design人工湿地设计手册
人工湿地设计标书
• 睡莲: 睡莲:
• 多年生水生花卉。因其花 色艳丽,花姿楚楚动人, 在一池碧水中宛如冰肌 脱 俗的少女,而被人们赞誉为 “水中女神”。 • 水体净化价值:睡莲根能 吸收水中的汞、铅、苯酚 等有毒物质,还能过滤水 中的微生物,是难得的水 体净化的植物材料,所以 在城市水体净化、绿化、 美化建设中倍受重视。 • 观赏价值:睡莲是花、叶 俱美的观赏植物。
• •
人工湿地的景观设计
• 人工湿地所选的植物为芦苇 宽叶香蒲 深色马 芦苇,宽叶香蒲 芦苇 宽叶香蒲,深色马
蹄莲,彩斑光滑鸢尾,黄鸢尾。 蹄莲 彩斑光滑鸢尾,黄鸢尾。将人工湿地共划 彩斑光滑鸢尾 分为6大块,现取其中一块为例, 分为6大块,现取其中一块为例,说明景观植物 的布置情况: 的布置情况:
人工湿地出水系统设计简介
• • 管子埋在地下0.8米, 2. 在湿地的最末端设置管径DN50mm的两端封闭的管道,长10m,6根(2侧 各3根) 出水管每圈16空,孔径2mm。每圈间隔80mm。然后与出水管连接,用泵抽 出。并在湿地的1-1、2-2及对应的对面的出水干管上加调压阀 加调压阀。以达到管道中压力平 加调压阀 衡,使每根管道的流速相等。设置所有的管道直径均为50mm。 3. 干线管内流速控制1.77m/s,支线管流速0.6m/s.压损为10.86m 4. 选用IS80-50-200系列的流量为15m3/h,扬程13.2m,转速1450r/min,泵效 IS80-50-200 15m3/h, 13.2m 1450r/min, 率51%,轴功率1.06KW配带功率2.2KW 51% 1.06KW 2.2KW 1.
鉴湖水质改善与生态修复工程
半亩方塘工作室
人工湿地设计汇总.
驯化接种优势菌种有假单 胞杆菌属Pseudomonas、产碱 杆菌属Alcaligens 和黄杆菌属 Flavobacterium以及硝化细菌和 反硝化细菌。一般接种活性污泥, 配置一定浓度的营养物质,使得 微生物在人工湿地中迅速生长, 繁殖
2017/9/22
2017/9/22
5.人工湿地运行过程中进水的预处理过程
2017/9/22
3.人工湿地结构设计步骤
布水与集水方式 垂直流人工湿地结构简图
2017/9/22
3.人工湿地结构设计步骤
布水与集水方式 垂直流人工湿地结构布水
2017/9/22
3.人工湿地结构设计步骤
布水与集水方式 垂直流人工湿地结构布水
2017/9/22
3.人工湿地结构设计步骤
通气孔
作用:
2017/9/22
3.人工湿地结构设计步骤 植被的选择
芦苇 菖蒲 香蒲
鸢尾
美人蕉
富贵竹
2017/9/22
凤眼莲
浮萍/浮莲
槐叶萍
水鳖
灯心草
香蒲
菖蒲
矮化美人蕉
茭白
黄花鸢尾
3.人工湿地结构设计步骤
微生物接种
人工湿地系统中的微生物主 要去除污水中的有机质和N,某 些难降解的有机物质和有毒物 质需要运用微生物的诱发变异 特性,培育驯化适宜吸收和消 化这些有机物质和有毒物质的 优势细菌,进行降解。
可选择格栅、沉砂、初沉、均质等一级处理工艺,物化强化法、AB
法前段、水解酸化、浮动生物床等一级强化处理工艺,以及SBR、
氧化沟、A/O、生物接触氧化等二级处理工艺。
①:BOD5/COD<0.3时,宜采用水解酸化处理工艺。 ②:SS >100mg/L时,宜设沉淀池。 ③:含油量>50mg/L,宜设除油设备。 ④:DO<1.0mg/L时,宜设曝气装置。
人工湿地设计PPT课件
微生物
分解有机物,将污染物转化为无害物 质,促进湿地净化功能。
水生动物
包括鱼类、贝类、昆虫等,维持生态 系统的平衡和稳定。
人类活动
合理的人工湿地设计和管理,能够促 进生态系统的稳定和可持续发展。
主要功能与作用
净化水质
调节气候
人工湿地通过物理、化学和生物过程,有 效去除水中的氮、磷等营养物质以及重金 属等有毒物质。
湿地具有较大的水面和植被覆盖,能够调 节气温、湿度和降雨量,缓解城市热岛效 应。
保护生物多样性
提供休闲空间
湿地为水生生物提供栖息地,是众多野生 动植物的生存场所,有助于维护生物多样 性。
人工湿地可以作为城市公园、景观等公共 空间,为市民提供休闲、娱乐和亲近自然 的场所。
06
详细描述
潜流人工湿地的地下水位较高,能够承受较大 的水力负荷,具有较强的抗冲击能力。
垂直流人工湿地
总结词
处理效果好
详细描述
垂直流人工湿地通过垂直水流的方向,使污水 在湿地中得到充分净化,处理效果较好。
总结词
占地面积小
详细描述
垂直流人工湿地面积较小,可以充分利用城市空间 ,尤其适用于土地资源紧张的城市。
植物种植技术
种植容器
根据植物种类和生长需求,选择 合适的种植容器,如盆栽、网箱
等。
种植深度
根据植物的生长习性,确定种植深 度,保证植物的正常生长和发育。
种植密度
合理控制种植密度,避免过度密集 或稀疏的现象出现,以确保人工湿 地的生态功能和景观效果。
05 人工湿地生态系统与功能
生态系统构成
湿地植物
人工湿地工程设计方案
人工湿地工程设计方案目录人工湿地工程设计方案 (1)1.1.1.1治理目标 (1)1.1.1.2人工湿地工艺比选 (1)1.1.1.3人工湿地设计 (3)1.1.1.4植物选择 (4)1、配置原则 (4)2、配置分析 (4)3、配置选择 (5)4、种植要求 (5)1.1.1.5工程量统计表 (6)1.1.1.1治理目标本项目人工湿地主要用于处理漷县区域污水处理厂(站)尾水,深度净化水中有机物和氮磷等污染物,使出水达到地表口类标准,本次共建设人工湿地21 座。
选择投资省,工艺简单、运行费用低、管理简便的湿地工艺。
通过工程的实施,改善工程区周边河道水环境质量,同时充分考虑该流域生态恢复及湿地景观效果,利用湿地内不同种类植物的搭配,形成缤纷沼泽、芦苇溪岸、栈桥水畔等湿地小品景观。
1.1.1.2人工湿地工艺比选人工湿地类型按照水流方式不同分为表面流湿地和潜流湿地。
表面流湿地:污水在湿地土壤表面漫流,可在自然湿地基础上构造而成,同自然湿地净化原理最为接近,绝大部分污染物的去除是由长在植物地下茎、杆上的生物膜来完成。
表面流湿地充氧效果好,投资少。
不足之处是这种湿地不能充分利用湿地床及丰富的植物根系,净化负荷相对较低,占地面积较大。
潜流湿地:通过铺设炉渣、沸石、陶粒、砖块、碎石、细砂、土壤等填料层,使污水在湿地地表下渗流,充分利用湿地填料表面及植物根系上生物膜及其他各种作用处理污水,具有较高的处理效果和处理能力,同时由于水在地表下流动,保温性好,处理效果受气候影响较小。
图错误!文档中没有指定样式的文字。
-1水平潜流湿地示意图垂直潜流湿地示意图不同类型人工湿地工艺与组合对特征污染物的去除效果不同,具有各自的特点,如下表。
表错误!文档中没有指定样式的文字。
-1 人工湿地污染物去除效率%!-2本项目湿地形式选择,主要从污染物去除效率,占地面积、建设投资、运行原理等多方面考虑,建议采用水平潜流湿地作为本方案的湿地建设工艺。
人工湿地设计方案
人工湿地设计方案人工湿地(CW—Constructed Wetland)污水处理技术是70年代末发展起来的一种污水处理新技术。
它具有处理效果好、氮磷去除能力强,运转维护管理方便、工程基建和运转费用低以及对负荷变化适应能力强等特点,比较适合于技术管理水平不很高,规模较小的城镇或乡村的污水处理。
人工湿地的净化机理:人工湿地对废水的处理综合了物理、化学和生物的三种作用。
湿地系统成熟后,填料表面和植物根系将由于大量微生物的生长而形成生物膜。
废水流经生物膜时,大量的SS被填料和植物根系阻挡截留,有机污染物则通过生物膜的吸收、同化及异化作用而被除去。
湿地系统中因植物根系对氧的传递释放,使其周围的环境中依次出现好氧、缺氧、厌氧状态,保证了废水中的氮磷不仅能通过植物和微生物作为营养吸收,而且还可以通过硝化、反硝化作用将其除去,最后湿地系统更换填料或收割栽种植物将污染物最终除去。
湿地处理系统的设计1.选址考察地质、地貌、水文、自然资源、人文资源、有关法律及公众意见。
应因地制宜,尽量选择有一定自然坡度的洼地或经济价值不高的荒地,一方面减少土石方工程、利于排水、降低投资,另一方面防止对周围环境产生影响。
2.确定系统组合形式根据场地特征、处理要求和所处理污水的性质来确定。
单一式、并联式、串联式、综合式。
3.确定水力负荷根据文献或经验而定。
4.选择植物根据湿地植物的耐污性能、生长能力、根系的发达程度以及经济价值和美观等因素来确定。
一般有芦苇、席草、大米草、水葫芦、水花生等,最为常用的是芦苇,插植密度为1~3株/m2。
5.计算表面积 As=Q/a:As—表面积;Q—进水流量;a—水力负荷。
6.确定长宽比(1)表面流湿地:长宽比10:1或更大,根据地形来考虑,底坡降0%~1%。
(2)潜流湿地:根据达西定律Q=Ks*A*SS—水力坡度;A—湿地床横截面积;Ks—潜流渗透系数。
或厄刚公式As=5.2Q[LN(So-Se)],So—进水BOD浓度;Se—出水BOD浓度;As—湿地床表面积。
人工湿地初步设计说明书
重庆市大渡口区建胜镇陈家பைடு நூலகம்水库生态修复工程项目初步设计说明书
3.2.1 总体构思...............................................................................................................17 3.2.2 设计依据...............................................................................................................17 3.2.3 建设条件和原则...................................................................................................18 3.2.4 人工湿地设计标准...............................................................................................19 3.2.5 人工湿地设计.......................................................................................................19 3.3 面源污染修复设计——水源涵养林工程......................................................................21 3.3.1 总体构思...............................................................................................................21 3.3.2 设计依据及标准...................................................................................................21 3.3.3 布设原则...............................................................................................................21 3.3.4 水源涵养林带设计...............................................................................................21 3.3.5 树种选择...............................................................................................................21 3.3.6 水源涵养林工程造林整地规格及应用条件.......................................................23 3.3.7 涵养林种植密度...................................................................................................25 3.4 水库水体修复方案设计——生态浮床工程..................................................................26 3.4.1 总体构思...............................................................................................................26 3.4.2 建设条件和原则...................................................................................................26 3.4.3 生态浮床设计标准...............................................................................................27 3.4.4 生态浮床设计.......................................................................................................27 4 工程设计.....................................................................................................................................28 4.1 进水渠工程设计..............................................................................................................28 4.2 化粪池工程设计..............................................................................................................28 4.3 人工湿地工程设计..........................................................................................................30 4.3.1 设计水质...............................................................................................................30 4.3.2 人工湿地规模确定...............................................................................................31 4.3.3 人工湿地工艺设计...............................................................................................31 4.3.4 工程量...................................................................................................................32 4.4 水源涵养林的设计..........................................................................................................33 4.4.1 规模及种植树种...................................................................................................33 4.4.2 水源涵养林工程量估算.......................................................................................33 4.5 公园设计..........................................................................................................................33
(完整版)某河道人工湿地设计方案
某河道人工湿地设计方案一、项目基本概况1.1 河道现状先导区内河流主要有运粮河和丁村沟。
a)运粮河运粮河属于淮河流域,涡河水系,起源于中牟县万滩乡万庄村南,东南方向途径东漳南、秫米店北、大胖西、老饭店西、朱仙镇东、大李庄西,在开封县大李庄乡,四合庄西汇入涡河,全长53.27km,总流域面积214km2。
其中中牟县境内长15.6km,流域面积112.9km2,规划区内河道长度3.9km,是先导区,乃至中牟县的一条主要防洪排涝河道。
运粮河属于季节性河流,在平面上基本保持了其自然河形,岸线有一定的蜿蜒,河道两侧滩地及堤防顶部有速生杨林,枯水期基本无基流,河流水质较差。
2005年按三年一遇除涝,十年一遇防洪标准进行了治理,治理长度15.6km,出境处设计排水流量40.84m3/s。
它是狼城岗干渠和丁村支渠区域的主要排水河道,主要支流有丁村沟(沟长14.61km)和运粮河支沟(沟长5km)。
设计排水能力16.9 m3/s ~48.7 m3/s,目前排水能力为设计能力的70%。
b) 丁村沟丁村沟属运粮河水系,位于丁村支渠与赵口总干渠1号沉砂池第Ⅰ条渠之间,发源于万滩镇关家村,流向东南,流经万滩镇、雁鸣湖两乡镇,经小朱村、岳庄、丁村南,再向东南,穿中东公路,至朱固村南入运粮河,全长14.4km,流域面积24.9km2。
其中中牟县先导区内河道长度为4.3km。
现状来水主要为上游村庄的生活污水,以及雁鸣湖的侧渗水,现状水质较差,河道内局部有生活垃圾。
1998年丁村沟进行了清淤,至今未再次治理过,它是示范区内的一条主要排水沟道。
设计排水能力3 m3/s ~15 m3/s,目前排水能力仅为设计能力的80%。
河渠均为季节性河流,现状河渠水系受周边工业污染相对较轻,主要受沿河村镇生活污水、农田排水和降雨径流污染影响,部分河渠河床内及两侧垃圾较多,旱季时基本成为排污沟,污染严重,水质均为劣V类,无法达到水功能区划和河流生态所需要的水质标准,严重影响先导区环境质量。
人工湿地优化设计方案
人工湿地优化设计方案参考规范《人工湿地污水处理工程技术规范》(HJ2005-2010),该标准由环境保护部科技标准司组织制定,本标准适用于城镇生活污水、城镇污水处理厂出水及与生活污水性质相近的其他污水处理工程,可作为人工湿地污水处理工程设计、施工、建设项目竣工环境保护验收及建成后运行与维护的技术依据。
关于xx项目,业主单位提出的人工湿地设计建造面积过大的情况,通过从工艺要求与占地面积、造价等方面进行考虑衡量,对表流湿地、水平潜流湿地、垂直流湿地等三种工艺进行比选,选择出最佳的技术路线。
一、工艺比选1.1技术规范设计标准参数1.2人工湿地设计处理水量(媪/d)经实地调查统计,上游畜禽养殖量约为1.2万头生猪当量,每头生猪排水量按35L/头-d。
1、养殖场污水排放量:Qi =存栏数(12000头)X排水系数;即:Qi=12000头X35L/头•d=420m3/d;经实地调查统计,水库上游居民数量约为8378人,人均排水量按100L/人・d估算。
2、居民污水排放量:Qz=人数(8378人)X排水系数(100L/人-d) = 837.8m3/d0综上所述:人工湿地设计处理水量Q=1257.8m3/d。
1.3人工湿地设计处理污染物量(以C0D计kg/d)项目区上游养殖场均配有粪污水处理环保设施,外排水均达到《畜禽养殖业污染物排放标准》(GB18596-2001)。
查标准可知,养殖场排放污水中COD浓度约为400nig/L。
1、养殖场污染物排放量:吸=养殖场污水排放量QX排放的水中COD浓度C;即:mi = 420m3/dX400mg/L=168kg/d;居民排放的生活污水中COD浓度约为250mg/L o2、居民区污染物排放量:叱=生活污水排放量Qz(837. 8n?/d) X外排污水中COD浓度(250mg/L) =209. 45kg/d综上所述:污染物排放总量:m=377. 45kg/do根据初步设计方案,畜禽养殖废水与居民区生活污水经预处理后先流入1#、2#生态拦截沟,经生态拦截沟进一步降解污染水体中的污染因子,再流入人工湿地;其中,生态拦截沟对污染物的消减率约为20%o则:进入人工湿地的污染物总量:乩=污染物排放总量mX (1-20%) =377. 45kg/dX80% = 301.96kg/d o1.4人工湿地设计面积人工湿地出水COD浓度按50mg/L计算,则:人工湿地去除污染物量:M,=Mo-1257. 8m3/d X湿地出水COD浓度;即:M|=M。
人工湿地初步设计说明书
目录
1 概述...............................................................................................................................................1 1.1 陈家郭水库概况................................................................................................................1 1.2 水库水环境及周边生态环境调查....................................................................................1 1.2.1 陈家郭水环境质量调查..........................................................................................1 1.2.2 水库周边生态环境现状.........................................................................................3 1.3 项目建设的必要性及其意义............................................................................................5 1.3.1 建设“五个重庆”的需要 .........................................................................................5 1.3.2 构建“十二五规划”良好生态环境的需要 .............................................................6 1.3.3 保护群众生命财产安全、构建和谐社会的需要 .................................................6 1.3.4 保护生态环境、建设生态城市的需要.................................................................7 1.3.5 陈家郭水库生态修复的意义.................................................................................7
人工湿地设计方案
⼈⼯湿地设计⽅案东升镇⽣活污⽔⼈⼯湿地设计⽅案⼈⼯湿地的净化机理:对SS:湿地系统成熟后,填料表⾯和植物根系将由于⼤量微⽣物的⽣长⽽形成⽣物膜。
废⽔流经⽣物膜时,⼤量的SS被填料和植物根系阻挡截留。
对有机物:有机污染物通过⽣物膜的吸收、同化及异化作⽤⽽被除去。
对N、P:湿地系统中因植物根系对氧的传递释放,使其周围的环境中依次出现好氧、缺氧、厌氧状态,保证了废⽔中的氮磷不仅能通过植物和微⽣物作为营养吸收,⽽且还可以通过硝化、反硝化作⽤将其除去,最后湿地系统更换填料或收割栽种植物将污染物最终除去。
⼀、污⽔⽔质(⼀)、作为⽣活污⽔处理的主体⼯程。
按照城镇⽣活污⽔⽔质⼀般范围,可认为东升镇⽣活污⽔⽔质状况如下:COD 250—350mg/l(项⽬取中间值300 mg/l,需监测核实);BOD 150--250 mg/l(取中间值200 mg/l);SS 200--300 mg/l(项⽬取中间值250 mg/l); NH3—N 30--40mg/l(取中间值35 mg/l),P 8--10mg/l(取最⼤值10 mg/l);⽔量按照5000m3/d设计。
(⼆)、作为⽣活污⽔处理⼚的后续⼯程。
⼀般镇区均需要建设⼆级污⽔处理⼚,按照城镇污⽔处理⼚的出⽔标准,如东升镇⼆级污⽔处理⼚达标排放,则污⽔处理⼚出⽔应执⾏⼴东省《⽔污染排放限值》(DB4426--2001)中第⼆时段中的⼆级标准:COD 60mg/l;BOD 30 mg/l;SS 30 mg/l; NH3—N 15mg/l,P 1mg/l;⽔量按照5000m3/d设计;作为⽣活污⽔处理⼚的后续⼯程,⼈⼯湿地的处理压⼒要⼩得多,且⽔平潜流式⼈⼯湿地对氨氮的处理效果不如垂直流⼈⼯湿地,本项⽬暂不深⼊分析此项。
⼆、出⽔要求东升镇⽣活污⽔最终出⽔预计进⼊北部排灌渠,按照《中⼭市⽔环境功能区⽔质保护规定》(中府[1997]115号)的功能区划,该渠符合《地表⽔环境质量标准》(GB3838-2002)中Ⅳ类⽔体要求,因此⼈⼯湿地出⽔应执⾏⼴东省《⽔污染排放限值》(DB4426--2001)中第⼆时段中的⼆级标准;为:COD 100mg/l;BOD 30 mg/l;SS 30 mg/l; NH3—N 15 mg/l,P 1 mg/l。
DB13_T5217-2020河道人工湿地设计规范
ICS27.140P 55 DB13 河北省地方标准DB 13/T 5217—2020河道人工湿地设计规范Design code for river constructed wetland2020-08-18发布2020-09-18实施河北省市场监督管理局发布DB13/T 5217—2020目次前言 (III)1 范围 (1)2 规范性引用文件 (1)3 术语和定义 (1)4 总则 (2)5 河道人工湿地工程规模、防洪排涝标准和水质控制指标 (2)5.1 湿地工程规模、防洪排涝标准 (2)5.2 河道人工湿地工程的进、出水水质要求 (3)6 自然土壤湿地 (3)6.1 一般规定 (3)6.2 河道地形整治与塑造 (3)6.3 湿地水系构建 (4)6.4 自然土壤湿地水质净化能力分析 (4)7 人工基质湿地 (4)7.1 一般规定 (5)7.2 总体布置 (5)7.3 人工基质选择 (5)7.4 供配水系统设计 (6)7.5 人工基质湿地水质净化能力分析 (6)8 湿地进出水系统及湿地建筑物设计 (6)9 湿地植物选择与种植 (6)9.1 一般规定 (7)9.2 湿地植物选择 (7)9.3 湿地植物种植设计 (7)10 湿地工程的监测 (7)10.1 一般规定 (7)10.2 湿地工程监测设计 (8)11 湿地工程的维养与管护 (8)11.1 一般规定 (8)11.2 维养管护的设施配备 (8)11.3 湿地工程的运行管理与维护 (8)附录A(资料性附录)湿地水质净化能力分析计算 (10)附录B(资料性附录)常用湿地植物表 (11)IDB13/T 5217—2020II 前言本标准按照GB/T 1.1-2009给出的规则起草。
本标准由河北省水利厅提出并归口。
本标准起草单位:河北省水利水电勘测设计研究院。
本标准主要起草人:傅长锋、陈平、刘修水、季保群、杨铁树、刘天翼、李爽、张丽丽、李薇、周园园、刘欣妹、高宏芳、王玥、富饶、柴晓飞、沈丽研、于坤荣、田义轩、冀岩、王聪。
人工湿地设计ppt课件
功能
人工湿地是利用与自然生态系统相似的物理、 化学、生物的三重协同作用来实现对污水的净化技术。
物理作用 过滤和沉淀 除去含有C、N、P 的有机及无机颗粒 物和悬浮固体
微生物作用 氧化-还原反应 吸收降解
化学作用 吸附和絮凝 可溶性的有机化合物 阴离子( PO43- )和阳离子 (重金属阳离子)
挥发作用
典型工艺
处理池宜并联,种植芦苇、茳芏、席草、大米草等水生植 物,采用碎石作基质。原水先流经一、二级碎石床,对有 机物进行降解,再进入第三级兼性塘,最后经过第四级碎 石床变成洁净的水排出。
人工湿地的配套设施
人工湿地系统有两种: 表流湿地、潜流湿地。潜流系统可分为平流
湿地和垂直流湿地。 表流湿地
表流湿地通常是衬有不透水材料层的浅蓄水 池,填有土壤或砂砾基质,栽种露出水面的植物。 设计成水淹型,所以水位在基质表面之上,废水 在基质上面流动,通过稠密的植物,模拟天然湿 地的水流。它的建造费用较低。
潜流湿地的基质厚度约60 cm左右。
人工湿地的构造与工程参数是人工湿地工艺设计的核心, 包括水力学特性、湿地床构型和配套设施的构筑三方面。水力 学特性包括水力停留时间、水力负荷;湿地床构型设计包括水 力坡度、湿地床的长宽比和水位控制;配套设施的构筑包括进 出水装置、隔板装置和防渗设施。
设计中实际水力停留时间采用理论值的4O~80% 。 水力坡度:表面流人工湿地采用0.5% 或更小,潜流人工湿地采 用0.5~2%。
矿渣、粉煤灰对磷去除效果好。基质中游离氧化铁、氧 化铝和胶体氧化铁、氧化铝含量越高,其固定形成的磷酸铁 盐和磷酸铝盐数量越多,基质净化磷素的能力越强。
煤灰渣基质对有机污染物的处理效果较好。COD和BOD 的 去除率分别达71~88%和80~89%。设计时应根据污水所含 污染物配置合适的基质。
人工湿地系统设计说明
潜流式人工湿地设计计算书设计规模300t/d ;水质类型,农村生活污水。
1、集水调节池基本参数有效容积:V e =Q max ×HRT =12.5×6=75m 3式中:Q max —设计进水流量,m 3HRT —水力停留时间,h调节池高度取3m ,其中超高0.5m ,有效池深2.5m有效面积:Ae =Ve ℎe=752.5=30m 2式中:he —调节池有效高度集水调节池主要作用是均匀水质,稳定水量,起到一定的缓冲调节作用。
集水调节池设计规模为300m 3/d ,即12.5m 3/h ,水力停留时间HRT 按6小时计算,调节池有效容积为75m 3。
考虑现场实际情况, 调节池设计尺寸为:L ×B ×H=8×4×3m ; 实际有效容积L ×B ×H=8m ×4m ×2.5m=80m 3。
2、污水提升泵泵参数 流量:Q=10m 3/h ; 数量:3台,两用一备; 扬程:15m ; 功率:0.75KW ; 效率:40%。
3、人工湿地基本参数 人工湿地面积:A=Q×(C 0−C 1)×10−3q os;式中,A---人工湿地面积,m 2; Q---人工湿地设计水量,m 3/d ; C 0---人工湿地进水BOD 5浓度,mg/L ; C 1---人工湿地出水BOD 5浓度,mg/L ; q os ---表面有机负荷,kg/(m 2·d);经计算,理论人工湿地面积A =300×(50−10)×10−3100×10−4=1200 m 2。
本项目受场地限制,人工湿地面积为750 m 2。
表面水力负荷q ℎs =QA =300750=0.4m 3/(m 2·d)。
人工深度一般小于2m ,本项目设计取值1.5m ,其中基质层厚度1.2m ,超高0.3m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ii
Contents
Chapter 1 AQUATIC TREATMENT SYSTEMS Page
....................................
1 1 1 1 2 2 3 4 4 4 4 5 5 5 6 7 9 9 9 10 10 10 10 11 11 11 12 15 15 15 15 15 15 15 16 16 16 18 19
பைடு நூலகம்
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.2 Potential Uses of Natural Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 Natural Wetlands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.2 Constructed Wetlands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.3 Aquatic Plant Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Natural Wetlands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Constructed Wetlands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.1 Free Water Surface Systems (FWS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.2 Subsurface Flow Systems (SFS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Aquatic Plant Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.1 Floating Plant Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.2 Submerged Plant Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 ENVIRONMENTAL AND PUBLIC HEALTH CONSIDERATIONS . . . . . . . . . . . . . . . . . 2.1 2.2 2.3 2.4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nitrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phosphorus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pathogens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.1 Parasites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.2 Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.3 Viruses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Trace Organics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DESIGN OF CONSTRUCTED WETLANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Types of Constructed Wetlands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.1 Free Water Surface Systems with Emergent Plants . . . . . . . . . . . . . . . . . 3.1.2 Subsurface Flow Systems with Emergent Plants . . . . . . . . . . . . . . . . . . . 3.2 Site Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 Topography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 Soil Permeability for Free Water Surface Systems . . . . . . . . . . . . . . . . . . 3.2.3 Hydrological Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.4 Water Rights Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Performance Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 BOD5 Removal in FWS Wetlands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.2 BOD5 Removal in SFS Wetlands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
III
Contents (continued)
Chapter Page
EPA/625/1-88/022 September 1988
Design Manual
Constructed Wetlands and Aquatic Plant Systems for Municipal Wastewater Treatment