高光谱遥感技术综述
高光谱遥感
• 中国:MAIS、PHI、OMIS-1(10个热波段)、 中国: 个热波段)、 、 、 ( 个热波段 CMODIS(神舟III号) 、Env-DD(环境灾害小卫星) (神舟 号 (环境灾害小卫星)
三、高光谱遥感技术优势与局限性
优势 1:充分利用地物波谱信息资源 :
图 不同波谱分辨率对水铝反射光谱曲线
优势 2: 利用波形 精细光谱特征进行分类与识别地物 : 利用波形/精细光谱特征进行分类与识别地物
Al-OH
Paragonite
Muscovite
Phengite
三种类型的白云母精细光谱特征
岩石的光谱发射率特征
航空高光谱遥感飞行设计图
(2)光谱特征参数定量分析技术 )
不同水分含量的叶片的光谱反射率
RWC(%)=24.5+7.13*面积 (R2=0.845)
(3)光谱匹配技术(二值编码) )光谱匹配技术(二值编码) • 岩矿光谱分类与识别
岩石和矿物
2.15-2.31微米 粘 土 矿 2.24-2.31微米 Mg-OH 对称性>1 滑石 2.15-2.19微米 叶蜡石 2.31-2.35微米 碳 酸 盐
优势 3: 利用图 谱实现自动识别地物并制图 : 利用图-谱实现自动识别地物并制图
局限1:海量数据的传输、 局限 :海量数据的传输、处理与存储 128波段的 波段的OMIS: 采集数据速率 采集数据速率60Mb/s;400Mb/km2 波段的 ;
高光谱遥感信息的图像立方体表达形式是一种新 高光谱遥感信息的图像立方体 表达形式是一种新 型的数据存储格式, 型的数据存储格式,其正面图像是由沿飞行方向的扫 描线合沿扫描方向的像元点组成的一景优选的三波段 合成的二维空间彩色影像; 合成的二维空间彩色影像;其后面依次为各单波段的 图象叠合,其数据量为所有波段图像的总和; 图象叠合,其数据量为所有波段图像的总和;位于图 像立方体边缘的信息表达了各单波段图像最边缘各像 元的地物辐射亮度的编码值或视反射率。 元的地物辐射亮度的编码值或视反射率。
高光谱遥感的概念
定量反演与模型模拟技术
定量反演
利用高光谱数据反演地物参数, 如叶绿素含量、地表温度等。
模型模拟
建立地物光谱模型,模拟地物光 谱特征,用于预测和模拟。
参数优化
对反演和模拟的参数进行优化, 提高结果的准确性和可靠性。
04
高光谱遥感的应用案例
农业应用案例
作物分类与识别
土壤质量评估
高光谱遥感能够通过分析不同作物反射 的光谱特征,实现对农作物的精细分类 和识别,有助于精准农业的实施。
图像融合
将多源遥感数据融合,提 高信息量和分辨率。
图像增强
通过对比度拉伸、色彩映 射等手段,改善图像的可 视化效果。
特征提取与分类技术
特征提取
从高光谱数据中提取地物 光谱特征,如光谱曲线、 谱带宽度等。
分类识别
利用提取的特征进行地物 分类,识别不同类型地物。
精度评估
对分类结果进行精度评估, 提高分类准确率。
高光谱遥感的概念
目
CONTENCT
录
• 引言 • 高光谱遥感的原理 • 高光谱遥感的关键技术 • 高光谱遥感的应用案例 • 高光谱遥感的未来发展
01
引言
什么是高光谱遥感
高光谱遥感是一种利用光谱信息对地球表面进行观测和监测的技 术。它通过卫星、飞机或其他遥感平台搭载的高光谱传感器,获 取地表反射、发射和散射的光谱数据,从而实现对地物的精细识 别和分类。
高光谱遥感的数据获取方式
采集方式
通过卫星或飞机搭载高光谱传 感器进行数据采集。
数据处理
对采集的高光谱数据进行预处 理、特征提取和分类识别等操 作。
应用领域
农业、环境监测、城市规划、 地质勘察等领域。
03
高光谱遥感
多光谱遥感:国际遥感界的共识是光谱分辨率在λ /10数量级范围 的称为多光谱(Multispectral),这样的遥感器在可见光和近红外 光谱区只有几个波段,如美国 LandsatMSS,TM,法国的SPOT等。 高光谱遥感:光谱分辨率在λ /100的遥感信息称之为高光谱遥感 (HyPerspectral)。它是在电磁波谱的可见光,近红外,中红外和 热红外波段范围内,获取许多非常窄的光谱连续的影像数据的技术。 其成像光谱仪可以收集到上百个非常窄的光谱波段信息。高光谱遥 感是当前遥感技术的前沿领域,它利用很多很窄的电磁波波段从感 兴趣的物体获得有关数据,它包含了丰富的空间、辐射和光谱三重 信息。高光谱遥感使本来在宽波段遥感中不可探测的物质,在高光 谱遥感中能被探测。 超高光谱遥感:而随着遥感光谱分辨率的进一步提高,在达到 λ /1000时,遥感即进入超高光谱(ultraspeetral)阶段。
土壤属性高光谱反演
土壤盐分
在土壤反射光谱中的特征光谱,从而对土壤营养状况和
土壤侵蚀状况做进一步检测与评价。有图可知,总氮在 0.55-0.60μm之间和0.80-0.85μm之间有较明显的反射峰 ,在1.4μm周围有较显著的吸收谷。
土壤水分
当土壤的含水率增加时,土壤的反射率下降,在水的吸
Hyperion/EO-1
Hyperion 传感器搭载于 EO-1 卫星平台,EO-1(Earth
Observing-1)是美国NASA 面向 21 世纪为接替 LandSat-7 而 研制的新型地球观测卫星,于 2000 年 11月发射升空,其卫 星轨道参数与 LandSat-7 卫星的轨道参数接近,之所以设计 相同轨道,目的是为了使 EO-1 和 LandSat-7 两颗星的图像 每天至少有 1~4 景重叠,以便进行比对。 传统的陆地资源卫星只提供为数不多的七个多光谱波段,远 远不能满足各种实际应用的需要,因此美国地质调查局 (USGS)与美国宇航局(NASA)合作发射了 EO-1 卫星, 并在该卫星上搭载了三种传感器分别是 ALI (the Advanced Land Imager), Hyperion, LEISA (the Linear Etalon Imaging Spectrometer Array)Atmospheric Corrector
高光谱遥感技术综述
第07卷 第08期 中 国 水 运 Vol.7 No.08 2007年 08月 China Water Transport August 2007收稿日期:2007-5-4作者简介:袁迎辉 女(1983—) 东华理工大学矿产普查与勘探专业在读硕士研究生 (344000) 高光谱遥感技术综述袁迎辉 林子瑜摘 要:高光谱分辨率遥感是20世纪80年代兴起的新型对地观测技术,与传统遥感相比,高光谱遥感具有更为广泛的应用前景。
文中概述了高光谱遥感的特点、发展过程、发展程度及目前几种典型的成像光谱仪数据特点。
关键词:高光谱遥感 数据处理技术 成像光谱仪中图分类号:TP72 文献标识码:A 文章编号:1006-7973(2007)08-0155-03遥感是20世纪60年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。
经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技术为主的时代。
本文系统地阐述了高光谱遥感技术在分析技术及应用方面的发展概况,并简要介绍了高光谱遥感技术主要航空/卫星数据的参数及特点。
一、高光谱遥感的概念及特点所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据[3];与之相对的则是传统的宽光谱遥感,通常>100nm,且波段并不连续。
高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。
它使本来在宽波段遥感中不可探测的物质,在高光谱中能被探测。
同其它传统遥感相比,高光谱遥感具有以下特点: ⑴ 波段多。
成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。
⑵ 光谱分辨率高。
高光谱遥感技术在生态环境监测中的应用
高光谱遥感技术在生态环境监测中的应用近年来,环境问题备受关注,随着工业化进程的不断加快,生态环境问题越来越严重。
为了保护和改善生态环境,需要对其进行监测和评估。
而高光谱遥感技术作为一种先进的遥感技术,应用范围广泛,在生态环境监测中也有着重要的应用。
高光谱遥感技术是指利用高光谱图像传感器获取高光谱图像,进而提取地物的光谱、空间和时间信息的一种遥感手段。
它可以获取比普通彩色遥感图像更多的波段信息,带来更详尽的地物信息和更精确的光谱解译结果。
这种技术可以精细化地监测环境和资源,有着重要的生态环境监测应用。
高光谱遥感技术在生态环境监测中的应用主要有以下几个方面:一、植被覆盖度监测高光谱遥感技术通过获取植被反射的连续光谱,可以分析不同光谱范围内的植被覆盖度,并进一步识别不同类型和状况的植被。
这种技术不仅可以有效监测植被覆盖度和变化,还可以精确识别植被类型,为生态环境保护提供准确的数据和信息。
二、水质监测高光谱遥感技术可以获取水体的遥感数据,提取水体反射光谱信息,进而通过分析光谱数据,得出水体中溶解物、色素、浊度等多种水质参数。
水体中不同物质的光谱反射率存在差异,通过高光谱遥感技术,可以有效监测水质,及时发现水体污染和变化情况,为生态环境保护提供依据和数据支持。
三、土地利用监测高光谱遥感技术可以提供更多的地表覆盖信息,对土地的精细化分类和利用提供数据支持。
通过高光谱遥感技术,可以准确获取地表不同物质的光谱信息,实现土地类型和利用状况的准确定位和监测,对土地资源的管理和保护具有重要意义。
四、生态环境监测高光谱遥感技术可以获取地面的遥感数据,提供大量的空间、光谱和时间信息,通过综合分析光谱信息和地形数据,可以准确识别不同类型的地物和生态环境状况。
这种技术可以有效地监测大气、水体、植被、土壤等生态环境要素,为环境保护和生态修复提供科学的数据支持。
总之,高光谱遥感技术在生态环境监测中的应用前景广阔,可以为生态环境保护和资源管理提供大量的精准数据和信息支持。
高光谱遥感技术的发展与应用现状
三、高光谱遥感技术的应用现状
然而,目前高光谱遥感技术还存在一些问题和挑战。首先,高光谱遥感技术 的数据采集和处理成本较高,限制了其广泛应用。其次,高光谱遥感技术的数据 处理算法和模型还不够完善,分类精度有待提高。此外,由于高光谱遥感技术使 用的光谱波段范
三、高光谱遥感技术的应用现状
围较窄,对于某些特定地物目标的识别精度有限。
一、高光谱遥感技术概述
一、高光谱遥感技术概述
高光谱遥感技术是一种利用电磁波谱中可见光、近红外、中红外和热红外波 段的光谱信息,进行地表特征识别的遥感技术。它能够揭示出地物的光谱特征, 反映地物的空间、形态、结构等信息,具有很高的空间分辨率和光谱分辨率。
一、高光谱遥感技术概述
高光谱遥感技术的应用,为地球表面的资源调查、环境监测、精准农业等提 供了强有力的技术支持。
四、未来展望
四、未来展望
针对现有问题和未来发展趋势,高光谱遥感技术的研究和应用将朝着以下几 个方向发展:
1、降低成本:通过研发成本更低的硬件设备和优化数据处理算法,降低高光 谱遥感技术的数据采集和处理成本,促进其广泛应用。
四、未来展望
2、提高精度:通过对数据处理算法和模型的深入研究和完善,提高高光谱遥 感技术的分类精度和识别精度。
三、高光谱遥感技术的应用现状
高光谱遥感技术可以用于土地资源调查、土地利用规划、土地资源保护等方 面的应用。例如,通过对不同土地类型的光谱特征进行分析,可以实现对土地类 型的精细分类和利用评估。
三、高光谱遥感技术的应用现状
在农作物监测方面,高光谱遥感技术可以用于农作物的生长状态监测、产量 预测、品质评估等方面的应用。例如,通过测量农作物的叶绿素含量和水分含量 等光谱特征,可以判断农作物的生长状况和预测产量。此外,高光谱遥感技术在 地质勘察、城市规划、军事侦察等领域也有广泛的应用。
高光谱遥感技术综述
四、高光谱遥感成像技术的发展趋势
伴随着成像光谱技术的逐渐成熟,高光谱影像分析研究的 不断深入,应用领域日益广泛,高光谱遥感技术发展呈现以下 趋势: 1、成像光谱仪的光谱探测能力将继续提高 2、成像光谱仪获取影像的空间分辨率逐步提高 3、正在由航空遥感为主转为航空和航天遥感相结合阶段,逐 步从遥感定性分析阶段发展到定量分析阶段
谢谢!
三、高光谱遥感成像技术发展现状
高光号 检测、计算机技术、信息处理技术于一体的综合性技术。技术成 果主要表现在成像光谱仪研制、高光谱影像分析两方面。 1、国外发展现状 国外的发展大致可以分为机载成像光谱仪和星载成像光谱仪。 随着美国的三代机载成像光谱仪的问世,现在更多的倾向于在航 空领域的发展。美国的JPL研制的中分辨率成像光谱仪搭载TERRA卫星的发射,成为第一颗在轨运行的星载成像光谱仪。2000 年发射的高光谱成像仪地面分辨率为30m,2002年美国海军测绘 观测卫星携带的成像光谱仪具有自适应性信号识别能力,能够满 足军民两用,2007年美国又向空军交付的基地的高光谱成像传感 器通过TacSat-3卫星送入太空。
2、国内发展现状 20世纪80年代,我国开始着手研制自己的高光谱成像系统。 相继成功研制出推扫式成像光谱仪(PHI)系列,实用型模块 化成像光谱仪(OMIS)系列等。中科院上海技术物理研究所研 制的中分辨率成像光谱仪于2002年搭载神舟三号发射升空,成 功获取航天高光谱影像,从可见光到近红外30个波段,空间分 辨率在500m。2007年10月发射的嫦娥一号携带干涉成像光谱仪 升空,用于月球的探测。2007-2010年,我国组建了环境和灾 害监测预报小卫星星座,携带超光谱成像仪,采用0.450.95um波段,平均光谱分辨率在5nm,地面分辨率在100m。
高光谱遥感综述
高光谱遥感综述高光谱遥感是一种对地面物质进行非接触式观测的技术。
其原理是利用可见光和近红外光线穿透大气层照射地面然后反射回来,以此获取地面物质的信息。
随着高光谱遥感技术的日益发展,它已成为地球科学、环境科学、农业和林业等领域的有力工具。
高光谱遥感技术的突出特点是获取高分辨率、高时空分辨率、高信噪比的数据。
这就使得高光谱遥感成为一种非常有效的方法,用于发掘和反演地面物质的影像和图像。
和其他遥感技术相比,高光谱遥感技术有更好的选择性和区分度,并且它对地面物质的某些特征具有很强的敏感度。
高光谱遥感技术的研究范围主要包括遥感数据的获取、处理和分析等方面。
其中,遥感数据的获取是高光谱遥感技术的基础,它可以通过卫星、飞机、地面站等各种方式进行。
无论采用哪种方式,高光谱遥感的数据获取都需要精确的定位系统,以获取准确的地理信息。
高光谱遥感技术的处理主要包括辐射校正、地物分类、光谱拟合等。
辐射校正的主要目的是修正由于数码相机和遥感仪器的光谱特性不一致而引起的误差。
地物分类则是将遥感图像中的像素根据特定的分类策略进行分类,以便进一步对地表覆盖信息进行分析和应用。
光谱拟合能够对地物的光谱特性进行模拟和预测,以便于对遥感图像的进一步分析和处理。
高光谱遥感技术的应用涉及到多个领域。
例如,在农业领域,高光谱遥感技术可以用于监测农作物的生长情况,识别病虫害的发生情况,帮助农民进行农业生产管理,减少农业生产的损失。
在林业领域,高光谱遥感技术可以用于监测森林植被的生长情况和病虫害的发生情况,提高森林资源的利用率和管理水平。
在环境科学领域,高光谱遥感技术可以用于监测河流、湖泊、湿地等水域环境的变化情况,帮助科学家了解自然生态系统的变化,为环境保护提供有力的数据支撑。
总之,高光谱遥感技术是一项在地球科学、环境科学、农业、林业等领域具有广泛应用前景的技术,它可以为我们提供丰富的地面物质信息,为人类社会的可持续发展做出贡献。
在将来,高光谱遥感技术的进一步发展将为我们提供更高精度、更可靠的数据和信息,支持更多的应用需求。
高光谱遥感
高光谱遥感• • • •高光谱遥感的基本概念 高光谱遥感器及平台简介 高光谱遥感技术 高光谱应用概况高光谱遥感的基本概念• 高光谱分辨率(简称为高光谱)遥感或成像光 谱遥感技术的发展是过去二十年中人类在对地 观测方面所取得的重大技术突破之一,是当前 遥感的前沿技术。
它是指利用很多很窄的电磁 波波段获取许多非常窄且光谱连续的图像数据 的技术,融合了成像技术和光谱技术,准实时 地获取研究对象的影像和每个像元的光谱分布。
国际遥感界认为光谱分辨率在10-1λ数量级范围内的为多 光谱(Multispectral),这样的遥感器在可见光和近红外光谱区 只有几个波段,如美陆地卫星TM和法国SPOT卫星等; 光谱分 辨率在10-2λ的遥感信息称之为高光谱(Hyperspectral)遥感。
由 于其光谱分辨率高达纳米(nm)数量级,往往具有波段多的特 点,即在可见到近红外光谱区其光谱通道多达数十甚至超过 100以上。
随着遥感光谱分辨率的进一步提高,在达到10-3λ 时,遥感即进入了超高光谱(Ultraspectral)阶段 、光谱区域(nm) : 400 700 1100 2500 5500 14000VIS VNIRPIRMIRSunlight 光谱分辨率 波段数 多光谱 高光谱 5-10 100-200 Δλ/λ 0.1 0.01 VNIR 50-100 5-20IRTMIR 100-200 10-50IRT 1000-2000 100-500高光谱遥感的基本概念高光谱遥感起源于20世纪70年代初的多光谱遥 感,它将成像技术与光谱技术结合在一起,在对目标 的空间特征成像的同时,对每个空间像元经过色散 形成几十乃至几百个窄波段以进行连续的光谱覆 盖,这样形成的遥感数据可以用“图像立方体”来形 象的描述.同传统遥感技术相比, 其所获取的图像包 含了丰富的空间,辐射和光谱三重信息。
高光谱遥感的基本概念高光谱遥感的基础是波谱学,早在20世纪初波 谱学就被用于识别分子和原子的结构。
高光谱遥感的应用
在外星探测中,有火星探测 热红外高光谱仪等,中 国和印度的探月计划中也将搭载高光谱仪。
基于高光谱数据的矿物精细识别
利用高光谱遥感(含热红外高光谱)进行矿 物识别可分为 3 个层次:
矿物种类识别 矿物含量识别 矿物成分识别
3.混合光谱分解技术
用以确定在同一像元内不同地物光谱成分所 占的比例或非已知成分。因为不同地物光谱成 分的混合会改变波段的深度,波段的位置,宽 度,面积和吸收的程度等。这种技术采用矩形 方程,神经元网络方法以及光谱吸收指数技术 等,求出在给定像元内各成分光谱的比例。
4.光谱分类技术
主要的方法包括传统的最大似然方法、人工 神经网络方法、支持向量机方法和光谱角 制图方法(Spectral Angel Map-per, SAM)。
5.光谱维特征提取方法
可以按照一定的准则直接从原始空间中选 出一个子空间;或者在原特征空间之间找到 某种映射关系。这一方法是以主成分分析为 基础的改进方法。
6、模型方法
是模型矿物和岩石反射光谱的各种模型方法 。 因为高光谱测量数据可以提供连续的光谱抽样 信息,这种细微的光谱模型特征是模型计算一 改传统的统计模型方法建立起确定性模型方法。 因而,模型方法可以提供更有效和更可靠的分 析结果。
植被遥感研究的分析方法,除了应用于地质分析中的一些 方法外,主要有以下几种技术:
1、多元统计分析技术 用原始的光谱反射率或经微分变换、对数变换、植被指数变换或其
他数学变换后的 数据作为自变量,以叶面指数、生物量、叶绿素含量
等作为因变量,建立多元回归预测模型来估计或预测生物物理模型和 生物化学参数。 2、基于光谱波长位置变量的分析技术
高光谱遥感
EO-1
Landsat-7
1
mi
n
29 min
Terra
表 Hyperion主要技术参数
中国的环境与减灾1号卫星高光谱成像仪
• 高光谱遥感信息成像机理
➢ 高光谱遥感器接收到入瞳辐射后通过探测器产生电信号,在经过增益和模数转 换(A/D)产生遥感影像数值(DN)。遥感器的空间响应、光谱响应和辐射响应决 定了输出图像的信息特征。进入传感器的辐射量通过光学系统后,由分光器件分成 不同的光谱段后到达探测器焦平面转换为测量值。该测量值的大小直接与探测器的 光谱响应率相关,从而又与光学系统的透过率和探测器的光谱灵敏度相关联。
三、高光谱遥感器的发展
❖ 70年代末,美国加州理工学院喷气推进实验室(JPL)
学者提出。
❖ 1983年,世界上第一台成像光谱仪问世,AIS-1
(Airborne Imaging Spectrometer)问世,64波段。
❖ 1987年,航空可见光/红外成像光谱仪AVIRIS,224波段 ❖ 2000年第一台星载高分辨率成像光谱仪 HYPERION升空。 ❖ 1991年,中国第一台航空成像光谱仪(MAIS)运行
➢ 第一代成像光谱仪称航空成像光谱仪AIS(Airborne
Imaging Spectrometer),64个通道,光谱覆盖范围从990nm-2400nm, 光谱分辨率9.3nm。
➢ 第二代成像光谱仪称航空可见光、近红外成像光谱仪
AVIRIS(Airborne Visible/Infrared Imaging Spectrometer),224个通道, 光谱范围410nm-2450nm,光谱分辨率10nm。
❖多光谱遥感(Multirspectral Remote Sensing),光谱分 辨率为波长 的1/10数量级范围(几十个至几百个nm);
高光谱遥感数据BRDF校正与森林参数提取
《高光谱遥感数据brdf校正与森林参数提取》2023-10-27•高光谱遥感技术简介•高光谱遥感数据BRDF校正•森林参数提取方法目录•高光谱遥感数据BRDF校正与森林参数提取的关系•高光谱遥感数据BRDF校正与森林参数提取的发展趋势与挑战目录01高光谱遥感技术简介高光谱遥感技术是指利用高光谱传感器获取目标物体反射或辐射的电磁波信息,并通过分析这些信息来识别和测量目标物体特征的技术。
高光谱传感器可以在很窄的波段内获取大量连续的光谱信息,这使得高光谱遥感技术在探测地表覆盖类型、植被生长状况、水体污染程度等方面具有显著优势。
高光谱遥感技术具有高分辨率、高灵敏度、高光谱维度的特点。
高分辨率使得高光谱遥感技术可以获取更精细的空间信息,高灵敏度可以增强对目标物体的探测能力,高光谱维度则可以提供更丰富的光谱信息。
高光谱遥感技术在多个领域都有广泛的应用,如环境保护、城市规划、农业监测、地质勘查等。
在环境保护方面,高光谱遥感技术可用于监测空气质量、水体污染、土壤污染等;在城市规划方面,高光谱遥感技术可用于调查城市绿地、测量建筑物高度等;在农业监测方面,高光谱遥感技术可用于监测作物长势、估算作物产量等;在地质勘查方面,高光谱遥感技术可用于识别地质构造、探测矿产资源等。
高光谱遥感技术应用领域02高光谱遥感数据BRDF校正BRDF定义及原理BRDF定义BRDF(Bidirectional Reflectance Distribution Function)是指物体在单位入射角和单位出射角的反射辐射通量密度与入射角和出射角之间的函数关系。
它描述了物体在某个方向上的反射性质随入射角和出射角的变化情况。
BRDF原理BRDF原理是基于物理的光学反射定律和能量守恒定律。
它反映了物体在某个方向上的反射辐射通量密度与入射角和出射角之间的关系。
BRDF值受到物体表面材质、粗糙度、颜色等因素的影响。
基于模型的方法基于物理模型的方法通常需要先建立BRDF模型,然后将模型参数应用于实际高光谱遥感数据进行校正。
高光谱和多光谱
高光谱和多光谱高光谱和多光谱成像技术是现代遥感技术的分支之一,由于其高精度、高分辨率、无非线性失真等优点,被广泛应用于机器视觉、环境监测、农业、地球科学等领域,是目前最为先进的遥感技术之一。
本文将对高光谱和多光谱技术进行详细的介绍。
1. 高光谱技术高光谱技术又称作光谱成像技术,是一种利用光谱辨识物质种类和属性的一种遥感手段。
与传统的遥感技术不同,高光谱技术不仅获取了物体的空间像素信息,同时还能够获取物体在多个波段内的光谱信息,使得物体的特征更加精细。
高光谱技术的工作原理是:通过将被观测目标的反射光分解成许多不同波长的光,即一个连续的光谱,再用高精度的行、列扫描探测器测量每个波长的亮度信息,最后形成一个高精度的光谱影像。
高光谱成像技术可大大增强遥感图像的信息量,为物体的分类、定量化等提供了有力的技术支持,应用广泛。
高光谱技术的应用不仅局限于农业、生态环境、林业等传统领域,还广泛应用于矿产勘察、城市规划、遥感地质等方面。
例如,在矿产勘察领域,可以通过高光谱成像技术有效地发现和定位不同矿产表层和地下的矿体;在城市规划领域,可以通过高光谱技术进行城市景观和绿地结构的分类和定量化;在遥感地质领域,可以通过高光谱技术快速地发现矿物资源、构造特征等。
2. 多光谱技术多光谱成像技术是对目标物体反射或辐射的多频段被动遥感测量技术。
通过多个波段的光谱影像,使所得到的遥感图像不仅能包括目标物体的几何信息,还能提供目标物体的物理信息。
与高光谱技术相比,多光谱技术获取的光谱信息量较低,但是可用的波段范围更为广泛,应用时更加广泛。
多光谱技术的工作原理是:利用多个波段的光谱信息对不同类型的物质进行判别和识别,通过对应不同波段测量的反射率或辐射率,得到多光谱图像,用于分类识别、信息提取和遥感监测等。
多光谱技术可用于灾害监测、海洋工程、环境监测、农业等领域的遥感应用。
总之,与传统的遥感技术相比,高光谱技术和多光谱技术具有更高的信息量和更高的精度,可以更好地满足遥感监测的需求,应用范围广泛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万方数据
万方数据
万方数据
高光谱遥感技术综述
作者:袁迎辉, 林子瑜, Yuan Yinghui, Lin Ziyu
作者单位:东华理工大学,344000
刊名:
中国水运(学术版)
英文刊名:CHINA WATER TRANSPORT
年,卷(期):2007,7(8)
被引用次数:1次
1.梅安新.彭望琭.秦其明遥感导论 2001
2.张良培.张立福高光谱遥感 2005
3.浦瑞良.宫鹏高光谱遥感及其应用 2000
4.杨哲海.韩建峰.宫大鹏高光谱遥感技术的发展与应用[期刊论文]-海洋测绘 2003(11)
5.孙钊高光谱遥感的应用[期刊论文]-贵州教育学院报 2004(08)
6.张卡.盛业华.张书毕遥感新技术的若干进展及其应用[期刊论文]-遥感信息 2004(02)
7.申广荣.王人潮植被高光谱遥感的应用研究综述[期刊论文]-上海交通大学学报 2001(04)
8.唐攀科.李永丽.李国斌成像光谱遥感技术及其在地质中的应用[期刊论文]-矿产与地质 2006(04)
9.许卫东高光谱遥感分类与提取技术[期刊论文]-红外 2004(05)
10.舒宁国内外有关成像光谱数据影响分析方法研究[期刊论文]-国土资源遥感 1998(03)
1.王为高光谱遥感技术的发展及其在农业上的应用[期刊论文]-江西农业学报 2009(5)
本文链接:/Periodical_zgsy-xsb200708071.aspx。