位置此时就可通过触点输入Modbus 指令或505面板来投入串级控制泵或压缩机的出口压力串级控制投入时如果实际出口压力与给定值不一致调速器将自动以转速给定值慢速率设定值提升汽轮机的转速直至泵或压缩机的出口压力与给定值达到一致在这应用实例中辅助控制仅作为限制器使用因此无需作投入操作如果在任何时候汽轮机的进汽压力降至低于辅助给定值辅助PID将控制调节阀并关小调节阀以保持进汽总管压力可调值与速率的有关资料请参见手册中的服务方式有关章节2-6实例2具自动同步和发电机功率限制的进汽压力控制图2-2 具自动同步和发电机功率限制的进汽压力控制这是一个典型的汽轮发电机组应用实例这里电厂的过程蒸汽汽轮机进汽总管压力要求控制在某一压力下在这应用实例中汽轮机的负荷根据电厂过程蒸汽的要求量而变化实例中同时采用了辅助和串级控制方式其它的应用可以采用也可以不采用图2-2及下面介绍的所用功能应用实例中通过串级PID控制回路在505内执行汽轮机的进汽总管压力控2-7制这是采用这种功能的一种理想控制回路因为它能够由系统操作人员按需要投入或退出这使系统操作人员完全可以按照需要确定何时从过程压力控制切换到减压站或汽轮机的旁通阀控制反之亦然如图2-2所示采用Woodward的有功功率变送器来检测发电机的负荷并提供给505的KW/机组负荷输入这样在机组起动和停机期间的并网运行时就能由转速PID来调整和控制发电机的负荷正常运行时机组的负荷由控制进汽压力的串级PID所确定在这应用实例中由于汽轮机的负荷变化较大因此采用限制器来防止发电机的超发该保护功能由组态为限制器的辅助PID来实现通过将辅助PID组态为限制器并采用发电机负荷输入作为PID的控制参数就能对发电机的最大负荷进行限制在这应用实例中DSLC只作为同步操作使用因为DSLC是通过模拟信号与505相连的所以必须对505的模拟输入进行编程组态505调速器的6#模拟输入是唯一能直接与DSLC相容的一个模拟输入因此要求对该输入进行组态以接受DSLC的转差信号当组态了同步操作输入/功能就能通过触点输入功能键Modbus指令或505的操作面板来投入该输入如图2-2所示在实例中使用了屏装式DPST开关以便在DSLC和505中选择自动同步操作可以通过组态的升/降触点组态的420mA输入, Modbus指令或505的操作面板来改变505的所有PID给定值转速辅助串级下面所述的提示可供应用编程人员组态505时参考以实现图2-2所示的控制和限制作用实例2的505组态提示操作参数这是一种驱动发电机的应用场合Generator Application? Yes如果选择驱动发电机应用就要求对发电机和电网断路器触点输入进行编程组态Contact Input #1 Function: Generator Breaker,(Contact Input #2Function: Utility Tie Breaker)505被组态为通过1#模拟输入来检测来自有功功率变送器的发电机负荷信号Analog Input 1# Function: KW/Unit Load Input由于有功功率变送器的KW读数输出是自供电的因此需打开505的后盖装上JPR11发电机的负荷控制并网运行时是通过转速PID来控制且组态选用KW不等率Use KW Droop? Yes为了达到良好的响应和负荷调整分辨率不等率被设置为额定转速的5%Droop=5%如果电厂从电网退出作孤立运行要求随时切换至频率控制Use FreqArm/Disarm? No2-8串级控制串级控制回路被组态成通过2#模拟输入来接受进汽总管的压力信号AnalogInput #2 Function: Cascade Input因为采用由回路供电的二线制变送器与该信号相连需打开505的后盖装上JPR8505被组态成接受来自屏装式开关的触点输入以便从外部投入和退出进汽压力控制Contact Input #3 Function: Casc Control Enable串级输入被反向以达到正确的控制作用要提高汽轮机的进汽总管压力必须关小调节阀这称作为反作用并要求输入反向Invert Cascade Input? Yes在这应用实例中不采用给定值跟踪功能因为系统的压力给定值决不会变化从而使系统的起动更为方便Use Setpoint Tracking? No为了防止由于串级PID的控制而使发电机被反向驱动转速给定值的下限值设置为高于同步转速5rpm在这种情况下由于串级PID在正常运行期间不与其它控制回路分担进汽压力控制因此不需要设置不等率Cascade Droop? = 0%辅助控制辅助控制被组态成通过KW/机组负荷输入接受发电机的负荷信号采用KW不等率Use KW Input? Yes机组的负荷正比于汽轮机进汽阀的阀位因此输入不需要反向Invert Aux Input? No辅助PID被组态作为负荷限制器Use Aux Enable? No在这种情况下因为辅助PID仅作为限制器使用不与其它控制回路分担发电机的负荷控制因此不需要设置不等率Aux Droop = 0%在这实例中只有在并网运行时才要求投入辅助 PID Tiebkr Open Aux Dsbl? Yes Genbkr Open Aux Dsbl? Yes自动同步操作505调速器的6#模拟输入被组态为接受用于自动同步操作的DSLC转差信号Analog Input #6 Function: Synchronizing Input采用这种组态模拟输入的范围为缺省设置值以便为较好的性能提供一定的增益系数因此不采用输入的4 mA 和20mA组态设定值也不需要进行编程组态组态一个触点用于投入同步操作模拟输入Contact Input #4 Function:Synch Enable实例2的起动和运行方式提示2-9能够自动半自动或手动执行起动和升速至暖机或最低转速位置的操作如果编程组态了暖机/额定或顺序自动起动功能的话机组起动后就能使用这些功能使调速器升速至额定转速位置另一种方法是操作人员按要求手动给出升速指令提高汽轮机的转速机组起动后且控制在额定转速位置此时可以手动或自动进行汽轮发电机组的同步操作系统操作人员能够通过自动-同步选择开关图2-2中的开关SW1来选择自动同步当该开关闭合时就投入505的同步输入并选择DSLC的自动同步功能当电厂至电网的线路断路器闭合时闭合机组的发电机断路器505将转速/负荷给定值阶跃变化至最低负荷值以减小反向驱动即发电机电动回转的可能性这最小负荷值取决于转速/负荷的给定值缺省设置值为3%可以通过505的服务方式来调整该缺省值Breaker Logic – Min Load Bias = 5同步后能通过升降转速/负荷给定值触点编程组态的420mA输入Modbus指令或者505的操作面板来调整505的负荷给定值这种负荷控制方式可以用于缓慢增加汽轮机的负荷从减压站或汽轮机的旁路阀接管控制电网断路器和发电机断路器闭合后能够通过触点输入Modbus指令或505的操作面板随时投入串级控制汽轮机的排汽压力控制采用这种组态串级控制投入后如果进汽总管的实际压力与给定值不一致调速器将以转速给定值慢速率设定值增加发电机的负荷至进汽总管的压与给定值达到一致在这应用实例中辅助控制被组态作为限制器使用且当电网和发电机断路器闭合时自动投入并网运行时如果进汽总管压力的要求量和/或其它系统工况试图迫使发电机超出其负荷极限值运行时辅助PID将对调节阀进行控制以限制发电机的负荷一旦系统工况要求机组负荷低于辅助设定值串级/转速PID将重新控制发电机的负荷2-10。

明纬电源型号文本

明纬电源型号文本

单组输出明纬电源[](NE有认证,外型小):
台湾明纬开关电源[MEANWELL]
NES-15 / NES-25 / NES-35 / NES-50
NES-200 / NES-350 / NED-35 / NED-50 / NED-75 / NED-100 /
台湾明纬开关电源三组输出明纬电源[]功率:从30W-155W,型号齐全;低价,高可靠;效率高,工作温度低;尺寸小,重量轻;内置滤波器,低纹波;一年保修;满载烧机测试;库存现货齐全,交货期短;……
台湾明纬开关电源四组输出明纬电源[]功率:60W、120W、180W、250W;低价,高可靠;效率高,工作温度低;尺寸小,重量轻;内置滤波器,低纹波;内附突入电流抑制电路;两年保修;满载烧机测试;库存现货齐全,交货期短;……
SC-150-27,SC-150-27,S-210-5,S-210-7.5,S-210-9,S-210-12,S-210-13.5,S-210-15,S-210-24,S-210-27,S-210-48,S-250-5,
S-250-12,S-250-15,S-250-24,S-250-27,S-250-48,S-320-5,S-320-7.5,S-320-12,S-320-13.5,S-320-15,S-320-24,S-320-27,S-320-48,
SP-75 / SP-100 / SP-150 / SP-200 / SP-240 / SP-320 / SP-480 /
台湾明纬开关电源[MEANWELL]-G3系列-
全机使用105oC高寿命电解电容
RS-15 / RS-25 / RS-35 / RS-50 / RS-75 / RS-100 / RS-150 / RD-35 /

RD1500中文操作手册-英国雷迪

RD1500中文操作手册-英国雷迪

RD1500 操作手册
1
© Radiodetection 2016
删除项目(增强版系统) 地图视图(增强版系统) 导出数据 系统信息 键盘测试 里程表校准 传感器测试 触摸屏 GPS
29 29 30 30 31 32 32 33 33
6.4 系统测试 ............................................................................ 30
缩放 (Zoom) 颜色 (Color) 滤波器 (Filter) 增益 (Gain) FrequenSee™ 土壤标定 注解 (Interp) 暂停 (Pause) 按钮(仅在不保存模式 (No Save Mode) 中才有) 画箭头(仅在不保存模式 (No Save Mode) 中才有) 44 47 47 48 48 49 50 52 52
6.2 系统设置 ............................................................................ 22
6.3 文件管理 ............................................................................ 27
QU
IC
K
DE
TE
CT
捷通智创
ห้องสมุดไป่ตู้IO
N
西安捷通智创仪器设备有限公司 029-89396188/400-029-3662

RD1500
操作手册
90/RD1500-OPMAN-CN/01

超宽频天线探地雷达
英国雷迪中国一级代理商: 西安捷通智创仪器设备有限公司

ZP1500D 用户手册说明书

ZP1500D 用户手册说明书

ZP1500D 用户手册高压差分探头修订历史目录1.安全须知 (1)1.1一般性安全概要 (1)1.2警示标志 (1)1.2.1面板图标意义 (1)1.2.2测量类别介绍 (2)1.3测量类别 (3)1.4保养与清洁 (4)2.产品简介 (5)2.1产品应用 (5)2.2产品特色 (5)3.技术参数 (6)3.1技术指标 (6)3.2普通技术规格 (7)3.3配件 (8)4.快速入门 (9)4.1操作基础 (9)4.1.1面板说明 (9)4.1.2功能检测 (10)4.1.3操作步骤 (10)4.1.4注意事项 (11)5.常见问题 (14)5.1具体问题阐述 (14)5.1.1上电后面板指示灯全灭 (14)5.1.2调零输出值偏大或调零时间较长 (14)5.1.3测量波形不能稳定显示或误差明显 (14)6.性能验证 (15)6.1直流精度 (15)6.2方波响应 (15)6.3直流共模抑制比 (16)7.装箱单 (17)8.免责声明 (18)1.安全须知为保证您能正确安全地使用本仪器,请务必遵守以下注意事项。

如果未遵守本手册指定的方法操作本仪器,可能会损坏本仪器的保护功能。

因违反以下注意事项操作仪器所引起的损伤,广州致远电子有限公司不予以承担责任。

1.1 一般性安全概要了解下列安全性预防措施,以避免受伤,防止损坏本产品或本产品连接的任何产品。

使用推荐的电源适配器电源适配器为5V/2A USB输出,符合CB认证要求。

使用正常接地的示波器不建议探头信号输出端浮地,请将探头输出线缆连接到正常接地的示波器设备上。

查看所有终端额定值为避免起火和过大电流的冲击,请查看产品所有的额定值和标记。

产品使用前,请仔细阅读用户手册以了解额定值的详细信息。

请勿开盖操作请勿在仪器外壳打开时运行本产品。

避免电路外露电源接通后,请勿接触外露的接头和元件。

防止触电危险适配器必须插在墙壁上或在可视范围内的具有保护地的插排上,不可插在引线混乱的插排上,插排不可过流使用。

D5系列小型数显压差表 控制器 变送器说明书

D5系列小型数显压差表 控制器 变送器说明书

D5系列小型数显压差表/控制器/变送器说明书应用和特点●采用高精度MEMS传感器及数字化技术,可以检测正压、负压或压差,完全可以取代传统指针式机械表●可测量风扇和鼓风机的压力、过滤器阻力、风速、炉体通风、孔板、医疗、药机、生物安全柜和洁净操作台等设备上的压差●适用于嵌入式、平面或盘面安装方式●精度高达±1%FS,直观的LCD数字显示●按键支持功能:零点校准、单位切换、显示刷新时间设置、自动休眠时间设置、报警设置技术指标介质:非易燃/非腐蚀性气体,对潮气/粉尘/油污不敏感工作温度:D5:-10~50°C,D5P/D5G/D5T:-20~70°C 介质温度:0~60°C温度补偿:0~50°C工作压力:过载10xFS,破坏压力15xFS显示:5位LCD,带工程单位指示,带背光(D5除外)模拟输出:0-10V / 4-20mA(三线)输出负载:≤500Ω(电流型),≥2KΩ(电压型)通讯输出:RS485/Modbus(9600-n-8-1)继电器输出:2×SPST,3A/30VDC,3A/250VAC,或1×蜂鸣器精度:最高±1.0%FS,详见精度表长期稳定性:±0.5%FS /Year温漂:<0.05%FS/℃(零点),<0.08%FS/℃(满量程) 电池型(D5)电源:电源:AA(5号)电池4节,推荐LR6碱性电池显示刷新时间:可设置0.5/1/5/10s(默认1s)自动休眠时间:可设置常开,或1/5/10min (默认1min)电池使用时间:显示刷新时间=1s/自动休眠=常开设置时≥2年,显示刷新时间>1s或设置自动休眠时间,使用时间更长。

也和电池质量有关。

量程表/精度表电源型(D5P/D5G/D5T) 电源:16~28VDC/AC过程连接:锥形咀,内径5mm软管连接,侧/背面各一对按键:3个轻触按钮防护等级:IP54重量:电池型275g(含电池),电源型235g材质:ABS认证:CE配件:一组螺丝及安装支架,可满足基本的表面或盘面安装。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
元器件交易网
ECONOLINE - DC/DC-Converter
RD and RC Series, 2 Watt, SIP7/DIP14 (Dual Output) Features
● ● ●
Dual Output from a Single Input Rail Power Sharing on Output 1kVDC & 2kVDC Isolation
1 2 4 5 6
7.10 1.27 typ. 15.24 2.0 3.05 2.0 0.25
1 2 4 5 6
12.70
Recommended Footprint Details
1.00 ø+0.15/–0 1.00 ø+0.15/–0 2.54 2.54
2.54
2.54
Pin Connections Pin # 1 2 4 5 6 7 8 9 11 14 RC –Vin No Pin No Pin No Pin No Pin NC Com +Vout –Vout +Vin RD +Vin –Vin –Vout Com +Vout No Pin No Pin No Pin No Pin No Pin XX.X ± 0.5 mm XX.XX ± 0.25 mm
EC 54
August 2002

3.0 Output Power (Watts) 2.0 Safe Operating Area 1.0 0 -40 0 50 100 125 150 85 Operating Temperature ˚C 4.0

August 2002
EC 53
Specifications (Core Operating Area) and Operating Temperature / Derating-Graph
Input Voltage Input Filter Output Voltage Accuracy Line Voltage Regulation Load Voltage Regulation (10% to 100% full load) Ripple and Noise (20MHz limited) Efficiency at Full Load Isolation Voltage Isolation Resistance (Viso = 500VDC) Isolation Capacitance Short Circuit Protection Switching Frequency at Full Load Operating Temperature Storage Temperature Package Weight 3.3V output type 5V output type 9V, 12V, 15V, 24V output types ±10% Capacitor Type ±5% 1,2% / 1% V Input 20% max. 15% max. 10% max. 150mVp-p max. 70% min. 1.000VDC min. (also available with 2.000VDC, Suffix „H“) 10 GΩ min. 40pF min./115pF max. 1 Second 34kHz min. / 85kHz max. –40°C to +85°C (see Graph) -55°C to +125°C 2.8g
元器件交易网
ECONOLINE - DC/DC-Converter
RD and RC Series, 2 Watt, SIP7/DIP14 (Dual Output) Package Style and Pinning (mm)
14 PIN DIP Package
1 Bottom View 7
7 PIN SIP Package
3rd angle projection
19.65 7.05
14
ቤተ መጻሕፍቲ ባይዱ
11
9 8
19.90 10.20
RC-0512D RECOM ****
RD-0505D RECOM ****
0.51 typ.
RD-0505D RECOM ****
10.00
7.62 4.10 0.51 typ.
● ● ●
Custom Solutions Available
UL94V-0 Package Material Efficiency to 80%
Selection Guide
Part Number SIP7 RD-XX3.3D RD-XX05D RD-XX09D RD-XX12D RD-XX15D RD-XX24D Part Number DIP14 RC-XX05D RC-XX05D RC-XX09D RC-XX12D RC-XX15D RC-XX05D 2kV (H) (H) (H) (H) (H) (H) Input Voltage (VDC) 5, 9, 12, 15, 24 5, 9, 12, 15, 24 5, 9, 12, 15, 24 5, 9, 12, 15, 24 5, 9, 12, 15, 24 5, 9, 12, 15, 24 Output Voltage (VDC) ±3.3 ±5 ±9 ±12 ±15 ±24 Output Current (mA) ±303 ±200 ±111 ±84 ±66 ±42 Efficiency (%) 70 70-75 75-81 78-83 80-84 80-85
相关文档
最新文档