2018高中数学人教b版必修3教学案第二章 2.3 2.3.1 - 2.3.2 变量间的相关关系 两个变量的线性相关 含解析

合集下载

高中数学第二章统计2.3变量的相关性2.3.1-2.3.2变量间的相关关系两个变量的线性相关教学案新人教B版必修3

高中数学第二章统计2.3变量的相关性2.3.1-2.3.2变量间的相关关系两个变量的线性相关教学案新人教B版必修3

2.3.1 & 2.3.2 变量间的相关关系 两个变量的线性相关习课本P73~78,思考并完成以下问题预(1)相关关系是函数关系吗?(2)什么是正相关、负相关?与散点图有什么关系?(3)回归直线方程是什么?如何求回归系数?(4)如何判断两个变量之间是否具备相关关系?[新知初探]1.两个变量的关系分类函数关系相关关系 特征两变量关系确定两变量关系带有随机性2.散点图将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形. 3.正相关与负相关(1)正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.4.最小二乘法设x ,Y 的一组观察值为(x i ,y i ),i =1,2,…,n ,且回归直线方程为y ^=a +bx ,当x 取值x i (i =1,2,…,n )时,Y 的观察值为y i ,差y i -y ^i (i =1,2,…,n )刻画了实际观察值y i 与回归直线上相应点纵坐标之间的偏离程度,通常是用离差的平方和,即Q =i =1n(y i -a-bx i)2作为总离差,并使之达到最小.这样,回归直线就是所有直线中Q取最小值的那一条.由于平方又叫二乘方,所以这种使“离差平方和最小”的方法,叫做最小二乘法.5.回归直线方程的系数计算公式回归直线方程回归系数系数a^的计算公式方程或公式y^=a^+b^x b^=∑i=1nxiyi-n x-y-∑i=1nx2i-n x2a^=y-b^x-上方加记号“^ ”的意义区分y的估计值y^与实际值ya,b上方加“^ ”表示由观察值按最小二乘法求得的估计值[小试身手]1.下列命题正确的是( )①任何两个变量都具有相关关系;②圆的周长与该圆的半径具有相关关系;③某商品的需求量与该商品的价格是一种非确定性关系;④根据散点图求得的回归直线方程可能是没有意义的;⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进行研究.A.①③④B.②③④C.③④⑤D.②④⑤解析:选C ①显然不对,②是函数关系,③④⑤正确.v,u;对变量1,得散点图图10),…,1,2=i)(iy,ix(有观测数据y,x.对变量2)(由这两个散点图可以判断2.,得散点图图10),…,1,2=i)(iv,iu(有观测数据A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关解析:选C 由这两个散点图可以判断,变量x 与y 负相关,u 与v 正相关.80,当施肥量为250+x 5=y ^归方程为的线性回(kg)y 与水稻产量(kg)x .若施肥量3kg 时,预计水稻产量约为________kg..650(kg)=250+5×80=y ^代入回归方程可得其预测值80=x 解析:把 答案:6504.对具有线性相关关系的变量x 和y ,测得一组数据如下表所示.x 2 4 5 6 8y 30 40 60 50 70若已求得它们的回直线的方程为______________________.,5=2+4+5+6+85=x 解析:由题意可知 y50.=30+40+60+50+705=即样本中心为(5,50).,a ^+x 6.5=y ^设回归直线方程为 ,)y ,x (回归直线过样本中心∵ ,7.51=a ^,即a ^+6.5×5=50∴ 17.5+x 6.5=y ^回归直线方程为∴ 17.5+x 6.5=y ^答案:相关关系的判断[典例] (1) ①正方形的边长与面积之间的关系; ②农作物的产量与施肥量之间的关系; ③人的身高与年龄之间的关系;④降雪量与交通事故的发生率之间的关系. (2)某个男孩的年龄与身高的统计数据如下表所示.年龄x (岁)123456身高y (cm)78 87 98 108 115 120①画出散点图;②判断y 与x 是否具有线性相关关系.[解析] (1)在①中,正方形的边长与面积之间的关系是函数关系;在②中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;在③中,人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而它们不具有相关关系;在④中,降雪量与交通事故的发生率之间具有相关关系.答案:②④(2)解:①散点图如图所示.②由图知,所有数据点接近一条直线排列,因此,认为y 与x 具有线性相关关系.两个变量是否相关的两种判断方法(1)根据实际经验:借助积累的经验进行分析判断.(2)利用散点图:通过散点图,观察它们的分布是否存在一定的规律,直观地进行判断.[活学活用]如图所示的两个变量不具有相关关系的是________(填序号).解析:①是确定的函数关系;②中的点大都分布在一条曲线周围;③中的点大都分布在一条直线周围;④中点的分布没有任何规律可言,x ,y 不具有相关关系.答案:①④求回归方程[典例] (1)已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x +2.3B.y ^=2x -2.4C.y ^=-2x +9.5 D.y ^=-0.3x +4.4(2)一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点的零件的多少随机器的运转的速度的变化而变化,下表为抽样试验的结果:转速x (转/秒)16 14 12 8 每小时生产有缺点的零件数y (件)11985①画出散点图;②如果y 对x 有线性相关关系,请画出一条直线近似地表示这种线性关系; ③在实际生产中,若它们的近似方程为y =5170x -67,允许每小时生产的产品中有缺点的零件最多为10件,那么机器的运转速度应控制在什么范围内?[解析] (1)依题意知,相应的回归直线的斜率应为正,排除C 、D.且直线必过点(3,3.5),代入A 、B 得A 正确.答案:A(2)解:①散点图如图所示:②近似直线如图所示:秒/转14,所以机器的运转速度应控制在≤14.9x ,解得≤1067-x 5170得≤10y 由③内.求回归直线方程的步骤.)数据一般由题目给出)(n ,…,1,2=i )(i y ,i x (收集样本数据,设为(1) (2)作出散点图,确定x ,y 具有线性相关关系..i y i x ,2i x ,i y ,i x 把数据制成表格(3).iy i ∑i =1nx ,2i ∑i =1n x ,y ,x 计算(4) ⎩⎪⎨⎪⎧b ^=∑i =1nxiyi -n x y ∑i =1n x2i -n x 2,a ^=y -b ^ x .,公式为a ^,b ^代入公式计算(5).a ^+x b ^=y ^写出回归直线方程(6) [活学活用]已知变量x ,y 有如下对应数据:x 1 2 3 4 y1345(1)作出散点图;(2)用最小二乘法求关于x ,y 的回归直线方程. 解:(1)散点图如图所示.,52=1+2+3+44=x (2) y ,134=1+3+4+54=∑i=14x 39.=20+12+6+1=i y i ∑i =14x 2i ,30=16+9+4+1= b^,1310=39-4×52×13430-4×⎝ ⎛⎭⎪⎫522=a^,0=52×1310-134= .为所求的回归直线方程x 1310=y ^所以 利用线性回归方程对总体进行估计[典例x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:x 3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,求出y 关于x 的回归直线方程y ^=b ^x +a ^;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低了多少吨标准煤?[解] (1)散点图如图:,3.5=2.5+3+4+4.54=y ,4.5=3+4+5+64=x (2) ∑i=14x ,66.5=6×4.5+5×4+4×3+3×2.5=i y i ∑i=14x 2i ,86=26+25+24+23= ∑i =14xiyi -4xy∑i =14x2i -4x 2=b ^所以 ,0.7=66.5-4×4.5×3.586-4×4.52=a ^0.35.=0.7×4.5-3.5=x b ^-y = 0.35.+x 0.7=y ^所以所求的线性回归方程为 ,)吨标准煤70.35(=0.35+0.7×100=y ^时,100=x 当(3) 90-70.35=19.65(吨标准煤).即生产100吨甲产品的生产能耗比技改前降低了19.65吨标准煤.只有当两个变量之间存在线性相关关系时,才能用回归直线方程对总体进行估计和预测.否则,如果两个变量之间不存在线性相关关系,即使由样本数据求出回归直线方程,用其估计和预测结果也是不可信的.[活学活用](重庆高考)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份 2010 2011 2012 2013 2014 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(1)求y 关于t 的回归方程y ^=b ^t +a ^;(2)用所求回归方程预测该地区2015年(t =6)的人民币储蓄存款. 解:(1)列表计算如下:it iy it 2it i y i1 1 5 1 52 2 6 4 123 3 7 9 214 4 8 16 325 5 10 25 50 ∑153655120这里n =5,t -=1n ∑i =1n t i =155=3,y -=1n ∑i =1n y i =365=7.2.又∑i =1nt2i -n t -2=55-5×32=10,i =1n t i y i -n t-y -=120-5×3×7.2=12,从而b ^=1210=1.2,a ^=y --b ^t -=7.2-1.2×3=3.6,故所求回归方程为y ^=1.2t +3.6.(2)将t =6代入回归方程可预测该地区2015年的人民币储蓄存款为y ^=1.2×6+3.6=10.8(千亿元).[层级一 学业水平达标]1.下列变量具有相关关系的是( )A .人的体重与视力B .圆心角的大小与所对的圆弧长C .收入水平与购买能力D .人的年龄与体重解析:选C B 为确定性关系;A ,D 不具有相关关系,故选C.2.已知变量x ,y 之间具有线性相关关系,其散点图如图所示,则其回归方程可能为2+x 1.5=y ^A. 2+x 1.5=-y ^B. 2-x 1.5=y ^C. 2-x 1.5=-y ^D. 之间负相关,回归直线y ,x ,由散点图可知变量a ^+x b ^=y ^设回归方程为 B 解析:选 2.+x 1.5=-y ^,因此方程可能为>0a ^,<0b ^轴上的截距为正数,所以y 在 个样本点,n 的y 和x 是变量)n y ,n x (,…,)2y ,2x (,)1y ,1x (设3.直线l 是由这些样本点通过最小二乘法得到的线性回归直线如图所示,则以下结论正确的是( ))y ,x (过点l .直线A B .回归直线必通过散点图中的多个点C .直线l 的斜率必在(0,1)D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同解析:选A A 是正确的;回归直线可以不经过散点图中的任何点,故B 错误;回归直线的斜率不确定,故C 错误;分布在l 两侧的样本点的个数不一定相同,故D 错误. 4.一项关于16艘轮船的研究中,船的吨位区间为[192,3 246](单位:吨),船员的,x 0.006 2+9.5=y ^的回归方程为x 关于吨位y 人,船员人数32~5人数 (1)若两艘船的吨位相差1 000,求船员平均相差的人数;(2)估计吨位最大的船和最小的船的船员人数.,则2x ,1x 设两艘船的吨位分别为(1)解: y^)2x 6 20.00+(9.5-1x 0.006 2+9.5=2y ^-1 =0.006 2×1 000≈6, 即船员平均相差6人.,0.006 2×192≈11+9.5=y ^时,192=x 当(2) 0.006 2×3 246≈30.+9.5=y ^时,3 246=x 当 即估计吨位最大和最小的船的船员数分别为30人和11人.[层级二 应试能力达标]1.一个口袋中有大小不等的红、黄、蓝三种颜色的小球若干个(大于5个),从中取5次,那么取出红球的次数和口袋中红球的数量是( ) A .确定性关系 B .相关关系 C .函数关系D .无任何关系 解析:选 B 每次从袋中取球取出的球是不是红球,除了和红球的个数有关外,还与球的大小等有关系,所以取出红球的次数和口袋中红球的数量是一种相关关系.,下x 80+50=y ^变化的回归直线方程为)千元(x 依劳动生产率)元(y .农民工月工资2列判断正确的是( )A .劳动生产率为1 000元时,工资为130元B .劳动生产率提高1 000元时,工资水平提高80元C .劳动生产率提高1 000元时,工资水平提高130元D .当月工资为210元时,劳动生产率为2 000元的单x ,但要注意80增加y ,1每增加x 知,x 80+50=y ^由回归直线方程 B 解析:选位是千元,y 的单位是元.3.为了解儿子身高与其父亲身高的关系,随机抽取5对父子身高数据如下:则y 对x 的线性回归方程为( )A .y =x -1B .y =x +1x 12+88=y .C176=y .D =y ,176=174+176+176+176+1785=x 计算得, C 解析:选符合.C 检验知,)y ,x (,根据回归直线经过样本中心176=175+175+176+177+17754.已知x 与y 之间的几组数据如下表:,若某同学根据上表中的前两组a ^+x b ^=y ^假设根据上表数据所得线性回归直线方程为数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )′a <a ^,′b >y ^′ B.a >a ^,′b >b ^A. ′a <a ^,′b <y ^′ D.a >a ^,′b <b ^C. 解析:选C 由(1,0),(2,2)求b ′,a ′.2.=-2×1-0=′a ,2=2-02-1=′b ,58=24+15+12+3+4+0=i y i ∑i =16x 时,a ^,b ^求 x ,136=y ,3.5= ∑i=16x 2i ,91=36+25+16+9+4+1= ,57=58-6×3.5×13691-6×3.52=b ^∴ a^,13=-52-136=×3.557-136= ′.a >a ^,′b <b ^∴ =y ^的回归方程为(cm)x 对身高(kg)y 岁的人,体重38岁到18.正常情况下,年龄在50.72x -58.2,张红同学(20岁)身高为178 cm ,她的体重应该在________ kg 左右. =y ^时,178=x 的人的体重进行预测,当178 cm 解析:用回归方程对身高为0.72×178-58.2=69.96(kg).答案:69.966.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:________.=a ,则a +x 4=-y 由表中数据,求得线性回归方程为 ,132=4+5+6+7+8+96=x 解析: y,80=92+82+80+80+78+686=)y ,x (由回归方程过样本中心点 .a ^+1324×=-80得 106.=1324×+80=a ^即 答案:1067.对某台机器购置后的运行年限x (x =1,2,3,…)与当年利润y 的统计分析知x ,y ,估计该台机器最为划算的使用年限为x 1.3-10.47=y ^具备线性相关关系,回归方程为________年.解析:当年利润小于或等于零时应该报废该机器,当y =0时,令10.47-1.3x =0,解得x ≈8,故估计该台机器最为划算的使用年限为8年.答案:88.某个体服装店经营某种服装在某周内所获纯利y (元)与该周每天销售这种服装的件数x (件)之间有一组数据如下表:;y ,x 求(1) (2)若纯利y 与每天销售这种服装的件数x 之间是线性相关的,求回归直线方程; (3)若该店每周至少要获纯利200元,请你预测该店每天至少要销售这种服装多少件?3 487)=i y i ∑i =17x ,45 309=2i ∑i =17y ,280=2i ∑i =17x 提示:( ,6=3+4+5+6+7+8+97=x (1)解: y≈79.86.66+69+73+81+89+90+917= ,≈4.753 487-7×6×79.86280-7×62=b ^∵(2) a^,51.36=4.75×6-79.86= .x 4.75+51.36=y ^之间的回归直线方程为x 纯利与每天销售件数∴ ≈31.29.x ,所以651.3+x 4.75=200时,200=y ^当(3) 因此若该店每周至少要获纯利200元,则该店每天至少要销售这种服装32件.9.2016年元旦前夕,某市统计局统计了该市2015年10户家庭的年收入和年饮食支出的统计资料如下表:年收入x (万元)2 4 4 6 6 6 7 7 8 10年饮食 支出y(万元)0.9 1.4 1.6 2.0 2.1 1.9 1.8 2.1 2.2 2.3(2)若某家庭年收入为9万元,预测其年饮食支出.406)=2i ∑i =110x ,117.7=i y i ∑i =110x 参考数据:( 解:依题意可计算得:x,10.98=y x ,36=2x ,1.83=y ,6= ,406=2i ∑i =110x ,117.7=i y i ∑i =110x ∵又,≈0.17∑i=110xiyi -10x y ∑i =110x2i -10x 2=b ^∴ a^0.81.+x 0.17=y ^∴,0.81=x b ^-y = 1.0.8+x 0.17=y ^所求的回归方程为∴ .)万元2.34(=0.81+0.17×9=y ^时,9=x 当(2) 可估计年收入为9万元的家庭每年饮食支出约为2.34万元.(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列三个抽样:①一个城市有210家某商品的代理商,其中大型代理商有20家,中型代理商有40家,小型代理商有150家,为了掌握该商品的销售情况,要从中抽取一个容量为21的样本;②在某公司的50名工人中,依次抽取工号为5,10,15,20,25,30,35,40,45,50的10名工人进行健康检查;③某市质量检查人员从一食品生产企业生产的两箱(每箱12盒)牛奶中抽取4盒进行质量检查.则应采用的抽样方法依次为( )A .简单随机抽样;分层抽样;系统抽样B .分层抽样;简单随机抽样;系统抽样C .分层抽样;系统抽样;简单随机抽样D .系统抽样;分层抽样;简单随机抽样解析:选 C ①中商店的规模不同,所以应利用分层抽样;②中抽取的学号具有等距性,所以应是系统抽样;③中总体没有差异性,容量较小,样本容量也较小,所以应采用简单随机抽样.故选C.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20 解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190 192.=n ,求得80=n200+1 200+1 0001 000× B 解析:选 4.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )200+x 10=y ^200 B.+x 10=-y ^A. 200-x 10=y ^200 D.-x 10=-y ^C. 解析:选A 由于销售量y 与销售价格x 成负相关,故排除B ,D.又因为销售价格x >0,则C 中销售量全小于0,不符合题意,故选A.,则y 和x ,它们的平均数分别是n y ,…,2y ,1y 与n x ,…,2x ,1x .设有两组数据5)(的平均数是1+n y 3-n x 2,…,1+2y 3-2x 1,2+1y 3-1x 2新的一组数据 y 3-x 2.A 1+y 3-x 2.By 9-x 4.C1+y 9-x 4.D ,)n ,…,1,2=i 1(+i y 3-i x 2=i z 设 B 解析:选 =⎝ ⎛⎭⎪⎫1+1+…+1n +)n y +…+2y +1y (3n -)n x +…+2x +1x (2n =)n z +…+2z +1z (1n =z 则 1.+y 3-x 2 6.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12[35.5,39.5) 7 [39.5,43.5) 3则总体中大于或等于31.5的数据所占比例约为( )211A.13B. 12C.23D. 解析:选B 由题意知,样本的容量为66,而落在[31.5,43.5)内的样本个数为12+7.13=2266的数据约占31.5,故总体中大于或等于22=3+ 7.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90 解析:选C ∵得85分的人数最多为4人,∴众数为85,中位数为85,87.=75)+80+85×4+90×2+95+(100110平均数为 8.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得到了他们某月交通违章次数的数据,结果制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3 1.8.=5×0+20×1+10×2+10×3+5×450B 解析:选 9.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据月份x 1 2 3 4用水量y 4.5 4 3 2.5的a ,则a +x 0.7=-y 之间具有线性相关关系,其线性回归方程为x 与月份y 用水量值为( )A .5.25B .5C .2.5D .3.5 解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25.10.如图是在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.2D .85,4 +5+6+3+(515+80,平均数为77,去掉一个最低分95去掉一个最高分 C 解析:选,因此1.2=]286)-(85+285)-(85+286)-(85+283)-(85+285)-[(8515,方差为85=6)选C.,…,2+2x 2,3+1x 3,则2s ,方差是x 的平均数是n x ,…,3x ,2x ,1x .如果数据11)(的平均数和方差分别是2+n x 32s 和x A.2s 9和x 3.B2s 9和2+x 3.C4+2s 12和2+x 3.D nx …,2x ,1x ,由于数据2+x 3的平均数是2+n x 3,…,2+2x 2,3+1x 3 C 解析:选.2s 9的方差为2+n x 3,…,2+2x 2,3+1x 3,所以2s 的方差为 12.如图是某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图,已知甲的成绩的极差为31,乙的成绩的平均值为24,则下列结论错误的是( ) A .x =9 B .y =8C .乙的成绩的中位数为26D .乙的成绩的方差小于甲的成绩的方差解析:选B 因为甲的成绩的极差为31,所以其最高成绩为39,所以x =9;因为乙的成绩的平均值为24,所以y =24×5-(12+25+26+31)-20=6;由茎叶图知乙的成绩的中位数为26;对比甲、乙的成绩分布发现,乙的成绩比较集中,故其方差较小. 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为________.∴,2;又方差为20=y +x ,则10=159)×+11+10+y +x (,得10解析:由平均数为=xy 208,2=2y +2x ,得2=15]×210)-(9+210)-(11+210)-(10+210)-y (+210)-x [( 4.=x2+y2-2xy =x -y 2=|y -x |∴,192 答案:414.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.12.=×482148+36解析:抽取的男运动员的人数为 答案:1215.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:________,________,________,________,________.(下面摘取了随机数表第7行至第9行)59408 66368 36016 26247 25965 49487 26968 86021 77681 83458 21540 62651 69424 78197 20643 67297 76413 66306 51671 54964 87683 30372 39469 97434解析:以3开始向右读,每次读取三位,重复和不在范围内的不读,依次为368,360,162,494,021.答案:368,360,162,494,02116.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1,∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人,10.=z ,20=y 同理,30.=x ,解得0.030×10=x100则3.=×181030+20+10的学生中选取的人数为[140,150]故从 答案:0.030 3三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) ,应如何110名学生中抽取50为调查某班学生的平均身高,从)分10本小题满分(.17抽样?若知道男生、女生的身高显著不同(男生30人,女生20人),应如何抽样? 抽签法或随机数(人,采用简单随机抽样法5,即抽取110名学生中抽取50解:从法).若知道男生、女生的身高显著不同,则采用分层抽样法,按照男生与女生的人数比为30∶20=3∶2进行抽样,则男生抽取3人,女生抽取2人.18.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示. (1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?22.=1326=17+19+20+21+25+306样本均值为1)(解: 4=1312×名工人中有12,故推断该车间13=26知样本中优秀工人所占比例为(1)由(2)名优秀工人.19.(本小题满分12分)2016年春节前,有超过20万名广西、四川等省籍的外出务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让返乡过年的摩托车驾乘人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就进行一次省籍询问,询问结果如图所示:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5人,则四川籍的应抽取几人?解:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样法.(2)从题图可知,被询问了省籍的驾驶人员广西籍的有5+20+25+20+30=100(人);四川籍的有15+10+5+5+5=40(人).2,即四川籍的应抽取2=x ,解得x40=5100人,依题意得x 设四川籍的驾驶人员应抽取人.20.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110.(1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定?解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样.,100=99)+98+103+98+99+101+(10217=甲x (2) x,100=110)+115+75+85+90+115+(11017=乙 ,1)≈3.43+4+9+4+1+1+(417=2甲s ,228.57=100)+225+625+225+100+225+(10017=2乙s ,故甲车间产品比较稳定.2乙s <2甲s ∴ 21.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:分组频数 频率[10,15) 10 0.25[15,20) 25n [20,25) mp[25,30] 20.05 合计M1(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数.解:(1)由分组[10,15)的频数是10, 40.=M ,所以0.25=10M知,0.25频率是 因为频数之和为40,所以10+25+m +2=40,解得m =3.0.075.=340=p 故 因为a 是对应分组[15,20)的频率与组距的商,125.0.=2540×5=a 所以 (2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.22.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入iy i ∑i =110x ,20=i ∑i =110y ,80=i ∑i =110x 的数据资料,算得)单位:千元(i y 与月储蓄)单位:千元(i x 720.=2i ∑i =110x ,184= ;a ^+xb ^=y ^的线性回归方程x 对月收入y 求家庭的月储蓄(1) (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.,8=8010=i ∑i =1n x 1n =x ,10=n 由题意知(1)解: y ,2=2010=i ∑i =1n y 1n = ,80=210×8-720=2x 10-2i ∑i =110x 又 ∑i=110x ,24=10×8×2-184=y x 10-i y i ,0.3=2480=∑i =110xiyi -10x y∑i =110x2i -10x 2=b ^由此得 a^,0.4=-0.3×8-2=x b ^-y = 0.4.-x 0.3=y ^故所求回归方程为 (2)由于变量y 的值随x 的值增加而增加(b =0.3>0),故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7千元.。

2017-2018学年人教B版高中数学必修3教学案

2017-2018学年人教B版高中数学必修3教学案

2017-2018学年人教B版高中数学必修3教学案目录第一章 1.1.1 算法的概念第一章 1.1.2 程序框图第一章 1.1.3 第一课时顺序结构与条件分支结构第一章 1.1.3 第二课时循环结构第一章 1.2.1赋值、输入和输出语句第一章 1.2.2条件语句第一章 1.2.3循环语句第一章 1.3中国古代数学中的算法案例第二章 2.1.1简单随机抽样第二章 2.1.2系统抽样第二章 2.1.3-2.1.4分层抽样数据的收集第二章 2.2.1用样本的频率分布估计总体的分布第二章 2.2.2用样本的数字特征估计总体的数字特征第二章 2.3.1-2.3.2变量间的相关关系两个变量的线性相关第三章 3.1.1-3.1.2随机现象事件与基本事件空间第三章 3.1.3频率与概率第三章 3.1.4概率的加法公式第三章 3.2.1-3.2.2古典概型概率的一般加法公式(选学)第三章 3.3.1-3.3.2几何概型随机数的含义与应用第三章 3.4 概率的应用1.1.1 算法的概念预习课本P3~6,思考并完成以下问题 (1)在数学中算法是如何定义的?(2)算法有哪四种描述方式?(3)设计算法的两个要求是什么?[新知初探]1.算法 (1)概念:说法①:由基本运算及规定的运算顺序所构成的完整的解题步骤. 说法②:按照要求设计好的有限的确切的计算序列. (2)作用:这样的步骤或序列能够解决一类问题. 2.算法的描述方式 方式⎩⎪⎨⎪⎧自然语言数学语言形式语言(算法语言)框图3.设计算法的两个要求(1)写出的算法,必须能解决一类问题,并且能重复使用.(2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果.[小试身手]1.下列叙述不能称为算法的是( )A .从北京到上海先乘汽车到飞机场,再乘飞机到上海B .解方程4x +1=0的过程是先移项再把x 的系数化成1C .利用公式S =πr 2计算半径为2的圆的面积得π×22D.解方程x2-2x+1=0答案:D2.算法的有限性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确答案:C3.以下有六个步骤:①拨号;②等拨号音;③提起话筒(或免提功能);④开始通话或挂机(线路不通);⑤等复话方信号;⑥结束通话.写出一个打本地电话的算法________(只写序号).解析:按照打本地电话的基本操作流程来写,应是③②①⑤④⑥.答案:③②①⑤④⑥4.给出一个问题的算法S1输入a.S2若a≥4,则执行S3;否则执行S4.S3y=2a.S4y=a2.S5输出y.当输入的值a=5时,则输出的y值为________.解析:所给问题是求函数值问题.已知函数解析式为y=错误!所以当a=5时,y=10.答案:10[典例]A.描述算法可以有不同的方式,可用形式语言也可用其它语言B.算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列只能解决当前问题C.算法过程要一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步或无限步后能得出结果D.算法要求按部就班地做,每一步可以有不同的结果[解析]算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或计算序列能够解决一类问题.算法过程要求一步一步执行,每一步执行的操作,必须确切,只能有唯一结果,而且经过有限步后,必须有结果输出后终止,描述算法可以有不同的语言形式,如自然语言、框图语言及形式语言等.[答案] A有关算法概念的解题策略(1)判断题应根据算法的特点进行求解;(2)步骤要有限,前后有顺序,步步都明确.特别注意能在有限步内求解某一类问题,其中的每个步骤必须是明确可行的,不能模棱两可,对同一个问题可设计不同的算法.[活学活用]下列各式中S值不可以用算法求解的是()A.S=1+2+3+4B.S=12+22+32+…+1002C.S=1+12+…+110 000D.S=1+2+3+4+…解析:选D由算法的有限性知,D不正确,而A、B、C都可以通过有限步骤操作,输出确定结果.算法的设计[典例][解]圆台如图所示,算法如下:S1令r1=2,r2=4,h=4.S2计算l=(r2-r1)2+h2.S3计算S表=πr21+πr22+π(r1+r2)l.S4输出运算结果.设计具体问题的算法的一般步骤(1)分析问题,找出解决问题的一般数学方法;(2)借助有关变量或参数对算法加以表述;(3)将解决问题的过程划分为若干步骤;(4)用简练的语言将这个步骤表示出来.[活学活用]已知函数f(x)=x2,g(x)=2x-log2x(x≠0).(1)写出求g(f(x))的值的一个算法;(2)若输入x=-2,则g(f(x))输出的结果是什么?解:(1)S1输入x的值(x≠0).S2计算y=x2的值.S3计算z=2y-log2y的值.S4输出z的值.(2)当x=-2时,由上面的算法可知y=4,z=24-log24=14,故输出的结果为14.算法在实际生活中的应用[典例]汇款额不超过100元,收取1元手续费,超过100元但不超过5 000元,按汇款额的1%收取手续费,超过5 000元的一律收取50元手续费.试写出汇款额为x元时,计算银行手续费的一个算法.[解]算法步骤如下:S1输入自变量x的值;S2判断x的范围,若x≤100,则y=1,若100<x≤5 000,则y=x×0.01,若5 000<x≤1 000 000,则y=50;S3输出函数值y.实际生活问题算法设计的步骤(1)弄清已知,明确要求;(2)建立过程模型;(3)根据过程模型设计算法步骤,在写算法时应简练、清晰地表达,要善于分析任何可能出现的情况,体现出思维的严密性和完善性.[活学活用]一位商人有9枚银元,其中有1枚略轻的是假银元,你能用天平(无砝码)将假银元找出来吗?解:S1把银元分成3组,每组3枚;S2将其中两组分别放在天平两边,如果左右不平衡,则假银元就在轻的那一组;如果左右平衡,则假银元就在未称的第3组;S3从含有假银元的那一组中任取两枚银元放在天平两边,如果左右不平衡,则轻的那一边就是假银元;如果两边平衡,则未称的那一枚就是假银元.[层级一学业水平达标]1.计算下列各式中S 的值,能设计算法求解的是( ) ①S =12+14+18+ (12100)②S =12+14+18+…+12100+…;③S =12+14+18+…+12n (n ≥1且n ∈N +).A .①②B .①③C .②③D .①②③解析:选B 因为算法的步骤是有限的,所以②不能设计算法求解. 2.结合下面的算法: S1 输入x .S2 判断x 是否小于0,若是,则输出x +2,否则执行S3. S3 输出x -1.当输入的x 的值为-1时,输出的结果为( ) A .-2 B .0 C .1D .3解析:选C 根据x 值与0的关系,选择执行不同的步骤,当x 的值为-1时,应执行x +2这一步骤,所以输出的结果应为1,故选C.3.给出下列算法: S1 输入x 的值.S2 当x >4时,计算y =x +2;否则执行下一步. S3 计算y =4-x . S4 输出y .当输入x =0时,输出y =________________. 解析:0<4,执行S3,y =4-0=2. 答案:24.用高斯消去法计算二元一次方程组错误!的解. 解:S1 计算D =3×(-1)-1×(-2)=-1. S2 D =-1≠0,则x =6×(-1)-4×(-2)-1=-2,y =4×3-6×1-1=-6.S3 输出x ,y 的值.[层级二 应试能力达标]1.下列对算法的理解不正确的是( )A.算法只能用自然语言来描述B.算法可以用图形方式来描述C.算法一般是“机械的”,有时要进行大量重复的计算,它的优点是可以解决一类问题D.设计算法要本着简单、方便、可操作的原则解析:选A由算法的概念和描述方式知,A不正确.2.对于一般的二元一次方程组错误!在写解此方程组的算法时需要我们注意的是() A.a1≠0 B.a2≠0C.a1b2-a2b1≠0 D.a1b1-a2b2≠0解析:选C应用高斯消去法解方程组其实质是利用加减消元法.首先要将两方程y 的系数化为相同即b1b2,此时x的系数分别为a1b2和a2b1两式相减得(a1b2-a2b1)x=c1b2-c2b1,要得出x的值,则需注意a1b2-a2b1≠0.3.阅读下面的算法:S1输入两个实数a,b.S2若a<b,则交换a,b的值,否则执行第三步.S3输出a.这个算法输出的是()A.a,b中的较大数B.a,b中的较小数C.原来的a的值D.原来的b的值解析:选A第二步中,若a<b,则交换a,b的值,那么a是a,b中的较大数;若a<b不成立,即a≥b,那么a也是a,b中的较大数.4.对于算法:S1输入n.S2判断n是否等于2,若n=2,则n满足条件;若n>2,则执行S3.S3依次从2到(n-1)检验能不能整除n,若不能整除n,则执行S4;若能整除n,则执行S1.S4输出n.满足条件的n是()A.质数B.奇数C.偶数D.约数解析:选A从题目的条件可以看出,输出的n没有约数,因此是质数.5.给出算法步骤如下:S1输入x的值;S2当x<0时,计算y=x+1,否则执行S3;S3 计算y =-x 2; S4 输出y .当输入x 的值为-2,3时,输出y 的结果分别是______.解析:由算法步骤可知,其算法功能是已知函数y =错误!当输入x 的值时,求对应的y 值.因为-2<0,所以对应函数解析式为y =x +1,因此y =-2+1=-1;当x =3时,则对应函数解析式为y =-x 2,因此y =-32=-9.答案:-1,-96.使用配方法解方程x 2-4x +3=0的算法的步骤是________(填序号). ①配方得(x -2)2=1; ②移项得x 2-4x =-3; ③解得x =1或x =3; ④开方得x -2=±1.解析:使用配方法的步骤应按移项、配方、开方、得解的顺序进行. 答案:②①④③7.已知直角三角形两条直角边长分别为a ,b (a >b ),写出求两直角边所对的最大角θ的余弦值的算法如下:S1 输入两直角边长a ,b 的值; S2 计算c =a 2+b 2的值; S3 ________________________; S4 输出cos θ.将算法补充完整,横线处应填________________.解析:根据题意知,直角三角形两直角边a ,b (a >b )所对最大角θ的余弦值为bc ,所以应填“计算cos θ=bc 的值”.答案:计算cos θ=bc 的值8.某居民区的物业部门每月向居民收取卫生费,计费方法是:3人或3人以下的住户,每户收取5元;超过3人的住户,每超出1人加收1.2元.设计一个算法,根据输入的人数,计算应收取的卫生费.解:设某户有x 人,根据题意,应收取的卫生费y 是x 的分段函数,即y =错误! 算法如下: S1 输入人数x .S2 如果x ≤3,则y =5;如果x >3,则y =1.2x +1.4. S3 输出应收卫生费y .9.已知直线l1:3x-y+12=0和直线l2:3x+2y-6=0,求直线l1与l2及y轴所围成的三角形面积,写出解决本题的一个算法.解:S1解方程组错误!得直线l1,l2的交点P(-2,6).S2在方程3x-y+12=0中令x=0,得y=12,从而得到A(0,12).S3在方程3x+2y-6=0中令x=0,得y=3,得到B(0,3);S4求出△ABP的底边长|AB|=12-3=9;S5求出△ABP的底边AB上的高h=2;S6根据三角形的面积公式计算S=12|AB|·h=12×9×2=9.1.1.2程序框图预习课本P7~9,思考并完成以下问题(1)程序框图是如何定义的?(2)程序框图的图形符号有哪些?各自的名称和作用是什么?(3)画程序框图的规则有哪五条?[新知初探]1.程序框图的概念及常用图形符号(1)程序框图的概念:用一些通用图形符号构成一张图来表示算法,这种图称做程序框图(简称框图).(2)常用的表示算法步骤的图形符号及其含义:2.画程序框图的规则(1)使用标准的框图的符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,其他框图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的唯一符号.(4)一种判断框是二择一形式的判断,有且仅有两个可能结果;另一种是多分支判断,可能有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.[小试身手]1.下列图形中表示处理框的是()答案:B2.在程序框图中,一个算法步骤到另一个算法步骤的连接用()A.连接点B.判断框C.流程线D.处理框答案:C3.阅读如图所示的程序框图,输入a1=3,a2=4,则输出的结果是()A.12 B.7C.34 D.43解析:选A b=a1·a2=3×4=12.故选A.4.如图所示的程序框图,若输出的y的值为16,则输入的x的值为________.解析:当输出的y的值为16时,由y=4m=16,可知m=2,由m=log2x=2,可得x =22=4.答案:4对程序框的认识和理解[典例]A.程序框图中的图形符号可以由个人来确定B.也可以用来执行计算语句C.输入框只能紧接在起始框之后D.长方形框是执行框,可用来对变量赋值,也可用来计算[解析]程序框是由通用图形符号构成,并且有特殊含义,A不正确;菱形框是判断框,只能用来判断,所以B不正确;输入框可用在算法中任何需要输入的位臵,所以C也不正确;由程序框的功能可知D项正确.[答案] D几种基本框图的功能(1)起、止框:是每一个算法必不可少的框图符号,表示一个算法的开始或结束.(2)输入、输出框:在一个算法中输入、输出一些数据或信息.可用在算法中任何需要输入、输出的位置.(3)处理框:可以进行数据的计算或对变量进行赋值等.(4)判断框:判断某一条件是否成立,从而决定算法下一步的走向.[活学活用]以下给出对程序框图的几种说法:①任何一个程序框图都必须有起止框;②输入框只能放在开始框后,输出框只能放在结束框前;③判断框是唯一具有超过一个退出点的符号;④对于一个程序来说,判断框内的条件表达方法是唯一的.其中正确说法的个数是()A.1B.2C.3 D.4解析:选B根据程序框图的特征可判断②④错误.①③正确.程序框图功能的判断[典例](1)该程序框图表示的算法的功能是什么?(2)若输入a=-2,那么输出结果是什么?[解](1)该程序框图表示的算法的功能是求二次函数y=-x2+4x的函数值.(2)若输入a=-2,那么x=-2,这时y=-(-2)2+4×(-2)=-12,因此输出结果是-12.解决程序框图问题要深刻理解程序框图的定义以及画法规则,同时要对每个框图符号的含义以及作用区分清楚,还要理解并记住画程序框图的一些常见规定.[活学活用]如图是为解决某个问题而绘制的程序框图,仔细分析各图框中的内容及图框之间的关系,回答下列问题:(1)若最终输出的结果是y1=3,y2=-2,则当x取5时5a+b的输出结果应该是多少?(2)在(1)的前提下,输入的x值越大,输出的ax+b的值是不是越大?为什么?解:(1)若y1=3,即2a+b=3.①若y2=-2,即-3a+b=-2. ②联立①②,得a=1,b=1,故y=f(x)=x+1.所以,当x取5时,f(5)=6.(2)在(1)的前提下,输入的x值越大,输出的函数值ax+b越大,因为f(x)=x+1是R 上的增函数.画简单的程序框图[典例]111222出程序框图.[解]算法步骤如下:S1输入x1,y1,x2,y2.S2如果x1=x2,输出“斜率不存在”;否则,k=y2-y1 x2-x1.S3输出k.程序框图如图所示.画程序框图的思路(1)程序框图中的每一种图形符号都有特定的含义,在画程序框图时不能混用.(2)流程线上不要忘记加方向箭头,如果不画,就难以判断各框间的执行次序.(3)要先赋值,再运算,最后输出结果.[活学活用]已知x=10,y=2,画出计算w=5x+8y的值的程序框图.解:先根据题意确定算法步骤,算法如下:S1x=10,y=2.S2计算w=5x+8y.S3输出w的值.其程序框图如图所示.[层级一学业水平达标]1.下列是流程图中的一部分,表示恰当的是()解析:选A B选项应该用处理框而非输入、输出框,C选项应该用输入、输出框而不是处理框,D选项应该在出口处标明“是”和“否”.2.下列关于流程线的说法,不正确的是()A.流程线表示算法步骤执行的顺序,用来连接程序框B.流程线只要是上下方向就表示自上向下执行,可以不要箭头C.流程线无论什么方向,总要按箭头的指向执行D.流程线是带有箭头的线,可以画成折线解析:选B流程线上必须带箭头,表示执行的方向,可能向下,也可能向上,有时也可以画成折线.3.如图,若输入m=3,则输出的结果是________.解析:由题图知n=3+5+5=13.答案:134.阅读如图的程序框图,若输入x的值分别是0和-1时,输出y的值分别是2和5,试求a,b的值.解:依题意可得⎩⎨⎧a ·⎝⎛⎭⎫120+b =2,a ·⎝⎛⎭⎫12-1+b =5,即错误!解得a =3,b =-1.[层级二 应试能力达标]1.程序框是程序框图的一个组成部分,下面的对应正确的是( )①起、止框,表示一个算法的起始和结束;②输入、输出框,表示一个算法输入和输出的信息;③处理框(执行框),功能是赋值、执行计算语句、结果的传送;④判断框,判断某一条件是否成立,成立时在出口处标明“是”或“Y”,不成立时标明“否”或“N”A .(1)与①,(2)与②,(3)与③,(4)与④B .(1)与④,(2)与②,(3)与①,(4)与③C .(1)与①,(2)与③,(3)与②,(4)与④D .(1)与①,(2)与③,(3)与④,(4)与②解析:选D 矩形框表示处理框;菱形框表示判断框;平行四边形框表示输入、输出框;圆角矩形框表示起止框.2.下列关于程序框图的说法正确的是( )A .一个程序框图包括表示相应操作的框、带箭头的流程线和必要的文字说明B .输入、输出框只能各有一个C .程序框图虽可以描述算法,但不如用自然语言描述算法直观D .在程序框图中,必须包含判断框解析:选A 输入、输出框可以放在算法中任何需要输入、输出的位臵,所以不一定各有一个,因此B 选项是错误的;相对于自然语言,用程序框图描述算法的优点主要就是直观、形象,容易理解,在步骤表达上简单了许多,所以C 选项是错误的;显然D 选项错误.3.如图所示的程序框图,已知a 1=3,输出的结果为7,则a 2的值是( )A .9B .10C .11D .12解析:选C 因为输出的结果为7,所以b =7,又b =b2,所以原b =14,即a 1+a 2=14.又a 1=3,所以a 2=11.4.给出如图的算法程序框图,该程序框图的功能是( )A .求出a ,b ,c 三数中的最大数B .求出a ,b ,c 三数中的最小数C .将a ,b ,c 按从小到大排列D .将a ,b ,c 按从大到小排列解析:选B 经判断框中a >b 处理后a 是a ,b 中较小者;经判断框a >c 处理后,a 是a ,c 中较小者,结果输出a ,即三者中最小的数.5.阅读如图所示的程序框图,若输出结果为15,则①处的执行框内应填的是________.解析:先确定①处的执行框是给x 赋值,然后倒着推,b =15时,2a -3=15,a =9,当a =9时,2x +1=9,x =3.答案:x =36.图(2)是计算图(1)的阴影部分面积的一个程序框图,则①中应该填________.解析:∵S =x 2-π×⎝⎛⎭⎫x 22=4-π4x 2, ∴M =4-π4x 2. 答案:M =4-π4x 27.如图是求长方体的体积和表面积的一个程序框图,补充完整,横线处应填______________________.解析:根据题意,长方体的长、宽、高应从键盘输入,故横线处应填写输入框.答案:8.利用梯形的面积公式计算上底为4,下底为6,面积为15的梯形的高.请设计出该问题的算法及程序框图.解:根据梯形的面积公式S =12(a +b )h ,得h =2S a +b ,其中a 是上底,b 是下底,h 是高,S 是面积,只要令a =4,b =6,S =15,代入公式即可.算法如下:第一步,输入梯形的两底a ,b 与面积S 的值. 第二步,计算h =2Sa +b .第三步,输出h .该算法的程序框图如图所示:9.如图所示的程序框图,根据该图和下列各小题的条件回答下面问题.(1)该程序框图解决的是一个什么问题?(2)当输入的x的值为0和4时,输出的值相等,问当输入的x的值为3时,输出的值为多大?(3)在(2)的条件下要想使输出的值最大,输入的x的值应为多大?解:(1)该程序框图解决的是求二次函数f(x)=-x2+mx的函数值的问题.(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).因为f(0)=0,f(4)=-16+4m,所以-16+4m=0,所以m=4,所以f(x)=-x2+4x.则f(3)=-32+4×3=3,所以当输入的x的值为3时,输出的f(x)值为3.(3)因为f(x)=-x2+4x=-(x-2)2+4,当x=2时,f(x)最大值=4,所以要想使输出的值最大,输入的x的值应为2.第二课时循环结构预习课本P13~14,思考并完成以下问题什么是循环结构?[新知初探]循环结构根据指定条件决定是否重复执行一条或多条指令的控制结构称为循环结构.[小试身手]1.下列框图是循环结构的是()A.①②B.②③C.③④D.②④答案:C2.在如图所示的程序框图中,输出S的值为()A.11B.12C.13 D.15解析:选B由框图知S=3+4+5=12.3.程序框图如图所示,其输出结果是()A .110B .118C .127D .132解析:选C 由题图可知,a 的值依次为1,3,7,15,31,63,127,因为127>100,所以输出a =127.4.一个算法的程序框图如图所示,若该程序输出的结果为56,则判断框①中应填入的是________.解析:由框图知,56=11×2+12×3+13×4+…+1n (n +1)=1-1n +1,∴n =5,运行5次.∴判断框中应为“i ≤5?”. 答案:5[典例] (1)( )A .3B .4C .5D .6(2)阅读如图程序框图,为使输出的数为31,则判断框中应填入的条件为( )A .i ≤4B .i ≤5C .i ≤6D .i ≤7[解析] (1)第一次进入循环体:a =32,k =1;第二次进入循环体:a =34,k =2;第三次进入循环体:a =38,k =3;第四次进入循环体:a =316,k =4.此时a <14,结束循环,输出k的值为4.选B.(2)该算法的功能是S =1+2+22+23+…+2i ,由1+2+22+23+…+2i =31. 可知1+2+22+23+24=31, 所以i ≤4.[答案] (1)B (2)A运行含循环结构的程序框图的步骤(1)按顺序逐步运行.(2)写出每次运行后各个变量的结果.(3)一直写到满足条件(或不满足条件)退出循环,输出结果. [活学活用]如图所示的程序框图的输出结果为()A.20 B.3C.5 D.15解析:选A a的初值为5,每循环一次a的值减1,故循环2次,∴输出s=20.故选A.循环结构的设计[典例]×2 016的值.并画出程序框图.[解]算法如下:S1设M的值为1,S2设i的值为2,S3如果i≤2 016,则执行S4,否则执行S6,S4计算M=M×i,S5计算i=i+1,返回执行S3;S6输出M的值,并结束算法.程序框图如图:应用循环结构需要确定的三个关键问题(1)确定循环变量及初始值,循环变量用于控制循环的次数,通常累加问题循环变量的初始值设为0,累乘问题循环变量的初始值设为1.(2)确定循环体,循环体是算法中反复执行的部分,是循环结构的核心,通常由两部分构成,一是进行累加累乘,二是设置控制变量的增加值.(3)确定循环终止的条件.[活学活用]求使1×2×3×…×n>5 000的最小正整数n,设计一个算法,并画出程序框图.解:算法如下:S1M=1;S2i=2;S3如果M≤5 000,那么执行S4,否则执行S5;S4M=M×i,i=i+1,并返回执行S3;S5i=i-1;S6输出i.程序框图如图:循环结构的实际应用[典例]6%,问最早哪一年生产的轿车超过400万辆?试设计算法并画出相应的程序框图.[解]算法如下:S1n=2 015.S2a=300.S3T=0.06a.S4a=a+T.S5n=n+1.S6若a>400,输出n.否则执行S3.程序框图如图:利用循环结构解决应用问题的方法[活学活用]某篮球队6名主力队员在最近三场比赛中投进的三分球个数如表所示:如图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框中应填________,输出的S=________.解析:由题意知该程序框图是统计该6名队员在最近三场比赛中投进的三分球总数,故图中判断框应填i≤6,输出的S=a1+a2+…+a6.答案:6a1+a2+…+a6[层级一学业水平达标]1.阅读如图所示的程序框图,运行相应的程序,则输出的s的值等于()A.-3B.-10C.0 D.-2解析:选A第一次循环:k=0+1=1,满足k<4,s=2×1-1=1;第二次循环:k =1+1=2,满足k<4,s=2×1-2=0;第三次循环:k=2+1=3,满足k<4,s=2×0-3=-3;第四次循环:k=3+1=4,不满足k<4,输出s=-3,故选A.2.执行如图所示的程序框图,若输出的b的值为16,则图中判断框内①处应填()A.3B.4C.5D.12解析:选A按照程序框图依次执行:初始a=1,b=1;第一次循环后,b=21=2,a =1+1=2;第二次循环后,b=22=4,a=2+1=3;第三次循环后,b=24=16,a=3+1=4,而此时应输出b的值,故判断框中的条件应为“a≤3”.3.执行如图所示的程序框图,若输入A的值为2,则输出的P值为()A.2 B.3C.4 D.5 解析:选C A=2,P=1,S=1≤2,P=1+1=2,S=1+12=32;S=32≤2,P=2+1=3,S=32+13=116;S=116≤2,P=3+1=4,S=116+14=2512;S=2512>2,跳出循环,输出P=4.4.如图所示的程序框图输出的结果是________.解析:该程序框图的执行过程是:x=3,y=1,x=3≤6成立,y=1×3=3,x=3+1=4;x=4≤6成立,y=3×4=12,x=4+1=5;x=5≤6成立,y=12×5=60,x=5+1=6;x=6≤6成立,y=60×6=360,x=6+1=7;x=7≤6不成立,输出y=360.答案:360[层级二应试能力达标] 1.按下面的程序框图运行后,所得的值为()A.5 B.4C.3 D.2解析:选C i为循环次数,循环3次.2.执行如图所示的程序框图,则输出的y的值为()A.12 B .0 C .-1D .2解析:选D 由程序框图知y 的值依次是2,12,-1,2,12,-1,…,输出的y 值呈现的规律是以2,12,-1为一个循环节重复出现,而2 017除以3余1,所以输出的y 值是此数列的第一个数2,故选D.3.如图是一算法的程序框图,若此程序运行结果为S =720,则在判断框中应填入关于k 的判断条件是( )A .k ≥6B .k ≥7C .k ≥8D .k ≥9解析:选C S =10×9×8,10≥8,9≥8,8≥8,判断条件为“是”时进入循环体,7≥8判断条件为“否”时跳出循环,输出S ,故选C.4.执行如图所示的程序框图,输出的S 值为( )A .3B .-6C .10D .-15解析:选C 第一次循环:i =1,S =-1,i =2;第二次循环:S =-1+4=3,i =3;第三次循环:S =3-9=-6,i =4;第四次循环:S =-6+16=10,i =5;第五次循环条件不成立,输出S =10.5.执行如图所示的程序框图,若输出i 的值为2,则输入x 的最大值是________.解析:由题意,可知⎩⎨⎧12x -1>3,12⎝⎛⎭⎫12x -1-2≤3.解得错误!即8<x ≤22,故x 的最大值为22.答案:226.如图所示,执行程序框图,输出结果是________.解析:第一次循环:s =12,n =4;第二次循环:s =12+14=34,n =6;第三次循环:s =34+16=1112,n =8<8不成立,退出循环,输出结果为1112.答案:11127.某上市公司,投入大量财力和人力搞科技创新,其年产值以20%的增长率增长,如图是计算在今年的基础上至少经过多少年其年产值翻一番的程序框图,其中P 表示年产值,R 表示增长率,n 表示年数,P =1表示今年的产值,n =0表示今年,则图中①处应填________,②处应填________.解析:由题意及图可知,年产值P的初始值为1,翻一番后应变为2,所以①处判断框内应填P<2;由于表示年数n的初始值为0,故输出的就是n,即②处应填n.答案:P<2n8.在某次田径比赛中,男子100米A组有8位选手参加预赛,成绩(单位:秒)依次为:9.88,10.57,10.63,9.90,9.85,9.98,10.21,10.86.请设计一个算法,在这些成绩中找出不超过9.90秒的成绩,并画出程序框图.解:算法如下:S1n=1;S2输入x;S3判断x与9.90的大小,若x>9.90,则执行S4,否则,输出x,并执行S4;S4n=n+1;S5判断n与成绩个数8的大小,若n≤8,则返回S2,否则结束.程序框图如图:9.按如图所示的程序框图进行运算.(1)若输入x的值为5,则输出k的值是多少?(2)若输出k的值为3,则输入x的取值范围是什么?解:(1)当x=5时,执行程序后,x与k的值依次为当x=325时,条件x(2)若输入值为x0,则每次程序运行时,x与k的值依次为000-26>244,解得x0>10,3(3x0-2)-2=9x0-8不适合条件x>244,有9x0-8≤244,解得x0≤28,故x0∈(10,28],故输入x的取值范围是(10,28].1.1.3算法的三种基本逻辑结构和框图表示第一课时顺序结构与条件分支结构预习课本P10~12,思考并完成以下问题(1)顺序结构是怎样定义的?(2)什么是条件分支结构?。

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.3.2 随机数的含义与应用》

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.3.2 随机数的含义与应用》

随机数的含义与应用教学设计徐万山一、教学目标:1、知识与技能:(1)了解均匀随机数的概念;(2)掌握利用计算器(计算机)产生均匀随机数的方法;(3)会利用均匀随机数解决具体的有关概率的问题.2、过程与方法:(1)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

3、情感态度与价值观:本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯。

二、重点与难点:利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.三、学法与教学用具:1、通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法;2、教学用具:投灯片,计算机及多媒体教学.四、教学设想:(一)、旧知反馈(二)、自学引导三、合作探究(四)、思路点拨(五)、随堂检测(六)、巩固强化(七)、小结(八)、课后作业(九)、教学反思教学实施程序(二)、自学引导:(三).合作探究:2768m21632m21732m2868m 3m的概率有多大?0,1]的均匀随机数2运用:伸缩、平移变换3计算点数之比4得到概率近似值1.随机模拟方法产生的区间[0,1]上实数A.非等可能的 B.0出现的机会少 C.1出现的机会少 D.是均匀分布的0,1]内的均匀随机数转化为[-1,3]内的均匀随机数,需要实施的变换为3为了测算如图阴影部分的面积,作一个边长为6的正方形将其色包含在内,并向正方形内随机投掷800个点.已知恰有2021点落在阴影部分内,据此,可估计阴影部分的面积是________.1用均匀随机数进行随机模拟,可以解决()A 只能求几何概型的概率,不能解决其他问题B 不仅能求几何概型的概率,还能计算图形的面积C 不但能估计几何概型的概率,还能估计图形的面积D 最适合估计古典概型的概率2.几何概型的随机模拟试验中,得到阴影内的样本点数为N1,试验次数为N下列说法正确的是A.N1与N的大小无关是试验中的频率是试验中的概率 D.N越大,错误!应越小何概率公式,引入新课。

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.2.1 古典概型》00

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.2.1 古典概型》00

古典概型教学设计一、教材和教学内容分析古典概型是在学习随机事件的概率之后,尚未学习排列组合的情况下教学的。

古典概型是一种理想的数学模型,也是一种最基本的概率模型。

它有利于理解概率的概念和计算一些事件的概率,有利于解释生活中的一些问题,起到承前启后的作用,学好古典概型可以为概率的学习奠定基础。

因此,本节课通过抛硬币和掷骰子试验,生动形象的展示,通过类比归纳引出相关概念、公式,进行启发式教学,主要目的是理解古典概型的概念及利用古典概型求解随机事件的概率。

二、教学目标1、知识与技能目标:(1)正确理解基本事件的概念,准确求出基本事件及其个数;(2)在数学建模的过程中,正确理解古典概型的两个特点;(3)推导和掌握古典概型的概率计算公式,体现了化归的重要思想,会用列举法计算一些随机事件所含的基本事件数及其事件发生的概率,学会运用数形结合、分类讨论的思想解决概率的计算问题。

2、过程与方法目标:(1)进一步发展学生类比、归纳、猜想等合情推理能力;(2)通过对各种不同的实际情况的分析、判断、探索,培养学生的应用能力3、情感、态度与价值观目标:(1)通过各种有趣的,贴近学生生活的素材,激发学生学习数学的热情和兴趣,培养学生勇于探索,善于发现的创新思想;(2)通过参与探究活动,领会理论与实践对立统一的辨证思想;(3)结合问题的现实意义,培养学生的合作精神4、教学的重点和难点重点:(1)理解古典概型的概念;(2)利用古典概型概率公式求解随机事件的概率。

难点:(1)如何判断一个试验是否为古典概型;(2)古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

5学情分析在确定教法学法之前,先进行学情分析,认知基础上,学生已经了解了概率的意义,掌握了概率的基本性质,知道了互斥事件和对立事件的概率加法公式,这三者形成了学生思维的“最近发展区”。

能力方面,大多数学生数学基础比较薄弱,对数学兴趣不强,对数学的了解比较浅显,缺乏知识迁移能力。

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.2.1 古典概型》5

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.2.1 古典概型》5

必修3《3.2.1 古典概型》教学设计恩平市独醒中学李思欢一、教学内容分析本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。

学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。

二、学情分析认知分析:学生已经了解了概率的意义,掌握了概率的基本性质,知道了互斥事件和对立事件的概率加法公式,这三者形成了学生思维的“最近发展区”能力分析:学生已经具备了一定的归纳、猜想能力,但在数学的应用意识与应用能力方面尚需进一步培养情感分析:多数学生对数学学习有一定的兴趣,能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强三、教学目标:1、知识与技能:理解古典概型及其概率计算公式;2、过程与方法:会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。

3、情感态度与价值观:概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。

适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。

使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。

四、重难点分析教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

人教版高中数学必修二 第2章 2.3 2.3.1 直线与平面垂直的判定

人教版高中数学必修二 第2章   2.3   2.3.1 直线与平面垂直的判定

2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定学习目标核心素养1.了解直线与平面垂直的定义.(重点)2.理解直线与平面垂直的判定定理,并会用其判断直线与平面垂直.(难点)3.理解直线与平面所成角的概念,并能解决简单的线面角问题.(易错点)1.通过学习直线与平面垂直的判定,提升直观想象、逻辑推理的数学素养.2.通过学习直线与平面所成的角,提升直观想象、数学运算的数学素养.1.直线与平面垂直定义如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直记法l⊥α有关概念直线l叫做平面α的垂线,平面α叫做直线l的垂面.它们唯一的公共点P叫做垂足图示画法画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直文字语言一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直符号语言l⊥a,l⊥b,a⊂α,b⊂α,a∩b=P⇒l⊥α图形语言3.直线和平面所成的角有关概念对应图形斜线与平面α相交,但不和平面α垂直,图中直线P A斜足斜线和平面的交点,图中点A射影过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影,图中斜线P A在平面α上的射影为AO直线与平面所成的角定义:平面的一条斜线和它在平面上的射影所成的锐角.规定:一条直线垂直于平面,它们所成的角是直角;一条直线和平面平行或在平面内,它们所成的角是0°的角取值范围[0°,90°]有直线”“无数条直线”?[提示]定义中的“任意一条直线”与“所有直线”是等效的,但是不可说成“无数条直线”,因为一条直线与某平面内无数条平行直线垂直,该直线与这个平面不一定垂直.1.若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A.平面OAB B.平面OACC.平面OBC D.平面ABCC[由线面垂直的判定定理知OA垂直于平面OBC.]2.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是()A.平行B.垂直C.相交不垂直D.不确定B[一条直线和三角形的两边同时垂直,则其垂直于三角形所在平面,从而垂直第三边.]3.在正方体ABCD-A1B1C1D1中,直线AB1与平面ABCD所成的角等于________.45°[如图所示,因为正方体ABCD-A1B1C1D1中,B1B⊥平面ABCD,所以AB即为AB1在平面ABCD中的射影,∠B1AB即为直线AB1与平面ABCD所成的角.由题意知,∠B1AB=45°,故所求角为45°.]直线与平面垂直的判定【例1】如图,在三棱锥S-ABC中,∠ABC=90°,D是AC的中点,且SA=SB=SC.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.[证明](1)因为SA=SC,D是AC的中点,所以SD⊥AC.在Rt△ABC中,AD=BD,由已知SA=SB,所以△ADS≌△BDS,所以SD⊥BD.又AC∩BD=D,AC,BD⊂平面ABC,所以SD⊥平面ABC.(2)因为AB=BC,D为AC的中点,所以BD⊥AC.由(1)知SD⊥BD.又因为SD∩AC=D,SD,AC⊂平面SAC,所以BD⊥平面SAC.证线面垂直的方法:(1)线线垂直证明线面垂直:①定义法(不常用,但由线面垂直可得出线线垂直);②判定定理最常用:要着力寻找平面内哪两条相交直线(有时作辅助线);结合平面图形的性质(如勾股定理逆定理、等腰三角形底边中线等)及一条直线与平行线中一条垂直,也与另一条垂直等结论来论证线线垂直.(2)平行转化法(利用推论):①a∥b,a⊥α⇒b⊥α;②α∥β,a⊥α⇒a⊥β.如图,AB是圆O的直径,P A垂直于圆O所在的平面,M是圆周上任意一点,AN⊥PM,垂足为N.求证:AN⊥平面PBM.[证明]设圆O所在的平面为α,∵P A⊥α,且BM⊂α,∴P A⊥BM.又∵AB为⊙O的直径,点M为圆周上一点,∴AM⊥BM. 由于直线P A∩AM=A,∴BM⊥平面P AM,而AN⊂平面P AM,∴BM⊥AN.∴AN与PM、BM两条相交直线互相垂直.故A N⊥平面PBM.直线与平面所成的角[探究问题]1.若图中的∠POA是斜线PO与平面α所成的角,则需具备哪些条件?[提示]需要P A⊥α,A为垂足,OA为斜线PO的射影,这样∠POA就是斜线PO与平面α所成的角.2.空间几何体中,确定线面角的关键是什么?[提示]在空间几何体中确定线面角时,过斜线上一点向平面作垂线,确定垂足位置是关键,垂足确定,则射影确定,线面角确定.【例2】在正方体ABCD-A1B1C1D1中,(1)求直线A1C与平面ABCD所成的角的正切值;(2)求直线A1B与平面BDD1B1所成的角.[证明](1)∵直线A1A⊥平面ABCD,∴∠A1CA为直线A1C与平面ABCD所成的角,设A1A=1,则AC=2,∴tan∠A1CA=2 2.(2)连接A1C1交B1D1于O(见题图),在正方形A1B1C1D1中,A1C1⊥B1D1,∵BB1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,∴BB1⊥A1C1,又BB1∩B1D1=B1,∴A1C1⊥平面BDD1B1,垂足为O.∴∠A1BO为直线A1B与平面BDD1B1所成的角,在Rt △A 1BO 中,A 1O =12A 1C 1=12A 1B , ∴∠A 1BO=30°,即A 1B 与平面BDD 1B 1所成的角为30°.在本例正方体中,若E 为棱AB 的中点,求直线B 1E 与平面BB 1D 1D所成角的正切值.[解] 连接AC 交BD 于点O ,过E 作EO 1∥AC 交BD 于点O 1,易证AC ⊥平面BB 1D 1D ,∴EO 1⊥平面BB 1D 1D ,∴B 1O 1是B 1E 在平面BB 1D 1D 内的射影, ∴∠EB 1O 1为B 1E 与平面BB 1D 1D 所成的角. 设正方体的棱长为a , ∵E 是AB 的中点,EO 1∥AC , ∴O 1是BO 的中点,∴EO 1=12AO =12×2a 2=2a4, B 1O 1=BO 21+BB 21=⎝ ⎛⎭⎪⎫2a 42+a 2=3a 22, ∴tan ∠EB 1O 1=EO 1B 1O 1=2a 43a 22=13.求斜线与平面所成角的步骤:(1)作图:作(或找)出斜线在平面内的射影,作射影要过斜线上一点作平面的垂线,再过垂足和斜足作直线,注意斜线上点的选取以及垂足的位置要与问题中已知量有关,才能便于计算.(2)证明:证明某平面角就是斜线与平面所成的角.(3)计算:通常在垂线段、斜线和射影所组成的直角三角形中计算.1.线线垂直和线面垂直的相互转化:2.证明线面垂直的方法:(1)线面垂直的定义.(2)线面垂直的判定定理.(3)如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.(4)如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.1.直线l⊥平面α,直线m⊂α,则l与m不可能()A.平行B.相交C.异面D.垂直A[若l∥m,l⊄α,m⊂α,则l∥α,这与已知l⊥α矛盾.所以直线l与m 不可能平行.]2.垂直于梯形两腰的直线与梯形所在平面的位置关系是()A.垂直B.相交但不垂直C.平行D.不确定A[因为梯形两腰所在直线为两条相交直线,所以由线面垂直的判定定理知,直线与平面垂直.选A.]3.如图所示,若斜线段AB是它在平面α上的射影BO的2倍,则AB与平面α所成的角是()A.60°B.45°C.30°D.120°A[∠ABO即是斜线AB与平面α所成的角,在Rt△AOB中,AB=2BO,所以cos∠ABO=12,即∠ABO=60°. 故选A.]4.在正方体ABCD-A1B1C1D1中,求证:A1C⊥平面BC1D. [证明]如图,连接AC,∴AC⊥BD,又∵BD⊥A1A,AC∩AA1=A,AC,A1A⊂平面A1AC,∴BD⊥平面A1AC,∵A1C⊂平面A1AC,∴BD⊥A1C.同理可证BC1⊥A1C.又∵BD∩BC1=B,BD,BC1⊂平面BC1D,∴A1C⊥平面BC1D.。

人教版高中数学B版目录

人教版高中数学B版目录

人教版高中数学B版目录第一篇:人教版高中数学B版目录人教版高中数学B版必修第一章1.1 集合集合与集合的表示方法必修一必修二必修三必修四第二章第三章第一章第二章第一章第二章第三章第一章第二章1.2 集合之间的关系与运算函数2.1 函数2.2 一次函数和二次函数 2.3 函数的应用(Ⅰ)2.4 函数与方程基本初等函数(Ⅰ)3.1 指数与指数函数 3.2 对数与对数函数 3.3 幂函数3.4 函数的应用(Ⅱ)立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系平面解析几何初步2.1平面真角坐标系中的基本公式2.2 直线方程 2.3 圆的方程2.4 空间直角坐标系算法初步1.1 算法与程序框图 1.2 基本算法语句1.3 中国古代数学中的算法案例统计2.1 随机抽样2.2 用样本估计总体 2.3 变量的相关性概率3.1 随机现象 3.2 古典概型3.3 随机数的含义与应用 3.4 概率的应用基本初等函(Ⅱ)1.1 任意角的概念与弧度制 1.2 任意角的三角函数 1.3三角函数的图象与性质平面向量2.1 向量的线性运算必修五第三章第一章第二章第三章2.2 向量的分解与向量的坐标运算 2.3平面向量的数量积 2.4 向量的应用三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积解直角三角形1.1 正弦定理和余弦定理 1.2 应用举例数列2.1 数列 2.2 等差数列 2.3 等比数列不等式3.1 不等关系与不等式 3.2 均值不等式3.3 一元二次不等式及其解法 3.4 不等式的实际应用3.5二元一次不等式(组)与简单线性规划问题人教版高中数学B版选修常用逻辑用语命题与量词第一章1.1 选修1-1 选修1-2 选修4-5 第二章第三章第一章第二章第三章第四章第一章第二章第三章1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式圆锥曲线与方程2.1 椭圆 2.2 双曲线 2.3 抛物线导数及其应用3.1 导数3.2 导数的运算 3.3导数的应用统计案例推理与证明数系的扩充与复数的引入框图不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法 1.4 绝对值的三角不等式 1.5 不等式证明的基本方法柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型数学归纳法与贝努利不等式 3.1 数学归纳法原理3.2用数学归纳法证明不等式,贝努利不等式第二篇:高中数学目录必修1第一章集合与函数概念1.1 集合阅读与思考集合中元素的个数1.2 函数及其表示阅读与思考函数概念的发展历程1.3 函数的基本性质信息技术应用用计算机绘制函数图象第二章基本初等函数(Ⅰ)2.1 指数函数信息技术应用借助信息技术探究指数函数的性质2.2 对数函数阅读与思考对数的发明探究也发现互为反函数的两个函数图象之间的关系2.3 幂函数第三章函数的应用3.1 函数与方程阅读与思考中外历史上的方程求解信息技术应用借助信息技术方程的近似解3.2 函数模型及其应用信息技术应用收集数据并建立函数模型必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图阅读与思考画法几何与蒙日1.3 空间几何体的表面积与体积探究与发现祖暅原理与柱体、椎体、球体的体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质阅读与思考欧几里得《原本》与公理化方法第三章直线与方程3.1 直线的倾斜角与斜率探究与发现魔术师的地毯3.2 直线的方程3.3 直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何第四章圆与方程4.1 圆的方程阅读与思考坐标法与机器证明4.2 直线、圆的位置关系4.3 空间直角坐标系信息技术应用用《几何画板》探究点的轨迹:圆必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数阅读与思考三角学与天文学1.3 三角函数的诱导公式1.4 三角函数的图像与性质探究与发现函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ)探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用1.5 函数y=Asin(ωx+φ)的图像阅读与思考振幅、周期、频率、相位1.6 三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例阅读与思考向量的运算(运算律)与图形性质第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式信息技术应用利用信息技术制作三角函数表3.2 简单的三角恒等变换必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列信息技术应用2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和阅读与思考九连环探究与发现购房中的数学第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词阅读与思考“且”“或”“非”与“交”“并”“补”1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线探究与发现2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4.1 流程图4.2 结构图信息技术应用用word2002绘制流程图选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线2.4 抛物线第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法选修2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身选修3-3第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一 n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积第三讲对称与群的故事一带饰和面饰思考题二化学分子的对称群三晶体的分类四伽罗瓦理论选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线选修4-2第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探索与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用选修4-4坐标系与参数方程第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线选修4-5不等式选讲第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式选修4-6初等数论初步第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥选修4-7优选法与试验设计初步第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用选修4-9风险与决策第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例第三篇:高中数学目录【人教版】高中数学教材总目录必修一第一章集合与函数概念1.1 集合阅读与思考集合中元素的个数1.2 函数及其表示阅读与思考函数概念的发展历程1.3 函数的基本性质信息技术应用用计算机绘制函数图象实习作业小结第二章基本初等函数(Ⅰ)2.1 指数函数信息技术应用借助信息技术探究指数函数的性质2.2 对数函数阅读与思考对数的发明探究也发现互为反函数的两个函数图象之间的关系2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程阅读与思考中外历史上的方程求解信息技术应用借助信息技术方程的近似解3.2 函数模型及其应用信息技术应用收集数据并建立函数模型实习作业小结复习参考题必修二第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图阅读与思考画法几何与蒙日1.3 空间几何体的表面积与体积探究与发现祖暅原理与柱体、椎体、球体的体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质阅读与思考欧几里得《原本》与公理化方法小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率探究与发现魔术师的地毯3.2 直线的方程3.3 直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何小结复习参考题第四章圆与方程4.1 圆的方程阅读与思考坐标法与机器证明4.2 直线、圆的位置关系4.3 空间直角坐标系信息技术应用用《几何画板》探究点的轨迹:圆必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修四第一章三角函数.1 任意角和弧度制1.2 任意角的三角函数阅读与思考三角学与天文学1.3 三角函数的诱导公式1.4 三角函数的图像与性质探究与发现函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ)探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用1.5 函数y=Asin(ωx+φ)的图像阅读与思考振幅、周期、频率、相位1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1平面向量的实际背景及基本概念阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例阅读与思考向量的运算(运算律)与图形性质小结复习参考题第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式信息技术应用利用信息技术制作三角函数表3.2 简单的三角恒等变换必修五第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列信息技术应用2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式选修1-1 第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词阅读与思考“且”“或”“非”与“交”“并”“补”1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线探究与发现2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分选修1-2 第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图选修2—1 第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用 3.2 立体几何中的向量方法选修2—2 第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3 第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合。

新教材高中数学第二章等式与不等式2.3一元二次不等式的解法课件新人教B版必修第一册 课件

新教材高中数学第二章等式与不等式2.3一元二次不等式的解法课件新人教B版必修第一册 课件

分式不等式的解法 其中f(x)、g(x)为关于x的整式,且g(x)≠0.
分式不等式
f (x)
g(x)>0
f (x)
g(x)<0
f (x) g(x)
>a(a≠0)
同解不等式
f (x) g(x)
0,或
0
f (x) g(x)
0, 0
f(x)g(x)>0
f (x) g(x)
0,或
0
f (x) g(x)
2
2.(
)若不等式ax2+2ax-(a+2)≥0的解集是⌀,求实数a的取值范围.
思路点拨:
ax2+2ax-(a+2)≥0的解集是⌀,即ax2+2ax-(a+2)<0在R上恒成立,对a进行分类讨论
求解.
解析 不等式ax2+2ax-(a+2)≥0的解集是⌀,
等价于不等式ax2+2ax-(a+2)<0在R上恒成立.
1 x 4
2.在问题1中出现了分母中含有未知数的不等式,称为分式不等式.请归纳如何解 这个不等式.
提示:移项,通分,得 3x 1 ≤0.
4(x 1)
因为x>0,所以x+1>0,
所以3x-1≤0,即0<x≤1 .
3
所以该不等式的解集为
0,
1 3
.
1.解分式不等式的思路:先转化为整式不等式,再求解.
②求出各因式对应方程的实数根,并在数轴上标出; ③自最右端上方起,用曲线自右向左依次由各根穿过数轴,遇奇次重根穿过,遇偶 次重根穿而不过(即“奇过偶不过”); ④记数轴上方为正,下方为负,根据不等式的符号写出解集.

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.2.1 条件概率》8

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.2.1 条件概率》8

条件概率教学设计课标分析《条件概率》是人教B 版普通高中课程标准实验教科书《数学》选修2-3 第二章随机变量及其分布中,二项分布及其应用的第一课时的内容,主要包括:(1)条件概率的概念;(2)条件概率的性质;(3)条件概率公式的简单应用。

《条件概率》的内容,利用“抽奖”这一典型案例,以无放回抽取奖券的方式,通过对有无“第一名同学没有中奖”条件,最后一名同学中奖的概率的比较,引出条件概率的概念,给出了条件概率的两个性质,并通过条件概率公式的简单应用加深对条件概率概念本质特征的理解掌握。

为相互独立事件和二项分布的内容教学,起“引流开山”之作用,即为定义相互独立事件和研究二项分布做好了知识铺垫。

正因本节是数学新概念引入建立,其教学便化身为本章的难点,对其进行合理的教学处理尤显重要。

本节教学重点和难点都是对条件概率的概念理解,应用公式对条件概率的计算是围绕这一中心的;在条件概率概念的引入中,应抓住“条件概率的本质是样本空间范围的缩小下的概率”这一转化关键。

教学关键是实际案例对比,甚者要辅以图示直观说明解释和反例验证等教学方式对条件概率的概念进行多角度分析研究,才能突破本节教学重点和教材分析《条件概率》第一课时是高中数学选修2-3第二章第二节的内容本节课是在必修三学习了概率的定义,概率的关系与运算,概率的基本性质,古典概型特点及其运算的基础上,学习如何计算已知某一事件发生的条件下,另一事件发生的概率,它仍属于概率的范畴。

它在教材中起着承前启后的作用,一方面,可以巩固古典概型概率的计算方法,另一方面,为研究相互独立事件打下良好的基础教学重点、难点和关键:教学重点是条件概率的定义、计算公式的推导及条件概率的计算;难点是条件概率的判断与计算;教学关键是数学建模条件概率是比较难理解的概念。

教科书利用大家比较熟悉的抽奖为实例,以无放回抽取奖券的方式,通过比较抽奖前和在已知第一名同学没有中奖的条件下,最后一名同学中奖的概率从而引入条件概率的概念,给出条件概率的两种计算方法。

高中数学人教新课标B版必修3--《3.3.2 随机数的含义与应用》教学设计(表格式) (1)

高中数学人教新课标B版必修3--《3.3.2 随机数的含义与应用》教学设计(表格式) (1)

人教版高一年级第三章第三节《随机数的含义与应用》教学设计二、教学分析三、教学设计例1.随机模拟投硬币的试验,估计掷得正面的概率。

因为课堂时间有限,已留为作业,各小组的展示在刚才课前引入已经提及。

例 2 利用随机数和几何概型求π的近似值。

要区间是不一样的,我们要是根据问题而定。

问如何理解机会一样?老师总结机会是自然语言它的数学语言叫概率,即发生的概率一样。

教师展开模拟实验,用计算器产生一个0~1之间的随机数,如果这个数在0~0.5之间,则认为硬币正面向上,如果这个随机数在0.5~1之间,则认为硬币正面向下。

并用超链接展示实验的全部过程产生数据,整理数据,分析数据,画统计图的全部过程。

整个过程用时一分半,这比同学们课前经过小组合作完成的实验结果缩短了很多时间,充分体现了计算机模拟法的优势。

需要建立数学模型求,什么样的模型和π有关?教师总结,圆的面积和π有关,建立数学模型,设计一个算法用计算机模拟这个撒豆的试验,程序结束后可以求π的近似值。

超链接一个撒豆试验计算机演示图,连接一个微课具体说明此题建立一个概率模型,它与我们感兴趣的量有关。

然后设计适当的试验,并通过这个试验结果来确定学生回答学生讨论完成,引导学生说出边长为2的正方形中随机撒一大把豆子,计算落在正方形的内切圆中的豆子数与落在正方形中的豆子数之比,并以此估计圆周率π的值.如果我们把“在正方形中撒豆子”看成试验,把“豆子落在圆中”看成随机事件A.则落在圆中的豆子数与落在正方形中的豆子数的比值就是引导学生体会频率的随机性与相对稳定性,一般地,试验的次数越多,估计值的精确度就越高。

让学生经历用计算机产生数据,整理数据,分析数据,画统计图的全过程,使学生相信统计结果的真实性、随机性及规律性通过问题的思考和解决,使学生理解模拟方法的优点,并充分利用信息技术的优势。

245分9分D n m 22.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A.π2 B.π4C.π6 D.π83.如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为( )的整个过程中,教师做好课堂巡视,加强对个别学生的指导学生回答进行评价助于保持学生学习的热情和信心,这3道题都是高考题,让学生体会这节课在考试中的题型课堂小结2.1利用几何概型的概率公 式,结合随机模拟试验, 可以解决求概率、面积、 参数值等一系列问题,体 现了数学知识的应用价值学生归纳总结学生自主回顾本节内容,在自我反思的基础上,学会梳理知识,培养归纳总结能力。

人教B版高中数学必修二2.3.1《圆的标准方程》ppt课件

人教B版高中数学必修二2.3.1《圆的标准方程》ppt课件
•直径的圆的方已程知,两并点判P断1(M4(,69,)9和)、P2(Q6(,53,)3,)是求在以圆P1上P2?为
圆外?圆内?
• [分析] (1)根据所给已知条件可得圆心坐标和半 径.
• (2)判断点在圆上、圆外、圆内的方法是:根据已 知点[到解析圆]心由的已距知离条与件半可径得圆的心大坐小标关为系M来(5,判6),断半.径为 r=12
• 3.以点A(-5,4)为圆心,且与y轴相切的圆的方程
是( )
• A.(x-5)2+(y+4)2=25 B.(x+5)2+(y-4)2=
25
• C.(x-5)2+(y+4)2=16 D.(x+5)2+(y-4)2=
16
• [答案] B
• [解析] ∵与y轴相切,∴r=5,方程为(x+5)2+(y
② 根据自己预习时理解过的逻辑结构抓住老师的思路。老师讲课在多数情况下是根据教材本身的知识结构展开的,若把自己预习时所理解过的知 识逻辑结构与老师的讲解过程进行比较,便可以抓住老师的思路。
③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等 等,这些用语往往体现了老师的思路。来自:学习方法网
此求圆的方程必须具备三个独立条件.
• 3.圆心为(a,b)半径为r(r>0)的圆的方程为: (x_圆-_心_a_)2在_+_(原_y_-点_b_)、_2=_半_r_2 径__为__r_的,圆称方作程圆为的x标2+准y方2=程r.2. 特别地,
• 4.点P(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关
r2=5
故△ABC 的外接圆的标准方程为(x-4)2+(y-1)2=5.
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.2.1 古典概型》56

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.2.1 古典概型》56

3.2.1古典概型1教学目标1.了解基本事件的特点;2.理解古典概型的概念及特点;3.会应用古典概型概率公式解决简单的概率计算问题.2学情分析概率是描述随机事件发生可能性大小的度量。

学生在初中已学过简单的“古典概型”,现在又学习了“随机事件及概率”,进一步加深了对概率意义的认识。

只要突出重点,突破难点,掌握方法,教学目标会达到理想的效果。

3重点难点2.理解古典概型的概念及特点;3.会应用古典概型概率公式解决简单的概率计算问题.4教学过程第一学时教学活动活动1【讲授】古典概型第一课【教学目标及重、难点】1.了解基本事件的特点;2.理解古典概型的概念及特点;3.会应用古典概型概率公式解决简单的概率计算问题.【熟记要点】1.基本事件的特点1任何两个基本事件是互斥的;2任何事件除不可能事件都可以表示成基本事件的和.2.古典概型的概念如果某概率模型具有以下两个特点:1试验中所有可能出现的基本事件只有有限个;2每个基本事件出现的可能性相等;那么我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.3.古典概型的概率公式【教学流程】一、基本事件【情境导学】(1)抛掷一枚质地均匀的硬币,有哪几种可能结果?(2)抛掷两枚质地均匀的硬币,有哪几种可能结果?(3)连续抛掷三枚质地均匀的硬币,有哪几种可能结果?【生答师正】:(1)正,反;(2)用,表示结果,其中表示第一枚硬币出现的情况,表示第二枚硬币出现的情况,可能结果为正,正,正,反,反,正,反,反;(3)用,,表示结果,其中表示第一枚硬币出现的情况,表示第二枚硬币出现的情况,表示第三枚硬币出现的情况,可能结果为正,正,正,正,正,反,正,反,正,反,正,正,正,反,反,反,正,反,反,反,正,反,反,反【师】上述试验中的每一个结果都是随机事件,我们把这类事件称为基本事件.思考1:在一次试验中,任何两个基本事件是什么关系?【生答师正】:由于任何两种结果都不可能同时发生,所以它们的关系是互斥关系.思考2:在(3)中,随机事件“出现两次正面和一次反面”,“至少出现两次正面”分别由哪些基本事件组成?【生答师正】:正,正,反,正,反,正,反,正,正;正,正,反,正,反,正,反,正,正,正,正,正.【例1】从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件?事件“取到字母a”是哪些基本事件的和?解:所求的基本事件有6个,他们分别是A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d};设D=“取到字母a”,则D=A+B+C【点评】基本事件有如下两个特点:1任何两个基本事件是互斥的;2任何事件除不可能事件都可以表示成基本事件的和.【训练1】做投掷2颗骰子的试验,用,表示结果,其中表示第一颗骰子出现的点数,表示第2颗骰子出现的点数.写出:1试验的所有基本事件;2“出现点数之和大于8”的事件;3“出现点数相等”的事件;4“出现点数之和等于7”的事件.二、古典概型【情境导学】(1)抛掷一枚质地均匀的硬币,每个基本事件出现的可能性相等吗?(2)抛掷一枚质地均匀的骰子,有哪些基本事件?每个基本事件出现的可能性相等吗?(3)上述试验的共同特点是什么?【生答师正】:(1)基本事件有两个,正面朝上和正面朝下,由于质地均匀,因此每个基本事件出现的可能性是相等的.(2)这个试验的基本事件有6个,正面出现的点数为1点,或2点,或3点,或4点,或5点,或6点,由于质地均匀,因此每个基本事件出现的可能性是相等的.(3)共同特点是:1试验中所有可能出现的基本事件只有有限个;2每个基本事件出现的可能性相等.【师】我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.思考3:某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环、……、命中5环和不中环.你认为这是古典概型吗?为什么?【生答师正】:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环、……、命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件思考4:从所有整数中任取一个数的试验中“抽取一个整数”是古典概型吗?【生答师正】:不是,因为有无数个基本事件【点评】判断一个试验是不是古典概型要抓住两点:一是有限性;二是等可能性.三、古典概型概率公式【问题】在古典概型下,每一基本事件的概率是多少?随机事件出现的概率如何计算?思考5:在抛掷硬币试验中,如何求正面朝上及反面朝上的概率?【生答师正】出现正面朝上的概率与反面朝上的概率相等,即、n2.求某个随机事件A包含的基本事件的个数和试验中基本事件的总数常用的方法是列举法画树状图和列表,注意做到不重不漏.3.对于用直接方法难以解决的问题,可以求其对立事件的概率,进而求得其概率,以降低难度.【作业】1、必做题:习题组1、2、3、4;2、选做题:(1)总结本节内容,形成文字到笔记本上(2)在标准化的考试中既有单选题又有多选题,多选题是从A、B、C、D四个选项中选出所有正确答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?(这是因为猜对的概率更小,由概率公式可知,分子上的数还是1,因正确答案是唯一的,而分母上的数即基本事件的总数增多了,有A,B,C,D,A,B,A,C,A,D,B,C,B,D,C,D,A,B,C,A,B,D,A,C,D,B,C,D,A,B,C,D共15个,所以所求概率为1/15【教学反思】一节课成功与否,不在于老师讲的多津津有味,而在于学生理解了多少。

高中数学 2.3 圆的方程 2.3.4 圆与圆的位置关系教案 新人教B版必修2-新人教B版高一必修2

高中数学 2.3 圆的方程 2.3.4 圆与圆的位置关系教案 新人教B版必修2-新人教B版高一必修2

圆与圆的位置关系示X教案整体设计教学分析教材通过例题介绍了利用方程判断两圆的位置关系.让学生进一步感受坐标方法在研究几何问题中的作用.值得注意的是针对学生的实际情况来学习坐标法讨论两圆的位置关系,对于基础较差的学生,建议不学习,对于基础较好的学生可以作为课后阅读教材,否那么本节课的教学目标完不成.三维目标1.掌握圆与圆的位置关系的判定,培养学生分析问题和解决问题的能力.2.了解用坐标方法讨论两圆位置关系,体会坐标方法在研究几何问题中的作用,提高应用能力.重点难点教学重点:利用方程判定两圆位置关系.教学难点:用坐标方法讨论两圆位置关系.课时安排1课时教学过程导入新课设计1.前面我们学习了利用方程判断点与圆的位置关系、直线与圆的位置关系,那么,圆与圆的位置关系有哪几种呢?如何利用方程判断圆与圆之间的位置关系呢?教师板书课题:圆与圆的位置关系.设计 2.我们知道,日食和月食都是一种自然现象,如果把月球、地球、太阳都抽象成圆,那么这两种自然现象就展现了两圆的位置关系,如何利用方程来描述这一现象呢?教师点出课.推进新课新知探究提出问题初中学过的平面几何中,圆与圆的位置关系有几种?画图表示,并指出判断方法.讨论结果:应用示例思路1例1判断以下两个圆的位置关系:(1)C1:x2+y2-2x-3=0,C2:x2+y2-4x+2y+3=0;(2)C1:x2+y2-2y=0,C2:x2+y2-23x-6=0.解:(1)两圆的方程可分别变形为(x-1)2+y2=22,(x-2)2+(y+1)2=(2)2.由此可知圆心C1的坐标为(1,0),半径r1=2;圆心C2的坐标为(2,-1),半径r2= 2.设两圆的圆心距为d,那么:d=|C1C2|=2-12+-12= 2.r1+r2=2+2,r1-r2=2- 2.所以r1-r2<d<r2+r2.因此这两个圆相交.(2)两圆的方程分别变形为:x2+(y-1)2=12,(x-3)2+y2=32.由此可知圆心C1的坐标为(0,1),半径r1=1;圆心C2的坐标为(3,0),半径r2=3,那么两圆的圆心距d=32+12=2,所以d=r2-r1.因此这两个圆内切.点评:判断两个圆的位置关系.几何法:即两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的位置关系.设两圆的连心线长为d,那么判别圆与圆的位置关系的依据有以下几点:①当d>R+r时,圆C1与圆C2外离;②当d=R+r时,圆C1与圆C2外切;③当|R-r|<d<R+r时,圆C1与圆C2相交;④当d=|R-r|时,圆C1与圆C2内切;⑤当d<|R-r|时,圆C1与圆C2内含.变式训练1.在平面直角坐标系中分别作出圆心为C1(0,0),C2(1,1),半径分别为1,2的两圆,并判断两圆的位置关系.解:作出两圆,如下图.两圆半径分别记作r1和r2,那么r1=1,r2=2,圆心距d=|C1C2|=0-12+0-12=2,于是,1=|r1-r2|<d<r1+r2=3,所以两圆相交.2.判断圆C1:x2+y2+2x-6y-26=0与圆C2:x2+y2-4x+2y+4=0的位置关系,并画出图形.解:由得圆C1:(x+1)2+(y-3)2=36,其圆心C1(-1,3),半径r1=6;圆C2:(x-2)2+(y+1)2=1,其圆心C2(2,-1),半径r2=1.于是|C1C2|=2+12+-1-32=5.又|r1-r2|=5,即|C1C2|=|r1-r2|,所以两圆内切.如下图.3.x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( ) A .相离 B .相交 C .外切 D .内切解析:圆O 1:x 2+y 2-2x =0(x -1)2+y 2=1, 故圆心为(1,0),半径为1.圆O 2:x 2+y 2-4y =0x 2+(y -2)2=4, 故圆心为(0,2),半径为2.那么圆心距d =1-02+0-22= 5. 而2-1<5<1+2,即两圆相交. 答案:B例2试用坐标方法讨论两圆位置关系.(此题针对学生实际选用)解:如下图所示,以O 1为坐标原点,使x 轴通过O 1,O 2,且O 2在x 轴的正半轴上,建立直角坐标系xOy.这样,可设⊙O 2的圆心的坐标为(d,0).这时两圆的圆心距等于d ,两圆的方程分别为 x 2+y 2=r 21 ①(x -d)2+y 2=r 22. ②将①②两式联立,研究此方程组的解. ①-②,整理可得x =r 21-r 22+d22d .将x 值代入①,得 y 2=r 21-r 21-r 22+d224d2=2dr 1+r 21-r 22+d 22dr 1-r 21+r 22-d 24d2=[r 1+d2-r 22][r 22-r 1-d2]4d2=r 1+r 2+d r 1-r 2+dr 1+r 2-dr 2-r 1+d4d2=[r 1+r 22-d 2][d 2-r 1-r 22]4d2.由此可见,如果 |r 1-r 2|<d<r 1+r 2那么等式右边两个因式都为正数,于是方程组有解,且有两解.这时相应的两圆相交于两点(如下图).如果:r 1+r 2=d 或|r 1-r 2|=d ,那么等式右边分子的因式中至少有一个为0,那么方程组有唯一解,这时两圆相切(外切或内切)(上图(2)(3)).如果:r 1+r 2<d 或|r 1-r 2|>d ,那么方程组无解,这时两圆不相交(相离或内含)(上图(4)(5)).思路2例3圆C 1:x 2+y 2+2x -6y +1=0,圆C 2:x 2+y 2-4x +2y -11=0,求两圆的公共弦所在的直线方程及公共弦长.分析:因两圆的交点坐标同时满足两个圆方程,联立方程组,消去x 2项、y 2项,即得两圆的两个交点所在的直线方程,利用勾股定理可求出两圆公共弦长.解:设两圆交点为A(x 1,y 1)、B(x 2,y 2),那么A 、B 两点坐标满足方程组⎩⎪⎨⎪⎧ x 2+y 2+2x -6y +1=0,x 2+y 2-4x +2y -11=0,①②①-②,得3x -4y +6=0. 因为A 、B 两点坐标都满足此方程,所以3x -4y +6=0即为两圆公共弦所在的直线方程. 易知圆C 1的圆心(-1,3),半径r =3.又点C 1到直线的距离为d =|-1×3-4×3+6|32+-42=95. 所以AB =2r 2-d 2=232-952=245,即两圆的公共弦长为245. 点评:处理圆有关的问题,利用圆的几何性质往往比较简单,要注意体会和应用.此题中求两圆公共弦所在直线方程可以作为结论记住.变式训练判断以下两圆的位置关系,如果两圆相交,请求出公共弦的方程.(1)(x +2)2+(y -2)2=1与(x -2)2+(y -5)2=16,(2)x 2+y 2+6x -7=0与x 2+y 2+6y -27=0.解:(1)根据题意,得两圆的半径分别为r 1=1和r 2=4,两圆的圆心距d =[2--2]2+5-22=5. 因为d =r 1+r 2,所以两圆外切.(2)将两圆的方程化为标准方程,得(x +3)2+y 2=16,x 2+(y +3)2=36. 故两圆的半径分别为r 1=4和r 2=6, 两圆的圆心距d =0-32+-3-02=3 2.因为|r 1-r 2|<d<r 1+r 2,所以两圆相交. 两圆方程相减得公共弦的方程: 6x -6y +20=0,即3x -3y +10=0.例4求过点A(0,6)且与圆C :x 2+y 2+10x +10y =0切于原点的圆的方程.分析:如下图.所求圆经过原点和A(0,6),且圆心应在圆的圆心与原点的连线上.根据这三个条件可确定圆的方程.解:将圆C 化为标准方程,得(x +5)2+(y +5)2=50,那么圆心为C(-5,-5),半径为5 2.所以经过此圆心和原点的直线方程为x -y =0.设所求圆的方程为(x -a)2+(y -b)2=r 2.由题意,知O(0,0),A(0,6)在此圆上,且圆心M(a ,b)在直线x -y =0上,那么有⎩⎪⎨⎪⎧0-a 2+0-b 2=r 2,0-a 2+6-b 2=r 2,a -b =0,解得⎩⎨⎧a=3,b =3,r =3 2.于是所求圆的方程是(x -3)2+(y -3)2=18.点评:求圆的方程,一般可从圆的标准方程和一般方程入手,至于选择哪一种方程形式更恰当,要根据题目的条件而定,总之要让所选择的方程形式使解题过程简单.变式训练求经过点A(4,-1),且与圆C :(x +1)2+(y -3)2=5相外切于点B(1,2)的圆的方程.解:如下图,设所求的圆C′的方程为(x -a)2+(y -b)2=R 2.因为C′既在弦AB 的垂直平分线上,又在直线BC 上,AB 中垂线方程为x -y -2=0,BC 所在直线的方程为x +2y -5=0,所以,圆心C′的坐标应满足方程组⎩⎪⎨⎪⎧a -b -2=0,a +2b -5=0.解得a =3,b =1.因为所求圆C′过点A(4,-1),所以(4-3)2+(-1-1)2=R 2=5.所以,所求圆的方程为(x -3)2+(y -1)2=5.知能训练1.在(x +k)2+(y +2k +5)2=5(k +1)2(k≠-1)所表示的一切圆中,任意两圆的位置关系是( )A .相切或相交B .相交C .相切D .内切或相交 答案:C2.圆x 2+y 2+m =0与圆x 2+y 2-6x +8y =0没有公共点,那么实数m 的取值X 围为( ) A .-10<m<0 B .-100<m<-10 C .m<-100 D . 答案:C3.半径为5且与圆x 2+y 2-6x +8y =0相切于原点的圆的方程是________.答案:x 2+y 2+6x -8y =04.一圆过两圆x 2+y 2+6x -3=0和x 2+y 2-6y -3=0的交点,圆心在直线x +y +6=0上,求此圆的方程.答案:x 2+y 2+9x +3y -3=05.求圆心在直线x -y -4=0上,且经过两圆x 2+y 2-4x -3=0和x 2+y 2-4y -3=0的交点的圆的方程.解:设经过两圆的交点的圆的方程为x 2+y 2-4x -3+λ(x 2+y 2-4y -3)=0(λ≠-1),那么其圆心坐标为(21+λ,2λ1+λ).∵所求圆的圆心在直线x -y -4=0上,∴21+λ-2λ1+λ-4=0,λ=-13.∴所求圆的方程为x 2+y 2-6x +2y -3=0.拓展提升求经过原点,且过圆x 2+y 2+8x -6y +21=0和直线x -y +5=0的两个交点的圆的方程.解法一:由⎩⎪⎨⎪⎧x 2+y 2+8x -6y +21=0,x -y +5=0,求得交点(-2,3)或(-4,1).设所求圆的方程为x 2+y 2+Dx +Ey +F =0.因为(0,0),(-2 3),(-4,1)三点在圆上,所以⎩⎪⎨⎪⎧F =0,4+9-2D +3E +F =0,16+1-4D +E +F =0,解得⎩⎪⎨⎪⎧F =0,E =-95,D =195.所以所求圆的方程为x 2+y 2+195x -95y =0.解法二:设过交点的圆系方程为x 2+y 2+8x -6y +21+λ(x-y +5)=0(λ为参数). 将原点(0,0)代入上述方程得λ=-215.那么所求方程为x 2+y 2+195x -95y =0.课堂小结本节课学习了:利用方程判断两圆位置关系,解决与两圆有关的问题.作业本节练习A 1,2题.设计感想这堂课是建立在初中已经对圆与圆的位置关系有个粗略地了解的基础上,对这个位置关系的进一步深化,而且前一堂课学习过直线与圆的位置关系,圆与圆的位置关系的研究和直线与圆的位置关系的研究方法是类似的,所以可以用类比的思想来引导学生自主地探究圆与圆的位置关系.作为解析几何的一堂课,判断圆与圆的位置关系,表达的正是解析几何的思想:用代数方法处理几何问题,用几何方法处理代数问题.所以在教材处理上,对判断两圆位置关系用了几何方法,使学生对解析几何的本质有所了解.备课资料圆的参数方程一般地,在取定的坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数,即⎩⎪⎨⎪⎧x =f t ,y =gt.①并且对于t 的每一个允许值,由方程①所确定的点M(x ,y)都在一条曲线上,那么方程组①就叫这条曲线的参数方程,联系x ,y 之间的关系的变数叫做参变数,简称参数.参数方程中的参数可以是有物理、几何意义的变数,也可以是没有明显意义的变数.相对于参数方程来说,前面学过的直接给出曲线上点的坐标关系的方程,叫做曲线的普通方程.参数方程能把曲线上的点坐标通过参数直接地写出来,因此,能比较清楚地说明曲线上点的坐标的特点,尤其是借助于参数方程,可以使有的问题变得容易解决.这也正是在解有关问题时,将普通方程化为参数方程来解的原因.当然在解答有关问题时,根据问题的需要,有时也将参数方程化为普通方程,比如研究有关曲线的性质时,由于我们对普通方程下曲线性质比较熟悉,这时,常把曲线参数方程化为普通方程来研究问题.圆的参数方程参数方程:⎩⎪⎨⎪⎧x =a +rcosθ,y =b +rsinθ.其中,θ为参数,圆心为(a ,b),r 为半径.需注意的两点:(1)标准方程含有a ,b ,r ,当a ,b ,r 确定下来时,圆的参数方程才唯一地确定下来,确定圆的参数方程同样需要三个独立条件.(2)要掌握圆的标准方程(x -a)2+(y -b)2=r 2与参数方程⎩⎪⎨⎪⎧x =a +rcosθ,y =b +rcosθ(θ为参数)之间的互化.。

人教版数学必修三第二章2.3.2 两个变量之间的线性相关 经典教学教案

人教版数学必修三第二章2.3.2 两个变量之间的线性相关 经典教学教案

设计意图 联系现实问题,提升学生的求知欲、探索欲,使学生保持良好、积极的情
感体验。
第二阶段:形成思路,实施探究
1/8
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
下面我分以下几步来实施探究: Step1:探究增长方式,引出“线性”回归 Step2:师生合作探究回归直线的确定方法 Step3:用数学的语言来描述回归直线的定义 Step4:探求距离的简化 Step5:解析问题,获得新知 下面首进行第一步:
4/8
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
例 2 我国是一个人口大国,估计人口数量及发展趋势是我们制定经济发展计划等一系 列相关政策的基础,人口数量预测是一个复杂的问题,不仅是人口与时间两个变量之间 的 关系,还与国家经济状况,科技发展,自然灾害和战争等其他因素有关。我们看下面的统计 表 1949 至 1994 年人口数据资料如下
三、教学目标
根据上述简析,考虑到学生已有认知结构和心理特征,结合本节课内容我制定了以下教 学目标:
1、知识与技能目标
(1)知道最小二乘法的思想,了解其公式的推导过程;(2)会用公式求解回归方程。
2、过程与方法目标
(1)通过自主探究体会数形结合、类比、及最小二乘法的数学思想方法。培养学生观
0/8
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
i =1
i =1
i =1
(3)代入公式求 aˆ , bˆ ;
(4)列出直线方程。
这样,使学生能回顾总结梳理所学知识,系统掌握所学知识,使课堂效果得到加强。
第五阶段:练习反馈
高考题是高考要求的具体体现,让学生以它们为范例,对于强化“高考意识”十分必要。 因此设计了以下练习题:

2017-2018学年高中数学人教A版必修3教学案:第二章 2.3 变量间的相关关系

2017-2018学年高中数学人教A版必修3教学案:第二章 2.3 变量间的相关关系

变量间的相关关系(1)函数关系与相关关系的区别与联系是什么?(2)如何判断两个变量之间是否具备相关关系?(3)什么是正相关、负相关?与散点图有什么关系?[新知初探]1.相关关系如果两个变量中一个变量的取值一定时,另一个变量的取值带有一定的随机性,那么这两个变量之间的关系叫做相关关系.2.散点图将各数据在平面直角坐标系中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图,利用散点图,可以判断两个变量是否相关,相关时是正相关还是负相关.3.正相关和负相关(1)正相关:散点图中的点散布在从左下角到右上角的区域.(2)负相关:散点图中的点散布在从左上角到右下角的区域.[点睛]对正相关和负相关的理解(1)正相关随自变量的变大(或变小),因变量也随之变大(或变小),这种带有随机性的相关关系,我们称为正相关.例如,人年龄由小变大时,体内脂肪含量也由少变多.(2)负相关随自变量的变大(或变小),因变量却随之变小(或变大),这种带有随机性的相关关系,我们称为负相关.例如,汽车越重,每消耗1 L 汽油所行驶的平均路程就越短.4.回归直线方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归方程:回归直线的方程,简称回归方程. (3)回归方程的推导过程:①假设已经得到两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ).②设所求回归方程为y ^=b ^x +a ^,其中a ^,b ^是待定参数. ③由最小二乘法得⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n (x i-x )2=∑i =1nx i y i-n x y ∑i =1n x 2i-n x 2a ^=y -b ^x其中:b ^是回归方程的斜率,a ^是截距.[小试身手]1.下列命题正确的是( ) ①任何两个变量都具有相关关系; ②圆的周长与该圆的半径具有相关关系;③某商品的需求量与该商品的价格是一种非确定性关系; ④根据散点图求得的回归直线方程可能是没有意义的;⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进行研究.A .①③④B .②③④C .③④⑤D .②④⑤解析:选C ①显然不对,②是函数关系,③④⑤正确.2.对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图图2.由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关解析:选C 由这两个散点图可以判断,变量x 与y 负相关,u 与v 正相关. 3.若施肥量x (kg)与水稻产量y (kg)的线性回归方程为y ^=5x +250,当施肥量为80 kg 时,预计水稻产量约为________kg.解析:把x =80代入回归方程可得其预测值y ^=5×80+250=650(kg). 答案:6504.对具有线性相关关系的变量x 和y ,测得一组数据如下表所示.x 2 4 5 6 8 y3040605070若已求得它们回归直线的方程为______________________.解析:由题意可知x =2+4+5+6+85=5,y =30+40+60+50+705=50.即样本中心为(5,50).设回归直线方程为y ^=6.5x +a ^, ∵回归直线过样本中心(x ,y ), ∴50=6.5×5+a ^,即a ^=17.5, ∴回归直线方程为y ^=6.5x +17.5 答案:y ^=6.5x +17.5相关关系的判断①正方形的边长与面积之间的关系;②农作物的产量与施肥量之间的关系;③出租车费与行驶的里程;④降雪量与交通事故的发生率之间的关系.(2)某个男孩的年龄与身高的统计数据如下表所示.年龄x(岁)12345 6身高y(cm)788798108115120①画出散点图;②判断y与x是否具有线性相关关系.[解析](1)在①中,正方形的边长与面积之间的关系是函数关系;在②中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;③为确定的函数关系;在④中,降雪量与交通事故的发生率之间具有相关关系.答案:②④(2)解:①散点图如图所示.②由图知,所有数据点接近一条直线排列,因此,认为y与x具有线性相关关系.两个变量是否相关的两种判断方法(1)根据实际经验:借助积累的经验进行分析判断.(2)利用散点图:通过散点图,观察它们的分布是否存在一定的规律,直观地进行判断.[活学活用]如图所示的两个变量不具有相关关系的是________(填序号).解析:①是确定的函数关系;②中的点大都分布在一条曲线周围;③中的点大都分布在一条直线周围;④中点的分布没有任何规律可言,x ,y 不具有相关关系.答案:①④[典例] (1)已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x +2.3 B.y ^=2x -2.4 C.y ^=-2x +9.5D.y ^=-0.3x +4.4(2)一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点的零件的多少随机器的运转的速度的变化而变化,下表为抽样试验的结果:转速x (转/秒)16 14 12 8 每小时生产有缺点的零件数y (件)11985②如果y 对x 有线性相关关系,请画出一条直线近似地表示这种线性关系; ③在实际生产中,若它们的近似方程为y =5170x -67,允许每小时生产的产品中有缺点的零件最多为10件,那么机器的运转速度应控制在什么范围内?[解析] (1)依题意知,相应的回归直线的斜率应为正,排除C 、D.且直线必过点(3,3.5),代入A 、B 得A 正确.答案:A(2)解:①散点图如图所示:②近似直线如图所示:③由y ≤10得5170x -67≤10,解得x ≤14.9,所以机器的运转速度应控制在14转/秒内.求回归直线方程的步骤(1)收集样本数据,设为(x i ,y i )(i =1,2,…,n )(数据一般由题目给出). (2)作出散点图,确定x ,y 具有线性相关关系. (3)把数据制成表格x i ,y i ,x 2i ,x i y i . (4)计算x ,y,∑i =1nx 2i ,∑i =1nx i y i . (5)代入公式计算b ^,a ^,公式为⎩⎪⎨⎪⎧b ^=∑i =1n x i y i -n x y∑i =1n x 2i-n x2,a ^=y -b ^x .(6)写出回归直线方程y ^=b ^x +a ^. [活学活用]已知变量x ,y 有如下对应数据:x 1 2 3 4 y1345(1)作出散点图;(2)用最小二乘法求关于x ,y 的回归直线方程. 解:(1)散点图如图所示.(2)x =1+2+3+44=52,y =1+3+4+54=134, ∑i =14x i y i =1+6+12+20=39.∑i =14x 2i =1+4+9+16=30,b ^=39-4×52×13430-4×⎝⎛⎭⎫522=1310,a ^=134-1310×52=0,所以y ^=1310x 为所求的回归直线方程.利用线性回归方程对总体进行估计[典例] 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:x 3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,求出y 关于x 的回归直线方程y ^=b ^x +a ^;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低了多少吨标准煤?[解] (1)散点图如图:(2)x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5,∑i =14x i y i =3×2.5+4×3+5×4+6×4.5=66.5,∑i =14x 2i =32+42+52+62=86, 所以b ^=∑i =14x i y i -4x y ∑i =14x 2i -4x2=66.5-4×4.5×3.586-4×4.52=0.7,a ^=y -b ^x =3.5-0.7×4.5=0.35. 所以所求的线性回归方程为y ^=0.7x +0.35.(3)当x =100时,y ^=0.7×100+0.35=70.35(吨标准煤),90-70.35=19.65(吨标准煤).即生产100吨甲产品的生产能耗比技改前降低了19.65吨标准煤.只有当两个变量之间存在线性相关关系时,才能用回归直线方程对总体进行估计和预测.否则,如果两个变量之间不存在线性相关关系,即使由样本数据求出回归直线方程,用其估计和预测结果也是不可信的.[活学活用](重庆高考)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份 2010 2011 2012 2013 2014 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(1)求y 关于t 的回归方程y ^=b ^t +a ^;(2)用所求回归方程预测该地区2015年(t =6)的人民币储蓄存款. 解:(1)列表计算如下:i t i y i t 2i t i y i 1 2 3 4 51 2 3 4 55 6 7 8 101 4 9 16 255 12 21 32 50这里n =5,t -=1n ∑i =1n t i =155=3,y -=1n ∑i =1ny i =365=7.2.∑i =1nt 2i -n t -2=55-5×32=10,∑i =1nt i y i -n t -y -=120-5×3×7.2=12,从而b ^=1210=1.2,a ^=y --b ^t -=7.2-1.2×3=3.6,故所求回归方程为y ^=1.2t +3.6.(2)将t =6代入回归方程可预测该地区2015年的人民币储蓄存款为y ^=1.2×6+3.6=10.8(千亿元).[层级一 学业水平达标]1.下列变量具有相关关系的是( ) A .人的体重与视力B .圆心角的大小与所对的圆弧长C .收入水平与购买能力D .人的年龄与体重解析:选C B 为确定性关系;A ,D 不具有相关关系,故选C. 2.已知变量x ,y 之间具有线性相关关系,其散点图如图所示,则其回归方程可能为A.y ^=1.5x +2 B.y ^=-1.5x +2 C.y ^=1.5x -2 D.y ^=-1.5x -2解析:选B 设回归方程为y ^=b ^x +a ^,由散点图可知变量x ,y 之间负相关,回归直线在y 轴上的截距为正数,所以b ^<0,a ^>0,因此方程可能为y ^=-1.5x +2.3.设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线如图所示,则以下结论正确的是( )A .直线l 过点(x ,y )B .回归直线必通过散点图中的多个点C .直线l 的斜率必在(0,1)D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同解析:选A A 是正确的;回归直线可以不经过散点图中的任何点,故B 错误;回归直线的斜率不确定,故C 错误;分布在l 两侧的样本点的个数不一定相同,故D 错误.4.对有线性相关关系的两个变量建立的回归直线方程y ^=a ^+b ^x 中,回归系数b ^( ) A .不能小于0 B .不能大于0 C .不能等于0D .只能小于0解析:选C 当b ^=0时,r =0,这时不具有线性相关关系,但b ^能大于0,也能小于0. 5.2016年元旦前夕,某市统计局统计了该市2015年10户家庭的年收入和年饮食支出的统计资料如下表:(2)若某家庭年收入为9万元,预测其年饮食支出. (参考数据:∑i =110x i y i =117.7,∑i =110x 2i =406)解:依题意可计算得:x =6,y =1.83,x 2=36,x y =10.98, 又∵∑i =110x i y i =117.7,∑i =110x 2i =406,∴b ^=∑i =110x i y i -10x y∑i =110x 2i -10x2≈0.17,a ^=y -b ^x =0.81,∴y ^=0.17x +0.81. ∴所求的回归方程为y ^=0.17x +0.81.(2)当x =9时,y ^=0.17×9+0.81=2.34(万元).可估计年收入为9万元的家庭每年饮食支出约为2.34万元.[层级二 应试能力达标]1.一个口袋中有大小不等的红、黄、蓝三种颜色的小球若干个(大于5个),从中取5次,那么取出红球的次数和口袋中红球的数量是( )A .确定性关系B .相关关系C .函数关系D .无任何关系解析:选B 每次从袋中取球取出的球是不是红球,除了和红球的个数有关外,还与球的大小等有关系,所以取出红球的次数和口袋中红球的数量是一种相关关系.2.农民工月工资y (元)依劳动生产率x (千元)变化的回归直线方程为y ^=50+80x ,下列判断正确的是( )A .劳动生产率为1 000元时,工资为130元B .劳动生产率提高1 000元时,工资水平提高80元C .劳动生产率提高1 000元时,工资水平提高130元D .当月工资为210元时,劳动生产率为2 000元解析:选B 由回归直线方程y ^=50+80x 知,x 每增加1,y 增加80,但要注意x 的单位是千元,y 的单位是元.3.为了解儿子身高与其父亲身高的关系,随机抽取5对父子身高数据如下:父亲身高x (cm) 174 176 176 176 178 儿子身高y (cm)175175176177177则y 对x 的线性回归方程为( ) A .y =x -1 B .y =x +1 C .y =88+12xD .y =176解析:选C 计算得,x =174+176+176+176+1785=176,y =175+175+176+177+1775=176,根据回归直线经过样本中心(x ,y )检验知,C 符合.4.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y ^=b ^x +a ^,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A.b ^>b ′,a ^>a ′B.y ^>b ′,a ^<a ′C.b ^<b ′,a ^>a ′D.y ^<b ′,a ^<a ′解析:选C 由(1,0),(2,2)求b ′,a ′. b ′=2-02-1=2,a ′=0-2×1=-2.求b ^,a ^时,∑i =16x i y i =0+4+3+12+15+24=58,x =3.5,y =136, ∑i =16x 2i =1+4+9+16+25+36=91,∴b ^=58-6×3.5×13691-6×3.52=57, a ^=136-57×3.5=136-52=-13,∴b ^<b ′,a ^>a ′.5.正常情况下,年龄在18岁到38岁的人,体重y (kg)对身高x (cm)的回归方程为y ^=0.72x -58.2,张红同学(20岁)身高为178 cm ,她的体重应该在________ kg 左右.解析:用回归方程对身高为178 cm 的人的体重进行预测,当x =178时,y ^=0.72×178-58.2=69.96(kg).答案:69.966.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:由表中数据,求得线性回归方程为y =-4x +a ,则a =________. 解析:x =4+5+6+7+8+96=132,y =92+82+80+80+78+686=80,由回归方程过样本中心点(x ,y ) 得80=-4×132+a ^.即a ^=80+4×132=106.答案:1067.对某台机器购置后的运行年限x (x =1,2,3,…)与当年利润y 的统计分析知x ,y 具备线性相关关系,回归方程为y ^=10.47-1.3x ,估计该台机器最为划算的使用年限为________年.解析:当年利润小于或等于零时应该报废该机器,当y =0时,令10.47-1.3x =0,解得x ≈8,故估计该台机器最为划算的使用年限为8年.答案:88.一项关于16艘轮船的研究中,船的吨位区间为[192,3 246](单位:吨),船员的人数5~32人,船员人数y 关于吨位x 的回归方程为y ^=9.5+0.006 2x ,(1)若两艘船的吨位相差1 000,求船员平均相差的人数; (2)估计吨位最大的船和最小的船的船员人数. 解:(1)设两艘船的吨位分别为x 1,x 2,则 y ^1-y ^2=9.5+0.006 2x 1-(9.5+0.006 2x 2) =0.006 2×1 000≈6, 即船员平均相差6人.(2)当x =192时,y ^=9.5+0.006 2×192≈11, 当x =3 246时,y ^=9.5+0.006 2×3 246≈30.即估计吨位最大和最小的船的船员数分别为30人和11人.9.某个体服装店经营某种服装在某周内所获纯利y (元)与该周每天销售这种服装的件数x (件)之间有一组数据如下表:(1)求x ,y ;(2)若纯利y 与每天销售这种服装的件数x 之间是线性相关的,求回归直线方程; (3)若该店每周至少要获纯利200元,请你预测该店每天至少要销售这种服装多少件? (提示:∑i =17x 2i =280,∑i =17y 2i =45 309,∑i =17x i y i =3 487)解:(1)x =3+4+5+6+7+8+97=6,y =66+69+73+81+89+90+917≈79.86.(2)∵b ^=3 487-7×6×79.86280-7×62≈4.75,a ^=79.86-4.75×6=51.36,∴纯利与每天销售件数x 之间的回归直线方程为y ^=51.36+4.75x . (3)当y ^=200时,200=4.75x +51.36,所以x ≈31.29.因此若该店每周至少要获纯利200元,则该店每天至少要销售这种服装32件.(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列三个抽样:①一个城市有210家某商品的代理商,其中大型代理商有20家,中型代理商有40家,小型代理商有150家,为了掌握该商品的销售情况,要从中抽取一个容量为21的样本;②在某公司的50名工人中,依次抽取工号为5,10,15,20,25,30,35,40,45,50的10名工人进行健康检查;③某市质量检查人员从一食品生产企业生产的两箱(每箱12盒)牛奶中抽取4盒进行质量检查.则应采用的抽样方法依次为( )A .简单随机抽样;分层抽样;系统抽样B .分层抽样;简单随机抽样;系统抽样C .分层抽样;系统抽样;简单随机抽样D .系统抽样;分层抽样;简单随机抽样解析:选C ①中商店的规模不同,所以应利用分层抽样;②中抽取的学号具有等距性,所以应是系统抽样;③中总体没有差异性,容量较小,样本容量也较小,所以应采用简单随机抽样.故选C.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190解析:选B 1 000×n200+1 200+1 000=80,求得n =192.4.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200D.y ^=10x -200解析:选A 由于销售量y 与销售价格x 成负相关,故排除B ,D.又因为销售价格x >0,则C 中销售量全小于0,不符合题意,故选A.5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x 和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n (y 1+y 2+…+y n )+⎝⎛⎭⎫1+1+…+1n =2x -3y +1.6.有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3则总体中大于或等于31.5的数据所占比例约为( ) A.211 B.13 C.12D.23解析:选B 由题意知,样本的容量为66,而落在[31.5,43.5)内的样本个数为12+7+3=22,故总体中大于或等于31.5的数据约占2266=13.7.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人, ∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.8.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得到了他们某月交通违章次数的数据,结果制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B5×0+20×1+10×2+10×3+5×450=1.8.9.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据月份x 1 2 3 4 用水量y4.5432.5用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y ^=-0.7x +a ,则a 的值为( )A .5.25B .5C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25.10.如图是在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.2D .85,4解析:选C 去掉一个最高分95,去掉一个最低分77,平均数为80+15(5+3+6+5+6)=85,方差为15[(85-85)2+(85-83)2+(85-86)2+(85-85)2+(85-86)2]=1.2,因此选C.11.如果数据x 1,x 2,x 3,…,x n 的平均数是x ,方差是s 2,则3x 1+2,3x 2+2,…,3x n +2的平均数和方差分别是( )A.x 和s 2 B .3x 和9s 2 C .3x +2和9s 2D .3x +2和12s 2+4解析:选C 3x 1+2,3x 2+2,…,3x n +2的平均数是3x +2,由于数据x 1,x 2,…x n的方差为s2,所以3x1+2,3x2+2,…,3x n+2的方差为9s2.12.如图是某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图,已知甲的成绩的极差为31,乙的成绩的平均值为24,则下列结论错误的是()A.x=9B.y=8C.乙的成绩的中位数为26D.乙的成绩的方差小于甲的成绩的方差解析:选B因为甲的成绩的极差为31,所以其最高成绩为39,所以x=9;因为乙的成绩的平均值为24,所以y=24×5-(12+25+26+31)-20=6;由茎叶图知乙的成绩的中位数为26;对比甲、乙的成绩分布发现,乙的成绩比较集中,故其方差较小.二、填空题(本大题共4小题,每小题5分,共20分)13.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x-y|的值为________.解析:由平均数为10,得(x+y+10+11+9)×15=10,则x+y=20;又方差为2,∴[(x-10)2+(y-10)2+(10-10)2+(11-10)2+(9-10)2]×15=2,得x2+y2=208,2xy=192,∴|x-y|=(x-y)2=x2+y2-2xy=4.答案:414.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.解析:抽取的男运动员的人数为2148+36×48=12.答案:1215.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:________,________,________,________,________.(下面摘取了随机数表第7行至第9行)84 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 解析:选出的三位数分别为331,572,455,068,877,047,447,…,其中572,877均大于500,将其去掉,剩下的前5个编号为331,455,068,047,447.答案:331 455 068 047 44716.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人, 则x100=0.030×10,解得x =30.同理,y =20,z =10. 故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)为调查某班学生的平均身高,从50名学生中抽取110,应如何抽样?若知道男生、女生的身高显著不同(男生30人,女生20人),应如何抽样?解:从50名学生中抽取110,即抽取5人,采用简单随机抽样法(抽签法或随机数法).若知道男生、女生的身高显著不同,则采用分层抽样法,按照男生与女生的人数比为30∶20=3∶2进行抽样,则男生抽取3人,女生抽取2人.18.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?解:(1)样本均值为17+19+20+21+25+306=1326=22.(2)由(1)知样本中优秀工人所占比例为26=13,故推断该车间12名工人中有12×13=4名优秀工人.19.(本小题满分12分)2016年春节前,有超过20万名广西、四川等省籍的外出务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让返乡过年的摩托车驾乘人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就进行一次省籍询问,询问结果如图所示:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5人,则四川籍的应抽取几人?解:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样法.(2)从题图可知,被询问了省籍的驾驶人员广西籍的有5+20+25+20+30=100(人); 四川籍的有15+10+5+5+5=40(人).设四川籍的驾驶人员应抽取x 人,依题意得5100=x 40,解得x =2,即四川籍的应抽取2人.20.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样. (2)x 甲=17(102+101+99+98+103+98+99)=100,x 乙=17(110+115+90+85+75+115+110)=100,s 2甲=17(4+1+1+4+9+4+1)≈3.43,s 2乙=17(100+225+100+225+625+225+100)=228.57, ∴s 2甲<s 2乙,故甲车间产品比较稳定.21.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数.解:(1)由分组[10,15)的频数是10, 频率是0.25知, 10M =0.25,所以M =40. 因为频数之和为40,所以10+25+m +2=40,解得m =3. 故p =340=0.075.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.22.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.解:(1)由题意知n =10,x =1n ∑i =1n x i =8010=8, y =1n ∑i =1n y i =2010=2, 又∑i =110x 2i -10x 2=720-10×82=80,∑i =110x i y i -10x y =184-10×8×2=24,由此得b ^=∑i =110x i y i -10x y∑i =110x 2i -10x 2=2480=0.3, a ^=y -b ^x =2-0.3×8=-0.4,故所求回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 的值增加而增加(b =0.3>0),故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7千元.。

2018版高中数学人教B版必修三学案:第二单元 2.2-2 用

2018版高中数学人教B版必修三学案:第二单元 2.2-2 用

2.2.2用样本的数字特征估计总体的数字特征学习目标 1.能合理地选取样本,并从中提取基本的数字特征.2.了解众数、中位数、平均数的概念,会计算方差和标准差.3.进一步体会用样本估计总体的思想,会用样本的数字特征估计总体的数字特征.知识点一众数、中位数、平均数思考1平均数、中位数、众数中,哪个量与样本的每一个数据有关,它有何缺点?思考2在电视大奖赛中,计算评委打分的平均值时,为什么要去掉一个最高分和一个最低分?梳理众数、中位数、平均数定义(1)众数:一组数据中出现次数________的数.(2)中位数:把一组数据按______________________的顺序排列,处在______________位置的数(或中间两个数的________)叫做这组数据的中位数.(3)平均数:如果n个数x1,x2,…,x n,那么x=____________________叫做这n个数的平均数.知识点二方差、标准差思考1当样本数据的标准差为0时,该组数据有何特点?思考2 标准差、方差的意义是什么?梳理 标准差、方差的概念及计算公式(1)标准差是样本数据到平均数的一种__________,一般用s 表示.s = _______________(x n 是样本数据,n 是样本容量,x 是样本平均数). (2)标准差的平方s 2叫做方差.s 2=__________________________________(x n 是样本数据,n 是样本容量,x 是样本平均数). (3)标准差(或方差)越小,数据越稳定在平均数附近.s =0时,每一组样本数据均为x . 知识拓展 平均数、方差公式的推广:1.若数据x 1,x 2,…,x n 的平均数为x ,那么mx 1+a ,mx 2+a ,mx 3+a ,…,mx n +a 的平均数是m x +a .2.设数据x 1,x 2,…,x n 的平均数为x ,方差为s 2,则 a .s 2=1n[(x 21+x 22+…+x 2n )-n x 2]; b .数据x 1+a ,x 2+a ,…,x n +a 的方差也为s 2; c .数据ax 1,ax 2,…,ax n 的方差为a 2s 2.知识点三 用样本的基本数字特征估计总体的基本数字特征1.样本的基本数字特征包括______、________、________、__________.2.平均数向我们提供了样本数据的重要信息,但是平均数有时也会使我们作出对总体的片面判断,因为这个平均数掩盖了一些极端的情况,而这些极端情况显然是不能忽视的.因此,还需要用标准差来反映数据的分散程度.3.现实中的总体所包含的个体数往往是很多的,虽然总体的平均数与标准差客观存在,但是我们无从知道.所以通常的做法是用样本的平均数和标准差去估计总体的平均数与标准差.虽然样本具有________性,不同的样本测得的数据不一样,与总体的数字特征也可能不同,但只要样本的代表性好,这样做就是合理的,也是可以接受的.类型一 众数、中位数和平均数的理解与应用 命题角度1 众数、中位数、平均数的计算例1某公司的33名职工的月工资(单位:元)如下表:(1)求该公司职工月工资的平均数;(2)若董事长、副董事长的工资分别从5 500元、5 000元提升到30 000元、20 000元,那么公司职工月工资新的平均数又是什么?反思与感悟(1)众数、中位数与平均数都是描述一组数据集中趋势的量,平均数是最重要的量.(2)众数考查各个数据出现的频率,大小只与这组数据中的部分数据有关,当一组数据中部分数据多次重复出现时,众数往往更能反映问题.(3)中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能在所给的数据中,也可能不在所给的数据中.(4)平均数的大小与一组数据里每个数据均有关系,任何一个数据的变动都会引起平均数的变动.(5)因为平均数与每一个样本数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数不具有的性质,也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于全体样本数据的信息.但平均数受数据的极端值的影响较大,使平均数在估计总体时可靠性降低.跟踪训练1对于数据3,3,2,3,6,3,10,3,6,3,2,有下列结论:①这组数据的众数是3;②这组数据的众数与中位数的数值不相等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等.其中正确结论的个数为()A.1 B.2 C.3 D.4命题角度2在频率分布直方图中估算众数、中位数、平均数例2以教材2.2.1节调查的100位居民的月均用水量为例,样本数据的频率分布表和频率分布直方图如图所示,试估算月均用水量的中位数.反思与感悟样本的众数、中位数和平均数常用来表示样本数据的“中心值”,其中众数和中位数容易计算,不受少数几个极端值的影响,但只能表达样本数据中的少量信息.平均数代表了数据更多的信息,但受样本中每个数据的影响,越极端的数据对平均数的影响也越大.跟踪训练2一批乒乓球,随机抽取100个进行检查,球的直径频率分布直方图如图.试估计这个样本的众数,中位数和平均数.类型二标准差、方差与应用例3计算数据89,93,88,91,94,90,88,87的方差和标准差(标准差结果精确到0.1).反思与感悟(1)方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.(2)样本标准差反映了各样本数据围绕样本平均数波动的大小,标准差越小,表明各样本数据在样本平均数周围越集中;反之,标准差越大,表明各样本数据在样本平均数的两边越分散.(3)若样本数据都相等,则s=0.(4)当样本的平均数相等或相差无几时,就要用样本数据的离散程度来估计总体的数字特征,而样本数据的离散程度是由标准差来衡量的.跟踪训练3甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图.(1)分别求出两人得分的平均数与方差;(2)根据图和(1)中算得的结果,对两人的训练成绩作出评价.1.某市2016年各月的平均气温(℃)数据的茎叶图如图:则这组数据的中位数是()A.19 B.20C.21.5 D.232.设样本数据x1,x2,…,x10的平均数和方差分别为1和4,若y i=x i+a(a为非零常数,i =1,2,…,10),则y1,y2,…,y10的平均数和方差分别为()A.1+a,4 B.1+a,4+aC.1,4 D.1,4+a3.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.4.若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为________.5.某校医务室抽查了高一10位同学的体重(单位:kg)如下:74,71,72,68,76,73,67,70,65,74.(1)求这10个学生体重数据的平均数、中位数、方差、标准差;(2)估计高一所有学生体重数据的平均数、中位数、方差、标准差.1.利用直方图求数字特征:①众数是最高的矩形的底边的中点.②中位数左右两边直方图的面积应相等.③平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.2.标准差的平方s2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.3.现实中的总体所包含的个体数往往很多,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.答案精析问题导学 知识点一思考1 平均数与样本的每一个数据有关,它可以反映出更多的关于样本数据总体的信息,但它的缺点是平均数受数据中极端值的影响较大.思考2 为了避免平均值受数据中个别极端值的影响,增大它在估计总体时的可靠性,故计算评委打分时要去掉一个最高分和一个最低分.梳理 (1)最多 (2)从小到大(或从大到小) 中间 平均数 (3)1n (x 1+x 2+…+x n ). 知识点二思考1 当样本数据的标准差为0时,该组数据都相等.思考2 标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小. 梳理 (1)平均距离1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2] (2)1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2] 知识点三1.众数 中位数 平均数 标准差 3.随机 题型探究 类型一例1 解 (1)公司职工月工资的平均数为x =5 500+5 000+3 500×2+3 000+2 500×5+2 000×3+1 500×2033=69 00033≈2 091(元). (2)若董事长、副董事长的工资提升后,职工月工资的平均数为x =30 000+20 000+3 500×2+3 000+2 500×5+2 000×3+1 500×2033=108 50033≈3 288(元). 跟踪训练1 A [在这11个数中,数3出现了6次,频率最高,故众数是3;将这11个数按从小到大的顺序排列得2,2,3,3,3,3,3,3,6,6,10,中间数据是3,故中位数是3;而平均数x =2×2+3×6+6×2+1011=4.故只有①正确.]例2 解 在频率分布直方图中,中位数左边和右边的直方图的面积是相等的,由此可以估计中位数的值.下图中虚线代表居民月均用水量的中位数的估计值,此数据值为2.02 .跟踪训练2 解 众数=39.99+40.012=40;四个矩形的面积分别是0.02×5=0.1, 0.02×10=0.2, 0.02×25=0.5, 0.02×10=0.2. 中位数为39.99+0.225=39.998;平均数为39.96×0.1+39.98×0.2+40×0.5+40.02×0.2=39.996. 类型二例3 解 ①x =90+18[(-1)+3+(-2)+1+4+0+(-2)+(-3)]=90+18×0=90;②计算x i -x (i =1,2,…,8),得各数据为-1,3,-2,1,4,0,-2,-3; ③计算(x i -x )2(i =1,2,…,8),得各数据为1,9,4,1,16,0,4,9; ④计算方差:s 2=18(1+9+4+1+16+0+4+9)=448=5.5;⑤计算标准差:s = 5.5≈2.3.所以这组数据的方差为5.5,标准差约为2.3.跟踪训练3 解 (1)由题图可得甲、乙两人五次测试的成绩分别为甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分. x 甲=10+13+12+14+165=13,x 乙=13+14+12+12+145=13,s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+ (16-13)2]=4,s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.(2)由s 2甲>s 2乙可知乙的成绩较稳定.从折线图来看,甲的成绩基本上呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩无明显提高.当堂训练1.B [由茎叶图知,平均气温在20℃以下的有5个月,在20℃以上的也有5个月,恰好是20℃的有2个月,由中位数的定义知,这组数据的中位数为20.故选B.]2.A [∵x 1,x 2,…,x 10的平均数x =1,方差s 21=4,且y i =x i +a (i =1,2,…,10),∴y 1,y 2,…,y 10的平均数y =110·(y 1+y 2+…+y 10) =110·(x 1+x 2+…+x 10+10a ) =110·(x 1+x 2+…+x 10)+a =x +a =1+a , 其方差s 22=110·[(y 1-y )2+(y 2-y )2+…+(y 10-y )2] =110[(x 1-1)2+(x 2-1)2+…+(x 10-1)2] =s 21=4.故选A.]3.6解析 由已知得,所求平均数为4+6+5+8+7+66=6. 4.16解析 设样本数据x 1,x 2,…,x 10的标准差为s ,则s =8,可知数据2x 1-1,2x 2-1,…,2x 10-1的标准差为2s =16.5.解 (1)这10个学生体重数据的平均数为x =110×(74+71+72+68+76+73+67+70+65+74)=71.这10个学生体重数据从小到大依次为65,67,68,70,71,72,73,74,74,76,位于中间的两个数是71,72,∴这10个学生体重数据的中位数为71+722=71.5. 这10个学生体重数据的方差为s 2=110×[(74-71)2+(71-71)2+(72-71)2+(68-71)2+ (76-71)2+(73-71)2+(67-71)2+(70-71)2+(65-71)2+(74-71)2]=11,这10个学生体重数据的标准差为s=s2=11.(2)由样本估计总体得高一所有学生体重数据的平均数为71,中位数为71.5,方差为11,标准差为11.。

高中数学新人教版B版精品教案《人教版B高中数学必修3 1.2.3 循环语句》1

高中数学新人教版B版精品教案《人教版B高中数学必修3 1.2.3 循环语句》1

循环语句教者尹玉观一、教学目标:1.知识与技能:(1)通过具体的实例理解,了解循环语句的结构特征,掌握循环语句的具体应用;(2)利用循环语句表达结局具体问题的过程,体会算法的基本思想;2.过程与方法:借助框图中的循环结构,借助Sciab语言中的循环语句来设计程序,进一步体会算法的重要性和有效性3.情感、态度与价值观:在学习过程及解决实际问题的过程中,尽可能的用基本算法语句描述算法、体会算法思想的作用及应用,增进对算法的了解,形成良好的数学学习情感、积极的学习态度。

二、教学的重点、难点:1.重点:理解for 语句与whie语句的结构与含义,并会应用2.难点:应用两种循环语句将具体问题程序化,搞清for循环和whie循环的区别和联系三、教学方法与手段:采用观察、分析、抽象、概括、自主探究、合作交流的教学方法,通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性。

四、教学过程:、for循环语句请同学们看下面的一个例子:例1.求123…1000= 教材P27分析:算法思想:可以采用重复计算,而且数字1、2、3、…、1000是有规律的一列数,逐渐循环递增,每次增幅为1解答:用for循环语句来实现计算步骤:这个程序一共四步:第一步是选择一个变量S表示和,并赋给初值0。

第二步开始进入for循环语句,首先设i为循环变量,分别设定其初值、步长、终值。

这里初值为1,步长为1(步长是指循环变量i 每次增加的值。

步长为1,可以省略不写,若为其他值,则不可省略),终值为1000。

第三步为循环表达式(循环体)。

第四步用“end”控制结束一次循环,开始一次新的循环。

循环体认识:第三步循环表达式“S=Si”的理解:i=1 S=Si 是S=S1,并把01赋值给S,第一次循环结束S为1,此时S记录了第一个数的值,遇到“end”开始第二次循环;i=2 S=Si 是S=S2,并把12赋值给S,第二次循环结束S为12=3,此时S记录了前两个数的和,遇到“end”开始第三次循环;i=3 S=Si 是S=S3,并把(12)3赋值给S,第三次循环结束S为123=6,此时S记录的是前三个数的和,遇到“end”开始第四次循环;…结果输出:把上述程序存到一个文件(“C:/gao/”),点击菜单中的“Load into Sciab”就会在Sciab中执行你写的程序:(教材P28——P29相关内容总结:for循环语句的格式课堂练习:教材P31 练习A 1II、whie循环语句。

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.2.1 古典概型》7

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.2.1 古典概型》7

人教A版必修3《古典概型》教学设计讲课人:吉林省镇赉县第三中学李海燕一、教材分析本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的节古典概型。

它安排在随机事件之后,几何概型之前,学生还未学习排列组合的情况下教学的。

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念及利用古典概型求随机事件的概率。

二、教学目标根据本节教材在本章中的地位和大纲要求以及学生实际,本节课的教学目标制定如下:①结合一些具体实例,让学生理解并掌握古典概型的两个特征及其概率计算公式,培养学生猜想、化归、观察比较、归纳问题的能力。

②会用列举法计算一些随机事件所含的基本事件数及事件发生的概率, 渗透数形结合、分类讨论的思想方法。

③使学生初步学会把一些实际问题转化为古典概型,关键是要使该问题是否满足古典概型的两个条件,培养学生对各种不同的实际情况的分析、判断、探索,培养学生的应用能力。

三、教学的重点和难点重点:理解古典概型的含义及其概率的计算公式。

难点:如何判断一个试验是否为古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

四、学情分析高一(14)班是一个体育班,学生数学基础比较薄弱,对数学的了解比较浅显,课堂接受容量较低。

本课的学习是建立在学生已经了解了概率的意义,掌握了概率的基本性质,知道了互斥事件和对立事件的概率加法公式。

学生已经具备了一定的归纳、猜想能力,但在数学的应用意识与应用能力方面尚需进一步培养。

多数学生能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强。

五、教法学法分析本节课属于概念教学,根据这节课的特点和学生的认知水平,本节课的教法与学法定为:为了培养学生的自主学习能力,激发学习兴趣,借鉴布鲁纳的发现学习理论,在教学中采取以问题式引导发现法教学,利用多媒体等手段,引导学生进行观察讨论、归纳总结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3.1 & 2.3.2 变量间的相关关系两个变量的线性相关
习课本P73~78,思考并完成以下问题预
(1)相关关系是函数关系吗?
(2)什么是正相关、负相关?与散点图有什么关系?
(3)回归直线方程是什么?如何求回归系数?
(4)如何判断两个变量之间是否具备相关关系?
[新知初探]
1.两个变量的关系
2.散点图
将样本中n 个数据点(x i ,y i )(i =1,2,…,n)描在平面直角坐标系中得到的图形.
3.正相关与负相关
(1)正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.
(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.
4.最小二乘法
设x ,Y 的一组观察值为(x i ,y i ),i =1,2,…,n ,且回归直线方程为y ^=a +
bx ,当x 取值x i (i =1,2,…,n)时,Y 的观察值为y i ,差y i -y ^i (i =1,2,…,n)
刻画了实际观察值y i 与回归直线上相应点纵坐标之间的偏离程度,通常是用离差
的平方和,即Q =
i =1
n
(y i
-a -bx i )
2作为总离差,并使之达到最小.这样,回归
直线就是所有直线中Q 取最小值的那一条.由于平方又叫二乘方,所以这种使“离差平方和最小”的方法,叫做最小二乘法.
5.回归直线方程的系数计算公式
[小试身手]
1.下列命题正确的是( )
①任何两个变量都具有相关关系;
②圆的周长与该圆的半径具有相关关系;
③某商品的需求量与该商品的价格是一种非确定性关系;
④根据散点图求得的回归直线方程可能是没有意义的;
⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进行研究.
A.①③④B.②③④
C.③④⑤D.②④⑤
解析:选C ①显然不对,②是函数关系,③④⑤正确.
2.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图图1;对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图图2.由这两个散点图可以判断( )。

相关文档
最新文档